Sample records for ability runs deep

  1. Biomechanical consequences of running with deep core muscle weakness.

    PubMed

    Raabe, Margaret E; Chaudhari, Ajit M W

    2018-01-23

    The deep core muscles are often neglected or improperly trained in athletes. Improper function of this musculature may lead to abnormal spinal loading, muscle strain, or injury to spinal structures, all of which have been associated with increased low back pain (LBP) risk. The purpose of this study was to identify potential strategies used to compensate for weakness of the deep core musculature during running and to identify accompanying changes in compressive and shear spinal loads. Kinematically-driven simulations of overground running were created for eight healthy young adults in OpenSim at increasing levels of deep core muscle weakness. The deep core muscles (multifidus, quadratus lumborum, psoas, and deep fascicles of the erector spinae) were weakened individually and together. The superficial longissimus thoracis was a significant compensator for 4 out of 5 weakness conditions (p < 0.05). The deep erector spinae required the largest compensations when weakened individually (up to a 45 ± 10% increase in compensating muscle force production, p = 0.004), revealing it may contribute most to controlling running kinematics. With complete deep core muscle weakness, peak anterior shear loading increased on all lumbar vertebrae (up to 19%, p = 0.001). Additionally, compressive spinal loading increased on the upper lumbar vertebrae (up to 15%, p = 0.007) and decreased on the lower lumbar vertebrae (up to 8%, p = 0.008). Muscular compensations may increase risk of muscular fatigue or injury and increased spinal loading over numerous gait cycles may result in damage to spinal structures. Therefore, insufficient strength of the deep core musculature may increase a runner's risk of developing LBP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A lower-extremities kinematic comparison of deep-water running styles and treadmill running.

    PubMed

    Killgore, Garry L; Wilcox, Anthony R; Caster, Brian L; Wood, Terry M

    2006-11-01

    The purpose of this investigation was to identify a deep-water running (DWR) style that most closely approximates terrestrial running, particularly relative to the lower extremities. Twenty intercollegiate distance runners (women, N = 12; men, N = 8) were videotaped from the right sagittal view while running on a treadmill (TR) and in deep water at 55-60% of their TR VO(2)max using 2 DWR styles: cross-country (CC) and high-knee (HK). Variables of interest were horizontal (X) and vertical (Y) displacement of the knee and ankle, stride rate (SR), VO(2), heart rate (HR), and rating of perceived exertion (RPE). Multivariate omnibus tests revealed statistically significant differences for RPE (p < 0.001). The post hoc pairwise comparisons revealed significant differences between TR and both DWR styles (p < 0.001). The kinematic variables multivariate omnibus tests were found to be statistically significant (p < 0.001 to p < 0.019). The post hoc pairwise comparisons revealed significant differences in SR (p < 0.001) between TR (1.25 +/- 0.08 Hz) and both DWR styles and also between the CC (0.81 +/- 0.08 Hz) and HK (1.14 +/- 0.10 Hz) styles of DWR. The CC style of DWR was found to be similar to TR with respect to linear ankle displacement, whereas the HK style was significantly different from TR in all comparisons made for ankle and knee displacement. The CC style of DWR is recommended as an adjunct to distance running training if the goal is to mimic the specificity of the ankle linear horizontal displacement of land-based running, but the SR will be slower at a comparable percentage of VO(2)max.

  3. The Robust Running Ape: Unraveling the Deep Underpinnings of Coordinated Human Running Proficiency

    PubMed Central

    Kiely, John

    2017-01-01

    this spectrum of available ‘choice’ dysfunctionally contracts, and our capacity to safely disperse the mechanical ‘stress’ of running progressively diminishes. Now the running work burden falls increasingly on reduced populations of collaborating components. Accordingly our capacity to effectively manage, dissipate and accommodate running-imposed stress diminishes, and vulnerability to Overuse syndromes escalates. Awareness of the deep underpinnings of running coordination enhances conceptual clarity, thereby informing training and rehabilitation insights designed to offset the legacy of excessive or progressively accumulating exposure to running-imposed mechanical stress. PMID:28659838

  4. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE PAGES

    Gizhko, A.; Geiser, A.; Moch, S.; ...

    2017-11-07

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  5. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizhko, A.; Geiser, A.; Moch, S.

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  6. Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis.

    PubMed

    Sellers, William I; Pond, Stuart B; Brassey, Charlotte A; Manning, Philip L; Bates, Karl T

    2017-01-01

    The running ability of Tyrannosaurus rex has been intensively studied due to its relevance to interpretations of feeding behaviour and the biomechanics of scaling in giant predatory dinosaurs. Different studies using differing methodologies have produced a very wide range of top speed estimates and there is therefore a need to develop techniques that can improve these predictions. Here we present a new approach that combines two separate biomechanical techniques (multibody dynamic analysis and skeletal stress analysis) to demonstrate that true running gaits would probably lead to unacceptably high skeletal loads in T. rex . Combining these two approaches reduces the high-level of uncertainty in previous predictions associated with unknown soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb segments of T. rex -long argued to indicate competent running ability-would actually have mechanically limited this species to walking gaits. Being limited to walking speeds contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs like T. rex , and demonstrates the power of multiphysics approaches for locomotor reconstructions of extinct animals.

  7. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population

    PubMed Central

    Liu, Hongjun; Zhang, Lin; Wang, Jiechen; Li, Changsheng; Zeng, Xing; Xie, Shupeng; Zhang, Yongzhong; Liu, Sisi; Hu, Songlin; Wang, Jianhua; Lee, Michael; Lübberstedt, Thomas; Zhao, Guangwu

    2017-01-01

    Deep-sowing is an effective measure to ensure seeds absorbing water from deep soil layer and emerging normally in arid and semiarid regions. However, existing varieties demonstrate poor germination ability in deep soil layer and some key quantitative trait loci (QTL) or genes related to deep-sowing germination ability remain to be identified and analyzed. In this study, a high-resolution genetic map based on 280 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population which comprised 6618 bin markers was used for the QTL analysis of deep-sowing germination related traits. The results showed significant differences in germination related traits under deep-sowing condition (12.5 cm) and standard-germination condition (2 cm) between two parental lines. In total, 8, 11, 13, 15, and 18 QTL for germination rate, seedling length, mesocotyl length, plumule length, and coleoptile length were detected for the two sowing conditions, respectively. These QTL explained 2.51–7.8% of the phenotypic variance with LOD scores ranging from 2.52 to 7.13. Additionally, 32 overlapping QTL formed 11 QTL clusters on all chromosomes except for chromosome 8, indicating the minor effect genes have a pleiotropic role in regulating various traits. Furthermore, we identified six candidate genes related to deep-sowing germination ability, which were co-located in the cluster regions. The results provide a basis for molecular marker assisted breeding and functional study in deep-sowing germination ability of maize. PMID:28588594

  8. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population.

    PubMed

    Liu, Hongjun; Zhang, Lin; Wang, Jiechen; Li, Changsheng; Zeng, Xing; Xie, Shupeng; Zhang, Yongzhong; Liu, Sisi; Hu, Songlin; Wang, Jianhua; Lee, Michael; Lübberstedt, Thomas; Zhao, Guangwu

    2017-01-01

    Deep-sowing is an effective measure to ensure seeds absorbing water from deep soil layer and emerging normally in arid and semiarid regions. However, existing varieties demonstrate poor germination ability in deep soil layer and some key quantitative trait loci (QTL) or genes related to deep-sowing germination ability remain to be identified and analyzed. In this study, a high-resolution genetic map based on 280 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population which comprised 6618 bin markers was used for the QTL analysis of deep-sowing germination related traits. The results showed significant differences in germination related traits under deep-sowing condition (12.5 cm) and standard-germination condition (2 cm) between two parental lines. In total, 8, 11, 13, 15, and 18 QTL for germination rate, seedling length, mesocotyl length, plumule length, and coleoptile length were detected for the two sowing conditions, respectively. These QTL explained 2.51-7.8% of the phenotypic variance with LOD scores ranging from 2.52 to 7.13. Additionally, 32 overlapping QTL formed 11 QTL clusters on all chromosomes except for chromosome 8, indicating the minor effect genes have a pleiotropic role in regulating various traits. Furthermore, we identified six candidate genes related to deep-sowing germination ability, which were co-located in the cluster regions. The results provide a basis for molecular marker assisted breeding and functional study in deep-sowing germination ability of maize.

  9. The recovery of running ability in an adolescent male after traumatic brain injury: a case study.

    PubMed

    Moriello, Gabriele; Frear, Matthew; Seaburg, Kristin

    2009-06-01

    The purpose of this case study was to document outcomes after a rehabilitation program in an adolescent male after traumatic brain injury. Three years after sustaining an injury in a skiing accident, a 17-year-old boy participated in a rehabilitation program with the goal of acquiring the ability to run one mile with his peers. On initial evaluation, the individual had significant left lower extremity weakness, impaired standing balance, limited endurance, and running limitations. He was able to run 10 m wearing a plastic ankle-foot orthosis on the left side but required supervision for safety. The intervention included strength training once weekly for 17 weeks, body weight-supported, treadmill-based locomotor training once weekly for 15 weeks followed by a combination of overground locomotor training and strengthening exercise once weekly for six weeks. After the intervention, muscle strength of the lower extremities increased and the individual was able to run one mile independently. The quality of his running improved, with better mechanics to absorb forces at impact during the absorption phase and increased lower extremity extension during the propulsion phase. A rehabilitation program consisting of strengthening and locomotor training improved running speed, quality, and endurance in an adolescent male after traumatic brain injury. He was able to progress to a less restrictive carbon fiber brace as a result of gains in lower extremity strength. This change in ability allowed him to participate in physical education by running on a track and playing softball with his peers.

  10. The specificity of the Loughborough Intermittent Shuttle Test for recreational soccer players is independent of their intermittent running ability.

    PubMed

    Coratella, Giuseppe; Beato, Marco; Schena, Federico

    2016-01-01

    The aim of the present study was to evaluate whether or not recreational soccer players (SP) and non-soccer players (non-SP) with similar intermittent-running ability had similar physiological responses to a soccer match-simulation protocol. Twenty-two recreational SP and 19 fitness-matched non-SP participated. Yo-Yo level 1 assessed intermittent-running ability, while the Loughborough Intermittent Shuttle Test served as soccer match-simulation protocol. Heart rate (HR), blood lactate concentration [La - ] and rating of perceived exertion (RPE) were recorded after each bout (1-5, plus an exhaustive task). SP had lower HR after the third, fourth and fifth bout, compared to non-SP. Similarly, SP had lower [La - ] after the third, fourth and the fifth bout. SP also had lower RPE after the third, fourth and fifth bout. The appropriateness of intermittent-running ability as the main determinant of physical performance in SP was questioned.

  11. Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis

    PubMed Central

    Pond, Stuart B.; Brassey, Charlotte A.; Manning, Philip L.; Bates, Karl T.

    2017-01-01

    The running ability of Tyrannosaurus rex has been intensively studied due to its relevance to interpretations of feeding behaviour and the biomechanics of scaling in giant predatory dinosaurs. Different studies using differing methodologies have produced a very wide range of top speed estimates and there is therefore a need to develop techniques that can improve these predictions. Here we present a new approach that combines two separate biomechanical techniques (multibody dynamic analysis and skeletal stress analysis) to demonstrate that true running gaits would probably lead to unacceptably high skeletal loads in T. rex. Combining these two approaches reduces the high-level of uncertainty in previous predictions associated with unknown soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb segments of T. rex—long argued to indicate competent running ability—would actually have mechanically limited this species to walking gaits. Being limited to walking speeds contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs like T. rex, and demonstrates the power of multiphysics approaches for locomotor reconstructions of extinct animals. PMID:28740745

  12. EMG activity of hip and trunk muscles during deep-water running.

    PubMed

    Kaneda, Koichi; Sato, Daisuke; Wakabayashi, Hitoshi; Nomura, Takeo

    2009-12-01

    The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.

  13. Symmetry in running.

    PubMed

    Raibert, M H

    1986-03-14

    Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.

  14. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  15. The Effect of a Combined High-Intensity Plyometric and Speed Training Program on the Running and Jumping Ability of Male Handball Players

    PubMed Central

    Cherif, Monsef; Said, Mohamed; Chaatani, Sana; Nejlaoui, Olfa; Gomri, Daghbaji; Abdallah, Aouidet

    2012-01-01

    Purpose The aim of this study was to investigate the effect of a combined program including sprint repetitions and drop jump training in the same session on male handball players. Methods Twenty-two male handball players aged more than 20 years were assigned into 2 groups: experimental group (n=11) and control group (n=11). Selection was based on variables “axis” and “lines”, goalkeepers were not included. The experimental group was subjected to 2 testing periods (test and retest) separated by 12 weeks of an additional combined plyometric and running speed training program. The control group performed the usual handball training. The testing period comprised, at the first day, a medical checking, anthropometric measurements and an incremental exercise test called yo-yo intermittent recovery test. 2 days later, participants performed the Repeated Sprint Ability test (RSA), and performed the Jumping Performance using 3 different events: Squat jump (SJ), Countermovement jump without (CMJ) and with arms (CMJA), and Drop jump (DJ). At the end of the training period, participants performed again the repeated sprint ability test, and the jumping performance. Results The conventional combined program improved the explosive force ability of handball players in CMJ (P=0.01), CMJA (P=0.01) and DJR (P=0.03). The change was 2.78, 2.42 and 2.62% respectively. No significant changes were noted in performances of the experimental group at the squat jump test and the drop jump with the left leg test. The training intervention also improved the running speed ability of the experimental group (P=0.003). No statistical differences were observed between lines or axes. Conclusion Additional combined training program between sprint repetition and vertical jump in the same training session positively influence the jumping ability and the sprint ability of handball players. PMID:22461962

  16. The effect of a combined high-intensity plyometric and speed training program on the running and jumping ability of male handball players.

    PubMed

    Cherif, Monsef; Said, Mohamed; Chaatani, Sana; Nejlaoui, Olfa; Gomri, Daghbaji; Abdallah, Aouidet

    2012-03-01

    The aim of this study was to investigate the effect of a combined program including sprint repetitions and drop jump training in the same session on male handball players. Twenty-two male handball players aged more than 20 years were assigned into 2 groups: experimental group (n=11) and control group (n=11). Selection was based on variables "axis" and "lines", goalkeepers were not included. The experimental group was subjected to 2 testing periods (test and retest) separated by 12 weeks of an additional combined plyometric and running speed training program. The control group performed the usual handball training. The testing period comprised, at the first day, a medical checking, anthropometric measurements and an incremental exercise test called yo-yo intermittent recovery test. 2 days later, participants performed the Repeated Sprint Ability test (RSA), and performed the Jumping Performance using 3 different events: Squat jump (SJ), Countermovement jump without (CMJ) and with arms (CMJA), and Drop jump (DJ). At the end of the training period, participants performed again the repeated sprint ability test, and the jumping performance. The conventional combined program improved the explosive force ability of handball players in CMJ (P=0.01), CMJA (P=0.01) and DJR (P=0.03). The change was 2.78, 2.42 and 2.62% respectively. No significant changes were noted in performances of the experimental group at the squat jump test and the drop jump with the left leg test. The training intervention also improved the running speed ability of the experimental group (P=0.003). No statistical differences were observed between lines or axes. Additional combined training program between sprint repetition and vertical jump in the same training session positively influence the jumping ability and the sprint ability of handball players.

  17. Design of ProjectRun21: a 14-week prospective cohort study of the influence of running experience and running pace on running-related injury in half-marathoners.

    PubMed

    Damsted, Camma; Parner, Erik Thorlund; Sørensen, Henrik; Malisoux, Laurent; Nielsen, Rasmus Oestergaard

    2017-11-06

    Participation in half-marathon has been steeply increasing during the past decade. In line, a vast number of half-marathon running schedules has surfaced. Unfortunately, the injury incidence proportion for half-marathoners has been found to exceed 30% during 1-year follow-up. The majority of running-related injuries are suggested to develop as overuse injuries, which leads to injury if the cumulative training load over one or more training sessions exceeds the runners' load capacity for adaptive tissue repair. Owing to an increase of load capacity along with adaptive running training, the runners' running experience and pace abilities can be used as estimates for load capacity. Since no evidence-based knowledge exist of how to plan appropriate half-marathon running schedules considering the level of running experience and running pace, the aim of ProjectRun21 is to investigate the association between running experience or running pace and the risk of running-related injury. Healthy runners using Global Positioning System (GPS) watch between 18 and 65 years will be invited to participate in this 14-week prospective cohort study. Runners will be allowed to self-select one of three half-marathon running schedules developed for the study. Running data will be collected objectively by GPS. Injury will be based on the consensus-based time loss definition by Yamato et al.: "Running-related (training or competition) musculoskeletal pain in the lower limbs that causes a restriction on or stoppage of running (distance, speed, duration, or training) for at least 7 days or 3 consecutive scheduled training sessions, or that requires the runner to consult a physician or other health professional". Running experience and running pace will be included as primary exposures, while the exposure to running is pre-fixed in the running schedules and thereby conditioned by design. Time-to-event models will be used for analytical purposes. ProjectRun21 will examine if particular

  18. An adaptive deep Q-learning strategy for handwritten digit recognition.

    PubMed

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min

    2018-02-22

    Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals

    PubMed Central

    Zhang, Wei; Peng, Gaoliang; Li, Chuanhao; Chen, Yuanhang; Zhang, Zhujun

    2017-01-01

    Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in the first convolutional layer for extracting features and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions. PMID:28241451

  20. RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices

    PubMed Central

    Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B.

    2018-01-01

    Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support. PMID:29629431

  1. RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices.

    PubMed

    Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B

    2017-06-01

    Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support.

  2. Continuous and interval training programs using deep water running improves functional fitness and blood pressure in the older adults.

    PubMed

    Reichert, Thaís; Kanitz, Ana Carolina; Delevatti, Rodrigo Sudatti; Bagatini, Natália Carvalho; Barroso, Bruna Machado; Kruel, Luiz Fernando Martins

    2016-02-01

    This study aimed to investigate the effects of two periodized training programs of deep water running on functional fitness and blood pressure in the older adults. Thirty-six individuals were divided into continuous group (CONT) and interval group (INT). Both groups were trained for 28 weeks (twice weekly). Measures were performed before the training period, after 12 weeks and training period. Two-way ANOVA and post hoc of Bonferroni were used (α = 0.05). There were no differences between groups in functional tests, with the exception of the flexibility of the upper limbs, in which the INT group showed the highest values. There was a significant improvement in both groups of foot up-and-go test (CONT 6.45 to 5.67; INT 6.59 to 5.78, in seconds), flexibility of lower limbs (CONT -4.76 to -0.61; INT 0.54 to 4.63, in centimeters), strength of upper (CONT 18.76 to 27.69; INT 18.66 to 26.58, in repetitions) and lower limbs (CONT 14.46 to 21.23; INT 14.40 to 21.58, in repetitions), and 6-min walk (CONT 567.50 to 591.16; INT 521.41 to 582.77, in meters). No differences were shown between groups for systolic blood pressure; however, diastolic blood pressure remained higher in CONT during all training. The blood pressure decreased significantly in both groups after the training (CONT 142 ± 16/88 ± 3 to 125 ± 14/77 ± 7 mmHg; INT 133 ± 15/75 ± 7 to 123 ± 17 and 69 ± 11 mmHg). Both programs of deep water running training promoted improvements of similar magnitude in all parameters of functional fitness, with the exception of flexibility of upper limbs, and decreased blood pressure in the older individuals.

  3. The NLstart2run study: Incidence and risk factors of running-related injuries in novice runners.

    PubMed

    Kluitenberg, B; van Middelkoop, M; Smits, D W; Verhagen, E; Hartgens, F; Diercks, R; van der Worp, H

    2015-10-01

    Running is a popular form of physical activity, despite of the high incidence of running-related injuries (RRIs). Because of methodological issues, the etiology of RRIs remains unclear. Therefore, the purposes of the study were to assess the incidence of RRIs and to identify risk factors for RRIs in a large group of novice runners. In total, 1696 runners of a 6-week supervised "Start to Run" program were included in the NLstart2run study. All participants were aged between 18 and 65, completed a baseline questionnaire that covered potential risk factors, and completed at least one running diary. RRIs were registered during the program with a weekly running log. An RRI was defined as a musculo-skeletal complaint of the lower extremity or back attributed to running and hampering running ability for three consecutive training sessions. During the running program, 10.9% of the runners sustained an RRI. The multivariable Cox regression analysis showed that a higher age, higher BMI, previous musculo-skeletal complaints not attributed to sports and no previous running experience were related to RRI. These findings indicate that many novice runners participating in a short-term running program suffer from RRIs. Therefore, the identified risk factors should be considered for screening and prevention purposes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Running economy : the forgotten factor in elite performance.

    PubMed

    Foster, Carl; Lucia, Alejandro

    2007-01-01

    Running performance depends on maximal oxygen uptake (VO(2max)), the ability to sustain a high percentage of VO(2max) for an extended period of time and running economy. Running economy has been studied relatively less than the other factors. Running economy, measured as steady state oxygen uptake (VO(2)) at intensities below the ventilatory threshold is the standard method. Extrapolation to a common running speed (268 m/min) or as the VO(2) required to run a kilometer is the standard method of assessment. Individuals of East African origin may be systematically more economical, although a smaller body size and a thinner lower leg may be the primary factors. Strategies for improving running economy remain to be developed, although it appears that high intensity running may be a common element acting to improve economy.

  5. Working against gravity: horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs

    PubMed Central

    Couvillon, Margaret J.; Phillipps, Hunter L. F.; Schürch, Roger; Ratnieks, Francis L. W.

    2012-01-01

    The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis. PMID:22513277

  6. Working against gravity: horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs.

    PubMed

    Couvillon, Margaret J; Phillipps, Hunter L F; Schürch, Roger; Ratnieks, Francis L W

    2012-08-23

    The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis.

  7. Repeated-sprint training in hypoxia induced by voluntary hypoventilation improves running repeated-sprint ability in rugby players.

    PubMed

    Fornasier-Santos, Charly; Millet, Grégoire P; Woorons, Xavier

    2018-05-01

    The goal of this study was to determine the effects of repeated-sprint training in hypoxia induced by voluntary hypoventilation at low lung volume (VHL) on running repeated-sprint ability (RSA) in team-sport players. Twenty-one highly trained rugby players performed, over a 4-week period, seven sessions of repeated 40-m sprints either with VHL (RSH-VHL, n = 11) or with normal breathing (RSN, n = 10). Before (Pre-) and after training (Post-), performance was assessed with an RSA test (40-m all-out sprints with a departure every 30 s) until task failure (85% of the reference velocity assessed in an isolated sprint). The number of sprints completed during the RSA test was significantly increased after the training period in RSH-VHL (9.1 ± 2.8 vs. 14.9 ± 5.3; +64%; p < .01) but not in RSN (9.8 ± 2.8 vs. 10.4 ± 4.7; +6%; p = .74). Maximal velocity was not different between Pre- and Post- in both groups whereas the mean velocity decreased in RSN and remained unchanged in RSH-VHL. The mean SpO 2 recorded over an entire training session was lower in RSH-VHL than in RSN (90.1 ± 1.4 vs. 95.5 ± 0.5%, p < .01). RSH-VHL appears to be an effective strategy to produce a hypoxic stress and to improve running RSA in team-sport players.

  8. Rehabilitation and return to running after lower limb stress fractures.

    PubMed

    Liem, Brian C; Truswell, Hallie J; Harrast, Mark A

    2013-01-01

    Lower limb stress fractures are common injuries in runners. In terms of treatment, much of the medical literature has focused primarily on rest and cessation of running, but little has been written about the rehabilitation and functional progression of runners following a lower limb stress fracture. This article reviews the scientific evidence behind common rehabilitation concepts used for runners recovering from these injuries and also discusses sport-specific training modalities such as deep water running and antigravity treadmill training. Overall this article is intended to be a practical resource for clinicians to guide runners in functional rehabilitation and return to running following lower limb stress injury.

  9. A theoretical perspective on running-related injuries.

    PubMed

    Gallant, Jodi Lynn; Pierrynowski, Michael Raymond

    2014-03-01

    The etiology of running-related injuries remains unknown; however, an implicit theory underlies much of the conventional research and practice in the prevention of these injuries. This theory posits that the cause of running-related injuries lies in the high-impact forces experienced when the foot contacts the ground and the subsequent abnormal movement of the subtalar joint. The application of this theory is seen in the design of the modern running shoe, with cushioning, support, and motion control. However, a new theory is emerging that suggests that it is the use of these modern running shoes that has caused a maladaptive running style, which contributes to a high incidence of injury among runners. The suggested application of this theory is to cease use of the modern running shoe and transition to barefoot or minimalist running. This new running paradigm, which is at present inadequately defined, is proposed to avoid the adverse biomechanical effects of the modern running shoe. Future research should rigorously define and then test both theories regarding their ability to discover the etiology of running-related injury. Once discovered, the putative cause of running-related injury will then provide an evidence-based rationale for clinical prevention and treatment.

  10. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  11. DEEP-South: Preliminary Photometric Results from the KMTNet-CTIO

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Jin; Moon, Hong-Kyu; Choi, Young-Jun; Yim, Hong-Suh; Bae, Young-Ho; Roh, Dong-Goo; Park, Jin Tae; Moon, Bora

    2016-01-01

    Korea Astronomy and Space Science Institute (KASI) successfully completed the development of Korea Microlensing Telescope Network (KMTNet, Park et al. 2012) in mid-2015, following which it conducted test runs for several months. `DEep Ecliptic Patrol of the Southern sky' (DEEP-South, Moon et al. 2015), which will be used for asteroid and comet studies, will not only characterize targeted asteroids, carrying out blind surveys toward the sweet spots, but will also mine the data of such bodies using the KMTNet archive. We report preliminary lightcurves of four Potentially Hazardous Asteroids (PHAs) from test runs at KMTNet-CTIO in the February - May 2015 period.

  12. Relationship between jumping ability and running performance in events of varying distance.

    PubMed

    Hudgins, Brandon; Scharfenberg, Jessica; Triplett, N Travis; McBride, Jeffrey M

    2013-03-01

    Running performance consists of a combination of aerobic and anaerobic capabilities, varying based on the distance of the event. It may be also dependent on factors relating to lower body power. Lower body power is commonly assessed by various modes of jumping tests. The purpose of this investigation was to determine if jumping performance would have some relationship to running performance in different distance events. This study involved 33 competitive track and field runners who participated in events ranging from 60 to 5,000 m (10 sprinters: height = 1.72 ± 10.26 m, mass = 67.80 ± 10.83 kg; 11 middle-distance runners: height = 1.77 ± 0.08 m, mass = 64.40 ± 8.02 kg; 12 long-distance runners: height = 1.73 ± 0.11 m, mass = 60.42 ± 10.36 kg). All subjects were competitive NCAA Division I athletes. Subjects were tested on a single occasion in a 3-jump test (TSJP), which was the distance covered during 3 two-leg standing long jumps performed in immediate succession. Time in the 60, 100, 200, 800, 3,000, and 5,000 m was obtained from recent race performances. The mean TSJP for sprinters, middle-distance runners, and long-distance runners were 8.24 ± 1.32, 6.59 ± 1.23, and 5.61 ± 0.88 m, respectively. The mean 60, 100, 200, 800, 3,000, and 5,000 m performances were 7.28 ± 0.78, 11.25 ± 0.87, 23.47 ± 2.25, 127.17 ± 15.13, 562.09 ± 60.54, and 987.65 ± 117.19 seconds, respectively. Significant correlations (p ≤ 0.05) were observed between TSJP and running performance for all distances (60 m: 0.97 seconds, 100 m: 1.00 seconds, 200 m: 0.97 seconds, 800 m: 0.83 seconds, 3,000 m: 0.72 seconds, and 5,000 m: 0.71 seconds). The strength of the correlations, in general, was strongest to weakest based on event distance from the shortest distance (60 m) to the longest distance (5,000 m). Thus, the contribution of muscle power, as possibly determined by TSJP, maybe most important in shorter distance races (60, 100, and 200 m). However, because of the significant

  13. A Crack Runs Through It

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image taken by the microscopic imager on the Mars Exploration Rover Opportunity shows a close-up of the center of the rock abrasion tool hole, ground into 'Bounce' on the rover's 66th sol on Mars. Features smaller than one-tenth of a millimeter (.004 inches) are visible. The observed area is a little over 3 centimeters (1.2 inches). The canyon-like crack that runs across the bottom half of the image is really only about 2 millimeters (about 0.08 inches) deep. Scientists are currently using a variety of instruments to study the chemical content of the rock.

  14. Instrument front-ends at Fermilab during Run II

    NASA Astrophysics Data System (ADS)

    Meyer, T.; Slimmer, D.; Voy, D.

    2011-11-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  15. Anthropometric, Sprint, and High-Intensity Running Profiles of English Academy Rugby Union Players by Position.

    PubMed

    Darrall-Jones, Joshua D; Jones, Ben; Till, Kevin

    2016-05-01

    The purpose of this study was to evaluate the anthropometric, sprint, and high-intensity running profiles of English academy rugby union players by playing positions, and to investigate the relationships between anthropometric, sprint, and high-intensity running characteristics. Data were collected from 67 academy players after the off-season period and consisted of anthropometric (height, body mass, sum of 8 skinfolds [∑SF]), 40-m linear sprint (5-, 10-, 20-, and 40-m splits), the Yo-Yo intermittent recovery test level 1 (Yo-Yo IRTL-1), and the 30-15 intermittent fitness test (30-15 IFT). Forwards displayed greater stature, body mass, and ∑SF; sprint times and sprint momentum, with lower high-intensity running ability and sprint velocities than backs. Comparisons between age categories demonstrated body mass and sprint momentum to have the largest differences at consecutive age categories for forwards and backs; whereas 20-40-m sprint velocity was discriminate for forwards between under 16s, 18s, and 21s. Relationships between anthropometric, sprint velocity, momentum, and high-intensity running ability demonstrated body mass to negatively impact on sprint velocity (10 m; r = -0.34 to -0.46) and positively affect sprint momentum (e.g., 5 m; r = 0.85-0.93), with large to very large negative relationships with the Yo-Yo IRTL-1 (r = -0.65 to -0.74) and 30-15 IFT (r = -0.59 to -0.79). These findings suggest that there are distinct anthropometric, sprint, and high-intensity running ability differences between and within positions in junior rugby union players. The development of sprint and high-intensity running ability may be impacted by continued increases in body mass as there seems to be a trade-off between momentum, velocity, and the ability to complete high-intensity running.

  16. Development of in vitro models to demonstrate the ability of PecSys®, an in situ nasal gelling technology, to reduce nasal run-off and drip

    PubMed Central

    2013-01-01

    Many of the increasing number of intranasal products available for either local or systemic action can be considered sub-optimal, most notably where nasal drip or run-off give rise to discomfort/tolerability issues or reduced/variable efficacy. PecSys, an in situ gelling technology, contains low methoxy (LM) pectin which gels due to interaction with calcium ions present in nasal fluid. PecSys is designed to spray readily, only forming a gel on contact with the mucosal surface. The present study employed two in vitro models to confirm that gelling translates into a reduced potential for drip/run-off: (i) Using an inclined TLC plate treated with a simulated nasal electrolyte solution (SNES), mean drip length [±SD, n = 10] was consistently much shorter for PecSys (1.5 ± 0.4 cm) than non-gelling control (5.8 ± 1.6 cm); (ii) When PecSys was sprayed into a human nasal cavity cast model coated with a substrate containing a physiologically relevant concentration of calcium, PecSys solution was retained at the site of initial deposition with minimal redistribution, and no evidence of run-off/drip anteriorly or down the throat. In contrast, non-gelling control was significantly more mobile and consistently redistributed with run-off towards the throat. Conclusion In both models PecSys significantly reduced the potential for run-off/drip ensuring that more solution remained at the deposition site. In vivo, this enhancement of retention will provide optimum patient acceptability, modulate drug absorption and maximize the ability of drugs to be absorbed across the nasal mucosa and thus reduce variability in drug delivery. PMID:22803832

  17. The NLstart2run study: Economic burden of running-related injuries in novice runners participating in a novice running program.

    PubMed

    Hespanhol Junior, Luiz C; Huisstede, Bionka M A; Smits, Dirk-Wouter; Kluitenberg, Bas; van der Worp, Henk; van Middelkoop, Marienke; Hartgens, Fred; Verhagen, Evert

    2016-10-01

    To investigate the economic burden of running-related injuries (RRI) occurred during the 6-week 'Start-to-Run' program of the Dutch Athletics Federation in 2013. Prospective cohort study. This was a monetary cost analysis using the data prospectively gathered alongside the RRI registration in the NLstart2run study. RRI data were collected weekly. Cost diaries were applied two and six weeks after the RRI registration to collect data regarding healthcare utilisation (direct costs) and absenteeism from paid and unpaid work (indirect costs). RRI was defined as running-related pain that hampered running ability for three consecutive training sessions. From the 1696 participants included in the analysis, 185 reported a total of 272 RRIs. A total of 26.1% of the cost data (71 RRIs reported by 50 participants) were missing. Therefore, a multiple imputation procedure was performed. The economic burden (direct plus indirect costs) of RRIs was estimated at €83.22 (95% CI €50.42-€116.02) per RRI, and €13.35 (95% CI €7.07-€19.63) per participant. The direct cost per RRI was €56.93 (95% CI €42.05-€71.81) and the indirect cost per RRI was €26.29 (95% CI €0.00-€54.79). The indirect cost was higher for sudden onset RRIs than for gradual onset RRIs, with a mean difference of €33.92 (95% CI €17.96-€49.87). Direct costs of RRIs were 2-fold higher than the indirect costs, and sudden onset RRIs presented higher costs than gradual onset RRIs. The results of this study are important to provide information to public health agencies and policymakers about the economic burden of RRIs in novice runners. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  19. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics

    PubMed Central

    Hashish, Rami; Samarawickrame, Sachithra D.; Baker, Lucinda; Salem, George J.

    2016-01-01

    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key points In response to exertion, novice barefoot runners demonstrate fatigue to their soleus. In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorption In response to exertion, novice barefoot runners demonstrate an increase in loading rate PMID:27274672

  20. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics.

    PubMed

    Hashish, Rami; Samarawickrame, Sachithra D; Baker, Lucinda; Salem, George J

    2016-06-01

    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key pointsIn response to exertion, novice barefoot runners demonstrate fatigue to their soleus.In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorptionIn response to exertion, novice barefoot runners demonstrate an increase in loading rate.

  1. The design of the run Clever randomized trial: running volume, -intensity and running-related injuries.

    PubMed

    Ramskov, Daniel; Nielsen, Rasmus Oestergaard; Sørensen, Henrik; Parner, Erik; Lind, Martin; Rasmussen, Sten

    2016-04-23

    Injury incidence and prevalence in running populations have been investigated and documented in several studies. However, knowledge about injury etiology and prevention is needed. Training errors in running are modifiable risk factors and people engaged in recreational running need evidence-based running schedules to minimize the risk of injury. The existing literature on running volume and running intensity and the development of injuries show conflicting results. This may be related to previously applied study designs, methods used to quantify the performed running and the statistical analysis of the collected data. The aim of the Run Clever trial is to investigate if a focus on running intensity compared with a focus on running volume in a running schedule influences the overall injury risk differently. The Run Clever trial is a randomized trial with a 24-week follow-up. Healthy recreational runners between 18 and 65 years and with an average of 1-3 running sessions per week the past 6 months are included. Participants are randomized into two intervention groups: Running schedule-I and Schedule-V. Schedule-I emphasizes a progression in running intensity by increasing the weekly volume of running at a hard pace, while Schedule-V emphasizes a progression in running volume, by increasing the weekly overall volume. Data on the running performed is collected by GPS. Participants who sustain running-related injuries are diagnosed by a diagnostic team of physiotherapists using standardized diagnostic criteria. The members of the diagnostic team are blinded. The study design, procedures and informed consent were approved by the Ethics Committee Northern Denmark Region (N-20140069). The Run Clever trial will provide insight into possible differences in injury risk between running schedules emphasizing either running intensity or running volume. The risk of sustaining volume- and intensity-related injuries will be compared in the two intervention groups using a competing

  2. Running Habits of Competitive Runners During Pregnancy and Breastfeeding

    PubMed Central

    Tenforde, Adam S.; Toth, Kierann E. S.; Langen, Elizabeth; Fredericson, Michael; Sainani, Kristin L.

    2015-01-01

    Background: Running is a popular sport that may be performed safely during pregnancy. Few studies have characterized running behavior of competitive female runners during pregnancy and breastfeeding. Hypothesis: Women modify their running behavior during pregnancy and breastfeeding. Study Design: Observational, cross-sectional study. Level of evidence: Level 2. Methods: One hundred ten female long-distance runners who ran competitively prior to pregnancy completed an online survey characterizing training attitudes and behaviors during pregnancy and postpartum. Results: Seventy percent of runners ran some time during their pregnancy (or pregnancies), but only 31% ran during their third trimester. On average, women reduced training during pregnancy, including cutting their intensity to about half of their nonpregnant running effort. Only 3.9% reported sustaining a running injury while pregnant. Fewer than one third (29.9%) selected fetal health as a reason to continue running during pregnancy. Of the women who breastfed, 84.1% reported running during breastfeeding. Most felt that running had no effect on their ability to breastfeed. Women who ran during breastfeeding were less likely to report postpartum depression than those who did not run (6.7% vs 23.5%, P = 0.051), but we did not detect the same association of running during pregnancy (6.5% vs 15.2%, P = 0.16). Conclusion: Women runners reported a reduction in total training while pregnant, and few sustained running injuries during pregnancy. The effect of running on postpartum depression was not clear from our findings. Clinical Relevance: We characterized running behaviors during pregnancy and breastfeeding in competitive runners. Most continue to run during pregnancy but reduce total training effort. Top reasons for running during pregnancy were fitness, health, and maintaining routine; the most common reason for not running was not feeling well. Most competitive runners run during breastfeeding with little

  3. Geology and log responses of the Rose Run sandstone in Randolph Township, Portage County, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, C.C.

    1996-09-01

    Approximately 75 wells have penetrated the Cambrian Rose Run sandstone in Randolph Township, Portage County, Ohio, about half of which should produce well beyond economic payout. Only one deep test (to the Rose Run or deeper) was drilled in this Township prior to 1990. Two separate and distinct Rose Run producing fields exist in the Township; the western field is predominately gas-productive and the east is predominantly oil-productive. Both fields are on the north side of the Akron-Suffield Fault Zone, which is part of a regional cross-strike structural discontinuity extending from the Pittsburgh, Pennsylvania area northwestward to Lake Erie. Thismore » feature exhibits control over Berea, Oriskany, Newburg, Clinton, and Rose Run production.« less

  4. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds

    PubMed Central

    Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.

    2013-01-01

    SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656

  5. The NLstart2run study: health effects of a running promotion program in novice runners, design of a prospective cohort study.

    PubMed

    Kluitenberg, Bas; van Middelkoop, Marienke; Diercks, Ron L; Hartgens, Fred; Verhagen, Evert; Smits, Dirk-Wouter; Buist, Ida; van der Worp, Henk

    2013-07-26

    Running is associated with desirable lifestyle changes. Therefore several initiatives have been undertaken to promote running. Exact data on the health effects as a result of participating in a short-term running promotion program, however, is scarce. One important reason for dropout from a running program is a running-related injury (RRI). The incidence of RRIs is high, especially in novice runners. Several studies examined potential risk factors for RRIs, however, due to the often underpowered studies it is not possible to reveal the complex mechanism leading to an RRI yet.The primary objectives are to determine short- and long-term health effects of a nationwide "Start to Run" program and to identify determinants for RRIs in novice runners. Secondary objectives include examining reasons and determinants for dropout, medical consumption and economical consequences of RRIs as a result of a running promotion program. The NLstart2run study is a multi-center prospective cohort study with a follow-up at 6, 12, 24 and 52 weeks. All participants that sign up for the Start to Run program in 2013, which is offered by the Dutch Athletics Federation, will be asked to participate in the study.During the running program a digital running log will be completed by the participants every week to administer exposure and running related pain. After the running program the log will be completed every second week. An RRI is defined as any musculoskeletal ailment of the lower extremity or back that the participant attributed to running and hampers running ability for at least one week. The NLstart2run study will provide insight into the short- and long-term health effects as a result of a short-term running promotion program. Reasons and determinants for dropout from a running promotion program will be examined as well. The study will result in several leads for future RRI prevention and as a result minimize dropout due to injury. This information may increase the effectiveness of

  6. The NLstart2run study: health effects of a running promotion program in novice runners, design of a prospective cohort study

    PubMed Central

    2013-01-01

    Background Running is associated with desirable lifestyle changes. Therefore several initiatives have been undertaken to promote running. Exact data on the health effects as a result of participating in a short-term running promotion program, however, is scarce. One important reason for dropout from a running program is a running-related injury (RRI). The incidence of RRIs is high, especially in novice runners. Several studies examined potential risk factors for RRIs, however, due to the often underpowered studies it is not possible to reveal the complex mechanism leading to an RRI yet. The primary objectives are to determine short- and long-term health effects of a nationwide “Start to Run” program and to identify determinants for RRIs in novice runners. Secondary objectives include examining reasons and determinants for dropout, medical consumption and economical consequences of RRIs as a result of a running promotion program. Methods/design The NLstart2run study is a multi-center prospective cohort study with a follow-up at 6, 12, 24 and 52 weeks. All participants that sign up for the Start to Run program in 2013, which is offered by the Dutch Athletics Federation, will be asked to participate in the study. During the running program a digital running log will be completed by the participants every week to administer exposure and running related pain. After the running program the log will be completed every second week. An RRI is defined as any musculoskeletal ailment of the lower extremity or back that the participant attributed to running and hampers running ability for at least one week. Discussion The NLstart2run study will provide insight into the short- and long-term health effects as a result of a short-term running promotion program. Reasons and determinants for dropout from a running promotion program will be examined as well. The study will result in several leads for future RRI prevention and as a result minimize dropout due to injury. This

  7. Running promotes wakefulness and increases cataplexy in orexin knockout mice.

    PubMed

    España, Rodrigo A; McCormack, Sarah L; Mochizuki, Takatoshi; Scammell, Thomas E

    2007-11-01

    People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy.

  8. Running economy and energy cost of running with backpacks.

    PubMed

    Scheer, Volker; Cramer, Leoni; Heitkamp, Hans-Christian

    2018-05-02

    Running is a popular recreational activity and additional weight is often carried in backpacks on longer runs. Our aim was to examine running economy and other physiological parameters while running with a 1kg and 3 kg backpack at different submaximal running velocities. 10 male recreational runners (age 25 ± 4.2 years, VO2peak 60.5 ± 3.1 ml·kg-1·min-1) performed runs on a motorized treadmill of 5 minutes durations at three different submaximal speeds of 70, 80 and 90% of anaerobic lactate threshold (LT) without additional weight, and carrying a 1kg and 3 kg backpack. Oxygen consumption, heart rate, lactate and RPE were measured and analysed. Oxygen consumption, energy cost of running and heart rate increased significantly while running with a backpack weighing 3kg compared to running without additional weight at 80% of speed at lactate threshold (sLT) (p=0.026, p=0.009 and p=0.003) and at 90% sLT (p<0.001, p=0.001 and p=0.001). Running with a 1kg backpack showed a significant increase in heart rate at 80% sLT (p=0.008) and a significant increase in oxygen consumption and heart rate at 90% sLT (p=0.045 and p=0.007) compared to running without additional weight. While running at 70% sLT running economy and cardiovascular effort increased with weighted backpack running compared to running without additional weight, however these increases did not reach statistical significance. Running economy deteriorates and cardiovascular effort increases while running with additional backpack weight especially at higher submaximal running speeds. Backpack weight should therefore be kept to a minimum.

  9. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.

    PubMed

    Wang, Duolin; Zeng, Shuai; Xu, Chunhui; Qiu, Wangren; Liang, Yanchun; Joshi, Trupti; Xu, Dong

    2017-12-15

    Computational methods for phosphorylation site prediction play important roles in protein function studies and experimental design. Most existing methods are based on feature extraction, which may result in incomplete or biased features. Deep learning as the cutting-edge machine learning method has the ability to automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of phosphorylation site prediction. We present MusiteDeep, the first deep-learning framework for predicting general and kinase-specific phosphorylation sites. MusiteDeep takes raw sequence data as input and uses convolutional neural networks with a novel two-dimensional attention mechanism. It achieves over a 50% relative improvement in the area under the precision-recall curve in general phosphorylation site prediction and obtains competitive results in kinase-specific prediction compared to other well-known tools on the benchmark data. MusiteDeep is provided as an open-source tool available at https://github.com/duolinwang/MusiteDeep. xudong@missouri.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Numerical ability predicts mortgage default

    PubMed Central

    Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan

    2013-01-01

    Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one’s mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage. PMID:23798401

  11. Numerical ability predicts mortgage default.

    PubMed

    Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan

    2013-07-09

    Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one's mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage.

  12. Barefoot running: biomechanics and implications for running injuries.

    PubMed

    Altman, Allison R; Davis, Irene S

    2012-01-01

    Despite the technological developments in modern running footwear, up to 79% of runners today get injured in a given year. As we evolved barefoot, examining this mode of running is insightful. Barefoot running encourages a forefoot strike pattern that is associated with a reduction in impact loading and stride length. Studies have shown a reduction in injuries to shod forefoot strikers as compared with rearfoot strikers. In addition to a forefoot strike pattern, barefoot running also affords the runner increased sensory feedback from the foot-ground contact, as well as increased energy storage in the arch. Minimal footwear is being used to mimic barefoot running, but it is not clear whether it truly does. The purpose of this article is to review current and past research on shod and barefoot/minimal footwear running and their implications for running injuries. Clearly more research is needed, and areas for future study are suggested.

  13. Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice

    PubMed Central

    España, Rodrigo A.; McCormack, Sarah L.; Mochizuki, Takatoshi; Scammell, Thomas E.

    2007-01-01

    Study Objective: People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. Design: We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Measurements and Results: Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Conclusions: Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy. Citation: España RA; McCormack SL; Mochizuki T; Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. SLEEP 2007;30(11):1417-1425. PMID:18041476

  14. The Influence of Rotations on Match Running Performance in Female Australian Football Midfielders.

    PubMed

    Black, Georgia M; Gabbett, Tim J; Johnston, Richard D; Naughton, Geraldine; Cole, Michael H; Dawson, Brian

    2018-04-01

    With female Australian football (AF) gaining popularity, understanding match demands is becoming increasingly important. The aim of this study was to compare running performances of rotated and whole-quarter state-level female AF players during match quarters. Twenty-two state-level female AF midfielders wore Global Positioning System units during 14 games to evaluate activity profiles. The Yo-Yo Intermittent Recovery Test Level 1 (Yo-Yo IR1) was used as a measure of high-intensity running ability. Data were categorized into whole quarter, rotation bout 1, and rotation bout 2 before being further divided into quartiles. Players were separated into high- or low-Yo-Yo IR1 groups using a median split based on their Yo-Yo IR1 performance. Short (4-6 min), moderate (6-12 min), and long (12-18 min) on-field bout activity profiles were compared with whole-quarter players. High Yo-Yo IR1 performance allowed players to cover greater relative distances (ES = 0.57-0.88) and high-speed distances (ES = 0.57-0.86) during rotations. No differences were reported between Yo-Yo IR1 groups when players were required to play whole quarters (ES ≤ 0.26, likelihood ≤64%). Players who were on field for short to moderate durations exhibited greater activity profiles than whole-quarter players. Superior high-speed running ability results in a greater activity profile than for players who possess lower high-speed running ability. The findings also highlight the importance of short to moderate (4-12 min) rotation periods and may be used to increase high-intensity running performance within quarters in female AF players.

  15. Characterizing the Mechanical Properties of Running-Specific Prostheses

    PubMed Central

    Beck, Owen N.; Taboga, Paolo; Grabowski, Alena M.

    2016-01-01

    The mechanical stiffness of running-specific prostheses likely affects the functional abilities of athletes with leg amputations. However, each prosthetic manufacturer recommends prostheses based on subjective stiffness categories rather than performance based metrics. The actual mechanical stiffness values of running-specific prostheses (i.e. kN/m) are unknown. Consequently, we sought to characterize and disseminate the stiffness values of running-specific prostheses so that researchers, clinicians, and athletes can objectively evaluate prosthetic function. We characterized the stiffness values of 55 running-specific prostheses across various models, stiffness categories, and heights using forces and angles representative of those measured from athletes with transtibial amputations during running. Characterizing prosthetic force-displacement profiles with a 2nd degree polynomial explained 4.4% more of the variance than a linear function (p<0.001). The prosthetic stiffness values of manufacturer recommended stiffness categories varied between prosthetic models (p<0.001). Also, prosthetic stiffness was 10% to 39% less at angles typical of running 3 m/s and 6 m/s (10°-25°) compared to neutral (0°) (p<0.001). Furthermore, prosthetic stiffness was inversely related to height in J-shaped (p<0.001), but not C-shaped, prostheses. Running-specific prostheses should be tested under the demands of the respective activity in order to derive relevant characterizations of stiffness and function. In all, our results indicate that when athletes with leg amputations alter prosthetic model, height, and/or sagittal plane alignment, their prosthetic stiffness profiles also change; therefore variations in comfort, performance, etc. may be indirectly due to altered stiffness. PMID:27973573

  16. Deep Space Station (DSS-13) automation demonstration

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Lorden, G.

    1980-01-01

    The data base collected during a six month demonstration of an automated Deep Space Station (DSS 13) run unattended and remotely controlled is summarized. During this period, DSS 13 received spacecraft telemetry data from Voyager, Pioneers 10 and 11, and Helios projects. Corrective and preventive maintenance are reported by subsystem including the traditional subsystems and those subsystems added for the automation demonstration. Operations and maintenance data for a comparable manned Deep Space Station (DSS 11) are also presented for comparison. The data suggests that unattended operations may reduce maintenance manhours in addition to reducing operator manhours. Corrective maintenance for the unmanned station was about one third of the manned station, and preventive maintenance was about one half.

  17. Deep Learning Questions Can Help Selection of High Ability Candidates for Universities

    ERIC Educational Resources Information Center

    Mellanby, Jane; Cortina-Borja, Mario; Stein, John

    2009-01-01

    Selection of students for places at universities mainly depends on GCSE grades and predictions of A-level grades, both of which tend to favour applicants from independent schools. We have therefore developed a new type of test that would measure candidates' "deep learning" approach since this assesses the motivation and creative thinking…

  18. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake

    PubMed Central

    Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.

    2015-01-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514

  19. Fixed-Base Simulator Studies of the Ability of the Human Pilot to Provide Energy Management Along Abort and Deep-Space Entry Trajectories

    NASA Technical Reports Server (NTRS)

    Young, J. W.; Goode, M. W.

    1962-01-01

    A simulation study has been made to determine a pilot's ability to control a low L/D vehicle to a desired point on the earth with initial conditions ranging from parabolic orbits to abort conditions along the boost phase of a deep-space mission. The program was conducted to develop procedures which would allow the pilot to perform the energy management functions required while avoiding the high deceleration or skipout region and to determine the information display required to aid the pilot in flying these procedures. The abort conditions studied extend from a region of relatively high flight-path angles at suborbital velocities while leaving the atmosphere to a region between orbital and near-escape velocity outside the atmosphere. The conditions studied included guidance from suborbital and superorbital aborts as well as guidance following return from a deepspace mission. In this paper, the role of the human pilot?s ability to combine safe return abort procedures with guidance procedures has been investigated. The range capability from various abort and entry conditions is also presented.

  20. DRREP: deep ridge regressed epitope predictor.

    PubMed

    Sher, Gene; Zhi, Degui; Zhang, Shaojie

    2017-10-03

    The ability to predict epitopes plays an enormous role in vaccine development in terms of our ability to zero in on where to do a more thorough in-vivo analysis of the protein in question. Though for the past decade there have been numerous advancements and improvements in epitope prediction, on average the best benchmark prediction accuracies are still only around 60%. New machine learning algorithms have arisen within the domain of deep learning, text mining, and convolutional networks. This paper presents a novel analytically trained and string kernel using deep neural network, which is tailored for continuous epitope prediction, called: Deep Ridge Regressed Epitope Predictor (DRREP). DRREP was tested on long protein sequences from the following datasets: SARS, Pellequer, HIV, AntiJen, and SEQ194. DRREP was compared to numerous state of the art epitope predictors, including the most recently published predictors called LBtope and DMNLBE. Using area under ROC curve (AUC), DRREP achieved a performance improvement over the best performing predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%), and SEQ194 (3.1%), with its performance being matched only on the AntiJen dataset, by the LBtope predictor, where both DRREP and LBtope achieved an AUC of 0.702. DRREP is an analytically trained deep neural network, thus capable of learning in a single step through regression. By combining the features of deep learning, string kernels, and convolutional networks, the system is able to perform residue-by-residue prediction of continues epitopes with higher accuracy than the current state of the art predictors.

  1. When does eruption run-up begin? Multidisciplinary insight from the 1999 eruption of Shishaldin volcano

    NASA Astrophysics Data System (ADS)

    Rasmussen, Daniel J.; Plank, Terry A.; Roman, Diana C.; Power, John A.; Bodnar, Robert J.; Hauri, Erik H.

    2018-03-01

    During the run-up to eruption, volcanoes often show geophysically detectable signs of unrest. However, there are long-standing challenges in interpreting the signals and evaluating the likelihood of eruption, especially during the early stages of volcanic unrest. Considerable insight can be gained from combined geochemical and geophysical studies. Here we take such an approach to better understand the beginning of eruption run-up, viewed through the lens of the 1999 sub-Plinian basaltic eruption of Shishaldin volcano, Alaska. The eruption is of interest due to its lack of observed deformation and its apparent long run-up time (9 months), following a deep long-period earthquake swarm. We evaluate the nature and timing of recharge by examining the composition of 138 olivine macrocrysts and 53 olivine-hosted melt inclusions and through shear-wave splitting analysis of regional earthquakes. Magma mixing is recorded in three crystal populations: a dominant population of evolved olivines (Fo60-69) that are mostly reversely zoned, an intermediate population (Fo69-76) with mixed zonation, and a small population of normally zoned more primitive olivines (Fo76-80). Mixing-to-eruption timescales are obtained through modeling of Fe-Mg interdiffusion in 78 olivines. The large number of resultant timescales provides a thorough record of mixing, demonstrating at least three mixing events: a minor event ∼11 months prior to eruption, overlapping within uncertainty with the onset of deep long-period seismicity; a major event ∼50 days before eruption, coincident with a large (M5.2) shallow earthquake; and a final event about a week prior to eruption. Shear-wave splitting analysis shows a change in the orientation of the local stress field about a month after the deep long-period swarm and around the time of the M5.2 event. Earthquake depths and vapor saturation pressures of Raman-reconstructed melt inclusions indicate that the recharge magma originated from depths of at least 20

  2. Framework for architecture-independent run-time reconfigurable applications

    NASA Astrophysics Data System (ADS)

    Lehn, David I.; Hudson, Rhett D.; Athanas, Peter M.

    2000-10-01

    Configurable Computing Machines (CCMs) have emerged as a technology with the computational benefits of custom ASICs as well as the flexibility and reconfigurability of general-purpose microprocessors. Significant effort from the research community has focused on techniques to move this reconfigurability from a rapid application development tool to a run-time tool. This requires the ability to change the hardware design while the application is executing and is known as Run-Time Reconfiguration (RTR). Widespread acceptance of run-time reconfigurable custom computing depends upon the existence of high-level automated design tools. Such tools must reduce the designers effort to port applications between different platforms as the architecture, hardware, and software evolves. A Java implementation of a high-level application framework, called Janus, is presented here. In this environment, developers create Java classes that describe the structural behavior of an application. The framework allows hardware and software modules to be freely mixed and interchanged. A compilation phase of the development process analyzes the structure of the application and adapts it to the target platform. Janus is capable of structuring the run-time behavior of an application to take advantage of the memory and computational resources available.

  3. The meaning of running away for girls.

    PubMed

    Peled, Einat; Cohavi, Ayelet

    2009-10-01

    The aim of this qualitative research was to understand how runaway girls perceive the processes involved in leaving home and the meaning they attribute to it. Findings are based on in-depth interviews with 10 Israeli girls aged 13-17 with a history of running away from home. The meaning of running away as it emerged from the girls' descriptions of their lives prior to leaving home was that of survival - both psychological and physical. The girls' stories centered on their evolving experiences of alienation, loneliness and detachment, and the failure of significant relationships at home and outside of home to provide them with the support they needed. These experiences laid the ground for the "final moments" before leaving, when a feeling of "no alternative," a hope for a better future, and various particular triggers led the girls to the decision to leave home. Participants' insights about the dynamics leading to running-away center on the meaning of family relationships, particularly those with the mother, as constituting the girl's psychological home. The girls seemed to perceive running away as an inevitability, rather than a choice, and even portrayed the running away as "living suicide." Yet, their stories clearly demonstrate their ability to cope and the possession of strengths and skills that enabled them to survive in extremely difficult home situations. The findings of this research highlight the importance of improving services for reaching out and supporting girls who are on the verge of running away from home. Such services should be tailored to the needs of girls who experience extreme but often silenced distress at home, and should facilitate alternative solutions to the girls' plight other than running away. An understanding of the dynamics leading to running away from the girls' perspective has the potential to improve the efficacy of services provided by contributing to the creation of a caring, empowering, understanding and trustful professional

  4. Barefoot running: an evaluation of current hypothesis, future research and clinical applications.

    PubMed

    Tam, Nicholas; Astephen Wilson, Janie L; Noakes, Timothy D; Tucker, Ross

    2014-03-01

    Barefoot running has become a popular research topic, driven by the increasing prescription of barefoot running as a means of reducing injury risk. Proponents of barefoot running cite evolutionary theories that long-distance running ability was crucial for human survival, and proof of the benefits of natural running. Subsequently, runners have been advised to run barefoot as a treatment mode for injuries, strength and conditioning. The body of literature examining the mechanical, structural, clinical and performance implications of barefoot running is still in its infancy. Recent research has found significant differences associated with barefoot running relative to shod running, and these differences have been associated with factors that are thought to contribute to injury and performance. Crucially, long-term prospective studies have yet to be conducted and the link between barefoot running and injury or performance remains tenuous and speculative. The injury prevention potential of barefoot running is further complicated by the complexity of injury aetiology, with no single factor having been identified as causative for the most common running injuries. The aim of the present review was to critically evaluate the theory and evidence for barefoot running, drawing on both collected evidence as well as literature that have been used to argue in favour of barefoot running. We describe the factors driving the prescription of barefoot running, examine which of these factors may have merit, what the collected evidence suggests about the suitability of barefoot running for its purported uses and describe the necessary future research to confirm or refute the barefoot running hypotheses.

  5. Digging Deep: Exploring College Students' Knowledge of Macroevolutionary Time

    ERIC Educational Resources Information Center

    Catley, Kefyn M.; Novick, Laura R.

    2009-01-01

    Some ability to comprehend deep time is a prerequisite for understanding macroevolution. This study examines students' knowledge of deep time in the context of seven major historical and evolutionary events (e.g., the age of the Earth, the emergence of life, the appearance of a pre-modern human, "Homo habilis"). The subjects were 126…

  6. Influence of Number of Contact Efforts on Running Performance During Game-Based Activities.

    PubMed

    Johnston, Rich D; Gabbett, Tim J; Jenkins, David G

    2015-09-01

    To determine the influence the number of contact efforts during a single bout has on running intensity during game-based activities and assess relationships between physical qualities and distances covered in each game. Eighteen semiprofessional rugby league players (age 23.6 ± 2.8 y) competed in 3 off-side small-sided games (2 × 10-min halves) with a contact bout performed every 2 min. The rules of each game were identical except for the number of contact efforts performed in each bout. Players performed 1, 2, or 3 × 5-s wrestles in the single-, double-, and triple-contact game, respectively. The movement demands (including distance covered and intensity of exercise) in each game were monitored using global positioning system units. Bench-press and back-squat 1-repetition maximum and the 30-15 Intermittent Fitness Test (30-15IFT) assessed muscle strength and high-intensity-running ability, respectively. There was little change in distance covered during the single-contact game (ES = -0.16 to -0.61), whereas there were larger reductions in the double- (ES = -0.52 to -0.81) and triple-contact (ES = -0.50 to -1.15) games. Significant relationships (P < .05) were observed between 30-15IFT and high-speed running during the single- (r = .72) and double- (r = .75), but not triple-contact (r = .20) game. There is little change in running intensity when only single contacts are performed each bout; however, when multiple contacts are performed, greater reductions in running intensity result. In addition, high-intensity-running ability is only associated with running performance when contact demands are low.

  7. [Physical fitness and motor ability in obese boys 12 through 14 years of age].

    PubMed

    Kim, H K; Matsuura, Y; Tanaka, K; Inagaki, A

    1993-01-01

    Excess body fat has generally been considered to be an influential factor to physical fitness and motor ability in obese boys. However, little information is available on the physical fitness and motor ability in obese boys. The purpose of this study was to clarify characteristics of physical fitness and motor ability in obese boys. The subjects were three hundreds and five boys aged 12-14 years. Nineteen physical fitness and motor ability items were tested and skinfold thickness was measured at six sites. Bioelectrical impedance was measured using a tetrapolar impedance plethysmograph (Selco SIF-891). Body density was calculated from the formula of Kim et al. The results of comparison clearly indicated that the obese group was significantly poorer in 1,500-m run, 5-min run, 50-m run, running long jump and many other variables, but was superior only in back strength. To analyze the factorial structure in boys, principal factor analysis was applied to the correlation matrix which was calculated with 19 variables, and then five factors were extracted. The obese group was significantly poorer in total body endurance and muscular endurance than the non-obese group. From these results, it was confirmed that the excess body fat could be one of the most important factors that affects the state of many physical fitness and motor ability elements in obese boys. However, the relationships between physical fitness, motor ability and the degree of fatness seem to be rather complicated. A great deal of data should be accumulated for more detailed analysis on the influence of the excess body fat in obese boys.

  8. [Evolutionary history of human locomotor system--from walking to long-distance running].

    PubMed

    Viranta-Kovanen, Suvi

    2015-01-01

    Bipedality evolved in hominids more than 4 million years ago. Bipedals were a diverse group including the lineage of obligatory walkers that finally lead to humans. Important anatomical changes in this group were: enhanced lumbar lordosis, shortening of the ilium, and emphasize on the parasagittal movements. Long-distance running evolved much later and it was associated with well-developed plantar arches, strengthening of muscles supporting the erect trunk, and decoupling of the pectoral girdle and head. In addition to anatomical changes, humans have many physiological adaptations to long-distance running. It is likely that the ability to run long-distance has been important for the survival of our species.

  9. Active Cooling of Oil after Deep-frying.

    PubMed

    Totani, Nagao; Yasaki, Naoko; Doi, Rena; Hasegawa, Etsuko

    2017-10-01

    Oil used for deep-frying is often left to stand after cooking. A major concern is oxidation during standing that might be avoidable, especially in the case of oil used repeatedly for commercial deep-frying as this involves large volumes that are difficult to cool in a conventional fryer. This paper describes a method to minimize oil oxidation. French fries were deep-fried and the oil temperature decreased in a manner typical for a commercial deep-fryer. The concentration of polar compounds generated from thermally oxidized oil remarkably increased at temperature higher than 100°C but little oxidation occurred below 60°C. Heating the oil showed that the peroxide and polar compound content did not increase when the oil was actively cooled using a running water-cooled Graham-type condenser system to cool the oil from 180°C to room temperature within 30 min. When French fries were fried and the oil was then immediately cooled using the condenser, the polar compound content during cooling did not increase. Our results demonstrate that active cooling of heated oil is simple and quite effective for inhibiting oxidation.

  10. The Effect of Training in Minimalist Running Shoes on Running Economy

    PubMed Central

    Ridge, Sarah T.; Standifird, Tyler; Rivera, Jessica; Johnson, A. Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-01-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key points Running in minimalist footwear did not result in a change in running economy compared to running in traditional footwear

  11. The Effect of Training in Minimalist Running Shoes on Running Economy.

    PubMed

    Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-09-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear

  12. Jumping and hopping in elite and amateur orienteering athletes and correlations to sprinting and running.

    PubMed

    Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer

    2014-11-01

    Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening-cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations with sprinting and/or running have been examined in orienteering athletes. The authors investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations to road, path, and forest running and sprinting performance, as well as running economy, velocity at anaerobic threshold, and peak oxygen uptake (VO(2peak)) from treadmill assessments. During SJs and CMJs, elites demonstrated superior relative peak forces, times to peak force, and prestretch augmentation, albeit lower SJ heights and peak powers. Between-groups differences were unclear for CMJ heights, hopping stiffness, and most SLJ parameters. Large pairwise correlations were observed between relative peak and time to peak forces and sprinting velocities; time to peak forces and running velocities; and prestretch augmentation and forest-running velocities. Prestretch augmentation and time to peak forces were moderately correlated to VO(2peak). Correlations between running economy and jumping or hopping were small or trivial. Overall, the elites exhibited superior stretch-shortening-cycle utilization and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.

  13. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field.

    PubMed

    Christiansen, Peter; Nielsen, Lars N; Steen, Kim A; Jørgensen, Rasmus N; Karstoft, Henrik

    2016-11-11

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45-90 m) than RCNN. RCNN has a similar performance at a short range (0-30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit).

  14. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field

    PubMed Central

    Christiansen, Peter; Nielsen, Lars N.; Steen, Kim A.; Jørgensen, Rasmus N.; Karstoft, Henrik

    2016-01-01

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN. RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit). PMID:27845717

  15. Fast Deep Tracking via Semi-Online Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Li, Xiaoping; Luo, Wenbing; Zhu, Yi; Li, Hanxi; Wang, Mingwen

    2018-04-01

    Deep tracking has been illustrating overwhelming superiorities over the shallow methods. Unfortunately, it also suffers from low FPS rates. To alleviate the problem, a number of real-time deep trackers have been proposed via removing the online updating procedure on the CNN model. However, the absent of the online update leads to a significant drop on tracking accuracy. In this work, we propose to perform the domain adaptation for visual tracking in two stages for transferring the information from the visual tracking domain and the instance domain respectively. In this way, the proposed visual tracker achieves comparable tracking accuracy to the state-of-the-art trackers and runs at real-time speed on an average consuming GPU.

  16. On the resonance hypothesis of storm surge and surf beat run-up

    NASA Astrophysics Data System (ADS)

    Postacioglu, Nazmi; Sinan Özeren, M.; Canlı, Umut

    2017-06-01

    Resonance has recently been proposed as the fundamental underlying mechanism that shapes the amplification in coastal run-up for storm surges and surf beats, which are long-wavelength disturbances created by fluid velocity differences between the wave groups and the regions outside the wave groups. It is without doubt that the resonance plays a role in run-up phenomena of various kinds; however, we think that the extent to which it plays its role has not been completely understood. For incident waves, which we assume to be linear, the best approach to investigate the role played by the resonance would be to calculate the normal modes by taking radiation damping into account and then testing how those modes are excited by the incident waves. Such modes diverge offshore, but they can still be used to calculate the run-up. There are a small number of previous works that attempt to calculate the resonant frequencies, but they do not relate the amplitudes of the normal modes to those of the incident wave. This is because, by not including radiation damping, they automatically induce a resonance that leads to infinite amplitudes, thus preventing them from predicting the exact contribution of the resonance to coastal run-up. In this study we consider two different coastal geometries: an infinitely wide beach with a constant slope connecting to a flat-bottomed deep ocean and a bay with sloping bottom, again, connected to a deep ocean. For the fully 1-D problem we find significant resonance if the bathymetric discontinuity is large.The linearisation of the seaward boundary condition leads to slightly smaller run-ups. For the 2-D ocean case the analysis shows that the wave confinement is very effective when the bay is narrow. The bay aspect ratio is the determining factor for the radiation damping. One reason why we include a bathymetric discontinuity is to mimic some natural settings where bays and gulfs may lead to abrupt depth gradients such as the Tokyo Bay. The other

  17. Testing constitutive relations by running and walking on cornstarch and water suspensions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Allen, Benjamin; Brown, Eric

    2018-05-01

    The ability of a person to run on the surface of a suspension of cornstarch and water has fascinated scientists and the public alike. However, the constitutive relation obtained from traditional steady-state rheology of cornstarch and water suspensions has failed to explain this behavior. In another paper we presented an averaged constitutive relation for impact rheology consisting of an effective compressive modulus of a system-spanning dynamically jammed structure [R. Maharjan et al., this issue, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. Here we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water. The ability of the constitutive relation to predict the material behavior in a case with different forcing conditions and flow geometry than it was obtained from suggests that the constitutive relation could be applied more generally. We also present a detailed calculation of the added mass effect to show that while it may be able to explain some cases of people running or walking on the surface of cornstarch and water for pool depths H >1.2 m and foot impact velocities VI>1.7 m/s, it cannot explain observations of people walking or running on the surface of cornstarch and water for smaller H or VI.

  18. Responding for sucrose and wheel-running reinforcement: effect of pre-running.

    PubMed

    Belke, Terry W

    2006-01-10

    Six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. To assess the effect of pre-running, animals were allowed to run for 1h prior to a session of responding for sucrose and running. Results showed that, after pre-running, response rates in the later segments of the 30-s schedule decreased in the presence of a wheel-running stimulus and increased in the presence of a sucrose stimulus. Wheel-running rates were not affected. Analysis of mean post-reinforcement pauses (PRP) broken down by transitions between successive reinforcers revealed that pre-running lengthened pausing in the presence of the stimulus signaling wheel running and shortened pauses in the presence of the stimulus signaling sucrose. No effect was observed on local response rates. Changes in pausing in the presence of stimuli signaling the two reinforcers were consistent with a decrease in the reinforcing efficacy of wheel running and an increase in the reinforcing efficacy of sucrose. Pre-running decreased motivation to respond for running, but increased motivation to work for food.

  19. Voluntary Running Exercise-Mediated Enhanced Neurogenesis Does Not Obliterate Retrograde Spatial Memory.

    PubMed

    Kodali, Maheedhar; Megahed, Tarick; Mishra, Vikas; Shuai, Bing; Hattiangady, Bharathi; Shetty, Ashok K

    2016-08-03

    Running exercise (RE) improves cognition, formation of anterograde memories, and mood, alongside enhancing hippocampal neurogenesis. A previous investigation in a mouse model showed that RE-induced increased neurogenesis erases retrograde memory (Akers et al., 2014). However, it is unknown whether RE-induced forgetting is common to all species. We ascertained whether voluntary RE-induced enhanced neurogenesis interferes with the recall of spatial memory in rats. Young rats assigned to either sedentary (SED) or running exercise (RE) groups were first subjected to eight learning sessions in a water maze. A probe test (PT) conducted 24 h after the final training session confirmed that animals in either group had a similar ability for the recall of short-term memory. Following this, rats in the RE group were housed in larger cages fitted with running wheels, whereas rats in the SED group remained in standard cages. Animals in the RE group ran an average of 78 km in 4 weeks. A second PT performed 4 weeks after the first PT revealed comparable ability for memory recall between animals in the RE and SED groups, which was evidenced through multiple measures of memory retrieval function. The RE group displayed a 1.5- to 2.1-fold higher hippocampal neurogenesis than SED rats. Additionally, both moderate and brisk RE did not interfere with the recall of memory, although increasing amounts of RE proportionally enhanced neurogenesis. In conclusion, RE does not impair memory recall ability in a rat model despite substantially increasing neurogenesis. Running exercise (RE) improves new memory formation along with an increased neurogenesis in the hippocampus. In view of a recent study showing that RE-mediated increased hippocampal neurogenesis promotes forgetfulness in a mouse model, we ascertained whether a similar adverse phenomenon exists in a rat model. Memory recall ability examined 4 weeks after learning confirmed that animals that had run a mean of 78 km and displayed a 1

  20. Physiological demands of running during long distance runs and triathlons.

    PubMed

    Hausswirth, C; Lehénaff, D

    2001-01-01

    The aim of this review article is to identify the main metabolic factors which have an influence on the energy cost of running (Cr) during prolonged exercise runs and triathlons. This article proposes a physiological comparison of these 2 exercises and the relationship between running economy and performance. Many terms are used as the equivalent of 'running economy' such as 'oxygen cost', 'metabolic cost', 'energy cost of running', and 'oxygen consumption'. It has been suggested that these expressions may be defined by the rate of oxygen uptake (VO2) at a steady state (i.e. between 60 to 90% of maximal VO2) at a submaximal running speed. Endurance events such as triathlon or marathon running are known to modify biological constants of athletes and should have an influence on their running efficiency. The Cr appears to contribute to the variation found in distance running performance among runners of homogeneous level. This has been shown to be important in sports performance, especially in events like long distance running. In addition, many factors are known or hypothesised to influence Cr such as environmental conditions, participant specificity, and metabolic modifications (e.g. training status, fatigue). The decrease in running economy during a triathlon and/or a marathon could be largely linked to physiological factors such as the enhancement of core temperature and a lack of fluid balance. Moreover, the increase in circulating free fatty acids and glycerol at the end of these long exercise durations bear witness to the decrease in Cr values. The combination of these factors alters the Cr during exercise and hence could modify the athlete's performance in triathlons or a prolonged run.

  1. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Run-on/run-off control systems. 258.26 Section 258.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a...

  2. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Run-on/run-off control systems. 258.26 Section 258.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a...

  3. Learning Style and Ability Grouping in the High School System: Some Caribbean Findings.

    ERIC Educational Resources Information Center

    Richardson, Arthur G.; Fergus, Eudora E.

    1993-01-01

    The Inventory of Learning Processes assessed the learning styles of Caribbean ninth graders (47 boys, 67 girls) in 2 ability groups. The higher ability group performed better in deep processing, fact retention, and methodical study. Girls performed better in methodical study. (SK)

  4. Modeling driver stop/run behavior at the onset of a yellow indication considering driver run tendency and roadway surface conditions.

    PubMed

    Elhenawy, Mohammed; Jahangiri, Arash; Rakha, Hesham A; El-Shawarby, Ihab

    2015-10-01

    The ability to model driver stop/run behavior at signalized intersections considering the roadway surface condition is critical in the design of advanced driver assistance systems. Such systems can reduce intersection crashes and fatalities by predicting driver stop/run behavior. The research presented in this paper uses data collected from two controlled field experiments on the Smart Road at the Virginia Tech Transportation Institute (VTTI) to model driver stop/run behavior at the onset of a yellow indication for different roadway surface conditions. The paper offers two contributions. First, it introduces a new predictor related to driver aggressiveness and demonstrates that this measure enhances the modeling of driver stop/run behavior. Second, it applies well-known artificial intelligence techniques including: adaptive boosting (AdaBoost), random forest, and support vector machine (SVM) algorithms as well as traditional logistic regression techniques on the data in order to develop a model that can be used by traffic signal controllers to predict driver stop/run decisions in a connected vehicle environment. The research demonstrates that by adding the proposed driver aggressiveness predictor to the model, there is a statistically significant increase in the model accuracy. Moreover the false alarm rate is significantly reduced but this reduction is not statistically significant. The study demonstrates that, for the subject data, the SVM machine learning algorithm performs the best in terms of optimum classification accuracy and false positive rates. However, the SVM model produces the best performance in terms of the classification accuracy only. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. How do changes in warm-phase microphysics affect deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger

  6. Deep Learning in Medical Image Analysis.

    PubMed

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-06-21

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

  7. CTEQ-TEA parton distribution functions and HERA Run I and II combined data

    NASA Astrophysics Data System (ADS)

    Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C.-P.

    2017-02-01

    We analyze the impact of the recent HERA Run I +II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of parton distribution functions (PDFs). New PDFs at next-to-leading order and next-to-next-to-leading order, called CT14 HERA 2 , are obtained by a refit of the CT14 data ensembles, in which the HERA Run I combined measurements are replaced by the new HERA Run I +II combination. The CT14 functional parametrization of PDFs is flexible enough to allow good descriptions of different flavor combinations, so we use the same parametrization for CT14 HERA 2 but with an additional shape parameter for describing the strange quark PDF. We find that the HERA I +II data can be fit reasonably well, and both CT14 and CT14 HERA 2 PDFs can describe equally well the non-HERA data included in our global analysis. Because the CT14 and CT14 HERA 2 PDFs agree well within the PDF errors, we continue to recommend CT14 PDFs for the analysis of LHC Run 2 experiments.

  8. Fitness determinants of repeated-sprint ability in highly trained youth football players.

    PubMed

    Spencer, Matt; Pyne, David; Santisteban, Juanma; Mujika, Iñigo

    2011-12-01

    Variations in rates of growth and development in young football players can influence relationships among various fitness qualities. To investigate the relationships between repeated-sprint ability and other fundamental fitness qualities of acceleration, agility, explosive leg power, and aerobic conditioning through the age groups of U11 to U18 in highly trained junior football players. Male players (n = 119) across the age groups completed a fitness assessment battery over two testing sessions. The first session consisted of countermovement jumps without and with arm swing, 15-m sprint run, 15-m agility run, and the 20-m Shuttle Run (U11 to U15) or the Yo-Yo Intermittent Recovery Test, Level 1 (U16 to U18). The players were tested for repeated-sprint ability in the second testing session using a protocol of 6 × 30-m sprints on 30 s with an active recovery. The correlations of repeated-sprint ability with the assorted fitness tests varied considerably between the age groups, especially for agility (r = .02 to .92) and explosive leg power (r = .04 to .84). Correlations of repeated sprint ability with acceleration (r = .48 to .93) and aerobic conditioning (r = .28 to .68) were less variable with age. Repeated-sprint ability associates differently with other fundamental fitness tests throughout the teenage years in highly trained football players, although stabilization of these relationships occurs by the age of 18 y. Coaches in junior football should prescribe physical training accounting for variations in short-term disruptions or impairment of physical performance during this developmental period.

  9. Latent ability: grades and test scores systematically underestimate the intellectual ability of negatively stereotyped students.

    PubMed

    Walton, Gregory M; Spencer, Steven J

    2009-09-01

    Past research has assumed that group differences in academic performance entirely reflect genuine differences in ability. In contrast, extending research on stereotype threat, we suggest that standard measures of academic performance are biased against non-Asian ethnic minorities and against women in quantitative fields. This bias results not from the content of performance measures, but from the context in which they are assessed-from psychological threats in common academic environments, which depress the performances of people targeted by negative intellectual stereotypes. Like the time of a track star running into a stiff headwind, such performances underestimate the true ability of stereotyped students. Two meta-analyses, combining data from 18,976 students in five countries, tested this latent-ability hypothesis. Both meta-analyses found that, under conditions that reduce psychological threat, stereotyped students performed better than nonstereotyped students at the same level of past performance. We discuss implications for the interpretation of and remedies for achievement gaps.

  10. Potential sound production by a deep-sea fish

    NASA Astrophysics Data System (ADS)

    Mann, David A.; Jarvis, Susan M.

    2004-05-01

    Swimbladder sonic muscles of deep-sea fishes were described over 35 years ago. Until now, no recordings of probable deep-sea fish sounds have been published. A sound likely produced by a deep-sea fish has been isolated and localized from an analysis of acoustic recordings made at the AUTEC test range in the Tongue of the Ocean, Bahamas, from four deep-sea hydrophones. This sound is typical of a fish sound in that it is pulsed and relatively low frequency (800-1000 Hz). Using time-of-arrival differences, the sound was localized to 548-696-m depth, where the bottom was 1620 m. The ability to localize this sound in real-time on the hydrophone range provides a great advantage for being able to identify the sound-producer using a remotely operated vehicle.

  11. Never-Ending Learning for Deep Understanding of Natural Language

    DTIC Science & Technology

    2017-10-01

    CA policy clarification memorandum dated 16 Jan 09. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research has explored the thesis that very... thesis we have built on our earlier research on the Never Ending Language Learning (NELL) computer system, which has been running non- stop since... thesis that very significant amounts of background knowledge can lead to very substantial improvements in the accuracy of deep text analysis and

  12. DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Artificial Neural Networks.

    PubMed

    Kim, Lok-Won

    2018-05-01

    Although there have been many decades of research and commercial presence on high performance general purpose processors, there are still many applications that require fully customized hardware architectures for further computational acceleration. Recently, deep learning has been successfully used to learn in a wide variety of applications, but their heavy computation demand has considerably limited their practical applications. This paper proposes a fully pipelined acceleration architecture to alleviate high computational demand of an artificial neural network (ANN) which is restricted Boltzmann machine (RBM) ANNs. The implemented RBM ANN accelerator (integrating network size, using 128 input cases per batch, and running at a 303-MHz clock frequency) integrated in a state-of-the art field-programmable gate array (FPGA) (Xilinx Virtex 7 XC7V-2000T) provides a computational performance of 301-billion connection-updates-per-second and about 193 times higher performance than a software solution running on general purpose processors. Most importantly, the architecture enables over 4 times (12 times in batch learning) higher performance compared with a previous work when both are implemented in an FPGA device (XC2VP70).

  13. The DEEP-South: Scheduling and Data Reduction Software System

    NASA Astrophysics Data System (ADS)

    Yim, Hong-Suh; Kim, Myung-Jin; Bae, Youngho; Moon, Hong-Kyu; Choi, Young-Jun; Roh, Dong-Goo; the DEEP-South Team

    2015-08-01

    The DEep Ecliptic Patrol of the Southern sky (DEEP-South), started in October 2012, is currently in test runs with the first Korea Microlensing Telescope Network (KMTNet) 1.6 m wide-field telescope located at CTIO in Chile. While the primary objective for the DEEP-South is physical characterization of small bodies in the Solar System, it is expected to discover a large number of such bodies, many of them previously unknown.An automatic observation planning and data reduction software subsystem called "The DEEP-South Scheduling and Data reduction System" (the DEEP-South SDS) is currently being designed and implemented for observation planning, data reduction and analysis of huge amount of data with minimum human interaction. The DEEP-South SDS consists of three software subsystems: the DEEP-South Scheduling System (DSS), the Local Data Reduction System (LDR), and the Main Data Reduction System (MDR). The DSS manages observation targets, makes decision on target priority and observation methods, schedules nightly observations, and archive data using the Database Management System (DBMS). The LDR is designed to detect moving objects from CCD images, while the MDR conducts photometry and reconstructs lightcurves. Based on analysis made at the LDR and the MDR, the DSS schedules follow-up observation to be conducted at other KMTNet stations. In the end of 2015, we expect the DEEP-South SDS to achieve a stable operation. We also have a plan to improve the SDS to accomplish finely tuned observation strategy and more efficient data reduction in 2016.

  14. RETURN TO RUNNING FOLLOWING A KNEE DISARTICULATION AMPUTATION: A CASE REPORT

    PubMed Central

    Diebal-Lee, Angela R.; Kuenzi, Robert S.; Rábago, Christopher A.

    2017-01-01

    Background and Purpose The evolution of running-specific prostheses has empowered athletes with lower extremity amputations to run farther and faster than previously thought possible; but running with proper mechanics is still paramount to an injury-free, active lifestyle. The purpose of this case report was to describe the successful alteration of intact limb mechanics from a Rearfoot Striking (RFS) to a Non-Rearfoot Striking (NRFS) pattern in an individual with a knee disarticulation amputation, the associated reduction in Average Vertical Loading Rate (AVLR), and the improvement in functional performance following the intervention. Case description A 30 year-old male with a traumatic right knee disarticulation amputation reported complaints of residual limb pain with running distances greater than 5 km, limiting his ability to train toward his goal of participating in triathlons. Qualitative assessment of his running mechanics revealed a RFS pattern with his intact limb and a NRFS pattern with his prosthetic limb. A full body kinematic and kinetic running analysis using 3D motion capture and force plates was performed. The average intact limb loading rate was four-times greater (112 body weights/s) than in his prosthetic limb which predisposed him to possible injury. He underwent a three week running intervention with a certified running specialist to learn a NRFS pattern with his intact limb. Outcomes Immediately following the running intervention, he was able to run distances of over 10 km without pain. On a two-mile fitness test, he decreased his run time from 19:54 min to 15:14 min. Additionally, the intact limb loading rate was dramatically reduced to 27 body weights/s, nearly identical to the prosthetic limb (24 body weights/s). Discussion This case report outlines a detailed return to run program that targets proprioceptive and neuromuscular components, injury prevention, and specificity of training strategies. The outcomes of this case report are

  15. Running and osteoarthritis.

    PubMed

    Willick, Stuart E; Hansen, Pamela A

    2010-07-01

    The overall health benefits of cardiovascular exercise, such as running, are well established. However, it is also well established that in certain circumstances running can lead to overload injuries of muscle, tendon, and bone. In contrast, it has not been established that running leads to degeneration of articular cartilage, which is the hallmark of osteoarthritis. This article reviews the available literature on the association between running and osteoarthritis, with a focus on clinical epidemiologic studies. The preponderance of clinical reports refutes an association between running and osteoarthritis. Copyright 2010 Elsevier Inc. All rights reserved.

  16. CFE-2 Experiment Run

    NASA Image and Video Library

    2013-11-21

    View of Flight Engineer (FE) Koichi Wakata posing for a photo during a CFE-2 (Capillary Flow Experiment - 2) Interior Corner Flow - 8 (ICF-8) test run. Liquids behave differently in space than they do on Earth, so containers that can process, hold or transport them must be designed carefully to work in microgravity. The Capillary Flow Experiment-2 furthers research on wetting, which is a liquid's ability to spread across a surface, and its impact over large length scales in strange container shapes in microgravity environments. This work will improve capabilities to quickly and accurately predict how related processes occur, and allow us to design better systems to process liquids aboard spacecraft (i.e., liquid fuel tanks, thermals fluids, and water processing for life support). Image was released by astronaut on Twitter.

  17. CFE-2 Experiment Run

    NASA Image and Video Library

    2013-11-11

    View of Flight Engineer (FE) Mike Hopkins initiating a CFE-2 (Capillary Flow Experiment - 2) Interior Corner Flow - 5 (ICF-5) test run. Liquids behave differently in space than they do on Earth, so containers that can process, hold or transport them must be designed carefully to work in microgravity. The Capillary Flow Experiment-2 furthers research on wetting, which is a liquid's ability to spread across a surface, and its impact over large length scales in strange container shapes in microgravity environments. This work will improve our capabilities to quickly and accurately predict how related processes occur, and allow us to design better systems to process liquids aboard spacecraft (i.e., liquid fuel tanks, thermals fluids, and water processing for life support). Image was released by astronaut on Twitter.

  18. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance.

    PubMed

    Nakagawa, Satoshi; Takai, Ken

    2008-07-01

    Deep-sea vents support productive ecosystems driven primarily by chemoautotrophs. Chemoautotrophs are organisms that are able to fix inorganic carbon using a chemical energy obtained through the oxidation of reduced compounds. Following the discovery of deep-sea vent ecosystems in 1977, there has been an increasing knowledge that deep-sea vent chemoautotrophs display remarkable physiological and phylogenetic diversity. Cultivation-dependent and -independent studies have led to an emerging view that the majority of deep-sea vent chemoautotrophs have the ability to derive energy from a variety of redox couples other than the conventional sulfur-oxygen couple, and fix inorganic carbon via the reductive tricarboxylic acid cycle. In addition, recent genomic, metagenomic and postgenomic studies have considerably accelerated the comprehensive understanding of molecular mechanisms of deep-sea vent chemoautotrophy, even in yet uncultivable endosymbionts of vent fauna. Genomic analysis also suggested that there are previously unrecognized evolutionary links between deep-sea vent chemoautotrophs and important human/animal pathogens. This review summarizes chemoautotrophy in deep-sea vents, highlighting recent biochemical and genomic discoveries.

  19. Development and testing of a new system for assessing wheel-running behaviour in rodents.

    PubMed

    Chomiak, Taylor; Block, Edward W; Brown, Andrew R; Teskey, G Campbell; Hu, Bin

    2016-05-05

    Wheel running is one of the most widely studied behaviours in laboratory rodents. As a result, improved approaches for the objective monitoring and gathering of more detailed information is increasingly becoming important for evaluating rodent wheel-running behaviour. Here our aim was to develop a new quantitative wheel-running system that can be used for most typical wheel-running experimental protocols. Here we devise a system that can provide a continuous waveform amenable to real-time integration with a high-speed video ideal for wheel-running experimental protocols. While quantification of wheel running behaviour has typically focused on the number of revolutions per unit time as an end point measure, the approach described here allows for more detailed information like wheel rotation fluidity, directionality, instantaneous velocity, and acceleration, in addition to total number of rotations, and the temporal pattern of wheel-running behaviour to be derived from a single trace. We further tested this system with a running-wheel behavioural paradigm that can be used for investigating the neuronal mechanisms of procedural learning and postural stability, and discuss other potentially useful applications. This system and its ability to evaluate multiple wheel-running parameters may become a useful tool for screening new potentially important therapeutic compounds related to many neurological conditions.

  20. Laminating butt-jointed, log-run southern pine veneers into long beams of uniform high strength

    Treesearch

    Peter Koch; G.E. Woodson

    1968-01-01

    Twenty laminated beams were constructed of log-run, butt-jointed, loblolly pine veneers 1|6 inch thick and 100 inches long. The beams were 18 inches deep, 2 inches wide, and 25 feet long. Veneers were arranged in the beams according to their modulus of elasticity (MOE). The stiffest were placed outermost, and the most limber in the center. The veneers, which were cut...

  1. Orbiting Deep Space Relay Station (ODSRS). Volume 1: Requirement determination

    NASA Technical Reports Server (NTRS)

    Hunter, J. A.

    1979-01-01

    The deep space communications requirements of the post-1985 time frame are described and the orbiting deep space relay station (ODSRS) is presented as an option for meeting these requirements. Under current conditions, the ODSRS is not yet cost competitive with Earth based stations to increase DSN telemetry performance, but has significant advantages over a ground station, and these are sufficient to maintain it as a future option. These advantages include: the ability to track a spacecraft 24 hours per day with ground stations located only in the USA; the ability to operate at higher frequencies that would be attenuated by Earth's atmosphere; and the potential for building very large structures without the constraints of Earth's gravity.

  2. Deep Space Network Antenna Logic Controller

    NASA Technical Reports Server (NTRS)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  3. Comparing Running Specific and Traditional Prostheses During Running: Assessing Performance and Risk

    DTIC Science & Technology

    2016-09-01

    extremity amputation (ILEA) running is limited with respect to biomechanical performance and injury risks. ILEA are able to run with both running...TERMS Kinetics, biomechanics , amputation, prosthesis, transtibial 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...with lower extremity amputation (ILEA) running is limited with respect to biomechanical performance and injury risks. ILEA are able to run with both

  4. Blind source deconvolution for deep Earth seismology

    NASA Astrophysics Data System (ADS)

    Stefan, W.; Renaut, R.; Garnero, E. J.; Lay, T.

    2007-12-01

    We present an approach to automatically estimate an empirical source characterization of deep earthquakes recorded teleseismically and subsequently remove the source from the recordings by applying regularized deconvolution. A principle goal in this work is to effectively deblur the seismograms, resulting in more impulsive and narrower pulses, permitting better constraints in high resolution waveform analyses. Our method consists of two stages: (1) we first estimate the empirical source by automatically registering traces to their 1st principal component with a weighting scheme based on their deviation from this shape, we then use this shape as an estimation of the earthquake source. (2) We compare different deconvolution techniques to remove the source characteristic from the trace. In particular Total Variation (TV) regularized deconvolution is used which utilizes the fact that most natural signals have an underlying spareness in an appropriate basis, in this case, impulsive onsets of seismic arrivals. We show several examples of deep focus Fiji-Tonga region earthquakes for the phases S and ScS, comparing source responses for the separate phases. TV deconvolution is compared to the water level deconvolution, Tikenov deconvolution, and L1 norm deconvolution, for both data and synthetics. This approach significantly improves our ability to study subtle waveform features that are commonly masked by either noise or the earthquake source. Eliminating source complexities improves our ability to resolve deep mantle triplications, waveform complexities associated with possible double crossings of the post-perovskite phase transition, as well as increasing stability in waveform analyses used for deep mantle anisotropy measurements.

  5. Development and application of deep convolutional neural network in target detection

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaowei; Wang, Chunping; Fu, Qiang

    2018-04-01

    With the development of big data and algorithms, deep convolution neural networks with more hidden layers have more powerful feature learning and feature expression ability than traditional machine learning methods, making artificial intelligence surpass human level in many fields. This paper first reviews the development and application of deep convolutional neural networks in the field of object detection in recent years, then briefly summarizes and ponders some existing problems in the current research, and the future development of deep convolutional neural network is prospected.

  6. Drilling a deep geologic test well at Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Schultz, Arthur P.; Seefelt, Ellen L.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.

  7. Deep-Sea Coral Image Catalog: Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Freed, J. C.

    2016-02-01

    In recent years, deep-sea exploration in the Northeast Pacific ocean has been on the rise using submersibles and remotely operated vehicles (ROVs), acquiring a plethora of underwater videos and photographs. Analysis of deep-sea fauna revealed by this research has been hampered by the lack of catalogs or guides that allow identification of species in the field. Deep-sea corals are of particular conservation concern, but currently, there are few catalogs which describe and provide detailed information on deep-sea corals from the Northeast Pacific and those that exist are focused on small, specific areas. This project, in collaboration with NOAA's Deep-Sea Coral Ecology Laboratory at the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) and the Southwest Fisheries Science Center (SWFSC), developed pages for a deep-sea coral identification guide that provides photos and information on the visual identification, distributions, and habitats of species found in the Northeast Pacific. Using online databases, photo galleries, and literature, this catalog has been developed to be a living document open to future additions. This project produced 12 entries for the catalog on a variety of different deep-sea corals. The catalog is intended to be used during underwater surveys in the Northeast Pacific, but will also assist in identification of deep-sea coral by-catch by fishing vessels, and for general educational use. These uses will advance NOAA's ability to identify and protect sensitive deep-sea habitats that act as biological hotspots. The catalog is intended to be further developed into an online resource with greater interactive features with links to other resources and featured on NOAA's Deep-Sea Coral Data Portal.

  8. Running and Osteoarthritis: Does Recreational or Competitive Running Increase the Risk?

    PubMed

    2017-06-01

    Exercise, like running, is good for overall health and, specifically, our hearts, lungs, muscles, bones, and brains. However, some people are concerned about the impact of running on longterm joint health. Does running lead to higher rates of arthritis in knees and hips? While many researchers find that running protects bone health, others are concerned that this exercise poses a high risk for age-related changes to hips and knees. A study published in the June 2017 issue of JOSPT suggests that the difference in these outcomes depends on the frequency and intensity of running. J Orthop Sports Phys Ther 2017;47(6):391. doi:10.2519/jospt.2017.0505.

  9. Extracting Databases from Dark Data with DeepDive

    PubMed Central

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data — scientific papers, Web classified ads, customer service notes, and so on — were instead in a relational database, it would give analysts a massive and valuable new set of “big data.” DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference. PMID:28316365

  10. Extracting Databases from Dark Data with DeepDive.

    PubMed

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data : the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.

  11. The Run-up to Volcanic Eruption Unveiled by Forensic Petrology and Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. J.; Plank, T. A.; Roman, D. C.

    2017-12-01

    Volcanoes often warn of impending eruptions. However, one of the greatest challenges in volcano research is translating precursory geophysical signals into physical magmatic processes. Petrology offers powerful tools to study eruption run-up that benefit from direct response to magmatic forcings. Developing these tools, and tying them to geophysical observations, will help us identify eruption triggers (e.g., magmatic recharge, gas build-up, tectonic events) and understand the significance of monitored signals of unrest. We present an overview of petrologic tools used for studying eruption run-up, highlighting results from our study of the 1999 eruption of Shishaldin volcano. Olivine crystals contain chemical gradients, the consequence of diffusion following magma mixing events, which is modeled to determine mixing timescales. Modeled timescales provide strong evidence for at least three mixing events, which were triggered by magmatic recharge. Petrologic barometers indicate these events occurred at very shallow depths (within the volcanic edifice). The first mixing event occurred nine months before eruption, which was signaled by a swarm of deep-long period earthquake. Minor recharge events followed over two months, which are indicated by a second deep-long period earthquake swarm and a change in the local stress orientation measured by shear-wave splitting. Following these events, the system was relatively quiet until a large mixing event occurred 45 days prior to eruption, which was heralded by a large earthquake (M5.2). Following this event, geophysical signals of unrest intensified and became continuous. The final mixing event, beginning roughly a week before eruption, represents the final perturbation to the system before eruption. Our findings point to a relatively long run-up, which was subtle at first and intensified several weeks before eruption. This study highlights the strong link between geophysical signals of volcanic unrest and magmatic events, and

  12. Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay.

    PubMed

    Karvat, Golan; Kimchi, Tali

    2012-08-01

    Three core symptoms of autistic spectrum disorders are stereotypic movements, resistance to change in routines and deficits in social interaction. In order to understand their neuronal mechanisms, there is a dire need for behavioral paradigms to assess those symptoms in rodents. Here we present a novel method which is based on positive reward in a customized wheel-running apparatus to assess these symptoms. As a proof of concept, 4 mouse strains were tested in the new behavioral paradigm; 2 control lines (C57BL/6 and ICR) and 2 mouse-models of autism (BTBR T+ tf/J and Nlgn3(tm1Sud)). We found that the C57BL/6, ICR and Nlgn3(tm1Sud) mice showed a significant reduction in stereotypical behavior in the presence of the running wheel, ability to forfeit the running habit when the running-wheel was jammed, and preference of interacting with a social stimulus over the jammed running-wheel. No difference was found between genotypes of the Nlgn3(tm1Sud) mice. On the other hand, the BTBR mice exhibited persistent, elevated levels of stereotypical behavior. In addition, they presented a deficit in their ability to adjust to a changing environment, as manifested in persistence to interact with the wheel even when it was jammed. Lastly, the BTBR mice exhibited no significant preference to interact with the stranger mouse over the jammed running-wheel. These results were validated by a set of commonly used behavioral tests. Overall, our novel behavioral paradigm detects multiple components of autistic-like phenotypes, including cognitive rigidity, stereotypic behavior and social deficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Changes in Running Mechanics During a 6-Hour Running Race.

    PubMed

    Giovanelli, Nicola; Taboga, Paolo; Lazzer, Stefano

    2017-05-01

    To investigate changes in running mechanics during a 6-h running race. Twelve ultraendurance runners (age 41.9 ± 5.8 y, body mass 68.3 ± 12.6 kg, height 1.72 ± 0.09 m) were asked to run as many 874-m flat loops as possible in 6 h. Running speed, contact time (t c ), and aerial time (t a ) were measured in the first lap and every 30 ± 2 min during the race. Peak vertical ground-reaction force (F max ), stride length (SL), vertical downward displacement of the center of mass (Δz), leg-length change (ΔL), vertical stiffness (k vert ), and leg stiffness (k leg ) were then estimated. Mean distance covered by the athletes during the race was 62.9 ± 7.9 km. Compared with the 1st lap, running speed decreased significantly from 4 h 30 min onward (mean -5.6% ± 0.3%, P < .05), while t c increased after 4 h 30 min of running, reaching the maximum difference after 5 h 30 min (+6.1%, P = .015). Conversely, k vert decreased after 4 h, reaching the lowest value after 5 h 30 min (-6.5%, P = .008); t a and F max decreased after 4 h 30 min through to the end of the race (mean -29.2% and -5.1%, respectively, P < .05). Finally, SL decreased significantly (-5.1%, P = .010) during the last hour of the race. Most changes occurred after 4 h continuous self-paced running, suggesting a possible time threshold that could affect performance regardless of absolute running speed.

  14. Evolving Deep Networks Using HPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Steven R.; Rose, Derek C.; Johnston, Travis

    While a large number of deep learning networks have been studied and published that produce outstanding results on natural image datasets, these datasets only make up a fraction of those to which deep learning can be applied. These datasets include text data, audio data, and arrays of sensors that have very different characteristics than natural images. As these “best” networks for natural images have been largely discovered through experimentation and cannot be proven optimal on some theoretical basis, there is no reason to believe that they are the optimal network for these drastically different datasets. Hyperparameter search is thus oftenmore » a very important process when applying deep learning to a new problem. In this work we present an evolutionary approach to searching the possible space of network hyperparameters and construction that can scale to 18, 000 nodes. This approach is applied to datasets of varying types and characteristics where we demonstrate the ability to rapidly find best hyperparameters in order to enable practitioners to quickly iterate between idea and result.« less

  15. The dynamics of biogeographic ranges in the deep sea.

    PubMed

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-07

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.

  16. Triathlon: running injuries.

    PubMed

    Spiker, Andrea M; Dixit, Sameer; Cosgarea, Andrew J

    2012-12-01

    The running portion of the triathlon represents the final leg of the competition and, by some reports, the most important part in determining a triathlete's overall success. Although most triathletes spend most of their training time on cycling, running injuries are the most common injuries encountered. Common causes of running injuries include overuse, lack of rest, and activities that aggravate biomechanical predisposers of specific injuries. We discuss the running-associated injuries in the hip, knee, lower leg, ankle, and foot of the triathlete, and the causes, presentation, evaluation, and treatment of each.

  17. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    PubMed

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in

  18. Online Learners’ Reading Ability Detection Based on Eye-Tracking Sensors

    PubMed Central

    Zhan, Zehui; Zhang, Lei; Mei, Hu; Fong, Patrick S. W.

    2016-01-01

    The detection of university online learners’ reading ability is generally problematic and time-consuming. Thus the eye-tracking sensors have been employed in this study, to record temporal and spatial human eye movements. Learners’ pupils, blinks, fixation, saccade, and regression are recognized as primary indicators for detecting reading abilities. A computational model is established according to the empirical eye-tracking data, and applying the multi-feature regularization machine learning mechanism based on a Low-rank Constraint. The model presents good generalization ability with an error of only 4.9% when randomly running 100 times. It has obvious advantages in saving time and improving precision, with only 20 min of testing required for prediction of an individual learner’s reading ability. PMID:27626418

  19. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  20. Comparison of Minimalist Footwear Strategies for Simulating Barefoot Running: A Randomized Crossover Study

    PubMed Central

    Hollander, Karsten; Argubi-Wollesen, Andreas; Reer, Rüdiger; Zech, Astrid

    2015-01-01

    Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km.week-1) performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m.s-1) using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (p<0.001) at all running velocities. Posthoc pairwise comparisons showed significant differences (p<0.001) between running barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m.s-1), followed by running with uncushioned minimalist shoes (62.9%), cushioned minimalist (88.6%) and standard shoes (94.3%). Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running. PMID:26011042

  1. Comparison of minimalist footwear strategies for simulating barefoot running: a randomized crossover study.

    PubMed

    Hollander, Karsten; Argubi-Wollesen, Andreas; Reer, Rüdiger; Zech, Astrid

    2015-01-01

    Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km x week(-1)) performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m x s(-1)) using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (p<0.001) at all running velocities. Posthoc pairwise comparisons showed significant differences (p<0.001) between running barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m x s(-1)), followed by running with uncushioned minimalist shoes (62.9%), cushioned minimalist (88.6%) and standard shoes (94.3%). Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running.

  2. Deep learning for studies of galaxy morphology

    NASA Astrophysics Data System (ADS)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.

    2017-06-01

    Establishing accurate morphological measurements of galaxies in a reasonable amount of time for future big-data surveys such as EUCLID, the Large Synoptic Survey Telescope or the Wide Field Infrared Survey Telescope is a challenge. Because of its high level of abstraction with little human intervention, deep learning appears to be a promising approach. Deep learning is a rapidly growing discipline that models high-level patterns in data as complex multilayered networks. In this work we test the ability of deep convolutional networks to provide parametric properties of Hubble Space Telescope like galaxies (half-light radii, Sérsic indices, total flux etc..). We simulate a set of galaxies including point spread function and realistic noise from the CANDELS survey and try to recover the main galaxy parameters using deep-learning. We compare the results with the ones obtained with the commonly used profile fitting based software GALFIT. This way showing that with our method we obtain results at least equally good as the ones obtained with GALFIT but, once trained, with a factor 5 hundred time faster.

  3. Effects of two neuromuscular training programs on running biomechanics with load carriage: a study protocol for a randomised controlled trial.

    PubMed

    Liew, Bernard X W; Morris, Susan; Keogh, Justin W L; Appleby, Brendyn; Netto, Kevin

    2016-10-22

    In recent years, athletes have ventured into ultra-endurance and adventure racing events, which tests their ability to race, navigate, and survive. These events often require race participants to carry some form of load, to bear equipment for navigation and survival purposes. Previous studies have reported specific alterations in biomechanics when running with load which potentially influence running performance and injury risk. We hypothesize that a biomechanically informed neuromuscular training program would optimize running mechanics during load carriage to a greater extent than a generic strength training program. This will be a two group, parallel randomized controlled trial design, with single assessor blinding. Thirty healthy runners will be recruited to participate in a six weeks neuromuscular training program. Participants will be randomized into either a generic training group, or a biomechanically informed training group. Primary outcomes include self-determined running velocity with a 20 % body weight load, jump power, hopping leg stiffness, knee extensor and triceps-surae strength. Secondary outcomes include running kinetics and kinematics. Assessments will occur at baseline and post-training. To our knowledge, no training programs are available that specifically targets a runner's ability to carry load while running. This will provide sport scientists and coaches with a foundation to base their exercise prescription on. ANZCTR ( ACTRN12616000023459 ) (14 Jan 2016).

  4. The effect of footwear on running performance and running economy in distance runners.

    PubMed

    Fuller, Joel T; Bellenger, Clint R; Thewlis, Dominic; Tsiros, Margarita D; Buckley, Jonathan D

    2015-03-01

    The effect of footwear on running economy has been investigated in numerous studies. However, no systematic review and meta-analysis has synthesised the available literature and the effect of footwear on running performance is not known. The aim of this systematic review and meta-analysis was to investigate the effect of footwear on running performance and running economy in distance runners, by reviewing controlled trials that compare different footwear conditions or compare footwear with barefoot. The Web of Science, Scopus, MEDLINE, CENTRAL (Cochrane Central Register of Controlled Trials), EMBASE, AMED (Allied and Complementary Medicine), CINAHL and SPORTDiscus databases were searched from inception up until April 2014. Included articles reported on controlled trials that examined the effects of footwear or footwear characteristics (including shoe mass, cushioning, motion control, longitudinal bending stiffness, midsole viscoelasticity, drop height and comfort) on running performance or running economy and were published in a peer-reviewed journal. Of the 1,044 records retrieved, 19 studies were included in the systematic review and 14 studies were included in the meta-analysis. No studies were identified that reported effects on running performance. Individual studies reported significant, but trivial, beneficial effects on running economy for comfortable and stiff-soled shoes [standardised mean difference (SMD) <0.12; P < 0.05), a significant small beneficial effect on running economy for cushioned shoes (SMD = 0.37; P < 0.05) and a significant moderate beneficial effect on running economy for training in minimalist shoes (SMD = 0.79; P < 0.05). Meta-analysis found significant small beneficial effects on running economy for light shoes and barefoot compared with heavy shoes (SMD < 0.34; P < 0.01) and for minimalist shoes compared with conventional shoes (SMD = 0.29; P < 0.01). A significant positive association between shoe mass and metabolic cost of running

  5. ALICE results from Run-1 and Run-2 and perspectives for Run-3 and Run-4

    NASA Astrophysics Data System (ADS)

    Noferini, Francesco; ALICE Collaboration

    2018-05-01

    A review of ALICE is presented focusing on its physics programme and results from the Run-1 and Run-2 data taking periods. Among the four major LHC experiments, ALICE is devoted to the study of the Quark-Gluon Plasma produced in ultra-relativistic heavy-ion collisions (Pb–Pb), but it is also collecting data in smaller systems (pp and p–Pb). This review focuses on the main results collected so far, including the characterization of the QGP via soft and hard probes, and the production rate of light nuclei and hypernuclei. Finally, the perspectives after the detectors upgrades to be performed during 2019-2020 are presented.

  6. Reasons and predictors of discontinuation of running after a running program for novice runners.

    PubMed

    Fokkema, Tryntsje; Hartgens, Fred; Kluitenberg, Bas; Verhagen, Evert; Backx, Frank J G; van der Worp, Henk; Bierma-Zeinstra, Sita M A; Koes, Bart W; van Middelkoop, Marienke

    2018-06-18

    To determine the proportion of participants of a running program for novice runners that discontinued running and investigate the main reasons to discontinue and characteristics associated with discontinuation. Prospective cohort study. The study included 774 participants of Start to Run, a 6-week running program for novice runners. Before the start of the program, participants filled-in a baseline questionnaire to collect information on demographics, physical activity and perceived health. The 26-weeks follow-up questionnaire was used to obtain information on the continuation of running (yes/no) and main reasons for discontinuation. To determine predictors for discontinuation of running, multivariable logistic regression was performed. Within 26 weeks after the start of the 6-week running program, 29.5% of the novice runners (n=225) had stopped running. The main reason for discontinuation was a running-related injury (n=108, 48%). Being female (OR 1.74; 95% CI 1.13-2.68), being unsure about the continuation of running after the program (OR 2.06; 95% CI 1.31-3.24) and (almost) no alcohol use (OR 1.62; 95%CI 1.11-2.37) were associated with a higher chance of discontinuation of running. Previous running experience less than one year previously (OR 0.46; 95% CI 0.26-0.83) and a higher score on the RAND-36 subscale physical functioning (OR 0.98; 95% CI 0.96-0.99) were associated with a lower chance of discontinuation. In this group of novice runners, almost one-third stopped running within six months. A running-related injury was the main reason to stop running. Women with a low perceived physical functioning and without running experience were prone to discontinue running. Copyright © 2018. Published by Elsevier Ltd.

  7. Habitual Minimalist Shod Running Biomechanics and the Acute Response to Running Barefoot.

    PubMed

    Tam, Nicholas; Darragh, Ian A J; Divekar, Nikhil V; Lamberts, Robert P

    2017-09-01

    The aim of the study was to determine whether habitual minimalist shoe runners present with purported favorable running biomechanithat reduce running injury risk such as initial loading rate. Eighteen minimalist and 16 traditionally cushioned shod runners were assessed when running both in their preferred training shoe and barefoot. Ankle and knee joint kinetics and kinematics, initial rate of loading, and footstrike angle were measured. Sagittal ankle and knee joint stiffness were also calculated. Results of a two-factor ANOVA presented no group difference in initial rate of loading when participants were running either shod or barefoot; however, initial loading rate increased for both groups when running barefoot (p=0.008). Differences in footstrike angle were observed between groups when running shod, but not when barefoot (minimalist:8.71±8.99 vs. traditional: 17.32±11.48 degrees, p=0.002). Lower ankle joint stiffness was found in both groups when running barefoot (p=0.025). These findings illustrate that risk factors for injury potentially differ between the two groups. Shoe construction differences do change mechanical demands, however, once habituated to the demands of a given shoe condition, certain acute favorable or unfavorable responses may be moderated. The purported benefits of minimalist running shoes in mimicking habitual barefoot running is questioned, and risk of injury may not be attenuated. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Deep tissue massage: What are we talking about?

    PubMed

    Koren, Yogev; Kalichman, Leonid

    2018-04-01

    Massage is a common treatment in complementary and integrative medicine. Deep tissue massage, a form of therapeutic massage, has become more and more popular in recent years. Hence, the use of massage generally and deep tissue massage specifically, should be evaluated as any other modality of therapy to establish its efficacy and safety. To determine the definitions used for deep tissue massage in the scientific literature and to review the current scientific evidence for its efficacy and safety. Narrative review. There is no commonly accepted definition of deep tissue massage in the literature. The definition most frequently used is the intention of the therapist. We suggest separating the definitions of deep massage and deep tissue massage as follows: deep massage should be used to describe the intention of the therapist to treat deep tissue by using any form of massage and deep tissue massage should be used to describe a specific and independent method of massage therapy, utilizing the specific set of principles and techniques as defined by Riggs: "The understanding of the layers of the body, and the ability to work with tissue in these layers to relax, lengthen, and release holding patterns in the most effective and energy efficient way possible within the client's parameters of comfort". Heterogeneity of techniques and protocols used in published studies have made it difficult to draw any clear conclusions. Favorable outcomes may result from deep tissue massage in pain populations and patients with decreased range of motion. In addition, several rare serious adverse events were found related to deep tissue massage, probably as a result of the forceful application of massage therapy. Future research of deep tissue massage should be based on a common definition, classification system and the use of common comparators as controls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Our Roots Run Deep

    ERIC Educational Resources Information Center

    Steinkamp, Erin

    2016-01-01

    Valley Park Middle School (VPMS) in Valley Park, MO, has the unique designation of being a not-so-secret gem in St. Louis County. The middle school shares its campus with the elementary and high school, creating opportunities to collaborate and work together to build a school district that not only shines academically, but also focuses on…

  10. Dr. Sheehan on Running.

    ERIC Educational Resources Information Center

    Sheehan, George A.

    This book is both a personal and technical account of the experience of running by a heart specialist who began a running program at the age of 45. In its seventeen chapters, there is information presented on the spiritual, psychological, and physiological results of running; treatment of athletic injuries resulting from running; effects of diet…

  11. Running increases ethanol preference.

    PubMed

    Werme, Martin; Lindholm, Sara; Thorén, Peter; Franck, Johan; Brené, Stefan

    2002-07-18

    Wheel running performed by rats is reinforcing, rewarding and possibly addictive. In this study we analyzed if wheel running could affect ethanol preference. Lewis rats, known to be both addiction-prone and to develop an excessive wheel running behavior, were given access to ethanol in a two-bottle free-choice paradigm. The animals reached a high and stable ethanol intake after 5 weeks. In the next phase, rats were subjected to ethanol withdrawal for 1, 2 or 4 weeks with or without access to running wheels. Finally animals were again given access to ethanol in the same two-bottle free-choice paradigm, combined with access to running wheels. The rats that ran in running wheels during 1 or 2, but not 4, weeks of ethanol withdrawal increased both ethanol intake and preference as compared with the control group that did not have access to the wheels. Previous studies have demonstrated that low doses of morphine increases ethanol preference. Here we show that also running potentiates ethanol intake and preference. Thus, running which shares many of the reinforcing properties with addictive drugs appears to potentiate rats to an increased preference for ethanol. Our results describe a behavioral interaction where running increases ethanol consumption.

  12. Altered Running Economy Directly Translates to Altered Distance-Running Performance.

    PubMed

    Hoogkamer, Wouter; Kipp, Shalaya; Spiering, Barry A; Kram, Rodger

    2016-11-01

    Our goal was to quantify if small (1%-3%) changes in running economy quantitatively affect distance-running performance. Based on the linear relationship between metabolic rate and running velocity and on earlier observations that added shoe mass increases metabolic rate by ~1% per 100 g per shoe, we hypothesized that adding 100 and 300 g per shoe would slow 3000-m time-trial performance by 1% and 3%, respectively. Eighteen male sub-20-min 5-km runners completed treadmill testing, and three 3000-m time trials wearing control shoes and identical shoes with 100 and 300 g of discreetly added mass. We measured rates of oxygen consumption and carbon dioxide production and calculated metabolic rates for the treadmill tests, and we recorded overall running time for the time trials. Adding mass to the shoes significantly increased metabolic rate at 3.5 m·s by 1.11% per 100 g per shoe (95% confidence interval = 0.88%-1.35%). While wearing the control shoes, participants ran the 3000-m time trial in 626.1 ± 55.6 s. Times averaged 0.65% ± 1.36% and 2.37% ± 2.09% slower for the +100-g and +300-g shoes, respectively (P < 0.001). On the basis of a linear fit of all the data, 3000-m time increased 0.78% per added 100 g per shoe (95% confidence interval = 0.52%-1.04%). Adding shoe mass predictably degrades running economy and slows 3000-m time-trial performance proportionally. Our data demonstrate that laboratory-based running economy measurements can accurately predict changes in distance-running race performance due to shoe modifications.

  13. Can We Speculate Running Application With Server Power Consumption Trace?

    PubMed

    Li, Yuanlong; Hu, Han; Wen, Yonggang; Zhang, Jun

    2018-05-01

    In this paper, we propose to detect the running applications in a server by classifying the observed power consumption series for the purpose of data center energy consumption monitoring and analysis. Time series classification problem has been extensively studied with various distance measurements developed; also recently the deep learning-based sequence models have been proved to be promising. In this paper, we propose a novel distance measurement and build a time series classification algorithm hybridizing nearest neighbor and long short term memory (LSTM) neural network. More specifically, first we propose a new distance measurement termed as local time warping (LTW), which utilizes a user-specified index set for local warping, and is designed to be noncommutative and nondynamic programming. Second, we hybridize the 1-nearest neighbor (1NN)-LTW and LSTM together. In particular, we combine the prediction probability vector of 1NN-LTW and LSTM to determine the label of the test cases. Finally, using the power consumption data from a real data center, we show that the proposed LTW can improve the classification accuracy of dynamic time warping (DTW) from about 84% to 90%. Our experimental results prove that the proposed LTW is competitive on our data set compared with existed DTW variants and its noncommutative feature is indeed beneficial. We also test a linear version of LTW and find out that it can perform similar to state-of-the-art DTW-based method while it runs as fast as the linear runtime lower bound methods like LB_Keogh for our problem. With the hybrid algorithm, for the power series classification task we achieve an accuracy up to about 93%. Our research can inspire more studies on time series distance measurement and the hybrid of the deep learning models with other traditional models.

  14. Assessing the Linguistic Productivity of Unsupervised Deep Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Lawrence A.; Hodas, Nathan O.

    Increasingly, cognitive scientists have demonstrated interest in applying tools from deep learning. One use for deep learning is in language acquisition where it is useful to know if a linguistic phenomenon can be learned through domain-general means. To assess whether unsupervised deep learning is appropriate, we first pose a smaller question: Can unsupervised neural networks apply linguistic rules productively, using them in novel situations. We draw from the literature on determiner/noun productivity by training an unsupervised, autoencoder network measuring its ability to combine nouns with determiners. Our simple autoencoder creates combinations it has not previously encountered, displaying a degree ofmore » overlap similar to actual children. While this preliminary work does not provide conclusive evidence for productivity, it warrants further investigation with more complex models. Further, this work helps lay the foundations for future collaboration between the deep learning and cognitive science communities.« less

  15. Automated analysis of high-content microscopy data with deep learning.

    PubMed

    Kraus, Oren Z; Grys, Ben T; Ba, Jimmy; Chong, Yolanda; Frey, Brendan J; Boone, Charles; Andrews, Brenda J

    2017-04-18

    Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Deep learning with non-medical training used for chest pathology identification

    NASA Astrophysics Data System (ADS)

    Bar, Yaniv; Diamant, Idit; Wolf, Lior; Greenspan, Hayit

    2015-03-01

    In this work, we examine the strength of deep learning approaches for pathology detection in chest radiograph data. Convolutional neural networks (CNN) deep architecture classification approaches have gained popularity due to their ability to learn mid and high level image representations. We explore the ability of a CNN to identify different types of pathologies in chest x-ray images. Moreover, since very large training sets are generally not available in the medical domain, we explore the feasibility of using a deep learning approach based on non-medical learning. We tested our algorithm on a dataset of 93 images. We use a CNN that was trained with ImageNet, a well-known large scale nonmedical image database. The best performance was achieved using a combination of features extracted from the CNN and a set of low-level features. We obtained an area under curve (AUC) of 0.93 for Right Pleural Effusion detection, 0.89 for Enlarged heart detection and 0.79 for classification between healthy and abnormal chest x-ray, where all pathologies are combined into one large class. This is a first-of-its-kind experiment that shows that deep learning with large scale non-medical image databases may be sufficient for general medical image recognition tasks.

  17. The dynamics of biogeographic ranges in the deep sea

    PubMed Central

    McClain, Craig R.; Hardy, Sarah Mincks

    2010-01-01

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography. PMID:20667884

  18. Running Backward in a Relay Race. Brown v. Burlington City Board of Education.

    ERIC Educational Resources Information Center

    Barrett, Kate R.; Gaskin, Lynne P.

    1990-01-01

    This article contains an expert witness's report, given in a court complaint filed by a child who had been injured in a physical education activity which involved running backwards. Issues include physical education guidelines, teacher knowledge of student ability, and suitability of the surface upon which the activity occurred. (IAH)

  19. Similar Running Economy With Different Running Patterns Along the Aerial-Terrestrial Continuum.

    PubMed

    Lussiana, Thibault; Gindre, Cyrille; Hébert-Losier, Kim; Sagawa, Yoshimasa; Gimenez, Philippe; Mourot, Laurent

    2017-04-01

    No unique or ideal running pattern is the most economical for all runners. Classifying the global running patterns of individuals into 2 categories (aerial and terrestrial) using the Volodalen method could permit a better understanding of the relationship between running economy (RE) and biomechanics. The main purpose was to compare the RE of aerial and terrestrial runners. Two coaches classified 58 runners into aerial (n = 29) or terrestrial (n = 29) running patterns on the basis of visual observations. RE, muscle activity, kinematics, and spatiotemporal parameters of both groups were measured during a 5-min run at 12 km/h on a treadmill. Maximal oxygen uptake (V̇O 2 max) and peak treadmill speed (PTS) were assessed during an incremental running test. No differences were observed between aerial and terrestrial patterns for RE, V̇O 2 max, and PTS. However, at 12 km/h, aerial runners exhibited earlier gastrocnemius lateralis activation in preparation for contact, less dorsiflexion at ground contact, higher coactivation indexes, and greater leg stiffness during stance phase than terrestrial runners. Terrestrial runners had more pronounced semitendinosus activation at the start and end of the running cycle, shorter flight time, greater leg compression, and a more rear-foot strike. Different running patterns were associated with similar RE. Aerial runners appear to rely more on elastic energy utilization with a rapid eccentric-concentric coupling time, whereas terrestrial runners appear to propel the body more forward rather than upward to limit work against gravity. Excluding runners with a mixed running pattern from analyses did not affect study interpretation.

  20. Exploring the Relationship between Students' Understanding of Conventional Time and Deep (Geologic) Time

    NASA Astrophysics Data System (ADS)

    Cheek, Kim A.

    2013-07-01

    Many geologic processes occur in the context of geologic or deep time. Students of all ages demonstrate difficulty grasping this fundamental concept which impacts their ability to acquire other geoscience concepts. A concept of deep time requires the ability to sequence events on an immense temporal scale (succession) and to judge the durations of geologic processes based on the rates at which they occur. The twin concepts of succession and duration are the same ideas that underlie a concept of conventional time. If deep time is an extension of conventional time and not qualitatively different from it, students should display similar reasoning patterns when dealing with analogous tasks over disparate temporal periods. Thirty-five US students aged 13-24 years participated in individual task-based interviews to ascertain how they thought about succession and duration in conventional and deep time. This is the first attempt to explore this relationship in the same study in over 30 years. Most students successfully completed temporal succession tasks, but there was greater variability in responses on duration tasks. Conventional time concepts appear to impact how students reason about deep time. The application of spatial reasoning to temporal tasks sometimes leads to correct responses but in other instances does not. Implications for future research and teaching strategies are discussed.

  1. Sediment Transportation Induced by Deep-Seated Landslides in a Debris Flow Basin in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Meei Ling; Chen, Te Wei; Chen, Yong Sheng; Sin Jhuang, Han

    2016-04-01

    Typhoon Morakot brought huge amount of rainfall to the southern Taiwan in 2009 and caused severe landslides and debris flow hazard. After Typhoon Morakot, it was found that the volume of sediment transported by the debris flow and its effects on the affected area were much more significant compared to previous case history, which may due to the huge amount of rainfall causing significant deep-seated landslides in the basin. In this study, the effects and tendency of the sediment transportation in a river basin following deep-seated landslides caused by typhoon Morakot were evaluated. We used LiDAR, DEM, and aerial photo to identify characteristics of deep-seated landslides in a debris flow river basin, KSDF079 in Liuoguey District, Kaohsiung City, Taiwan. Eight deep-seated landslides were identified in the basin. To estimate the potential landslide volume associated with the deep-seated landslides, the stability analysis was conducted to locate the critical sliding surface, and the potential landside volume was estimated based on the estimation equation proposed by the International Geotechnical Societies' UNESCO Working Party on World Landslide Inventory (WP/WLI, 1990). The total potential landslide volume of the eight deep-seated landslides in KSDF079 basin was about 28,906,856 m3. Topographic analysis was performed by using DEM before and LiDAR derived DEM after typhoon Morakot to calculate the landslide volume transported. The result of erosion volume and deposition volume lead to a run out volume of 5,832,433 m3. The results appeared to consist well with the field condition and aerial photo. Comparing the potential landslide volume and run out volume of eight deep-seated landslides, it was found that the remaining potential landslide volume was about 80%. Field investigation and topographic analysis of the KSDF079 debris flow revealed that a significant amount of sediment deposition remained in the river channel ranging from the middle to the downstream

  2. Detecting deep crustal magma movement: Exploring linkages between increased gas emission, deep seismicity, and deformation (Invited)

    NASA Astrophysics Data System (ADS)

    Werner, C. A.; Poland, M. P.; Power, J. A.; Sutton, A. J.; Elias, T.; Grapenthin, R.; Thelen, W. A.

    2013-12-01

    Typically in the weeks to days before a volcanic eruption there are indisputable signals of unrest that can be identified in geophysical and geochemical data. Detection of signals of volcanic unrest months to years prior to an eruption, however, relies on our ability to recognize and link more subtle changes. Deep long-period earthquakes, typically 10-45 km beneath volcanoes, are thought to represent magma movement and may indicate near future unrest. Carbon dioxide (CO2 ) exsolves from most magmas at similar depths and increases in CO2 discharge may also provide a months-to-years precursor as it emits at the surface in advance of the magma from which it exsolved. Without the use of sensitive monitoring equipment and routine measurements, changes in CO2 can easily go undetected. Finally, inflation of the surface, through use of InSAR or GPS stations (especially at sites tens of km from the volcano) can also indicate accumulation of magma in the deep crust. Here we present three recent examples, from Redoubt, Kilauea, and Mammoth Mountain volcanoes, where increases in CO2 emission, deep long-period earthquakes, and surface deformation data indicate either the intrusion of magma into the deep crust in the months to years preceding volcanic eruptions or a change in ongoing volcanic unrest. At Redoubt volcano, Alaska, elevated CO2 emission (~ 1200 t/d, or roughly 20 times the background emission) was measured in October, 2008, over 5 months prior to the first magmatic eruption in March, 2009. In addition to CO2 release, deep long-period earthquakes were first recorded in December, 2008, and a deep deformation signal was detected starting in May 2008, albeit retrospectively. At Kilauea, Hawaii, increases in CO2 emissions from the summit (up to nearly 25 kt/d, over three times the background emission) were measured mid-2004, roughly coincident with a change in deformation behavior from deflation to inflation. Nearly 3 years later, a change in eruptive activity occurred

  3. A Running Start: Resource Guide for Youth Running Programs

    ERIC Educational Resources Information Center

    Jenny, Seth; Becker, Andrew; Armstrong, Tess

    2016-01-01

    The lack of physical activity is an epidemic problem among American youth today. In order to combat this, many schools are incorporating youth running programs as a part of their comprehensive school physical activity programs. These youth running programs are being implemented before or after school, at school during recess at the elementary…

  4. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Homer Robertson; Alan Black

    2006-06-22

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more

  5. Rocker shoe, minimalist shoe, and standard running shoe: a comparison of running economy.

    PubMed

    Sobhani, Sobhan; Bredeweg, Steef; Dekker, Rienk; Kluitenberg, Bas; van den Heuvel, Edwin; Hijmans, Juha; Postema, Klaas

    2014-05-01

    Running with rocker shoes is believed to prevent lower limb injuries. However, it is not clear how running in these shoes affects the energy expenditure. The purpose of this study was, therefore, to assess the effects of rocker shoes on running economy in comparison with standard and minimalist running shoes. Cross-over design. Eighteen endurance female runners (age=23.6 ± 3 years), who were inexperienced in running with rocker shoes and with minimalist/barefoot running, participated in this study. Oxygen consumption, carbon dioxide production, heart rate and rate of perceived exertion were measured while participants completed a 6-min sub-maximal treadmill running test for each footwear condition. The data of the last 2 min of each shoe condition were averaged for analysis. A linear mixed model was used to compare differences among three footwear conditions. Oxygen consumption during running with rocker shoes was on average 4.5% higher than with the standard shoes (p<0.001) and 5.6% higher than with the minimalist shoe (p<0.001). No significant differences were found in heart rate and rate of perceived exertion across three shoe conditions. Female runners, who are not experienced in running with the rocker shoes and minimalist shoes, show more energy expenditure during running with the rocker shoes compared with the standard and minimalist shoes. As the studied shoes were of different masses, part of the effect of increased energy expenditure with the rocker shoe is likely to be due to its larger mass as compared with standard running shoes and minimalist shoes. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?

    PubMed

    Richter, Helene; Ambrée, Oliver; Lewejohann, Lars; Herring, Arne; Keyvani, Kathy; Paulus, Werner; Palme, Rupert; Touma, Chadi; Schäbitz, Wolf-Rüdiger; Sachser, Norbert

    2008-06-26

    Several studies on both humans and animals reveal benefits of physical exercise on brain function and health. A previous study on TgCRND8 mice, a transgenic model of Alzheimer's disease, reported beneficial effects of premorbid onset of long-term access to a running wheel on spatial learning and plaque deposition. Our study investigated the effects of access to a running wheel after the onset of Abeta pathology on behavioural, endocrinological, and neuropathological parameters. From day 80 of age, the time when Abeta deposition becomes apparent, TgCRND8 and wildtype mice were kept with or without running wheel. Home cage behaviour was analysed and cognitive abilities regarding object recognition memory and spatial learning in the Barnes maze were assessed. Our results show that, in comparison to Wt mice, Tg mice were characterised by impaired object recognition memory and spatial learning, increased glucocorticoid levels, hyperactivity in the home cage and high levels of stereotypic behaviour. Access to a running wheel had no effects on cognitive or neuropathological parameters, but reduced the amount of stereotypic behaviour in transgenics significantly. Furthermore, wheel-running was inversely correlated with stereotypic behaviour, suggesting that wheel-running may have stereotypic qualities. In addition, wheel-running positively correlated with plaque burden. Thus, in a phase when plaques are already present in the brain, it may be symptomatic of brain pathology, rather than protective. Whether or not access to a running wheel has beneficial effects on Alzheimer-like pathology and symptoms may therefore strongly depend on the exact time when the wheel is provided during development of the disease.

  7. Functional abilities in children and adults with the CDKL5 disorder.

    PubMed

    Fehr, Stephanie; Downs, Jenny; Ho, Gladys; de Klerk, Nick; Forbes, David; Christodoulou, John; Williams, Simon; Leonard, Helen

    2016-11-01

    Functional abilities in the CDKL5 disorder have been described as severely impaired, yet some individuals are able to run and use phrases for speech. Our study investigated gross motor, hand function, and expressive communication abilities in individuals with the CDKL5 disorder. Data for 108 females and 16 males registered with the International CDKL5 disorder database and with a pathogenic CDKL5 mutation were analyzed. Relationships between functional abilities, age, genotype, and gender were analyzed using regression models. Over half of the females could sit on the floor and nearly a quarter could walk 10 steps. Fewer males could complete these tasks although one boy was able to sit, walk, and run. Most females and few males were able to pick up a large object. Females mostly used gestures to communicate while males mostly used other forms of non-verbal communication. Compared to those with no functional CDKL5 protein, individuals with truncating variants after aa 781 were more likely to be able to stand (OR 5.7, 95%CI 1.2, 26.6) or walk independently (4.3, 95%CI 0.9, 20.5), and use more advanced communication methods such as words (OR 6.1, 95%CI 1.5-24.2). Although abilities were markedly impaired for the majority with the CDKL5 disorder, some females and a few males had better functional abilities. This variability may be related to underlying gene variants, with females with a late truncating variant having better levels of ability than those with no functional protein. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Diabetic retinopathy screening using deep neural network.

    PubMed

    Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A

    2017-09-07

    There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  9. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion of...

  10. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion of...

  11. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion of...

  12. Ankle-foot orthosis bending axis influences running mechanics.

    PubMed

    Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M

    2017-07-01

    Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (p<0.003). Peak ankle power absorption was greater in the low axis than high (p=0.013), and peak power generation was greater in the low condition than middle or high conditions (p<0.009). Half of the participants preferred the middle bending axis, four preferred low and two preferred high. Overall, if greater ankle range of motion is tolerated, a low bending axis provides power and propulsive benefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.

  13. Mechanisms for regulating step length while running towards and over an obstacle.

    PubMed

    Larsen, Roxanne J; Jackson, William H; Schmitt, Daniel

    2016-10-01

    The ability to run across uneven terrain with continuous stable movement is critical to the safety and efficiency of a runner. Successful step-to-step stabilization while running may be mediated by minor adjustments to a few key parameters (e.g., leg stiffness, step length, foot strike pattern). However, it is not known to what degree runners in relatively natural settings (e.g., trails, paved road, curbs) use the same strategies across multiple steps. This study investigates how three readily measurable running parameters - step length, foot placement, and foot strike pattern - are adjusted in response to encountering a typical urban obstacle - a sidewalk curb. Thirteen subjects were video-recorded as they ran at self-selected slow and fast paces. Runners targeted a specific distance before the curb for foot placement, and lengthened their step over the curb (p<0.0001) regardless of where the step over the curb was initiated. These strategies of adaptive locomotion disrupt step cycles temporarily, and may increase locomotor cost and muscle loading, but in the end assure dynamic stability and minimize the risk of injury over the duration of a run. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Trust, Isolation, and Presence: The Virtual Work Environment and Acceptance of Deep Organizational Change

    ERIC Educational Resources Information Center

    Rose, Laurence Michael

    2013-01-01

    The primary focus of this research was to explore through the use of a grounded theory methodology if the human perceptions of trust, isolation, and presence affected the virtual workers ability to accept deep organizational change. The study found that the virtual workers in the sample defined their acceptance of deep organizational change by…

  15. Deep Learning in Medical Imaging: General Overview

    PubMed Central

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  16. Deep Learning in Medical Imaging: General Overview.

    PubMed

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  17. Deep sea mega-geomorphology: Progress and problems

    NASA Technical Reports Server (NTRS)

    Bryan, W. B.

    1985-01-01

    Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.

  18. Among the Few at Deep Springs College: Assessing a Seven-Decade Experiment in Liberal Education.

    ERIC Educational Resources Information Center

    Newell, L. Jackson

    1982-01-01

    Describes the origins and characteristics of Deep Springs College (DSC), which since 1917 has teamed liberal arts instruction with the physical labor of running a cattle ranch. Uses alumni survey responses to assess the long-term effects of attending DSC. Examines paradoxes inherent in the school and its future prospects. (DMM)

  19. Free recall and outdoor running: cognitive and physical demand interference.

    PubMed

    Epling, Samantha L; Blakely, Megan J; Russell, Paul N; Helton, William S

    2016-10-01

    Cognitive resource theory is a proposed explanation for people's limited ability to perform multiple tasks simultaneously. Reallocation of a restricted supply of cognitive resources to two or more tasks may be detrimental to performance on one or both tasks. Many professionals in high-risk fields, such as those engaged in firefighting, military, and search and rescue missions, face simultaneous mental and physical demands, yet little is known about the resources required to move over the natural terrain these operators may encounter. In the present research, we investigated whether interference was found between outdoor running and a word recall task. As hypothesized, a reduction in word recall was observed in the dual task compared to a recall-alone task; however, the distance run was not significantly different between the dual task and the run-alone task. Subjective reports of workload, task focus, and being "spent" (measures calculated from responses on a questionnaire) were greatest in the dual task. These results support the cognitive resource theory and have important theoretical and practical implications. Further research is required to better understand the type and extent of cognitive resources required by such physical tasks and the potential interference with simultaneous mental tasks.

  20. Age-related degeneration in leg-extensor muscle-tendon units decreases recovery performance after a forward fall: compensation with running experience.

    PubMed

    Karamanidis, Kiros; Arampatzis, Adamantios

    2007-01-01

    The goals of this study were to investigate whether the lower muscle-tendon units (MTUs) capacities in older affect their ability to recover balance with a single-step after a fall, and to examine whether running experience enhances and protects this motor skill in young and old adults. The investigation was conducted on 30 older and 19 younger divided into two subgroups: runners versus non-active. In previous studies we documented that the older had lower leg extensor muscle strength and tendon stiffness while running had no effect on MTUs capacities. The current study examined recovery mechanics of the same individuals after an induced forward fall. Younger were better able to recover balance with a single-step compared to older (P < 0.001); this ability was associated with a more effective body configuration at touchdown (more posterior COM position relative to the recovery foot, P <0.001). MTUs capacities classified 88.6% of the subjects into single- or multiple-steppers. Runners showed a superior ability to recover balance with a single-step (P < 0.001) compared to non-active subjects due to a more effective mechanical response during the stance phase (greater knee joint flexion, P <0.05). We concluded that the age-related degeneration of the MTUs significantly diminished the older adults' ability to restore balance with a single-step. Running seems to enhance and protect this motor skill. We suggested that runners, due to their running experience, could update the internal representation of mechanisms responsible for the control of dynamic stability during a forward fall and, thus, were able to restore balance more often with a single-step compared to the non-active subjects.

  1. Biomechanics and running economy.

    PubMed

    Anderson, T

    1996-08-01

    Running economy, which has traditionally been measured as the oxygen cost of running at a given velocity, has been accepted as the physiological criterion for 'efficient' performance and has been identified as a critical element of overall distance running performance. There is an intuitive link between running mechanics and energy cost of running, but research to date has not established a clear mechanical profile of an economic runner. It appears that through training, individuals are able to integrate and accommodate their own unique combination of dimensions and mechanical characteristics so that they arrive at a running motion which is most economical for them. Information in the literature suggests that biomechanical factors are likely to contribute to better economy in any runner. A variety of anthropometric dimensions could influence biomechanical effectiveness. These include: average or slightly smaller than average height for men and slightly greater than average height for women; high ponderal index and ectomorphic or ectomesomorphic physique; low percentage body fat; leg morphology which distributes mass closer to the hip joint; narrow pelvis and smaller than average feet. Gait patterns, kinematics and the kinetics of running may also be related to running economy. These factors include: stride length which is freely chosen over considerable running time; low vertical oscillation of body centre of mass; more acute knee angle during swing; less range of motion but greater angular velocity of plantar flexion during toe-off; arm motion of smaller amplitude; low peak ground reaction forces; faster rotation of shoulders in the transverse plane; greater angular excursion of the hips and shoulders about the polar axis in the transverse plane; and effective exploitation of stored elastic energy. Other factors which may improve running economy are: lightweight but well-cushioned shoes; more comprehensive training history; and the running surface of intermediate

  2. Can anti-gravity running improve performance to the same degree as over-ground running?

    PubMed

    Brennan, Christopher T; Jenkins, David G; Osborne, Mark A; Oyewale, Michael; Kelly, Vincent G

    2018-03-11

    This study examined the changes in running performance, maximal blood lactate concentrations and running kinematics between 85%BM anti-gravity (AG) running and normal over-ground (OG) running over an 8-week training period. Fifteen elite male developmental cricketers were assigned to either the AG or over-ground (CON) running group. The AG group (n = 7) ran twice a week on an AG treadmill and once per week over-ground. The CON group (n = 8) completed all sessions OG on grass. Both AG and OG training resulted in similar improvements in time trial and shuttle run performance. Maximal running performance showed moderate differences between the groups, however the AG condition resulted in less improvement. Large differences in maximal blood lactate concentrations existed with OG running resulting in greater improvements in blood lactate concentrations measured during maximal running. Moderate increases in stride length paired with moderate decreases in stride rate also resulted from AG training. The use of AG training to supplement regular OG training for performance should be used cautiously, as extended use over long periods of time could lead to altered stride mechanics and reduced blood lactate.

  3. Stereological Investigation of the Effects of Treadmill Running Exercise on the Hippocampal Neurons in Middle-Aged APP/PS1 Transgenic Mice.

    PubMed

    Chao, Fenglei; Jiang, Lin; Zhang, Yi; Zhou, Chunni; Zhang, Lei; Tang, Jing; Liang, Xin; Qi, Yingqiang; Zhu, Yanqing; Ma, Jing; Tang, Yong

    2018-01-01

    The risk of cognitive decline during Alzheimer's disease (AD) can be reduced if physical activity is maintained; however, the specific neural events underlying this beneficial effect are still uncertain. To quantitatively investigate the neural events underlying the effect of running exercise on middle-aged AD subjects, 12-month-old male APP/PS1 mice were randomly assigned to a control group or running group, and age-matched non-transgenic littermates were used as a wild-type group. AD running group mice were subjected to a treadmill running protocol (regular and moderate intensity) for four months. Spatial learning and memory abilities were assessed using the Morris water maze. Hippocampal amyloid plaques were observed using Thioflavin S staining and immunohistochemistry. Hippocampal volume, number of neurons, and number of newborn cells (BrdU+ cells) in the hippocampus were estimated using stereological techniques, and newborn neurons were observed using double-labelling immunofluorescence. Marked neuronal loss in both the CA1 field and dentate gyrus (DG) and deficits in both the neurogenesis and survival of new neurons in the DG of middle-aged APP/PS1 mice were observed. Running exercise could improve the spatial learning and memory abilities, reduce amyloid plaques in the hippocampi, delay neuronal loss, induce neurogenesis, and promote the survival of newborn neurons in the DG of middle-aged APP/PS1 mice. Exercise-induced protection of neurons and adult neurogenesis within the DG might be part of the important structural basis of the improved spatial learning and memory abilities observed in AD mice.

  4. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    PubMed

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  5. Contribution of Psychological, Social, and Mechanical Work Exposures to Low Work Ability

    PubMed Central

    Knardahl, Stein

    2015-01-01

    Objective: To determine the contribution of specific psychological, social, and mechanical work exposures to the self-reported low level of work ability. Methods: Employees from 48 organizations were surveyed over a 2-year period (n = 3779). Changes in 16 work exposures and 3 work ability measures—the work ability index score, perceived current, and future work ability—were tested with Spearman rank correlations. Binary logistic regressions were run to determine contribution of work exposures to low work ability. Results: Role conflict, human resource primacy, and positive challenge were the most consistent predictors of low work ability across test designs. Role clarity and fair leadership were less consistent but prominent predictors. Mechanical exposures were not predictive. Conclusions: To protect employee work ability, work place interventions would benefit from focusing on reducing role conflicts and on promoting positive challenges and human resource primacy. PMID:25470453

  6. Run Anyone?... Everyone!

    PubMed Central

    McInnis, W. P.

    1974-01-01

    Fitness and health have become bywords in the past decade, signifying increased emphasis on these factors as necessary for good psychological and physical health. Reasons are given why we should run and how to do it. There is a discussion of the technique of running, and equipment. Brief mention is made of complications. An attempt is made to interest the individual in the benefits of running as a sport as well as the best method for the average person to achieve fitness and health. PMID:20469054

  7. Run Clever – No difference in risk of injury when comparing progression in running volume and running intensity in recreational runners: A randomised trial

    PubMed Central

    Rasmussen, Sten; Sørensen, Henrik; Parner, Erik Thorlund; Lind, Martin; Nielsen, Rasmus Oestergaard

    2018-01-01

    Background/aim The Run Clever trial investigated if there was a difference in injury occurrence across two running schedules, focusing on progression in volume of running intensity (Sch-I) or in total running volume (Sch-V). It was hypothesised that 15% more runners with a focus on progression in volume of running intensity would sustain an injury compared with runners with a focus on progression in total running volume. Methods Healthy recreational runners were included and randomly allocated to Sch-I or Sch-V. In the first eight weeks of the 24-week follow-up, all participants (n=839) followed the same running schedule (preconditioning). Participants (n=447) not censored during the first eight weeks entered the 16-week training period with a focus on either progression in intensity (Sch-I) or volume (Sch-V). A global positioning system collected all data on running. During running, all participants received real-time, individualised feedback on running intensity and running volume. The primary outcome was running-related injury (RRI). Results After preconditioning a total of 80 runners sustained an RRI (Sch-I n=36/Sch-V n=44). The cumulative incidence proportion (CIP) in Sch-V (reference group) were CIP2 weeks 4.6%; CIP4 weeks 8.2%; CIP8 weeks 13.2%; CIP16 weeks 28.0%. The risk differences (RD) and 95% CI between the two schedules were RD2 weeks=2.9%(−5.7% to 11.6%); RD4 weeks=1.8%(−9.1% to 12.8%); RD8 weeks=−4.7%(−17.5% to 8.1%); RD16 weeks=−14.0% (−36.9% to 8.9%). Conclusion A similar proportion of runners sustained injuries in the two running schedules. PMID:29527322

  8. Habituation contributes to the decline in wheel running within wheel-running reinforcement periods.

    PubMed

    Belke, Terry W; McLaughlin, Ryan J

    2005-02-28

    Habituation appears to play a role in the decline in wheel running within an interval. Aoyama and McSweeney [Aoyama, K., McSweeney, F.K., 2001. Habituation contributes to within-session changes in free wheel running. J. Exp. Anal. Behav. 76, 289-302] showed that when a novel stimulus was presented during a 30-min interval, wheel-running rates following the stimulus increased to levels approximating those earlier in the interval. The present study sought to assess the role of habituation in the decline in running that occurs over a briefer interval. In two experiments, rats responded on fixed-interval 30-s schedules for the opportunity to run for 45 s. Forty reinforcers were completed in each session. In the first experiment, the brake and chamber lights were repeatedly activated and inactivated after 25 s of a reinforcement interval had elapsed to assess the effect on running within the remaining 20 s. Presentations of the brake/light stimulus occurred during nine randomly determined reinforcement intervals in a session. In the second experiment, a 110 dB tone was emitted after 25 s of the reinforcement interval. In both experiments, presentation of the stimulus produced an immediate decline in running that dissipated over sessions. No increase in running following the stimulus was observed in the first experiment until the stimulus-induced decline dissipated. In the second experiment, increases in running were observed following the tone in the first session as well as when data were averaged over several sessions. In general, the results concur with the assertion that habituation plays a role in the decline in wheel running that occurs within both long and short intervals. (c) 2004 Elsevier B.V. All rights reserved.

  9. Effects of a minimalist shoe on running economy and 5-km running performance.

    PubMed

    Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D

    2016-09-01

    The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h(-1) in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h(-1) (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.

  10. RHIC Au beam in Run 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S. Y.

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014more » is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.« less

  11. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    PubMed

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  12. Balance ability and athletic performance.

    PubMed

    Hrysomallis, Con

    2011-03-01

    The relationship between balance ability and sport injury risk has been established in many cases, but the relationship between balance ability and athletic performance is less clear. This review compares the balance ability of athletes from different sports, determines if there is a difference in balance ability of athletes at different levels of competition within the same sport, determines the relationship of balance ability with performance measures and examines the influence of balance training on sport performance or motor skills. Based on the available data from cross-sectional studies, gymnasts tended to have the best balance ability, followed by soccer players, swimmers, active control subjects and then basketball players. Surprisingly, no studies were found that compared the balance ability of rifle shooters with other athletes. There were some sports, such as rifle shooting, soccer and golf, where elite athletes were found to have superior balance ability compared with their less proficient counterparts, but this was not found to be the case for alpine skiing, surfing and judo. Balance ability was shown to be significantly related to rifle shooting accuracy, archery shooting accuracy, ice hockey maximum skating speed and simulated luge start speed, but not for baseball pitching accuracy or snowboarding ranking points. Prospective studies have shown that the addition of a balance training component to the activities of recreationally active subjects or physical education students has resulted in improvements in vertical jump, agility, shuttle run and downhill slalom skiing. A proposed mechanism for the enhancement in motor skills from balance training is an increase in the rate of force development. There are limited data on the influence of balance training on motor skills of elite athletes. When the effectiveness of balance training was compared with resistance training, it was found that resistance training produced superior performance results for

  13. Factors That Influence Running Intensity in Interchange Players in Professional Rugby League.

    PubMed

    Delaney, Jace A; Thornton, Heidi R; Duthie, Grant M; Dascombe, Ben J

    2016-11-01

    Rugby league coaches adopt replacement strategies for their interchange players to maximize running intensity; however, it is important to understand the factors that may influence match performance. To assess the independent factors affecting running intensity sustained by interchange players during professional rugby league. Global positioning system (GPS) data were collected from all interchanged players (starters and nonstarters) in a professional rugby league squad across 24 matches of a National Rugby League season. A multilevel mixed-model approach was employed to establish the effect of various technical (attacking and defensive involvements), temporal (bout duration, time in possession, etc), and situational (season phase, recovery cycle, etc) factors on the relative distance covered and average metabolic power (P met ) during competition. Significant effects were standardized using correlation coefficients, and the likelihood of the effect was described using magnitude-based inferences. Superior intermittent running ability resulted in very likely large increases in both relative distance and P met . As the length of a bout increased, both measures of running intensity exhibited a small decrease. There were at least likely small increases in running intensity for matches played after short recovery cycles and against strong opposition. During a bout, the number of collision-based involvements increased running intensity, whereas time in possession and ball time out of play decreased demands. These data demonstrate a complex interaction of individual- and match-based factors that require consideration when developing interchange strategies, and the manipulation of training loads during shorter recovery periods and against stronger opponents may be beneficial.

  14. Comment on Dissociation between running economy and running performance in elite Kenyan distance runners.

    PubMed

    Santos-Concejero, Jordan; Tucker, Ross

    2016-01-01

    Mooses and colleagues suggest that running economy alone does not explain superior distance running performance in elite Kenyan runners. Whilst we agree with the multi-factorial hypothesis for Kenyan running success, we do not believe that running economy can be overlooked to the extent that it was based on this particular study. Based on the methods used and the range of athletes tested, in this response letter we question whether this study provides any basis for downplaying the influence of running economy or suggesting that other factors compensate for it to enable superior performance.

  15. Biomechanics of Distance Running.

    ERIC Educational Resources Information Center

    Cavanagh, Peter R., Ed.

    Contributions from researchers in the field of running mechanics are included in the 13 chapters of this book. The following topics are covered: (1) "The Mechanics of Distance Running: A Historical Perspective" (Peter Cavanagh); (2) "Stride Length in Distance Running: Velocity, Body Dimensions, and Added Mass Effects" (Peter Cavanagh, Rodger…

  16. Why Does My Nose Run?

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Why Does My Nose Run? KidsHealth / For Kids / Why Does My Nose Run? ... out the whole story. What's Running? To understand why your nose runs, you need to know what mucus (say: MYOO- ...

  17. Colonization of the deep sea by fishes

    PubMed Central

    Priede, I G; Froese, R

    2013-01-01

    Analysis of maximum depth of occurrence of 11 952 marine fish species shows a global decrease in species number (N) with depth (x; m): log10N = −0·000422x + 3·610000 (r2 = 0·948). The rate of decrease is close to global estimates for change in pelagic and benthic biomass with depth (−0·000430), indicating that species richness of fishes may be limited by food energy availability in the deep sea. The slopes for the Classes Myxini (−0·000488) and Actinopterygii (−0·000413) follow this trend but Chondrichthyes decrease more rapidly (−0·000731) implying deficiency in ability to colonize the deep sea. Maximum depths attained are 2743, 4156 and 8370 m for Myxini, Chondrichthyes and Actinopterygii, respectively. Endemic species occur in abundance at 7–7800 m depth in hadal trenches but appear to be absent from the deepest parts of the oceans, >9000 m deep. There have been six global oceanic anoxic events (OAE) since the origin of the major fish taxa in the Devonian c. 400 million years ago (mya). Colonization of the deep sea has taken place largely since the most recent OAE in the Cretaceous 94 mya when the Atlantic Ocean opened up. Patterns of global oceanic circulation oxygenating the deep ocean basins became established coinciding with a period of teleost diversification and appearance of the Acanthopterygii. Within the Actinopterygii, there is a trend for greater invasion of the deep sea by the lower taxa in accordance with the Andriashev paradigm. Here, 31 deep-sea families of Actinopterygii were identified with mean maximum depth >1000 m and with >10 species. Those with most of their constituent species living shallower than 1000 m are proposed as invasive, with extinctions in the deep being continuously balanced by export of species from shallow seas. Specialized families with most species deeper than 1000 m are termed deep-sea endemics in this study; these appear to persist in the deep by virtue of global distribution enabling

  18. Deep learning of unsteady laminar flow over a cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Sangseung; You, Donghyun

    2017-11-01

    Unsteady flow over a circular cylinder is reconstructed using deep learning with a particular emphasis on elucidating the potential of learning the solution of the Navier-Stokes equations. A deep neural network (DNN) is employed for deep learning, while numerical simulations are conducted to produce training database. Instantaneous and mean flow fields which are reconstructed by deep learning are compared with the simulation results. Fourier transform of flow variables has been conducted to validate the ability of DNN to capture both amplitudes and frequencies of flow motions. Basis decomposition of learned flow is performed to understand the underlying mechanisms of learning flow through DNN. The present study suggests that a deep learning technique can be utilized for reconstruction and, potentially, for prediction of fluid flow instead of solving the Navier-Stokes equations. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).

  19. To run or not to run: a post-meniscectomy qualitative risk analysis model for osteoarthritis when considering a return to recreational running.

    PubMed

    Baumgarten, Bob

    2007-01-01

    The increased likelihood of osteoarthritic change in the tibiofemoral joint following meniscectomy is well documented. This awareness often leads medical practitioners to advise patients previously engaged in recreational running who have undergone meniscectomy to cease all recreational running. This literature review examines the following questions: 1) Is there evidence to demonstrate that runners, post-meniscectomy, incur a great enough risk for early degenerative OA to cease all running? 2) Does the literature yield risk factors for early OA that would guide a physical therapist with regard to advising the post-meniscectomy patient contemplating a return to recreational running? Current literature related to meniscal structure and function, etiology and definition of osteoarthritis, methods for assessing osteoarthritis, relationship between running and osteoarthritis, and relationship between meniscectomy and osteoarthritis are reviewed. This review finds that while the probability for early osteoarthritis in the post-meniscectomy population is substantial, it is a probability and not a certainty. To help guide a physical therapist with regard to advising the patient for a safe return to running following a meniscectomy, a qualitative risk assessment based on identified risk factors for osteoarthritis in both the running and the post-meniscectomy populations is proposed.

  20. The effect of aerosol-derived changes in the warm phase on the properties of deep convective clouds

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven; Dagan, Guy

    2017-04-01

    The aerosol impact on deep convective clouds starts in an increased number of cloud droplets in higher aerosol loading environment. This change drives many others, like enhanced condensational growth, delay in collision-coalescence and others. Since the warm processes serve as the initial and boundary conditions for the mixed and cold-phase processes in deep clouds, it is highly important to understand the aerosol effect on them. The weather research and forecasting model (WRF) with spectral bin microphysics was used to study a deep convective system over the Marshall Islands, during the Kwajalein Experiment (KWAJEX). Three simulations were conducted with aerosol concentrations of 100, 500 and 2000 cm-3, to reflect clean, semipolluted, and polluted conditions. The results of the clean run agreed well with the radar profiles and rain rate observations. The more polluted simulations resulted in larger total cloud mass, larger upper level cloud fraction and rain rates. There was an increased mass both below and above the zero temperature level. It indicates of more efficient growth processes both below and above the zero level. In addition the polluted runs showed an increased upward transport (across the zero level) of liquid water due to both stronger updrafts and larger droplet mobility. In this work we discuss the transport of cloud mass crossing the zero temperature level (in both directions) in order to gain a process level understanding of how aerosol effects on the warm processes affect the macro- and micro-properties of deep convective clouds.

  1. Student Engagement for Effective Teaching and Deep Learning

    ERIC Educational Resources Information Center

    Dunleavy, Jodene; Milton, Penny

    2008-01-01

    Today, all young people need to learn to "use their minds well" through deep engagement in learning that reflects skills, knowledge, and dispositions fit for their present lives as well as the ones they aspire to in the future. More than ever, their health and well being, success in the workplace, ability to construct identities and…

  2. The LHCb Run Control

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Barandela, M. C.; Callot, O.; Duval, P.-Y.; Franek, B.; Frank, M.; Galli, D.; Gaspar, C.; Herwijnen, E. v.; Jacobsson, R.; Jost, B.; Neufeld, N.; Sambade, A.; Schwemmer, R.; Somogyi, P.

    2010-04-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented

  3. runDM: Running couplings of Dark Matter to the Standard Model

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2018-02-01

    runDM calculates the running of the couplings of Dark Matter (DM) to the Standard Model (SM) in simplified models with vector mediators. By specifying the mass of the mediator and the couplings of the mediator to SM fields at high energy, the code can calculate the couplings at low energy, taking into account the mixing of all dimension-6 operators. runDM can also extract the operator coefficients relevant for direct detection, namely low energy couplings to up, down and strange quarks and to protons and neutrons.

  4. Fatigue associated with prolonged graded running.

    PubMed

    Giandolini, Marlene; Vernillo, Gianluca; Samozino, Pierre; Horvais, Nicolas; Edwards, W Brent; Morin, Jean-Benoît; Millet, Guillaume Y

    2016-10-01

    Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed.

  5. Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running.

    PubMed

    de Ruiter, Cornelis J; van Oeveren, Ben; Francke, Agnieta; Zijlstra, Patrick; van Dieen, Jaap H

    2016-01-01

    The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited.

  6. DEEP: Database of Energy Efficiency Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly

  7. Evaluation of bacterial run and tumble motility parameters through trajectory analysis

    NASA Astrophysics Data System (ADS)

    Liang, Xiaomeng; Lu, Nanxi; Chang, Lin-Ching; Nguyen, Thanh H.; Massoudieh, Arash

    2018-04-01

    In this paper, a method for extraction of the behavior parameters of bacterial migration based on the run and tumble conceptual model is described. The methodology is applied to the microscopic images representing the motile movement of flagellated Azotobacter vinelandii. The bacterial cells are considered to change direction during both runs and tumbles as is evident from the movement trajectories. An unsupervised cluster analysis was performed to fractionate each bacterial trajectory into run and tumble segments, and then the distribution of parameters for each mode were extracted by fitting mathematical distributions best representing the data. A Gaussian copula was used to model the autocorrelation in swimming velocity. For both run and tumble modes, Gamma distribution was found to fit the marginal velocity best, and Logistic distribution was found to represent better the deviation angle than other distributions considered. For the transition rate distribution, log-logistic distribution and log-normal distribution, respectively, was found to do a better job than the traditionally agreed exponential distribution. A model was then developed to mimic the motility behavior of bacteria at the presence of flow. The model was applied to evaluate its ability to describe observed patterns of bacterial deposition on surfaces in a micro-model experiment with an approach velocity of 200 μm/s. It was found that the model can qualitatively reproduce the attachment results of the micro-model setting.

  8. Neural network-based run-to-run controller using exposure and resist thickness adjustment

    NASA Astrophysics Data System (ADS)

    Geary, Shane; Barry, Ronan

    2003-06-01

    This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.

  9. Running energetics in the pronghorn antelope.

    PubMed

    Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V

    1991-10-24

    The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.

  10. Deep Borehole Field Test Research Activities at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less

  11. The Relationship between Running Velocity and the Energy Cost of Turning during Running

    PubMed Central

    Hatamoto, Yoichi; Yamada, Yosuke; Sagayama, Hiroyuki; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki

    2014-01-01

    Ball game players frequently perform changes of direction (CODs) while running; however, there has been little research on the physiological impact of CODs. In particular, the effect of running velocity on the physiological and energy demands of CODs while running has not been clearly determined. The purpose of this study was to examine the relationship between running velocity and the energy cost of a 180°COD and to quantify the energy cost of a 180°COD. Nine male university students (aged 18–22 years) participated in the study. Five shuttle trials were performed in which the subjects were required to run at different velocities (3, 4, 5, 6, 7, and 8 km/h). Each trial consisted of four stages with different turn frequencies (13, 18, 24 and 30 per minute), and each stage lasted 3 minutes. Oxygen consumption was measured during the trial. The energy cost of a COD significantly increased with running velocity (except between 7 and 8 km/h, p = 0.110). The relationship between running velocity and the energy cost of a 180°COD is best represented by a quadratic function (y = −0.012+0.066x +0.008x2, [r = 0.994, p = 0.001]), but is also well represented by a linear (y = −0.228+0.152x, [r = 0.991, p<0.001]). These data suggest that even low running velocities have relatively high physiological demands if the COD frequency increases, and that running velocities affect the physiological demands of CODs. These results also showed that the energy expenditure of COD can be evaluated using only two data points. These results may be useful for estimating the energy expenditure of players during a match and designing shuttle exercise training programs. PMID:24497913

  12. Airline Passenger Profiling Based on Fuzzy Deep Machine Learning.

    PubMed

    Zheng, Yu-Jun; Sheng, Wei-Guo; Sun, Xing-Ming; Chen, Sheng-Yong

    2017-12-01

    Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.

  13. Part-based deep representation for product tagging and search

    NASA Astrophysics Data System (ADS)

    Chen, Keqing

    2017-06-01

    Despite previous studies, tagging and indexing the product images remain challenging due to the large inner-class variation of the products. In the traditional methods, the quantized hand-crafted features such as SIFTs are extracted as the representation of the product images, which are not discriminative enough to handle the inner-class variation. For discriminative image representation, this paper firstly presents a novel deep convolutional neural networks (DCNNs) architect true pre-trained on a large-scale general image dataset. Compared to the traditional features, our DCNNs representation is of more discriminative power with fewer dimensions. Moreover, we incorporate the part-based model into the framework to overcome the negative effect of bad alignment and cluttered background and hence the descriptive ability of the deep representation is further enhanced. Finally, we collect and contribute a well-labeled shoe image database, i.e., the TBShoes, on which we apply the part-based deep representation for product image tagging and search, respectively. The experimental results highlight the advantages of the proposed part-based deep representation.

  14. SLF Run & Walk

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center employees and guests are off to a running start at the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  15. Effects of a 30-min running performed daily after downhill running on recovery of muscle function and running economy.

    PubMed

    Chen, Trevor C; Nosaka, Kazunori; Wu, Chia-Ching

    2008-06-01

    This study investigated the effects of a 30-min level running performed daily for 6 days after downhill running (DHR) on indicators of muscle damage and running economy (RE). Fifty men were placed into five groups - control (CON), 40%, 50%, 60% and 70% (10 subjects per group) - by matching the baseline maximal oxygen consumption (V O(2max)) among the groups. Subjects in the 40%, 50%, 60% and 70% groups had a treadmill (0 degrees ) run for 30min at 40%, 50%, 60% and 70% of the pre-determined V O(2max), respectively, at 1-6 days after a bout of 30-min DHR at -15% (-8.5 degrees ). Maximal voluntary isometric strength of the knee extensors, muscle soreness, plasma creatine kinase and lactate dehydrogenase activities were measured before, immediately after and every day for 7 days after DHR. RE was assessed by oxygen consumption, minute ventilation, respiratory exchange ratio, lactate, heart rate and rating of perceived exertion during a 5-min level running at 85% V O(2max) performed before and at 2, 5 and 7 days after DHR. All muscle damage markers changed significantly (P<0.05) after DHR without significant differences among the groups. The RE parameters showed a significant decrease in RE for 7 days after DHR, but no significant differences in the changes were evident among the groups. These results suggest that the daily running performed after DHR did not have any beneficial or adverse effects on recovery of muscle damage and RE regardless of the intensity.

  16. Factors affecting running economy in trained distance runners.

    PubMed

    Saunders, Philo U; Pyne, David B; Telford, Richard D; Hawley, John A

    2004-01-01

    Running economy (RE) is typically defined as the energy demand for a given velocity of submaximal running, and is determined by measuring the steady-state consumption of oxygen (VO2) and the respiratory exchange ratio. Taking body mass (BM) into consideration, runners with good RE use less energy and therefore less oxygen than runners with poor RE at the same velocity. There is a strong association between RE and distance running performance, with RE being a better predictor of performance than maximal oxygen uptake (VO2max) in elite runners who have a similar VO2max). RE is traditionally measured by running on a treadmill in standard laboratory conditions, and, although this is not the same as overground running, it gives a good indication of how economical a runner is and how RE changes over time. In order to determine whether changes in RE are real or not, careful standardisation of footwear, time of test and nutritional status are required to limit typical error of measurement. Under controlled conditions, RE is a stable test capable of detecting relatively small changes elicited by training or other interventions. When tracking RE between or within groups it is important to account for BM. As VO2 during submaximal exercise does not, in general, increase linearly with BM, reporting RE with respect to the 0.75 power of BM has been recommended. A number of physiological and biomechanical factors appear to influence RE in highly trained or elite runners. These include metabolic adaptations within the muscle such as increased mitochondria and oxidative enzymes, the ability of the muscles to store and release elastic energy by increasing the stiffness of the muscles, and more efficient mechanics leading to less energy wasted on braking forces and excessive vertical oscillation. Interventions to improve RE are constantly sought after by athletes, coaches and sport scientists. Two interventions that have received recent widespread attention are strength training and

  17. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.

    PubMed

    Dadashzadeh, Behnam; Esmaeili, Mohammad; Macnab, Chris

    2017-01-01

    This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles.

  18. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model

    PubMed Central

    Esmaeili, Mohammad; Macnab, Chris

    2017-01-01

    This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles. PMID:28118401

  19. WHOI and SIO (I): Next Steps toward Multi-Institution Archiving of Shipboard and Deep Submergence Vehicle Data

    NASA Astrophysics Data System (ADS)

    Detrick, R. S.; Clark, D.; Gaylord, A.; Goldsmith, R.; Helly, J.; Lemmond, P.; Lerner, S.; Maffei, A.; Miller, S. P.; Norton, C.; Walden, B.

    2005-12-01

    The Scripps Institution of Oceanography (SIO) and the Woods Hole Oceanographic Institution (WHOI) have joined forces with the San Diego Supercomputer Center to build a testbed for multi-institutional archiving of shipboard and deep submergence vehicle data. Support has been provided by the Digital Archiving and Preservation program funded by NSF/CISE and the Library of Congress. In addition to the more than 92,000 objects stored in the SIOExplorer Digital Library, the testbed will provide access to data, photographs, video images and documents from WHOI ships, Alvin submersible and Jason ROV dives, and deep-towed vehicle surveys. An interactive digital library interface will allow combinations of distributed collections to be browsed, metadata inspected, and objects displayed or selected for download. The digital library architecture, and the search and display tools of the SIOExplorer project, are being combined with WHOI tools, such as the Alvin Framegrabber and the Jason Virtual Control Van, that have been designed using WHOI's GeoBrowser to handle the vast volumes of digital video and camera data generated by Alvin, Jason and other deep submergence vehicles. Notions of scalability will be tested, as data volumes range from 3 CDs per cruise to 200 DVDs per cruise. Much of the scalability of this proposal comes from an ability to attach digital library data and metadata acquisition processes to diverse sensor systems. We are able to run an entire digital library from a laptop computer as well as from supercomputer-center-size resources. It can be used, in the field, laboratory or classroom, covering data from acquisition-to-archive using a single coherent methodology. The design is an open architecture, supporting applications through well-defined external interfaces maintained as an open-source effort for community inclusion and enhancement.

  20. Financial Performance of Health Insurers: State-Run Versus Federal-Run Exchanges.

    PubMed

    Hall, Mark A; McCue, Michael J; Palazzolo, Jennifer R

    2018-06-01

    Many insurers incurred financial losses in individual markets for health insurance during 2014, the first year of Affordable Care Act mandated changes. This analysis looks at key financial ratios of insurers to compare profitability in 2014 and 2013, identify factors driving financial performance, and contrast the financial performance of health insurers operating in state-run exchanges versus the federal exchange. Overall, the median loss of sampled insurers was -3.9%, no greater than their loss in 2013. Reduced administrative costs offset increases in medical losses. Insurers performed better in states with state-run exchanges than insurers in states using the federal exchange in 2014. Medical loss ratios are the underlying driver more than administrative costs in the difference in performance between states with federal versus state-run exchanges. Policy makers looking to improve the financial performance of the individual market should focus on features that differentiate the markets associated with state-run versus federal exchanges.

  1. Barefoot running: does it prevent injuries?

    PubMed

    Murphy, Kelly; Curry, Emily J; Matzkin, Elizabeth G

    2013-11-01

    Endurance running has evolved over the course of millions of years and it is now one of the most popular sports today. However, the risk of stress injury in distance runners is high because of the repetitive ground impact forces exerted. These injuries are not only detrimental to the runner, but also place a burden on the medical community. Preventative measures are essential to decrease the risk of injury within the sport. Common running injuries include patellofemoral pain syndrome, tibial stress fractures, plantar fasciitis, and Achilles tendonitis. Barefoot running, as opposed to shod running (with shoes), has recently received significant attention in both the media and the market place for the potential to promote the healing process, increase performance, and decrease injury rates. However, there is controversy over the use of barefoot running to decrease the overall risk of injury secondary to individual differences in lower extremity alignment, gait patterns, and running biomechanics. While barefoot running may benefit certain types of individuals, differences in running stance and individual biomechanics may actually increase injury risk when transitioning to barefoot running. The purpose of this article is to review the currently available clinical evidence on barefoot running and its effectiveness for preventing injury in the runner. Based on a review of current literature, barefoot running is not a substantiated preventative running measure to reduce injury rates in runners. However, barefoot running utility should be assessed on an athlete-specific basis to determine whether barefoot running will be beneficial.

  2. EnergyPlus Run Time Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-09-20

    EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences,more » identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.« less

  3. Deep water running and general practice in primary care for non-specific low back pain versus general practice alone: randomized controlled trial.

    PubMed

    Cuesta-Vargas, A I; Adams, N; Salazar, J A; Belles, A; Hazañas, S; Arroyo-Morales, M

    2012-07-01

    There is equivocal evidence regarding the benefits of aquatic aerobic exercise for non-specific chronic low back pain (NSCLBP) in addition to standard care in general practice consisting of education and advice. The purpose of this study was to compare the addition of deep water running (DWR) to standard general practice (GP) on NSCLBP versus GP care alone on pain, physical and mental health and disability. In this single-blind randomised controlled trial, 58 subjects with NSCLBP were recruited from primary care. The control group received GP care consisting of a physician's consultation and educational booklet only. The experimental group received additional 30-min sessions of DWR three times a week for 15 weeks at the individualized aerobic threshold. Measurements were made pre- and post-intervention and at 1-year follow-up. Both groups showed improvement. The difference between treatment effects at longest follow-up of 1 year was -26.0 (-40.9 to -11.1) mm on the VAS (p < 0.05), -2.5 (-5.7 to -0.2) points in RMQ for disability (p < 0.05), 3.3 (10.0 to 24.7) points on physical health in the physical summary component of the Spanish Short Form 12 (SF-12; p < 0.05) and 5.8 (8.6 to 34.7) points on the mental summary component of the SF-12 (p < 0.05), in favour of the DWR group. For patients with NSCLBP, the addition of DWR to GP was more effective in reducing pain and disability than standard GP alone, suggesting the effectiveness and acceptability of this approach with this group of patients.

  4. Landcover Classification Using Deep Fully Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, X.; Zhou, S.; Tang, J.

    2017-12-01

    Land cover classification has always been an essential application in remote sensing. Certain image features are needed for land cover classification whether it is based on pixel or object-based methods. Different from other machine learning methods, deep learning model not only extracts useful information from multiple bands/attributes, but also learns spatial characteristics. In recent years, deep learning methods have been developed rapidly and widely applied in image recognition, semantic understanding, and other application domains. However, there are limited studies applying deep learning methods in land cover classification. In this research, we used fully convolutional networks (FCN) as the deep learning model to classify land covers. The National Land Cover Database (NLCD) within the state of Kansas was used as training dataset and Landsat images were classified using the trained FCN model. We also applied an image segmentation method to improve the original results from the FCN model. In addition, the pros and cons between deep learning and several machine learning methods were compared and explored. Our research indicates: (1) FCN is an effective classification model with an overall accuracy of 75%; (2) image segmentation improves the classification results with better match of spatial patterns; (3) FCN has an excellent ability of learning which can attains higher accuracy and better spatial patterns compared with several machine learning methods.

  5. The Experiences of State-Run Insurance Marketplaces That Use HealthCare.gov.

    PubMed

    Giovannelli, Justin; Lucia, Kevin

    2015-09-01

    States have flexibility in implementing the Affordable Care Act's health insurance marketplaces and may choose to become more (or less) involved in marketplace operations over time. Interest in new implementation approaches has increased as states seek to ensure the long-term financial stability of their exchanges and exercise local control over marketplace oversight. This brief explores the experiences of four states--Idaho, Nevada, New Mexico, and Oregon--that established their own exchanges but have operated them with support from the federal HealthCare.gov eligibility and enrollment platform. Drawing on discussions with policymakers, insurers, and brokers, we examine how these supported state-run marketplaces perform their key functions. We find that this model may offer states the ability to maximize their influence over their insurance markets, while limiting the financial risk of running an exchange.

  6. Functional Movement Screen for Predicting Running Injuries in 18- to 24-Year-Old Competitive Male Runners.

    PubMed

    Hotta, Takayuki; Nishiguchi, Shu; Fukutani, Naoto; Tashiro, Yuto; Adachi, Daiki; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Aoyama, Tomoki

    2015-10-01

    The purpose of this study was to investigate whether the functional movement screen (FMS) could predict running injuries in competitive runners. Eighty-four competitive male runners (average age = 20.0 ± 1.1 years) participated. Each subject performed the FMS, which consisted of 7 movement tests (each score range: 0-3, total score range: 0-21), during the preseason. The incidence of running injuries (time lost because of injury ≤ 4 weeks) was investigated through a follow-up survey during the 6-month season. Mann-Whitney U-tests were used to investigate which movement tests were significantly associated with running injuries. The receiver-operator characteristic (ROC) analysis was used to determine the cutoff. The mean FMS composite score was 14.1 ± 2.3. The ROC analysis determined the cutoff at 14/15 (sensitivity = 0.73, specificity = 0.54), suggesting that the composite score had a low predictability for running injuries. However, the total scores (0-6) from the deep squat (DS) and active straight leg raise (ASLR) tests (DS and ASLR), which were significant with the U-test, had relatively high predictability at the cutoff of 3/4 (sensitivity = 0.73, specificity = 0.74). Furthermore, the multivariate logistic regression analysis revealed that the DS and ASLR scores of ≤3 significantly influenced the incidence of running injuries after adjusting for subjects' characteristics (odds ratio = 9.7, 95% confidence interval = 2.1-44.4). Thus, the current study identified the DS and ASLR score as a more effective method than the composite score to screen the risk of running injuries in competitive male runners.

  7. Do the effects of working memory training depend on baseline ability level?

    PubMed

    Foster, Jeffrey L; Harrison, Tyler L; Hicks, Kenny L; Draheim, Christopher; Redick, Thomas S; Engle, Randall W

    2017-11-01

    There is a debate about the ability to improve cognitive abilities such as fluid intelligence through training on tasks of working memory capacity. The question addressed in the research presented here is who benefits the most from training: people with low cognitive ability or people with high cognitive ability? Subjects with high and low working memory capacity completed a 23-session study that included 3 assessment sessions, and 20 sessions of training on 1 of 3 training regiments: complex span training, running span training, or an active-control task. Consistent with other research, the authors found that training on 1 executive function did not transfer to ability on a different cognitive ability. High working memory subjects showed the largest gains on the training tasks themselves relative to the low working memory subjects-a finding that suggests high spans benefit more than low spans from training with executive function tasks. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. A rapid estimation of near field tsunami run-up

    USGS Publications Warehouse

    Riqueime, Sebastian; Fuentes, Mauricio; Hayes, Gavin; Campos, Jamie

    2015-01-01

    Many efforts have been made to quickly estimate the maximum run-up height of tsunamis associated with large earthquakes. This is a difficult task, because of the time it takes to construct a tsunami model using real time data from the source. It is possible to construct a database of potential seismic sources and their corresponding tsunami a priori.However, such models are generally based on uniform slip distributions and thus oversimplify the knowledge of the earthquake source. Here, we show how to predict tsunami run-up from any seismic source model using an analytic solution, that was specifically designed for subduction zones with a well defined geometry, i.e., Chile, Japan, Nicaragua, Alaska. The main idea of this work is to provide a tool for emergency response, trading off accuracy for speed. The solutions we present for large earthquakes appear promising. Here, run-up models are computed for: The 1992 Mw 7.7 Nicaragua Earthquake, the 2001 Mw 8.4 Perú Earthquake, the 2003Mw 8.3 Hokkaido Earthquake, the 2007 Mw 8.1 Perú Earthquake, the 2010 Mw 8.8 Maule Earthquake, the 2011 Mw 9.0 Tohoku Earthquake and the recent 2014 Mw 8.2 Iquique Earthquake. The maximum run-up estimations are consistent with measurements made inland after each event, with a peak of 9 m for Nicaragua, 8 m for Perú (2001), 32 m for Maule, 41 m for Tohoku, and 4.1 m for Iquique. Considering recent advances made in the analysis of real time GPS data and the ability to rapidly resolve the finiteness of a large earthquake close to existing GPS networks, it will be possible in the near future to perform these calculations within the first minutes after the occurrence of similar events. Thus, such calculations will provide faster run-up information than is available from existing uniform-slip seismic source databases or past events of pre-modeled seismic sources.

  9. Cortisol and Alpha-amylase changes during an Ultra-Running Event.

    PubMed

    Deneen, Whitney P; Jones, Alexis B

    2017-01-01

    Elevated stress hormone concentrations can positively affect an athlete's overall performance during a competition, and in many cases, are necessary to be able to perform exercise. During extreme exercise, the body's ability to utilize energy efficiently can affect an athlete's performance. Elevated hormonal concentrations can have many benefits in regards to an athlete's overall performance during a competition. The purpose of this study was to examine the effects of long distance running, such as seen during an ultra-running event (distances beyond 26.2 miles), on the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis production of cortisol (CORT) as compared to autonomic nervous system production of salivary alpha-amylase (AA). Despite the well-known effects of exercise on CORT and AA response, it is unclear what effect running beyond the marathon distance has on these levels. This study investigates what effect long duration cardio exercise, such as running up to 100K (kilometers) distance, has on the neuroendocrine system, by means of saliva samples provided by participants signed up for an ultra-marathon event. The findings of this study show that the autonomic nervous system may present a response signal during physical stress that is independent of the HPA axis response. At distances beyond the marathon length, the production of CORT and AA was found to be suppressed for athletes, which could help them in their continued performance. Furthermore, this study recognizes a difference in the overall male and female response to stress in regards to CORT and AA production.

  10. Molecular dynamics of acetamide based ionic deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Srinivasan, H.; Dubey, P. S.; Sharma, V. K.; Biswas, R.; Mitra, S.; Mukhopadhyay, R.

    2018-04-01

    Deep eutectic solvents are multi-component mixtures that have freezing point lower than their individual components. Mixture of acetamide+ lithium nitrate in the molar ratio 78:22 and acetamide+ lithium perchlorate in the molar ratio 81:19 are found to form deep eutectic solvents with melting point lower than the room temperature. It is known that the depression in freezing point is due to the hydrogen bond breaking ability of anions in the system. Quasielastic neutron scattering experiments on these systems were carried out to study the dynamics of acetamide molecules which may be influenced by this hydrogen bond breaking phenomena. The motion of acetamide molecules is modeled using jump diffusion mechanism to demonstrate continuous breaking and reforming hydrogen bonds in the solvent. Using the jump diffusion model, it is inferred that the jump lengths of acetamide molecules are better approximated by a Gaussian distribution. The shorter residence time of acetamide in presence of perchlorate ions suggest that the perchlorate ions have a higher hydrogen bond breaking ability compared to nitrate ions.

  11. Running: Improving Form to Reduce Injuries.

    PubMed

    2015-08-01

    Running is often perceived as a good option for "getting into shape," with little thought given to the form, or mechanics, of running. However, as many as 79% of all runners will sustain a running-related injury during any given year. If you are a runner-casual or serious-you should be aware that poor running mechanics may contribute to these injuries. A study published in the August 2015 issue of JOSPT reviewed the existing research to determine whether running mechanics could be improved, which could be important in treating running-related injuries and helping injured runners return to pain-free running.

  12. Anatomic observation of the running space of the suprascapular nerve at the suprascapular notch in the same direction as the nerve.

    PubMed

    Tasaki, Atsushi; Nimura, Akimoto; Mochizuki, Tomoyuki; Yamaguchi, Kumiko; Kato, Ryuichi; Sugaya, Hiroyuki; Akita, Keiichi

    2015-09-01

    The configuration of suprascapular notch was previously analysed from the anteroposterior viewing. However, the approach direction of the suprascapular nerve (SSN) to the inlet of the suprascapular notch is consistently craniocaudal and mediolateral. We propose a new method to observe the suprascapular notch according to the running course of the SSN. We reviewed the anatomic characteristics of the suprascapular notch in relation to the nerve. In 30 formalin-fixed cadaveric shoulders, the morphology of the suprascapular notch and the attachments of the superior transverse scapular ligament (STSL) were examined from both the anteroposterior and the nerve approach direction. The dimensions of the opening of the SSN passage were measured. By observing from the nerve approach direction, the inlet of the suprascapular notch was recognized to be a space-bordered by the medial wall of the coracoid process, the deep fascia of subscapularis, and the STSL. The STSL formed a sheet-like structure, which ran parallel to the nerve and also to the deep fascia of subscapularis. The attachment of the ligament to the coracoid process was located at the posteromedial corner rather than the medial side. Based on the present study, the space between the STSL and deep fascia of the subscapularis formed the space for the nerve to run through. As a clinical implication, this new method to assess the suprascapular notch in the nerve approach direction might develop the imaging techniques for evaluation of SSN entrapment.

  13. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic

    USGS Publications Warehouse

    Burgess, W.G.; Hoque, M.A.; Michael, H.A.; Voss, C.I.; Breit, G.N.; Ahmed, K.M.

    2010-01-01

    Shallow groundwater, the primary water source in the Bengal Basin, contains up to 100 times the World Health Organization (WHO) drinking-water guideline of 10g l 1 arsenic (As), threatening the health of 70 million people. Groundwater from a depth greater than 150m, which almost uniformly meets the WHO guideline, has become the preferred alternative source. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Stratification of flow separates deep groundwater from shallow sources of As in some areas. Oxidized sediments also protect deep groundwater through the ability of ferric oxyhydroxides to adsorb As. Basin-scale groundwater flow modelling suggests that, over large regions, deep hand-pumped wells for domestic supply may be secure against As invasion for hundreds of years. By contrast, widespread deep irrigation pumping might effectively eliminate deep groundwater as an As-free resource within decades. Finer-scale models, incorporating spatial heterogeneity, are needed to investigate the security of deep municipal abstraction at specific urban locations. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  14. Progression in Running Intensity or Running Volume and the Development of Specific Injuries in Recreational Runners: Run Clever, a Randomized Trial Using Competing Risks.

    PubMed

    Ramskov, Daniel; Rasmussen, Sten; Sørensen, Henrik; Parner, Erik Thorlund; Lind, Martin; Nielsen, Rasmus

    2018-06-12

    Study Design Randomized clinical trial, etiology. Background Training intensity and volume have been proposed to be associated with specific running-related injuries. If such an association exists, secondary preventive measures could be initiated by clinicians based on symptoms of a specific injury diagnosis. Objectives To test the following hypotheses: (i) A running schedule focusing on intensity will increase the risk of sustaining Achilles tendinopathy, gastrocnemius injuries and plantar fasciitis compared with hypothesized volume-related injuries. (ii) A running schedule focusing on running volume will increase the risk of sustaining patellofemoral pain syndrome, iliotibial band syndrome and patellar tendinopathy compared with hypothesized intensity-related injuries. Methods Healthy recreational runners were included in a 24-week follow-up, divided into 8-week preconditioning and 16-week specific focus-training. Participants were randomized to one of two running schedules: Schedule Intensity(Sch-I) or Schedule Volume(Sch-V). Sch-I progressed the amount of high intensity running (≥88% VO2max) each week. Sch-V progressed total weekly running volume. Global positioning system watch or smartphone collected data on running. Running-related injuries were diagnosed based on a clinical examination. Estimates were risk difference (RD) and 95%CI. Results Of 447 runners, a total of 80 sustained an injury (Sch-I n=36; Sch-V n=44). Risk of intensity injuries in Sch-I were: RD 2-weeks =-0.8%[-5.0;3.4]; RD 4-weeks =-0.8%[-6.7;5.1]; RD 8-weeks =-2.0%[-9.2;5.1]; RD 16-weeks =-5.1%[-16.5;6.3]. Risk of volume injuries in Sch-V were: RD 2-weeks =-0.9%[-5.0;3.2]; RD 4-weeks =-2.0%[-7.5;3.5]; RD 8-weeks =-3.2%[-9.1;2.7]; RD 16-weeks =-3.4%[-13.2;6.2]. Conclusion No difference in risk of hypothesized intensity and volume specific running-related injuries exist between running schedules focused on progression in either running intensity or volume. Level of Evidence Etiology, level 1

  15. Wheel running in the wild.

    PubMed

    Meijer, Johanna H; Robbers, Yuri

    2014-07-07

    The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

  16. Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.

    PubMed

    Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J

    2017-09-01

    A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.

  17. Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.

    2018-02-01

    The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.

  18. A Rubric for Assessing a Student's Ability to Use the Light Microscope

    ERIC Educational Resources Information Center

    Fitch, Greg K.

    2007-01-01

    All teachers do assessments. Biology teachers, by grading exams, quizzes, papers, and lab reports, assess mostly "knowledge." An important part of being a modern biologist, however, is the ability to perform certain technical or manual skills (known in the trade as "techniques") such as running gels, pipetting, recording from excitable cells with…

  19. Deep focus earthquakes in the laboratory

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Brunet, Fabrice; Hilairet, Nadège; Gasc, Julien; Wang, Yanbin; Green, Harry W., II

    2014-05-01

    While the existence of deep earthquakes have been known since the 1920's, the essential mechanical process responsible for them is still poorly understood and remained one of the outstanding unsolved problems of geophysics and rock mechanics. Indeed, deep focus earthquake occur in an environment fundamentally different from that of shallow (<100 km) earthquakes. As pressure and temperature increase with depth however, intra-crystalline plasticity starts to dominate the deformation regime so that rocks yield by plastic flow rather than by brittle fracturing. Olivine phase transitions have provided an attractive alternative mechanism for deep focus earthquakes. Indeed, the Earth mantle transition zone (410-700km) is the locus of the two successive polymorphic transitions of olivine. Such scenario, however, runs into the conceptual barrier of initiating failure in a pressure (P) and temperature (T) regime where deviatoric stress relaxation is expected to be achieved through plastic flow. Here, we performed laboratory deformation experiments on Germanium olivine (Mg2GeO4) under differential stress at high pressure (P=2-5GPa) and within a narrow temperature range (T=1000-1250K). We find that fractures nucleate at the onset of the olivine to spinel transition. These fractures propagate dynamically (i.e. at a non-negligible fraction of the shear wave velocity) so that intense acoustic emissions are generated. Similar to deep-focus earthquakes, these acoustic emissions arise from pure shear sources, and obey the Gutenberg-Richter law without following Omori's law. Microstructural observations prove that dynamic weakening likely involves superplasticity of the nanocrystalline spinel reaction product at seismic strain rates. Although in our experiments the absolute stress value remains high compared to stresses expected within the cold core of subducted slabs, the observed stress drops are broadly consistent with those calculated for deep earthquakes. Constant differential

  20. Enriching mission planning approach with state transition graph heuristics for deep space exploration

    NASA Astrophysics Data System (ADS)

    Jin, Hao; Xu, Rui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying

    2017-10-01

    As to support the mission of Mars exploration in China, automated mission planning is required to enhance security and robustness of deep space probe. Deep space mission planning requires modeling of complex operations constraints and focus on the temporal state transitions of involved subsystems. Also, state transitions are ubiquitous in physical systems, but have been elusive for knowledge description. We introduce a modeling approach to cope with these difficulties that takes state transitions into consideration. The key technique we build on is the notion of extended states and state transition graphs. Furthermore, a heuristics that based on state transition graphs is proposed to avoid redundant work. Finally, we run comprehensive experiments on selected domains and our techniques present an excellent performance.

  1. Western diet increases wheel running in mice selectively bred for high voluntary wheel running.

    PubMed

    Meek, T H; Eisenmann, J C; Garland, T

    2010-06-01

    Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.

  2. Distribution of Quercus agrifolia mycorrhizae deep within weathered bedrock: a potential mechanism for transport of stored water

    Treesearch

    M. Bornyasz; R. Graham; M. Allen

    2002-01-01

    In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...

  3. Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.

    PubMed

    Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2017-10-01

    While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.

  4. Measuring Deep, Reflective Comprehension and Learning Strategies: Challenges and Successes

    ERIC Educational Resources Information Center

    McNamara, Danielle S.

    2011-01-01

    There is a heightened understanding that metacognition and strategy use are crucial to deep, long-lasting comprehension and learning, but their assessment is challenging. First, students' judgments of what their abilities and habits and measurements of their performance often do not match. Second, students tend to learn and comprehend differently…

  5. Running Memory for Clinical Handoffs: A Look at Active and Passive Processing.

    PubMed

    Anderson-Montoya, Brittany L; Scerbo, Mark W; Ramirez, Dana E; Hubbard, Thomas W

    2017-05-01

    The goal of the present study was to examine the effects of domain-relevant expertise on running memory and the ability to process handoffs of information. In addition, the role of active or passive processing was examined. Currently, there is little research that addresses how individuals with different levels of expertise process information in running memory when the information is needed to perform a real-world task. Three groups of participants differing in their level of clinical expertise (novice, intermediate, and expert) performed an abstract running memory span task and two tasks resembling real-world activities, a clinical handoff task and an air traffic control (ATC) handoff task. For all tasks, list length and the amount of information to be recalled were manipulated. Regarding processing strategy, all participants used passive processing for the running memory span and ATC tasks. The novices also used passive processing for the clinical task. The experts, however, appeared to use more active processing, and the intermediates fell in between. Overall, the results indicated that individuals with clinical expertise and a developed mental model rely more on active processing of incoming information for the clinical task while individuals with little or no knowledge rely on passive processing. The results have implications about how training should be developed to aid less experienced personnel identify what information should be included in a handoff and what should not.

  6. Voluntary Wheel Running in Mice

    PubMed Central

    Goh, Jorming; Ladiges, Warren

    2015-01-01

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. The basic protocol consists of allowing mice to run freely on the open surface of a slanted plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured to a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. PMID:26629772

  7. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    NASA Astrophysics Data System (ADS)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers

  8. The Effects of Backwards Running Training on Forward Running Economy in Trained Males.

    PubMed

    Ordway, Jason D; Laubach, Lloyd L; Vanderburgh, Paul M; Jackson, Kurt J

    2016-03-01

    Backwards running (BR) results in greater cardiopulmonary response and muscle activity compared with forward running (FR). BR has traditionally been used in rehabilitation for disorders such as stroke and lower leg extremity injuries, as well as in short bursts during various athletic events. The aim of this study was to measure the effects of sustained backwards running training on forward running economy in trained male athletes. Eight highly trained, male runners (26.13 ± 6.11 years, 174.7 ± 6.4 cm, 68.4 ± 9.24 kg, 8.61 ± 3.21% body fat, 71.40 ± 7.31 ml·kg(-1)·min(-1)) trained with BR while harnessed on a treadmill at 161 m·min(-1) for 5 weeks following a 5-week BR run-in period at a lower speed (134 m·min(-1)). Subjects were tested at baseline, postfamiliarized, and post-BR training for body composition, a ramped VO2max test, and an economy test designed for trained male runners. Subjects improved forward running economy by 2.54% (1.19 ± 1.26 ml·kg(-1)·min(-1), p = 0.032) at 215 m·min(-1). VO2max, body mass, lean mass, fat mass, and % body fat did not change (p > 0.05). Five weeks of BR training improved FR economy in healthy, trained male runners without altering VO2max or body composition. The improvements observed in this study could be a beneficial form of training to an already economical population to improve running economy.

  9. Interval Running Training Improves Cognitive Flexibility and Aerobic Power of Young Healthy Adults.

    PubMed

    Venckunas, Tomas; Snieckus, Audrius; Trinkunas, Eugenijus; Baranauskiene, Neringa; Solianik, Rima; Juodsnukis, Antanas; Streckis, Vytautas; Kamandulis, Sigitas

    2016-08-01

    Venckunas, T, Snieckus, A, Trinkunas, E, Baranauskiene, N, Solianik, R, Juodsnukis, A, Streckis, V, and Kamandulis, S. Interval running training improves cognitive flexibility and aerobic power of young healthy adults. J Strength Cond Res 30(8): 2114-2121, 2016-The benefits of regular physical exercise may well extend beyond the reduction of chronic diseases risk and augmentation of working capacity, to many other aspects of human well-being, including improved cognitive functioning. Although the effects of moderate intensity continuous training on cognitive performance are relatively well studied, the benefits of interval training have not been investigated in this respect so far. The aim of the current study was to assess whether 7 weeks of interval running training is effective at improving both aerobic fitness and cognitive performance. For this purpose, 8 young dinghy sailors (6 boys and 2 girls) completed the interval running program with 200 m and 2,000 m running performance, cycling maximal oxygen uptake, and cognitive function was measured before and after the intervention. The control group consisted of healthy age-matched subjects (8 boys and 2 girls) who continued their active lifestyle and were tested in the same way as the experimental group, but did not complete any regular training. In the experimental group, 200 m and 2,000 m running performance and cycling maximal oxygen uptake increased together with improved results on cognitive flexibility tasks. No changes in the results of short-term and working memory tasks were observed in the experimental group, and no changes in any of the measured indices were evident in the controls. In conclusion, 7 weeks of interval running training improved running performance and cycling aerobic power, and were sufficient to improve the ability to adjust behavior to changing demands in young active individuals.

  10. Observation of deep inelastic scattering at low x

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Bushhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; Landon, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Áçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1993-01-01

    Measurements of the scattered electron energy spectrum and the differential cross sections dσ/d log(x) and dσ/dQ2 for inclusive neutral current deep inelastic electron-proton scattering are presented. The data were obtained with the H1 detector at HERA during its first running period in which 26.7 GeV electrons collided with 820 GeV protons. The data correspond to an integrated luminosity of 1.3 nb-1 and allow the first studies of the structure of the proton at values of x down to 10-4 for Q2 > 5 GeV2. Supported by the Swedish Natural Science Research Council.

  11. Repeatability of a running heat tolerance test.

    PubMed

    Mee, Jessica A; Doust, Jo; Maxwell, Neil S

    2015-01-01

    At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h(-1), 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82 ± 0.47 °C, RHTT2: 38.86 ± 0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM) = 0.13 °C), peak skin temperature (RHTT1: 38.12 ± 0.45, RHTT2: 38.11 ± 0.45 °C, ICC = 0.79, TEM = 0.30 °C), peak heart rate (RHTT1: 182 ± 15 beats min(-1), RHTT2: 183 ± 15 beats min(-1), ICC = 0.99, TEM = 2 beats min(-1)), nor sweat rate (1721 ± 675 g h(-1), 1716 ± 745 g h(-1), ICC = 0.95, TEM = 162 g h(-1)) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Can parallel use of different running shoes decrease running-related injury risk?

    PubMed

    Malisoux, L; Ramesh, J; Mann, R; Seil, R; Urhausen, A; Theisen, D

    2015-02-01

    The aim of this study was to determine if runners who use concomitantly different pairs of running shoes are at a lower risk of running-related injury (RRI). Recreational runners (n = 264) participated in this 22-week prospective follow-up and reported all information about their running session characteristics, other sport participation and injuries on a dedicated Internet platform. A RRI was defined as a physical pain or complaint located at the lower limbs or lower back region, sustained during or as a result of running practice and impeding planned running activity for at least 1 day. One-third of the participants (n = 87) experienced at least one RRI during the observation period. The adjusted Cox regression analysis revealed that the parallel use of more than one pair of running shoes was a protective factor [hazard ratio (HR) = 0.614; 95% confidence interval (CI) = 0.389-0.969], while previous injury was a risk factor (HR = 1.722; 95%CI = 1.114-2.661). Additionally, increased mean session distance (km; HR = 0.795; 95%CI = 0.725-0.872) and increased weekly volume of other sports (h/week; HR = 0.848; 95%CI = 0.732-0.982) were associated with lower RRI risk. Multiple shoe use and participation in other sports are strategies potentially leading to a variation of the load applied to the musculoskeletal system. They could be advised to recreational runners to prevent RRI. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The efficacy of downhill running as a method to enhance running economy in trained distance runners.

    PubMed

    Shaw, Andrew J; Ingham, Stephen A; Folland, Jonathan P

    2018-06-01

    Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (-5% gradient; n = 10) or flat (n = 9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (E C ) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (⩒O 2max). No changes in E C were observed during flat running following downhill (1.22 ± 0.09 vs 1.20 ± 0.07 Kcal kg -1  km -1 , P = .41) or flat run training (1.21 ± 0.13 vs 1.19 ± 0.12 Kcal kg -1  km -1 ). Moreover, no changes in E C during downhill running were observed in either condition (P > .23). vLTP increased following both downhill (16.5 ± 0.7 vs 16.9 ± 0.6 km h -1 , P = .05) and flat run training (16.9 ± 0.7 vs 17.2 ± 1.0 km h -1 , P = .05), though no differences in responses were observed between groups (P = .53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.

  14. Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion

    PubMed Central

    Reilly, Stephen M; McElroy, Eric J; Andrew Odum, R; Hornyak, Valerie A

    2006-01-01

    The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed. PMID:16777753

  15. The influence of surface on the running velocities of elite and amateur orienteer athletes.

    PubMed

    Hébert-Losier, K; Jensen, K; Mourot, L; Holmberg, H-C

    2014-12-01

    We compared the reduction in running velocities from road to off-road terrain in eight elite and eight amateur male orienteer athletes to investigate whether this factor differentiates elite from amateur athletes. On two separate days, each subject ran three 2-km time trials and three 20-m sprints "all-out" on a road, on a path, and in a forest. On a third day, the running economy and maximal aerobic power of individuals were assessed on a treadmill. The elite orienteer ran faster than the amateur on all three surfaces and at both distances, in line with their better running economy and aerobic power. In the forest, the elites ran at a slightly higher percentage of their 2-km (∼3%) and 20-m (∼4%) road velocities. Although these differences did not exhibit traditional statistical significance, magnitude-based inferences suggested likely meaningful differences, particularly during 20-m sprinting. Of course, cognitive, mental, and physical attributes other than the ability to run on different surfaces are required for excellence in orienteering (e.g., a high aerobic power). However, we suggest that athlete-specific assessment of running performance on various surfaces and distances might assist in tailoring training and identifying individual strengths and/or weaknesses in an orienteer. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Voluntary Wheel Running in Mice.

    PubMed

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  17. High Rate of Return to Running for Athletes After Hip Arthroscopy for the Treatment of Femoroacetabular Impingement and Capsular Plication.

    PubMed

    Levy, David M; Kuhns, Benjamin D; Frank, Rachel M; Grzybowski, Jeffrey S; Campbell, Kirk A; Brown, Sara; Nho, Shane J

    2017-01-01

    Femoroacetabular impingement (FAI) is most commonly diagnosed in athletes who sustain repetitive flexion loading to their hips. No studies to date have focused solely on patients' return-to-running ability after hip arthroscopy. To evaluate patients' ability to return to running after hip arthroscopy for FAI and capsular plication. Case series; Level of evidence, 4. Clinical data were retrospectively retrieved for 51 consecutive patients with FAI (22 men, 29 women) who had undergone hip arthroscopy for the treatment of FAI and identified themselves as recreational or competitive runners on intake forms. Two-year outcome measures included the modified Harris Hip Score (mHHS) and the Hip Outcome Score Activities of Daily Living (HOS-ADL) and Sport-Specific (HOS-SS) subscales. A postoperative return-to-running survey was used to obtain running-specific information. Patient age and body mass index (BMI) were a mean (±SD) of 26.3 ± 7.8 years and 23.7 ± 3.3 kg/m 2 , respectively. Before surgery, patients had refrained from running because of pain for a mean of 8.1 ± 5.7 months. After surgery, 48 patients (94%) returned to running at a mean of 8.5 ± 4.2 months. Patients who had discontinued running for more than 8 months before surgery had a longer return-to-running time than did those who had stopped for less than 8 months (10.6 ± 4.2 vs 7.6 ± 4.1 months; P = .01). After 2 years, mean preoperative distance had decreased significantly ( P < .01) from 9.5 ± 6.5 miles per week when healthy to 6.4 ± 5.8 miles postoperatively. Despite decreased mileage, all 2-year outcomes scores improved significantly ( P < .001). Recreational and competitive runners with FAI returned to running 94% of the time at a mean of 8.5 months after hip arthroscopy. However, runners should be counseled before their surgery that they may run fewer miles than when they were pain free. Additionally, patients with a higher BMI and/or longer preoperative lull may have a longer recovery time.

  18. Hydrologic Data for Deep Creek Lake and Selected Tributaries, Garrett County, Maryland, 2007-08

    USGS Publications Warehouse

    Banks, William S.L.; Davies, William J.; Gellis, Allen C.; LaMotte, Andrew E.; McPherson, Wendy S.; Soeder, Daniel J.

    2010-01-01

    Deep Creek Lake, a bathymetric survey of the lake bottom was conducted in 2007. The data collected were used to generate a bathymetric map depicting depth to the lake bottom from a full pool elevation of 2,462 feet (National Geodetic Vertical Datum of 1929). Data were collected along about 90 linear miles across the lake using a fathometer and a differentially corrected global positioning system. As part of a long-term monitoring plan for all surface-water inputs to the lake, streamflow data were collected continuously at two stations constructed on Poland Run and Cherry Creek. The sites were selected to represent areas of the watershed under active development and areas that are relatively stable with respect to development. Twelve months of discharge data are provided for both streams. In addition, five water-quality parameters were collected continuously at the Poland Run station including pH, specific conductance, temperature, dissolved oxygen, and turbidity. Water samples collected at Poland Run were analyzed for sediment concentration, and the results of this analysis were used to estimate the annual sediment load into Deep Creek Lake from Poland Run. To determine sedimentation rates, cores of lake-bottom sediments were collected at 23 locations. Five of the cores were analyzed using a radiometric-dating method, allowing average rates of sedimentation to be estimated for the time periods 1925 to 2008, 1925 to 1963, and 1963 to 2008. Particle-size data from seven cores collected at locations throughout the study area were analyzed to provide information on the amount of fine material in lake-bed sediments. Groundwater levels were monitored continuously in four wells and weekly in nine additional wells during October, November, and December of 2008. Water levels were compared to recorded lake levels and precipitation during the same period to determine the effect of lake-level drawdown and recovery on the adjacent aquifer systems. Water use in the Deep Creek Lake

  19. Dissociation between running economy and running performance in elite Kenyan distance runners.

    PubMed

    Mooses, Martin; Mooses, Kerli; Haile, Diresibachew Wondimu; Durussel, Jérôme; Kaasik, Priit; Pitsiladis, Yannis Paul

    2015-01-01

    The purpose of this study was to investigate the relationship between running economy (RE) and performance in a homogenous group of competitive Kenyan distance runners. Maximal aerobic capacity (VO2max) (68.8 ± 3.8 ml∙kg(-1)∙min(-1)) was determined on a motorised treadmill in 32 Kenyan (25.3 ± 5.0 years; IAAF performance score: 993 ± 77 p) distance runners. Leg anthropometry was assessed and moment arm of the Achilles tendon determined. While Achilles moment arm was associated with better RE (r(2) = 0.30, P = 0.003) and upper leg length, total leg length and total leg length to body height ratio were correlated with running performance (r = 0.42, P = 0.025; r = 0.40, P = 0.030 and r = 0.38, P = 0.043, respectively), RE and maximal time on treadmill (t(max)) were not associated with running performance (r = -0.01, P = 0.965; r = 0.27; P = 0.189, respectively) in competitive Kenyan distance runners. The dissociation between RE and running performance in this homogenous group of runners would suggest that RE can be compensated by other factors to maintain high performance levels and is in line with the idea that RE is only one of many factors explaining elite running performance.

  20. Two-Stage Approach to Image Classification by Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Ososkov, Gennady; Goncharov, Pavel

    2018-02-01

    The paper demonstrates the advantages of the deep learning networks over the ordinary neural networks on their comparative applications to image classifying. An autoassociative neural network is used as a standalone autoencoder for prior extraction of the most informative features of the input data for neural networks to be compared further as classifiers. The main efforts to deal with deep learning networks are spent for a quite painstaking work of optimizing the structures of those networks and their components, as activation functions, weights, as well as the procedures of minimizing their loss function to improve their performances and speed up their learning time. It is also shown that the deep autoencoders develop the remarkable ability for denoising images after being specially trained. Convolutional Neural Networks are also used to solve a quite actual problem of protein genetics on the example of the durum wheat classification. Results of our comparative study demonstrate the undoubted advantage of the deep networks, as well as the denoising power of the autoencoders. In our work we use both GPU and cloud services to speed up the calculations.

  1. Deep imitation learning for 3D navigation tasks.

    PubMed

    Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina

    2018-01-01

    Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.

  2. Imagining Deep Time (Invited)

    NASA Astrophysics Data System (ADS)

    Talasek, J.

    2013-12-01

    Imagining Deep Time '...the mind seemed to grow giddy by looking so far into the abyss of time.' John Playfair (1748 -1819), scientist and mathematician "Man cannot afford to conceive of nature and exclude himself." Emmit Gowin, photographer 'A person would have to take themselves out of the human context to begin to think in terms of geologic time. They would have to think like a rock.' Terry Falke, photographer The term Deep Time refers to the vastness of the geological time scale. First conceived in the 18th century, the development of this perspective on time has been pieced together like a jigsaw puzzle of information and observations drawn from the study of the earth's structure and discovered fossilized flora and fauna. Deep time may possibly be the greatest contribution made by the discipline of geology forever impacting our perception of earth and our relationship to it. How do we grasp such vast concepts as deep time which relates to the origins of the earth or cosmic time which relates to the origins of the universe - concepts that exist far beyond the realm of human experience? Further more how do we communicate this? The ability to visualize is a powerful tool of discovery and communication for the scientist and it is part and parcel of the work of visual artists. The scientific process provides evidence yet it is imagination on the part of the scientists and artists alike that is needed to interpret that information. This exhibition represents an area where both rational and intuitive thinking come together to explore this question of how we relate to the vastness of time. The answer suggested by the combination of art work assembled here suggests that we do so through a combination of visual metaphors (cycles, circles, arrows, trajectories) and visual evidence (rock formations, strata, fossils of fauna and flora) while being mediated through various technologies. One provides factual and empirical evidence while the other provides a way of grasping

  3. Contribution of psychological, social, and mechanical work exposures to low work ability: a prospective study.

    PubMed

    Emberland, Jan S; Knardahl, Stein

    2015-03-01

    To determine the contribution of specific psychological, social, and mechanical work exposures to the self-reported low level of work ability. Employees from 48 organizations were surveyed over a 2-year period (n = 3779). Changes in 16 work exposures and 3 work ability measures-the work ability index score, perceived current, and future work ability-were tested with Spearman rank correlations. Binary logistic regressions were run to determine contribution of work exposures to low work ability. Role conflict, human resource primacy, and positive challenge were the most consistent predictors of low work ability across test designs. Role clarity and fair leadership were less consistent but prominent predictors. Mechanical exposures were not predictive. To protect employee work ability, work place interventions would benefit from focusing on reducing role conflicts and on promoting positive challenges and human resource primacy.

  4. Short-run and long-run effects of unemployment on suicides: does welfare regime matter?

    PubMed

    Gajewski, Pawel; Zhukovska, Kateryna

    2017-12-01

    Disentangling the immediate effects of an unemployment shock from the long-run relationship has a strong theoretical rationale. Different economic and psychological forces are at play in the first moment and after prolonged unemployment. This study suggests a diverse impact of short- and long-run unemployment on suicides in liberal and social-democratic countries. We take a macro-level perspective and simultaneously estimate the short- and long-run relationships between unemployment and suicide, along with the speed of convergence towards the long-run relationship after a shock, in a panel of 10 high-income countries. We also account for unemployment benefit spending, the share of the population aged 15-34, and the crisis effects. In the liberal group of countries, only a long-run impact of unemployment on suicides is found to be significant (P = 0.010). In social-democratic countries, suicides are associated with initial changes in unemployment (P = 0.028), but the positive link fades over time and becomes insignificant in the long run. Further, crisis effects are a much stronger determinant of suicides in social-democratic countries. Once the broad welfare regime is controlled for, changes in unemployment-related spending do not matter for preventing suicides. A generous welfare system seems efficient at preventing unemployment-related suicides in the long run, but societies in social-democratic countries might be less psychologically immune to sudden negative changes in their professional lives compared with people in liberal countries. Accounting for the different short- and long-run effects could thus improve our understanding of the unemployment-suicide link. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  5. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline

    2017-07-01

    Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  6. A disparity between locomotor economy and territory-holding ability in male house mice.

    PubMed

    Morris, Jeremy S; Ruff, James S; Potts, Wayne K; Carrier, David R

    2017-07-15

    Both economical locomotion and physical fighting are important performance traits to many species because of their direct influence on components of Darwinian fitness. Locomotion represents a substantial portion of the total daily energy budget of many animals. Fighting performance often determines individual reproductive fitness through the means of resource control, social dominance and access to mates. However, phenotypic traits that improve either locomotor economy or fighting ability may diminish performance in the other. Here, we tested for a predicted disparity between locomotor economy and competitive ability in wild-derived house mice ( Mus musculus ). We used 8 week social competition trials in semi-natural enclosures to directly measure male competitive ability through territorial control and female occupancy within territories. We also measured oxygen consumption during locomotion for each mouse using running trials in an enclosed treadmill and open-flow respirometry. Our results show that territory-holding males have higher absolute and mass-specific oxygen consumption when running (i.e. reduced locomotor economy) compared with males that do not control territories. This relationship was present both before and after 8 week competition trials in semi-natural enclosures. This disparity between physical competitive ability and economical locomotion may impose viability costs on males in species for which competition over mates is common and may constrain the evolution of behavioral and phenotypic diversity, particularly in natural settings with environmental and resource variability. © 2017. Published by The Company of Biologists Ltd.

  7. A search for sterile neutrinos with IceCube DeepCore

    NASA Astrophysics Data System (ADS)

    Terliuk, Andrii; IceCube Collaboration

    2017-09-01

    The DeepCore detector is a densely instrumented part of the IceCube Neutrino Observatory that lowers the neutrino detection threshold down to approximately 10 GeV resulting in the ability to measure atmospheric neutrino oscillations. The standard three neutrino mixing scenario can be tested by searching for an additional light sterile neutrino state, which does not interact via the standard weak interaction, but mixes with the three active neutrino states. This leads to an impact on the atmospheric neutrino oscillations below 100 GeV. We present improved limits to the sterile mixing element |U τ4|2 using three years of the DeepCore data taken during 2011-2013.

  8. The adsorption of Run (n = 1-4) on γ-Al2O3 Surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Guo, Yafei; Chen, Yu; Shen, Rong

    2018-05-01

    The density functional theory (DFT) was adopted to study the adsorption and growth of Run (n = 1-4) clusters on γ-Al2O3 surface, which is of great significances for the design of many important catalysts, especially for carbon dioxide methanation. It is found that both the Rusbnd Ru bond length and adsorption energy Eads of Ru clusters with the surface increase with the Run clusters increasing. The growth ability of the supported Run cluster is weaker than the gas phase Run clusters through comparing their respective growth process, which ascribes to the stabilization of γ-Al2O3 support. An interesting discovery is that the basin structure was supposed to be the most favorable adsorption geometry for Run clusters. Additionally, the distances between Ru atoms in the adsorbed clusters are longer than that in their isolated counterparts. Bader charge analysis was conducted for the most stable configurations of Run (n = 1-4) clusters on γ-Al2O3 surface as well. And the results suggest that Run (n = 1-4) clusters serve as the electron donators. The result of projected density of states (PDOS) shows that strong adsorption of Ru atom on the γ-Al2O3 surface correlates with strong interaction between d orbital of Ru atom and p orbital of Al or O atom of the Al2O3 support.

  9. Cumulative loads increase at the knee joint with slow-speed running compared to faster running: a biomechanical study.

    PubMed

    Petersen, Jesper; Sørensen, Henrik; Nielsen, Rasmus Østergaard

    2015-04-01

    Biomechanical cross-sectional study. To investigate the hypothesis that the cumulative load at the knee during running increases as running speed decreases. The knee joint load per stride decreases as running speed decreases. However, by decreasing running speed, the number of strides per given distance is increased. Running a given distance at a slower speed may increase the cumulative load at the knee joint compared with running the same distance at a higher speed, hence increasing the risk of running-related injuries in the knee. Kinematic and ground reaction force data were collected from 16 recreational runners, during steady-state running with a rearfoot strike pattern at 3 different speeds (mean ± SD): 8.02 ± 0.17 km/h, 11.79 ± 0.21 km/h, and 15.78 ± 0.22 km/h. The cumulative load (cumulative impulse) over a 1000-m distance was calculated at the knee joint on the basis of a standard 3-D inverse-dynamics approach. Based on a 1000-m running distance, the cumulative load at the knee was significantly higher at a slow running speed than at a high running speed (relative difference, 80%). The mean load per stride at the knee increased significantly across all biomechanical parameters, except impulse, following an increase in running speed. Slow-speed running decreases knee joint loads per stride and increases the cumulative load at the knee joint for a given running distance compared to faster running. The primary reason for the increase in cumulative load at slower speeds is an increase in number of strides needed to cover the same distance.

  10. Frontal plane kinematics of the hip during running: Are they related to hip anatomy and strength?

    PubMed

    Baggaley, Michael; Noehren, Brian; Clasey, Jody L; Shapiro, Robert; Pohl, Michael B

    2015-10-01

    Excessive hip adduction has been associated with a number of lower extremity overuse running injuries. The excessive motion has been suggested to be the result of reduced strength of the hip abductor musculature. Hip anatomical alignment has been postulated to influence hip abduction (HABD) strength and thus may impact hip adduction during running. The purpose of this study was to investigate the relationship between hip anatomy, HABD strength, and frontal plane kinematics during running. Peak isometric HABD strength, 3D lower extremity kinematics during running, femoral neck-shaft angle (NSA), and pelvis width-femur length (PW-FL) ratio were recorded for 25 female subjects. Pearson correlations (p<0.05) were performed between variables. A fair relationship was observed between femoral NSA and HABD strength (r=-0.47, p=0.02) where an increased NSA was associated with reduced HABD strength. No relationship was observed between HABD strength and hip adduction during running. None of the anatomical measurements, NSA or PW-FL, were associated with hip adduction during running. Deviations in the femoral NSA have a limited ability to influence peak isometric hip abduction strength or frontal plane hip kinematics during running. Hip abduction strength does also not appear to be linked with changes in hip kinematics. These findings in healthy individuals question whether excessive hip adduction typically seen in female runners with overuse injuries is caused by deviations in hip abduction strength or anatomical structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. What are the main risk factors for running-related injuries?

    PubMed

    Saragiotto, Bruno Tirotti; Yamato, Tiê Parma; Hespanhol Junior, Luiz Carlos; Rainbow, Michael J; Davis, Irene S; Lopes, Alexandre Dias

    2014-08-01

    not indexed in any of the searched databases. We found a great heterogeneity of statistical methods between studies, which prevented us from performing a meta-analysis. The main risk factor identified in this review was previous injury in the last 12 months, although many risk factors had been investigated in the literature. Relatively few prospective studies were identified in this review, reducing the overall ability to detect risk factors. This highlights the need for more, well designed prospective studies in order to fully appreciate the risk factors associated with running.

  12. Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandertals.

    PubMed

    Raichlen, David A; Armstrong, Hunter; Lieberman, Daniel E

    2011-03-01

    The endurance running (ER) hypothesis suggests that distance running played an important role in the evolution of the genus Homo. Most researchers have focused on ER performance in modern humans, or on reconstructing ER performance in Homo erectus, however, few studies have examined ER capabilities in other members of the genus Homo. Here, we examine skeletal correlates of ER performance in modern humans in order to evaluate the energetics of running in Neandertals and early Homo sapiens. Recent research suggests that running economy (the energy cost of running at a given speed) is strongly related to the length of the Achilles tendon moment arm. Shorter moment arms allow for greater storage and release of elastic strain energy, reducing energy costs. Here, we show that a skeletal correlate of Achilles tendon moment arm length, the length of the calcaneal tuber, does not correlate with walking economy, but correlates significantly with running economy and explains a high proportion of the variance (80%) in cost between individuals. Neandertals had relatively longer calcaneal tubers than modern humans, which would have increased their energy costs of running. Calcaneal tuber lengths in early H. sapiens do not significantly differ from those of extant modern humans, suggesting Neandertal ER economy was reduced relative to contemporaneous anatomically modern humans. Endurance running is generally thought to be beneficial for gaining access to meat in hot environments, where hominins could have used pursuit hunting to run prey taxa into hyperthermia. We hypothesize that ER performance may have been reduced in Neandertals because they lived in cold climates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effect of Minimalist Footwear on Running Efficiency

    PubMed Central

    Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.

    2015-01-01

    Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304

  14. Advanced overlay: sampling and modeling for optimized run-to-run control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  15. Primary Science Teaching--Is It Integral and Deep Experience for Students?

    ERIC Educational Resources Information Center

    Timoštšuk, Inge

    2016-01-01

    Integral and deep pedagogical content knowledge can support future primary teachers' ability to follow ideas of education for sustainability in science class. Initial teacher education provides opportunity to learn what and how to teach but still the practical experiences of teaching can reveal uneven development of student teachers'…

  16. On Running and Psychotherapy.

    ERIC Educational Resources Information Center

    Dukes, Denzel; And Others

    1980-01-01

    Frederic Leer's article "Running as an Adjunct to Psychotherapy" (January 1980 issue of this journal) is criticized by three authors. They focus on the psychological and social effects of running and its usefulness as a treatment for depressed adults. (LAB)

  17. Development of Overarm Throwing Technique Reflects Throwing Ability during Childhood

    PubMed Central

    KASUYAMA, Tatsuya; MUTOU, Ikuo; SASAMOTO, Hitoshi

    2016-01-01

    Background: It is important to acquire fundamental movement skills during childhood. Throwing is a representative manipulative skill required for various intrinsic factors. However, the relationship between intrinsic factors and throwing ability in childhood is unclear. The purpose of this study was to investigate intrinsic factors related to the ball throwing distance of Japanese elementary school children. Methods: Japanese elementary school children from grades 1-6 (aged 6-12 years; n=112) participated in this study. The main outcome was throwing ability, which was measured as the ball throwing distance. We measured five general anthropometric parameters, seven physical fitness parameters, and the Roberton's developmental sequence for all subjects. The relationships between the throwing ability and the 13 parameters were analysed. Results: The Roberton's developmental sequence was the best predictor of ball throwing distance (r=0.80, p≤0.01). The best multiple regression model, which included sex, handgrip strength, shuttle run test, and the Roberton's developmental sequence, accounted for 81% of the total variance. Conclusions: The development of correct throwing technique reflects throwing abilities in childhood. In addition to the throwing sequence, enhancement of grip strength and aerobic capacity are also required for children's throwing ability. PMID:28289578

  18. Preventing Running Injuries through Barefoot Activity

    ERIC Educational Resources Information Center

    Hart, Priscilla M.; Smith, Darla R.

    2008-01-01

    Running has become a very popular lifetime physical activity even though there are numerous reports of running injuries. Although common theories have pointed to impact forces and overpronation as the main contributors to chronic running injuries, the increased use of cushioning and orthotics has done little to decrease running injuries. A new…

  19. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run.

    PubMed

    Morin, Jean-Benoît; Samozino, Pierre; Millet, Guillaume Y

    2011-05-01

    This study investigated the changes in running mechanics and spring-mass behavior over a 24-h treadmill run (24TR). Kinematics, kinetics, and spring-mass characteristics of the running step were assessed in 10 experienced ultralong-distance runners before, every 2 h, and after a 24TR using an instrumented treadmill dynamometer. These measurements were performed at 10 km·h, and mechanical parameters were sampled at 1000 Hz for 10 consecutive steps. Contact and aerial times were determined from ground reaction force (GRF) signals and used to compute step frequency. Maximal GRF, loading rate, downward displacement of the center of mass, and leg length change during the support phase were determined and used to compute both vertical and leg stiffness. Subjects' running pattern and spring-mass behavior significantly changed over the 24TR with a 4.9% higher step frequency on average (because of a significantly 4.5% shorter contact time), a lower maximal GRF (by 4.4% on average), a 13.0% lower leg length change during contact, and an increase in both leg and vertical stiffness (+9.9% and +8.6% on average, respectively). Most of these changes were significant from the early phase of the 24TR (fourth to sixth hour of running) and could be speculated as contributing to an overall limitation of the potentially harmful consequences of such a long-duration run on subjects' musculoskeletal system. During a 24TR, the changes in running mechanics and spring-mass behavior show a clear shift toward a higher oscillating frequency and stiffness, along with lower GRF and leg length change (hence a reduced overall eccentric load) during the support phase of running. © 2011 by the American College of Sports Medicine

  20. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  1. The NLstart2run study: Training-related factors associated with running-related injuries in novice runners.

    PubMed

    Kluitenberg, Bas; van der Worp, Henk; Huisstede, Bionka M A; Hartgens, Fred; Diercks, Ron; Verhagen, Evert; van Middelkoop, Marienke

    2016-08-01

    The incidence of running-related injuries is high. Some risk factors for injury were identified in novice runners, however, not much is known about the effect of training factors on injury risk. Therefore, the purpose of this study was to examine the associations between training factors and running-related injuries in novice runners, taking the time varying nature of these training-related factors into account. Prospective cohort study. 1696 participants completed weekly diaries on running exposure and injuries during a 6-week running program for novice runners. Total running volume (min), frequency and mean intensity (Rate of Perceived Exertion) were calculated for the seven days prior to each training session. The association of these time-varying variables with injury was determined in an extended Cox regression analysis. The results of the multivariable analysis showed that running with a higher intensity in the previous week was associated with a higher injury risk. Running frequency was not significantly associated with injury, however a trend towards running three times per week being more hazardous than two times could be observed. Finally, lower running volume was associated with a higher risk of sustaining an injury. These results suggest that running more than 60min at a lower intensity is least injurious. This finding is contrary to our expectations and is presumably the result of other factors. Therefore, the findings should not be used plainly as a guideline for novices. More research is needed to establish the person-specific training patterns that are associated with injury. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Running Economy from a Muscle Energetics Perspective.

    PubMed

    Fletcher, Jared R; MacIntosh, Brian R

    2017-01-01

    The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (E run ) can be obtained with this approach. E run is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of E run from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting E run are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics.

  3. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Children's Fitness. Managing a Running Program.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott; Tuckman, Bruce W.

    1987-01-01

    A running program to increase the cardiovascular fitness levels of fourth-, fifth-, and sixth-grade children is described. Discussed are the running environment, implementation of a running program, feedback, and reinforcement. (MT)

  5. Responding for sucrose and wheel-running reinforcement: effects of sucrose concentration and wheel-running reinforcer duration.

    PubMed

    Belke, Terry W; Hancock, Stephanie D

    2003-03-01

    Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.

  6. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Wåhlin, Anna

    2017-04-01

    North Atlantic deep water formation processes and properties in climate models are indicative of their ability to simulate future ocean circulation, ventilation, carbon and heat uptake, and sea level rise. Historical time series of temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to reveal the causes and consequences of North Atlantic deep water formation in models. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. The trigger of deep convection varies among models; for one third it is intense surface cooling only, while the remaining two thirds also need upward mixing of subsurface warm salty water. The models with the most intense deep convection have the most accurate deep water properties, which are warmer and fresher than in the other models. They also have the strongest Atlantic Meridional Overturning Circulation (AMOC). For over half of the models, 40% of the variability of the AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas, with 3 and 4 years lag respectively. Understanding the dynamical drivers of the AMOC in models is key to realistically forecast a possible slow down and its consequences on the global circulation and marine life.

  7. Travel Distance to Cancer Treatment Facilities in the Deep South.

    PubMed

    Wills, Mary J; Whitman, Marilyn V; English, Thomas M

    Despite ongoing efforts to improve rural healthcare, the health problems facing rural communities persist. The lack of healthcare providers and infrastructure in rural areas has been linked to a number of negative consequences. Among the elderly rural population, the lack of proximal access presents greater barriers because many elderly people are further limited in their ability to travel and pay for services. In the Deep South specifically, rural residents experience limited access to care and overall poor health outcomes. With cancer in particular, the Deep South has been dubbed the "cancer belt," faring far worse in prevalence and mortality rates than other areas of the country. The present study examines the average travel distance for rural elderly patients residing in the Deep South who are receiving treatment for prostate, breast, or colorectal cancer. We analyzed Medicare claims data of beneficiaries residing in the five Deep South states who had received a primary diagnosis of prostate, breast, or colorectal cancer, with a service date ranging from January 1, 2011, through December 31, 2014. The findings reveal that rural Medicare beneficiaries in the Deep South travel significantly greater distances than do their urban counterparts. In addition, travel distances to prostate cancer treatment facilities are significantly greater than those to breast or colorectal cancer treatment facilities. With cancer incidence predicted to increase, the need to reduce travel distances to treatment is vital in efforts to curb the mortality rate in the Deep South.

  8. Comparison of Two Kinds of Endurance Training Programs on the Effects of the Ability to Recover in Amateur Soccer Players

    PubMed Central

    Rogan, Slavko

    2015-01-01

    Background: High intensity intermittent aerobic exercise is an elementary endurance training exercise to build soccer endurance. Many studies exist with professional soccer players. But limited research has been conducted with amateur soccer players. Objectives: The aim of this study was to compare and assess the effects of the shuttle-run method and the Hoff-track method on the ability to recover in amateur soccer players within three weeks. Patients and Methods: Two amateur soccer teams were randomly assigned to shuttle-run group (n = 24; SRG) (SRG: shuttle-run group) or Hoff-track group (n = 18; HTG) (HTG: hoff-track group). They performed 2 times/week over three weeks their program. SRG performed a 20 m high speed shuttle-run until exhaustion and HTG covered at their highest speed level an obstacle track. Before and after training the yo-yo intermittent recovery test level 2 (YYIRTL2) was conducted. Results: Significant differences were observed within (P < 0.05) and between the groups (P = 0.06; ES = 0.50) in distance covering during YYIRTL2. Conclusions: Both training methods seem to improve the ability to recover in amateur soccer players within a short time period during the competition season. PMID:26448831

  9. Running free: embracing a healthy lifestyle through distance running.

    PubMed

    Shipway, Richard; Holloway, Immy

    2010-11-01

    Sport and leisure activity contribute to both health and quality of life. There is a dearth of qualitative studies on the lived experiences of active people, so the aim of this paper is to develop a deeper understanding of the experiences of one particular group of active leisure participants, distance runners, and to highlight the associated health and well-being benefits that result from participating in this increasingly popular form of active leisure. In doing so, this paper will briefly explore the potential opportunities and implications for sport and leisure policy and provision, and highlight examples of how distance running could positively contribute towards government objectives linked to tackling obesity levels, healthy living and physical well-being. It is suggested that similar benefits also exist across other forms of physical activity, exercise and sport. Qualitative methods of enquiry were adopted to understand the nature of the social world of long distance runners through interviews and observations, which were thematically analyzed. One of the key themes emerging from the data was the desire to embrace a healthy lifestyle, which then led to the emergence of four main sub-themes. The first was linked to the importance of seeking self-esteem and confirmation through running; second, an investigation of a selection of negative aspects associated with exercise addiction; third, the need to exercise among sport and leisure participants; and finally, an understanding of the concept of the 'running body'. Cautionary notes also identified negative aspects associated with exercise and physical activity. The findings highlight the potential role that distance running can play as an easily accessible and enjoyable leisure activity, one that can help facilitate increased participation in exercise and physical activity as an integral part of an active and healthy lifestyle.

  10. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.

    PubMed

    Prilutsky, B I; Gregor, R J

    2001-07-01

    There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (P<0.05) during running than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (P<0.05). These results support the hypothesis that the preferred walk-run transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.

  11. Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution

    NASA Astrophysics Data System (ADS)

    Marsset, B.; Ker, S.; Thomas, Y.; Colin, F.

    2018-02-01

    The acquisition of high resolution seismic data in deep waters requires the development of deep towed seismic sources and receivers able to deal with the high hydrostatic pressure environment. The low frequency piezoelectric transducer of the SYSIF (SYstème Sismique Fond) deep towed seismic device comply with the former requirement taking advantage of the coupling of a mechanical resonance (Janus driver) and a fluid resonance (Helmholtz cavity) to produce a large frequency bandwidth acoustic signal (220-1050 Hz). The ability to perform deep towed multichannel seismic imaging with SYSIF was demonstrated in 2014, yet, the ability to determine P-wave velocity distribution wasn't achieved. P-wave velocity analysis relies on the ratio between the source-receiver offset range and the depth of the seismic reflectors, thus towing the seismic source and receivers closer to the sea bed will provide a better geometry for P-wave velocity determination. Yet, technical issues, related to the acoustic source directivity, arise for this approach in the particular framework of piezoelectric sources. A signal processing sequence is therefore added to the initial processing flow. Data acquisition took place during the GHASS (Gas Hydrates, fluid Activities and Sediment deformations in the western Black Sea) cruise in the Romanian waters of the Black Sea. The results of the imaging processing are presented for two seismic data sets acquired over gas hydrates and gas bearing sediments. The improvement in the final seismic resolution demonstrates the validity of the velocity model.

  12. The effect of three surface conditions, speed and running experience on vertical acceleration of the tibia during running.

    PubMed

    Boey, Hannelore; Aeles, Jeroen; Schütte, Kurt; Vanwanseele, Benedicte

    2017-06-01

    Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.

  13. Influence of footwear designed to boost energy return on running economy in comparison to a conventional running shoe.

    PubMed

    Sinclair, J; Mcgrath, R; Brook, O; Taylor, P J; Dillon, S

    2016-01-01

    Running economy is a reflection of the amount of inspired oxygen required to maintain a given velocity and is considered a determining factor for running performance. Athletic footwear has been advocated as a mechanism by which running economy can be enhanced. New commercially available footwear has been developed in order to increase energy return, although their efficacy has not been investigated. This study aimed to examine the effects of energy return footwear on running economy in relation to conventional running shoes. Twelve male runners completed 6-min steady-state runs in conventional and energy return footwear. Overall, oxygen consumption (VO2), heart rate, respiratory exchange ratio, shoe comfort and rating of perceived exertion were assessed. Moreover, participants subjectively indicated which shoe condition they preferred for running. Differences in shoe comfort and physiological parameters were examined using Wilcoxon signed-rank tests, whilst shoe preferences were tested using a chi-square analysis. The results showed that VO2 and respiratory exchange ratio were significantly lower, and shoe comfort was significantly greater, in the energy return footwear. Given the relationship between running economy and running performance, these observations indicate that the energy return footwear may be associated with enhanced running performance in comparison to conventional shoes.

  14. Overcoming the "Run" Response

    ERIC Educational Resources Information Center

    Swanson, Patricia E.

    2013-01-01

    Recent research suggests that it is not simply experiencing anxiety that affects mathematics performance but also how one responds to and regulates that anxiety (Lyons and Beilock 2011). Most people have faced mathematics problems that have triggered their "run response." The issue is not whether one wants to run, but rather…

  15. Enabling Global Lunar Sample Return and Life-Detection Studies Using a Deep-Space Gateway

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Eigenbrode, J. A.; Young, K. E.; Bleacher, J. E.; Trainer, M. E.

    2018-02-01

    The Deep Space Gateway could uniquely enable a lunar robotic sampling campaign that would provide incredible science return as well as feed forward to Mars and Europa by testing instrument sterility and ability to distinguish biogenic signals.

  16. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    PubMed

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  17. Effects of a structured midsole on spatio-temporal variables and running economy in overground running.

    PubMed

    Wunsch, Tobias; Kröll, Josef; Stöggl, Thomas; Schwameder, Hermann

    2017-04-01

    Research to enhance running performance has led to the design of a leaf spring-structured midsole shoe (LEAF). In treadmill running, it has been shown that LEAF led to an increased running economy and increased stride length (SL) through a horizontal foot shift during stance compared to a standard foam shoe (FOAM). The purpose of this study was to analyse whether (a) these findings can also be observed in overground running and (b) relations exist between spatio-temporal variables and running economy. Ten male long-distance heel-strike runners ran at their individual 2 mmol/l blood lactate speed with LEAF and FOAM in randomized order. Kinematic data were recorded with an inertial measurement unit synchronized with 2D video. Oxygen consumption was measured using an automated metabolic gas analysis system. Blood lactate was collected after each run. The strike pattern was unaffected by LEAF. SL was increased by 0.9 ± 1.1 cm (95% CI 0.2 to 1.5; p = .040; d z  = 0.76), stride rate (SR) was reduced by -0.4 ± 0.3 strides/min (95% CI -0.6 to -0.1; p = .029; d z  = 0.82) and oxygen consumption tended to be reduced by 1% (-0.4 ± 0.6 ml/min/kg; 95% CI -0.8 to 0.0; p = .082; d z  = 0.62) when running with LEAF compared to FOAM. Changes in oxygen consumption in LEAF were correlated with SL (r = 0.71; p = .022) and SR (r = -0.68; p = .031). It can be concluded that LEAF has the potential to cause small changes in spatio-temporal variables during running. Runners increasing SL and decreasing SR in response to LEAF can achieve small improvements in running economy, which is beneficial in terms of performance.

  18. Influence of custom-made and prefabricated insoles before and after an intense run

    PubMed Central

    2017-01-01

    Each time the foot contacts the ground during running there is a rapid deceleration that results in a shock wave that is transmitted from the foot to the head. The fatigue of the musculoskeletal system during running may decrease the ability of the body to absorb those shock waves and increase the risk of injury. Insoles are commonly prescribed to prevent injuries, and both custom-made and prefabricated insoles have been observed to reduce shock accelerations during running. However, no study to date has included a direct comparison of their behaviour measured over the same group of athletes, and therefore great controversy still exists regarding their effectiveness in reducing impact loading during running. The aim of the study was to analyse the acute differences in stride and shock parameters while running on a treadmill with custom-made and prefabricated insoles. Stride parameters (stride length, stride rate) and shock acceleration parameters (head and tibial peak acceleration, shock magnitude, acceleration rate, and shock attenuation) were measured using two triaxial accelerometers in 38 runners at 3.33 m/s before and after a 15-min intense run while using the sock liner of the shoe (control condition), prefabricated insoles and custom-made insoles. No differences in shock accelerations were found between the custom-made and the control insoles. The prefabricated insoles increased the head acceleration rate (post-fatigue, p = 0.029) compared to the control condition. The custom-made reduced tibial (pre-fatigue, p = 0.041) and head acceleration rates (pre-fatigue and post-fatigue, p = 0.01 and p = 0.046) compared to the prefabricated insoles. Neither the stride nor the acceleration parameters were modified as a result of the intense run. In the present study, the acute use of insoles (custom-made, prefabricated) did not reduce shock accelerations compared to the control insoles. Therefore, their effectiveness at protecting against injuries associated with

  19. Running biomechanics: shorter heels, better economy.

    PubMed

    Scholz, M N; Bobbert, M F; van Soest, A J; Clark, J R; van Heerden, J

    2008-10-01

    Better running economy (i.e. a lower rate of energy consumption at a given speed) is correlated with superior distance running performance. There is substantial variation in running economy, even among elite runners. This variation might be due to variation in the storage and reutilization of elastic energy in tendons. Using a simple musculoskeletal model, it was predicted that the amount of energy stored in a tendon during a given movement depends more critically on moment arm than on mechanical properties of the tendon, with the amount of stored energy increasing as the moment arm gets smaller. Assuming a link between elastic energy reutilization and overall metabolic cost of running, a smaller moment arm should therefore be associated with superior running economy. This prediction was confirmed experimentally in a group of 15 highly trained runners. The moment arm of the Achilles tendon was determined from standardized photographs of the ankle, using the position of anatomical landmarks. Running economy was measured as the rate of metabolic energy consumption during level treadmill running at a speed of 16 km h(-1). A strong correlation was found between the moment arm of the Achilles tendon and running economy. Smaller muscle moment arms correlated with lower rates of metabolic energy consumption (r(2)=0.75, P<0.001).

  20. [Osteoarthritis from long-distance running?].

    PubMed

    Hohmann, E; Wörtler, K; Imhoff, A

    2005-06-01

    Long distance running has become a fashionable recreational activity. This study investigated the effects of external impact loading on bone and cartilage introduced by performing a marathon race. Seven beginners were compared to six experienced recreational long distance runners and two professional athletes. All participants underwent magnetic resonance imaging of the hip and knee before and after a marathon run. Coronal T1 weighted and STIR sequences were used. The pre MRI served as a baseline investigation and monitored the training effect. All athletes demonstrated normal findings in the pre run scan. All but one athlete in the beginner group demonstrated joint effusions after the race. The experienced and professional runners failed to demonstrate pathology in the post run scans. Recreational and professional long distance runners tolerate high impact forces well. Beginners demonstrate significant changes on the post run scans. Whether those findings are a result of inadequate training (miles and duration) warrant further studies. We conclude that adequate endurance training results in adaptation mechanisms that allow the athlete to compensate for the stresses introduced by long distance running and do not predispose to the onset of osteoarthritis. Significant malalignment of the lower extremity may cause increased focal loading of joint and cartilage.

  1. Effect of resistance training regimens on treadmill running and neuromuscular performance in recreational endurance runners.

    PubMed

    Mikkola, Jussi; Vesterinen, Ville; Taipale, Ritva; Capostagno, Benoit; Häkkinen, Keijo; Nummela, Ari

    2011-10-01

    The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([V·]O(₂max)), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [V·]O(₂max) (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance

  2. Warm-up with a weighted vest improves running performance via leg stiffness and running economy.

    PubMed

    Barnes, K R; Hopkins, W G; McGuigan, M R; Kilding, A E

    2015-01-01

    To determine the effects of "strides" with a weighted-vest during a warm-up on endurance performance and its potential neuromuscular and metabolic mediators. A bout of resistance exercise can enhance subsequent high-intensity performance, but little is known about such priming exercise for endurance performance. A crossover with 5-7 days between an experimental and control trial was performed by 11 well-trained distance runners. Each trial was preceded by a warm-up consisting of a 10-min self-paced jog, a 5-min submaximal run to determine running economy, and six 10-s strides with or without a weighted-vest (20% of body mass). After a 10-min recovery period, runners performed a series of jumps to determine leg stiffness and other neuromuscular characteristics, another 5-min submaximal run, and an incremental treadmill test to determine peak running speed. Clinical and non-clinical forms of magnitude-based inference were used to assess outcomes. Correlations and linear regression were used to assess relationships between performance and underlying measures. The weighted-vest condition resulted in a very-large enhancement of peak running speed (2.9%; 90% confidence limits ±0.8%), a moderate increase in leg stiffness (20.4%; ±4.2%) and a large improvement in running economy (6.0%; ±1.6%); there were also small-moderate clear reductions in cardiorespiratory measures. Relationships between change scores showed that changes in leg stiffness could explain all the improvements in performance and economy. Strides with a weighted-vest have a priming effect on leg stiffness and running economy. It is postulated the associated major effect on peak treadmill running speed will translate into enhancement of competitive endurance performance. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Physiological responses during intermittent running exercise differ between outdoor and treadmill running.

    PubMed

    Panascì, Marco; Lepers, Romuald; La Torre, Antonio; Bonato, Matteo; Assadi, Hervè

    2017-09-01

    The aim of this study was to compare the physiological responses during 15 min of intermittent running consisting of 30 s of high-intensity running exercise at maximal aerobic velocity (MAV) interspersed with 30 s of passive recovery (30-30) performed outdoor versus on a motorized treadmill. Fifteen collegiate physically active males (age, 22 ± 1 years old; body mass, 66 ± 7 kg; stature, 176 ± 06 cm; weekly training volume, 5 ± 2 h·week -1 ), performed the Fitness Intermittent Test 45-15 to determine maximal oxygen uptake (V̇O 2max ) and MAV and then completed in random order 3 different training sessions consisting of a 30-s run/30-s rest on an outdoor athletic track (30-30 Track) at MAV; a 30-s run/30-s rest on a treadmill (30-30 Treadmill) at MAV; a 30-s run/30-s rest at MAV+15% (30-30 + 15% MAV Treadmill). Oxygen uptake (V̇O 2 ), time above 90%V̇O 2max (t90%V̇O 2max ), and rating of perceived exertion (RPE) were measured during each training session. We observed a statistical significant underestimation of V̇O 2 (53.1 ± 5.4 mL·kg -1 ·min -1 vs 49.8 ± 6.7 mL·kg -1 ·min -1 , -6.3%, P = 0.012), t90%V̇O 2max (8.6% ± 11.5% vs 38.7% ± 32.5%, -77.8%, P = 0.008), RPE (11.4 ± 1.4 vs 16.5 ± 1.7, -31%, P < 0.0001) during the 30-30 Treadmill compared with the same training session performed on track. No statistical differences between 30-30 +15 % MAV Treadmill and 30-30 Track were observed. The present study demonstrates that a 15% increase in running velocity during a high-intensity intermittent treadmill training session is the optimal solution to reach the same physiological responses than an outdoor training session.

  4. Improved oxygenation during standing performance of deep breathing exercises with positive expiratory pressure after cardiac surgery: A randomized controlled trial.

    PubMed

    Pettersson, Henrik; Faager, Gun; Westerdahl, Elisabeth

    2015-09-01

    Breathing exercises after cardiac surgery are often performed in a sitting position. It is unknown whether oxygenation would be better in the standing position. The aim of this study was to evaluate oxygenation and subjective breathing ability during sitting vs standing performance of deep breathing exercises on the second day after cardiac surgery. Patients undergoing coronary artery bypass grafting (n = 189) were randomized to sitting (controls) or standing. Both groups performed 3 × 10 deep breaths with a positive expiratory pressure device. Peripheral oxygen saturation was measured before, directly after, and 15 min after the intervention. Subjective breathing ability, blood pressure, heart rate, and pain were assessed. Oxygenation improved significantly in the standing group compared with controls directly after the breathing exercises (p < 0.001) and after 15 min rest (p = 0.027). The standing group reported better deep breathing ability compared with controls (p = 0.004). A slightly increased heart rate was found in the standing group (p = 0.047). After cardiac surgery, breathing exercises with positive expiratory pressure, performed in a standing position, significantly improved oxygenation and subjective breathing ability compared with sitting performance. Performance of breathing exercises in the standing position is feasible and could be a valuable treatment for patients with postoperative hypoxaemia.

  5. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining

  6. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining

  7. A rapid estimation of tsunami run-up based on finite fault models

    NASA Astrophysics Data System (ADS)

    Campos, J.; Fuentes, M. A.; Hayes, G. P.; Barrientos, S. E.; Riquelme, S.

    2014-12-01

    Many efforts have been made to estimate the maximum run-up height of tsunamis associated with large earthquakes. This is a difficult task, because of the time it takes to construct a tsunami model using real time data from the source. It is possible to construct a database of potential seismic sources and their corresponding tsunami a priori. However, such models are generally based on uniform slip distributions and thus oversimplify our knowledge of the earthquake source. Instead, we can use finite fault models of earthquakes to give a more accurate prediction of the tsunami run-up. Here we show how to accurately predict tsunami run-up from any seismic source model using an analytic solution found by Fuentes et al, 2013 that was especially calculated for zones with a very well defined strike, i.e, Chile, Japan, Alaska, etc. The main idea of this work is to produce a tool for emergency response, trading off accuracy for quickness. Our solutions for three large earthquakes are promising. Here we compute models of the run-up for the 2010 Mw 8.8 Maule Earthquake, the 2011 Mw 9.0 Tohoku Earthquake, and the recent 2014 Mw 8.2 Iquique Earthquake. Our maximum rup-up predictions are consistent with measurements made inland after each event, with a peak of 15 to 20 m for Maule, 40 m for Tohoku, and 2,1 m for the Iquique earthquake. Considering recent advances made in the analysis of real time GPS data and the ability to rapidly resolve the finiteness of a large earthquake close to existing GPS networks, it will be possible in the near future to perform these calculations within the first five minutes after the occurrence of any such event. Such calculations will thus provide more accurate run-up information than is otherwise available from existing uniform-slip seismic source databases.

  8. Fitness Assessment Comparison Between the "Jackie Chan Action Run" Videogame, 1-Mile Run/Walk, and the PACER.

    PubMed

    Haddock, Bryan; Siegel, Shannon; Costa, Pablo; Jarvis, Sarah; Klug, Nicholas; Medina, Ernie; Wilkin, Linda

    2012-06-01

    The purpose of this study was to examine whether a correlation existed among the scores of the "Jackie Chan Studio Fitness(™) Action Run" active videogame (XaviX(®), SSD Company, Ltd., Kusatsu, Japan), the 1-mile run/walk, and Progressive Aerobic Cardiovascular Endurance Run (PACER) aerobic fitness tests of the FITNESSGRAM(®) (The Cooper Institute, Dallas, TX) in order to provide a potential alternative testing method for days that are not environmentally desirable for outdoor testing. Participants were a convenience sample from physical education classes of students between the ages of 10 and 15 years. Participants (n=108) were randomly assigned to one of three groups with the only difference being the order of testing. The tests included the "Jackie Chan Action Run" active videogame, the 1-mile run/walk, and the PACER. Testing occurred on three different days during the physical education class. Rating of perceived exertion (RPE) was reported. Significant correlations (r=-0.598 to 0.312) were found among the three aerobic fitness tests administered (P<0.05). The RPE for the "Jackie Chan Action Run" was lower than the RPE for the 1-mile run/walk and the PACER (3.81±1.89, 5.93±1.77, and 5.71±2.14, respectively). The results suggest that the "Jackie Chan Action Run" test could be an alternative to the 1-mile run/walk and PACER, allowing physical education teachers to perform aerobic fitness testing in an indoor setting that requires less space. Also, children may be more willing to participate in the "Jackie Chan Action Run" based on the lower RPE.

  9. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events. ...

  10. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events. ...

  11. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events. ...

  12. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events. ...

  13. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events. ...

  14. The PyCBC search for compact binary mergers in the second run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Dal Canton, Tito; PyCBC Team

    2017-01-01

    The PyCBC software implements a matched-filter search for gravitational-wave signals associated with mergers of compact binaries. During the first observing run of Advanced LIGO, it played a fundamental role in the discovery of the binary-black-hole merger signals GW150914, GW151226 and LVT151012. In preparation for Advanced LIGO's second run, PyCBC has been modified with the goal of increasing the sensitivity of the search, reducing its computational cost and expanding the explored parameter space. The ability to report signals with a latency of tens of seconds and to perform inference on the parameters of the detected signals has also been introduced. I will give an overview of PyCBC and present the new features and their impact.

  15. Running in a minimalist and lightweight shoe is not the same as running barefoot: a biomechanical study.

    PubMed

    Bonacci, Jason; Saunders, Philo U; Hicks, Amy; Rantalainen, Timo; Vicenzino, Bill Guglielmo T; Spratford, Wayne

    2013-04-01

    The purpose of this study was to determine the changes in running mechanics that occur when highly trained runners run barefoot and in a minimalist shoe, and specifically if running in a minimalist shoe replicates barefoot running. Ground reaction force data and kinematics were collected from 22 highly trained runners during overground running while barefoot and in three shod conditions (minimalist shoe, racing flat and the athlete's regular shoe). Three-dimensional net joint moments and subsequent net powers and work were computed using Newton-Euler inverse dynamics. Joint kinematic and kinetic variables were statistically compared between barefoot and shod conditions using a multivariate analysis of variance for repeated measures and standardised mean differences calculated. There were significant differences between barefoot and shod conditions for kinematic and kinetic variables at the knee and ankle, with no differences between shod conditions. Barefoot running demonstrated less knee flexion during midstance, an 11% decrease in the peak internal knee extension and abduction moments and a 24% decrease in negative work done at the knee compared with shod conditions. The ankle demonstrated less dorsiflexion at initial contact, a 14% increase in peak power generation and a 19% increase in the positive work done during barefoot running compared with shod conditions. Barefoot running was different to all shod conditions. Barefoot running changes the amount of work done at the knee and ankle joints and this may have therapeutic and performance implications for runners.

  16. [Value of laparoscopic virtual reality simulator in laparoscopic suture ability training of catechumen].

    PubMed

    Cai, Jian-liang; Zhang, Yi; Sun, Guo-feng; Li, Ning-chen; Zhang, Xiang-hua; Na, Yan-qun

    2012-12-01

    To investigate the value of laparoscopic virtual reality simulator in laparoscopic suture ability training of catechumen. After finishing the virtual reality training of basic laparoscopic skills, 26 catechumen were divided randomly into 2 groups, one group undertook advanced laparoscopic skill (suture technique) training with laparoscopic virtual reality simulator (virtual group), another used laparoscopic box trainer (box group). Using our homemade simulations, before grouping and after training, every trainee performed nephropyeloureterostomy under laparoscopy, the running time, anastomosis quality and proficiency were recorded and assessed. For virtual group, the running time, anastomosis quality and proficiency scores before grouping were (98 ± 11) minutes, 3.20 ± 0.41, 3.47 ± 0.64, respectively, after training were (53 ± 8) minutes, 6.87 ± 0.74, 6.33 ± 0.82, respectively, all the differences were statistically significant (all P < 0.01). In box group, before grouping were (98 ± 10) minutes, 3.17 ± 0.39, 3.42 ± 0.67, respectively, after training were (52 ± 9) minutes, 6.08 ± 0.90, 6.33 ± 0.78, respectively, all the differences also were statistically significant (all P < 0.01). After training, the running time and proficiency scores of virtual group were similar to box group (all P > 0.05), however, anstomosis quality scores in virtual group were higher than in box group (P = 0.02). The laparoscopic virtual reality simulator is better than traditional box trainer in advanced laparoscopic suture ability training of catechumen.

  17. RNA-Sequencing Reveals Unique Transcriptional Signatures of Running and Running-Independent Environmental Enrichment in the Adult Mouse Dentate Gyrus.

    PubMed

    Grégoire, Catherine-Alexandra; Tobin, Stephanie; Goldenstein, Brianna L; Samarut, Éric; Leclerc, Andréanne; Aumont, Anne; Drapeau, Pierre; Fulton, Stephanie; Fernandes, Karl J L

    2018-01-01

    Environmental enrichment (EE) is a powerful stimulus of brain plasticity and is among the most accessible treatment options for brain disease. In rodents, EE is modeled using multi-factorial environments that include running, social interactions, and/or complex surroundings. Here, we show that running and running-independent EE differentially affect the hippocampal dentate gyrus (DG), a brain region critical for learning and memory. Outbred male CD1 mice housed individually with a voluntary running disk showed improved spatial memory in the radial arm maze compared to individually- or socially-housed mice with a locked disk. We therefore used RNA sequencing to perform an unbiased interrogation of DG gene expression in mice exposed to either a voluntary running disk (RUN), a locked disk (LD), or a locked disk plus social enrichment and tunnels [i.e., a running-independent complex environment (CE)]. RNA sequencing revealed that RUN and CE mice showed distinct, non-overlapping patterns of transcriptomic changes versus the LD control. Bio-informatics uncovered that the RUN and CE environments modulate separate transcriptional networks, biological processes, cellular compartments and molecular pathways, with RUN preferentially regulating synaptic and growth-related pathways and CE altering extracellular matrix-related functions. Within the RUN group, high-distance runners also showed selective stress pathway alterations that correlated with a drastic decline in overall transcriptional changes, suggesting that excess running causes a stress-induced suppression of running's genetic effects. Our findings reveal stimulus-dependent transcriptional signatures of EE on the DG, and provide a resource for generating unbiased, data-driven hypotheses for novel mediators of EE-induced cognitive changes.

  18. Deep Learning of Orthographic Representations in Baboons

    PubMed Central

    Hannagan, Thomas; Ziegler, Johannes C.; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords [1]. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process. PMID:24416300

  19. Deep learning of orthographic representations in baboons.

    PubMed

    Hannagan, Thomas; Ziegler, Johannes C; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process.

  20. Cancer Deep Phenotyping Extraction from Electronic Medical Records | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    As sequencing costs continue to decline, a torrent of cancer genomic data is looming. Very soon, our ability to deeply investigate the cancer genome will outpace our ability to correlate these changes with the phenotypes that they produce. We propose the advanced development and extension of a software platform for performing deep phenotype extraction directly from clinical text of cancer patients, with the goal of enabling translational cancer research and precision medicine.

  1. Putting the Deep Biosphere on the Map for Oceanography Courses: Gas Hydrates As a Case Study for the Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Sikorski, J. J.; Briggs, B. R.

    2014-12-01

    The ocean is essential for life on our planet. It covers 71% of the Earth's surface, is the source of the water we drink, the air we breathe, and the food we eat. Yet, the exponential growth in human population is putting the ocean and thus life on our planet at risk. However, based on student evaluations from our introductory oceanography course it is clear that our students have deficiencies in ocean literacy that impact their ability to recognize that the ocean and humans are inextricably connected. Furthermore, life present in deep subsurface marine environments is also interconnected to the study of the ocean, yet the deep biosphere is not typically covered in undergraduate oceanography courses. In an effort to improve student ocean literacy we developed an instructional module on the deep biosphere focused on gas hydrate deposits. Specifically, our module utilizes Google Earth and cutting edge research about microbial life in the ocean to support three inquiry-based activities that each explore different facets of gas hydrates (i.e. environmental controls, biologic controls, and societal implications). The relevant nature of the proposed module also makes it possible for instructors of introductory geology courses to modify module components to discuss related topics, such as climate, energy, and geologic hazards. This work, which will be available online as a free download, is a solid contribution toward increasing the available teaching resources focused on the deep biosphere for geoscience educators.

  2. Fatigue-induced changes in decline running.

    PubMed

    Mizrahi, J; Verbitsky, O; Isakov, E

    2001-03-01

    Study the relation between muscle fatigue during eccentric muscle contractions and kinematics of the legs in downhill running. Decline running on a treadmill was used to acquire data on shock accelerations, muscle activity and kinematics, for comparison with level running. In downhill running, local muscle fatigue is the cause of morphological muscle damage which leads to reduced attenuation of shock accelerations. Fourteen subjects ran on a treadmill above level-running anaerobic threshold speed for 30 min, in level and -4 degrees decline running. The following were monitored: metabolic fatigue by means of respiratory parameters; muscle fatigue of the quadriceps by means of elevation in myoelectric activity; and kinematic parameters including knee and ankle angles and hip vertical excursion by means of computerized videography. Data on shock transmission reported in previous studies were also used. Quadriceps fatigue develops in parallel to an increasing vertical excursion of the hip in the stance phase of running, enabled by larger dorsi flexion of the ankle rather than by increased flexion of the knee. The decrease in shock attenuation can be attributed to quadriceps muscle fatigue in parallel to increased vertical excursion of the hips.

  3. Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.

    PubMed

    Claghorn, Gerald C; Thompson, Zoe; Wi, Kristianna; Van, Lindsay; Garland, Theodore

    2017-03-01

    The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO 2 max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO 2

  4. Impact Accelerations of Barefoot and Shod Running.

    PubMed

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Slow but tenacious: an analysis of running and gripping performance in chameleons.

    PubMed

    Herrel, Anthony; Tolley, Krystal A; Measey, G John; da Silva, Jessica M; Potgieter, Daniel F; Boller, Elodie; Boistel, Renaud; Vanhooydonck, Bieke

    2013-03-15

    Chameleons are highly specialized and mostly arboreal lizards characterized by a suite of derived characters. The grasping feet and tail are thought to be related to the arboreal lifestyle of chameleons, yet specializations for grasping are thought to exhibit a trade-off with running ability. Indeed, previous studies have demonstrated a trade-off between running and clinging performance, with faster species being poorer clingers. Here we investigate the presence of trade-offs by measuring running and grasping performance in four species of chameleon belonging to two different clades (Chamaeleo and Bradypodion). Within each clade we selected a largely terrestrial species and a more arboreal species to test whether morphology and performance are related to habitat use. Our results show that habitat drives the evolution of morphology and performance but that some of these effects are specific to each clade. Terrestrial species in both clades show poorer grasping performance than more arboreal species and have smaller hands. Moreover, hand size best predicts gripping performance, suggesting that habitat use drives the evolution of hand morphology through its effects on performance. Arboreal species also had longer tails and better tail gripping performance. No differences in sprint speed were observed between the two Chamaeleo species. Within Bradypodion, differences in sprint speed were significant after correcting for body size, yet the arboreal species were both better sprinters and had greater clinging strength. These results suggest that previously documented trade-offs may have been caused by differences between clades (i.e. a phylogenetic effect) rather than by design conflicts between running and gripping per se.

  6. Effects of Heavy Strength Training on Running Performance and Determinants of Running Performance in Female Endurance Athletes

    PubMed Central

    Vikmoen, Olav; Raastad, Truls; Seynnes, Olivier; Bergstrøm, Kristoffer; Ellefsen, Stian; Rønnestad, Bent R.

    2016-01-01

    Purpose The purpose of the current study was to investigate the effects of adding strength training to normal endurance training on running performance and running economy in well-trained female athletes. We hypothesized that the added strength training would improve performance and running economy through altered stiffness of the muscle-tendon complex of leg extensors. Methods Nineteen female endurance athletes [maximal oxygen consumption (VO2max): 53±3 ml∙kg-1∙min-1, 5.8 h weekly endurance training] were randomly assigned to either normal endurance training (E, n = 8) or normal endurance training combined with strength training (E+S, n = 11). The strength training consisted of four leg exercises [3 x 4–10 repetition maximum (RM)], twice a week for 11 weeks. Muscle strength, 40 min all-out running distance, running performance determinants and patellar tendon stiffness were measured before and after the intervention. Results E+S increased 1RM in leg exercises (40 ± 15%) and maximal jumping height in counter movement jump (6 ± 6%) and squat jump (9 ± 7%, p < 0.05). This was accompanied by increased muscle fiber cross sectional area of both fiber type I (13 ± 7%) and fiber type II (31 ± 20%) in m. vastus lateralis (p < 0.05), with no change in capillary density in m. vastus lateralis or the stiffness of the patellar tendon. Neither E+S nor E changed running economy, fractional utilization of VO2max or VO2max. There were also no change in running distance during a 40 min all-out running test in neither of the groups. Conclusion Adding heavy strength training to endurance training did not affect 40 min all-out running performance or running economy compared to endurance training only. PMID:26953893

  7. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    PubMed Central

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  8. Reliability and validity of pressure and temporal parameters recorded using a pressure-sensitive insole during running.

    PubMed

    Mann, Robert; Malisoux, Laurent; Brunner, Roman; Gette, Paul; Urhausen, Axel; Statham, Andrew; Meijer, Kenneth; Theisen, Daniel

    2014-01-01

    Running biomechanics has received increasing interest in recent literature on running-related injuries, calling for new, portable methods for large-scale measurements. Our aims were to define running strike pattern based on output of a new pressure-sensitive measurement device, the Runalyser, and to test its validity regarding temporal parameters describing running gait. Furthermore, reliability of the Runalyser measurements was evaluated, as well as its ability to discriminate different running styles. Thirty-one healthy participants (30.3 ± 7.4 years, 1.78 ± 0.10 m and 74.1 ± 12.1 kg) were involved in the different study parts. Eleven participants were instructed to use a rearfoot (RFS), midfoot (MFS) and forefoot (FFS) strike pattern while running on a treadmill. Strike pattern was subsequently defined using a linear regression (R(2)=0.89) between foot strike angle, as determined by motion analysis (1000 Hz), and strike index (SI, point of contact on the foot sole, as a percentage of foot sole length), as measured by the Runalyser. MFS was defined by the 95% confidence interval of the intercept (SI=43.9-49.1%). High agreement (overall mean difference 1.2%) was found between stance time, flight time, stride time and duty factor as determined by the Runalyser and a force-measuring treadmill (n=16 participants). Measurements of the two devices were highly correlated (R ≥ 0.80) and not significantly different. Test-retest intra-class correlation coefficients for all parameters were ≥ 0.94 (n=14 participants). Significant differences (p<0.05) between FFS, RFS and habitual running were detected regarding SI, stance time and stride time (n=24 participants). The Runalyser is suitable for, and easily applicable in large-scale studies on running biomechanics. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Deep Marginalized Sparse Denoising Auto-Encoder for Image Denoising

    NASA Astrophysics Data System (ADS)

    Ma, Hongqiang; Ma, Shiping; Xu, Yuelei; Zhu, Mingming

    2018-01-01

    Stacked Sparse Denoising Auto-Encoder (SSDA) has been successfully applied to image denoising. As a deep network, the SSDA network with powerful data feature learning ability is superior to the traditional image denoising algorithms. However, the algorithm has high computational complexity and slow convergence rate in the training. To address this limitation, we present a method of image denoising based on Deep Marginalized Sparse Denoising Auto-Encoder (DMSDA). The loss function of Sparse Denoising Auto-Encoder is marginalized so that it satisfies both sparseness and marginality. The experimental results show that the proposed algorithm can not only outperform SSDA in the convergence speed and training time, but also has better denoising performance than the current excellent denoising algorithms, including both the subjective and objective evaluation of image denoising.

  10. Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach

    NASA Astrophysics Data System (ADS)

    Manno, Giorgio; Lo Re, Carlo; Ciraolo, Giuseppe

    2017-09-01

    In recent decades in the Mediterranean Sea, high anthropic pressure from increasing economic and touristic development has affected several coastal areas. Today the erosion phenomena threaten human activities and existing structures, and interdisciplinary studies are needed to better understand actual coastal dynamics. Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence. To improve the assessment of the wave run-up uncertainty, a spectral numerical model was used to propagate waves from deep to intermediate water and a Boussinesq-type model for intermediate water up to the swash zone. Tide effects on the uncertainty of shoreline position were evaluated using data collected by a nearby tide gauge. The proposed methodology was applied to an unprotected, dissipative Sicilian beach far from harbors and subjected to intense human activities over the last 20 years. The results show wave run-up and tide errors ranging from 0.12 to 4.5 m and from 1.20 to 1.39 m, respectively.

  11. Mental Fatigue Impairs Intermittent Running Performance.

    PubMed

    Smith, Mitchell R; Marcora, Samuele M; Coutts, Aaron J

    2015-08-01

    The purpose of the study was to investigate the effects of mental fatigue on intermittent running performance. Ten male intermittent team sports players performed two identical self-paced, intermittent running protocols. The two trials were separated by 7 d and preceded, in a randomized-counterbalanced order, by 90 min of either emotionally neutral documentaries (control) or the AX-continuous performance test (AX-CPT; mental fatigue). Subjective ratings of fatigue and vigor were measured before and after these treatments, and motivation was recorded before the intermittent running protocol. Velocity, heart rate, oxygen consumption, blood glucose and lactate concentrations, and ratings of perceived exertion (RPE) were measured throughout the 45-min intermittent running protocol. Session RPE was recorded 30 min after the intermittent running protocol. Subjective ratings of fatigue were higher after the AX-CPT (P = 0.005). This mental fatigue significantly reduced velocity at low intensities (1.28 ± 0.18 m·s vs 1.31 ± 0.17 m·s; P = 0.037), whereas high-intensity running and peak velocities were not significantly affected. Running velocity at all intensities significantly declined over time in both conditions (P < 0.001). Oxygen consumption was significantly lower in the mental fatigue condition (P = 0.007). Other physiological variables, vigor and motivation, were not significantly affected. Ratings of perceived exertion during the intermittent running protocol were not significantly different between conditions despite lower overall velocity in the mental fatigue condition. Session RPE was significantly higher in the mental fatigue condition (P = 0.013). Mental fatigue impairs intermittent running performance. This negative effect of mental fatigue seems to be mediated by higher perception of effort.

  12. Economic barriers to implementation of innovations in health care: is the long run-short run efficiency discrepancy a paradox?

    PubMed

    Adang, Eddy M M; Wensing, Michel

    2008-12-01

    Favourable cost-effectiveness of innovative technologies is more and more a necessary condition for implementation in clinical practice. But proven cost-effectiveness itself does not guarantee successful implementation. The reason for this is a potential discrepancy between long run efficiency, on which cost-effectiveness is based, and short run efficiency. Long run and short run efficiency is dependent upon economies of scale. This paper addresses the potential discrepancy between long run and short run efficiency of innovative technologies in healthcare, explores diseconomies of scale in Dutch hospitals and suggests what strategies might help to overcome hurdles to implement innovations due to that discrepancy.

  13. Joint stiffness and running economy during imposed forefoot strike before and after a long run in rearfoot strike runners.

    PubMed

    Melcher, Daniel A; Paquette, Max R; Schilling, Brian K; Bloomer, Richard J

    2017-12-01

    Research has focused on the effects of acute strike pattern modifications on lower extremity joint stiffness and running economy (RE). Strike pattern modifications on running biomechanics have mostly been studied while runners complete short running bouts. This study examined the effects of an imposed forefoot strike (FFS) on RE and ankle and knee joint stiffness before and after a long run in habitual rearfoot strike (RFS) runners. Joint kinetics and RE were collected before and after a long run. Sagittal joint kinetics were computed from kinematic and ground reaction force data that were collected during over-ground running trials in 13 male runners. RE was measured during treadmill running. Knee flexion range of motion, knee extensor moment and ankle joint stiffness were lower while plantarflexor moment and knee joint stiffness were greater during imposed FFS compared with RFS. The long run did not influence the difference in ankle and knee joint stiffness between strike patterns. Runners were more economical during RFS than imposed FFS and RE was not influenced by the long run. These findings suggest that using a FFS pattern towards the end of a long run may not be mechanically or metabolically beneficial for well-trained male RFS runners.

  14. Out of Their Depth? Isolated Deep Populations of the Cosmopolitan Coral Desmophyllum dianthus May Be Highly Vulnerable to Environmental Change

    PubMed Central

    Miller, Karen J.; Rowden, Ashley A.; Williams, Alan; Häussermann, Vreni

    2011-01-01

    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations. PMID

  15. Voluntary resistance running induces increased hippocampal neurogenesis in rats comparable to load-free running.

    PubMed

    Lee, Min Chul; Inoue, Koshiro; Okamoto, Masahiro; Liu, Yu Fan; Matsui, Takashi; Yook, Jang Soo; Soya, Hideaki

    2013-03-14

    Recently, we reported that voluntary resistance wheel running with a resistance of 30% of body weight (RWR), which produces shorter distances but higher work levels, enhances spatial memory associated with hippocampal brain-derived neurotrophic factor (BDNF) signaling compared to wheel running without a load (WR) [17]. We thus hypothesized that RWR promotes adult hippocampal neurogenesis (AHN) as a neuronal substrate underlying this memory improvement. Here we used 10-week-old male Wistar rats divided randomly into sedentary (Sed), WR, and RWR groups. All rats were injected intraperitoneally with the thymidine analogue 5-Bromo-2'-deoxuridine (BrdU) for 3 consecutive days before wheel running. We found that even when the average running distance decreased by about half, the average work levels significantly increased in the RWR group, which caused muscular adaptation (oxidative capacity) for fast-twitch plantaris muscle without causing any negative stress effects. Additionally, immunohistochemistry revealed that the total BrdU-positive cells and newborn mature cells (BrdU/NeuN double-positive) in the dentate gyrus increased in both the WR and RWR groups. These results provide new evidence that RWR has beneficial effects on AHN comparable to WR, even with short running distances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Physiologic Responses to Treadmill and Water Running.

    ERIC Educational Resources Information Center

    Bishop, Phillip A.; And Others

    1989-01-01

    Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)

  17. Deep Brain Stimulation using Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jiles, David; Williams, Paul; Crowther, Lawrence; Iowa State University Team; Wolfson CentreMagnetics Team

    2011-03-01

    New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore so is the demand for improved performance, particularly in terms of their ability to stimulate deeper regions of the brain and to do so selectively. The coil designs that are used presently are limited in their ability to stimulate the brain at depth and with high spatial focality. Consequently, any improvement in coil performance would have a significant impact in extending the usefulness of TMS in both clinical applications and academic research studies. New and improved coil designs have then been developed, modeled and tested as a result of this work. A large magnetizing coil, 300mm in diameter and compatible with a commercial TMS system has been constructed to determine its feasibility for use as a deep brain stimulator. The results of this work have suggested directions that could be pursued in order to further improve the coil designs.

  18. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy.

    PubMed

    Moore, Isabel S

    2016-06-01

    Running economy (RE) has a strong relationship with running performance, and modifiable running biomechanics are a determining factor of RE. The purposes of this review were to (1) examine the intrinsic and extrinsic modifiable biomechanical factors affecting RE; (2) assess training-induced changes in RE and running biomechanics; (3) evaluate whether an economical running technique can be recommended and; (4) discuss potential areas for future research. Based on current evidence, the intrinsic factors that appeared beneficial for RE were using a preferred stride length range, which allows for stride length deviations up to 3 % shorter than preferred stride length; lower vertical oscillation; greater leg stiffness; low lower limb moment of inertia; less leg extension at toe-off; larger stride angles; alignment of the ground reaction force and leg axis during propulsion; maintaining arm swing; low thigh antagonist-agonist muscular coactivation; and low activation of lower limb muscles during propulsion. Extrinsic factors associated with a better RE were a firm, compliant shoe-surface interaction and being barefoot or wearing lightweight shoes. Several other modifiable biomechanical factors presented inconsistent relationships with RE. Running biomechanics during ground contact appeared to play an important role, specifically those during propulsion. Therefore, this phase has the strongest direct links with RE. Recurring methodological problems exist within the literature, such as cross-comparisons, assessing variables in isolation, and acute to short-term interventions. Therefore, recommending a general economical running technique should be approached with caution. Future work should focus on interdisciplinary longitudinal investigations combining RE, kinematics, kinetics, and neuromuscular and anatomical aspects, as well as applying a synergistic approach to understanding the role of kinetics.

  19. An Energy-Efficient and Scalable Deep Learning/Inference Processor With Tetra-Parallel MIMD Architecture for Big Data Applications.

    PubMed

    Park, Seong-Wook; Park, Junyoung; Bong, Kyeongryeol; Shin, Dongjoo; Lee, Jinmook; Choi, Sungpill; Yoo, Hoi-Jun

    2015-12-01

    Deep Learning algorithm is widely used for various pattern recognition applications such as text recognition, object recognition and action recognition because of its best-in-class recognition accuracy compared to hand-crafted algorithm and shallow learning based algorithms. Long learning time caused by its complex structure, however, limits its usage only in high-cost servers or many-core GPU platforms so far. On the other hand, the demand on customized pattern recognition within personal devices will grow gradually as more deep learning applications will be developed. This paper presents a SoC implementation to enable deep learning applications to run with low cost platforms such as mobile or portable devices. Different from conventional works which have adopted massively-parallel architecture, this work adopts task-flexible architecture and exploits multiple parallelism to cover complex functions of convolutional deep belief network which is one of popular deep learning/inference algorithms. In this paper, we implement the most energy-efficient deep learning and inference processor for wearable system. The implemented 2.5 mm × 4.0 mm deep learning/inference processor is fabricated using 65 nm 8-metal CMOS technology for a battery-powered platform with real-time deep inference and deep learning operation. It consumes 185 mW average power, and 213.1 mW peak power at 200 MHz operating frequency and 1.2 V supply voltage. It achieves 411.3 GOPS peak performance and 1.93 TOPS/W energy efficiency, which is 2.07× higher than the state-of-the-art.

  20. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    PubMed

    Verheul, Jasper; Clansey, Adam C; Lake, Mark J

    2017-03-01

    It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; <15 km/wk, n = 13) runners ran at four speeds (2.5-5.5 m/s) while lower limb mechanics and electromyography of the thigh muscles were collected. There were few differences in prelanding activation levels, but HM runners displayed lower activations of the rectus femoris, vastus medialis, and semitendinosus muscles postlanding, and these differences increased with running speed. HM runners also demonstrated higher initial knee stiffness during the impact phase compared with LM runners, which was associated with an earlier peak knee flexion velocity, and both were relatively unchanged by running speed. In contrast, LM runners had higher knee stiffness during the slightly later weight acceptance phase and the disparity was amplified with increases in speed. It was concluded that initial knee joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training. NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by

  1. Deep features for efficient multi-biometric recognition with face and ear images

    NASA Astrophysics Data System (ADS)

    Omara, Ibrahim; Xiao, Gang; Amrani, Moussa; Yan, Zifei; Zuo, Wangmeng

    2017-07-01

    Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.

  2. Run Island, Indonesia

    NASA Image and Video Library

    2017-11-28

    In 1667, the Dutch exchanged Run Island (left-most in the image) with the British for Manhattan (renamed from New Amsterdam to New York). Run Island is one of the smallest, and western-most, of the Banda Islands, part of the Malukus, Indonesia. At the time it was the only source of the incredibly valuable spices nutmeg and mace. The image was acquired January 5, 2016, covers an area of 15.7 by 34.8 kilometers, and is located at 4.5 degrees south, 129.7 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22133

  3. [Ultrasound examination for lower extremity deep vein thrombosis].

    PubMed

    Toyota, Kosaku

    2014-09-01

    Surgery is known to be a major risk factor of vein thrombosis. Progression from lower extremity deep vein thrombosis (DVT) to pulmonary embolism can lead to catastrophic outcome, although the incidence ratio is low. The ability to rule in or rule out DVT is becoming essential for anesthesiologists. Non-invasive technique of ultrasonography is a sensitive and specific tool for the assessment of lower extremity DVT. This article introduces the basics and practical methods of ultrasound examination for lower extremity DVT.

  4. Run 16, eIPM Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, R.; Dawson, C.; Jao, S.

    2016-08-05

    Three problems with the eIPMs were corrected during the 2015 summer shutdown. These involved ac coupling and 'negative profiles', detector 'dead zone' created by biasing, and gain control on ramp. With respect to Run 16, problems dealt with included gain depletion on horizontal MCP and rf pickup on profile signals; it was found that the MCP was severely damaged over part of the aperture. Various corrective measures were applied. Some results of these measured obtained during Run 16 are shown. At the end of Run 16 there was a three-­day beam run to study polarized proton beams in the AGS.more » Attempts to minimize beam injection errors which increase emittance by using the eIPMs to measure the contribution of injection mismatch to the AGS output beam emittance are recounted. .« less

  5. Negative running can prevent eternal inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, William H.; Freese, Katherine, E-mail: whkinney@buffalo.edu, E-mail: ktfreese@umich.edu

    Current data from the Planck satellite and the BICEP2 telescope favor, at around the 2 σ level, negative running of the spectral index of curvature perturbations from inflation. We show that for negative running α < 0, the curvature perturbation amplitude has a maximum on scales larger than our current horizon size. A condition for the absence of eternal inflation is that the curvature perturbation amplitude always remain below unity on superhorizon scales. For current bounds on n{sub S} from Planck, this corresponds to an upper bound of the running α < −9 × 10{sup −5}, so that even tiny running of the scalar spectral index ismore » sufficient to prevent eternal inflation from occurring, as long as the running remains negative on scales outside the horizon. In single-field inflation models, negative running is associated with a finite duration of inflation: we show that eternal inflation may not occur even in cases where inflation lasts as long as 10{sup 4} e-folds.« less

  6. Hints from Run 1 and prospects from Run 2 at ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernius, Catrin, E-mail: Catrin.Bernius@cern.ch

    2016-06-21

    The Large Hadron Collider at CERN has allowed the ATLAS experiment to collect a large amount of proton-proton collision data at 7 TeV and 8 TeV centre-of-mass energies throughout Run 1. This dataset was used to discover a Higgs boson with Standard Model-like properties at a mass of about 125 GeV. Furthermore, an impressive number of searches for deviations from the Standard Model expectations have been carried out. To date, no evidence for new physics beyond the SM has been found. However, a few hints in form of 2-3 σ deviations have been observed. After an 18-month shutdown, in whichmore » the ATLAS detector has undergone various upgrades, the LHC has again started to deliver collision data at an increased centre-of-mass energy of 13 TeV, providing a much improved sensitivity for various searches, in particular for high mass particles. Some representative hints at the LHC Run 1 are presented, a brief overview of ATLAS upgrades and prospects for SUSY searches with early Run 2 data are given.« less

  7. Semantically-enabled Knowledge Discovery in the Deep Carbon Observatory

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.; Ma, X.; Erickson, J. S.; West, P.; Fox, P. A.

    2013-12-01

    The Deep Carbon Observatory (DCO) is a decadal effort aimed at transforming scientific and public understanding of carbon in the complex deep earth system from the perspectives of Deep Energy, Deep Life, Extreme Physics and Chemistry, and Reservoirs and Fluxes. Over the course of the decade DCO scientific activities will generate a massive volume of data across a variety of disciplines, presenting significant challenges in terms of data integration, management, analysis and visualization, and ultimately limiting the ability of scientists across disciplines to make insights and unlock new knowledge. The DCO Data Science Team (DCO-DS) is applying Semantic Web methodologies to construct a knowledge representation focused on the DCO Earth science disciplines, and use it together with other technologies (e.g. natural language processing and data mining) to create a more expressive representation of the distributed corpus of DCO artifacts including datasets, metadata, instruments, sensors, platforms, deployments, researchers, organizations, funding agencies, grants and various awards. The embodiment of this knowledge representation is the DCO Data Science Infrastructure, in which unique entities within the DCO domain and the relations between them are recognized and explicitly identified. The DCO-DS Infrastructure will serve as a platform for more efficient and reliable searching, discovery, access, and publication of information and knowledge for the DCO scientific community and beyond.

  8. Running stride peak forces inversely determine running economy in elite runners.

    PubMed

    Støren, Øyvind; Helgerud, Jan; Hoff, Jan

    2011-01-01

    The present study investigated the relationship between running economy (RE) at 15 km/h(-1) , 3.000-m race time, maximal strength, and a number of physiological, anthropometrical, and mechanical variables. The variables measured included RE, maximal oxygen consumption, heart rate, step length and frequency, contact time, and the peak horizontal and vertical forces of each step. Maximal strength was measured as the 1 repetition maximum (1RM) half-squat using a leg press machine. Eleven male elite endurance athletes with a V(O2)max of 75.8 ± 6.2 mL/kg(-1)/min(-1) participated in this study. After the anthropometric data were collected, they were tested for RE, running characteristics, and force measures on a level treadmill at 15 km/h(-1). The athletes wore contact soles, and the treadmill was placed on a force platform. Maximal oxygen consumption and 1RM were tested after the RE measurements. The sum of horizontal and vertical peak forces revealed a significant inverse correlation (p < 0.05) both with 3,000-m performance (R = 0.71) and RE (R = 0.66). Inverse correlations were also found (p < 0.05) between RE and body height (R = 0.61) and between RE and body fat percentage (R = 0.62). In conclusion, the sum of horizontal and vertical peak forces was found to be negatively correlated to running economy and 3,000-m running performance, indicating that avoiding vertical movements and high horizontal braking force is crucial for a positive development of RE.

  9. Effect of sucrose availability and pre-running on the intrinsic value of wheel running as an operant and a reinforcing consequence.

    PubMed

    Belke, Terry W; Pierce, W David

    2014-03-01

    The current study investigated the effect of motivational manipulations on operant wheel running for sucrose reinforcement and on wheel running as a behavioral consequence for lever pressing, within the same experimental context. Specifically, rats responded on a two-component multiple schedule of reinforcement in which lever pressing produced the opportunity to run in a wheel in one component of the schedule (reinforcer component) and wheel running produced the opportunity to consume sucrose solution in the other component (operant component). Motivational manipulations involved removal of sucrose contingent on wheel running and providing 1h of pre-session wheel running. Results showed that, in opposition to a response strengthening view, sucrose did not maintain operant wheel running. The motivational operations of withdrawing sucrose or providing pre-session wheel running, however, resulted in different wheel-running rates in the operant and reinforcer components of the multiple schedule; this rate discrepancy revealed the extrinsic reinforcing effects of sucrose on operant wheel running, but also indicated the intrinsic reinforcement value of wheel running across components. Differences in wheel-running rates between components were discussed in terms of arousal, undermining of intrinsic motivation, and behavioral contrast. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. [Facts and fiction about running shoes].

    PubMed

    Schelde, Jacob

    2012-11-26

    Running as a means of exercise is becoming increasingly popular, but the rate of injury is very high among runners. To prevent running-related injuries much attention has been given the running shoe and its construction, particular its shock-absorbing capabilities and motion control features. It is recommended that running shoes should be purchased based on the runner's medial arch height and degree of pronation, and that the shoes should be changed frequently as their shock-absorbing capabilities decrease with usage. Randomized controlled trials and other studies in the scientific literature do not support these recommendations.

  11. The 5- or 10-km Marikenloop Run: A Prospective Study of the Etiology of Running-Related Injuries in Women.

    PubMed

    van der Worp, Maarten P; de Wijer, Anton; van Cingel, Robert; Verbeek, André L M; Nijhuis-van der Sanden, Maria W G; Staal, J Bart

    2016-06-01

    Study Design Prospective cohort. Background The popularity of running events is still growing, particularly among women; however, little is known about the risk factors for running-related injuries in female runners. Objectives The aims of this study were to determine the incidence and characteristics (site and recurrence) of running-related injuries and to identify specific risk factors for running-related injuries among female runners training for a 5- or 10-km race. Methods Four hundred thirty-five women registered for the Marikenloop run of 5 or 10 km were recruited. Follow-up data were collected over 12 weeks using questionnaires, starting 8 weeks before the event and ending 4 weeks after the event. Two orthopaedic tests (navicular drop test and extension of the first metatarsophalangeal joint) were performed in the 8 weeks before the event. Running-related injuries, defined as running-related pain of the lower back and/or the lower extremity that restricted running for at least 1 day, were assessed at 1-, 2-, and 3-month follow-ups. Results Of 417 female runners with follow-up data (96%), 93 runners (22.3%) reported 109 running-related injuries, mainly of the hip/groin, knee, and lower leg. Multivariable Cox regression analysis showed that a weekly training distance of more than 30 km (hazard ratio = 3.28; 95% confidence interval [CI]: 1.23, 8.75) and a previous running injury longer than 12 months prior (hazard ratio = 1.88; 95% CI: 1.03, 3.45) were associated with the occurrence of running-related injuries. Conclusion Hip/groin, knee, and lower-leg injuries were common among female runners. Only weekly training distance (greater than 30 km) and previous running injury (greater than 12 months prior) were associated with running-related injuries in female runners training for a 5- or 10-km event. Level of Evidence Etiology, 2b. J Orthop Sports Phys Ther 2016;46(6):462-470. Epub 26 Apr 2016. doi:10.2519/jospt.2016.6402.

  12. 29 CFR 452.30 - Run-off elections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice of...

  13. 29 CFR 452.30 - Run-off elections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice of...

  14. Development and Prevention of Running-Related Osteoarthritis.

    PubMed

    Ni, Guo-Xin

    2016-01-01

    Studies investigating the effect of running on risk for developing osteoarthritis at weight-bearing joints have reported with conflicting results. Generally, moderate-level running is not likely detrimental to joint health. However, many factors may be associated with the increased risk of developing osteoarthritis in runners. Factors often implicated in the development of osteoarthritis comprise those that increase joint vulnerability and those which increase joint loading. It is therefore suggested that running has different effects on different people. Efforts should be made to identify those with joint vulnerability and joint loading, and measures should be taken to have those factors and/or their running programs modified to run safely. Further investigations are needed to examine the effect of running on joint health under different conditions to confirm the association between exposure to risk factors and development of osteoarthritis, as well as to validate the effectiveness of measures for preventing running-related osteoarthritis.

  15. Influence of running shoes and cross-trainers on Achilles tendon forces during running compared with military boots.

    PubMed

    Sinclair, Jonathan; Taylor, P J; Atkins, S

    2015-06-01

    Military recruits are known to be susceptible to Achilles tendon pathology. The British Army have introduced footwear models, the PT-03 (cross-trainer) and PT1000 (running shoes), in an attempt to reduce the incidence of injuries. The aim of the current investigation was to examine the Achilles tendon forces of the cross-trainer and running shoe in relation to conventional army boots. Ten male participants ran at 4.0 m/s in each footwear condition. Achilles tendon forces were obtained throughout the stance phase of running and compared using repeated-measures ANOVAs. The results showed that the time to peak Achilles tendon force was significantly shorter when running in conventional army boots (0.12 s) in comparison with the cross-trainer (0.13 s) and running shoe (0.13 s). Achilles tendon loading rate was shown to be significantly greater in conventional army boots (38.73 BW/s) in comparison with the cross-trainer (35.14 BW/s) and running shoe (33.57 BW/s). The results of this study suggest that the running shoes and cross-trainer footwear are associated with reductions in Achilles tendon parameters that have been linked to the aetiology of injury, and thus it can be hypothesised that these footwear could be beneficial for military recruits undertaking running exercises. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. The Influence Of Team Rating On Running Performance In Elite Gaelic Football.

    PubMed

    Mangan, Shane; Malone, Shane; Ryan, Martin; Gahan, Jason Mc; Warne, Joe; Martin, Denise; O'Neill, Cian; Burns, Con; Collins, Kieran

    2017-11-06

    It is currently unknown how team rating influences running performance in Gaelic football. GPS technologies were used to quantify match-running performance within 5 elite Gaelic football teams over a period of 5 years (2012-2016). In total 780 player data sets were collected over 95 matches. Running performance variables included total distance, high-speed distance (≥17 km h) and the percentage of high-speed distance. Team ratings were determined objectively using the Elo Ratings System for Gaelic football. Reference team rating had trivial effects on total distance (p = 0.011, partial η2 = 0.008) and high-speed distance (p = 0.011, partial η2 = 0.008). Opposition team rating had small effects on total distance (p = 0.005, partial η2 = 0.016) and high-speed distance (p = 0.001, partial η2 = 0.020). Top tier teams cover greater total distances and high-speed distance than lower tier teams. Players cover considerably less total distance and high-speed distance against tier 3 and tier 4 teams. Tier 1 players ran a significantly higher percentage of distance at high-speed, than players who played for tier 2 teams (p = 0.020). The competitive advantage of top tier Gaelic football teams is closely linked with their ability to demonstrate a higher physical intensity than lower tier teams.

  17. Students' Gender Stereotypes about Running in Schools

    ERIC Educational Resources Information Center

    Xiang, Ping; McBride, Ron E.; Lin, Shuqiong; Gao, Zan; Francis, Xueying

    2018-01-01

    Two hundred forty-six students (132 boys, 114 girls) were tracked from fifth to eighth grades, and changes in gender stereotypes about running as a male sport, running performance, interest in running, and intention for future running participation were assessed. Results revealed that neither sex held gender stereotypes about running as a male…

  18. Ground reaction forces in shallow water running are affected by immersion level, running speed and gender.

    PubMed

    Haupenthal, Alessandro; Fontana, Heiliane de Brito; Ruschel, Caroline; dos Santos, Daniela Pacheco; Roesler, Helio

    2013-07-01

    To analyze the effect of depth of immersion, running speed and gender on ground reaction forces during water running. Controlled laboratory study. Twenty adults (ten male and ten female) participated by running at two levels of immersion (hip and chest) and two speed conditions (slow and fast). Data were collected using an underwater force platform. The following variables were analyzed: vertical force peak (Fy), loading rate (LR) and anterior force peak (Fx anterior). Three-factor mixed ANOVA was used to analyze data. Significant effects of immersion level, speed and gender on Fy were observed, without interaction between factors. Fy was greater when females ran fast at the hip level. There was a significant increase in LR with a reduction in the level of immersion regardless of the speed and gender. No effect of speed or gender on LR was observed. Regarding Fx anterior, significant interaction between speed and immersion level was found: in the slow condition, participants presented greater values at chest immersion, whereas, during the fast running condition, greater values were observed at hip level. The effect of gender was only significant during fast water running, with Fx anterior being greater in the men group. Increasing speed raised Fx anterior significantly irrespective of the level of immersion and gender. The magnitude of ground reaction forces during shallow water running are affected by immersion level, running speed and gender and, for this reason, these factors should be taken into account during exercise prescription. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Does the Deep Layer of the Deep Temporalis Fascia Really Exist?

    PubMed

    Li, Hui; Li, Kaide; Jia, Wenhao; Han, Chaoying; Chen, Jinlong; Liu, Lei

    2018-04-14

    It has been widely accepted that a split of the deep temporal fascia occurs approximately 2 to 3 cm above the zygomatic arch and extends into the superficial and deep layers. The deep layer of the deep temporal fascia is between the superficial temporal fat pad and the temporal muscle. However, during procedures, the authors noted the absence of the deep layer of the deep temporal fascia between the superficial temporal fat pad and the temporal muscle. This prospective study was conducted to clarify the presence or absence of a deep layer of the deep temporal fascia. Anatomic layers of the soft tissues of the temporal region, with reference to the deep temporal fascia, were investigated in 130 cases operated on for zygomaticofacial fractures using the supratemporal approach from June 2013 to June 2017. Of 130 surgeries, the authors found the absence of a thick, obviously identifiable, fascial layer between the superficial temporal fat pad and the temporal muscle. In fact, the authors found nothing above the temporal muscle in most cases. In a few cases, the authors observed only a small amount of scattered loose connective tissue between the superficial temporal fat pad and the temporal muscle. This clinical study showed the absence of a thick, obviously identifiable, fascial layer between the superficial temporal fat pad and the temporal muscle, which suggests that a "deep layer of the deep temporal fascia" might not exist. Copyright © 2018. Published by Elsevier Inc.

  20. Stable microwave radiometry system for long term monitoring of deep tissue temperature

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-02-01

    Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface

  1. Stable Microwave Radiometry System for Long Term Monitoring of Deep Tissue Temperature.

    PubMed

    Stauffer, Paul R; Rodriques, Dario B; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W; Maccarini, Paolo F

    2013-02-26

    There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the

  2. Coordinating the 2009 RHIC Run

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookhaven Lab - Mei Bai

    2009-04-13

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  3. Coordinating the 2009 RHIC Run

    ScienceCinema

    Brookhaven Lab - Mei Bai

    2017-12-09

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  4. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics

    PubMed Central

    Fukuchi, Claudiane A.; Duarte, Marcos

    2017-01-01

    Background The goals of this study were (1) to present the set of data evaluating running biomechanics (kinematics and kinetics), including data on running habits, demographics, and levels of muscle strength and flexibility made available at Figshare (DOI: 10.6084/m9.figshare.4543435); and (2) to examine the effect of running speed on selected gait-biomechanics variables related to both running injuries and running economy. Methods The lower-extremity kinematics and kinetics data of 28 regular runners were collected using a three-dimensional (3D) motion-capture system and an instrumented treadmill while the subjects ran at 2.5 m/s, 3.5 m/s, and 4.5 m/s wearing standard neutral shoes. Results A dataset comprising raw and processed kinematics and kinetics signals pertaining to this experiment is available in various file formats. In addition, a file of metadata, including demographics, running characteristics, foot-strike patterns, and muscle strength and flexibility measurements is provided. Overall, there was an effect of running speed on most of the gait-biomechanics variables selected for this study. However, the foot-strike patterns were not affected by running speed. Discussion Several applications of this dataset can be anticipated, including testing new methods of data reduction and variable selection; for educational purposes; and answering specific research questions. This last application was exemplified in the study’s second objective. PMID:28503379

  5. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics.

    PubMed

    Fukuchi, Reginaldo K; Fukuchi, Claudiane A; Duarte, Marcos

    2017-01-01

    The goals of this study were (1) to present the set of data evaluating running biomechanics (kinematics and kinetics), including data on running habits, demographics, and levels of muscle strength and flexibility made available at Figshare (DOI: 10.6084/m9.figshare.4543435); and (2) to examine the effect of running speed on selected gait-biomechanics variables related to both running injuries and running economy. The lower-extremity kinematics and kinetics data of 28 regular runners were collected using a three-dimensional (3D) motion-capture system and an instrumented treadmill while the subjects ran at 2.5 m/s, 3.5 m/s, and 4.5 m/s wearing standard neutral shoes. A dataset comprising raw and processed kinematics and kinetics signals pertaining to this experiment is available in various file formats. In addition, a file of metadata, including demographics, running characteristics, foot-strike patterns, and muscle strength and flexibility measurements is provided. Overall, there was an effect of running speed on most of the gait-biomechanics variables selected for this study. However, the foot-strike patterns were not affected by running speed. Several applications of this dataset can be anticipated, including testing new methods of data reduction and variable selection; for educational purposes; and answering specific research questions. This last application was exemplified in the study's second objective.

  6. Running injuries - changing trends and demographics.

    PubMed

    Fields, Karl B

    2011-01-01

    Running injuries are common. Recently the demographic has changed, in that most runners in road races are older and injuries now include those more common in master runners. In particular, Achilles/calf injuries, iliotibial band injury, meniscus injury, and muscle injuries to the hamstrings and quadriceps represent higher percentages of the overall injury mix in recent epidemiologic studies compared with earlier ones. Evidence suggests that running mileage and previous injury are important predictors of running injury. Evidence-based research now helps guide the treatment of iliotibial band, patellofemoral syndrome, and Achilles tendinopathy. The use of topical nitroglycerin in tendinopathy and orthotics for the treatment of patellofemoral syndrome has moderate to strong evidence. Thus, more current knowledge about the changing demographics of runners and the application of research to guide treatment and, eventually, prevent running injury offers hope that clinicians can help reduce the high morbidity associated with long-distance running.

  7. Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization.

    PubMed

    Rankin, Jeffery W; Rubenson, Jonas; Hutchinson, John R

    2016-05-01

    Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb muscles during gait. Existing gait data were combined with a newly developed musculoskeletal model to generate simulations of ostrich walking and running that predict muscle excitations, force and mechanical work. Consistent with previous avian electromyography studies, predicted excitation patterns showed that individual muscles tended to be excited primarily during only stance or swing. Work and force estimates show that ostrich gaits are partially hip-driven with the bi-articular hip-knee muscles driving stance mechanics. Conversely, the knee extensors acted as brakes, absorbing energy. The digital extensors generated large amounts of both negative and positive mechanical work, with increased magnitudes during running, providing further evidence that ostriches make extensive use of tendinous elastic energy storage to improve economy. The simulations also highlight the need to carefully consider non-muscular soft tissues that may play a role in ostrich gait. © 2016 The Authors.

  8. Improving deep convolutional neural networks with mixed maxout units.

    PubMed

    Zhao, Hui-Zhen; Liu, Fu-Xian; Li, Long-Yue

    2017-01-01

    Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.

  9. Improving deep convolutional neural networks with mixed maxout units

    PubMed Central

    Liu, Fu-xian; Li, Long-yue

    2017-01-01

    Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that “non-maximal features are unable to deliver” and “feature mapping subspace pooling is insufficient,” we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance. PMID:28727737

  10. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning.

    PubMed

    Norouzzadeh, Mohammad Sadegh; Nguyen, Anh; Kosmala, Margaret; Swanson, Alexandra; Palmer, Meredith S; Packer, Craig; Clune, Jeff

    2018-06-19

    Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would improve our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into "big data" sciences. Motion-sensor "camera traps" enable collecting wildlife pictures inexpensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2 million-image Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with >93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving >8.4 y (i.e., >17,000 h at 40 h/wk) of human labeling effort on this 3.2 million-image dataset. Those efficiency gains highlight the importance of using deep neural networks to automate data extraction from camera-trap images, reducing a roadblock for this widely used technology. Our results suggest that deep learning could enable the inexpensive, unobtrusive, high-volume, and even real-time collection of a wealth of information about vast numbers of animals in the wild. Copyright © 2018 the Author(s). Published by PNAS.

  11. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Alan Black; Homer Robertson

    2006-03-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program

  12. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    PubMed

    Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  13. Two Dimensional Movement Patterns of Juvenile Winter Run and Late Fall Run Chinook Salmon at the Fremont Weir, Sacramento River, CA

    DTIC Science & Technology

    2017-07-01

    ER D C/ EL T R- 17 -1 0 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...default. ERDC/EL TR-17-10 July 2017 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...Sacramento River, smaller winter- run Chinook and larger late-fall- run Chinook salmon were tagged and released into a 2D telemetry array dur- ing the

  14. Phenotypic and molecular differences between rats selectively bred to voluntarily run high vs. low nightly distances

    PubMed Central

    Roberts, Michael D.; Brown, Jacob D.; Company, Joseph M.; Oberle, Lauren P.; Heese, Alexander J.; Toedebusch, Ryan G.; Wells, Kevin D.; Cruthirds, Clayton L.; Knouse, John A.; Ferreira, J. Andries; Childs, Thomas E.; Brown, Marybeth

    2013-01-01

    The purpose of the present study was to partially phenotype male and female rats from generations 8–10 (G8–G10) that had been selectively bred to possess low (LVR) vs. high voluntary running (HVR) behavior. Over the first 6 days with wheels, 34-day-old G8 male and female LVRs ran shorter distances (P < 0.001), spent less time running (P < 0.001), and ran slower (P < 0.001) than their G8 male and female HVR counterparts, respectively. HVR and LVR lines consumed similar amounts of standard chow with or without wheels. No inherent difference existed in PGC-1α mRNA in the plantaris and soleus muscles of LVR and HVR nonrunners, although G8 LVR rats inherently possessed less NADH-positive superficial plantaris fibers compared with G8 HVR rats. While day 28 body mass tended to be greater in both sexes of G9–G10 LVR nonrunners vs. G9–G10 HVR nonrunners (P = 0.06), body fat percentage was similar between lines. G9–G10 HVRs had fat mass loss after 6 days of running compared with their prerunning values, while LVR did not lose or gain fat mass during the 6-day voluntary running period. RNA deep sequencing efforts in the nucleus accumbens showed only eight transcripts to be >1.5-fold differentially expressed between lines in HVR and LVR nonrunners. Interestingly, HVRs presented less Oprd1 mRNA, which ties in to potential differences in dopaminergic signaling between lines. This unique animal model provides further evidence as to how exercise may be mechanistically regulated. PMID:23552494

  15. A deep reef in deep trouble

    USGS Publications Warehouse

    Menza, Charles; Kendall, M.; Rogers, C.; Miller, J.

    2007-01-01

    The well-documented degradation of shallower reefs which are often closer to land and more vulnerable to pollution, sewage and other human-related stressors has led to the suggestion that deeper, more remote offshore reefs could possibly serve as sources of coral and fish larvae to replenish the shallower reefs. Yet, the distribution, status, and ecological roles of deep (>30 m) Caribbean reefs are not well known. In this report, an observation of a deep reef which has undergone a recent extensive loss of coral cover is presented. In stark contrast to the typical pattern of coral loss in shallow reefs, the deeper corals were most affected. This report is the first description of such a pattern of coral loss on a deep reef.

  16. Interpreter training for medical students: pilot implementation and assessment in a student-run clinic.

    PubMed

    Diaz, Jennifer E L; Ekasumara, Nydia; Menon, Nikhil R; Homan, Edwin; Rajarajan, Prashanth; Zamudio, Andrés Ramírez; Kim, Annie J; Gruener, Jason; Poliandro, Edward; Thomas, David C; Meah, Yasmin S; Soriano, Rainier P

    2016-09-29

    Trained medical interpreters are instrumental to patient satisfaction and quality of care. They are especially important in student-run clinics, where many patients have limited English proficiency. Because student-run clinics have ties to their medical schools, they have access to bilingual students who may volunteer to interpret, but are not necessarily formally trained. To study the feasibility and efficacy of leveraging medical student volunteers to improve interpretation services, we performed a pilot study at the student-run clinic at the Icahn School of Medicine at Mount Sinai. In each fall semester in 2012-2015, we implemented a 6-h course providing didactic and interactive training on medical Spanish interpreting techniques and language skills to bilingual students. We then assessed the impact of the course on interpreter abilities. Participants' comfort levels, understanding of their roles, and understanding of terminology significantly increased after the course (p < 0.05), and these gains remained several months later (p < 0.05) and were repeated in an independent cohort. Patients and student clinicians also rated participants highly (averages above 4.5 out of 5) on these measures in real clinical encounters. These findings suggest that a formal interpreter training course tailored for medical students in the setting of a student-run clinic is feasible and effective. This program for training qualified student interpreters can serve as a model for other settings where medical students serve as interpreters.

  17. Running Economy from a Muscle Energetics Perspective

    PubMed Central

    Fletcher, Jared R.; MacIntosh, Brian R.

    2017-01-01

    The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun) can be obtained with this approach. Erun is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of Erun from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting Erun are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics. PMID:28690549

  18. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1

  19. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning

    PubMed Central

    Preuer, Kristina; Lewis, Richard P I; Hochreiter, Sepp; Bender, Andreas; Bulusu, Krishna C; Klambauer, Günter

    2018-01-01

    Abstract Motivation While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies. Results DeepSynergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug combinations. Availability and implementation DeepSynergy is available via www.bioinf.jku.at/software/DeepSynergy. Contact klambauer

  20. Gravitational baryogenesis in running vacuum models

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Pan, Supriya; Nunes, Rafael C.

    2017-08-01

    We study the gravitational baryogenesis mechanism for generating baryon asymmetry in the context of running vacuum models. Regardless of whether these models can produce a viable cosmological evolution, we demonstrate that they produce a nonzero baryon-to-entropy ratio even if the universe is filled with conformal matter. This is a sound difference between the running vacuum gravitational baryogenesis and the Einstein-Hilbert one, since in the latter case, the predicted baryon-to-entropy ratio is zero. We consider two well known and most used running vacuum models and show that the resulting baryon-to-entropy ratio is compatible with the observational data. Moreover, we also show that the mechanism of gravitational baryogenesis may constrain the running vacuum models.

  1. Deep learning for galaxy surface brightness profile fitting

    NASA Astrophysics Data System (ADS)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.; Domínguez Sánchez, H.; Dimauro, P.

    2018-03-01

    Numerous ongoing and future large area surveys (e.g. Dark Energy Survey, EUCLID, Large Synoptic Survey Telescope, Wide Field Infrared Survey Telescope) will increase by several orders of magnitude the volume of data that can be exploited for galaxy morphology studies. The full potential of these surveys can be unlocked only with the development of automated, fast, and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for 2-D photometric galaxy profile modelling, based on convolutional neural networks. Our code is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters of one-component Sérsic models: total magnitude, effective radius, Sérsic index, and axis ratio. We show detailed comparisons between our code and GALFIT. On simulated data, our method is more accurate than GALFIT and ˜3000 time faster on GPU (˜50 times when running on the same CPU). On real data, DeepLeGATo trained on simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with the 0.1-0.8 per cent the size of the training set, our code is easily capable to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require any human intervention beyond the training step, rendering it much automated than traditional profiling methods. The development of this method for more complex models (two-component galaxies, variable point spread function, dense sky regions) could constitute a fundamental tool in the era of big data in astronomy.

  2. Calcaneal loading during walking and running

    NASA Technical Reports Server (NTRS)

    Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.

    2000-01-01

    PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.

  3. Running shoes and running injuries: mythbusting and a proposal for two new paradigms: 'preferred movement path' and 'comfort filter'.

    PubMed

    Nigg, B M; Baltich, J; Hoerzer, S; Enders, H

    2015-10-01

    In the past 100 years, running shoes experienced dramatic changes. The question then arises whether or not running shoes (or sport shoes in general) influence the frequency of running injuries at all. This paper addresses five aspects related to running injuries and shoe selection, including (1) the changes in running injuries over the past 40 years, (2) the relationship between sport shoes, sport inserts and running injuries, (3) previously researched mechanisms of injury related to footwear and two new paradigms for injury prevention including (4) the 'preferred movement path' and (5) the 'comfort filter'. Specifically, the data regarding the relationship between impact characteristics and ankle pronation to the risk of developing a running-related injury is reviewed. Based on the lack of conclusive evidence for these two variables, which were once thought to be the prime predictors of running injuries, two new paradigms are suggested to elucidate the association between footwear and injury. These two paradigms, 'the preferred movement path' and 'the comfort filter', suggest that a runner intuitively selects a comfortable product using their own comfort filter that allows them to remain in the preferred movement path. This may automatically reduce the injury risk and may explain why there does not seem to be a secular trend in running injury rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.

    PubMed

    Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-02-11

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.

  5. Marginal shape deep learning: applications to pediatric lung field segmentation

    NASA Astrophysics Data System (ADS)

    Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovany; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-02-01

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, local- ization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0:927 using only the four highest modes of variation (compared to 0:888 with classical ASM1 (p-value=0:01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.

  6. Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation

    PubMed Central

    Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-01-01

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects. PMID:28592911

  7. Preventing running injuries. Practical approach for family doctors.

    PubMed Central

    Johnston, C. A. M.; Taunton, J. E.; Lloyd-Smith, D. R.; McKenzie, D. C.

    2003-01-01

    OBJECTIVE: To present a practical approach for preventing running injuries. QUALITY OF EVIDENCE: Much of the research on running injuries is in the form of expert opinion and comparison trials. Recent systematic reviews have summarized research in orthotics, stretching before running, and interventions to prevent soft tissue injuries. MAIN MESSAGE: The most common factors implicated in running injuries are errors in training methods, inappropriate training surfaces and running shoes, malalignment of the leg, and muscle weakness and inflexibility. Runners can reduce risk of injury by using established training programs that gradually increase distance or time of running and provide appropriate rest. Orthoses and heel lifts can correct malalignments of the leg. Running shoes appropriate for runners' foot types should be selected. Lower-extremity strength and flexibility programs should be added to training. Select appropriate surfaces for training and introduce changes gradually. CONCLUSION: Prevention addresses factors proven to cause running injuries. Unfortunately, injury is often the first sign of fault in running programs, so patients should be taught to recognize early symptoms of injury. PMID:14526862

  8. Sentiment analysis: a comparison of deep learning neural network algorithm with SVM and naϊve Bayes for Indonesian text

    NASA Astrophysics Data System (ADS)

    Calvin Frans Mariel, Wahyu; Mariyah, Siti; Pramana, Setia

    2018-03-01

    Deep learning is a new era of machine learning techniques that essentially imitate the structure and function of the human brain. It is a development of deeper Artificial Neural Network (ANN) that uses more than one hidden layer. Deep Learning Neural Network has a great ability on recognizing patterns from various data types such as picture, audio, text, and many more. In this paper, the authors tries to measure that algorithm’s ability by applying it into the text classification. The classification task herein is done by considering the content of sentiment in a text which is also called as sentiment analysis. By using several combinations of text preprocessing and feature extraction techniques, we aim to compare the precise modelling results of Deep Learning Neural Network with the other two commonly used algorithms, the Naϊve Bayes and Support Vector Machine (SVM). This algorithm comparison uses Indonesian text data with balanced and unbalanced sentiment composition. Based on the experimental simulation, Deep Learning Neural Network clearly outperforms the Naϊve Bayes and SVM and offers a better F-1 Score while for the best feature extraction technique which improves that modelling result is Bigram.

  9. Delta FosB regulates wheel running.

    PubMed

    Werme, Martin; Messer, Chad; Olson, Lars; Gilden, Lauren; Thorén, Peter; Nestler, Eric J; Brené, Stefan

    2002-09-15

    DeltaFosB is a transcription factor that accumulates in a region-specific manner in the brain after chronic perturbations. For example, repeated administration of drugs of abuse increases levels of DeltaFosB in the striatum. In the present study, we analyzed the effect of spontaneous wheel running, as a model for a natural rewarding behavior, on levels of DeltaFosB in striatal regions. Moreover, mice that inducibly overexpress DeltaFosB in specific subpopulations of striatal neurons were used to study the possible role of DeltaFosB on running behavior. Lewis rats given ad libitum access to running wheels for 30 d covered what would correspond to approximately 10 km/d and showed increased levels of DeltaFosB in the nucleus accumbens compared with rats exposed to locked running wheels. Mice that overexpress DeltaFosB selectively in striatal dynorphin-containing neurons increased their daily running compared with control littermates, whereas mice that overexpress DeltaFosB predominantly in striatal enkephalin-containing neurons ran considerably less than controls. Data from the present study demonstrate that like drugs of abuse, voluntary running increases levels of DeltaFosB in brain reward pathways. Furthermore, overexpression of DeltaFosB in a distinct striatal output neuronal population increases running behavior. Because previous work has shown that DeltaFosB overexpression within this same neuronal population increases the rewarding properties of drugs of abuse, results of the present study suggest that DeltaFosB may play a key role in controlling both natural and drug-induced reward.

  10. Clinical update on optimal prandial insulin dosing using a refined run-to-run control algorithm.

    PubMed

    Zisser, Howard; Palerm, Cesar C; Bevier, Wendy C; Doyle, Francis J; Jovanovic, Lois

    2009-05-01

    This article provides a clinical update using a novel run-to-run algorithm to optimize prandial insulin dosing based on sparse glucose measurements from the previous day's meals. The objective was to use a refined run-to-run algorithm to calculate prandial insulin-to-carbohydrate ratios (I:CHO) for meals of variable carbohydrate content in subjects with type 1 diabetes (T1DM). The open-labeled, nonrandomized study took place over a 6-week period in a nonprofit research center. Nine subjects with T1DM using continuous subcutaneous insulin infusion participated. Basal insulin rates were optimized using continuous glucose monitoring, with a target fasting blood glucose of 90 mg/dl. Subjects monitored blood glucose concentration at the beginning of the meal and at 60 and 120 minutes after the start of the meal. They were instructed to start meals with blood glucose levels between 70 and 130 mg/dl. Subjects were contacted daily to collect data for the previous 24-hour period and to give them the physician-approved, algorithm-derived I:CHO ratios for the next 24 hours. Subjects calculated the amount of the insulin bolus for each meal based on the corresponding I:CHO and their estimate of the meal's carbohydrate content. One- and 2-hour postprandial glucose concentrations served as the main outcome measures. The mean 1-hour postprandial blood glucose level was 104 +/- 19 mg/dl. The 2-hour postprandial levels (96.5 +/- 18 mg/dl) approached the preprandial levels (90.1 +/- 13 mg/dl). Run-to-run algorithms are able to improve postprandial blood glucose levels in subjects with T1DM. 2009 Diabetes Technology Society.

  11. Genome-wide estimates of inbreeding in unrelated individuals and their association with cognitive ability.

    PubMed

    Power, Robert A; Nagoshi, Craig; DeFries, John C; Plomin, Robert

    2014-03-01

    The consequence of reduced cognitive ability from inbreeding has long been investigated, mainly restricted to cousin-cousin marriages. Molecular genetic techniques now allow us to test the relationship between increased ancestral inbreeding and cognitive ability in a population of traditionally unrelated individuals. In a representative UK sample of 2329 individuals, we used genome-wide SNP data to estimate the percentage of the genome covered by runs of homozygous SNPs (ROH). This was tested for association with general cognitive ability, as well as measures of verbal and non-verbal ability. Further, association was tested between these traits and specific ROH. Burden of ROH was not associated with cognitive ability after correction for multiple testing, although burden of ROH was nominally associated with increased non-verbal cognitive ability (P=0.03). Moreover, although no individual ROH was significantly associated with cognitive ability, there was a significant bias towards increased cognitive ability in carriers of ROH (P=0.002). A potential explanation for these results is increased positive assortative mating in spouses with higher cognitive ability, although we found no evidence in support of this hypothesis in a separate sample. Reduced minor allele frequency across the genome was associated with higher cognitive ability, which could contribute to an apparent increase in ROH. This may reflect minor alleles being more likely to be deleterious.

  12. Genome-wide estimates of inbreeding in unrelated individuals and their association with cognitive ability

    PubMed Central

    Power, Robert A; Nagoshi, Craig; DeFries, John C; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin NA; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Spencer, Chris C A; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T; Liddle, Jennifer; Potter, Simon C; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G; Blackwell, Jenefer M; Brown, Matthew A; Corvin, Aiden; Spencer, Chris C A; Plomin, Robert

    2014-01-01

    The consequence of reduced cognitive ability from inbreeding has long been investigated, mainly restricted to cousin–cousin marriages. Molecular genetic techniques now allow us to test the relationship between increased ancestral inbreeding and cognitive ability in a population of traditionally unrelated individuals. In a representative UK sample of 2329 individuals, we used genome-wide SNP data to estimate the percentage of the genome covered by runs of homozygous SNPs (ROH). This was tested for association with general cognitive ability, as well as measures of verbal and non-verbal ability. Further, association was tested between these traits and specific ROH. Burden of ROH was not associated with cognitive ability after correction for multiple testing, although burden of ROH was nominally associated with increased non-verbal cognitive ability (P=0.03). Moreover, although no individual ROH was significantly associated with cognitive ability, there was a significant bias towards increased cognitive ability in carriers of ROH (P=0.002). A potential explanation for these results is increased positive assortative mating in spouses with higher cognitive ability, although we found no evidence in support of this hypothesis in a separate sample. Reduced minor allele frequency across the genome was associated with higher cognitive ability, which could contribute to an apparent increase in ROH. This may reflect minor alleles being more likely to be deleterious. PMID:23860046

  13. Concurrent schedules of wheel-running reinforcement: choice between different durations of opportunity to run in rats.

    PubMed

    Belke, Terry W

    2006-02-01

    How do animals choose between opportunities to run of different durations? Are longer durations preferred over shorter durations because they permit a greater number of revolutions? Are shorter durations preferred because they engender higher rates of running? Will longer durations be chosen because running is less constrained? The present study reports on three experiments that attempted to address these questions. In the first experiment, five male Wistar rats chose between 10-sec and 50-sec opportunities to run on modified concurrent variable-interval (VI) schedules. Across conditions, the durations associated with the alternatives were reversed. Response, time, and reinforcer proportions did not vary from indifference. In a second experiment, eight female Long-Evans rats chose between opportunities to run of equal (30 sec) and unequal durations (10 sec and 50 sec) on concurrent variable-ratio (VR) schedules. As in Experiment 1, between presentations of equal duration conditions, 10-sec and 50-sec durations were reversed. Results showed that response, time, and reinforcer proportions on an alternative did not vary with reinforcer duration. In a third experiment, using concurrent VR schedules, durations were systematically varied to decrease the shorter duration toward 0 sec. As the shorter duration decreased, response, time, and reinforcer proportions shifted toward the longer duration. In summary, differences in durations of opportunities to run did not affect choice behavior in a manner consistent with the assumption that a longer reinforcer is a larger reinforcer.

  14. Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks.

    PubMed

    Tran, Son N; d'Avila Garcez, Artur S

    2018-02-01

    Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.

  15. An Epidemiologic Perspective. Does Running Cause Osteoarthritis?

    ERIC Educational Resources Information Center

    Eichner, Edward R.

    1989-01-01

    A review of literature on exercise and arthritis considers relevant epidemiologic and experimental studies of animals and humans, focusing on the relationship between running and osteoarthritis. No conclusive evidence exists that running causes osteoarthritis; research trends suggest that running may slow the functional aspects of musculoskeletal…

  16. Computed inundation heights of the 2011 Tohoku tsunami compared to measured run-up data: hints for tsunami source inversion

    NASA Astrophysics Data System (ADS)

    Pagnoni, G.; Tinti, S.; Armigliato, A.

    2012-04-01

    The 11 March 2011 earthquake that took place off the Pacific coast of Tohoku, North Honshu, with Mw = 9.0, is the largest earthquake ever occurred in Japan, and generated a big tsunami that spread across the Pacific Ocean, causing devastating effects in the prefectures of Aomori, Iwate, Miyagi and Fukushima. It caused more than 15,000 casualties, swept away the low-land quarters of several villages and moreover was the primary cause of the severe nuclear accident in the Fukushima Nuclear Power Plant. There is a very large set of observations covering both the earthquake and the tsunami, and almost certainly this is the case with the most abundant dataset of high-quality data in the history of seismology and of tsunami science. Local and global seismic networks, continuous GPS networks, coastal tide gauges in Japan ports and across the Pacific, local buoys cabled deep ocean-bottom pressure gauges (OBPG) and deep-ocean buoys (such as DART) mainly along the foot of the margins of the pacific continents, all contributed essential data to constrain the source of the earthquake and of the tsunami. In this paper we will use also the observed run-up data to put further constraints on the source and to better determine the distribution of the slip on the offshore fault. This will be done through trial-and-error forward modeling, that is by comparing inundation data calculated by means of numerical tsunami simulations in the near field to tsunami run-up heights measured during field surveys conducted by several teams and made available on the net. Major attention will be devoted to reproduce observations in the prefectures that were more affected and where run-up heights are very large (namely Iwate and Miyagi). The simulations are performed by means of the finite-difference code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna, Italy, that can solve both the linear and non-linear versions of the shallow-water equations on nested

  17. Deep Vein Thrombosis

    MedlinePlus

    Deep vein thrombosis, or DVT, is a blood clot that forms in a vein deep in the body. Most ... vein swells, the condition is called thrombophlebitis. A deep vein thrombosis can break loose and cause a serious problem ...

  18. Deep-Hole Neutron States with the (polarized Proton, Proton-Neutron Reaction.

    NASA Astrophysics Data System (ADS)

    Pella, Peter J.

    The(' )(p,pn) reaction with a polarized proton beam of 148.9 MeV was used to investigate neutron deep -hole states at the Indiana University Cyclotron Facility. A coplanar geometry was used with the proton detector at 36(DEGREES) and the neutron detector at -36.7(DEGREES) with a flight path of 17.8 meters. Separation energies, triple differential cross sections and analyzing powers were measured for CD(,2), ('9)Be, BeO, ('28)Si, ('58)Ni, and ('90)Zr targets. An overall energy resolution of better than 1 MeV was achieved for the heavier targets where kinematic corrections are small. The energy resolution varied between 1 MeV and 3 MeV for the lighter targets. The analysis of the data was performed within the framework of the Distorted Wave Impulse Approximation (DWIA). The cross section shapes are consistent with DWIA calculations and extracted spectroscopic factors are reasonable for targets through Si. The DWIA interpretation begins to fail for larger separation energies and heavier targets. The analyzing powers showed an out -of-phase characteristic for different j-values of the oxygen p-states, but they did not agree with the DWIA predictions. Statistical uncertainties did not allow for detailed investigation of the analyzing power data for other targets. This experiment determined neutron deep-hole states up to approximately 70 MeV in separation energy for a representative set of targets with neutron number N between 1 and 50. The experiment determined spectroscopic factors for "valence" (loosely bound) neutrons where the DWIA calculations are expected to be valid and established the areas where the DWIA approach begins to fail. Also the experiment failed to demonstrate the usefulness of analyzing powers to distinguish between j = 1 + 1/2 and j = 1 - 1/2 states, but did determine the failure of DWIA calculations in this area. It should now be possible to study the reaction mechanism more closely by making longer runs on selected targets; in addition, it should

  19. GenomeGems: evaluation of genetic variability from deep sequencing data

    PubMed Central

    2012-01-01

    Background Detection of disease-causing mutations using Deep Sequencing technologies possesses great challenges. In particular, organizing the great amount of sequences generated so that mutations, which might possibly be biologically relevant, are easily identified is a difficult task. Yet, for this assignment only limited automatic accessible tools exist. Findings We developed GenomeGems to gap this need by enabling the user to view and compare Single Nucleotide Polymorphisms (SNPs) from multiple datasets and to load the data onto the UCSC Genome Browser for an expanded and familiar visualization. As such, via automatic, clear and accessible presentation of processed Deep Sequencing data, our tool aims to facilitate ranking of genomic SNP calling. GenomeGems runs on a local Personal Computer (PC) and is freely available at http://www.tau.ac.il/~nshomron/GenomeGems. Conclusions GenomeGems enables researchers to identify potential disease-causing SNPs in an efficient manner. This enables rapid turnover of information and leads to further experimental SNP validation. The tool allows the user to compare and visualize SNPs from multiple experiments and to easily load SNP data onto the UCSC Genome browser for further detailed information. PMID:22748151

  20. Fermilab DART run control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1996-02-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the control and monitoring of the data acquisition systems. The authors discuss the unique and interesting concepts of the run control and some of the experiences in developing it. They also give a brief update and status of the whole DART system.

  1. Fermilab DART run control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-05-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system.

  2. Tracer constraints on organic particle transfer efficiency to the deep ocean

    NASA Astrophysics Data System (ADS)

    Weber, T. S.; Cram, J. A.; Deutsch, C. A.

    2016-02-01

    The "transfer efficiency" of sinking organic particles through the mesopelagic zone is a critical determinant of ocean carbon sequestration timescales, and the atmosphere-ocean partition of CO2. Our ability to detect large-scale variations in transfer efficiency is limited by the paucity of particle flux data from the deep ocean, and the potential biases of bottom-moored sediment traps used to collect it. Here we show that deep-ocean particle fluxes can be reconstructed by diagnosing the rate of phosphate accumulation and oxygen disappearance along deep circulation pathways in an observationally constrained Ocean General Circulation Model (OGCM). Combined with satellite and model estimates of carbon export from the surface ocean, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1000m and 2000m that is high ( 20%) at high latitudes and negligible (<5%) throughout subtropical gyres, with intermediate values in the tropics. This pattern is at odds with previous estimates of deep transfer efficiency derived from bottom-moored sediment traps, but is consistent with upper-ocean flux profiles measured by neutrally buoyant sediment traps, which show strong attenuation of low latitude particle fluxes over the top 500m. Mechanistically, the pattern can be explained by spatial variations in particle size distributions, and the temperature-dependence of remineralization. We demonstrate the biogeochemical significance of our findings by comparing estimates of deep-ocean carbon sequestration in a scenario with spatially varying transfer efficiency to one with a globally uniform "Martin-curve" particle flux profile.

  3. GUMICS-4 Year Run: Ground Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Honkonen, I. J.; Viljanen, A.; Juusola, L.; Facsko, G.; Vanhamäki, H.

    2013-12-01

    Space weather can have severe effects even at ground level when Geomagnetically Induced Currents (GIC) disrupt power transmission networks, the worst case being a complete blackout affecting millions of people. The importance of space weather forecasting as well as the need for model improvement and validation has been recognized internationally. The recently concluded GUMICS-4 one year run, in which solar wind observations obtained from OMNIWeb for the period 2002-01-29 to 2003-02-02 were given as input to the model, will allow GUMICS to be validated against observations on an unprecedented scale. The performance of GUMICS can be quantified statistically, as a function of, for example, the solar wind driver, various geomagnetic indices, magnetic local time and other parameters. Here we concentrate on the ability of GUMICS to predict ground magnetic field observations for one year of simulated results. The ground magnetic field predictions are compared to observations of the mainland IMAGE magnetometer stations located at CGM latitudes 54-68 N. Furthermore the GIC derived from ground magnetic field predictions are compared to observations along the natural gas pipeline at Mäntsälä, South Finland. Various metrics are used to objectively evaluate the performance of GUMICS as a function of different parameters, thereby providing significant insight into the space weather forecasting ability of models based on first principles.

  4. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training

    PubMed Central

    Millet, G.; Vleck, V.

    2000-01-01

    Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed—that is, steady state or stochastic power output, drafting or non-drafting—are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run

  5. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    PubMed

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Kinetics of cross-slope running.

    PubMed

    Willwacher, Steffen; Fischer, Katina Mira; Benker, Rita; Dill, Stephan; Brüggemann, Gert-Peter

    2013-11-15

    The purpose of the present study was to identify kinetic responses to running on mediolaterally elevated (cross-sloped) running surfaces. Ground reaction forces (GRFs), GRF lever arms and joint moment characteristics of 19 male runners were analyzed when running at 3.5m/s on a custom-made, tiltable runway. Tilt angles of 3° and 6° for medial and lateral elevation were analyzed using a 10 camera Vicon Nexus system and a force platform. The point of force application of the GRF showed a systematic shift in the order of 1-1.5cm to either the lateral or medial aspect of the foot for lateral or medial inclinations, respectively. Consequently, the strongest significant effects of tilt orientation and level on joint kinetics and ground reaction force lever arms were identified at the ankle, knee and hip joint in the frontal plane of movement. External eversion moments at the ankle were significantly increased by 35% for 6° of lateral elevation and decreased by 16% for 6° of medial elevation. Altering the cross-slope of the running surface changed the pattern of ankle joint moments in the transversal plane. Effect sizes were on average larger for laterally elevated conditions, indicating a higher sensitivity of kinetic parameters to this kind of surface tilt. These alterations in joint kinetics should be considered in the choice of the running environment, especially for specific risk groups, like runners in rehabilitation processes. © 2013 Elsevier Ltd. All rights reserved.

  7. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...

  8. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...

  9. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...

  10. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...

  11. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs between...

  12. Balance disorders caused by running and jumping occurring in young basketball players.

    PubMed

    Struzik, Artur; Zawadzki, Jerzy; Pietraszewski, Bogdan

    2015-01-01

    Body balance, as one of the coordination abilities,is a desirable variable for basketball players as regards the necessity of efficient responses in constantly changing situations on a basketball court. The aim of this study was to check whether physical activity in the form of running and jumping influences variables characterizing the process of keeping body balance of a basketball player in the standing position. The research was conducted on 11 young basketball players. The measurements were taken with a Kistler force plate. Apart from commonly registered COP displacements, an additional variable describing the process of keeping body balance by a basketball player was ankle joint stiffness on the basis of which an "Index of Balance-Stiffness" (IB-S) was created. Statistically significant differences were obtained for the maximum COP displacements and ankle joint stiffness between measurements of balance in the standing position before and after the employed movement tasks whereas there were no statistically significant differences for the aforementioned variables describing the process of keeping balance between measurements after running and after jumping. The research results indicate that the employed movement activities brought about significant changes in the process of keeping balance of basketball player in the standing position which, after the run performed, remain on a similar level to the series of jumps being performed. The authors attempted to establish an index based on the stiffness which yields a possibility to perceive each basketball player as an individual person in the process of keeping balance.

  13. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metalmore » at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.« less

  14. Emergency Communications for NASA's Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Lee, Charles H.; Morabito, David D.; Cesarone, Robert J.; Abraham, Douglas S.

    2011-01-01

    The ability to communicate with spacecraft during emergencies is a vital service that NASA's Deep Space Network (DSN) provides to all deep space missions. Emergency communications is characterized by low data rates(typically is approximately10 bps) with the spacecraft using either a low-gain antenna (LGA, including omnidirectional antennas) or,in some cases, a medium-gain antenna (MGA). Because of the use of LGAs/MGAs for emergency communications, the transmitted power requirements both on the spacecraft andon the ground are substantially greater than those required for normal operations on the high-gain antenna (HGA) despite the lower data rates. In this paper, we look at currentand future emergency communications capabilities available to NASA's deep-space missions and discuss their limitations in the context of emergency mode operations requirements.These discussions include the use of the DSN 70-m diameter antennas, the use of the 34-m diameter antennas either alone or arrayed both for the uplink (Earth-to-spacecraft) and the downlink (spacecraft-to-Earth), upgrades to the ground transmitters, and spacecraft power requirements both with unitygain (0 dB) LGAs and with antennas with directivity (>0 dB gain, either LGA or MGA, depending on the gain). Also discussed are the requirements for forward-error-correctingcodes for both the uplink and the downlink. In additional, we introduce a methodology for proper selection of a directionalLGA/MGA for emergency communications.

  15. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    PubMed

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  16. Strategies for RUN1 Deployment Using RUN2 and REN2 to Manage Grapevine Powdery Mildew Informed by Studies of Race Specificity.

    PubMed

    Feechan, Angela; Kocsis, Marianna; Riaz, Summaira; Zhang, Wei; Gadoury, David M; Walker, M Andrew; Dry, Ian B; Reisch, Bruce; Cadle-Davidson, Lance

    2015-08-01

    The Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat gene, "resistance to Uncinula necator 1" (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic V. vinifera cultivars. However, sporulating powdery mildew colonies and cleistothecia of the heterothallic pathogen have been found on introgression lines containing the RUN1 locus growing in New York (NY). Two E. necator isolates collected from RUN1 vines were designated NY1-131 and NY1-137 and were used in this study to inform a strategy for durable RUN1 deployment. In order to achieve this, fitness parameters of NY1-131 and NY1-137 were quantified relative to powdery mildew isolates collected from V. rotundifolia and V. vinifera on vines containing alleles of the powdery mildew resistance genes RUN1, RUN2, or REN2. The results clearly demonstrate the race specificity of RUN1, RUN2, and REN2 resistance alleles, all of which exhibit programmed cell death (PCD)-mediated resistance. The NY1 isolates investigated were found to have an intermediate virulence on RUN1 vines, although this may be allele specific, while the Musc4 isolate collected from V. rotundifolia was virulent on all RUN1 vines. Another powdery mildew resistance locus, RUN2, was previously mapped in different V. rotundifolia genotypes, and two alleles (RUN2.1 and RUN2.2) were identified. The RUN2.1 allele was found to provide PCD-mediated resistance to both an NY1 isolate and Musc4. Importantly, REN2 vines were resistant to the NY1 isolates and RUN1REN2 vines combining both genes displayed additional resistance. Based on these results, RUN1-mediated resistance in grapevine may be enhanced by pyramiding with RUN2.1 or REN2; however, naturally occurring isolates in North America display some virulence on vines with these resistance genes. The characterization of additional resistance sources is needed to identify

  17. Mean platelet volume (MPV) predicts middle distance running performance.

    PubMed

    Lippi, Giuseppe; Salvagno, Gian Luca; Danese, Elisa; Skafidas, Spyros; Tarperi, Cantor; Guidi, Gian Cesare; Schena, Federico

    2014-01-01

    Running economy and performance in middle distance running depend on several physiological factors, which include anthropometric variables, functional characteristics, training volume and intensity. Since little information is available about hematological predictors of middle distance running time, we investigated whether some hematological parameters may be associated with middle distance running performance in a large sample of recreational runners. The study population consisted in 43 amateur runners (15 females, 28 males; median age 47 years), who successfully concluded a 21.1 km half-marathon at 75-85% of their maximal aerobic power (VO2max). Whole blood was collected 10 min before the run started and immediately thereafter, and hematological testing was completed within 2 hours after sample collection. The values of lymphocytes and eosinophils exhibited a significant decrease compared to pre-run values, whereas those of mean corpuscular volume (MCV), platelets, mean platelet volume (MPV), white blood cells (WBCs), neutrophils and monocytes were significantly increased after the run. In univariate analysis, significant associations with running time were found for pre-run values of hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), red blood cell distribution width (RDW), MPV, reticulocyte hemoglobin concentration (RetCHR), and post-run values of MCH, RDW, MPV, monocytes and RetCHR. In multivariate analysis, in which running time was entered as dependent variable whereas age, sex, blood lactate, body mass index, VO2max, mean training regimen and the hematological parameters significantly associated with running performance in univariate analysis were entered as independent variables, only MPV values before and after the trial remained significantly associated with running time. After adjustment for platelet count, the MPV value before the run (p = 0.042), but not thereafter (p = 0.247), remained significantly associated with running

  18. StatsDB: platform-agnostic storage and understanding of next generation sequencing run metrics

    PubMed Central

    Ramirez-Gonzalez, Ricardo H.; Leggett, Richard M.; Waite, Darren; Thanki, Anil; Drou, Nizar; Caccamo, Mario; Davey, Robert

    2014-01-01

    Modern sequencing platforms generate enormous quantities of data in ever-decreasing amounts of time. Additionally, techniques such as multiplex sequencing allow one run to contain hundreds of different samples. With such data comes a significant challenge to understand its quality and to understand how the quality and yield are changing across instruments and over time. As well as the desire to understand historical data, sequencing centres often have a duty to provide clear summaries of individual run performance to collaborators or customers. We present StatsDB, an open-source software package for storage and analysis of next generation sequencing run metrics. The system has been designed for incorporation into a primary analysis pipeline, either at the programmatic level or via integration into existing user interfaces. Statistics are stored in an SQL database and APIs provide the ability to store and access the data while abstracting the underlying database design. This abstraction allows simpler, wider querying across multiple fields than is possible by the manual steps and calculation required to dissect individual reports, e.g. ”provide metrics about nucleotide bias in libraries using adaptor barcode X, across all runs on sequencer A, within the last month”. The software is supplied with modules for storage of statistics from FastQC, a commonly used tool for analysis of sequence reads, but the open nature of the database schema means it can be easily adapted to other tools. Currently at The Genome Analysis Centre (TGAC), reports are accessed through our LIMS system or through a standalone GUI tool, but the API and supplied examples make it easy to develop custom reports and to interface with other packages. PMID:24627795

  19. Metabolic cost of running is greater on a treadmill with a stiffer running platform.

    PubMed

    Smith, James A H; McKerrow, Alexander D; Kohn, Tertius A

    2017-08-01

    Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75-81% VO 2max ). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg -1 · min -1 ), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min -1 ), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min -1 ), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min -1 ) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min -1 ) (all analysis of variance treadmill comparisons P < 0.01). This study confirms that caution is required when comparing performance and metabolic results between different treadmills and suggests that treadmills will vary in their comparability to over-ground running depending on the running platform stiffness.

  20. Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake.

    PubMed

    Markewitz, Daniel; Devine, Scott; Davidson, Eric A; Brando, Paulo; Nepstad, Daniel C

    2010-08-01

    *Deep root water uptake in tropical Amazonian forests has been a major discovery during the last 15 yr. However, the effects of extended droughts, which may increase with climate change, on deep soil moisture utilization remain uncertain. *The current study utilized a 1999-2005 record of volumetric water content (VWC) under a throughfall exclusion experiment to calibrate a one-dimensional model of the hydrologic system to estimate VWC, and to quantify the rate of root uptake through 11.5 m of soil. *Simulations with root uptake compensation had a relative root mean square error (RRMSE) of 11% at 0-40 cm and < 5% at 350-1150 cm. The simulated contribution of deep root uptake under the control was c. 20% of water demand from 250 to 550 cm and c. 10% from 550 to 1150 cm. Furthermore, in years 2 (2001) and 3 (2002) of throughfall exclusion, deep root uptake increased as soil moisture was available but then declined to near zero in deep layers in 2003 and 2004. *Deep root uptake was limited despite high VWC (i.e. > 0.30 cm(3) cm(-3)). This limitation may partly be attributable to high residual water contents (theta(r)) in these high-clay (70-90%) soils or due to high soil-to-root resistance. The ability of deep roots and soils to contribute increasing amounts of water with extended drought will be limited.

  1. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received, or...

  2. 40 CFR 86.1237-85 - Dynamometer runs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Dynamometer runs. 86.1237-85 Section... Methanol-Fueled Heavy-Duty Vehicles § 86.1237-85 Dynamometer runs. (a) The vehicle shall be either driven... the diurnal loss test and beginning of the hot soak preparation run shall not exceed 3 minutes, and...

  3. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received, or...

  4. Holographic deep learning for rapid optical screening of anthrax spores

    PubMed Central

    Jo, YoungJu; Park, Sangjin; Jung, JaeHwang; Yoon, Jonghee; Joo, Hosung; Kim, Min-hyeok; Kang, Suk-Jo; Choi, Myung Chul; Lee, Sang Yup; Park, YongKeun

    2017-01-01

    Establishing early warning systems for anthrax attacks is crucial in biodefense. Despite numerous studies for decades, the limited sensitivity of conventional biochemical methods essentially requires preprocessing steps and thus has limitations to be used in realistic settings of biological warfare. We present an optical method for rapid and label-free screening of Bacillus anthracis spores through the synergistic application of holographic microscopy and deep learning. A deep convolutional neural network is designed to classify holographic images of unlabeled living cells. After training, the network outperforms previous techniques in all accuracy measures, achieving single-spore sensitivity and subgenus specificity. The unique “representation learning” capability of deep learning enables direct training from raw images instead of manually extracted features. The method automatically recognizes key biological traits encoded in the images and exploits them as fingerprints. This remarkable learning ability makes the proposed method readily applicable to classifying various single cells in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, without any modification. We believe that our strategy will make holographic microscopy more accessible to medical doctors and biomedical scientists for easy, rapid, and accurate point-of-care diagnosis of pathogens. PMID:28798957

  5. Running as an Adjunct to Psychotherapy.

    ERIC Educational Resources Information Center

    Leer, Frederic

    1980-01-01

    Physical benefits of running have been highly publicized. Explores the equally valuable psychological benefits to be derived from running and examines how mastering a physical skill can be generalized to mastery in other areas of life. (Author)

  6. Diagnostic Value of Run Chart Analysis: Using Likelihood Ratios to Compare Run Chart Rules on Simulated Data Series

    PubMed Central

    Anhøj, Jacob

    2015-01-01

    Run charts are widely used in healthcare improvement, but there is little consensus on how to interpret them. The primary aim of this study was to evaluate and compare the diagnostic properties of different sets of run chart rules. A run chart is a line graph of a quality measure over time. The main purpose of the run chart is to detect process improvement or process degradation, which will turn up as non-random patterns in the distribution of data points around the median. Non-random variation may be identified by simple statistical tests including the presence of unusually long runs of data points on one side of the median or if the graph crosses the median unusually few times. However, there is no general agreement on what defines “unusually long” or “unusually few”. Other tests of questionable value are frequently used as well. Three sets of run chart rules (Anhoej, Perla, and Carey rules) have been published in peer reviewed healthcare journals, but these sets differ significantly in their sensitivity and specificity to non-random variation. In this study I investigate the diagnostic values expressed by likelihood ratios of three sets of run chart rules for detection of shifts in process performance using random data series. The study concludes that the Anhoej rules have good diagnostic properties and are superior to the Perla and the Carey rules. PMID:25799549

  7. Robustness for slope stability modelling under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  8. Effects of running with backpack loads during simulated gravitational transitions: Improvements in postural control

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey David

    The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.

  9. Effects of forefoot bending elasticity of running shoes on gait and running performance.

    PubMed

    Chen, Chia-Hsiang; Tu, Kuan-Hua; Liu, Chiang; Shiang, Tzyy-Yuang

    2014-12-01

    The aim of this study was to investigate the effects of forefoot bending elasticity of running shoes on kinetics and kinematics during walking and running. Twelve healthy male participants wore normal and elastic shoes while walking at 1.5m/s, jogging at 2.5m/s, and running at 3.5m/s. The elastic shoes were designed by modifying the stiffness of flexible shoes with elastic bands added to the forefoot part of the shoe sole. A Kistler force platform and Vicon system were used to collect kinetic and kinematic data during push-off. Electromyography was used to record the muscle activity of the medial gastrocnemius and medial tibialis anterior. A paired dependent t-test was used to compare the various shoes and the level of significance was set at α=.05. The range of motion of the ankle joint and the maximal anterior-posterior propulsive force differed significantly between elastic and flexible shoes in walking and jogging. The contact time and medial gastrocnemius muscle activation in the push-off phase were significantly lower for the elastic shoes compared with the flexible shoes in walking and jogging. The elastic forefoot region of shoes can alter movement characteristics in walking and jogging. However, for running, the elasticity used in this study was not strong enough to exert a similar effect. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteriamore » cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.« less

  11. The Construct Validity of the CODA and Repeated Sprint Ability Tests in Football Referees.

    PubMed

    Riiser, Amund; Andersen, Vidar; Castagna, Carlo; Arne Pettersen, Svein; Saeterbakken, Atle; Froyd, Christian; Ylvisaker, Einar; Naess Kjosnes, Terje; Fusche Moe, Vegard

    2018-06-14

    As of 2017, the international football federation introduced the change of direction ability test (CODA) and the 5×30 m sprint test for assistant referees (ARs) and continued the 6×40 m sprint test for field referees (FRs) as mandatory tests. The aim of this study was to evaluate the association between performance in these tests and running performance during matches at the top level in Norway. The study included 9 FRs refereeing 21 matches and 19 ARs observed 53 times by a local positioning system at three stadiums during the 2016 season. Running performance during matches was assessed by high-intensity running (HIR) distance, HIR counts, acceleration distance, and acceleration counts. For the ARs, there was no association between the CODA test with high-intensity running or acceleration ( P >0.05). However, the 5×30 m sprint test was associated with HIR count during the entire match (E -12.9, 95% CI -25.4 to -0.4) and the 5-min period with the highest HIR count (E -2.02, 95% CI -3.55 to -0.49). For the FRs, the 6×40 m fitness test was not associated with running performance during matches ( P >0.05). In conclusion, performance in these tests had weak or no associations with accelerations or HIR in top Norwegian referees during match play. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Integrated photooxidative extractive deep desulfurization using metal doped TiO2 and eutectic based ionic liquid

    NASA Astrophysics Data System (ADS)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2016-11-01

    A series of metal doped TiO2 namely Fe/TiO2, Cu/TiO2 and Cu-Fe/TiO2 were synthesized and characterized, to be used as a photocatalyst in the integrated photooxidative extractive deep desulfurization for model oil (dodecane) and diesel fuel. The order of the photocatalytic activity was Cu-Fe/TiO2 followed by Cu/TiO2 and then Fe/TiO2. Cu-Fe/TiO2 was an effective photocatalyst for sulfur conversion at ambient atmospheric pressure. Hydrogen peroxide was used as the source of oxidant and eutectic-based ionic liquid as the extractant. Sulfur conversion in model oil reached 100%. Removal of sulfur from model oil was done by two times extraction with a removal of 97.06% in the first run and 2.94% in the second run.

  13. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  14. Effect of Light/Dark Cycle on Wheel Running and Responding Reinforced by the Opportunity to Run Depends on Postsession Feeding Time

    ERIC Educational Resources Information Center

    Belke, T. W.; Mondona, A. R.; Conrad, K. M.; Poirier, K. F.; Pickering, K. L.

    2008-01-01

    Do rats run and respond at a higher rate to run during the dark phase when they are typically more active? To answer this question, Long Evans rats were exposed to a response-initiated variable interval 30-s schedule of wheel-running reinforcement during light and dark cycles. Wheel-running and local lever-pressing rates increased modestly during…

  15. It’s Called “Going Out to Play”: A Video Diary Study of Hmong Girls’ Perspectives on Running Away

    PubMed Central

    Edinburgh, Laurel D.; Garcia, Carolyn M.; Saewyc, Elizabeth M.

    2015-01-01

    How do Hmong immigrant adolescent girls’ decide to run away, return home, leave again, or stay home? Video diaries by 11 sexually-exploited runaway Hmong girls, age 13–16, revealed four themes: “Fighting restrictions,” resisting family cultural expectations and desires to be like other American teens; “Not Running Away, Going Out to Play,” which captured impulsive decision-making; “Unrestrained Partying” described runaway experiences but minimized dangers they faced; and “Trying to Change,” returning home because of family bonds and wanting to “be someone good.” Given their limited ability to anticipate risks, interventions should focus on runaway prevention initiatives for Hmong families and teens. PMID:23311908

  16. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.

    PubMed

    Pan, Xiaoyong; Shen, Hong-Bin

    2018-05-02

    RNA-binding proteins (RBPs) take over 5∼10% of the eukaryotic proteome and play key roles in many biological processes, e.g. gene regulation. Experimental detection of RBP binding sites is still time-intensive and high-costly. Instead, computational prediction of the RBP binding sites using pattern learned from existing annotation knowledge is a fast approach. From the biological point of view, the local structure context derived from local sequences will be recognized by specific RBPs. However, in computational modeling using deep learning, to our best knowledge, only global representations of entire RNA sequences are employed. So far, the local sequence information is ignored in the deep model construction process. In this study, we present a computational method iDeepE to predict RNA-protein binding sites from RNA sequences by combining global and local convolutional neural networks (CNNs). For the global CNN, we pad the RNA sequences into the same length. For the local CNN, we split a RNA sequence into multiple overlapping fixed-length subsequences, where each subsequence is a signal channel of the whole sequence. Next, we train deep CNNs for multiple subsequences and the padded sequences to learn high-level features, respectively. Finally, the outputs from local and global CNNs are combined to improve the prediction. iDeepE demonstrates a better performance over state-of-the-art methods on two large-scale datasets derived from CLIP-seq. We also find that the local CNN run 1.8 times faster than the global CNN with comparable performance when using GPUs. Our results show that iDeepE has captured experimentally verified binding motifs. https://github.com/xypan1232/iDeepE. xypan172436@gmail.com or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online.

  17. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site.

    PubMed

    Takizawa, M; Straube, W L; Hill, R T; Colwell, R R

    1993-10-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. The results of hybridization experiments in which DNAs extracted directly from the water overlying sediment core samples were used indicate that the reference site epibenthic community, the disposal site epibenthic community, and the community in a surface sludge plume share many members. Decreased culturability of reference site mixed cultures in the presence of sewage sludge was observed. Thus, the culturable portions of both the autochthonous and allochthonous bacterial communities at the disposal site may be inhibited in situ, the former by sewage sludge and the latter by high pressure and low temperature.

  18. A Theoretical Perspective on Running Away.

    ERIC Educational Resources Information Center

    Nye, F. Ivan

    1980-01-01

    Exchange theory is used to explain motivations and behaviors in runaway children. Runaways with favorable family and school experiences and rejected abused children who do not run are considered. Facts about running are examined for consistency and hypotheses are offered. (Author)

  19. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training.

    PubMed

    Millet, G P; Vleck, V E

    2000-10-01

    Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed-that is, steady state or stochastic power output, drafting or non-drafting-are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run exercise.

  20. Modification of Agility Running Technique in Reaction to a Defender in Rugby Union

    PubMed Central

    Wheeler, Keane W.; Sayers, Mark G.L.

    2010-01-01

    Three-dimensional kinematic analysis examined agility running technique during pre-planned and reactive performance conditions specific to attacking ball carries in rugby union. The variation to running technique of 8 highly trained rugby union players was compared between agility conditions (pre-planned and reactive) and also agility performance speeds (fast, moderate and slow). Kinematic measures were used to determine the velocity of the centre of mass (COM) in the anteroposterior (running speed) and mediolateral (lateral movement speed) planes. The position of foot-strike and toe-off was also examined for the step prior to the agility side- step (pre-change of direction phase) and then the side-step (change of direction phase). This study demonstrated that less lateral movement speed towards the intended direction change occurred during reactive compared to pre-planned conditions at pre-change of direction (0.08 ± 0.28 m·s-1 and 0.42 ± 0.25 m·s-1, respectively) and change of direction foot-strikes (0.25 ± 0.42 m·s-1 and 0.69 ± 0.43 m·s-1, respectively). Less lateral movement speed during reactive conditions was associated with greater lateral foot displacement (44.52 ± 6.10% leg length) at the change of direction step compared to pre-planned conditions (41.35 ± 5.85%). Importantly, the anticipation abilities during reactive conditions provided a means to differentiate between speeds of agility performance, with faster performances displaying greater lateral movement speed at the change of direction foot- strike (0.52 ± 0.34 m·s-1) compared to moderate (0.20 ± 0.37 m·s-1) and slow (-0.08 ± 0.31 m·s-1). The changes to running technique during reactive conditions highlight the need to incorporate decision-making in rugby union agility programs. Key points Changes to running technique occur when required to make a decision. Fast agility performers use different stepping strategies in reactive conditions. Decision-making must be incorporated in

  1. 29 CFR 1206.1 - Run-off elections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Run-off elections. 1206.1 Section 1206.1 Labor Regulations... LABOR ACT § 1206.1 Run-off elections. (a) If in an election among any craft or class no organization or individual receives a majority of the legal votes cast, or in the event of a tie vote, a second or run-off...

  2. 29 CFR 1206.1 - Run-off elections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Run-off elections. 1206.1 Section 1206.1 Labor Regulations... LABOR ACT § 1206.1 Run-off elections. (a) If in an election among any craft or class no organization or individual receives a majority of the legal votes cast, or in the event of a tie vote, a second or run-off...

  3. Spontaneous Entrainment of Running Cadence to Music Tempo.

    PubMed

    Van Dyck, Edith; Moens, Bart; Buhmann, Jeska; Demey, Michiel; Coorevits, Esther; Dalla Bella, Simone; Leman, Marc

    Since accumulating evidence suggests that step rate is strongly associated with running-related injuries, it is important for runners to exercise at an appropriate running cadence. As music tempo has been shown to be capable of impacting exercise performance of repetitive endurance activities, it might also serve as a means to (re)shape running cadence. The aim of this study was to validate the impact of music tempo on running cadence. Sixteen recreational runners ran four laps of 200 m (i.e. 800 m in total); this task was repeated 11 times with a short break in between each four-lap sequence. During the first lap of a sequence, participants ran at a self-paced tempo without musical accompaniment. Running cadence of the first lap was registered, and during the second lap, music with a tempo matching the assessed cadence was played. In the final two laps, the music tempo was either increased/decreased by 3.00, 2.50, 2.00, 1.50, or 1.00 % or was kept stable. This range was chosen since the aim of this study was to test spontaneous entrainment (an average person can distinguish tempo variations of about 4 %). Each participant performed all conditions. Imperceptible shifts in musical tempi in proportion to the runner's self-paced running tempo significantly influenced running cadence ( p  < .001). Contrasts revealed a linear relation between the tempo conditions and adaptation in running cadence ( p  < .001). In addition, a significant effect of condition on the level of entrainment was revealed ( p  < .05), which suggests that maximal effects of music tempo on running cadence can only be obtained up to a certain level of tempo modification. Finally, significantly higher levels of tempo entrainment were found for female participants compared to their male counterparts ( p  < .05). The applicable contribution of these novel findings is that music tempo could serve as an unprompted means to impact running cadence. As increases in step rate may prove

  4. Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running.

    PubMed

    Lai, A K M; Lichtwark, G A; Schache, A G; Pandy, M G

    2018-03-30

    The primary human ankle plantarflexors, soleus (SO), medial gastrocnemius (MG), and lateral gastrocnemius (LG) are typically regarded as synergists and play a critical role in running. However, due to differences in muscle-tendon architecture and joint articulation, the muscle fascicles and tendinous tissue of the plantarflexors may exhibit differences in their behavior and interactions during running. We combined in vivo dynamic ultrasound measurements with inverse dynamics analyses to identify and explain differences in muscle fascicle, muscle-tendon unit, and tendinous tissue behavior of the primary ankle plantarflexors across a range of steady-state running speeds. Consistent with their role as a force generator, the muscle fascicles of the uniarticular SO shortened less rapidly than the fascicles of the MG during early stance. Furthermore, the MG and LG exhibited delays in tendon recoil during the stance phase, reflecting their ability to transfer power and work between the knee and ankle via tendon stretch and storage of elastic strain energy. Our findings add to the growing body of evidence surrounding the distinct mechanistic functions of uni- and biarticular muscles during dynamic movements. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Deep Space Telecommunications

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  6. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment.

    PubMed

    Slavik, Irene; Jehmlich, Alexander; Uhl, Wolfgang

    2013-10-15

    Backwash procedures for deep bed filters were evaluated and compared by means of a new integrated approach based on productivity. For this, different backwash procedures were experimentally evaluated by using a pilot plant for direct filtration. A standard backwash mode as applied in practice served as a reference and effluent turbidity was used as the criterion for filter run termination. The backwash water volumes needed, duration of the filter-to-waste period, time out of operation, total volume discharged and filter run-time were determined and used to calculate average filtration velocity and average productivity. Results for filter run-times, filter backwash volumes, and filter-to-waste volumes showed considerable differences between the backwash procedures. Thus, backwash procedures with additional clear flushing phases were characterised by an increased need for backwash water. However, this additional water consumption could not be compensated by savings during filter ripening. Compared to the reference backwash procedure, filter run-times were longer for both single-media and dual-media filters when air scour and air/water flush were optimised with respect to flow rates and the proportion of air and water. This means that drinking water production time is longer and less water is needed for filter bed cleaning. Also, backwashing with additional clear flushing phases resulted in longer filter run-times before turbidity breakthrough. However, regarding the productivity of the filtration process, it was shown that it was almost the same for all of the backwash procedures investigated in this study. Due to this unexpected finding, the relationships between filter bed cleaning, filter ripening and filtration performance were considered and important conclusions and new approaches for process optimisation and resource savings were derived. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Kalia, S.; Li, S.; Ganguly, S.; Nemani, R. R.

    2017-12-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remotesensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud/shadow mask from geostationary satellite data iscritical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds, which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classifycloud/shadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoder-decoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multi-spectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  8. Working memory training improves emotion regulation ability: Evidence from HRV.

    PubMed

    Xiu, Lichao; Zhou, Renlai; Jiang, Yihan

    2016-03-01

    Emotion regulation during social situations plays a pivotal role in health and interpersonal functioning. In this study, we propose a working memory training approach to improve emotion regulation ability. This training promotes an updating function that is a crucial modulated process for emotion regulation. In the present study, the participants in the training group completed a running memory task over 20 days of training. Their working memory capability and high-frequency heart rate variability (HF-HRV) data on pretest and posttest were assessed and analyzed. Compared with the control group, the training group's reaction time in the 2-back working memory task was reduced significantly. In addition, the HF-HRV in the emotion regulation condition was increased after the 20-day training, which indicates that the working memory training effect could transfer to emotion regulation. In other words, working memory training improved emotion regulation ability. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Excessive progression in weekly running distance and risk of running-related injuries: an association which varies according to type of injury.

    PubMed

    Nielsen, Rasmus Østergaard; Parner, Erik Thorlund; Nohr, Ellen Aagaard; Sørensen, Henrik; Lind, Martin; Rasmussen, Sten

    2014-10-01

    An explorative, 1-year prospective cohort study. Objective To examine whether an association between a sudden change in weekly running distance and running-related injury varies according to injury type. It is widely accepted that a sudden increase in running distance is strongly related to injury in runners. But the scientific knowledge supporting this assumption is limited. A volunteer sample of 874 healthy novice runners who started a self-structured running regimen were provided a global-positioning-system watch. After each running session during the study period, participants were categorized into 1 of the following exposure groups, based on the progression of their weekly running distance: less than 10% or regression, 10% to 30%, or more than 30%. The primary outcome was running-related injury. A total of 202 runners sustained a running-related injury. Using Cox regression analysis, no statistically significant differences in injury rates were found across the 3 exposure groups. An increased rate of distance-related injuries (patellofemoral pain, iliotibial band syndrome, medial tibial stress syndrome, gluteus medius injury, greater trochanteric bursitis, injury to the tensor fascia latae, and patellar tendinopathy) existed in those who progressed their weekly running distance by more than 30% compared with those who progressed less than 10% (hazard ratio = 1.59; 95% confidence interval: 0.96, 2.66; P = .07). Novice runners who progressed their running distance by more than 30% over a 2-week period seem to be more vulnerable to distance-related injuries than runners who increase their running distance by less than 10%. Owing to the exploratory nature of the present study, randomized controlled trials are needed to verify these results, and more experimental studies are needed to validate the assumptions. Still, novice runners may be well advised to progress their weekly distances by less than 30% per week over a 2-week period.

  10. Observations of running penumbral waves.

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Stein, A.

    1972-01-01

    Quiet sunspots with well-developed penumbrae show running intensity waves with period running around 300 sec. The waves appear connected with umbral flashes of exactly half the period. Waves are concentric, regular, with velocity constant around 10 km/sec. They are probably sound waves and show intensity fluctuation in H alpha centerline or wing of 10 to 20%. The energy is tiny compared to the heat deficit of the umbra.

  11. Effects of a concurrent strength and endurance training on running performance and running economy in recreational marathon runners.

    PubMed

    Ferrauti, Alexander; Bergermann, Matthias; Fernandez-Fernandez, Jaime

    2010-10-01

    The purpose of this study was to investigate the effects of a concurrent strength and endurance training program on running performance and running economy of middle-aged runners during their marathon preparation. Twenty-two (8 women and 14 men) recreational runners (mean ± SD: age 40.0 ± 11.7 years; body mass index 22.6 ± 2.1 kg·m⁻²) were separated into 2 groups (n = 11; combined endurance running and strength training program [ES]: 9 men, 2 women and endurance running [E]: 7 men, and 4 women). Both completed an 8-week intervention period that consisted of either endurance training (E: 276 ± 108 minute running per week) or a combined endurance and strength training program (ES: 240 ± 121-minute running plus 2 strength training sessions per week [120 minutes]). Strength training was focused on trunk (strength endurance program) and leg muscles (high-intensity program). Before and after the intervention, subjects completed an incremental treadmill run and maximal isometric strength tests. The initial values for VO2peak (ES: 52.0 ± 6.1 vs. E: 51.1 ± 7.5 ml·kg⁻¹·min⁻¹) and anaerobic threshold (ES: 3.5 ± 0.4 vs. E: 3.4 ± 0.5 m·s⁻¹) were identical in both groups. A significant time × intervention effect was found for maximal isometric force of knee extension (ES: from 4.6 ± 1.4 to 6.2 ± 1.0 N·kg⁻¹, p < 0.01), whereas no changes in body mass occurred. No significant differences between the groups and no significant interaction (time × intervention) were found for VO2 (absolute and relative to VO2peak) at defined marathon running velocities (2.4 and 2.8 m·s⁻¹) and submaximal blood lactate thresholds (2.0, 3.0, and 4.0 mmol·L⁻¹). Stride length and stride frequency also remained unchanged. The results suggest no benefits of an 8-week concurrent strength training for running economy and coordination of recreational marathon runners despite a clear improvement in leg strength, maybe because of an insufficient sample size or a short

  12. The psychological benefits of recreational running: a field study.

    PubMed

    Szabo, Attila; Abrahám, Júlia

    2013-01-01

    Running yields positive changes in affect, but the external validity of controlled studies has received little attention in the literature. In this inquiry, 50 recreational runners completed the Exercise-Induced Feeling Inventory (Gauvin & Rejeskí, 1993) before and after a bout of self-planned running on an urban running path. Positive changes were seen in all four measures of affect (p < .001). Multivariate regressions were performed to examine the contribution of four exercise characteristics (i.e., duration of the current run, weekly running time, weekly running distance, and running experience) to the observed changes in affect. The results have revealed that exercise characteristics accounted for only 14-30% of the variance in the recreational runners' affect, in both directions. It is concluded that psychological benefits of recreational running may be linked to placebo (conditioning and/or expectancy) effects.

  13. A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

    NASA Astrophysics Data System (ADS)

    Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.

    2017-11-01

    Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.

  14. Running Injuries During Adolescence and Childhood.

    PubMed

    Krabak, Brian J; Snitily, Brian; Milani, Carlo J E

    2016-02-01

    The popularity of running among young athletes has significantly increased over the past few decades. As the number of children who participate in running increases, so do the potential number of injuries to this group. Proper care of these athletes includes a thorough understanding of the unique physiology of the skeletally immature athlete and common injuries in this age group. Treatment should focus on athlete education, modification of training schedule, and correction of biomechanical deficits contributing to injury. Early identification and correction of these factors will allow a safe return to running sports. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Is There an Optimal Speed for Economical Running?

    PubMed

    Black, Matthew I; Handsaker, Joseph C; Allen, Sam J; Forrester, Stephanie E; Folland, Jonathan P

    2018-01-01

    The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg -1  · km -1 ) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed-energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P < .05). These findings demonstrate that there is an optimal speed for economical running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.

  16. Deep Web video

    ScienceCinema

    None Available

    2018-02-06

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  17. Dopamine D1 receptor modulation in nucleus accumbens lowers voluntary wheel running in rats bred to run high distances.

    PubMed

    Roberts, Michael D; Gilpin, Leigh; Parker, Kyle E; Childs, Thomas E; Will, Matthew J; Booth, Frank W

    2012-02-01

    Dopamine signaling in the nucleus accumbens (NAc) has been postulated to influence reward development towards drugs of abuse and exercise. Herein, we used generation 4-5 rats that were selectively bred to voluntary run high (HVR) versus low (LVR) distances in order to examine if dopamine-like 1 (D1) receptor modulation in the NAc differentially affects nightly voluntary wheel running between these lines. A subset of generation 5-6 HVR and LVR rats were also used to study the mRNA expression of key genes related to reward and addiction in the NAc (i.e., DRD1, DRD5, DRD2, Nr4a2, FosB, and BDNF). In a crossover fashion, a D1-like agonist SKF 82958 (2 μg per side) or D1-like full antagonist SCH 23390 (4 μg per side) was bilaterally injected into the NAc of HVR and LVR female Wistar rats prior to their high running nights. Notably, during hours 2-4 (between 2000 and 2300) of the dark cycle there was a significant decrement in running distances in the HVR rats treated with the D1 agonist (p=0.025) and antagonist (p=0.017) whereas the running distances in LVR rats were not affected. Interestingly, HVR and LVR rats possessed similar NAc concentrations of the studied mRNAs. These data suggest that: a) animals predisposed to run high distances on a nightly basis may quickly develop a rewarding response to exercise due to an optimal D1-like receptor signaling pathway in the NAc that can be perturbed by either activation or blocking, b) D1-like agonist or antagonist injections do not increase running distances in rats that are bred to run low nightly distances, and c) running differences between HVR and LVR animals are seemingly not due to the expression of the studied mRNAs. Given the societal prevalence of obesity and extraneous physical inactivity, future studies should be performed in order to further determine the culprit for the low running phenotype observed in LVR animals. Copyright © 2011. Published by Elsevier Inc.

  18. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.

    PubMed

    Stromatias, Evangelos; Neil, Daniel; Pfeiffer, Michael; Galluppi, Francesco; Furber, Steve B; Liu, Shih-Chii

    2015-01-01

    Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost two bits, and show that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.

  19. DeepInfer: open-source deep learning deployment toolkit for image-guided therapy

    NASA Astrophysics Data System (ADS)

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-03-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  20. DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy.

    PubMed

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A; Kapur, Tina; Wells, William M; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-02-11

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  1. DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy

    PubMed Central

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-01-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose “DeepInfer” – an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections. PMID:28615794

  2. DeepNeuron: an open deep learning toolbox for neuron tracing.

    PubMed

    Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui

    2018-06-06

    Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

  3. Red light running : a policy review

    DOT National Transportation Integrated Search

    2003-03-01

    There are more than 100,000 red light running crashes per year in the U.S., resulting in some 90,000 people injured and 1,000 people killed. More than half of red light running-related fatalities are pedestrians and occupants in other vehicles who ar...

  4. Spontaneous running activity in male rats - Effect of age

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Sims, C.; Reaven, G. M.

    1985-01-01

    Variations in the intensity and the patterns of spontaneous running activity in wheel cages were studied in male rats aged 7 weeks to one year. Daily running records were obtained for periods of 12 mo, and 24-hour recordings were made for selected runners in order to study variations in running activity during the day. The data indicate that for rats running over two miles/day, the maximum running intensity can be divided into two groups: a group of high achievers running 8 miles/day; and a group of moderate achievers running 4.8 miles/day. For both groups spontaneous activity reached a maximum after 4-5 weeks. An hourly pattern of running activity during the day was identified in rats of increasing age who averaged 9.0, 4.5, 2.6, and 1.2 miles/day, respectively. Progressive losses were observed in both the speed and the duration of spontaneous running as the rats increased in age, with the intensity of exercise falling below 2 miles/day after 7-8 months of age.

  5. Endurance running ability at adolescence as a predictor of blood pressure levels and hypertension in men: a 25-year follow-up study.

    PubMed

    Mikkelsson, L; Kaprio, J; Kautiainen, H; Nupponen, H; Tikkanen, M J; Kujala, U M

    2005-01-01

    The aim was to study whether aerobic fitness measured by a maximal endurance running test at adolescence predicts prevalence of hypertension or blood pressure levels in adulthood. From the 413 (197 slow runners and 216 fast runners) participating in a 2000-meter running test at adolescence in 1976 and responding to a health and fitness questionnaire in 2001, 29 subjects (15 very slow runners and 14 very fast runners) participated in a clinical follow-up study in 2001. Compared to those who were fast runners in adolescence, those who were slow runners tended to have higher age-adjusted risk of hypertension at follow-up (OR 2.7, 95 % CI 0.9 to 7.5; p=0.07). The result persisted after further adjustment for body mass index at follow-up (OR 2.9, 95 % CI 1.0 to 8.3; p=0.05). Diastolic blood pressure was higher for very slow runners at adolescence compared to very fast runners, the age-adjusted mean diastolic blood pressure being 90 mm Hg (95 % CI 86 to 93) vs. 83 mm Hg (95 % CI 80 to 87), age-adjusted p=0.013. High endurance type fitness in adolescence predicts low risk of hypertension and low resting diastolic blood pressure levels in adult men.

  6. Orthopaedic Perspective on Barefoot and Minimalist Running.

    PubMed

    Roth, Jonathan; Neumann, Julie; Tao, Matthew

    2016-03-01

    In recent years, there has been a movement toward barefoot and minimalist running. Advocates assert that a lack of cushion and support promotes a forefoot or midfoot strike rather than a rearfoot strike, decreasing the impact transient and stress on the hip and knee. Although the change in gait is theorized to decrease injury risk, this concept has not yet been fully elucidated. However, research has shown diminished symptoms of chronic exertional compartment syndrome and anterior knee pain after a transition to minimalist running. Skeptics are concerned that, because of the effects of the natural environment and the lack of a standardized transition program, barefoot running could lead to additional, unforeseen injuries. Studies have shown that, with the transition to minimalist running, there is increased stress on the foot and ankle and risk of repetitive stress injuries. Nonetheless, despite the large gap of evidence-based knowledge on minimalist running, the potential benefits warrant further research and consideration.

  7. ACCURACY OF SELF-REPORTED FOOT STRIKE PATTERN IN INTERCOLLEGIATE AND RECREATIONAL RUNNERS DURING SHOD RUNNING

    PubMed Central

    Bade, Michael B.; Aaron, Katie

    2016-01-01

    ABSTRACT Background Clinicians are interested in the foot strike pattern (FSP) in runners because of the suggested relationship between the strike pattern and lower extremity injury. Purpose The purpose of this study was to assess the ability of collegiate cross-country runners and recreational runners to self-report their foot strike pattern during running. Study Design Cross-sectional Study Methods Twenty-three collegiate cross-country and 23 recreational runners voluntarily consented to participate. Inclusion criteria included running at least 18 miles per week, experience running on a treadmill, no history of lower extremity congenital or traumatic deformity, or acute injury three months prior to the start of the study. All participants completed a pre-test survey to indicate their typical foot strike pattern during a training run (FSPSurvey). Prior to running, reflective markers were placed on the posterior midsole and the vamp of the running shoe. A high-speed camera was used to film each runner in standing and while running at his or her preferred speed on a treadmill. The angle between the vector formed by the two reflective markers and the superior surface of the treadmill was used to calculate the foot strike angle (FSA). To determine the foot strike pattern from the video data (FSPVideo), the static standing angle was subtracted from the FSA at initial contact of the shoe on the treadmill. In addition to descriptive statistics, percent agreement and Chi square analysis was used to determine distribution differences between the video analysis results and the survey. Results The results of the chi-square analysis on the distribution of the FSPSurvey in comparison to the FSPVideo were significantly different for both the XCRunners (p < .01; Chi-square = 8.77) and the REC Runners (p < .0002; Chi-square = 16.70). The cross-country and recreational runners could correctly self-identified their foot strike pattern 56.5% and 43.5% of the time

  8. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification.

    PubMed

    Sladojevic, Srdjan; Arsenovic, Marko; Anderla, Andras; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  9. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    PubMed Central

    Sladojevic, Srdjan; Arsenovic, Marko; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%. PMID:27418923

  10. An Evidence-Based Videotaped Running Biomechanics Analysis.

    PubMed

    Souza, Richard B

    2016-02-01

    Running biomechanics play an important role in the development of injuries. Performing a running biomechanics analysis on injured runners can help to develop treatment strategies. This article provides a framework for a systematic video-based running biomechanics analysis plan based on the current evidence on running injuries, using 2-dimensional (2D) video and readily available tools. Fourteen measurements are proposed in this analysis plan from lateral and posterior video. Identifying simple 2D surrogates for 3D biomechanic variables of interest allows for widespread translation of best practices, and have the best opportunity to impact the highly prevalent problem of the injured runner. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Running as a Key Lifestyle Medicine for Longevity.

    PubMed

    Lee, Duck-Chul; Brellenthin, Angelique G; Thompson, Paul D; Sui, Xuemei; Lee, I-Min; Lavie, Carl J

    Running is a popular and convenient leisure-time physical activity (PA) with a significant impact on longevity. In general, runners have a 25%-40% reduced risk of premature mortality and live approximately 3 years longer than non-runners. Recently, specific questions have emerged regarding the extent of the health benefits of running versus other types of PA, and perhaps more critically, whether there are diminishing returns on health and mortality outcomes with higher amounts of running. This review details the findings surrounding the impact of running on various health outcomes and premature mortality, highlights plausible underlying mechanisms linking running with chronic disease prevention and longevity, identifies the estimated additional life expectancy among runners and other active individuals, and discusses whether there is adequate evidence to suggest that longevity benefits are attenuated with higher doses of running. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Deep learning for EEG-Based preference classification

    NASA Astrophysics Data System (ADS)

    Teo, Jason; Hou, Chew Lin; Mountstephens, James

    2017-10-01

    Electroencephalogram (EEG)-based emotion classification is rapidly becoming one of the most intensely studied areas of brain-computer interfacing (BCI). The ability to passively identify yet accurately correlate brainwaves with our immediate emotions opens up truly meaningful and previously unattainable human-computer interactions such as in forensic neuroscience, rehabilitative medicine, affective entertainment and neuro-marketing. One particularly useful yet rarely explored areas of EEG-based emotion classification is preference recognition [1], which is simply the detection of like versus dislike. Within the limited investigations into preference classification, all reported studies were based on musically-induced stimuli except for a single study which used 2D images. The main objective of this study is to apply deep learning, which has been shown to produce state-of-the-art results in diverse hard problems such as in computer vision, natural language processing and audio recognition, to 3D object preference classification over a larger group of test subjects. A cohort of 16 users was shown 60 bracelet-like objects as rotating visual stimuli on a computer display while their preferences and EEGs were recorded. After training a variety of machine learning approaches which included deep neural networks, we then attempted to classify the users' preferences for the 3D visual stimuli based on their EEGs. Here, we show that that deep learning outperforms a variety of other machine learning classifiers for this EEG-based preference classification task particularly in a highly challenging dataset with large inter- and intra-subject variability.

  13. Preinjury and postinjury running analysis along with measurements of strength and tendon length in a patient with a surgically repaired Achilles tendon rupture.

    PubMed

    Silbernagel, Karin Grävare; Willy, Richard; Davis, Irene

    2012-06-01

    Case report. The Achilles tendon is the most frequently ruptured tendon, and the incidence of Achilles tendon rupture has increased in the last decade. The rupture generally occurs without any preceding warning signs, and therefore preinjury data are seldom available. This case represents a unique opportunity to compare preinjury running mechanics with postinjury evaluation in a patient with an Achilles tendon rupture. A 23-year-old female sustained a right complete Achilles tendon rupture while playing soccer. Running mechanics data were collected preinjury, as she was a healthy participant in a study on running analysis. In addition, patient-reported symptoms, physical activity level, strength, ankle range of motion, heel-rise ability, Achilles tendon length, and running kinetics were evaluated 1 year after surgical repair. During running, greater ankle dorsiflexion and eversion and rearfoot abduction were noted on the involved side postinjury when compared to preinjury data. In addition, postinjury, the magnitude of all kinetics data was lower on the involved limb when compared to the uninvolved limb. The involved side displayed differences in strength, ankle range of motion, heel rise, and tendon length when compared to the uninvolved side 1 year after injury. Despite a return to normal running routine and reports of only minor limitations with running, considerable changes were noted in running biomechanics 1 year after injury. Calf muscle weakness and Achilles tendon elongation were also found when comparing the involved and uninvolved sides.

  14. Run-of-river power plants in Alpine regions: whither optimal capacity?

    NASA Astrophysics Data System (ADS)

    Lazzaro, Gianluca; Botter, Gianluca

    2015-04-01

    Hydropower is the major renewable electricity generation technology worldwide. The future expansion of this technology mostly relies on the development of small run-of-river projects, in which a fraction of the running flows is diverted from the river to a turbine for energy production. Even though small hydro inflicts a smaller impact on aquatic ecosystems and local communities compared to large dams, it cannot prevent stresses on plant, animal, and human well-being. This is especially true in mountain regions where the plant outflow is located several kilometers downstream of the intake, thereby inducing the depletion of river reaches of considerable length. Moreover, the negative cumulative effects of run-of-river systems operating along the same river threaten the ability of stream networks to supply ecological corridors for plants, invertebrates or fishes, and support biodiversity. Research in this area is severely lacking. Therefore, the prediction of the long-term impacts associated to the expansion of run-of-river projects induced by global-scale incentive policies remains highly uncertain. This contribution aims at providing objective tools to address the preliminary choice of the capacity of a run-of-river hydropower plant when the economic value of the plant and the alteration of the flow regime are simultaneously accounted for. This is done using the concepts of Pareto-optimality and Pareto-dominance, which are powerful tools suited to face multi-objective optimization in presence of conflicting goals, such as the maximization of the profitability and the minimization of the hydrologic disturbance induced by the plant in the river reach between the intake and the outflow. The application to a set of case studies belonging to the Piave River basin (Italy) suggests that optimal solutions are strongly dependent the natural flow regime at the plant intake. While in some cases (namely, reduced streamflow variability) the optimal trade-off between economic

  15. Running With an Elastic Lower Limb Exoskeleton.

    PubMed

    Cherry, Michael S; Kota, Sridhar; Young, Aaron; Ferris, Daniel P

    2016-06-01

    Although there have been many lower limb robotic exoskeletons that have been tested for human walking, few devices have been tested for assisting running. It is possible that a pseudo-passive elastic exoskeleton could benefit human running without the addition of electrical motors due to the spring-like behavior of the human leg. We developed an elastic lower limb exoskeleton that added stiffness in parallel with the entire lower limb. Six healthy, young subjects ran on a treadmill at 2.3 m/s with and without the exoskeleton. Although the exoskeleton was designed to provide ~50% of normal leg stiffness during running, it only provided 24% of leg stiffness during testing. The difference in added leg stiffness was primarily due to soft tissue compression and harness compliance decreasing exoskeleton displacement during stance. As a result, the exoskeleton only supported about 7% of the peak vertical ground reaction force. There was a significant increase in metabolic cost when running with the exoskeleton compared with running without the exoskeleton (ANOVA, P < .01). We conclude that 2 major roadblocks to designing successful lower limb robotic exoskeletons for human running are human-machine interface compliance and the extra lower limb inertia from the exoskeleton.

  16. Running Injuries in the Participants of Ljubljana Marathon

    PubMed Central

    Vitez, Luka; Zupet, Petra; Zadnik, Vesna; Drobnič, Matej

    2017-01-01

    Abstract Introduction The aim of our study was to determine the self-reported incidence and prevalence of running-related injuries among participants of the 18th Ljubljana Marathon, and to identify risk factors for their occurrence. Methods A customized questionnaire was distributed over registration. Independent samples of t-test and chi-square test were used to calculate the differences in risk factors occurrence in the injured and non-injured group. Factors which appeared significantly more frequently in the injured group were included further into multiple logistic regression analysis. Results The reported lifetime running injury (absence >2 weeks) incidence was: 46% none, 47% rarely, 4% occasionally, and 2% often. Most commonly injured body regions were: knee (30%), ankle and Achilles’ tendon (24%), foot (15%), and calf (12%). Male gender, running history of 1-3 years, and history of previous injuries were risk factors for life-time running injury. In the season preceding the event, 65% of participants had not experienced any running injuries, 19% of them reported minor problems (max 2 weeks absenteeism), but 10% and 7% suffered from moderate (absence 3-4 weeks) or major (more than 4 weeks pause) injuries. BMI was identified as the solely risk factor. Conclusions This self-reported study revealed a 53% lifetime prevalence of running-related injuries, with the predominate involvement of knee, ankle and Achilles’ tendon. One out of three recreational runners experienced at least one minor running injury per season. It seems that male gender, short running experience, previous injury, and BMI do increase the probability for running-related injuries. PMID:29062393

  17. Running Injuries in the Participants of Ljubljana Marathon.

    PubMed

    Vitez, Luka; Zupet, Petra; Zadnik, Vesna; Drobnič, Matej

    2017-10-01

    The aim of our study was to determine the self-reported incidence and prevalence of running-related injuries among participants of the 18 th Ljubljana Marathon, and to identify risk factors for their occurrence. A customized questionnaire was distributed over registration. Independent samples of t-test and chi-square test were used to calculate the differences in risk factors occurrence in the injured and non-injured group. Factors which appeared significantly more frequently in the injured group were included further into multiple logistic regression analysis. The reported lifetime running injury (absence >2 weeks) incidence was: 46% none, 47% rarely, 4% occasionally, and 2% often. Most commonly injured body regions were: knee (30%), ankle and Achilles' tendon (24%), foot (15%), and calf (12%). Male gender, running history of 1-3 years, and history of previous injuries were risk factors for life-time running injury. In the season preceding the event, 65% of participants had not experienced any running injuries, 19% of them reported minor problems (max 2 weeks absenteeism), but 10% and 7% suffered from moderate (absence 3-4 weeks) or major (more than 4 weeks pause) injuries. BMI was identified as the solely risk factor. This self-reported study revealed a 53% lifetime prevalence of running-related injuries, with the predominate involvement of knee, ankle and Achilles' tendon. One out of three recreational runners experienced at least one minor running injury per season. It seems that male gender, short running experience, previous injury, and BMI do increase the probability for running-related injuries.

  18. The ATLAS Data Acquisition System: from Run 1 to Run 2

    NASA Astrophysics Data System (ADS)

    Panduro Vazquez, William; ATLAS Collaboration

    2016-04-01

    The experience gained during the first period of very successful data taking of the ATLAS experiment (Run 1) has inspired a number of ideas for improvement of the Data Acquisition (DAQ) system that are being put in place during the so-called Long Shutdown 1 of the Large Hadron Collider (LHC), in 2013/14. We have updated the data-flow architecture, rewritten an important fraction of the software and replaced hardware, profiting from state of the art technologies. This paper summarizes the main changes that have been applied to the ATLAS DAQ system and highlights the expected performance and functional improvements that will be available for the LHC Run 2. Particular emphasis will be put on explaining the reasons for our architectural and technical choices, as well as on the simulation and testing approach used to validate this system.

  19. Shin splints and forefoot contact running: a case report.

    PubMed

    Cibulka, M T; Sinacore, D R; Mueller, M J

    1994-08-01

    Many athletes develop shin splints after athletic activity. The purpose of this case report is to describe the treatment of a patient with posteromedial tibial pain (shin splints) who habitually ran with a forefoot contact running style. The 20-year-old male patient, who played volleyball and basketball about 7 hours a week, complained of pain in the middle one-third of the posteromedial tibia after an acute but prolonged episode of running. Routine observational analysis and in-shoe pressure analysis of the patient's running style showed that he habitually ran on his toes with an absence of heelstrike (forefoot contact running). After instructing the patient on heel-toe running, he no longer complained of posteromedial tibial bone pain. Several possible reasons are proposed for the reduction of leg pain following cessation of forefoot contact running. This case report proposes forefoot contact running as a possible contributor to posteromedial shin splints and that a change in running style may be the optimal treatment for some patients.

  20. Aerodynamics of wing-assisted incline running in birds.

    PubMed

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  1. DeepSig: deep learning improves signal peptide detection in proteins.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2018-05-15

    The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website. pierluigi.martelli@unibo.it. Supplementary data are available at Bioinformatics online.

  2. Cosmopolitanism and Biogeography of the Genus Manganonema (Nematoda: Monhysterida) in the Deep Sea

    PubMed Central

    Zeppilli, Daniela; Vanreusel, Ann; Danovaro, Roberto

    2011-01-01

    Simple Summary The deep sea comprises more than 60% of the Earth surface, and likely represents the largest reservoir of as yet undiscovered biodiversity. Nematodes are the most abundant taxon on Earth and are particularly abundant and diverse in the deep sea. Nevertheless, knowledge of their biogeography especially in the deep sea is still at its infancy. This article explores the distribution of the genus Manganonema in the deep Atlantic Ocean and Mediterranean Sea providing new insights about this apparently rare deep-sea genus. Abstract Spatial patterns of species diversity provide information about the mechanisms that regulate biodiversity and are important for setting conservation priorities. Present knowledge of the biogeography of meiofauna in the deep sea is scarce. This investigation focuses on the distribution of the deep-sea nematode genus Manganonema, which is typically extremely rare in deep-sea sediment samples. Forty-four specimens of eight different species of this genus were recorded from different Atlantic and Mediterranean regions. Four out of the eight species encountered are new to science. We report here that this genus is widespread both in the Atlantic and in the Mediterranean Sea. These new findings together with literature information indicate that Manganonema is a cosmopolitan genus, inhabiting a variety of deep-sea habitats and oceans. Manganonema shows the highest diversity at water depths >4,000 m. Our data, therefore, indicate that this is preferentially an abyssal genus that is able, at the same time, to colonize specific habitats at depths shallower than 1,000 m. The analysis of the distribution of the genus Manganonema indicates the presence of large differences in dispersal strategies among different species, ranging from locally endemic to cosmopolitan. Lacking meroplanktonic larvae and having limited dispersal ability due to their small size, it has been hypothesized that nematodes have limited dispersal potential. However, the

  3. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earths Radiation Budget

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    Satellites always sample the Earth-atmosphere system in a finite temporal resolution. This study investigates the effect of sampling frequency on the satellite-derived Earth radiation budget, with the Deep Space Climate Observatory (DSCOVR) as an example. The output from NASA's Goddard Earth Observing System Version 5 (GEOS-5) Nature Run is used as the truth. The Nature Run is a high spatial and temporal resolution atmospheric simulation spanning a two-year period. The effect of temporal resolution on potential DSCOVR observations is assessed by sampling the full Nature Run data with 1-h to 24-h frequencies. The uncertainty associated with a given sampling frequency is measured by computing means over daily, monthly, seasonal and annual intervals and determining the spread across different possible starting points. The skill with which a particular sampling frequency captures the structure of the full time series is measured using correlations and normalized errors. Results show that higher sampling frequency gives more information and less uncertainty in the derived radiation budget. A sampling frequency coarser than every 4 h results in significant error. Correlations between true and sampled time series also decrease more rapidly for a sampling frequency less than 4 h.

  4. ALICE HLT Run 2 performance overview.

    NASA Astrophysics Data System (ADS)

    Krzewicki, Mikolaj; Lindenstruth, Volker; ALICE Collaboration

    2017-10-01

    For the LHC Run 2 the ALICE HLT architecture was consolidated to comply with the upgraded ALICE detector readout technology. The software framework was optimized and extended to cope with the increased data load. Online calibration of the TPC using online tracking capabilities of the ALICE HLT was deployed. Offline calibration code was adapted to run both online and offline and the HLT framework was extended to support that. The performance of this schema is important for Run 3 related developments. An additional data transport approach was developed using the ZeroMQ library, forming at the same time a test bed for the new data flow model of the O2 system, where further development of this concept is ongoing. This messaging technology was used to implement the calibration feedback loop augmenting the existing, graph oriented HLT transport framework. Utilising the online reconstruction of many detectors, a new asynchronous monitoring scheme was developed to allow real-time monitoring of the physics performance of the ALICE detector, on top of the new messaging scheme for both internal and external communication. Spare computing resources comprising the production and development clusters are run as a tier-2 GRID site using an OpenStack-based setup. The development cluster is running continuously, the production cluster contributes resources opportunistically during periods of LHC inactivity.

  5. A Brief Opportunity to Run Does Not Function as a Reinforcer for Mice Selected for High Daily Wheel-Running Rates

    ERIC Educational Resources Information Center

    Belke, Terry W.; Garland, Theodore, Jr.

    2007-01-01

    Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption…

  6. Deep feature extraction and combination for synthetic aperture radar target classification

    NASA Astrophysics Data System (ADS)

    Amrani, Moussa; Jiang, Feng

    2017-10-01

    Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.

  7. Are There Long-Run Effects of the Minimum Wage?

    PubMed Central

    Sorkin, Isaac

    2014-01-01

    An empirical consensus suggests that there are small employment effects of minimum wage increases. This paper argues that these are short-run elasticities. Long-run elasticities, which may differ from short-run elasticities, are policy relevant. This paper develops a dynamic industry equilibrium model of labor demand. The model makes two points. First, long-run regressions have been misinterpreted because even if the short- and long-run employment elasticities differ, standard methods would not detect a difference using US variation. Second, the model offers a reconciliation of the small estimated short-run employment effects with the commonly found pass-through of minimum wage increases to product prices. PMID:25937790

  8. Are There Long-Run Effects of the Minimum Wage?

    PubMed

    Sorkin, Isaac

    2015-04-01

    An empirical consensus suggests that there are small employment effects of minimum wage increases. This paper argues that these are short-run elasticities. Long-run elasticities, which may differ from short-run elasticities, are policy relevant. This paper develops a dynamic industry equilibrium model of labor demand. The model makes two points. First, long-run regressions have been misinterpreted because even if the short- and long-run employment elasticities differ, standard methods would not detect a difference using US variation. Second, the model offers a reconciliation of the small estimated short-run employment effects with the commonly found pass-through of minimum wage increases to product prices.

  9. Running Improves Pattern Separation during Novel Object Recognition.

    PubMed

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  10. The Effects of a Periodized vs. Traditional Military Training Program on 2-Mile Run Performance During the Army Physical Fitness Test (APFT).

    PubMed

    Stone, Brandon L; Heishman, Aaron D; Campbell, Jay A

    2017-07-31

    The purpose of this study was to compare the effects of an experimental versus traditional military run training on 2-mile run ability in Army Reserve Officer Training Corps (ROTC) cadets. Fifty college-aged cadets were randomly placed into two groups and trained for four weeks with either an experimental running program (EXP, n=22) comprised of RPE intensity-specific, energy system based intervals or with traditional military running program (TRA, n=28) utilizing a crossover study design. A 2-mile run assessment was performed just prior to the start, at the end of the first 4 weeks, and again after the second 4 weeks of training following crossover. The EXP program significantly decreased 2-mile run times (961.3s ± 155.8s to 943.4 ± 140.2s, P=0.012, baseline to post 1) while the TRA group experienced a significant increase in run times (901.0 ± 79.2s vs. 913.9 ± 82.9s) over the same training period. There was a moderate effect size (d = 0.61, P=0.07) for the experimental run program to "reverse" the adverse effects of the traditional program within the 4-week training period (post 1 to post 2) following treatment crossover. Thus, for short-term training of military personnel, RPE intensity specific running program comprised of aerobic and anaerobic system development can enhance 2-mile run performance superior of a traditional program while reducing training volume (60 min per session vs. 43.2 min per session, respectively). Future research should extend the training period to determine efficacy of this training approach for long term improvement of aerobic capacity and possible reduction of musculoskeletal injury.

  11. The Second Student-Run Homeless Shelter

    ERIC Educational Resources Information Center

    Seider, Scott C.

    2012-01-01

    From 1983-2011, the Harvard Square Homeless Shelter (HSHS) in Cambridge, Massachusetts, was the only student-run homeless shelter in the United States. However, college students at Villanova, Temple, Drexel, the University of Pennsylvania, and Swarthmore drew upon the HSHS model to open their own student-run homeless shelter in Philadelphia,…

  12. Deep Space 1 Ion Engine

    NASA Image and Video Library

    2002-12-21

    This image of a xenon ion engine prototype, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine. The engine is now in an ongoing extended- life test, in a vacuum test chamber at JPL, and has run for almost 500 days (12,000 hours) and is scheduled to complete nearly 625 days (15,000 hours) by the end of 2001. A similar engine powers the New Millennium Program's flagship mission, Deep Space 1, which uses the ion engine in a trip through the solar system. The engine, weighing 17.6 pounds (8 kilograms), is 15.7 inches (40 centimeters) in diameter and 15.7 inches long. The actual thrust comes from accelerating and expelling positively charged xenon atoms, or ions. While the ions are fired in great numbers out the thruster at more than 110,000 kilometers (68,000 miles) per hour, their mass is so low that the engine produces a gentle thrust of only 90 millinewtons (20-thousandths of a pound). http://photojournal.jpl.nasa.gov/catalog/PIA04238

  13. Effect of running exercise on the number of the neurons in the hippocampus of young transgenic APP/PS1 mice.

    PubMed

    Jiang, Lin; Ma, Jing; Zhang, Yi; Zhou, Chun-Ni; Zhang, Lei; Chao, Feng-Lei; Chen, Lin-Mu; Jiang, Rong; Wu, Hong; Tang, Yong

    2018-08-01

    To investigate the effect of running exercise on the number of the neurons in the hippocampus of young APP/PS1 mice, twenty 6-month-old male APP/ PS1 transgenic mice were randomly divided into the APP/PS1 control (AD control) group and the APP/PS1 running (AD running) group (10 mice per group), and ten wild-type mice of the littermate were regarded as the wild-type (WT) group. The AD running mice ran on motorized treadmill machiene for 4 months, while the WT mice and AD control mice were housed in standard condition without running. Then, Morris water maze tests (MWM) were used to assess the special learning and memory abilities of mice in three groups. The stereological methods were used to quantitatively evaluate the volume of the hippocampus, CA1/2, CA3 and the dentate gyrus (DG) and count the number of the neurons in CA1/2, CA3 and DG. We found that 4-month running effectively shortened the escape latency of young APP/PS1 control mice in MWM. More importantly, 4-month running effectively increased the volumes of the hippocampus, CA1/2, CA3 and DG and increased the number of neurons in CA1/2, CA3 and DG in young APP/PS1 mice. The present results suggested that 4-month running has significant beneficial effects on the spatial learning and memory capacities of young APP/PS1 mice and could delay the progress of atrophy of hippocampus and the neuron death in CA1/2, CA3 and DG in young APP/PS1 mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Barefoot versus shoe running: from the past to the present.

    PubMed

    Kaplan, Yonatan

    2014-02-01

    Barefoot running is not a new concept, but relatively few people choose to engage in barefoot running on a regular basis. Despite the technological developments in modern running footwear, as many as 79% of runners are injured every year. Although benefits of barefoot running have been proposed, there are also potential risks associated with it. To review the evidence-based literature concerning barefoot/minimal footwear running and the implications for the practicing physician. Multiple publications were reviewed using an electronic search of databases such as Medline, Cinahl, Embase, PubMed, and Cochrane Database from inception until August 30, 2013 using the search terms barefoot running, barefoot running biomechanics, and shoe vs. barefoot running. Ninety-six relevant articles were found. Most were reviews of biomechanical and kinematic studies. There are notable differences in gait and other parameters between barefoot running and shoe running. Based on these findings and much anecdotal evidence, one could conclude that barefoot runners should have fewer injuries, better performance, or both. Several athletic shoe companies have designed running shoes that attempt to mimic the barefoot condition, and thus garner the purported benefits of barefoot running. Although there is no evidence that confirms or refutes improved performance and reduced injuries in barefoot runners, many of the claimed disadvantages to barefoot running are not supported by the literature. Nonetheless, it seems that barefoot running may be an acceptable training method for athletes and coaches, as it may minimize the risks of injury.

  15. The valid measurement of running economy in runners.

    PubMed

    Shaw, Andrew J; Ingham, Stephen A; Folland, Jonathan P

    2014-10-01

    Oxygen cost (OC) is commonly used to assess an athlete's running economy, although the validity of this measure is often overlooked. This study evaluated the validity of OC as a measure of running economy by comparison with the underlying energy cost (EC). In addition, the most appropriate method of removing the influence of body mass was determined to elucidate a measure of running economy that enables valid interindividual comparisons. One hundred and seventy-two highly trained endurance runners (males, n = 101; females, n = 71) performed a discontinuous submaximal running assessment, consisting of approximately seven 3-min stages (1 km·h increments), to determine the absolute OC (L·km) and EC (kcal·km) for the four speeds below lactate turn point. Comparisons between models revealed linear ratio scaling to be a more suitable method than power function scaling for removing the influence of body mass for both EC (males, R = 0.589 vs 0.588; females, R = 0.498 vs 0.482) and OC (males, R = 0.657 vs 0.652; females, R = 0.532 vs 0.531). There were stepwise increases in EC and RER with increments in running speed (both, P < 0.001). However, no differences were observed for OC across the four monitored speeds (P = 0.54). Although EC increased with running speed, OC was insensitive to changes in running speed and, therefore, does not appear to provide a valid index of the underlying EC of running, likely due to the inability of OC to account for variations in substrate use. Therefore, EC should be used as the primary measure of running economy, and for runners, an appropriate scaling with body mass is recommended.

  16. The mechanics of sprint running

    PubMed Central

    Cavagna, Giovanni A.; Komarek, L.; Mazzoleni, Stefania

    1971-01-01

    1. The effect of the velocity of shortening on the power developed by the muscles in sprint running was studied by measuring the mechanical work done to accelerate the body forward from the start to about 34 km/hr. 2. The work was measured at each step from the data obtained by means of a platform sensitive to the force impressed by the foot. 3. Almost the totality of the positive work done during the first second from the start is found as an increase of the kinetic energy of the body. However, as the speed of the run rises, air resistance and particularly the deceleration of the body forward, taking place at each step, rapidly increase, limiting the speed of the run. 4. The average power developed by the muscles during the push at each step increases with the velocity of running reaching 3-4 h.p. at the maximal speed attained. 5. At low speed the contractile component of the muscles seems to be mainly responsible for the power output, whereas at high speed (25-34 km/hr) an appreciable fraction of the power appears to be sustained by the mechanical energy stored in the `series elastic elements' during stretching the contracted muscles (negative work) and released immediately after in the positive work phase. ImagesFig. 1 PMID:5098087

  17. Blood lactate thresholds and walking/running economy are determinants of backpack-running performance in trained soldiers.

    PubMed

    Simpson, Richard J; Graham, Scott M; Connaboy, Christopher; Clement, Richard; Pollonini, Luca; Florida-James, Geraint D

    2017-01-01

    We developed a standardized laboratory treadmill protocol for assessing physiological responses to a simulated backpack load-carriage task in trained soldiers, and assessed the efficacy of blood lactate thresholds (LTs) and economy in predicting future backpack running success over an 8-mile course in field conditions. LTs and corresponding physiological responses were determined in 17 elite British soldiers who completed an incremental treadmill walk/run protocol to exhaustion carrying 20 kg backpack load. Treadmill velocity at the breakpoint (r = -0.85) and Δ 1 mmol l(-1) (r = -0.80) LTs, and relative V˙O2 at 4 mmol l(-1) (r = 0.76) and treadmill walk/run velocities of 6.4 (r = 0.76), 7.4 (r = 0.80), 11.4 (r = 0.66) and 12.4 (r = 0.65) km h(-1) were significantly associated with field test completion time. We report for the first time that LTs and backpack walk/run economy are major determinants of backpack load-carriage performance in trained soldiers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 40 CFR 86.134-96 - Running loss test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Running loss test. 86.134-96 Section... Heavy-Duty Vehicles; Test Procedures § 86.134-96 Running loss test. (a) Overview. Gasoline- and methanol-fueled vehicles are to be tested for running loss emissions during simulated high-temperature urban...

  19. 40 CFR 86.134-96 - Running loss test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Running loss test. 86.134-96 Section... Heavy-Duty Vehicles; Test Procedures § 86.134-96 Running loss test. (a) Overview. Gasoline- and methanol-fueled vehicles are to be tested for running loss emissions during simulated high-temperature urban...

  20. 40 CFR 86.134-96 - Running loss test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Running loss test. 86.134-96 Section... Heavy-Duty Vehicles; Test Procedures § 86.134-96 Running loss test. (a) Overview. Gasoline- and methanol-fueled vehicles are to be tested for running loss emissions during simulated high-temperature urban...

  1. 40 CFR 86.134-96 - Running loss test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Running loss test. 86.134-96 Section... Heavy-Duty Vehicles; Test Procedures § 86.134-96 Running loss test. (a) Overview. Gasoline- and methanol-fueled vehicles are to be tested for running loss emissions during simulated high-temperature urban...

  2. Teaching Bank Runs with Classroom Experiments

    ERIC Educational Resources Information Center

    Balkenborg, Dieter; Kaplan, Todd; Miller, Timothy

    2011-01-01

    Once relegated to cinema or history lectures, bank runs have become a modern phenomenon that captures the interest of students. In this article, the authors explain a simple classroom experiment based on the Diamond-Dybvig model (1983) to demonstrate how a bank run--a seemingly irrational event--can occur rationally. They then present possible…

  3. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). (5) Read and record all required general and pre-test data (i.e., all required data other than data... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following steps...

  4. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...). (5) Read and record all required general and pre-test data (i.e., all required data other than data... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following steps...

  5. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...). (5) Read and record all required general and pre-test data (i.e., all required data other than data... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following steps...

  6. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). (5) Read and record all required general and pre-test data (i.e., all required data other than data... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following steps...

  7. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). (5) Read and record all required general and pre-test data (i.e., all required data other than data... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following steps...

  8. Adaptations of lumbar biomechanics after four weeks of running training with minimalist footwear and technique guidance: Implications for running-related lower back pain.

    PubMed

    Lee, Szu-Ping; Bailey, Joshua P; Smith, Jo Armour; Barton, Stephanie; Brown, David; Joyce, Talia

    2018-01-01

    To investigate the changes in lumbar kinematic and paraspinal muscle activation before, during, and after a 4-week minimalist running training. Prospective cohort study. University research laboratory. Seventeen habitually shod recreational runners who run 10-50 km per week. During stance phases of running, sagittal lumbar kinematics was recorded using an electrogoniometer, and activities of the lumbar paraspinal muscles were assessed by electromyography. Runners were asked to run at a prescribed speed (3.1 m/s) and a self-selected speed. For the 3.1 m/s running speed, significant differences were found in the calculated mean lumbar posture (p = 0.001) during the stance phase, including a more extended lumbar posture after minimalist running training. A significant reduction in the contralateral lumbar paraspinal muscle activation was also observed (p = 0.039). For the preferred running speed, similar findings of a more extended lumbar posture (p = 0.002) and a reduction in contralateral lumbar paraspinal muscle activation (p = 0.047) were observed. A 4-week minimalist running training program produced significant changes in lumbar biomechanics during running. Specifically, runners adopted a more extended lumbar posture and reduced lumbar paraspinal muscle activation. These findings may have clinical implications for treating individuals with running-related lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks.

    PubMed

    Li, Chao; Wang, Xinggang; Liu, Wenyu; Latecki, Longin Jan

    2018-04-01

    Mitotic count is a critical predictor of tumor aggressiveness in the breast cancer diagnosis. Nowadays mitosis counting is mainly performed by pathologists manually, which is extremely arduous and time-consuming. In this paper, we propose an accurate method for detecting the mitotic cells from histopathological slides using a novel multi-stage deep learning framework. Our method consists of a deep segmentation network for generating mitosis region when only a weak label is given (i.e., only the centroid pixel of mitosis is annotated), an elaborately designed deep detection network for localizing mitosis by using contextual region information, and a deep verification network for improving detection accuracy by removing false positives. We validate the proposed deep learning method on two widely used Mitosis Detection in Breast Cancer Histological Images (MITOSIS) datasets. Experimental results show that we can achieve the highest F-score on the MITOSIS dataset from ICPR 2012 grand challenge merely using the deep detection network. For the ICPR 2014 MITOSIS dataset that only provides the centroid location of mitosis, we employ the segmentation model to estimate the bounding box annotation for training the deep detection network. We also apply the verification model to eliminate some false positives produced from the detection model. By fusing scores of the detection and verification models, we achieve the state-of-the-art results. Moreover, our method is very fast with GPU computing, which makes it feasible for clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  11. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  12. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  13. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  14. 40 CFR 86.134-96 - Running loss test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... running loss test procedure as approved for a specific vehicle. (4) High-altitude testing. For testing... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Running loss test. 86.134-96 Section... Heavy-Duty Vehicles; Test Procedures § 86.134-96 Running loss test. (a) Overview. Gasoline- and methanol...

  15. Lower extremity joint kinetics and energetics during backward running.

    PubMed

    DeVita, P; Stribling, J

    1991-05-01

    The purpose of this study was to measure lower extremity joint moments of force and joint muscle powers used to perform backward running. Ten trials of high speed (100 Hz) sagittal plane film records and ground reaction force data (1000 Hz) describing backward running were obtained from each of five male runners. Fifteen trials of forward running data were obtained from one of these subjects. Inverse dynamics were performed on these data to obtain the joint moments and powers, which were normalized to body mass to make between-subject comparisons. Backward running hip moment and power patterns were similar in magnitude and opposite in direction to forward running curves and produced more positive work in stance. Functional roles of knee and ankle muscles were interchanged between backward and forward running. Knee extensors were the primary source of propulsion in backward running owing to greater moment and power output (peak moment = 3.60 N.m.kg-1; peak power = 12.40 W.kg-1) compared with the ankle (peak moment = 1.92 N.m.kg-1; peak power = 7.05 W.kg-1). The ankle plantarflexors were the primary shock absorbers, producing the greatest negative power (peak = -6.77 W.kg-1) during early stance. Forward running had greater ankle moment and power output for propulsion and greater knee negative power for impact attenuation. The large knee moment in backward running supported previous findings indicating that backward running training leads to increased knee extensor torque capabilities.

  16. SLF Run & Walk

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center Director Bob Cabana approaches the finish line at the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  17. SLF Run & Walk

    NASA Image and Video Library

    2018-03-13

    A line of Kennedy Space Center employees and guests stretches down the Shuttle Landing Facility Runway during the KSC Walk Run. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  18. Random Deep Belief Networks for Recognizing Emotions from Speech Signals.

    PubMed

    Wen, Guihua; Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang

    2017-01-01

    Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  19. Random Deep Belief Networks for Recognizing Emotions from Speech Signals

    PubMed Central

    Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang

    2017-01-01

    Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition. PMID:28356908

  20. Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models

    NASA Astrophysics Data System (ADS)

    Mills, Kyle; Tamblyn, Isaac

    2018-03-01

    We demonstrate the capability of a convolutional deep neural network in predicting the nearest-neighbor energy of the 4 ×4 Ising model. Using its success at this task, we motivate the study of the larger 8 ×8 Ising model, showing that the deep neural network can learn the nearest-neighbor Ising Hamiltonian after only seeing a vanishingly small fraction of configuration space. Additionally, we show that the neural network has learned both the energy and magnetization operators with sufficient accuracy to replicate the low-temperature Ising phase transition. We then demonstrate the ability of the neural network to learn other spin models, teaching the convolutional deep neural network to accurately predict the long-range interaction of a screened Coulomb Hamiltonian, a sinusoidally attenuated screened Coulomb Hamiltonian, and a modified Potts model Hamiltonian. In the case of the long-range interaction, we demonstrate the ability of the neural network to recover the phase transition with equivalent accuracy to the numerically exact method. Furthermore, in the case of the long-range interaction, the benefits of the neural network become apparent; it is able to make predictions with a high degree of accuracy, and do so 1600 times faster than a CUDA-optimized exact calculation. Additionally, we demonstrate how the neural network succeeds at these tasks by looking at the weights learned in a simplified demonstration.