Sample records for abiotic environmental parameters

  1. Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants

    PubMed Central

    Walter, Andreas; Knapp, Brigitte A.; Farbmacher, Theresa; Ebner, Christian; Insam, Heribert; Franke‐Whittle, Ingrid H.

    2012-01-01

    Summary To find links between the biotic characteristics and abiotic process parameters in anaerobic digestion systems, the microbial communities of nine full‐scale biogas plants in South Tyrol (Italy) and Vorarlberg (Austria) were investigated using molecular techniques and the physical and chemical properties were monitored. DNA from sludge samples was subjected to microarray hybridization with the ANAEROCHIP microarray and results indicated that sludge samples grouped into two main clusters, dominated either by Methanosarcina or by Methanosaeta, both aceticlastic methanogens. Hydrogenotrophic methanogens were hardly detected or if detected, gave low hybridization signals. Results obtained using denaturing gradient gel electrophoresis (DGGE) supported the findings of microarray hybridization. Real‐time PCR targeting Methanosarcina and Methanosaeta was conducted to provide quantitative data on the dominating methanogens. Correlation analysis to determine any links between the microbial communities found by microarray analysis, and the physicochemical parameters investigated was conducted. It was shown that the sludge samples dominated by the genus Methanosarcina were positively correlated with higher concentrations of acetate, whereas sludge samples dominated by representatives of the genus Methanosaeta had lower acetate concentrations. No other correlations between biotic characteristics and abiotic parameters were found. Methanogenic communities in each reactor were highly stable and resilient over the whole year. PMID:22950603

  2. Maternal, social and abiotic environmental effects on growth vary across life stages in a cooperative mammal.

    PubMed

    English, Sinead; Bateman, Andrew W; Mares, Rafael; Ozgul, Arpat; Clutton-Brock, Tim H

    2014-03-01

    Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment

  3. Maternal, social and abiotic environmental effects on growth vary across life stages in a cooperative mammal

    PubMed Central

    English, Sinead; Bateman, Andrew W; Mares, Rafael; Ozgul, Arpat; Clutton-Brock, Tim H

    2014-01-01

    Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment

  4. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Inversion analysis of estimating interannual variability and its uncertainties in biotic and abiotic parameters of a parsimonious physiologically based model after wind disturbance

    NASA Astrophysics Data System (ADS)

    Toda, M.; Yokozawa, M.; Richardson, A. D.; Kohyama, T.

    2011-12-01

    The effects of wind disturbance on interannual variability in ecosystem CO2 exchange have been assessed in two forests in northern Japan, i.e., a young, even-aged, monocultured, deciduous forest and an uneven-aged mixed forest of evergreen and deciduous trees, including some over 200 years old using eddy covariance (EC) measurements during 2004-2008. The EC measurements have indicated that photosynthetic recovery of trees after a huge typhoon occurred during early September in 2004 activated annual carbon uptake of both forests due to changes in physiological response of tree leaves during their growth stages. However, little have been resolved about what biotic and abiotic factors regulated interannual variability in heat, water and carbon exchange between an atmosphere and forests. In recent years, an inverse modeling analysis has been utilized as a powerful tool to estimate biotic and abiotic parameters that might affect heat, water and CO2 exchange between the atmosphere and forest of a parsimonious physiologically based model. We conducted the Bayesian inverse model analysis for the model with the EC measurements. The preliminary result showed that the above model-derived NEE values were consistent with observed ones on the hourly basis with optimized parameters by Baysian inversion. In the presentation, we would examine interannual variability in biotic and abiotic parameters related to heat, water and carbon exchange between the atmosphere and forests after disturbance by typhoon.

  6. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  7. Role of sugars under abiotic stress.

    PubMed

    Sami, Fareen; Yusuf, Mohammad; Faizan, Mohammad; Faraz, Ahmad; Hayat, Shamsul

    2016-12-01

    Sugars are the most important regulators that facilitate many physiological processes, such as photosynthesis, seed germination, flowering, senescence, and many more under various abiotic stresses. Exogenous application of sugars in low concentration promote seed germination, up regulates photosynthesis, promotes flowering, delayed senescence under various unfavorable environmental conditions. However, high concentration of sugars reverses all these physiological process in a concentration dependent manner. Thus, this review focuses the correlation between sugars and their protective functions in several physiological processes against various abiotic stresses. Keeping in mind the multifaceted role of sugars, an attempt has been made to cover the role of sugar-regulated genes associated with photosynthesis, seed germination and senescence. The concentration of sugars determines the expression of these sugar-regulated genes. This review also enlightens the interaction of sugars with several phytohormones, such as abscisic acid, ethylene, cytokinins and gibberellins and its effect on their biosynthesis under abiotic stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. [Transgenic rice breeding for abiotic stress tolerance--present and future].

    PubMed

    Zhao, Feng-Yun; Zhang, Hui

    2007-01-01

    Environmental stresses and the continuing deterioration of arable land, along with an explosive increase in world population, pose serious threats to global agricultural production and food security. Improving the tolerance of the major crop plants to abiotic stresses has been a main goal in agriculture for a long time. As rice is considered one of the major crops, the development of new cultivars with enhanced abiotic stress-tolerance will undoubtedly have an important effect on global food production. The transgenic approach offers an attractive alternative to conventional techniques for the genetic improvement of rice cultivars. In recent years, an array of stress-related genes has already been transferred to rice to improve its resistance against abiotic stresses. Many transgenic rice plants with enhanced abiotic stress-tolerance have been obtained. This article focuses on the progress in the study of abiotic stress tolerance in transgenic rice breeding.

  9. Biotic and abiotic degradation of CL-20 and RDX in soils.

    PubMed

    Crocker, Fiona H; Thompson, Karen T; Szecsody, James E; Fredrickson, Herbert L

    2005-01-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d(-1)) and biologically attenuated soil controls (0.003 < k < 0.277 d(-1)). The addition of glucose to biologically active soil microcosms significantly increased CL-20 degradation rates (0.068 < k < 1.22 d(-1)). Extents of mineralization of (14)C-CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d(-1)) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  10. A review of selection-based tests of abiotic surrogates for species representation.

    PubMed

    Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio

    2015-06-01

    Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change. © 2015 Society for Conservation Biology.

  11. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    PubMed Central

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  12. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO 2- reduction by Fe(II) and its production of N 2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO 2 -) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N 2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions.more » We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO 2 - reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N 2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO 2 - reduction by Fe(II) may represent an important abiotic source of environmental N 2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO 2 - reduction and N 2O formation, helping future studies constrain the relative roles of abiotic and biological N 2O production pathways.« less

  13. The Real Difference between Biotic and Abiotic Methane

    NASA Astrophysics Data System (ADS)

    Cao, X.; Bao, H.; Peng, Y.

    2017-12-01

    Methane has both biotic and abiotic origins, and the identification of these two origins has important implications not only in understanding terrestrial processes but also in searching for extraterrestrial life. Carbon and hydrogen isotopes in methane have been used to identify certain biosignatures, but such efforts often suffer from ambiguity. Recent advancement in our capability in measuring multiply substituted isotopologues of methane (i.e. 13CDH3 and 12CD2H2) has found large 12CD2H2 depletion in abiotic methane. Quantum tunneling has been proposed to account for the apparent abiotic signature. However, quantum tunneling is neither unique to abiotic processes nor consistent with the observed not-so-depleted hydrogen isotope composition. Here we constructed a general kinetic model for methane formation from CO2, and validated it by fitting its parameters to observed 13CDH3, 12CD2H2, and 12CDH3. Our model revealed that the fundamental difference between biotic and abiotic methane isotopic signatures is in the source of hydrogens during methane formation. Hydrogens in biotic methane originate from the stronger carbon-hydrogen and sulfur-hydrogen bonds, while hydrogens in abiotic methane originate from the much weaker metal-hydrogen adsorption bond. This hydrogen source difference results in abiotic methane being more depleted in 12CD2H2 than the biotic one. Our model also shows that the primary kinetic hydrogen isotope effect is at approximately 0.6 for both abiotic and biotic pathways, a normal value further nullifying the role of quantum tunneling. The active and exclusive shuttling of reduced hydrogen via strong chemical bonds like carbon-hydrogen and sulfur-hydrogen in coenzymes is proposed here to be a unique signature of life. In an ironic sense, it is the equilibrated hydrogen isotope composition in the hydrogen donors that distinguishes the living from the non-living.

  14. Individual Cell Based Traits Obtained by Scanning Flow-Cytometry Show Selection by Biotic and Abiotic Environmental Factors during a Phytoplankton Spring Bloom

    PubMed Central

    Pomati, Francesco; Kraft, Nathan J. B.; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W.

    2013-01-01

    In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which

  15. Individual cell based traits obtained by scanning flow-cytometry show selection by biotic and abiotic environmental factors during a phytoplankton spring bloom.

    PubMed

    Pomati, Francesco; Kraft, Nathan J B; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W

    2013-01-01

    In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which

  16. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress.

    PubMed

    Khan, Sardar-Ali; Li, Meng-Zhan; Wang, Suo-Min; Yin, Hong-Ju

    2018-05-31

    Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.

  17. Assessment of derelict soil quality: Abiotic, biotic and functional approaches.

    PubMed

    Vincent, Quentin; Auclerc, Apolline; Beguiristain, Thierry; Leyval, Corinne

    2018-02-01

    The intensification and subsequent closing down of industrial activities during the last century has left behind large surfaces of derelict lands. Derelict soils have low fertility, can be contaminated, and many of them remain unused. However, with the increasing demand of soil surfaces, they might be considered as a resource, for example for non-food biomass production. The study of their physico-chemical properties and of their biodiversity and biological activity may provide indications for their potential re-use. The objective of our study was to investigate the quality of six derelict soils, considering abiotic, biotic, and functional parameters. We studied (i) the soil bacteria, fungi, meso- and macro-fauna and plant communities of six different derelict soils (two from coking plants, one from a settling pond, two constructed ones made from different substrates and remediated soil, and an inert waste storage one), and (ii) their decomposition function based on the decomposer trophic network, enzyme activities, mineralization activity, and organic pollutant degradation. Biodiversity levels in these soils were high, but all biotic parameters, except the mycorrhizal colonization level, discriminated them. Multivariate analysis showed that biotic parameters co-varied more with fertility proxies than with soil contamination parameters. Similarly, functional parameters significantly co-varied with abiotic parameters. Among functional parameters, macro-decomposer proportion, enzyme activity, average mineralization capacity, and microbial polycyclic aromatic hydrocarbon degraders were useful to discriminate the soils. We assessed their quality by combining abiotic, biotic, and functional parameters: the compost-amended constructed soil displayed the highest quality, while the settling pond soil and the contaminated constructed soil displayed the lowest. Although differences among the soils were highlighted, this study shows that derelict soils may provide a

  18. Correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, indonesia

    NASA Astrophysics Data System (ADS)

    Sharani, Jeanny; Hidayat, Jafron W.; Putro, Sapto P.

    2018-05-01

    Macrobenthic community play important role in sedimentary habitats as a part of food chain. Their structure may be influenced by environmental characteristic spatially and temporally. The purpose of this study is to access the correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, Indonesia. Water and sediments samples were taken twice, where the first and second sampling time were taken in June and October 2016, respectively. Samples were taken in the area of fish farming at coastal area of policulture/IMTA (as Location I), site of 1 km away from fish farming area as a reference site (as Location II), and monoculture sites (as Location III), with three stations for each location. Data of abiotic parameters included the composition of sediment substrate and DO, pH, salinity, temperature, and. Sediment samples were taken using Ekman grab. The organisms were 1 mm -size sieved and fixed using 10% formalin for further analysis, i.e. sorting, preserving, enumerating, identifying, and grouping. The relationship between biotics (macrobentos) and abiotics (physical-chemical factors) was assessed using a non-parametric multivariate procedure (BIOENV). This study found 61 species consisting of 46 families and 5 classes of macrobenthos. The most common classes were member of Mollusca and Polychaeta. Total nitrogen, silt, and clay were the abiotic factors most influencing macrobenthic structure (BIO-ENV; r = 0.46; R2 = 21.16%).

  19. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    NASA Astrophysics Data System (ADS)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  20. Novel perspectives for the engineering of abiotic stress tolerance in plants.

    PubMed

    Cabello, Julieta V; Lodeyro, Anabella F; Zurbriggen, Matias D

    2014-04-01

    Adverse environmental conditions pose serious limitations to agricultural production. Classical biotechnological approaches towards increasing abiotic stress tolerance focus on boosting plant endogenous defence mechanisms. However, overexpression of regulatory elements or effectors is usually accompanied by growth handicap and yield penalties due to crosstalk between developmental and stress-response networks. Herein we offer an overview on novel strategies with the potential to overcome these limitations based on the engineering of regulatory systems involved in the fine-tuning of the plant response to environmental hardships, including post-translational modifications, small RNAs, epigenetic control of gene expression and hormonal networks. The development and application of plant synthetic biology tools and approaches will add new functionalities and perspectives to genetic engineering programs for enhancing abiotic stress tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Advances in crop proteomics: PTMs of proteins under abiotic stress.

    PubMed

    Wu, Xiaolin; Gong, Fangping; Cao, Di; Hu, Xiuli; Wang, Wei

    2016-03-01

    Under natural conditions, crop plants are frequently subjected to various abiotic environmental stresses such as drought and heat wave, which may become more prevalent in the coming decades. Plant acclimation and tolerance to an abiotic stress are always associated with significant changes in PTMs of specific proteins. PTMs are important for regulating protein function, subcellular localization and protein activity and stability. Studies of plant responses to abiotic stress at the PTMs level are essential to the process of plant phenotyping for crop improvement. The ability to identify and quantify PTMs on a large-scale will contribute to a detailed protein functional characterization that will improve our understanding of the processes of crop plant stress acclimation and stress tolerance acquisition. Hundreds of PTMs have been reported, but it is impossible to review all of the possible protein modifications. In this review, we briefly summarize several main types of PTMs regarding their characteristics and detection methods, review the advances in PTMs research of crop proteomics, and highlight the importance of specific PTMs in crop response to abiotic stress. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  3. Abiotic controls on N2O emissions from soils and wetlands

    NASA Astrophysics Data System (ADS)

    Horwath, W. R.

    2016-12-01

    The increase in atmospheric nitrous oxide (N2O) is a critical climate change issue contributing to global warming. Most studies on N2O production attribute microbial processes and their associated enzymatic reactions to be the main driver affecting emissions. The role of redox capable iron, manganese and organic compounds that can react with intermediates in the nitrogen cycle has also been shown to produce N2O abiotically. The importance of the abiotic pathways, however, is highly debated. The abiotic production of N2O is related to biophysiochemical controls and unique isotopic signatures of nitrogen cycle intermediates (hydroxylamine, nitric oxide, and nitrite), redox-active metals (iron and manganese) and organic matter (humic and fulvic acids). In a range of soils, we find that the iron directly associated with organic compounds is the strongest variable relating to N2O emissions. In addition to these factors, management is also assumed to affect abiotic N2O production through its impact on nitrogen cycle intermediates, but the environmental and physiochemical conditions that are changed by management are rarely considered in the abiotic production of N2O. We find that the amount and quality of organic compounds in soils directly determines the fate of soil N2O production (i.e. be emitted or consumed). Water depth in rice paddies and wetlands also plays a significant role in partitioning production and consumption of N2O. What is evident from studies on N2O emission is that abiotic reactions are coupled to biotic processes and they cannot be easily separated. The biotic/abiotic interactions have important ecological outcomes that influence abiotic production mechanisms and should be recognized as important controllers of N2O production and consumption processes in soils and sediments.

  4. Abscisic Acid and abiotic stress signaling.

    PubMed

    Tuteja, Narendra

    2007-05-01

    Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis.

  5. Abscisic Acid and Abiotic Stress Signaling

    PubMed Central

    2007-01-01

    Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis. PMID:19516981

  6. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors?

    PubMed

    Clavijo McCormick, Andrea

    2016-12-01

    The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.

  7. Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands.

    PubMed

    Kahmen, Ansgar; Perner, Jörg; Audorff, Volker; Weisser, Wolfgang; Buchmann, Nina

    2005-02-01

    In the past years, a number of studies have used experimental plant communities to test if biodiversity influences ecosystem functioning such as productivity. It has been argued, however, that the results achieved in experimental studies may have little predictive value for species loss in natural ecosystems. Studies in natural ecosystems have been equivocal, mainly because in natural ecosystems differences in diversity are often confounded with differences in land use history or abiotic parameters. In this study, we investigated the effect of plant diversity on ecosystem functioning in semi-natural grasslands. In an area of 10x20 km, we selected 78 sites and tested the effects of various measures of diversity and plant community composition on productivity. We separated the effects of plant diversity on ecosystem functioning from potentially confounding effects of community composition, management or environmental parameters, using multivariate statistical analyses. In the investigated grasslands, simple measures of biodiversity were insignificant predictors of productivity. However, plant community composition explained productivity very well (R2=0.31) and was a better predictor than environmental variables (soil and site characteristics) or management regime. Thus, complex measures such as community composition and structure are important drivers for ecosystem functions in semi-natural grasslands. Furthermore, our data show that it is difficult to extrapolate results from experimental studies to semi-natural ecosystems, although there is a need to investigate natural ecosystems to fully understand the relationship of biodiversity and ecosystem functioning.

  8. Mycobacterium ulcerans dynamics in aquatic ecosystems are driven by a complex interplay of abiotic and biotic factors

    PubMed Central

    Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin

    2015-01-01

    Host–parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors. DOI: http://dx.doi.org/10.7554/eLife.07616.001 PMID:26216042

  9. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  10. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meike, A.; Stroes-Gascoyne, S.

    2000-08-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behavior into performance assessment models. One effort was to expand an existing modeling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated asmore » well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories: (1) abiotic factors, (2) community dynamics and in-situ considerations, (3) nutrient considerations and (4) transport of radionuclides. The complete bibliography represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain.« less

  12. DEPOT: A Database of Environmental Parameters, Organizations and Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARSON,SUSAN D.; HUNTER,REGINA LEE; MALCZYNSKI,LEONARD A.

    2000-12-19

    The Database of Environmental Parameters, Organizations, and Tools (DEPOT) has been developed by the Department of Energy (DOE) as a central warehouse for access to data essential for environmental risk assessment analyses. Initial efforts have concentrated on groundwater and vadose zone transport data and bioaccumulation factors. DEPOT seeks to provide a source of referenced data that, wherever possible, includes the level of uncertainty associated with these parameters. Based on the amount of data available for a particular parameter, uncertainty is expressed as a standard deviation or a distribution function. DEPOT also provides DOE site-specific performance assessment data, pathway-specific transport data,more » and links to environmental regulations, disposal site waste acceptance criteria, other environmental parameter databases, and environmental risk assessment models.« less

  13. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Inter-annual variability of carbon fluxes in temperate forest ecosystems: effects of biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.

    2014-12-01

    Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2

  15. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants

    PubMed Central

    Shriram, Varsha; Kumar, Vinay; Devarumath, Rachayya M.; Khare, Tushar S.; Wani, Shabir H.

    2016-01-01

    The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. PMID:27379117

  16. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar

    PubMed Central

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that “everything is everywhere, but the environment selects”. Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs. PMID:24922317

  17. Combinatorial influence of environmental parameters on transcription factor activity.

    PubMed

    Knijnenburg, T A; Wessels, L F A; Reinders, M J T

    2008-07-01

    Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.

  18. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  19. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  20. Novel NAC Transcription Factor TaNAC67 Confers Enhanced Multi-Abiotic Stress Tolerances in Arabidopsis

    PubMed Central

    Mao, Xinguo; Chen, Shuangshuang; Li, Ang; Zhai, Chaochao; Jing, Ruilian

    2014-01-01

    Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops. PMID:24427285

  1. Combinatorial influence of environmental parameters on transcription factor activity

    PubMed Central

    Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.

    2008-01-01

    Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711

  2. Adhesive properties of environmental Vibrio alginolyticus strains to biotic and abiotic surfaces.

    PubMed

    Snoussi, Mejdi; Noumi, Emira; Cheriaa, Jihane; Usai, Donatella; Sechi, Leonardo Antonio; Zanetti, Stefania; Bakhrouf, Amina

    2008-10-01

    The ability of Vibrio alginolyticus strains isolated from a bathing and fishing area (Khenis, Centre of Tunisia) to adhere to both biotic and abiotic surfaces was evaluated in the present work. The biochemical, physiological and enzymatic activities of all strains was also investigated. Three morphotypes of V. alginolyticus were obtained on Congo red agar and only 14 strains produced black colonies. The majority of strains were able to degrade the skin mucus of both Sparus aurata and Dicentrarchus labrax fishes while the fish mucus preparation of these two specimens exhibits a high level of anti-V. alginolyticus strains. Adhesive properties were observed in 37.5% of the analyzed V. alginolyticus strains to Hep-2 cells and 50% to Caco-2 cells. All strains were able to form a purple pellicule on glass tube when they were stained with Crystal violet. Fifteen percent of V. alginolyticus strains (16/32) were strongly adhesive to polystyrene with a values ranging from 3.04 to 18.25 at 595 nm and only four strains were weak biofilm forming. V. alginolyticus bacterium possess a strong adhesive power to both biotic and inertes surfaces. These proprieties may allow to these strains to persist in this biotope in planctonic state or attached to both biotic and abiotic surfaces.

  3. Influence of abiotic and environmental factors on the density and infection prevalence of Ixodes pacificus (Acari:Ixodidae) with Borrelia burgdorferi.

    PubMed

    Swei, A; Meentemeyer, R; Briggs, C J

    2011-01-01

    The abiotic and biotic factors that govern the spatial distribution of Lyme disease vectors are poorly understood. This study addressed the influence of abiotic and biotic environmental variables on Ixodes pacificus Cooley & Kohls (Acari:Ixodidae) nymphs, because it is the primary vector of Borrelia burgdorferi Johnson, Schmidt, Hyde, Steigerwaldt & Brenner in the far-western United States. Three metrics of Lyme disease risk were evaluated: the density of nymphs, the density of infected nymphs, and the nymphal infection prevalence. This study sampled randomly located plots in oak (Quercus spp.) woodland habitat in Sonoma County, CA. Each plot was drag-sampled for nymphal ticks and tested for B. burgdorferi infection. Path analysis was used to evaluate the direct and indirect relationship between topographic, forest structure and microclimatic variables on ticks. Significant negative correlations were found between maximum temperature in the dry season and the density of infected ticks in 2006 and tick density in 2007, but we did not find a significant relationship with nymphal infection prevalence in either year. Tick density and infected tick density had an indirect, positive correlation with elevation, mediated through temperature. This study found that in certain years but not others, temperature maxima in the dry season may constrain the density and density of infected I. pacificus nymphs. In other years, biotic or stochastic factors may play a more important role in determining tick density.

  4. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.

  5. Induction of abiotic stress tolerance in plants by endophytic microbes.

    PubMed

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  6. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    PubMed Central

    Hossain, Mohammad A.; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism. PMID:26136756

  7. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  8. Abiotic stress responses in plants: roles of calmodulin-regulated proteins.

    PubMed

    Virdi, Amardeep S; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.

  9. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.

    PubMed

    Feng, Shangguo; Yue, Runqing; Tao, Sun; Yang, Yanjun; Zhang, Lei; Xu, Mingfeng; Wang, Huizhong; Shen, Chenjia

    2015-09-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses. © 2014 Institute of Botany, Chinese Academy of Sciences.

  10. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies

    PubMed Central

    Meena, Kamlesh K.; Sorty, Ajay M.; Bitla, Utkarsh M.; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P.; Prabha, Ratna; Sahu, Pramod K.; Gupta, Vijai K.; Singh, Harikesh B.; Krishanani, Kishor K.; Minhas, Paramjit S.

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding

  11. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies.

    PubMed

    Meena, Kamlesh K; Sorty, Ajay M; Bitla, Utkarsh M; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P; Prabha, Ratna; Sahu, Pramod K; Gupta, Vijai K; Singh, Harikesh B; Krishanani, Kishor K; Minhas, Paramjit S

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding

  12. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  13. Abiotic degradation of plastic films

    NASA Astrophysics Data System (ADS)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  14. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    PubMed Central

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  15. Stomata Prioritize Their Responses to Multiple Biotic and Abiotic Signal Inputs

    PubMed Central

    Chen, Peilei; Qiu, Muqing; Jiang, Kun; Wang, Genxuan

    2014-01-01

    Stomata are microscopic pores in leaf epidermis that regulate gas exchange between plants and the environment. Being natural openings on the leaf surface, stomata also serve as ports for the invasion of foliar pathogenic bacteria. Each stomatal pore is enclosed by a pair of guard cells that are able to sense a wide spectrum of biotic and abiotic stresses and respond by precisely adjusting the pore width. However, it is not clear whether stomatal responses to simultaneously imposed biotic and abiotic signals are mutually dependent on each other. Here we show that a genetically engineered Escherichia coli strain DH5α could trigger stomatal closure in Vicia faba, an innate immune response that might depend on NADPH oxidase-mediated ROS burst. DH5α-induced stomatal closure could be abolished or disguised under certain environmental conditions like low [CO2], darkness, and drought, etc. Foliar spraying of high concentrations of ABA could reduce stomatal aperture in high humidity-treated faba bean plants. Consistently, the aggressive multiplication of DH5α bacteria in Vicia faba leaves under high humidity could be alleviated by exogenous application of ABA. Our data suggest that a successful colonization of bacteria on the leaf surface is correlated with stomatal aperture regulation by a specific set of environmental factors. PMID:25003527

  16. Parameters for assessing the aquatic environmental impact of cosmetic products.

    PubMed

    Vita, N A; Brohem, C A; Canavez, A D P M; Oliveira, C F S; Kruger, O; Lorencini, M; Carvalho, C M

    2018-05-01

    The cosmetic industry's growing concern about the impact of its supply chain on the environment, sustainability of raw materials, and biodiversity increases the need to ensure that the final product has a lower environmental impact. The objective of this review is to summarize and compare the information available from international organizations and legislation regarding the main criteria used to assess raw materials for aquatic toxicity, as well as the most suitable alternative methods for obtaining assessment parameters. Using the literature available in databases, a review of the scientific literature and international legislation, this work discusses and compares the parameters established by international organizations such as the Environmental Protection Agency (EPA) and Cradle to Cradle (C2C), as well as European legislation, namely, European Regulation 1272/2008, for assessing environmental impact. Defining the ecotoxicity parameters of the main classes of raw materials in rinse-off cosmetic products can enable the development of products that are more environmentally sustainable, prioritizing substances with less environmental impact. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Surveillance and Control of Malaria Transmission Using Remotely Sensed Meteorological and Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, R.; Adimi, F.; Nigro, J.

    2007-01-01

    Meteorological and environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters can most conveniently be obtained using remote sensing. Selected provinces and districts in Thailand and Indonesia are used to illustrate how remotely sensed meteorological and environmental parameters may enhance the capabilities for malaria surveillance and control. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.

  18. Widespread abiotic methane in chromitites.

    PubMed

    Etiope, G; Ifandi, E; Nazzari, M; Procesi, M; Tsikouras, B; Ventura, G; Steele, A; Tardini, R; Szatmari, P

    2018-06-07

    Recurring discoveries of abiotic methane in gas seeps and springs in ophiolites and peridotite massifs worldwide raised the question of where, in which rocks, methane was generated. Answers will impact the theories on life origin related to serpentinization of ultramafic rocks, and the origin of methane on rocky planets. Here we document, through molecular and isotopic analyses of gas liberated by rock crushing, that among the several mafic and ultramafic rocks composing classic ophiolites in Greece, i.e., serpentinite, peridotite, chromitite, gabbro, rodingite and basalt, only chromitites, characterized by high concentrations of chromium and ruthenium, host considerable amounts of 13 C-enriched methane, hydrogen and heavier hydrocarbons with inverse isotopic trend, which is typical of abiotic gas origin. Raman analyses are consistent with methane being occluded in widespread microfractures and porous serpentine- or chlorite-filled veins. Chromium and ruthenium may be key metal catalysts for methane production via Sabatier reaction. Chromitites may represent source rocks of abiotic methane on Earth and, potentially, on Mars.

  19. Diagnosing Abiotic Degradation

    EPA Science Inventory

    The abiotic degradation of chlorinated solvents in ground water can be difficult to diagnose. Under current practice, most of the “evidence” is negative; specifically the apparent disappearance of chlorinated solvents with an accumulation of vinyl chloride, ethane, ethylene, or ...

  20. The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies.

    PubMed

    Wang, Yi; Lee, Sui Mae; Dykes, Gary

    2015-01-01

    Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.

  1. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  2. Overexpression of SlGRAS40 in Tomato Enhances Tolerance to Abiotic Stresses and Influences Auxin and Gibberellin Signaling

    PubMed Central

    Liu, Yudong; Huang, Wei; Xian, Zhiqiang; Hu, Nan; Lin, Dongbo; Ren, Hua; Chen, Jingxuan; Su, Deding; Li, Zhengguo

    2017-01-01

    Abiotic stresses are major environmental factors that inhibit plant growth and development impacting crop productivity. GRAS transcription factors play critical and diverse roles in plant development and abiotic stress. In this study, SlGRAS40, a member of the tomato (Solanum lycopersicum) GRAS family, was functionally characterized. In wild-type (WT) tomato, SlGRAS40 was upregulated by abiotic stress induced by treatment with D-mannitol, NaCl, or H2O2. Transgenic tomato plants overexpressing SlGRAS40 (SlGRAS40-OE) were more tolerant of drought and salt stress than WT. SlGRAS40-OE plants displayed pleiotropic phenotypes reminiscent of those resulting from altered auxin and/or gibberellin signaling. A comparison of WT and SlGRAS40-OE transcriptomes showed that the expression of a large number of genes involved in hormone signaling and stress responses were modified. Our study of SlGRAS40 protein provides evidence of how another GRAS plays roles in resisting abiotic stress and regulating auxin and gibberellin signaling during vegetative and reproductive growth in tomato. PMID:29018467

  3. Translating knowledge about abiotic stress tolerance to breeding programmes.

    PubMed

    Gilliham, Matthew; Able, Jason A; Roy, Stuart J

    2017-06-01

    Plant breeding and improvements in agronomic practice are making a consistent contribution to increasing global crop production year upon year. However, the rate of yield improvement currently lags behind the targets set to produce enough food to meet the demands of the predicted global population in 2050. Furthermore, crops that are exposed to harmful abiotic environmental factors (abiotic stresses, e.g. water limitation, salinity, extreme temperature) are prone to reduced yields. Here, we briefly describe the processes undertaken in conventional breeding programmes, which are usually designed to improve yields in near-optimal conditions rather than specifically breeding for improved crop yield stability under stressed conditions. While there is extensive fundamental research activity that examines mechanisms of plant stress tolerance, there are few examples that apply this research to improving commercial crop yields. There are notable exceptions, and we highlight some of these to demonstrate the magnitude of yield gains that could be made by translating agronomic, phenological and genetic solutions focused on improving or mitigating the effect of abiotic stress in the field; in particular, we focus on improvements in crop water-use efficiency and salinity tolerance. We speculate upon the reasons for the disconnect between research and research translation. We conclude that to realise untapped rapid gains towards food security targets new funding structures need to be embraced. Such funding needs to serve both the core and collaborative activities of the fundamental, pre-breeding and breeding research communities in order to expedite the translation of innovative research into the fields of primary producers. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  4. Abiotic Bromination of Soil Organic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leri, Alessandra C.; Ravel, Bruce

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide andmore » assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.« less

  5. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  6. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    PubMed Central

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  7. The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants.

    PubMed

    Vicente, Jorge; Mendiondo, Guillermina M; Movahedi, Mahsa; Peirats-Llobet, Marta; Juan, Yu-Ting; Shen, Yu-Yen; Dambire, Charlene; Smart, Katherine; Rodriguez, Pedro L; Charng, Yee-Yung; Gray, Julie E; Holdsworth, Michael J

    2017-10-23

    Abiotic stresses impact negatively on plant growth, profoundly affecting yield and quality of crops. Although much is known about plant responses, very little is understood at the molecular level about the initial sensing of environmental stress. In plants, hypoxia (low oxygen, which occurs during flooding) is directly sensed by the Cys-Arg/N-end rule pathway of ubiquitin-mediated proteolysis, through oxygen-dependent degradation of group VII Ethylene Response Factor transcription factors (ERFVIIs) via amino-terminal (Nt-) cysteine [1, 2]. Using Arabidopsis (Arabidopsis thaliana) and barley (Hordeum vulgare), we show that the pathway regulates plant responses to multiple abiotic stresses. In Arabidopsis, genetic analyses revealed that response to these stresses is controlled by N-end rule regulation of ERFVII function. Oxygen sensing via the Cys-Arg/N-end rule in higher eukaryotes is linked through a single mechanism to nitric oxide (NO) sensing [3, 4]. In plants, the major mechanism of NO synthesis is via NITRATE REDUCTASE (NR), an enzyme of nitrogen assimilation [5]. Here, we identify a negative relationship between NR activity and NO levels and stabilization of an artificial Nt-Cys substrate and ERFVII function in response to environmental changes. Furthermore, we show that ERFVIIs enhance abiotic stress responses via physical and genetic interactions with the chromatin-remodeling ATPase BRAHMA. We propose that plants sense multiple abiotic stresses through the Cys-Arg/N-end rule pathway either directly (via oxygen sensing) or indirectly (via NO sensing downstream of NR activity). This single mechanism can therefore integrate environment and response to enhance plant survival. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.

    PubMed

    Khan, Abdul Latif; Waqas, Muhammad; Lee, In-Jung

    2015-03-01

    Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses.

  9. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities.

    PubMed

    Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2018-04-01

    Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.

  10. Earth, wind, and fire: Abiotic factors and the impacts of global environmental change on forest health

    Treesearch

    J.E. Lundquist; A.E. Camp; M.L. Tyrell; S.J. Seybold; P. Cannon; D.J. Lodge

    2011-01-01

    Trees do not just die; there is always a primary cause, and often contributing factors. Trees need adequate quantities of water, heat, light, nutrients, carbon dioxide, oxygen, and other abiotic resources to sustain life, growth, and reproduction. When these factors are deficient or excessive, they cause mortality. According to the concept of baseline mortality (...

  11. A database of annotated tentative orthologs from crop abiotic stress transcripts.

    PubMed

    Balaji, Jayashree; Crouch, Jonathan H; Petite, Prasad V N S; Hoisington, David A

    2006-10-07

    A minimal requirement to initiate a comparative genomics study on plant responses to abiotic stresses is a dataset of orthologous sequences. The availability of a large amount of sequence information, including those derived from stress cDNA libraries allow for the identification of stress related genes and orthologs associated with the stress response. Orthologous sequences serve as tools to explore genes and their relationships across species. For this purpose, ESTs from stress cDNA libraries across 16 crop species including 6 important cereal crops and 10 dicots were systematically collated and subjected to bioinformatics analysis such as clustering, grouping of tentative orthologous sets, identification of protein motifs/patterns in the predicted protein sequence, and annotation with stress conditions, tissue/library source and putative function. All data are available to the scientific community at http://intranet.icrisat.org/gt1/tog/homepage.htm. We believe that the availability of annotated plant abiotic stress ortholog sets will be a valuable resource for researchers studying the biology of environmental stresses in plant systems, molecular evolution and genomics.

  12. Alternative Splicing Control of Abiotic Stress Responses.

    PubMed

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element

    PubMed Central

    Walley, Justin W; Coughlan, Sean; Hudson, Matthew E; Covington, Michael F; Kaspi, Roy; Banu, Gopalan; Harmer, Stacey L; Dehesh, Katayoon

    2007-01-01

    Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation. PMID:17953483

  14. A focus on natural variation for abiotic constraints response in the model species Arabidopsis thaliana.

    PubMed

    Lefebvre, Valérie; Kiani, Seifollah Poormohammad; Durand-Tardif, Mylène

    2009-08-13

    Plants are particularly subject to environmental stress, as they cannot move from unfavourable surroundings. As a consequence they have to react in situ. In any case, plants have to sense the stress, then the signal has to be transduced to engage the appropriate response. Stress response is effected by regulating genes, by turning on molecular mechanisms to protect the whole organism and its components and/or to repair damage. Reactions vary depending on the type of stress and its intensity, but some are commonly turned on because some responses to different abiotic stresses are shared. In addition, there are multiple ways for plants to respond to environmental stress, depending on the species and life strategy, but also multiple ways within a species depending on plant variety or ecotype. It is regularly accepted that populations of a single species originating from diverse geographic origins and/or that have been subjected to different selective pressure, have evolved retaining the best alleles for completing their life cycle. Therefore, the study of natural variation in response to abiotic stress, can help unravel key genes and alleles for plants to cope with their unfavourable physical and chemical surroundings. This review is focusing on Arabidopsis thaliana which has been largely adopted by the global scientific community as a model organism. Also, tools and data that facilitate investigation of natural variation and abiotic stress encountered in the wild are set out. Characterization of accessions, QTLs detection and cloning of alleles responsible for variation are presented.

  15. Abiotic methane formation during experimental serpentinization of olivine

    PubMed Central

    2016-01-01

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH4). In many cases, the CH4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH4 synthesis have been observed. Here, the potential for abiotic formation of CH4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13C-labeled inorganic carbon source was used to unambiguously determine the origin of CH4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH4 was observed in one experiment performed under conditions that allowed an H2-rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH4. PMID:27821742

  16. Abiotic methane formation during experimental serpentinization of olivine.

    PubMed

    McCollom, Thomas M

    2016-12-06

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH 4 ). In many cases, the CH 4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH 4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH 4 synthesis have been observed. Here, the potential for abiotic formation of CH 4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13 C-labeled inorganic carbon source was used to unambiguously determine the origin of CH 4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH 4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH 4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH 4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH 4 was observed in one experiment performed under conditions that allowed an H 2 -rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH 4 .

  17. Asymmetric biotic interactions and abiotic niche differences revealed by a dynamic joint species distribution model.

    PubMed

    Lany, Nina K; Zarnetske, Phoebe L; Schliep, Erin M; Schaeffer, Robert N; Orians, Colin M; Orwig, David A; Preisser, Evan L

    2018-05-01

    A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species' abundance on other species in the community. Accounting for dependence among co-occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions. © 2018 by the Ecological Society of America.

  18. Integrated Impacts of environmental factors on the degradation of fumigants

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yates, S. R.

    2007-12-01

    Volatilization of fumigants has been concerned as one of air pollution sources. Fumigants are used to control nematodes and soil-born pathogens for a pre-plant treatment to increase the production of high-cash crops. One of technologies to reduce the volatilization of fumigants to atmosphere is to enhance the degradation of fumigants in soil. Fumigant degradation is affected by environmental factors such as moisture content, temperature, initial concentration of injected fumigants, and soil properties. However, effects of each factor on the degradation were limitedly characterized and integrated Impacts from environmental factors has not been described yet. Degradation of 1,3- dichloropropene (1,3-D) was investigated in various condition of temperatures (20-60 °C), moisture contents (0 ¡V 30 %) and initial concentrations (0.6 ¡V 60 mg/kg) with Arlington sandy loam soil. Abiotic and biotic degradation processes were distinguished using two sterilization methods with HgCl2 and autoclave and impacts of environmental factors were separately assessed for abiotic and biotic degradations. Initially, degradation rates (k) of cis and trans 1,3-D isomers were estimated by first-order kinetics and modified depending on impacts from environmental factors. Arrhenius equation and Walker¡¦s equation which were conventionally used to describe temperature and moisture effects on degradation were assessed for integrated impacts from environmental factors and logarithmical correlation was observed between initial concentrations of applied fumigants and degradation rates. Understanding integrated impacts of environmental factors on degradation will help to design more effective emission reduction schemes in various conditions and provide more practical parameters for modeling simulations.

  19. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  20. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    PubMed

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons

  1. Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA

    DTIC Science & Technology

    2009-05-01

    FINAL REPORT Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA SERDP Project ER-1421 MAY 2009 James E. Szecsody...00-2009 4. TITLE AND SUBTITLE Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...investigate whether in situ coupled abiotic/biotic degradation of N-nitrosodimethylamine ( NDMA , an emerging contaminant) could be used as a permeable

  2. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase

    PubMed Central

    Pandey, Saurabh; Fartyal, Dhirendra; Agarwal, Aakrati; Shukla, Tushita; James, Donald; Kaul, Tanushri; Negi, Yogesh K.; Arora, Sandeep; Reddy, Malireddy K.

    2017-01-01

    One of the most significant manifestations of environmental stress in plants is the increased production of Reactive Oxygen Species (ROS). These ROS, if allowed to accumulate unchecked, can lead to cellular toxicity. A battery of antioxidant molecules is present in plants for keeping ROS levels under check and to maintain the cellular homeostasis under stress. Ascorbate peroxidase (APX) is a key antioxidant enzyme of such scavenging systems. It catalyses the conversion of H2O2 into H2O, employing ascorbate as an electron donor. The expression of APX is differentially regulated in response to environmental stresses and during normal plant growth and development as well. Different isoforms of APX show differential response to environmental stresses, depending upon their sub-cellular localization, and the presence of specific regulatory elements in the upstream regions of the respective genes. The present review delineates role of APX isoforms with respect to different types of abiotic stresses and its importance as a key antioxidant enzyme in maintaining cellular homeostasis. PMID:28473838

  3. Abiotic and biotic dynamics during the initial stages of high solids switchgrass degradation.

    PubMed

    Fontenelle, L T; Corgie, S C; Walker, L P

    2011-07-01

    An understanding of the underlying dynamics of how biotic variables drive changes in abiotic parameters in the early stages of biomass biodegradation is essential for better control of the process. Probe hybridization was used to quantitatively study the growth of bacteria, yeast and fungi for three levels of initial moisture content (60, 65 and 75% MC) over a period of 64 h. Changes in abiotic parameters were also documented. By 64 h, samples were significantly differentiated both in temporal and spatial dimension, proving that considerable changes had occurred in these initial stages. Maximum carbon (C) conversion occurred in the 75% MC reactor at a peak value of 49%, with 40% and 37% in the 65 and 60% MC reactors, respectively. Higher temperature, higher pH, higher rates of O2 consumption and CO2 evolution were also observed in the highest moisture reactor; suggesting that of the three MCs studied, 75% MC was the optimal one for the process. MC during the process also proved to be important because it greatly influenced variation in the spatial dimension, further underscoring the importance of characterizing changes with bed height. Most importantly, we were able to positively correlate the rate of substrate degradation with bacterial biomass levels and highlight the critical role of bacteria in biological decomposition.

  4. Abiotic Supramolecular Systems

    DTIC Science & Technology

    2011-05-02

    REPORT Abiotic Supramolecular Systems 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of this research project was to develop new concepts for the...decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited UU...9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O

  5. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi.

    PubMed

    Millar, Niall S; Bennett, Alison E

    2016-11-01

    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates.

  6. Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants

    PubMed Central

    Mata-Pérez, Capilla; Begara-Morales, Juan C.; Chaki, Mounira; Sánchez-Calvo, Beatriz; Valderrama, Raquel; Padilla, María N.; Corpas, Francisco J.; Barroso, Juan B.

    2016-01-01

    In recent years, the study of nitric oxide (NO) in plant systems has attracted the attention of many researchers. A growing number of investigations have shown the significance of NO as a signal molecule or as a molecule involved in the response against (a)biotic processes. NO can be responsible of the post-translational modifications (NO-PTM) of target proteins by mechanisms such as the nitration of tyrosine residues. The study of protein tyrosine nitration during development and under biotic and adverse environmental conditions has increased in the last decade; nevertheless, there is also an endogenous nitration which seems to have regulatory functions. Moreover, the advance in proteome techniques has enabled the identification of new nitrated proteins, showing the high variability among plant organs, development stage and species. Finally, it may be important to discern between a widespread protein nitration because of greater RNS content, and the specific nitration of key targets which could affect cell-signaling processes. In view of the above point, we present a mini-review that offers an update about the endogenous protein tyrosine nitration, during plant development and under several abiotic stress conditions. PMID:27895655

  7. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients

    PubMed Central

    Klanderud, Kari; Vandvik, Vigdis; Goldberg, Deborah

    2015-01-01

    We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages. PMID:26091266

  8. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    PubMed

    Klanderud, Kari; Vandvik, Vigdis; Goldberg, Deborah

    2015-01-01

    We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  9. Poaceae vs. Abiotic Stress: Focus on Drought and Salt Stress, Recent Insights and Perspectives

    PubMed Central

    Landi, Simone; Hausman, Jean-Francois; Guerriero, Gea; Esposito, Sergio

    2017-01-01

    Poaceae represent the most important group of crops susceptible to abiotic stress. This large family of monocotyledonous plants, commonly known as grasses, counts several important cultivated species, namely wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), and barley (Hordeum vulgare). These crops, notably, show different behaviors under abiotic stress conditions: wheat and rice are considered sensitive, showing serious yield reduction upon water scarcity and soil salinity, while barley presents a natural drought and salt tolerance. During the green revolution (1940–1960), cereal breeding was very successful in developing high-yield crops varieties; however, these cultivars were maximized for highest yield under optimal conditions, and did not present suitable traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise novel approaches and decipher the key components of agricultural production systems. Approaches to improve food production combining both enhanced water use efficiency (WUE) and acceptable yields are critical to create a sustainable agriculture in the future. This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular, the focus will be directed toward various aspects of water deprivation and salinity response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered, given the importance of the plant cell wall in sensing environmental constraints and in mediating a response; the role of silicon (Si), an important element for monocots' normal growth and development, will also be discussed, since it activates a broad-spectrum response to different exogenous stresses. Perspectives valorizing studies on landraces conclude the survey, as they help identify key traits for breeding purposes. PMID:28744298

  10. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  11. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.

    PubMed

    Fang, Yuan; Mercer, Ryan G; McMullen, Lynn M; Gänzle, Michael G

    2017-10-01

    The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δ stx2 :: gfp :: amp r In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H 2 O 2 (2.5 mM) induced the expression of stx 2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H 2 O 2 H 2 O 2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA , and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H 2 O 2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the

  12. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food

    PubMed Central

    Fang, Yuan; Mercer, Ryan G.; McMullen, Lynn M.

    2017-01-01

    ABSTRACT The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr. In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H2O2 (2.5 mM) induced the expression of stx2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H2O2. H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single

  13. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation

    PubMed Central

    Chan, Zhulong

    2013-01-01

    Arginine is an important medium for the transport and storage of nitrogen, and arginase (also known as arginine amidohydrolase, ARGAH) is responsible for catalyse of arginine into ornithine and urea in plants. In this study, the impact of AtARGAHs on abiotic stress response was investigated by manipulating AtARGAHs expression. In the knockout mutants of AtARGAHs, enhanced tolerances were observed to multiple abiotic stresses including water deficit, salt, and freezing stresses, while AtARGAH1- and AtARGAH2-overexpressing lines exhibited reduced abiotic stress tolerances compared to the wild type. Consistently, the enhanced tolerances were confirmed by the changes of physiological parameters including electrolyte leakage, water loss rate, stomatal aperture, and survival rate. Interestingly, the direct downstream products of arginine catabolism including polyamines and nitric oxide (NO) concentrations significantly increased in the AtARGAHs-knockout lines, but decreased in overexpressing lines under control conditions. Additionally, the AtARGAHs-overexpressing and -knockout lines displayed significantly reduced relative arginine (% of total free amino acids) relative to the wild type. Similarly, reactive oxygen species accumulation was remarkably regulated by AtARGAHs under abiotic stress conditions, as shown from hydrogen peroxide (H2O2), superoxide radical () concentrations, and antioxidant enzyme activities. Taken together, this is the first report, as far as is known, to provide evidence that AtARGAHs negatively regulate many abiotic stress tolerances, at least partially, attribute to their roles in modulating arginine metabolism and reactive oxygen species accumulation. Biotechnological strategy based on manipulation of AtARGAHs expression will be valuable for future crop breeding. PMID:23378380

  14. A membraneless single compartment abiotic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Slaughter, Gymama; Sunday, Joshua

    2014-09-01

    A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.

  15. Abiotic gene transfer: rare or rampant?

    PubMed Central

    Kotnik, Tadej; Weaver, James C.

    2016-01-01

    Phylogenetic studies reveal that horizontal gene transfer (HGT) plays a prominent role in evolution and genetic variability of life. Five biotic mechanisms of HGT among prokaryotic organisms have been extensively characterized: conjugation, competence, transduction, gene-transfer-agent (GTA) particles, and transitory fusion with recombination, but it is not known whether they can account for all natural HGT. It is even less clear how HGT could have occurred before any of these mechanisms had developed. Here, we consider contemporary conditions and experiments on microorganisms to estimate possible roles of abiotic HGT – currently and throughout evolution. Candidate mechanisms include freeze-and-thaw, microbeads-agitation, and electroporation-based transformation, and we posit that these laboratory techniques have analogues in nature acting as mechanisms of abiotic HGT: freeze-and-thaw cycles in polar waters, sand-agitation at foreshores and riverbeds, and lightning-triggered electroporation in near-surface aqueous habitats. We derive conservative order-of-magnitude estimates for rates of microorganisms subjected to freeze-and-thaw cycles, sand-agitation, and lightning-triggered electroporation, at 1024, 1019, and 1017 per year, respectively. Considering the yield of viable transformants, which is by far the highest in electroporation, we argue this may still favor lightning-triggered transformation over the other two mechanisms. Electroporation-based gene transfer also appears to be the most general of these abiotic candidates, and perhaps even of all known HGT mechanisms. Future studies should provide improved estimates of gene transfer rates and cell viability, currently and in the past, but to assess the importance of abiotic HGT in nature, will likely require substantial progress – also in knowledge of biotic HGT. PMID:27067073

  16. Designing cooperatively folded abiotic uni- and multimolecular helix bundles

    NASA Astrophysics Data System (ADS)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan

    2018-01-01

    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  17. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles.

    PubMed

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C

    2016-04-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.

  18. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles

    PubMed Central

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C.

    2016-01-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments. PMID:27032533

  19. Systems biology approach in plant abiotic stresses.

    PubMed

    Mohanta, Tapan Kumar; Bashir, Tufail; Hashem, Abeer; Abd Allah, Elsayed Fathi

    2017-12-01

    Plant abiotic stresses are the major constraint on plant growth and development, causing enormous crop losses across the world. Plants have unique features to defend themselves against these challenging adverse stress conditions. They modulate their phenotypes upon changes in physiological, biochemical, molecular and genetic information, thus making them tolerant against abiotic stresses. It is of paramount importance to determine the stress-tolerant traits of a diverse range of genotypes of plant species and integrate those traits for crop improvement. Stress-tolerant traits can be identified by conducting genome-wide analysis of stress-tolerant genotypes through the highly advanced structural and functional genomics approach. Specifically, whole-genome sequencing, development of molecular markers, genome-wide association studies and comparative analysis of interaction networks between tolerant and susceptible crop varieties grown under stress conditions can greatly facilitate discovery of novel agronomic traits that protect plants against abiotic stresses. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Contribution of biotic and abiotic factors in the natural attenuation of sulfamethoxazole: A path analysis approach.

    PubMed

    Li, Yan; Rashid, Azhar; Wang, Hongjie; Hu, Anyi; Lin, Lifeng; Yu, Chang-Ping; Chen, Meng; Sun, Qian

    2018-08-15

    Sulfamethoxazole (SMX) is a sulfonamide antibiotic, widely used as curative and preventive drug for human, animal, and aquaculture bacterial infections. Its residues have been ubiquitously detected in the surface waters and sediments. In the present study, SMX dissipation and kinetics was studied in the natural water samples from Jiulong River under simulated complex natural conditions as well as conditions to mimic various biotic and abiotic environmental conditions in isolation. Structural equation modeling (SEM) by employing partial least square technique in path coefficient analysis was used to investigate the direct and indirect contributions of different environmental factors in the natural attenuation of SMX. The model explained 81% of the variability in natural attenuation as a dependent variable under the influence of sole effects of direct photo-degradation, indirect photo-degradation, hydrolysis, microbial degradation and bacterial degradation. The results of SEM suggested that the direct and indirect photo-degradation were the major pathways in the SMX natural attenuation. However, other biotic and abiotic factors also play a mediatory role during the natural attenuation and other processes. Furthermore, the potential transformation products of SMX were identified and their toxicity was evaluated. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Lyme disease risk in southern California: abiotic and environmental drivers of Ixodes pacificus (Acari: Ixodidae) density and infection prevalence with Borrelia burgdorferi.

    PubMed

    MacDonald, Andrew J; Hyon, David W; Brewington, John B; O'Connor, Kerry E; Swei, Andrea; Briggs, Cheryl J

    2017-01-05

    Tick-borne diseases, particularly Lyme disease, are emerging across the northern hemisphere. In order to manage emerging diseases and predict where emergence will likely occur, it is necessary to understand the factors influencing the distribution, abundance and infection prevalence of vector species. In North America, Lyme disease is the most common vector-borne disease and is transmitted by blacklegged ticks. This study aimed to explore the abiotic and environmental drivers of density and infection prevalence of western blacklegged ticks (Ixodes pacificus) in southern California, an understudied and densely populated region of North America. Over the course of this two-year study, densities of I. pacificus adults were consistently positively associated with host availability for juvenile ticks and dense oak woodland habitat. Densities of nymphal and larval I. pacificus, on the other hand were primarily predicted by host availability for juvenile ticks in the first year of the study, and by habitat characteristics such as dense leaf litter in the second year. Infection with the causative agent of Lyme disease, Borrelia burgdorferi (sensu stricto), and related spirochetes was not predicted by the abiotic conditions promoting I. pacificus populations, but rather by diversity of the tick community, and in particular by the presence of two Ixodes tick species that do not generally feed on humans (Ixodes spinipalpis and Ixodes peromysci). Borrelia spp. infection was not detected in the I. pacificus populations sampled, but was detected in other vector species that may maintain enzootic transmission of the pathogen on the landscape. This study identified dense oak woodlands as high-risk habitats for I. pacificus tick encounter in southern California. The shift in relative importance of host availability to habitat characteristics in predicting juvenile tick abundance occurred as California's historic drought intensified, suggesting that habitat providing suitable

  2. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  3. Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces.

    PubMed

    Reis-Teixeira, Fernanda Barbosa Dos; Alves, Virgínia Farias; de Martinis, Elaine Cristina Pereira

    The pathogenic bacterium Listeria monocytogenes can persist in food processing plants for many years, even when appropriate hygienic measures are in place, with potential for contaminating ready-to-eat products and, its ability to form biofilms on abiotic surfaces certainly contributes for the environmental persistence. In this research, L. monocytogenes was grown in biofilms up 8 days attached to stainless steel and glass surfaces, contributing for advancing the knowledge on architecture of mature biofilms, since many literature studies carried out on this topic considered only early stages of cell adhesion. In this study, biofilm populations of two strains of L. monocytogenes (serotypes 1/2a and 4b) on stainless steel coupons and glass were examined using regular fluorescence microscopy, confocal laser scanning microscopy and classic culture method. The biofilms formed were not very dense and microscopic observations revealed uneven biofilm structures, with presence of exopolymeric matrix surrounding single cells, small aggregates and microcolonies, in a honeycomb-like arrangement. Moreover, planktonic population of L. monocytogenes (present in broth media covering the abiotic surface) remained stable throughout the incubation time, which indicates an efficient dispersal mechanism, since the culture medium was replaced daily. In conclusion, even if these strains of L. monocytogenes were not able to form thick multilayer biofilms, it was noticeable their high persistence on abiotic surfaces, reinforcing the need to focus on measures to avoid biofilm formation, instead of trying to eradicate mature biofilms. Copyright © 2017. Published by Elsevier Editora Ltda.

  4. Effect of high environmental temperature on semen parameters among fertile men.

    PubMed

    Momen, M Nabil; Ananian, Fredrick B; Fahmy, Ibrahim M; Mostafa, Taymour

    2010-04-01

    To evaluate the effect of high environmental occupational temperature on semen parameters of fertile men. Prospective. Steel-casting plant. Ninety fertile workers exposed to a high temperature compared with 40 fertile workers working under ordinary conditions as control subjects. Measurement of scrotal temperature by invagination thermometry, air temperature, relative humidity by aspirated psychrometer, radiant heat by globe thermometer, air velocity by light vane anemometer, and semen analysis. Scrotal temperature and semen analysis. Nonsignificant difference was found between the two groups regarding their scrotal temperature. Also, nonsignificant differences were demonstrated regarding semen analysis parameters being in the normozoospermic range. Under high environmental temperature, semen parameters were within normozoospermic levels owing to body acclimatization mechanisms. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    PubMed

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  6. Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples.

    PubMed

    Studenroth, Sabine; Huber, Stefan G; Kotte, Karsten; Schöler, Heinz F

    2013-02-05

    Oxalic acid is the smallest dicarboxylic acid and plays an important role in soil processes (e.g., mineral weathering and metal detoxification in plants). We have first proven its abiotic formation in soils and investigated natural abiotic degradation processes based on the oxidation of soil organic matter, enhanced by Fe(3+) and H(2)O(2) as hydroxyl radical suppliers. Experiments with the model compound catechol and further hydroxylated benzenes were performed to examine a common degradation pathway and to presume a general formation mechanism of oxalic acid. Two soil samples were tested for the release of oxalic acid and the potential effects of various soil parameters on oxalic acid formation. Additionally, the soil samples were treated with different soil sterilization methods to prove the oxalic acid formation under abiotic soil conditions. Different series of model experiments were conducted to determine a range of factors including Fe(3+), H(2)O(2), reaction time, pH, and chloride concentration on oxalic acid formation. Under certain conditions, catechol is degraded up to 65.6% to oxalic acid referring to carbon. In serial experiments with two soil samples, oxalic acid was produced, and the obtained results are suggestive of an abiotic degradation process. In conclusion, Fenton-like conditions with low Fe(3+) concentrations and an excess of H(2)O(2) as well as acidic conditions were required for an optimal oxalic acid formation. The presence of chloride reduced oxalic acid formation.

  7. Abiotic regulation: a common way for proteins to modulate their functions.

    PubMed

    Zou, Zhi; Fu, Xinmiao

    2015-01-01

    Modulation of protein intrinsic activity in cells is generally carried out via a combination of four common ways, i.e., allosteric regulation, covalent modification, proteolytic cleavage and association of other regulatory proteins. Accumulated evidence indicate that changes of certain abiotic factors (e.g., temperature, pH, light and mechanical force) within or outside the cells directly influence protein structure and thus profoundly modulate the functions of a wide range of proteins, termed as abiotic regulatory proteins (e.g., heat shock factor, small heat shock protein, hemoglobin, zymogen, integrin, rhodopsin). Such abiotic regulation apparently differs from the four classic ways in perceiving and response to the signals. Importantly, it enables cells to directly and also immediately response to extracellular stimuli, thus facilitating the ability of organisms to resist against and adapt to the abiotic stress and thereby playing crucial roles in life evolution. Altogether, abiotic regulation may be considered as a common way for proteins to modulate their functions.

  8. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    PubMed Central

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  9. Monitoring population and environmental parameters of invasive mosquito species in Europe

    PubMed Central

    2014-01-01

    To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334

  10. The shifting influence of abiotic drivers during landslide succession in Puerto Rico

    Treesearch

    L. R. Walker; A. B. Shiels; P. J. Bellingham; A. D. Sparrow; N. Fetcher; F. H. Landau; D. J. Lodge

    2013-01-01

    Summary 1. Abiotic variables are critical drivers of succession in most primary seres, but how their influence on biota changes over time is rarely examined. Landslides provide good model systems for examining abiotic influences because they are spatially and temporally heterogeneous habitats with distinct abiotic and biotic gradients and post-landslide erosion. 2. In...

  11. Effects of abiotic factors on ecosystem health of Taihu Lake, China based on eco-exergy theory

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Bi, Jun; Fath, Brian D.

    2017-02-01

    A lake ecosystem is continuously exposed to environmental stressors with non-linear interrelationships between abiotic factors and aquatic organisms. Ecosystem health depicts the capacity of system to respond to external perturbations and still maintain structure and function. In this study, we explored the effects of abiotic factors on ecosystem health of Taihu Lake in 2013, China from a system-level perspective. Spatiotemporal heterogeneities of eco-exergy and specific eco-exergy served as thermodynamic indicators to represent ecosystem health in the lake. The results showed the plankton community appeared more energetic in May, and relatively healthy in Gonghu Bay with both higher eco-exergy and specific eco-exergy; a eutrophic state was likely discovered in Zhushan Bay with higher eco-exergy but lower specific eco-exergy. Gradient Boosting Machine (GBM) approach was used to explain the non-linear relationships between two indicators and abiotic factors. This analysis revealed water temperature, inorganic nutrients, and total suspended solids greatly contributed to the two indicators that increased. However, pH rise driven by inorganic carbon played an important role in undermining ecosystem health, particularly when pH was higher than 8.2. This implies that climate change with rising CO2 concentrations has the potential to aggravate eutrophication in Taihu Lake where high nutrient loads are maintained.

  12. Effects of abiotic factors on ecosystem health of Taihu Lake, China based on eco-exergy theory

    PubMed Central

    Wang, Ce; Bi, Jun; Fath, Brian D.

    2017-01-01

    A lake ecosystem is continuously exposed to environmental stressors with non-linear interrelationships between abiotic factors and aquatic organisms. Ecosystem health depicts the capacity of system to respond to external perturbations and still maintain structure and function. In this study, we explored the effects of abiotic factors on ecosystem health of Taihu Lake in 2013, China from a system-level perspective. Spatiotemporal heterogeneities of eco-exergy and specific eco-exergy served as thermodynamic indicators to represent ecosystem health in the lake. The results showed the plankton community appeared more energetic in May, and relatively healthy in Gonghu Bay with both higher eco-exergy and specific eco-exergy; a eutrophic state was likely discovered in Zhushan Bay with higher eco-exergy but lower specific eco-exergy. Gradient Boosting Machine (GBM) approach was used to explain the non-linear relationships between two indicators and abiotic factors. This analysis revealed water temperature, inorganic nutrients, and total suspended solids greatly contributed to the two indicators that increased. However, pH rise driven by inorganic carbon played an important role in undermining ecosystem health, particularly when pH was higher than 8.2. This implies that climate change with rising CO2 concentrations has the potential to aggravate eutrophication in Taihu Lake where high nutrient loads are maintained. PMID:28220835

  13. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress

    PubMed Central

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E.

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant’s ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant’s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  14. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    NASA Astrophysics Data System (ADS)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  15. Abiotic stress and the plant circadian clock

    PubMed Central

    Sanchez, Alfredo; Shin, Jieun

    2011-01-01

    In this review, we focus on the interaction between the circadian clock of higher plants to that of metabolic and physiological processes that coordinate growth and performance under a predictable, albeit changing environment. In this, the phytochrome and cryptochrome photoreceptors have shown to be important, but not essential for oscillator control under diurnal cycles of light and dark. From this foundation, we will examine how emerging findings have firmly linked the circadian clock, as a central mediator in the coordination of metabolism, to maintain homeostasis. This occurs by oscillator synchronization of global transcription, which leads to a dynamic control of a host of physiological processes. These include the determination of the levels of primary and secondary metabolites, and the anticipation of future environmental stresses, such as mid-day drought and midnight coldness. Interestingly, metabolic and stress cues themselves appear to feedback on oscillator function. In such a way, the circadian clock of plants and abiotic-stress tolerance appear to be firmly interconnected processes. PMID:21325898

  16. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    PubMed

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  17. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (<0.10 µmol/m2/s) we observed a cyclical daily sink/source pattern consistent with CO2 solubility cycling that would not generally have been evident with normal synoptic afternoon sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  18. Research advances in major cereal crops for adaptation to abiotic stresses

    PubMed Central

    Maiti, RK; Satya, Pratik

    2014-01-01

    With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers’ fields. PMID:25523172

  19. Research advances in major cereal crops for adaptation to abiotic stresses.

    PubMed

    Maiti, R K; Satya, Pratik

    2014-01-01

    With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields.

  20. Abiotic and biotic controls over biogeochemical cycles in drylands: Insights from climate change and nitrogen deposition experiments on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Reed, S.; Ferrenberg, S.; Tucker, C.; Rutherford, W. A.; Wertin, T. M.; McHugh, T. A.; Morrissey, E.; Kuske, C.; Mueller, R.; Belnap, J.

    2016-12-01

    As for all ecosystems, biogeochemical cycling in drylands represents numerous intricate connections between biotic and abiotic controls. However, patterns of many fundamental ecosystem processes that generally hold across global gradients fall apart at the arid and semiarid end of the spectrum, and data point to an exceptionally strong role for abiotic controls in explaining these patterns. Further, there are multiple dryland characteristics - such as extreme aridity and high UV radiation, as well as specialized biological communities - which can point to a conclusion that "drylands are different". Indeed, drylands are often characterized by their harsh environment, by the diverse classes of biota representing a range of traits aimed at surviving such harsh conditions, and, more recently, by the suggestion of dramatic biotic responses to seemingly subtle changes in abiotic factors. In this talk, we will explore a range of biotic and abiotic controls over fundamental biogeochemical cycling in drylands using data from a suite of manipulation experiments on the Colorado Plateau, USA. We will present results from field treatments that speak to the effects of increasing temperature, altered precipitation regimes, increased nitrogen availability via deposition, and the effects of altered litterfall inputs. Biogeochemical processes we explore will include plant photosynthesis, soil photosynthesis and respiration (with a focus on biological soil crusts), litter decomposition, and nutrient cycling. In addition, we will assess how treatments alter dryland community composition, as well as the resultant feedbacks of community shifts to environmental change. Taken together we will use these diverse datasets to ask questions about what makes drylands different or, instead, if a holistic joining of biotic and abiotic perspectives suggests they are not so different after all. These data will not only lend insight into the partitioning of and balance between biotic and abiotic

  1. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  2. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  3. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine.

    PubMed

    Roatti, Benedetta; Perazzolli, Michele; Gessler, Cesare; Pertot, Ilaria

    2013-12-01

    Enhancement of plant defense through the application of resistance inducers seems a promising alternative to chemical fungicides for controlling crop diseases but the efficacy can be affected by abiotic factors in the field. Plants respond to abiotic stresses with hormonal signals that may interfere with the mechanisms of induced systemic resistance (ISR) to pathogens. In this study, we exposed grapevines to heat, drought, or both to investigate the effects of abiotic stresses on grapevine resistance induced by Trichoderma harzianum T39 (T39) to downy mildew. Whereas the efficacy of T39-induced resistance was not affected by exposure to heat or drought, it was significantly reduced by combined abiotic stresses. Decrease of leaf water potential and upregulation of heat-stress markers confirmed that plants reacted to abiotic stresses. Basal expression of defense-related genes and their upregulation during T39-induced resistance were attenuated by abiotic stresses, in agreement with the reduced efficacy of T39. The evidence reported here suggests that exposure of crops to abiotic stress should be carefully considered to optimize the use of resistance inducers, especially in view of future global climate changes. Expression analysis of ISR marker genes could be helpful to identify when plants are responding to abiotic stresses, in order to optimize treatments with resistance inducers in field.

  4. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses

    PubMed Central

    Yue, Runqing; Lu, Caixia; Sun, Tao; Peng, Tingting; Han, Xiaohua; Qi, Jianshuang; Yan, Shufeng; Tie, Shuanggui

    2015-01-01

    The calmodulin-binding transcription activators (CAMTA) play critical roles in plant growth and responses to environmental stimuli. However, how CAMTAs function in responses to abiotic and biotic stresses in maize (Zea mays L.) is largely unknown. In this study, we first identified all the CAMTA homologous genes in the whole genome of maize. The results showed that nine ZmCAMTA genes showed highly diversified gene structures and tissue-specific expression patterns. Many ZmCAMTA genes displayed high expression levels in the roots. We then surveyed the distribution of stress-related cis-regulatory elements in the −1.5 kb promoter regions of ZmCAMTA genes. Notably, a large number of stress-related elements present in the promoter regions of some ZmCAMTA genes, indicating a genetic basis of stress expression regulation of these genes. Quantitative real-time PCR was used to test the expression of ZmCAMTA genes under several abiotic stresses (drought, salt, and cold), various stress-related hormones [abscisic acid, auxin, salicylic acid (SA), and jasmonic acid] and biotic stress [rice black-streaked dwarf virus (RBSDV) infection]. Furthermore, the expression pattern of ZmCAMTA genes under RBSDV infection was analyzed to investigate their potential roles in responses of different maize cultivated varieties to RBSDV. The expression of most ZmCAMTA genes responded to both abiotic and biotic stresses. The data will help us to understand the roles of CAMTA-mediated Ca2+ signaling in maize tolerance to environmental stresses. PMID:26284092

  5. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions.

    PubMed

    Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M

    2016-07-01

    Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control.

  6. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  7. Abiotic tooth enamel

    NASA Astrophysics Data System (ADS)

    Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M.; Arruda, Ellen M.; Kotov, Nicholas A.

    2017-03-01

    Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability—especially when juxtaposed with the diversity of other tissues—suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels—we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth’s normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.

  8. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses

    PubMed Central

    Benevenuto, Rafael Fonseca; Agapito-Tenfen, Sarah Zanon; Vilperte, Vinicius; Wikmark, Odd-Gunnar; van Rensburg, Peet Jansen; Nodari, Rubens Onofre

    2017-01-01

    Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses. PMID:28245233

  9. Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis

    PubMed Central

    Gébelin, Virginie; Leclercq, Julie; Hu, Songnian; Tang, Chaorong; Montoro, Pascal

    2013-01-01

    Increasing demand for natural rubber (NR) calls for an increase in latex yield and also an extension of rubber plantations in marginal zones. Both harvesting and abiotic stresses lead to tapping panel dryness through the production of reactive oxygen species. Many microRNAs regulated during abiotic stress modulate growth and development. The objective of this paper was to study the regulation of microRNAs in response to different types of abiotic stress and hormone treatments in Hevea. Regulation of MIR genes differs depending on the tissue and abiotic stress applied. A negative co-regulation between HbMIR398b with its chloroplastic HbCuZnSOD target messenger is observed in response to salinity. The involvement of MIR gene regulation during latex harvesting and tapping panel dryness (TPD) occurrence is further discussed. PMID:24084713

  10. Distribution and Diversity of Soil Microfauna from East Antarctica: Assessing the Link between Biotic and Abiotic Factors

    PubMed Central

    Velasco-Castrillón, Alejandro; Schultz, Mark B.; Colombo, Federica; Gibson, John A. E.; Davies, Kerrie A.; Austin, Andrew D.; Stevens, Mark I.

    2014-01-01

    Terrestrial life in Antarctica has been described as some of the simplest on the planet, and mainly confined to soil microfaunal communities. Studies have suggested that the lack of diversity is due to extreme environmental conditions and thought to be driven by abiotic factors. In this study we investigated soil microfauna composition, abundance, and distribution in East Antarctica, and assessed correlations with soil geochemistry and environmental variables. We examined 109 soil samples from a wide range of ice-free habitats, spanning 2000 km from Framnes Mountains to Bailey Peninsula. Microfauna across all samples were patchily distributed, from complete absence of invertebrates to over 1600 specimens/gram of dry weight of soil (gdw), with highest microfauna abundance observed in samples with visible vegetation. Bdelloid rotifers were on average the most widespread found in 87% of sampled sites and the most abundant (44 specimens/gdw). Tardigrades occurred in 57% of the sampled sites with an abundance of 12 specimens/gdw. Nematodes occurred in 71% of samples with a total abundance of 3 specimens/gdw. Ciliates and mites were rarely found in soil samples, with an average abundance of 1.3 and 0.04 specimens/gdw, respectively. We found that microfaunal composition and abundance were mostly correlated with the soil geochemical parameters; phosphorus, NO3 − and salinity, and likely to be the result of soil properties and historic landscape formation and alteration, rather than the geographic region they were sampled from. Studies focusing on Antarctic biodiversity must take into account soil geochemical and environmental factors that influence population and species heterogeneity. PMID:24498126

  11. A parameter control method in reinforcement learning to rapidly follow unexpected environmental changes.

    PubMed

    Murakoshi, Kazushi; Mizuno, Junya

    2004-11-01

    In order to rapidly follow unexpected environmental changes, we propose a parameter control method in reinforcement learning that changes each of learning parameters in appropriate directions. We determine each appropriate direction on the basis of relationships between behaviors and neuromodulators by considering an emergency as a key word. Computer experiments show that the agents using our proposed method could rapidly respond to unexpected environmental changes, not depending on either two reinforcement learning algorithms (Q-learning and actor-critic (AC) architecture) or two learning problems (discontinuous and continuous state-action problems).

  12. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    USGS Publications Warehouse

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  13. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  14. Transposable elements contribute to activation of maize genes in response to abiotic stress.

    PubMed

    Makarevitch, Irina; Waters, Amanda J; West, Patrick T; Stitzer, Michelle; Hirsch, Candice N; Ross-Ibarra, Jeffrey; Springer, Nathan M

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.

  15. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    PubMed Central

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  16. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance.

    PubMed

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.

  17. Abiotic Stress Signaling in Wheat – An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat

    PubMed Central

    Abhinandan, Kumar; Skori, Logan; Stanic, Matija; Hickerson, Neil M. N.; Jamshed, Muhammad; Samuel, Marcus A.

    2018-01-01

    Rapid global warming directly impacts agricultural productivity and poses a major challenge to the present-day agriculture. Recent climate change models predict severe losses in crop production worldwide due to the changing environment, and in wheat, this can be as large as 42 Mt/°C rise in temperature. Although wheat occupies the largest total harvested area (38.8%) among the cereals including rice and maize, its total productivity remains the lowest. The major production losses in wheat are caused more by abiotic stresses such as drought, salinity, and high temperature than by biotic insults. Thus, understanding the effects of these stresses becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Notably, recent biotechnological breakthroughs in the understanding of gene functions and access to whole genome sequences have opened new avenues for crop improvement. Despite the availability of such resources in wheat, progress is still limited to the understanding of the stress signaling mechanisms using model plants such as Arabidopsis, rice and Brachypodium and not directly using wheat as the model organism. This review presents an inclusive overview of the phenotypic and physiological changes in wheat due to various abiotic stresses followed by the current state of knowledge on the identified mechanisms of perception and signal transduction in wheat. Specifically, this review provides an in-depth analysis of different hormonal interactions and signaling observed during abiotic stress signaling in wheat. PMID:29942321

  18. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md. Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-01

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  19. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    PubMed

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C 4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C 3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m 2 plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  20. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  1. Assessing anaerobic co-digestion of pig manure with agroindustrial wastes: the link between environmental impacts and operational parameters.

    PubMed

    Rodriguez-Verde, Ivan; Regueiro, Leticia; Carballa, Marta; Hospido, Almudena; Lema, Juan M

    2014-11-01

    Anaerobic co-digestion (AcoD) is established as a techno-economic profitable process by incrementing biogas yield (increased cost-efficiency) and improving the nutrient balance (better quality digestate) in comparison to mono-digestion of livestock wastes. However, few data are available on the environmental consequences of AcoD and most of them are mainly related to the use of energy crops as co-substrates. This work analysed the environmental impact of the AcoD of pig manure (PM) with several agroindustrial wastes (molasses, fish, biodiesel and vinasses residues) using life cycle assessment (LCA) methodology. For comparative purposes, mono digestion of PM has also been evaluated. Four out of six selected categories (acidification, eutrophication, global warming and photochemical oxidation potentials) showed environmental impacts in all the scenarios assessed, whereas the other two (abiotic depletion and ozone layer depletion potentials) showed environmental credits, remarking the benefit of replacing fossil fuels by biogas. This was also confirmed by the sensitivity analysis applied to the PM quality (i.e. organic matter content) and the avoided energy source demonstrating the importance of the energy recovery step. The influence of the type of co-substrate could not be discerned; however, a link between the environmental performance and the hydraulic retention time, the organic loading rate and the nutrient content in the digestate could be established. Therefore, LCA results were successfully correlated to process variables involved in AcoD, going a step further in the combination of techno-economic and environmental feasibilities. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Ramalho, Olivier

    2018-03-01

    Semi-volatile organic compounds (SVOCs) in indoor environments can partition among the gas phase, airborne particles, settled dust, and available surfaces. The mass transfer parameters of SVOCs, such as the mass transfer coefficient and the partition coefficient, are influenced by indoor environmental factors. Subsequently, indoor SVOC concentrations and thus occupant exposure can vary depending on environmental factors. In this review, the influence of six environmental factors, i.e., indoor temperature, humidity, ventilation, airborne particle concentration, source loading factor, and reactive chemistry, on the mass transfer parameters and indoor concentrations of SVOCs was analyzed and tentatively quantified. The results show that all mass transfer parameters vary depending on environmental factors. These variations are mostly characterized by empirical equations, particularly for humidity. Theoretical calculations of these parameters based on mass transfer mechanisms are available only for the emission of SVOCs from source surfaces when airborne particles are not present. All mass transfer parameters depend on the temperature. Humidity influences the partition of SVOCs among different phases and is associated with phthalate hydrolysis. Ventilation has a combined effect with the airborne particle concentration on SVOC emission and their mass transfer among different phases. Indoor chemical reactions can produce or eliminate SVOCs slowly. To better model the dynamic SVOC concentration indoors, the present review suggests studying the combined effect of environmental factors in real indoor environments. Moreover, interactions between indoor environmental factors and human activities and their influence on SVOC mass transfer processes should be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Redox Evolution via Gravitational Differentiation on Low-mass Planets: Implications for Abiotic Oxygen, Water Loss, and Habitability

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.; Schaefer, L. K.; Fischer, R. A.

    2018-05-01

    The oxidation of rocky planet surfaces and atmospheres, which arises from the twin forces of stellar nucleosynthesis and gravitational differentiation, is a universal process of key importance to habitability and exoplanet biosignature detection. Here we take a generalized approach to this phenomenon. Using a single parameter to describe the redox state, we model the evolution of terrestrial planets around nearby M stars and the Sun. Our model includes atmospheric photochemistry, diffusion and escape, line-by-line climate calculations, and interior thermodynamics and chemistry. In most cases, we find abiotic atmospheric {{{O}}}2 buildup around M stars during the pre-main-sequence phase to be much less than calculated previously, because the planet’s magma ocean absorbs most oxygen liberated from {{{H}}}2{{O}} photolysis. However, loss of noncondensing atmospheric gases after the mantle solidifies remains a significant potential route to abiotic atmospheric {{{O}}}2 subsequently. In all cases, we predict that exoplanets that receive lower stellar fluxes, such as LHS1140b and TRAPPIST-1f and g, have the lowest probability of abiotic {{{O}}}2 buildup and hence may be the most interesting targets for future searches for biogenic {{{O}}}2. Key remaining uncertainties can be minimized in future by comparing our predictions for the atmospheres of hot, sterile exoplanets such as GJ1132b and TRAPPIST-1b and c with observations.

  4. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato.

    PubMed

    Kikuchi, Akira; Huynh, Huu Duc; Endo, Tsukasa; Watanabe, Kazuo

    2015-03-01

    Global warming has become a major issue within the last decade. Traditional breeding programs for potato have focused on increasing productivity and quality and disease resistance, thus, modern cultivars have limited tolerance of abiotic stresses. The introgression of abiotic stress tolerance into modern cultivars is essential work for the future. Recently, many studies have investigated abiotic stress using transgenic techniques. This manuscript focuses on the study of abiotic stress, in particular drought, salinity and low temperature, during this century. Dividing studies into these three stress categories for this review was difficult. Thus, based on the study title and the transgene property, transgenic studies were classified into five categories in this review; oxidative scavengers, transcriptional factors, and above three abiotic categories. The review focuses on studies that investigate confer of stress tolerance and the identification of responsible factors, including wild relatives. From a practical application perspective, further evaluation of transgenic potato with abiotic stress tolerance is required. Although potato plants, including wild species, have a large potential for abiotic stress tolerance, exploration of the factors responsible for conferring this tolerance is still developing. Molecular breeding, including genetic engineering and conventional breeding using DNA markers, is expected to develop in the future.

  5. Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses

    PubMed Central

    Nawaz, Ghazala; Kang, Hunseung

    2017-01-01

    The yields and productivity of crops are greatly diminished by various abiotic stresses, including drought, cold, heat, and high salinity. Chloroplasts and mitochondria are cellular organelles that can sense diverse environmental stimuli and alter gene expression to cope with adverse environmental stresses. Organellar gene expression is mainly regulated at posttranscriptional levels, including RNA processing, intron splicing, RNA editing, RNA turnover, and translational control, during which a variety of nucleus-encoded RNA-binding proteins (RBPs) are targeted to chloroplasts or mitochondria where they play essential roles in organellar RNA metabolism. DEAD-box RNA helicases (RHs) are enzymes that can alter RNA structures and affect RNA metabolism in all living organisms. Although a number of DEAD-box RHs have been found to play important roles in RNA metabolism in the nucleus and cytoplasm, our understanding on the roles of DEAD-box RHs in the regulation of RNA metabolism in chloroplasts and mitochondria is only at the beginning. Considering that organellar RNA metabolism and gene expression are tightly regulated by anterograde signaling from the nucleus, it is imperative to determine the functions of nucleus-encoded organellar RBPs. In this review, we summarize the emerging roles of nucleus-encoded chloroplast- or mitochondria-targeted DEAD-box RHs in organellar RNA metabolism and plant response to diverse abiotic stresses. PMID:28596782

  6. Effects of biotic and abiotic factors on phenotypic partitioning of wing morphology and development in Sclerodermus pupariae (Hymenoptera: Bethylidae).

    PubMed

    Wang, Xiaoyi; Wei, Ke; Yang, Zhongqi; Jennings, David E; Duan, Jian J

    2016-05-19

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we report how both biotic and abiotic factors affect the wing morph differentiation of a bethylid parasitoid Sclerodermus pupariae. The percentage of winged female parasitoid progeny increased exponentially with temperature between 20 °C to 30 °C. Low intensity light and short-day photoperiod conditions also significantly induced the development of winged morphs. Interestingly, wingless maternal parasitoids produced more winged progeny. Furthermore, the degree of wing dimorphism was significantly influenced by the interactions between light intensity and maternal wing morphs. The percentage of winged female progeny was not significantly influenced by foundress densities, but increased significantly with parasitoid brood sizes. However, the percentage of male progeny increased significantly with the densities of maternal parasitoids. Our findings highlight the phenotypic partitioning of wing morphology and development in the parasitoid S. pupariae under varied environmental cues, and reveal the most favourable conditions for the production of winged females in this bethylid wasp. It is thus possible to increase winged female parasitoid production for the purposes of biological control by manipulation of biotic and abiotic conditions.

  7. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. Onmore » some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.« less

  8. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses.

    PubMed

    Montero-Barrientos, Marta; Hermosa, Rosa; Cardoza, Rosa E; Gutiérrez, Santiago; Nicolás, Carlos; Monte, Enrique

    2010-05-15

    The ability of some Trichoderma strains, a biological control agent, to overcome extreme environmental conditions has previously been reported and related to heat-shock proteins (HSPs). These proteins are induced environmentally and are involved in important processes, acting as molecular chaperones in all organisms. In a previous study, we demonstrated, by overexpression, that the Trichoderma harzianum hsp70 gene conferred tolerance to heat and other abiotic stresses to this fungus. In this work, we investigate the function of the T. harzianum T34 hsp70 gene in Arabidopsis thaliana. We analyze transgenic plant responses under adverse environmental conditions and the expression levels of a set of seven stress genes, using quantitative RT-PCR. As expected, transgenic plants expressing the T. harzianum hsp70 gene exhibited enhanced tolerance to heat stress. In addition, they did not show growth inhibition and, after heat pre-treatment, transgenic seedlings were more tolerant to osmotic, salt and oxidative stresses with respect to the wild-type behavior. Transgenic lines also had increased transcript levels of the Na(+)/H(+) exchanger 1 (SOS1) and ascorbate peroxidase 1 (APX1) genes, involved in salt and oxidative stress responses, respectively. However, the heat-shock factor (HSF) and four HSP genes tested were down-regulated in 35S:hsp70 plants. Overall, our results indicate that hsp70 confers tolerance to heat and other abiotic stresses and that the fungal HSP70 protein acts as a negative regulator of the HSF transcriptional activity in Arabidopsis. (c) 2009 Elsevier GmbH. All rights reserved.

  9. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses

    PubMed Central

    Banerjee, Aditya

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research. PMID:25879071

  11. Nitrogen fertility and abiotic stresses management in cotton crop: a review.

    PubMed

    Khan, Aziz; Tan, Daniel Kean Yuen; Afridi, Muhammad Zahir; Luo, Honghai; Tung, Shahbaz Atta; Ajab, Mir; Fahad, Shah

    2017-06-01

    This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.

  12. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  13. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  14. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses

    PubMed Central

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-01-01

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs, including DnARF1, DnARF4, and DnARF6, were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1, DnARF4, and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale. To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment. PMID:28471373

  15. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses.

    PubMed

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-05-04

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs , including DnARF1 , DnARF4 , and DnARF6 , were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1 , DnARF4 , and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale . To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment.

  16. Relationships between bacterial diversity and environmental variables in a tropical marine environment, Rio de Janeiro.

    PubMed

    Vieira, Ricardo P; Gonzalez, Alessandra M; Cardoso, Alexander M; Oliveira, Denise N; Albano, Rodolpho M; Clementino, Maysa M; Martins, Orlando B; Paranhos, Rodolfo

    2008-01-01

    This study is the first to apply a comparative analysis of environmental chemistry, microbiological parameters and bacterioplankton 16S rRNA clone libraries from different areas of a 50 km transect along a trophic gradient in the tropical Guanabara Bay ecosystem. Higher bacterial diversity was found in the coastal area, whereas lower richness was observed in the more polluted inner bay water. The significance of differences between clone libraries was examined with LIBSHUFF statistics. Paired reciprocal comparisons indicated that each of the libraries differs significantly from the others, and this is in agreement with direct interpretation of the phylogenetic tree. Furthermore, correspondence analyses showed that some taxa are related to specific abiotic, trophic and microbiological parameters in Guanabara Bay estuarine system.

  17. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.

  18. Design of a Custom RT-qPCR Array for Assignment of Abiotic Stress Tolerance in Traditional Portuguese Grapevine Varieties

    PubMed Central

    Carvalho, Luísa C.; Silva, Marília; Coito, João L.; Rocheta, Margarida P.; Amâncio, Sara

    2017-01-01

    Widespread agricultural losses attributed to drought, often combined with high temperatures, frequently occur in the field, namely in Mediterranean climate areas, where the existing scenarios for climate change indicate an increase in the frequency of heat waves and severe drought events in summer. Grapevine (Vitis vinifera L.) is the most cultivated fruit species in the world and the most valuable one and is a traditional Mediterranean species. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of ancient and resilient varieties. Portugal is very rich in grapevine biodiversity, however, currently, 90% of the total producing area is planted with only 16 varieties. There is a pressing need to understand the existing genetic diversity and the physiological potential of the varieties/genotypes available to be able to respond to climate changes. With the above scenario in mind, an assembly of 65 differentially expresses genes (DEGs) previously identified as responsive to abiotic stresses in two well studied genotypes, ‘Touriga Nacional’ and ‘Trincadeira,’ was designed to scan the gene expression of leaf samples from 10 traditional Portuguese varieties growing in two regions with distinct environmental conditions. Forty-five of those DEGs proved to be associated to “abiotic stress” and were chosen to build a custom qPCR array to identify uncharacterized genotypes as sensitive or tolerant to abiotic stress. According to the experimental set-up behind the array design these DEGs can also be used as indicators of the main abiotic stress that the plant is subjected and responding to (drought, heat, or excess light). PMID:29118776

  19. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation.

    PubMed

    Wang, Jing; Liu, Lingli; Wang, Xin; Chen, Yiwei

    2015-05-01

    Elevated ultraviolet (UV) radiation has been demonstrated to stimulate litter decomposition. Despite years of research, it is still not fully understood whether the acceleration in litter degradation is primarily attributed to abiotic photodegradation or the combined effects of abiotic photodegradation and microbial decomposition. In this study, we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter decomposition between abiotic and biotic conditions. We also conducted a microcosm experiment to assess the effects of UV radiation on litter biodegradability and microbial activity. Overall, our meta-analysis found that under abiotic photodegradation, UV radiation reduced the remaining litter mass by 1.44% (95% CI: 0.85% to 2.08%), did not affect the remaining lignin and increased the dissolved organic carbon (DOC) concentration by 14.01% (1.49-23.67%). Under combined abiotic photodegradation and microbial decomposition, UV radiation reduced the remaining litter mass and lignin by 1.60% (0.04-3.58%) and 16.07% (9.27-24.23%), respectively, but did not alter DOC concentration. UV radiation had no significant impact on soil microbial biomass carbon (MBC), but it reduced microbial respiration by 44.91% (2.26-78.62%) and altered the composition of the microbial community. In addition, UV radiation reduced nitrogen (N) immobilization by 19.44% (4.77-37.92%). Our microcosm experiment further indicated that DOC concentration and the amount of respired C in UV-treated litter increased with UV exposure time, suggesting that longer UV exposure resulted in greater biodegradability. Overall, our study suggested that UV exposure could increase litter biodegradability by increasing the microbial accessibility of lignin, as well as the labile carbon supply to microbes. However, the remaining litter mass was not different between the abiotic and biotic conditions, most likely because the positive effect of UV radiation on litter

  20. Sampling protocol for monitoring abiotic and biotic characteristics of mountain ponds and lakes

    USGS Publications Warehouse

    Hoffman, Robert L.; Tyler, Torrey J.; Larson, Gary L.; Adams, Michael J.; Wente, Wendy; Galvan, Stephanie

    2005-01-01

    This document describes field techniques and procedures used for sampling mountain ponds and lakes. These techniques and procedures will be used primarily to monitor, as part of long-term programs in National Parks and other protected areas, the abiotic and biotic characteristics of naturally occurring permanent montane lentic systems up to 75 ha in surface area. However, the techniques and procedures described herein also can be used to sample temporary or ephemeral montane lentic sites. Each Standard Operating Procedure (SOP) section addresses a specific component of the limnological investigation, and describes in detail field sampling methods pertaining to parameters to be measured for each component.

  1. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  2. Area and percent of forest affected by abiotic agents beyond reference conditions

    Treesearch

    2012-01-01

    Criterion 3, Indicator 16, of the Montréal Process Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests was designed to assess the impact of abiotic agents upon forests (Montréal Process Working Group 2007). Various abiotic agents, both natural and human-induced, can change forest structure and species composition....

  3. Environmental assessment and exposure reduction of cockroaches: A practice parameter

    PubMed Central

    Portnoy, Jay; Chew, Ginger L.; Phipatanakul, Wanda; Williams, P. Brock; Grimes, Carl; Kennedy, Kevin; Matsui, Elizabeth C.; Miller, J. David; Bernstein, David; Blessing-Moore, Joann; Cox, Linda; Khan, David; Lang, David; Nicklas, Richard; Oppenheimer, John; Randolph, Christopher; Schuller, Diane; Spector, Sheldon; Tilles, Stephen A.; Wallace, Dana; Seltzer, James; Sublett, James

    2013-01-01

    This parameter was developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the joint Council of Allergy, Asthma & Immunology. The AAAAI and the ACAAI have jointly accepted responsibility for establishing “Environmental assessment and remediation: a practice parameter.” This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single person, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion. The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). PMID:23938214

  4. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  5. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  6. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.

    PubMed

    Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J

    2011-12-01

    The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Relationship between bacterial diversity and environmental parameters during composting of different raw materials.

    PubMed

    Wang, Xueqin; Cui, Hongyang; Shi, Jianhong; Zhao, Xinyu; Zhao, Yue; Wei, Zimin

    2015-12-01

    The aim of this study was to compare the bacterial structure of seven different composts. The primary environmental factors affecting bacterial species were identified, and a strategy to enhance the abundance of uncultured bacteria through controlling relevant environmental parameters was proposed. The results showed that the physical-chemical parameters of each different pile changed in its own manner during composting, which affected the structure and succession of bacteria in different ways. DGGE profiles showed that there were 10 prominent species during composting. Among them, four species existed in all compost types, two species existed in several piles and four species were detected in a single material. Redundancy analysis results showed that bacterial species compositions were significantly influenced by C/N and moisture (p<0.05). The optimal range of C/N was 14-27. Based on these results, the primary environmental factors affecting a certain species were further identified as a potential control of bacterial diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  9. The abiotic environment of the interstitial of a small Swiss river in the foothills of the Alps and its influence on gravel spawning brown trout (Salmo trutta L.)

    NASA Astrophysics Data System (ADS)

    Schindler, Yael; Michel, Christian; Holm, Patricia; Alewell, Christine

    2010-05-01

    The hyporheic zone can be characterized by multiple abiotic parameters (e.g. bulk density, texture, temperature, oxygen, ammonium, nitrate) which are all influenced directly or indirectly by the exchange processes between surface water and groundwater. These processes can vary both in time and space and are mainly driven by river discharge, ground water level and flow patterns. The input of fine sediment particles can change water-riverbed interactions through river bed clogging potentially affecting the embryonal development and survival of gravel spawning fish, such as brown trout (Salmo trutta L.). With our investigations we aim to understand these complex interactions spatially and temporally on a relevant small scale, i.e. within individual artificial brown trout redds. We designed an experimental field setup to directly investigate i) the influence of the abiotic river and redd environment on brown trout embryo development and ii) the hydrological dynamics affecting the abiotic environment in artificial brown trout. Additionally, our setup allows investigating the temporal dynamics of i) fine-sediment infiltration into the artificial redds and ii) embryo survival to two distinct developmental stages (i.e. eyed stage and hatch) The experiment was conducted in three sites of a typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. Individual sites represented a high, medium and low fine-sediment load. In each site, six artificial redds (18 in total) were built and data were collected during the entire incubation phase. Redds were located in places where natural spawning of brown trout is present. We adapted multiple established methods to the smaller scale of our river to study the dynamics of the most relevant abiotic parameters potentially affecting embryo development: Oxygen content and temperature was monitored continuously in different depths, fine sediment (bedload, suspended sediment load and its input in the river bed

  10. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes

    PubMed Central

    Dwivedi, Sangam L.; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and

  11. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.

    PubMed

    Dwivedi, Sangam L; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and

  12. Environmental parameters of shuttle support for life sciences experiments

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.

    1976-01-01

    The environments provided by the Orbiter vehicle and by the Spacelab will differ substantially from the environment provided by prior spacecraft. The specific design limits for each environmental parameter and expected operating characteristics are presented for both the Orbiter and the Spacelab. The environments are compared with those of earlier spacecraft and with the normal earth laboratory. Differences between the spacecraft environments and the normal laboratory environment and the impact of these differences on experiments and equipment design are discussed.

  13. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet

    PubMed Central

    Shivhare, Radha; Lata, Charu

    2017-01-01

    Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional

  14. Experiments on the abiotic amplification of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Blair, N. E.; Dirbas, F. M.

    1981-01-01

    Experiments concerning the physical mechanisms for the abiotic generation and chemical mechanisms for the amplification of optical activity in biological compounds are reviewed. Attention is given to experiments involving the determination of the differential adsorption of racemic amino acids on d- and l-quartz, the asymmetric photolysis of racemic amino acids by circularly polarized light, and the asymmetric radiolysis of solid amino acids by longitudinally polarized electrons, and the enantiomeric enrichments thus obtained are noted. Further experiments on the amplification of the chirality in the polymerization of D, L-amino acid mixtures and the hydrolysis of D-, L-, and D, L-polypeptides are discussed. It is suggested that a repetitive cycle of partial polymerization-hydrolyses may account for the abiotic genesis of optically enriched polypeptides on the primitive earth.

  15. Environmental and Occupational Pesticide Exposure and Human Sperm Parameters: A Systematic Review

    PubMed Central

    Martenies, Sheena E.; Perry, Melissa J.

    2013-01-01

    Of continuing concern are the associations between environmental or occupational exposures to pesticides and semen quality parameters. Prior research has indicated that there may be associations between exposure to pesticides of a variety of classes and decreased sperm health. The intent of this review was to summarize the most recent evidence related to pesticide exposures and commonly used semen quality parameters, including concentration, motility and morphology. The recent literature was searched for studies published between January, 2007 and August, 2012 that focused on environmental or occupational pesticide exposures. Included in the review are 17 studies, 15 of which reported significant associations between exposure to pesticides and semen quality indicators. Two studies also investigated the roles genetic polymorphisms may play in the strength or directions of these associations. Specific pesticides targeted for study included dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and abamectin. Pyrethroids and organophosphates were analyzed as classes of pesticides rather than as individual compounds, primarily due to the limitations of exposure assessment techniques. Overall, a majority of the studies reported significant associations between pesticide exposure and sperm parameters. A decrease in sperm concentration was the most commonly reported finding among all of the pesticide classes investigated. Decreased motility was also associated with exposures to each of the pesticide classes, although these findings were less frequent across studies. An association between pesticide exposure and sperm morphology was less clear, with only two studies reporting an association. The evidence presented in this review continues to support the hypothesis that exposures to pesticides at environmentally or occupationally relevant levels may be associated with decreased sperm health. Future work in this area should focus on associations between specific

  16. Mosquito Larvae in Tires from Mississippi, United States: The Efficacy of Abiotic and Biotic Parameters in Predicting Spatial and Temporal Patterns of Mosquito Populations and Communities

    PubMed Central

    Yee, Donald A.; Abuzeineh, Alisa A.; Ezeakacha, Nnaemeka F.; Schelble, Stephanie S.; Glasgow, William C.; Flanagan, Stephen D.; Skiff, Jeffrey J.; Reeves, Ashton; Kuehn, Kevin

    2015-01-01

    Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations. PMID:26334813

  17. Inexpensive, Open-Source, Internet of Things-Enabled Sensing Stations for Environmental Parameter Measurements

    NASA Astrophysics Data System (ADS)

    Marchetto, P. M.; Hofmeister, K.; Walter, M. T.

    2015-12-01

    In the age of the Internet, data is inherently portable. Given the shrinking numbers of stream gauges in the US under the banner of the USGS and the lack of collocation of sensors for environmental parameters, it is clear the only way to collect these data is with near real-time, multi-parameters sensing stations. We are designing a system that can be built and deployed for under $300 by community groups interested in learning more about the land that they are protecting, such as conservation groups, or groups interested in the basic science behind sensing and ecology, such as makerspaces. Sensing stations like these will enable a greater diversity of data collection while increasing public awareness of environmental issues and the research process.

  18. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  19. The Ascorbate-glutathione-α-tocopherol Triad in Abiotic Stress Response

    PubMed Central

    Szarka, András; Tomasskovics, Bálint; Bánhegyi, Gábor

    2012-01-01

    The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants. PMID:22605990

  20. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  1. Relations among soil radon, environmental parameters, volcanic and seismic events at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Giammanco, S.; Ferrera, E.; Cannata, A.; Montalto, P.; Neri, M.

    2013-12-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol probe located on the upper NE flank of Mt. Etna volcano (Italy), close both to the Piano Provenzana fault and to the NE-Rift. Seismic, volcanological and radon data were analysed together with data on environmental parameters, such as air and soil temperature, barometric pressure, snow and rain fall. In order to find possible correlations among the above parameters, and hence to reveal possible anomalous trends in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-day time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-day moving averages showed that, similar to multivariate linear regression analysis, the summer period was characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allowed to study the relations among different signals either in the time or in the frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Using the above analysis, two periods were recognized when radon variations were significantly correlated with marked soil temperature changes and also with local seismic or volcanic activity. This allowed to produce two different physical models of soil gas transport that explain the

  2. Abiotic drivers of Chihuahuan Desert plant communities

    Treesearch

    Laura Marie Ladwig

    2014-01-01

    Within grasslands, precipitation, fire, nitrogen (N) addition, and extreme temperatures influence community composition and ecosystem function. The differential influences of these abiotic factors on Chihuahuan Desert grassland communities was examined within the Sevilleta National Wildlife Refuge, located in central New Mexico, U.S.A. Although fire is a natural...

  3. Origin of Abiotic Methane in Submarine Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.

    2018-05-01

    Results of recent investigations into the chemical and isotopic composition of actively venting submarine hydrothermal fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.

  4. Enhanced abiotic reduction of Cr(VI) in a soil slurry system by natural biomaterial addition.

    PubMed

    Park, Donghee; Ahn, Chi Kyu; Kim, Young Mi; Yun, Yeoung-Sang; Park, Jong Moon

    2008-12-30

    Among various plant-based natural biomaterials, pine bark was chosen as an efficient biomaterial capable of removing toxic Cr(VI) from aqueous solution. XPS spectra indicated that Cr(VI) was abiotically reduced to Cr(III) in both liquid and solid phases. The Cr(VI)-reducing capacity of pine bark was determined as 545 (+/-1.3)mg-Cr(VI)g(-1) of it, which was 8.7 times higher than that of a common chemical Cr(VI)-reductant, FeSO4 x 7H2O. Because pine bark could completely reduce toxic Cr(VI) to less toxic or nontoxic Cr(III) even at neutral pH, it was used as an organic reductant to remediate Cr(VI)-contaminated soil in this study. Soil slurry system using a bottle roller was applied to ex situ slurry-phase remediation experiments. In the soil slurry system, pine bark completely reduced Cr(VI) to Cr(III) and adsorbed the reduced-Cr(III) on its surface. Abiotic remediation rate of Cr(VI)-contaminated soil increased with the increase of pine bark dosage and with the decreases of Cr(VI) and water contents. In conclusion, pine bark can be used to remediate Cr(VI)-contaminated soil efficiently and environmentally friendly.

  5. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis

    PubMed Central

    Tamirisa, Srinath; Vudem, Dashavantha R.; Khareedu, Venkateswara R.

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene (CKS) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS (CcCKS) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS-transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that CcCKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants. PMID:28239388

  6. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis.

    PubMed

    Tamirisa, Srinath; Vudem, Dashavantha R; Khareedu, Venkateswara R

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene ( CKS ) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS ( CcCKS ) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS -transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that Cc CKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants.

  7. Polyamines and abiotic stress in plants: a complex relationship Frontiers in Plant Science

    Treesearch

    Rakesh Minocha; Rajtilak Majumdar; Subhash C. Minocha

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism...

  8. Evidence for abiotic sulfurization of marine dissolved organic matter in sulfidic environments

    NASA Astrophysics Data System (ADS)

    Pohlabeln, A. M.; Niggemann, J.; Dittmar, T.

    2016-02-01

    Sedimentary organic matter abiotically sulfurizes in sulfidic marine environments. Here we hypothesize that sulfurization also affects dissolved organic matter (DOM), and that sulfidic marine environments are sources of dissolved organic sulfur (DOS) to the ocean. To test these hypotheses we studied solid-phase extractable (SPE) DOS in the Black Sea at various water column depths (oxic and anoxic) and in sediment porewaters from the German Wadden Sea. The concentration and molecular composition of SPE-DOS from these sites and from the oxic water columns of the North Sea (Germany) and of the North Pacific were compared. In support of our hypotheses, SPE-DOS concentrations were elevated in sulfidic waters compared to oxic waters. For a detailed molecular characterization of SPE-DOS, selective wet-chemical alteration experiments targeting different sulfur-containing functional groups were applied prior to Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). These experiments included harsh hydrolysis, selective derivatization of thiols, oxidation, and deoxygenation to test for thioesters, sulfonic acid esters, alkylsulfates, thiols, non-aromatic thioethers, and sulfoxides. Additionally, collision-induced fragmentation experiments were applied to test for sulfonic acids. The tests revealed that the sulfonic acid group was the main structural feature in SPE-DOS, independent of the environmental conditions of the sampling site. Only in Wadden Sea anoxic porewater also non-aromatic thioethers were found which are presumably not stable in oxic waters. The findings from our field studies were confirmed in laboratory experiments, where we abiotically sulfurized marine and algal-derived DOM under conditions similar to that in anoxic marine sediments.

  9. Environmental Maternal Effects Mediate the Resistance of Maritime Pine to Biotic Stress

    PubMed Central

    Vivas, María; Zas, Rafael; Sampedro, Luis; Solla, Alejandro

    2013-01-01

    The resistance to abiotic stress is increasingly recognised as being impacted by maternal effects, given that environmental conditions experienced by parent (mother) trees affect stress tolerance in offspring. We hypothesised that abiotic environmental maternal effects may also mediate the resistance of trees to biotic stress. The influence of maternal environment and maternal genotype and the interaction of these two factors on early resistance of Pinus pinaster half-sibs to the Fusarium circinatum pathogen was studied using 10 mother genotypes clonally replicated in two contrasting environments. Necrosis length of infected seedlings was 16% shorter in seedlings grown from favourable maternal environment seeds than in seedlings grown from unfavourable maternal environment seeds. Damage caused by F. circinatum was mediated by maternal environment and maternal genotype, but not by seed mass. Mechanisms unrelated to seed provisioning, perhaps of epigenetic nature, were probably involved in the transgenerational plasticity of P. pinaster, mediating its resistance to biotic stress. Our findings suggest that the transgenerational resistance of pines due to an abiotic stress may interact with the defensive response of pines to a biotic stress. PMID:23922944

  10. Do positive interactions increase with abiotic stress? A test from a semi-arid steppe.

    PubMed Central

    Maestre, Fernando T; Cortina, Jordi

    2004-01-01

    Theoretical models predict that the relative importance of facilitation and competition may vary inversely across gradients of abiotic stress. However, these predictions have not been thoroughly tested in the field, especially in semi-arid environments. In this study, we evaluated how the net effect of the tussock grass Stipa tenacissima on the shrub Pistacia lentiscus varied across a gradient of abiotic stress in semi-arid Mediterranean steppes. We fitted the relationship between accumulated rainfall and the relative neighbour index (our measures of abiotic stress and of the net effect of S. tenacissima on P. lentiscus, respectively), which varied across this gradient, to a quadratic model. Competitive interactions dominated at both extremes of the gradient. Our results do not support established theory. Instead, they suggest that a shift from facilitation to competition under high abiotic stress conditions is likely to occur when the levels of the most limiting resource are so low that the benefits provided by the facilitator cannot overcome its own resource uptake. PMID:15504009

  11. Stable Carbon Isotopic Signatures of Abiotic Organics from Hydrothermal Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Summers, David P.; Kubo, Mike; Yassar, Saima

    2006-01-01

    Stable carbon isotopes can be powerful biogeochemical markers in the study of life's origins. Biogenic carbon fixation produces organics that are depleted in C-13 by about -20 to -30%0. Less attention has been paid to the isotopic signatures of abiotic processes. The possibility of abiotic processes producing organics with morphologies and isotopic signatures in the biogenic range has been at the center of recent debate over the Earth's earliest microfossils. The abiotic synthesis of organic compounds in hydrothermal environments is one possible source of endogenous organic matter to the prebiotic earth. Simulated hydrothermal settings have been shown to synthesize, among other things, single chain amphiphiles and simple lipids from a mix of CO, CO2, and H2. A key characteristic of these amphiphilic molecules is the ability to self-assemble in aqueous phases into more organized structures called vesicles, which form a selectively permeable boundary and serve the function of containing and concentrating other organic molecules. The ability to form cell like structures also makes these compounds more likely to be mistaken for biogenic. Hydrothermal simulation experiments were conducted from oxalic or formic acid in water at 175 C for 72 hr. The molecular and isotopic composition of the products of these reactions were determined and compared to biogenic fractionations . Preliminary results indicate isotopic fractionation during abiotic hydrocarbon synthesis in hydrothermal environments is on par with biological carbon fixation.

  12. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    USGS Publications Warehouse

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  13. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    PubMed

    Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang

    2017-08-29

    Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.

  14. Continental-level population differentiation and environmental adaptation in the mushroom Suillus brevipes

    PubMed Central

    Branco, Sara; Bi, Ke; Liao, Hui-Ling; Gladieux, Pierre; Badouin, Hélène; Ellison, Christopher E.; Nguyen, Nhu H.; Vilgalys, Rytas; Peay, Kabir G.; Taylor, John W.; Bruns, Thomas D.

    2016-01-01

    Recent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation. We found that S. brevipes exhibited overall strong population differentiation, with potential admixture in Canadian populations. This species also displayed genomic signatures of positive selection as well as genomic sites significantly associated with distinct climatic regimes and abiotic environmental parameters. These genomic regions included genes involved in transmembrane transport of substances and helicase activity potentially involved in cold stress response. Our study sheds light on large-scale environmental adaptation in fungi by identifying putative adaptive genes and providing a framework to further investigate the genetic basis of fungal adaptation. PMID:27761941

  15. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses

    PubMed Central

    Gangadhar, Baniekal H.; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W.; Prasad, Ram; Mishra, Raghvendra K.

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes. PMID:27597854

  16. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    PubMed Central

    Bai, Yuling; Sunarti, Sri; Kissoudis, Christos; Visser, Richard G. F.; van der Linden, C. G.

    2018-01-01

    In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  17. Contribution of hydrolysis in the abiotic attenuation of RDX and HMX in coastal waters.

    PubMed

    Monteil-Rivera, Fanny; Paquet, Louise; Giroux, Romain; Hawari, Jalal

    2008-01-01

    Sinking of military ships, dumping of munitions during the two World Wars, and military training have resulted in the undersea deposition of numerous unexploded ordnances (UXOs). Leaching of energetic compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from these UXOs may cause adverse ecological effects so that the long-term fate of these chemicals in the sea should be known. The present study assesses the contribution of alkaline hydrolysis into the natural attenuation of RDX and HMX in coastal waters. Alkaline hydrolysis rates were shown to be unaffected by the presence of sodium chloride, the most common component in marine waters. Kinetic parameters (E(a), ln A, k(2)) quantified for the alkaline hydrolysis of RDX and HMX in deionized water (30-50 degrees C, pH 10-12) agreed relatively well with abiotic degradation rates determined in sterilized natural coastal waters (50 and 60 degrees C, variable salinity) even if the latter were generally slightly faster than the former. Furthermore, similar products (HCHO, NO(2)(-), O(2)NNHCH(2)NHCHO) were obtained on alkaline hydrolysis in deionized water and abiotic degradation in coastal waters. These two findings suggested that degradation of nitramines in sterilized natural coastal waters, away from light, was mainly governed by alkaline hydrolysis. Kinetic calculations using the present parameters showed that alkaline hydrolysis of RDX and HMX in marine waters at 10 degrees C would respectively take 112 +/- 10 and 2408 +/- 217 yr to be completed (99.0%). We concluded that under natural conditions hydrolysis should not contribute significantly to the natural attenuation of HMX in coastal waters whereas it could play an active role in the natural attenuation of RDX.

  18. The Effect of Different Oceanic Abiotic Factors on Prokaryotic Body Sizes

    NASA Astrophysics Data System (ADS)

    Pidathala, S.; Bellon, M.; Heim, N.; Payne, J.

    2016-12-01

    We are studying the impact of abiotic factors in the Pacific and Atlantic on prokaryotic body sizes and genome sizes because we are interested in the manner in which abiotic factors influence genome sizes independent of their influence on body sizes. Some research has been done in the past on marine bacterial evolution, including data collection on marine ecology in relation to bacterial body sizes (Straza 2009). We are using the abiotic factors: temperature, salinity, and pH to compare the biovolumes/genome sizes of different phyla by using R. We made 9 scatter plots to model these relationships. Regardless of the phyla or the ocean, we found that there is no relation between pH, temperature, and body size, with several exceptions: Deinococcus. thermus has an indirect relationship with size in respect to temperature; size only correlates to temperature for phyla that are thermophiles. We also found that bacteria like D. thermus and Thermotogae are taxa only found in higher temperatures. Additionally, almost all phyla have genome sizes restricted by certain pH levels:, Proteobacteria only reach genomes with acidity levels greater than 6. In terms of salinity levels, certain bacteria are only found within a small range, and others, like Proteobacteria, can only reach genomes at low salinity levels. Finally, Proteobacteria have large genome sizes between 30 and 40 °, and Crenarchaeota have constant genome sizes in higher temperatures. Conclusively, we discovered that these abiotic factors generally do not affect body size, with the exception of D. thermus' indirect relationship to temperature due to its small biovolume in high temperatures. However, we determined that these abiotic factors have a great impact on genome sizes. This is due to genome size independence from body size. Also, genome size could have served as an adaptive feature for bacteria in marine environments, explaining why different phyla may have diverged to accommodate their lifestyles.

  19. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  20. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite

    USGS Publications Warehouse

    Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.

    2007-01-01

    To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2

  1. Site-specific 15N isotopic signatures of abiotically produced N2O

    NASA Astrophysics Data System (ADS)

    Heil, Jannis; Wolf, Benjamin; Brüggemann, Nicolas; Emmenegger, Lukas; Tuzson, Béla; Vereecken, Harry; Mohn, Joachim

    2014-08-01

    Efficient nitrous oxide (N2O) mitigation strategies require the identification of the main source and sink processes and their contribution to total soil N2O production. Several abiotic reactions of nitrification intermediates leading to N2O production are known, but their contribution to total N2O production in soils is uncertain. As the site preference (SP) of 15N in N2O is a promising tool to give more insight into N2O production processes, we investigated the SP of N2O produced by different abiotic reactions in a laboratory study. All reactions involved the nitrification intermediate hydroxylamine (NH2OH) in combination with nitrite (NO2-), Fe3+, Fe2+ and Cu2+, reactants commonly or potentially found in soils, at different concentrations and pH values. N2O production and its four main isotopic species (14N14N16O, 15N14N16O, 14N15N16O, and 14N14N18O) were quantified simultaneously and online at high temporal resolution using quantum cascade laser absorption spectroscopy. Thereby, our study presents the first continuous analysis of δ18O in N2O. The experiments revealed the possibility of purely abiotic reactions over a wide range of acidity (pH 3-8) by different mechanisms. All studied abiotic pathways produced N2O with a characteristic SP in the range of 34-35‰, unaffected by process conditions and remaining constant over the course of the experiments. These findings reflect the benefit of continuous N2O isotopic analysis by laser spectroscopy, contribute new information to the challenging source partitioning of N2O emissions from soils, and emphasize the potentially significant role of coupled biotic-abiotic reactions in soils.

  2. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance.

    PubMed

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.

  3. The Arabidopsis PLAT Domain Protein1 Is Critically Involved in Abiotic Stress Tolerance

    PubMed Central

    Eom, Seung Hee; Großkinsky, Dominik K.; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty. PMID:25396746

  4. Relationships between biotic and abiotic factors and regeneration of chestnut oak, white oak, and northern red oak

    Treesearch

    Songlin Fei; Kim C. Steiner; James C. Finley; Marc E. McDill

    2003-01-01

    A series of substantial field surveys of 38 mixed-oak stands in central Pennsylvania were carried out during 1996-2000. All the stands were surveyed 1 year prior to harvest, and 16 stands have been surveyed 1 year after harvest. Three abiotic factors at stand scale, four abiotic factors at plot scale, and two biotic factors and one abiotic factor at subplot scale was...

  5. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  6. Abiotic dechlorination of chlorinated ethenes in natural clayey soils: Impacts of mineralogy and temperature

    NASA Astrophysics Data System (ADS)

    Schaefer, Charles E.; Ho, Paul; Gurr, Christopher; Berns, Erin; Werth, Charles

    2017-11-01

    Laboratory batch experiments were performed to assess the impacts of temperature and mineralogy on the abiotic dechlorination of tetrachloroethene (PCE) or trichloroethene (TCE) due to the presence of ferrous minerals in natural aquifer clayey soils under anaerobic conditions. A combination of x-ray diffraction (XRD), magnetic susceptibility, and ferrous mineral content were used to characterize each of the 3 natural soils tested in this study, and dechlorination at temperatures ranging from 20 to 55 °C were examined. Results showed that abiotic dechlorination occurred in all 3 soils examined, yielding reduced gas abiotic dechlorination products acetylene, butane, ethene, and/or propane. Bulk first-order dechlorination rate constants (kbulk), scaled to the soil:water ratio expected for in situ conditions, ranged from 2.0 × 10- 5 day- 1 at 20 °C, to 32 × 10- 5 day- 1 at 55 °C in the soil with the greatest ferrous mineral content. For the generation of acetylene and ethene from PCE, the reaction was well described by Arrhenius kinetics, with an activation energy of 91 kJ/mol. For the generation of coupling products butane and propane, the Arrhenius equation did not provide a satisfactory description of the data, likely owing to the complex reaction mechanisms associated with these products and/or diffusional mass transfer processes associated with the ferrous minerals likely responsible for these coupling reactions. Although the data set was too limited to determine a definitive correlation, the two soils with elevated ferrous mineral contents had elevated abiotic dechlorination rate constants, while the one soil with a low ferrous mineral content had a relatively low abiotic dechlorination rate constant. Overall, results suggest intrinsic abiotic dechlorination rates may be an important long-term natural attenuation component in site conceptual models for clays that have the appropriate iron mineralogy.

  7. Variation in the thermal parameters of Odontophrynus occidentalis in the Monte desert, Argentina: response to the environmental constraints.

    PubMed

    Sanabria, Eduardo Alfredo; Quiroga, Lorena Beatriz; Martino, Adolfo Ludovico

    2012-03-01

    We studied the variation of thermal parameters of Odontophrynus occidentalis between season (wet and dry) in the Monte desert (Argentina). We measured body temperatures, microhabitat temperatures, and operative temperatures; while in the laboratory, we measured the selected body temperatures. Our results show a change in the thermal parameters of O. occidentalis that is related to environmental constraints of their thermal niche. Environmental thermal constraints are present in both seasons (dry and wet), showing variations in thermal parameters studied. Apparently imposed environmental restrictions, the toads in nature always show body temperatures below the set point. Acclimatization is an advantage for toads because it allows them to bring more frequent body temperatures to the set point. The selected body temperature has seasonal intraindividual variability. These variations can be due to thermo-sensitivity of toads and life histories of individuals that limits their allocation and acquisition of resources. Possibly the range of variation found in selected body temperature is a consequence of the thermal environmental variation along the year. These variations of thermal parameters are commonly found in deserts and thermal bodies of nocturnal ectotherms. The plasticity of selected body temperature allows O. occidentales to have longer periods of activity for foraging and reproduction, while maintaining reasonable high performance at different temperatures. The plasticity in seasonal variation of the thermal parameters has been poorly studied, and is greatly advantageous to desert species during changes in both seasonal and daily temperature, as these environments are known for their high environmental variability. © 2012 WILEY PERIODICALS, INC.

  8. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  9. Cortex proliferation in the root is a protective mechanism against abiotic stress.

    PubMed

    Cui, Hongchang

    2015-01-01

    Although as an organ the root plays a pivotal role in nutrient and water uptake as well anchorage, individual cell types function distinctly. Cortex is regarded as the least differentiated cell type in the root, but little is known about its role in plant growth and physiology. In recent studies, we found that cortex proliferation can be induced by oxidative stress. Since all types of abiotic stress lead to oxidative stress, this finding suggests a role for cortex in coping with abiotic stress. This hypothesis was tested in this study using the spy mutant, which has an extra layer of cortex in the root. Interestingly, the spy mutant was shown to be hypersensitive to salt and oxidizing reagent applied to the leaves, but it was as tolerant as the wild type to these compounds in the soil. This result lends support to the notion that cortex has a protective role against abiotic stress arising from the soil.

  10. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels.

    PubMed

    McArthur, D A; Knowles, N R

    1992-09-01

    In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACC(ox)) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis

  11. Seasonal biotic and abiotic factors affecting hunting strategy in free-living Saharan sand vipers, Cerastes vipera.

    PubMed

    Horesh, Sefi J A; Sivan, Jaim; Rosenstrauch, Avi; Tesler, Itay; Degen, A Allan; Kam, Michael

    2017-02-01

    Sit-and-wait ambushing and active hunting are two strategies used by predators to capture prey. In snakes, hunting strategy is conserved phylogenetically; most species employ only one strategy. Active hunters encounter and capture more prey but invest more energy in hunting and have higher risks of being predated. This trade-off is important to small predators. The small Cerastes vipera employs both modes of hunting, which is unlike most viperids which use only sit-and wait ambushing. This species hibernates in October and emerges in April. Energy intake should be high prior to hibernation to overcome the non-feeding hibernation period and for reproduction on their emergence. We predicted that more individuals would hunt actively towards hibernation and an abiotic factor would trigger this response. Furthermore, since more energy is required for active hunting, we predicted that snakes in good body condition would use active hunting to a greater extent than snakes in poor body condition. To test our predictions, we tracked free-living snakes year round and determined their hunting strategy, estimated their body condition index (BCI), and calculated circannual parameters of day length as environmental cues known to affect animal behaviour. Two novel findings emerged in this study, namely, hunting strategy was affected significantly by 1) the circannual change in day length and 2) by BCI. The proportion of active hunters increased from 5% in April to over 30% in October and BCI of active foragers was higher than that of sit-and-wait foragers and, therefore, our predictions were supported. The entrainment between the proportion of active hunting and the abiotic factor is indicative of an adaptive function for choosing a hunting strategy. A trend was evident among life stages. When all life stages were present (September-October), the proportion of active foragers increased with age: 0.0% among neonates, 18.2% among juveniles and 31.4% among adults. We concluded that

  12. Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE).

    PubMed

    Fischer, Axel; Oehm, Claudia; Selle, Michael; Werner, Peter

    2005-11-01

    Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 microg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions

  13. Chemical activity-based environmental risk analysis of the plasticizer di-ethylhexyl phthalate and its main metabolite mono-ethylhexyl phthalate.

    PubMed

    Gobas, Frank A P C; Otton, S Victoria; Tupper-Ring, Laura F; Crawford, Meara A; Clark, Kathryn E; Ikonomou, Michael G

    2017-06-01

    The present study applies a chemical activity-based approach to: 1) evaluate environmental concentrations of di-ethylhexyl phthalate (DEHP; n = 23 651) and its metabolite mono-ethylhexyl phthalate (MEHP; n = 1232) in 16 environmental media from 1174 studies in the United States, Canada, Europe, and Asia, and in vivo toxicity data from 934 studies in 20 species, as well as in vitro biological activity data from the US Environmental Protection Agency's Toxicity Forecaster and other sources; and 2) conduct a comprehensive environmental risk analysis. The results show that the mean chemical activities of DEHP and MEHP in abiotic environmental samples from locations around the globe are 0.001 and 10 -8 , respectively. This indicates that DEHP has reached on average 0.1% of saturation in the abiotic environment. The mean chemical activity of DEHP in biological samples is on average 100-fold lower than that in abiotic samples, likely because of biotransformation of DEHP in biota. Biological responses in both in vivo and in vitro tests occur at chemical activities between 0.01 to 1 for DEHP and between approximately 10 -6 and 10 -2 for MEHP, suggesting a greater potency of MEHP compared with DEHP. Chemical activities of both DEHP and MEHP in biota samples were less than those causing biological responses in the in vitro bioassays, without exception. A small fraction of chemical activities of DEHP in abiotic environmental samples (i.e., 4-8%) and none (0%) for MEHP were within the range of chemical activities associated with observed toxicological responses in the in vivo tests. The present study illustrates the chemical activity approach for conducting risk analyses. Environ Toxicol Chem 2017;36:1483-1492. © 2016 SETAC. © 2016 SETAC.

  14. Emerging trends in the functional genomics of the abiotic stress response in crop plants.

    PubMed

    Vij, Shubha; Tyagi, Akhilesh K

    2007-05-01

    Plants are exposed to different abiotic stresses, such as water deficit, high temperature, salinity, cold, heavy metals and mechanical wounding, under field conditions. It is estimated that such stress conditions can potentially reduce the yield of crop plants by more than 50%. Investigations of the physiological, biochemical and molecular aspects of stress tolerance have been conducted to unravel the intrinsic mechanisms developed during evolution to mitigate against stress by plants. Before the advent of the genomics era, researchers primarily used a gene-by-gene approach to decipher the function of the genes involved in the abiotic stress response. However, abiotic stress tolerance is a complex trait and, although large numbers of genes have been identified to be involved in the abiotic stress response, there remain large gaps in our understanding of the trait. The availability of the genome sequences of certain important plant species has enabled the use of strategies, such as genome-wide expression profiling, to identify the genes associated with the stress response, followed by the verification of gene function by the analysis of mutants and transgenics. Certain components of both abscisic acid-dependent and -independent cascades involved in the stress response have already been identified. Information originating from the genome-wide analysis of abiotic stress tolerance will help to provide an insight into the stress-responsive network(s), and may allow the modification of this network to reduce the loss caused by stress and to increase agricultural productivity.

  15. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  16. Assay of Plasma Membrane H+-ATPase in Plant Tissues under Abiotic Stresses.

    PubMed

    Janicka, Małgorzata; Wdowikowska, Anna; Kłobus, Grażyna

    2018-01-01

    Plasma membrane (PM) H + -ATPase, which generates the proton gradient across the outer membrane of plant cells, plays a fundamental role in the regulation of many physiological processes fundamental for growth and development of plants. It is involved in the uptake of nutrients from external solutions, their loading into phloem and long-distance transport, stomata aperture and gas exchange, pH homeostasis in cytosol, cell wall loosening, and cell expansion. The crucial role of the enzyme in resistance of plants to abiotic and biotic stress factors has also been well documented. Such great diversity of physiological functions linked to the activity of one enzyme requires a suitable and complex regulation of H + -ATPase. This regulation comprises the transcriptional as well as post-transcriptional levels. Herein, we describe the techniques that can be useful for the analysis of the plasma membrane proton pump modifications at genetic and protein levels under environmental factors.

  17. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  18. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses.

    PubMed

    Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea

    2015-07-16

    Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.

  19. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses

    PubMed Central

    Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea

    2015-01-01

    Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop. PMID:26193255

  20. Mosquito Larvae in Tires from Mississippi, United States: The Efficacy of Abiotic and Biotic Parameters in Predicting Spatial and Temporal Patterns of Mosquito Populations and Communities.

    PubMed

    Yee, Donald A; Abuzeineh, Alisa A; Ezeakacha, Nnaemeka F; Schelble, Stephanie S; Glasgow, William C; Flanagan, Stephen D; Skiff, Jeffrey J; Reeves, Ashton; Kuehn, Kevin

    2015-05-01

    Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please

  1. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    NASA Technical Reports Server (NTRS)

    Summers, David P.

    2003-01-01

    One very important tool in the analysis of biogenic, and potentially biogenic, samples is the study of their stable isotope distributions. The isotope distribution of a sample depends on the process(es) that created it. One important application of the analysis of C & N stable isotope ratios has been in the determination of whether organic matter in a sample is of biological origin or was produced abiotically. For example, the delta C-13 of organic material found embedded in phosphate grains was cited as a critical part of the evidence for life in 3.8 billion year old samples. The importance of such analysis in establishing biogenicity was highlighted again by the role this issue played in the recent debate over the validity of what had been accepted as the Earth s earliest microfossils. These kinds of analysis imply a comparison with the fractionation that one would have seen if the organic material had been produced by alternative, abiotic, pathways. Could abiotic reactions account for the same level of fractionation? Additionally, since the fractionation can vary between different abiotic reactions, understanding their fractionations can be important in distinguishing what reactions may have been significant in the formation of different abiological samples (such as extraterrestrial samples). There is however, a scarcity of data on the fractionation of carbon and nitrogen by abiotic reactions. In order to interpret properly what the stable isotope ratios of samples tell us about their biotic or abiotic nature, more needs to be known about how abiotic reactions fractionate C and N. Carbon isotope fractionations have been studied for a few abiotic processes. These studies presumed the presence of a reducing atmosphere, focusing on reactions involving spark discharge, W photolysis of reducing gas mixtures, and cyanide polymerization in the presence of ammonia. They did find that the initial products showed a depletion in I3C with values in the range of a few per

  2. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water.

    PubMed

    Myers, Michelle A; Johnson, Nicholas W; Marin, Erick Zerecero; Pornwongthong, Peerapong; Liu, Yun; Gedalanga, Phillip B; Mahendra, Shaily

    2018-06-04

    1,4-Dioxane is a probable human carcinogen and an emerging contaminant that has been detected in surface water and groundwater resources. Many conventional water treatment technologies are not effective for the removal of 1,4-dioxane due to its high water solubility and chemical stability. Biological degradation is a potentially low-cost, energy-efficient approach to treat 1,4-dioxane-contaminated waters. Two bacterial strains, Pseudonocardia dioxanivorans CB1190 (CB1190) and Mycobacterium austroafricanum JOB5 (JOB5), have been previously demonstrated to break down 1,4-dioxane through metabolic and co-metabolic pathways, respectively. However, both CB1190 and JOB5 have been primarily studied in laboratory planktonic cultures, while most environmental microbes grow in biofilms on surfaces. Another treatment technology, adsorption, has not historically been considered an effective means of removing 1,4-dioxane due to the contaminant's low K oc and K ow values. We report that the granular activated carbon (GAC), Norit 1240, is an adsorbent with high affinity for 1,4-dioxane as well as physical dimensions conducive to attached bacterial growth. In abiotic batch reactor studies, 1,4-dioxane adsorption was reversible to a large extent. By bioaugmenting GAC with 1,4-dioxane-degrading microbes, the adsorption reversibility was minimized while achieving greater 1,4-dioxane removal when compared with abiotic GAC (95-98% reduction of initial 1,4-dioxane as compared to an 85-89% reduction of initial 1,4-dioxane, respectively). Bacterial attachment and viability was visualized using fluorescence microscopy and confirmed by amplification of taxonomic genes by quantitative polymerase chain reaction (qPCR) and an ATP assay. Filtered samples of industrial wastewater and contaminated groundwater were also tested in the bioaugmented GAC reactors. Both CB1190 and JOB5 demonstrated 1,4-dioxane removal greater than that of the abiotic adsorbent controls. This study suggests that

  3. Comparison of the Abiotic Preferences of Macroinvertebrates in Tropical River Basins

    PubMed Central

    Everaert, Gert; De Neve, Jan; Boets, Pieter; Dominguez-Granda, Luis; Mereta, Seid Tiku; Ambelu, Argaw; Hoang, Thu Huong; Goethals, Peter L. M.; Thas, Olivier

    2014-01-01

    We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam. Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins in the tropics. PMID:25279673

  4. A Central Role for Thiols in Plant Tolerance to Abiotic Stress

    PubMed Central

    Zagorchev, Lyuben; Seal, Charlotte E.; Kranner, Ilse; Odjakova, Mariela

    2013-01-01

    Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance. PMID:23549272

  5. Comparison of the abiotic preferences of macroinvertebrates in tropical river basins.

    PubMed

    Everaert, Gert; De Neve, Jan; Boets, Pieter; Dominguez-Granda, Luis; Mereta, Seid Tiku; Ambelu, Argaw; Hoang, Thu Huong; Goethals, Peter L M; Thas, Olivier

    2014-01-01

    We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam. Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins in the tropics.

  6. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    PubMed

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016. © 2015 Wiley Periodicals, Inc.

  7. Changes in abiotic influences on seed plants and ferns during 18 years of primary succession on Puerto Rican landslides

    Treesearch

    Lawrence R. Walker; Aaron B. Shiels; Peter J. Bellingham; Ashley D. Sparrow; Ned Fetcher; Fred H. Landau; Deborah J. Lodge

    2013-01-01

    Abiotic variables are critical drivers of succession in most primary seres, but how their influence on biota changes over time is rarely examined. Landslides provide good model systems for examining abiotic influences because they are spatially and temporally heterogeneous habitats with distinct abiotic and biotic gradients and post-landslide erosion. In an 18-year...

  8. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    PubMed

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  9. Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments

    PubMed Central

    Hartman, Yorike; Hooftman, Danny A P; Uwimana, Brigitte; Schranz, M Eric; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; Michelmore, Richard W; van Tienderen, Peter H

    2014-01-01

    The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected recombinant inbred lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and aboveground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and colocated with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated with those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses, especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives. PMID:25360276

  10. Understanding the Interaction of Peptides and Proteins with Abiotic Surfaces: Towards Water-Free Biologics

    DTIC Science & Technology

    2018-02-03

    peptides immobilized on abiotic surfaces depends upon a) the chemical and physical nature of the abiotic surface; b) the physicochemical properties of... dependent model of protein aggregation, aggregation proceeds only after a lag phase in which the concentration of energetically unfavorable nuclei reaches...time dependent kinetics or dynamics at such interfaces. This paper focuses on these three most important advantages of SFG and reviews some of the

  11. Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid.

    PubMed

    Yu, Xiang; Takebayashi, Arika; Demura, Taku; Ohtani, Misato

    2017-09-01

    Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I-III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.

  12. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  13. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  14. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps

    PubMed Central

    Vitale Brovarone, Alberto; Martinez, Isabelle; Elmaleh, Agnès; Compagnoni, Roberto; Chaduteau, Carine; Ferraris, Cristiano; Esteve, Imène

    2017-01-01

    Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well documented at shallow conditions, whereas natural evidence at greater depths is scarce. Here we provide evidence for intense high-pressure abiotic methanogenesis by reduction of subducted ophicarbonates. Protracted (≥0.5–1 Ma), probably episodic infiltration of reduced fluids in the ophicarbonates and methanogenesis occurred from at least ∼40 km depth to ∼15–20 km depth. Textural, petrological and isotopic data indicate that methane reached saturation triggering the precipitation of graphitic C accompanied by dissolution of the precursor antigorite. Continuous infiltration of external reducing fluids caused additional methane production by interaction with the newly formed graphite. Alteration of high-pressure carbonate-bearing ultramafic rocks may represent an important source of abiotic methane, with strong implications for the mobility of deep C reservoirs. PMID:28223715

  15. Introduction of Environmentally Degradable Parameters to Evaluate the Biodegradability of Biodegradable Polymers

    PubMed Central

    Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter (Ed K) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept Ed K was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated Ed K was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the Ed K values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of Ed K for each material. The Ed K values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the Ed K was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment. PMID:22675455

  16. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal

    PubMed Central

    Lewis, Jesse S.; Farnsworth, Matthew L.; Burdett, Chris L.; Theobald, David M.; Gray, Miranda; Miller, Ryan S.

    2017-01-01

    Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors. PMID:28276519

  17. Are karrikins involved in plant abiotic stress responses?

    PubMed

    Li, Weiqiang; Tran, Lam-Son Phan

    2015-09-01

    Recent reports have shown that strigolactones play a positive role in plant responses to drought and salt stress through MAX2 (More Axillary Growth 2). Increasing evidence suggests that MAX2 is also involved in karrikin signaling, raising the question whether karrikins play any role in plant adaptation to abiotic stresses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions

    EPA Science Inventory

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant...

  19. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels 1

    PubMed Central

    McArthur, David A. J.; Knowles, N. Richard

    1992-01-01

    In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACCox) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis

  20. Methane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. biotic hydrocarbon formation

    NASA Astrophysics Data System (ADS)

    Shuai, Yanhua; Etiope, Giuseppe; Zhang, Shuichang; Douglas, Peter M. J.; Huang, Ling; Eiler, John M.

    2018-01-01

    Abiotic hydrocarbon gas, typically generated in serpentinized ultramafic rocks and crystalline shields, has important implications for the deep biosphere, petroleum systems, the carbon cycle and astrobiology. Distinguishing abiotic gas (produced by chemical reactions like Sabatier synthesis) from biotic gas (produced from degradation of organic matter or microbial activity) is sometimes challenging because their isotopic and molecular composition may overlap. Abiotic gas has been recognized in numerous locations on the Earth, although there are no confirmed instances where it is the dominant source of commercially valuable quantities in reservoir rocks. The deep hydrocarbon reservoirs of the Xujiaweizi Depression in the Songliao Basin (China) have been considered to host significant amounts of abiotic methane. Here we report methane clumped-isotope values (Δ18) and the isotopic composition of C1-C3 alkanes, CO2 and helium of five gas samples collected from those Xujiaweizi deep reservoirs. Some geochemical features of these samples resemble previously suggested identifiers of abiotic gas (13C-enriched CH4; decrease in 13C/12C ratio with increasing carbon number for the C1-C4 alkanes; abundant, apparently non-biogenic CO2; and mantle-derived helium). However, combining these constraints with new measurements of the clumped-isotope composition of methane and careful consideration of the geological context, suggests that the Xujiaweizi depression gas is dominantly, if not exclusively, thermogenic and derived from over-mature source rocks, i.e., from catagenesis of buried organic matter at high temperatures. Methane formation temperatures suggested by clumped-isotopes (167-213 °C) are lower than magmatic gas generation processes and consistent with the maturity of local source rocks. Also, there are no geological conditions (e.g., serpentinized ultramafic rocks) that may lead to high production of H2 and thus abiotic production of CH4 via CO2 reduction. We propose

  1. Survival of the biological control agent Candida sake CPA-1 on grapes under the influence of abiotic factors.

    PubMed

    Calvo-Garrido, C; Viñas, I; Usall, J; Rodríguez-Romera, M; Ramos, M C; Teixidó, N

    2014-09-01

    As reliability of preharvest applications of biological control agents (BCAs) to control fruit pathogens is highly dependent on the survival of the selected organism, this study aimed to describe the population dynamics of the yeast-BCA Candida sake (Saito & Ota) CPA-1 on grape berries under the effect of abiotic factors such as temperature, relative humidity, sunlight and rainfall. Candida sake (5 × 10(7) CFU ml(-1)), combined with different concentrations of the food additive Fungicover(®), was applied on grape berry clusters. Treated clusters were then exposed to abiotic factors in field or laboratory conditions, recovering populations to describe C. sake population dynamics. The addition of Fungicover significantly increased C. sake multiplication under optimal growth conditions and improved survival under fluctuating abiotic factors. After field applications, significant differences in populations on grape bunches exposed or covered by fine foliage were detected. Simulated rainfall washed off C. sake populations by 0·6-0·9 log units after 20 mm of rain volume. Allowing populations to establish for 24 h or more, prior to a rain event, persistence on grape berries significantly increased and the effect of rain intensity was not observable. Candida sake demonstrated high survival ability under unfavourable environmental conditions and persistence under intense rain. The study evidenced the importance of the first period just after application for C. sake survival on grape tissues and also the protective effect of the additive Fungicover. This research provides new information on the survival of C. sake under field conditions and its practical implications for recommending timing of spray with this antagonist. Our results could be useful for other yeast antagonists applied before harvest. This work, for the first time, defines population dynamics of a yeast BCA using simulated rainfall. © 2014 The Society for Applied Microbiology.

  2. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    PubMed

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  3. Headache symptoms and indoor environmental parameters: Results from the EPA BASE study.

    PubMed

    Tietjen, Gretchen E; Khubchandani, Jagdish; Ghosh, Somik; Bhattacharjee, Suchismita; Kleinfelder, Joann

    2012-08-01

    The objective of this investigation was to determine the prevalence of migraine and headache symptoms in a national sample of US office employees. Also, we explored the association of headache symptoms with indoor environmental parameters of the work place. Sick building syndrome (SBS), which includes headache, is a common global phenomenon, but the underlying environmental cause is uncertain. We used data from the 1994-1998 US Environmental Protection Agency's (EPA) Building Assessment and Survey Evaluation, a cross-sectional study of workers employed in 100 public and private office buildings across 25 states. The study used a self-administered questionnaire to assess headache frequency and prevalence of self-reported physician-diagnosed (SRPD) migraine. Indoor environmental parameters (IEP) were collected per EPA protocol from each building over a 1-week period and included carbon dioxide, carbon monoxide, temperature, relative humidity, particulate matter, volatile organic compound, illuminance, and sound level. The standards of American Society of Heating, Refrigerating and Air Conditioning Engineers were used to categorize IEP as either within- or out-of-comfort range for human dwelling. These limits delineate whether a parameter value is safe for human dwelling. Out-of-comfort range IEPs are associated with SBS and other human diseases. SRPD migraine and headache frequency were the primary outcome measures of the study. Multivariate logistic regression analyses were employed for the purpose of assessing the association between the outcome variable and IEPs. Of the 4326 participants, 66% were females and 60% were between 30 and 49 years. Headache frequency during the last 4 weeks was as follows: None in 31%, 1-3 days in 38%, 1-3 days per week in 18%, and every or almost every workday in 8%. Females had higher SRPD migraine prevalence compared to males (27% vs. 11%, P<0.001) and were more likely to report any headache in the last month compared to males (75

  4. Elucidating the Role of Carbon Sources on Abiotic and Biotic Release of Arsenic into Cambodian Aquifers

    NASA Astrophysics Data System (ADS)

    Koeneke, M.

    2017-12-01

    Arsenic (As) is a naturally occurring contaminant in Cambodia that has been contaminating well-water sources of millions of people. Commonly, studies look into the biotic factors that cause the arsenic to be released from aquifer sediments to groundwater. However, abiotic release of As from sediments, though little studied, may also play key roles in As contamination of well water. The goal of this research is to quantitatively compare organic-carbon mediated abiotic and biotic release of arsenic from sediments to groundwater. Batch anaerobic incubation experiments under abiotic (sodium azide used to immobilize microbes) and biotic conditions were conducted using Cambodian aquifer sediments, four different organic carbon sources (sodium lactate, sodium citrate, sodium oxalate, and humic acid), and six different carbon concentrations (0, 1, 2.5, 5, 10, 25mg C/L). Dissolved arsenic, iron(Fe), and manganese(Mn) concentrations in the treatments were measured 112 days . In addition, sediment and solution carbon solution was measured . Collectively, these show how different carbon sources, different carbon concentrations, and how abiotic and biotic factors impact the release of arsenic from Cambodian sediments into aquifers. Overall, an introduction of organic carbon to the soil increases the amount of As released from the sediment. The biotic + abiotic and abiotic conditions seemed to play a minimal role in the amount of As released. Dissolved species analysis showed us that 100% of the As was As(V), Our ICP-MS results vary due to the heterogeneity of samples, but when high levels are Fe are seen in solution, we also see high levels of As. We also see higher As concentrations when there is a smaller amount of Mn in solution.

  5. Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change.

    PubMed

    Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C

    2015-05-01

    Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change.

  6. BIOTIC AND ABIOTIC CONTRIBUTIONS TO REDUCTIVE TRANSFORMATION OF ORGANIC POLLUTANTS

    EPA Science Inventory

    The relative contributions of biotic and abiotic reductive transformation reactions were probed in two anoxic freshwater sediments by following the transformation of nitrobenzene, and 2,4 dichlorophenol (compounds with different one electron reduction potentials). The sediments d...

  7. Soil heterogeneity in Mojave Desert shrublands: Biotic and abiotic processes

    NASA Astrophysics Data System (ADS)

    Caldwell, Todd G.; Young, Michael H.; McDonald, Eric V.; Zhu, Jianting

    2012-09-01

    Geological and ecological processes play critical roles in the evolution of desert piedmonts. Feedback between fast cyclic biotic and slow cumulative pedogenic processes on arid alluvial fan systems results in a heterogeneous landscape of interspace and canopy microsites. Defining the spatial extent between these processes will allow a better connection to ecosystem service and climate change. We use a soil chronosequence in the Mojave Desert and high spatial resolution infiltrometer measurements along transects radiating from canopies of perennial shrubs to assess the extent of biotic and abiotic processes and the heterogeneity of soil properties in arid shrublands. Results showed higher saturated conductivity under vegetation regardless of surface age, but it was more conspicuous on older, developed soils. At proximal locations to the shrub, bulk density, soil structure grade, silt, and clay content significantly increased radially from the canopy, while sand and organic material decreased. Soil properties at distal locations 2-5 times the canopy radius had no significant spatial correlation. The extent of the biotic influence of the shrub was 1.34 ± 0.32 times the canopy radius. Hydraulic properties were weakly correlated in space, but 75% of the variance could be attributed to sand content, soil structure grade, mean-particle diameter, and soil organic material, none of which are exclusively biotic or abiotic. The fast cyclic biotic processes occurring under vegetation are clearly overprinted on slow cumulative abiotic processes, resulting in the deterministic variability observed at the plant scale.

  8. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  9. Environmental microbes can speciate and cycle arsenic.

    PubMed

    Rhine, E Danielle; Garcia-Dominguez, Elizabeth; Phelps, Craig D; Young, L Y

    2005-12-15

    Naturally occurring arsenic is found predominantly as arsenate [As(V)] or arsenite [As(III)], and can be readily oxidized or reduced by microorganisms. Given the health risks associated with arsenic in groundwater and the interest in arsenic-active microorganisms, we hypothesized that environmental microorganisms could mediate a redox cycling of arsenic that is linked to their metabolism. This hypothesis was tested using an As(V) respiring reducer (strain Y5) and an aerobic chemoautotrophic As(II) oxidizer (strain OL1 ) both isolated from a Superfund site, Onondaga Lake, in Syracuse, NY. Strains were grown separately and together in sealed serum bottles, and the oxic/anoxic condition was the only parameter changed. Initially, under anoxic conditions when both isolates were grown together, 2 mM As(V) was stoichiometrically reduced to As(III) within 14 days. Following complete reduction, sterile ambient air was added and within 24 h As(III) was completely oxidized to As(V). The anoxic-oxic cycle was repeated, and sterile controls showed no abiotic transformation within the 28-day incubation period. These results demonstrate that microorganisms can cycle arsenic in response to dynamic environmental conditions, thereby affecting the speciation, and hence mobility and toxicity of arsenic in the environment.

  10. Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids

    PubMed Central

    Becker, Christine; Desneux, Nicolas; Monticelli, Lucie; Fernandez, Xavier; Michel, Thomas; Lavoir, Anne-Violette

    2015-01-01

    In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and “green leaf volatiles.” Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change. PMID:26788501

  11. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenasemore » enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.« less

  12. The Promoter of AtUSP Is Co-regulated by Phytohormones and Abiotic Stresses in Arabidopsis thaliana.

    PubMed

    Bhuria, Monika; Goel, Parul; Kumar, Sanjay; Singh, Anil K

    2016-01-01

    Universal stress proteins (USPs) are known to be expressed in response to various abiotic stresses in a wide variety of organisms, such as bacteria, archaebacteria, protists, algae, fungi, plants, and animals. However, in plants, biological function of most of the USPs still remains obscure. In the present study, Arabidopsis USP gene ( AtUSP ) showed induction in response to abscisic acid (ABA) and various abiotic stresses viz . heat, dehydration, salt, osmotic, and cold stresses. Additionally, in silico analysis of AtUSP promoter identified several cis -elements responsive to phytohormones and abiotic stresses such as ABRE, ERE, DRE, and HSE, etc. To functionally validate the AtUSP promoter, the 1115 bp region of promoter was characterized under phytohormone and abiotic stress treatments. Deletion analysis of promoter was carried out by cloning the full length promoter (D0) and its three 5' deletion derivatives, D1 (964 bp), D2 (660 bp), and D3 (503 bp) upstream of the β-glucuronidase (GUS) reporter gene, which were then stably transformed in Arabidopsis plants. The AtUSP promoter (D0) showed minimal activity under non-stress conditions which was enhanced in response to phytohormone treatments (ABA and ACC) and abiotic stresses such as dehydration, heat, cold, salt, and osmotic stresses. The seedlings harboring D1 and D2 deletion fragments showed constitutive GUS expression even under control condition with increased activity almost under all the treatments. However, D3 seedlings exhibited complete loss of activity under control condition with induction under ACC treatment, dehydration, heat, oxidative, salt, and osmotic stresses. Thus, present study clearly showed that AtUSP promoter is highly inducible by phytohormones and multiple abiotic stresses and it can be exploited as stress inducible promoter to generate multi-stress tolerant crops with minimal effects on their other important traits.

  13. Negative effects of heterospecific pollen receipt vary with abiotic conditions: ecological and evolutionary implications.

    PubMed

    Celaya, Ileana N; Arceo-Gómez, Gerardo; Alonso, Conchita; Parra-Tabla, Víctor

    2015-10-01

    Studies that have evaluated the effects of heterospecific pollen (HP) receipt on plant reproductive success have generally overlooked the variability of the natural abiotic environment in which plants grow. Variability in abiotic conditions, such as light and water availability, has the potential to affect pollen-stigma interactions (i.e. conspecific pollen germination and performance), which will probably influence the effects of HP receipt. Thus, a more complete understanding of the extent, strength and consequences of plant-plant interactions via HP transfer requires better consideration of the range of abiotic conditions in which these interactions occur. This study addresses this issue by evaluating the effects of two HP donors (Tamonea curassavica and Angelonia angustifolia) on the reproductive success of Cuphea gaumeri, an endemic species of the Yucatan Peninsula. Mixed (conspecific pollen and HP) and pure (conspecific pollen only) hand-pollinations were conducted under varying conditions of water and light availability in a full factorial design. Reproductive success was measured as the number of pollen tubes that reached the bottom of the style. Only one of the two HP donors had a significant effect on C. gaumeri reproductive success, but this effect was dependent on water and light availability. Specifically, HP receipt caused a decrease in pollen tube growth, but only when the availability of water, light or both was low, and not when the availability of both resources was high. The results show that the outcome of interspecific post-pollination interactions via HP transfer can be context-dependent and vary with abiotic conditions, thus suggesting that abiotic effects in natural populations may be under-estimated. Such context-dependency could lead to spatial and temporal mosaics in the ecological and evolutionary consequences of post-pollination interactions. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany

  14. Negative effects of heterospecific pollen receipt vary with abiotic conditions: ecological and evolutionary implications

    PubMed Central

    Celaya, Ileana N.; Arceo-Gómez, Gerardo; Alonso, Conchita; Parra-Tabla, Víctor

    2015-01-01

    Background and Aims Studies that have evaluated the effects of heterospecific pollen (HP) receipt on plant reproductive success have generally overlooked the variability of the natural abiotic environment in which plants grow. Variability in abiotic conditions, such as light and water availability, has the potential to affect pollen–stigma interactions (i.e. conspecific pollen germination and performance), which will probably influence the effects of HP receipt. Thus, a more complete understanding of the extent, strength and consequences of plant–plant interactions via HP transfer requires better consideration of the range of abiotic conditions in which these interactions occur. This study addresses this issue by evaluating the effects of two HP donors (Tamonea curassavica and Angelonia angustifolia) on the reproductive success of Cuphea gaumeri, an endemic species of the Yucatan Peninsula. Methods Mixed (conspecific pollen and HP) and pure (conspecific pollen only) hand-pollinations were conducted under varying conditions of water and light availability in a full factorial design. Reproductive success was measured as the number of pollen tubes that reached the bottom of the style. Key Results Only one of the two HP donors had a significant effect on C. gaumeri reproductive success, but this effect was dependent on water and light availability. Specifically, HP receipt caused a decrease in pollen tube growth, but only when the availability of water, light or both was low, and not when the availability of both resources was high. Conclusions The results show that the outcome of interspecific post-pollination interactions via HP transfer can be context-dependent and vary with abiotic conditions, thus suggesting that abiotic effects in natural populations may be under-estimated. Such context-dependency could lead to spatial and temporal mosaics in the ecological and evolutionary consequences of post-pollination interactions. PMID:26199385

  15. Genome-Wide Identification and Expression Profiling Analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB Auxin Transporter Gene Families in Maize (Zea mays L.) under Various Abiotic Stresses

    PubMed Central

    Sun, Tao; Zhang, Lei; Yang, Yanjun; Qi, Jianshuang; Yan, Shufeng; Han, Xiaohua; Wang, Huizhong; Shen, Chenjia

    2015-01-01

    The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses. PMID:25742625

  16. Influence of various environmental parameters on sweat gland activity.

    PubMed

    McMullen, Roger L; Gillece, Tim; Lu, Guojin; Laura, Donna; Chen, Susan

    2013-01-01

    The choice of environmental conditions when conducting antiperspirant studies greatly affects the quantity of sweat output. Our initial goal in this work was to develop an in-house procedure to test the efficacy of antiperspirant products using replica techniques in combination with image analysis. To ameliorate the skin replica method, we conducted rheological studies using dynamic mechanical analysis of the replica formulation. In terms of sweat output quantification, our preliminary results revealed a considerable amount of variation using the replica technique, leading us to conduct more fundamental studies of the factors that influence sweating behavior and how to best design the experimental strategy. In accordance with the FDA's protocol for antiperspirant testing, we carried out gravimetric analyses of axillae sweating under a variety of environmental conditions including temperature and humidity control. Subjects were first acclimatized in an environmentally controlled room for 30 min, and then placed in a sauna for an additional 30 or 45 min, depending on which test we administered. In Test 1 (30 min total in the sauna), the first 10 min in the sauna was another equilibration period, followed by a 20 min sweat production stage. We monitored axillae sweating during the last 20 min in the sauna by gravimetric analysis. At time (t) = 30 min in the sauna, skin replicas were taken and later analyzed using imaging and image analysis techniques. Test 1 was carried out on over 25 subjects, both male and female, from various racial backgrounds. In Test 2, subjects spent 45 min in the sauna after the initial 30-min period in the environmental room. During the 45 min, we obtained gravimetric readings of absorbent pads placed in the axillae. We conducted studies at various temperature and relative humidity settings. We also studied the influence of several external parameters on sudoriferous activity. Test 2 was a range-finding experiment on two subjects to determine

  17. ANALYSIS OF BIOTIC AND ABIOTIC FACTORS INFLUENCING THE OCCURRENCE OF WEST NILE VIRUS INFECTION IN TUNISIA.

    PubMed

    Ben Hassine, Th; Calistri, P; Ippoliti, C; Conte, A; Danzetta, M L; Bruno, R; Lelli, R; Bejaoui, M; Hammami, S

    2014-01-01

    Eco-climatic conditions are often associated with the occurrence of West Nile Disease (WND) cases. Among the complex set of biotic and abiotic factors influencing the emergence and spread of this vector-borne disease, two main variables have been considered to have a great influence on the probability of West Nile Virus (WNV) introduction and circulation in Tunisia: the presence of susceptible bird populations and the existence of geographical areas where the environmental and climatic conditions are more favourable to mosquito multiplications. The aim of this study was to identify and classify the climatic and environmental variables possibly associated with the occurrence of WNVhuman cases in Tunisia. The following environmental and climatic variables have been considered: wetlands and humid areas, Normalised Difference Vegetation Index (NDVI), temperatures and elevation. A preliminary analysis for the characterization of main variables associated with areas with a history of WNV human cases in Tunisia between 1997 and 2011 has been made. This preliminary analysis clearly indicates the closeness to marshes ecosystem, where migratory bird populations are located, as an important risk factor for WNV infection. On the contrary the temperature absolute seems to be not a significant factor in Tunisian epidemiological situation. In relation to NDVI values, more complex considerations should be made.

  18. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  19. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk

    PubMed Central

    Skubacz, Anna; Daszkowska-Golec, Agata; Szarejko, Iwona

    2016-01-01

    ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants. PMID:28018412

  20. Proteins in phytohormone signaling pathways for abiotic stress in plants

    USDA-ARS?s Scientific Manuscript database

    Plant hormones and their signaling network systems have an essential role in activating and regulating plant responses to both biotic and abiotic stress factors. This chapter describes proteins that are involved in hormone biosynthesis, long distance and intra-cellular transport, the signaling sensi...

  1. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    NASA Astrophysics Data System (ADS)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  2. Auxin and the integration of environmental signals into plant root development.

    PubMed

    Kazan, Kemal

    2013-12-01

    Auxin is a versatile plant hormone with important roles in many essential physiological processes. In recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of environmental adaptation in plants. This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify their root system architecture when responding to diverse biotic and abiotic rhizosphere signals, including macro- and micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environment-mediated root development are also briefly highlighted. The auxin pathway constitutes an essential component of the plant's biotic and abiotic stress tolerance mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately lead to the development of crops better adapted to stressful environments.

  3. MicroRNAs play critical roles during plant development and in response to abiotic stresses.

    PubMed

    de Lima, Júlio César; Loss-Morais, Guilherme; Margis, Rogerio

    2012-12-01

    MicroRNAs (miRNAs) have been identified as key molecules in regulatory networks. The fine-tuning role of miRNAs in addition to the regulatory role of transcription factors has shown that molecular events during development are tightly regulated. In addition, several miRNAs play crucial roles in the response to abiotic stress induced by drought, salinity, low temperatures, and metals such as aluminium. Interestingly, several miRNAs have overlapping roles with regard to development, stress responses, and nutrient homeostasis. Moreover, in response to the same abiotic stresses, different expression patterns for some conserved miRNA families among different plant species revealed different metabolic adjustments. The use of deep sequencing technologies for the characterisation of miRNA frequency and the identification of new miRNAs adds complexity to regulatory networks in plants. In this review, we consider the regulatory role of miRNAs in plant development and abiotic stresses, as well as the impact of deep sequencing technologies on the generation of miRNA data.

  4. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm

    PubMed Central

    Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven

    2016-01-01

    Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species. PMID:27507328

  5. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven

    2016-08-01

    Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species.

  6. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress.

    PubMed

    Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim

    2013-07-01

    Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.

  7. A new multimedia contaminant fate model for China: how important are environmental parameters in influencing chemical persistence and long-range transport potential?

    PubMed

    Zhu, Ying; Price, Oliver R; Tao, Shu; Jones, Kevin C; Sweetman, Andy J

    2014-08-01

    We present a new multimedia chemical fate model (SESAMe) which was developed to assess chemical fate and behaviour across China. We apply the model to quantify the influence of environmental parameters on chemical overall persistence (POV) and long-range transport potential (LRTP) in China, which has extreme diversity in environmental conditions. Sobol sensitivity analysis was used to identify the relative importance of input parameters. Physicochemical properties were identified as more influential than environmental parameters on model output. Interactive effects of environmental parameters on POV and LRTP occur mainly in combination with chemical properties. Hypothetical chemicals and emission data were used to model POV and LRTP for neutral and acidic chemicals with different KOW/DOW, vapour pressure and pKa under different precipitation, wind speed, temperature and soil organic carbon contents (fOC). Generally for POV, precipitation was more influential than the other environmental parameters, whilst temperature and wind speed did not contribute significantly to POV variation; for LRTP, wind speed was more influential than the other environmental parameters, whilst the effects of other environmental parameters relied on specific chemical properties. fOC had a slight effect on POV and LRTP, and higher fOC always increased POV and decreased LRTP. Example case studies were performed on real test chemicals using SESAMe to explore the spatial variability of model output and how environmental properties affect POV and LRTP. Dibenzofuran released to multiple media had higher POV in northwest of Xinjiang, part of Gansu, northeast of Inner Mongolia, Heilongjiang and Jilin. Benzo[a]pyrene released to the air had higher LRTP in south Xinjiang and west Inner Mongolia, whilst acenaphthene had higher LRTP in Tibet and west Inner Mongolia. TCS released into water had higher LRTP in Yellow River and Yangtze River catchments. The initial case studies demonstrated that SESAMe

  8. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman-Derr, Devin; Tringe, Susannah G.

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attemptedmore » to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here in this paper, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions« less

  9. A preliminary study of environmental parameters associated with the feasibility of a polygeneration plant at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barnes, G. D.

    1982-01-01

    The feasibility of a polygeneration plant at Kennedy Space Center was studied. Liquid hydrogen and gaseous nitrogen are the two principal products in consideration. Environmental parameters (air quality, water quality, biological diversity and hazardous waste disposal) necessary for the feasibility study were investigated. A National Environmental Policy Act (NEPA) project flow sheet was to be formulated for the environmental impact statement. Water quality criteria for Florida waters were to be established.

  10. Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses.

    PubMed

    Kaouthar, Feki; Ameny, Farhat-Khemakhem; Yosra, Kamoun; Walid, Saibi; Ali, Gargouri; Faiçal, Brini

    2016-07-01

    In plant cells, the manganese superoxide dismutase (Mn-SOD) plays an elusive role in the response to oxidative stress. In this study, we describe the isolation and functional characterization of a novel Mn-SOD from durum wheat (Triticum turgidum L. subsp. Durum), named TdMnSOD. Molecular phylogeny analysis showed that the durum TdMnSOD exhibited high amino acids sequence identity with other Mn-SOD plants. The three-dimensional structure showed that TdMnSOD forms a homotetramer and each subunit is composed of a predominantly α-helical N-terminal domain and a mixed α/β C-terminal domain. TdMnSOD gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdMnSOD enhances tolerance of the transformed yeast cells to salt, osmotic, cold and H2O2-induced oxidative stresses. Moreover, the analysis of TdMnSOD transgenic Arabidopsis plants subjected to different environmental stresses revealed low H2O2 and high proline levels as compared to the wild-type plants. Compared with the non-transformed plants, an increase in the total SOD and two other antioxidant enzyme activities including catalase (CAT) and peroxidases (POD) was observed in the three transgenic lines subjected to abiotic stress. Taken together, these data provide evidence for the involvement of durum wheat TdMnSOD in tolerance to multiple abiotic stresses in crop plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales.

    PubMed

    Purschke, Oliver; Michalski, Stefan G; Bruelheide, Helge; Durka, Walter

    2017-12-01

    Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species- and individual-level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between-plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late-successional stages, there was high presence-/absence-based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.

  12. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in themore » subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.« less

  13. Genome-Wide Analysis of the GRF Family Reveals Their Involvement in Abiotic Stress Response in Cassava.

    PubMed

    Shang, Sang; Wu, Chunlai; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Tian, Libo; Hu, Wei

    2018-02-20

    GENERAL REGULATORY FACTOR (GRF) proteins play vital roles in the regulation of plant growth, development, and response to abiotic stress. However, little information is known for this gene family in cassava ( Manihot esculenta ). In this study, 15 MeGRFs were identified from the cassava genome and were clustered into the ε and the non-ε groups according to phylogenetic, conserved motif, and gene structure analyses. Transcriptomic analyses showed eleven Me GRFs with constitutively high expression in stems, leaves, and storage roots of two cassava genotypes. Expression analyses revealed that the majority of GRFs showed transcriptional changes under cold, osmotic, salt, abscisic acid (ABA), and H₂O₂ treatments. Six Me GRFs were found to be commonly upregulated by abiotic stress, ABA, and H₂O₂ treatments, which may be the converging points of multiple signaling pathways. Interaction network analysis identified 18 possible interactors of MeGRFs. Taken together, this study elucidates the transcriptional control of Me GRFs in tissue development and the responses of abiotic stress and related signaling in cassava. Some constitutively expressed, tissue-specific, and abiotic stress-responsive candidate MeGRF genes were identified for the further genetic improvement of crops.

  14. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  15. The Wisdom of Honeybee Defenses Against Environmental Stresses

    PubMed Central

    Li, Guilin; Zhao, Hang; Liu, Zhenguo; Wang, Hongfang; Xu, Baohua; Guo, Xingqi

    2018-01-01

    As one of the predominant pollinator, honeybees provide important ecosystem service to crops and wild plants, and generate great economic benefit for humans. Unfortunately, there is clear evidence of recent catastrophic honeybee colony failure in some areas, resulting in markedly negative environmental and economic effects. It has been demonstrated that various environmental stresses, including both abiotic and biotic stresses, functioning singly or synergistically, are the potential drivers of colony collapse. Honeybees can use many defense mechanisms to decrease the damage from environmental stress to some extent. Here, we synthesize and summarize recent advances regarding the effects of environmental stress on honeybees and the wisdom of honeybees to respond to external environmental stress. Furthermore, we provide possible future research directions about the response of honeybees to various form of stressors. PMID:29765357

  16. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Aquatic environmental assessment of Lake Balaton in the light of physical-chemical water parameters.

    PubMed

    Sebestyén, Vitkor; Németh, József; Juzsakova, Tatjana; Domokos, Endre; Kovács, Zsófia; Rédey, Ákos

    2017-11-01

    One of the issues of the Hungarian Water Management Strategy is the improvement and upgrading of the water of Lake Balaton. The Water Framework Directive (WFD) specifies and sets forth the achievement of the good ecological status. However, the assessment of the water quality of the lake as a complex system requires a comprehensive monitoring and evaluation procedure. Measurements were carried out around the Lake Balaton at ten different locations/sites and 13 physical-chemical parameters were monitored at each measurement site.For the interpretation of the water chemistry parameters the Aquatic Environmental Assessment (AEA) method devised by authors was used for the water body of the Lake Balaton. The AEA method can be used for all types of the water bodies since it is flexible and using individual weighting procedure for the water chemistry parameters comprehensive information can be obtain. The AEA method was compared with existing EIA methods according to a predefined criterion system and proved to be the most suitable tool for evaluating the environmental impacts in our study.On the basis of the results it can be concluded that the status of the quality of studied area on the Lake Balaton can be categorized as proper quality (from the outcome of the ten measurement sites this conclusion was reached at seven sites).

  18. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment

    PubMed Central

    Filippou, Panagiota; Antoniou, Chrystalla; Obata, Toshihiro; Van Der Kelen, Katrien; Harokopos, Vaggelis; Kanetis, Loukas; Aidinis, Vassilis; Van Breusegem, Frank; Fernie, Alisdair R; Fotopoulos, Vasileios

    2016-01-01

    Biotic and abiotic stresses, such as fungal infection and drought, cause major yield losses in modern agriculture. Kresoxim-methyl (KM) belongs to the strobilurins, one of the most important classes of agricultural fungicides displaying a direct effect on several plant physiological and developmental processes. However, the impact of KM treatment on salt and drought stress tolerance is unknown. In this study we demonstrate that KM pre-treatment of Medicago truncatula plants results in increased protection to drought and salt stress. Foliar application with KM prior to stress imposition resulted in improvement of physiological parameters compared with stressed-only plants. This protective effect was further supported by increased proline biosynthesis, modified reactive oxygen and nitrogen species signalling, and attenuation of cellular damage. In addition, comprehensive transcriptome analysis identified a number of transcripts that are differentially accumulating in drought- and salinity-stressed plants (646 and 57, respectively) after KM pre-treatment compared with stressed plants with no KM pre-treatment. Metabolomic analysis suggests that the priming role of KM in drought- and to a lesser extent in salinity-stressed plants can be attributed to the regulation of key metabolites (including sugars and amino acids) resulting in protection against abiotic stress factors. Overall, the present study highlights the potential use of this commonly used fungicide as a priming agent against key abiotic stress conditions. PMID:26712823

  19. Disentangling synergistic climate drivers on the evolution of two species of planktonic foraminifera on regional and global scales

    NASA Astrophysics Data System (ADS)

    Brombacher, A.; Wilson, P. A.; Bailey, I.; Ezard, T. H. G.

    2016-02-01

    Evolution is driven by a combination of biotic and abiotic factors. When quantifying the effects of abiotic drivers, evolutionary change is generally described as a response to a single environmental parameter assumed to represent global climate. However, climate is a complex system of many interacting factors and characterized by high regional variability. Therefore, to understand the role of climate in evolutionary change, we need to consider multiple environmental parameters, across local, regional and global scales, as well as their interactions. The deep-sea microfossil record is sufficiently complete that sufficiently continuous multivariate climatic and multivariate trait data can be obtained from the same samples. Here we present morphological records of the planktonic foraminifera species Globoconella puncticulata and Truncorotalia crassaformis over a 500,000-year interval directly preceding the extinction of G. puncticulata (2.41 Ma). Material was collected from five North Atlantic sites (ODP Sites 659 [18° N], 925 [3° N] and 981 [55° N], IODP Site U1313 [41° N] and DSDP Site 606 [37° N]). Test size and shape of over 35,000 individuals were measured and compared to site-specific records of sea surface temperature, primary productivity and marine aeolian dust deposition, as well as to global records of ice volume, ocean circulation and atmospheric CO2, and all two-way interactions. Morphological parameters respond weakly to individual climate parameters. Once interactions among all studied climate parameters were incorporated, abiotic change explained around 35% of the evolutionary variance. Observed covariances between environmental parameters vary strongly with glacial-interglacial cyclicity, implying that the relationships among climate variables and their relative influences on evolutionary change varied through time. This time dependence cautions against unfettered use of dimension reduction techniques, such as principal components analysis, to

  20. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    PubMed

    Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C

    2014-01-01

    Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  1. Pre-mRNA splicing repression triggers abiotic stress signaling in plants.

    PubMed

    Ling, Yu; Alshareef, Sahar; Butt, Haroon; Lozano-Juste, Jorge; Li, Lixin; Galal, Aya A; Moustafa, Ahmed; Momin, Afaque A; Tashkandi, Manal; Richardson, Dale N; Fujii, Hiroaki; Arold, Stefan; Rodriguez, Pedro L; Duque, Paula; Mahfouz, Magdy M

    2017-01-01

    Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A::LUC and MAPKKK18::uidA in Arabidopsis thaliana and mimics the effects of ABA on stomatal aperture. Genome-wide analysis of AS by RNA-seq revealed that PB perturbs the splicing machinery and leads to a striking increase in intron retention and a reduction in other forms of AS. Interestingly, PB treatment activates the ABA signaling pathway by inhibiting the splicing of clade A PP2C phosphatases while still maintaining to some extent the splicing of ABA-activated SnRK2 kinases. Taken together, our data establish PB as an inhibitor and modulator of splicing and a mimic of abiotic stress signals in plants. Thus, PB reveals the molecular underpinnings of the interplay between stress responses, ABA signaling and post-transcriptional regulation in plants. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco

    PubMed Central

    Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of

  3. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    DOE PAGES

    Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less

  4. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less

  5. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Cao, Haishun; Wang, Li; Nawaz, Muhammad A.; Niu, Mengliang; Sun, Jingyu; Xie, Junjun; Kong, Qiusheng; Huang, Yuan; Cheng, Fei; Bie, Zhilong

    2017-01-01

    Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA) treatment. Furthermore, the ectopic expression (EE) of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops. PMID:29234347

  6. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai-Tibet Plateau (QTP), China.

    PubMed

    Wen, Lu; Dong, Shi Kui; Li, Yuan Yuan; Sherman, Ruth; Shi, Jian Jun; Liu, De Mei; Wang, Yan Long; Ma, Yu Shou; Zhu, Lei

    2013-10-01

    Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation-disturbance-environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai-Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation

  7. A significant abiotic pathway for the formation of unknown nitrogen in nature

    NASA Astrophysics Data System (ADS)

    Jokic, A.; Schulten, H.-R.; Cutler, J. N.; Schnitzer, M.; Huang, P. M.

    2004-03-01

    The global nitrogen cycle is of prime importance in natural ecosystems. However, the origin and nature of up to one-half of total soil N remains obscure despite all attempts at elucidation. Our data provide, for the first time, unequivocal evidence that the promoting action of Mn (IV) oxide on the Maillard reaction (sugar-amino acid condensation) under ambient conditions results in the abiotic formation of heterocyclic N compounds, which are often referred to as unknown nitrogen, and of amides which are apparently the dominant N moieties in nature. The information presented is of fundamental significance in understanding the role of mineral colloids in abiotic transformations of organic N moieties, the incorporation of N in the organic matrix of fossil fuels, and the global N cycle.

  8. Evaluating the environmental parameters that determine aerobic biodegradation half-lives of pesticides in soil with a multivariable approach.

    PubMed

    Wang, Yuxin; Lai, Adelene; Latino, Diogo; Fenner, Kathrin; Helbling, Damian E

    2018-06-14

    Aerobic biodegradation half-lives (half-lives) are key parameters used to evaluate pesticide persistence in soil. However, half-life estimates for individual pesticides often span several orders of magnitude, reflecting the impact that various environmental or experimental parameters have on half-lives in soil. In this work, we collected literature-reported half-lives for eleven pesticides along with associated metadata describing the environmental or experimental conditions under which they were derived. We then developed a multivariable framework to discover relationships between the half-lives and associated metadata. We first compared data for the herbicide atrazine collected from 95 laboratory and 65 field studies. We discovered that atrazine application history and soil texture were the parameters that have the largest influence on the observed half-lives in both types of studies. We then extended the analysis to include ten additional pesticides with data collected exclusively from laboratory studies. We found that, when data were available, pesticide application history and biomass concentrations were always positively associated with half-lives. The relevance of other parameters varied among the pesticides, but in some cases the variability could be explained by the physicochemical properties of the pesticides. For example, we found that the relative significance of the organic carbon content of soil for determining half-lives depends on the relative solubility of the pesticide. Altogether, our analyses highlight the reciprocal influence of both environmental parameters and intrinsic physicochemical properties for determining half-lives in soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk

    PubMed Central

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G. F.; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  10. When environmental factors become stressors: interactive effects of vermetid gastropods and sedimentation on corals.

    PubMed

    Zill, Julie A; Gil, Michael A; Osenberg, Craig W

    2017-03-01

    Environmental stressors often interact, but most studies of multiple stressors have focused on combinations of abiotic stressors. Here we examined the potential interaction between a biotic stressor, the vermetid snail Ceraesignum maximum , and an abiotic stressor, high sedimentation, on the growth of reef-building corals. In a field experiment, we subjected juvenile massive Porites corals to four treatments: (i) neither stressor, (ii) sedimentation, (iii) vermetids or (iv) both stressors. Unexpectedly, we found no effect of either stressor in isolation, but a significant decrease in coral growth in the presence of both stressors. Additionally, seven times more sediment remained on corals in the presence (versus absence) of vermetids, likely owing to adhesion of sediments to corals via vermetid mucus. Thus, vermetid snails and high sedimentation can interact to drive deleterious effects on reef-building corals. More generally, our study illustrates that environmental factors can combine to have negative interactive effects even when individual effects are not detectable. Such 'ecological surprises' may be easily overlooked, leading to environmental degradation that cannot be anticipated through the study of isolated factors. © 2017 The Author(s).

  11. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals

    EPA Science Inventory

    Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate ...

  12. Why some plant species are rare.

    PubMed

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  13. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice.

    PubMed

    Barrera-Figueroa, Blanca E; Gao, Lei; Wu, Zhigang; Zhou, Xuefeng; Zhu, Jianhua; Jin, Hailing; Liu, Renyi; Zhu, Jian-Kang

    2012-08-03

    MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants, they are not well studied in reproductive tissues such as inflorescences. We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress. We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase. We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3, and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable elements or repeats, especially miniature inverted-repeat elements (MITEs). We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA origination.

  14. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Treesearch

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  15. Photochemically assisted fast abiotic oxidation of manganese and formation of δ-MnO 2 nanosheets in nitrate solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Haesung; Chadha, Tandeep S.; Kim, Doyoon

    This study introduces a new and previously unconsidered fast abiotic formation of Mn(IV) oxides. We report photochemically assisted fast abiotic oxidation of Mn 2+ (aq) to Mn(IV) (s) by superoxide radicals generated from nitrate photolysis. This photochemical pathway generates randomly stacked layered birnessite (δ-MnO 2) nanosheets.

  16. Abiotic and Biotic Formation of Amino Acids in the Enceladus Ocean.

    PubMed

    Steel, Elliot L; Davila, Alfonso; McKay, Christopher P

    2017-09-01

    The active plume at Enceladus' south pole makes the indirect sampling of its global ocean possible. The partially resolved chemistry of the plume, which points to conditions that are seemingly compatible with life, has made orbital sampling missions a priority. We present a conceptual model of energy flux, hydrothermal H 2 production, and both abiotic and biotic production of amino acids. Based on the energy flux observed at the south pole and the inferred internal hydrothermal activity, we estimate an H 2 production of 0.6-34 mol/s from serpentinization, sufficient to sustain abiotic and biotic amino acid synthesis of 1.6-87 and 1-44 g/s, respectively. Two-dimensional (2D) numerical simulations of the hydrothermal vent suggest that the vent fluids could reach the ice-water boundary in less than 11-55 days for a 50 km deep ocean diluted by ambient ocean water 10 to 1. Concentrations of glycine, alanine, α-amino isobutyric acid, and glutamic acid in the plume and in the ambient ocean could all be above 0.01 μM just due to abiotic production. Biological synthesis, if occurring, could produce a maximum of 90 μM concentrations of amino acids based on a methanogenic ecosystem consuming H 2 and CO 2 . Racemization timescales in the ocean are short compared with production timescales. Thus, no enantiomeric excess is expected in the ambient ocean, and if biology is present, enantiomeric excess at the vent fluids is expected to be less than 10% in the plume. From vent H 2 concentrations of 7.8 mM (e.g., Lost City) and assuming complete H 2 use and conversion to chemical energy by methanogens, cell production is estimated. Annual biomass production in the methanogenic-based biology model is 4 × 10 4 -2 × 10 6 kg/year. This corresponds to cell concentrations ∼10 9 cells/cm 3 in the vents and ∼10 8 cells/cm 3 in the plume, and when diluted into the ambient ocean, we predict cell concentrations of 80-4250 cells/cm 3 . Key Words: Abiotic organic

  17. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    NASA Astrophysics Data System (ADS)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  18. Assessing Malaria Risks in Greater Mekong Subregion based on Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, Richard; Soika, Valerii; Adimi, Farida; Nigro, Joseph

    2005-01-01

    At 4,200 km, the Mekong River is the tenth longest river in the world. It directly and indirectly influences the lives of hundreds of millions of inhabitants in its basin. The riparian countries - Thailand, Myanmar, Cambodia, Laos, Vietnam, and a small part of China - form the Greater Mekong Subregion (GMS). This geographical region has the misfortune of being the world's epicenter of falciparum malaria, which is the most severe form of malaria caused by Plasmodium falciparum. Depending on the country, approximately 50 to 90% of all malaria cases are due to this species. In the Malaria Modeling and Surveillance Project, we have been developing techniques to enhance public health s decision capability for malaria risk assessments and controls. The main objectives are: 1) identifying the potential breeding sites for major vector species; 2) implementing a malaria transmission model to identify the key factors that sustain or intensify malaria transmission; and 3) implementing a risk algorithm to predict the occurrence of malaria and its transmission intensity. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Socioeconomic factors that may influence malaria transmissions will also be incorporated into the predictive models.

  19. The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish

    NASA Astrophysics Data System (ADS)

    Wenger, Amelia S.; Whinney, James; Taylor, Brett; Kroon, Frederieke

    2016-06-01

    Coral reefs are increasingly subjected to both local and global stressors, however, there is limited information on how reef organisms respond to their combined effects under natural conditions. This field study examined the growth response of the damselfish Neopomacentrus bankieri to the individual and combined effects of multiple abiotic factors. Turbidity, temperature, tidal movement, and wave action were recorded every 10 minutes for four months, after which the daily otolith growth of N. bankieri was aligned with corresponding abiotic conditions. Temperature was the only significant driver of daily otolith increment width, with increasing temperatures resulting in decreasing width. Although tidal movement was not a significant driver of increment width by itself, the combined effect of tidal movement and temperature had a greater negative effect on growth than temperature alone. Our results indicate that temperature can drive changes in growth even at very fine scales, and demonstrate that the cumulative impact of abiotic factors can be substantially greater than individual effects. As abiotic factors continue to change in intensity and duration, the combined impacts of them will become increasingly important drivers of physiological and ecological change.

  20. The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish.

    PubMed

    Wenger, Amelia S; Whinney, James; Taylor, Brett; Kroon, Frederieke

    2016-06-28

    Coral reefs are increasingly subjected to both local and global stressors, however, there is limited information on how reef organisms respond to their combined effects under natural conditions. This field study examined the growth response of the damselfish Neopomacentrus bankieri to the individual and combined effects of multiple abiotic factors. Turbidity, temperature, tidal movement, and wave action were recorded every 10 minutes for four months, after which the daily otolith growth of N. bankieri was aligned with corresponding abiotic conditions. Temperature was the only significant driver of daily otolith increment width, with increasing temperatures resulting in decreasing width. Although tidal movement was not a significant driver of increment width by itself, the combined effect of tidal movement and temperature had a greater negative effect on growth than temperature alone. Our results indicate that temperature can drive changes in growth even at very fine scales, and demonstrate that the cumulative impact of abiotic factors can be substantially greater than individual effects. As abiotic factors continue to change in intensity and duration, the combined impacts of them will become increasingly important drivers of physiological and ecological change.

  1. The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish

    PubMed Central

    Wenger, Amelia S.; Whinney, James; Taylor, Brett; Kroon, Frederieke

    2016-01-01

    Coral reefs are increasingly subjected to both local and global stressors, however, there is limited information on how reef organisms respond to their combined effects under natural conditions. This field study examined the growth response of the damselfish Neopomacentrus bankieri to the individual and combined effects of multiple abiotic factors. Turbidity, temperature, tidal movement, and wave action were recorded every 10 minutes for four months, after which the daily otolith growth of N. bankieri was aligned with corresponding abiotic conditions. Temperature was the only significant driver of daily otolith increment width, with increasing temperatures resulting in decreasing width. Although tidal movement was not a significant driver of increment width by itself, the combined effect of tidal movement and temperature had a greater negative effect on growth than temperature alone. Our results indicate that temperature can drive changes in growth even at very fine scales, and demonstrate that the cumulative impact of abiotic factors can be substantially greater than individual effects. As abiotic factors continue to change in intensity and duration, the combined impacts of them will become increasingly important drivers of physiological and ecological change. PMID:27350589

  2. Dynamic species classification of microorganisms across time, abiotic and biotic environments—A sliding window approach

    PubMed Central

    Griffiths, Jason I.; Fronhofer, Emanuel A.; Garnier, Aurélie; Seymour, Mathew; Altermatt, Florian; Petchey, Owen L.

    2017-01-01

    The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline

  3. Adaptive dynamics on an environmental gradient that changes over a geological time-scale.

    PubMed

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Toivonen, Jaakko

    2015-07-07

    The standard adaptive dynamics framework assumes two timescales, i.e. fast population dynamics and slow evolutionary dynamics. We further assume a third timescale, which is even slower than the evolutionary timescale. We call this the geological timescale and we assume that slow climatic change occurs within this timescale. We study the evolution of our model population over this very slow geological timescale with bifurcation plots of the standard adaptive dynamics framework. The bifurcation parameter being varied describes the abiotic environment that changes over the geological timescale. We construct evolutionary trees over the geological timescale and observe both gradual phenotypic evolution and punctuated branching events. We concur with the established notion that branching of a monomorphic population on an environmental gradient only happens when the gradient is not too shallow and not too steep. However, we show that evolution within the habitat can produce polymorphic populations that inhabit steep gradients. What is necessary is that the environmental gradient at some point in time is such that the initial branching of the monomorphic population can occur. We also find that phenotypes adapted to environments in the middle of the existing environmental range are more likely to branch than phenotypes adapted to extreme environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress.

    PubMed

    Beacham, Andrew M; Hand, Paul; Pink, David Ac; Monaghan, James M

    2017-12-01

    Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. Significant (P ≤ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Relative Importance of Biotic and Abiotic Forces on the Composition and Dynamics of a Soft-Sediment Intertidal Community

    PubMed Central

    Barbeau, Myriam A.

    2016-01-01

    Top-down, bottom-up, middle-out and abiotic factors are usually viewed as main forces structuring biological communities, although assessment of their relative importance, in a single study, is rarely done. We quantified, using multivariate methods, associations between abiotic and biotic (top-down, bottom-up and middle-out) variables and infaunal population/community variation on intertidal mudflats in the Bay of Fundy, Canada, over two years. Our analysis indicated that spatial structural factors like site and plot accounted for most of the community and population variation. Although we observed a significant relationship between the community/populations and the biotic and abiotic variables, most were of minor importance relative to the structural factors. We suggest that community and population structure were relatively uncoupled from the structuring influences of biotic and abiotic factors in this system because of high concentrations of resources that sustain high densities of infauna and limit exploitative competition. Furthermore, we hypothesize that the infaunal community primarily reflects stochastic spatial events, namely a “first come, first served” process. PMID:26790098

  6. Abiotic vs. biotic influences on habitat selection of coexisting species: Climate change impacts?

    USGS Publications Warehouse

    Martin, T.E.

    2001-01-01

    Species are commonly segregated along gradients of microclimate and vegetation. I explore the question of whether segregation is the result of microhabitat partitioning (biotic effects) or choice of differing microclimates (abiotic effects). I explored this question for four ground-nesting bird species that are segregated along a microclimate and vegetation gradient in Arizona. Birds shifted position of their nests on the microhabitat and microclimate gradient in response to changing precipitation over nine years. Similarly, annual bird abundance varied with precipitation across 12 yr. Those shifts in abundance and nesting microhabitat with changing precipitation demonstrate the importance of abiotic influences on bird distributions and habitat choice. However, nest-site shifts and microhabitat use also appear to be influenced by interactions among coexisting species. Moreover, shifts in habitat use by all species caused nest predation (i.e., biotic) costs that increased with increasing distance along the microclimate gradient. These results indicate that abiotic and biotic costs can strongly interact to influence microhabitat choice and abundances of coexisting species. Global climate change impacts have been considered largely in terms of simple distributional shifts, but these results indicate that shifts can also increase biotic costs when species move into habitat types for which they are poorly adapted or that create new biotic interactions.

  7. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress

    PubMed Central

    2013-01-01

    Background Every year, substantial crop loss occurs globally, as a result of bacterial, fungal, parasite and viral infections in rice. Here, we present an in-depth investigation of the transcriptomic response to infection with the destructive bacterial pathogen Xanthomonas oryzae pv. oryzae(Xoo) in both resistant and susceptible varieties of Oryza sativa. A comparative analysis to fungal, parasite and viral infection in rice is also presented. Results Within 24 h of Xoo inoculation, significant reduction of cell wall components and induction of several signalling components, membrane bound receptor kinases and specific WRKY and NAC transcription factors was prominent, providing a framework for how the presence of this pathogen was signalled and response mounted. Extensive comparative analyses of various other pathogen responses, including in response to infection with another bacterium (Xoc), resistant and susceptible parasite infection, fungal, and viral infections, led to a proposed model for the rice biotic stress response. In this way, a conserved induction of calcium signalling functions, and specific WRKY and NAC transcription factors, was identified in response to all biotic stresses. Comparison of these responses to abiotic stress (cold, drought, salt, heat), enabled the identification of unique genes responsive only to bacterial infection, 240 genes responsive to both abiotic and biotic stress, and 135 genes responsive to biotic, but not abiotic stresses. Functional significance of a number of these genes, using genetic inactivation or over-expression, has revealed significant stress-associated phenotypes. While only a few antagonistic responses were observed between biotic and abiotic stresses, e.g. for a number of endochitinases and kinase encoding genes, some of these may be crucial in explaining greater pathogen infection and damage under abiotic stresses. Conclusions The analyses presented here provides a global view of the responses to multiple

  8. Abiotic stress signaling and responses in plants

    PubMed Central

    Zhu, Jian-Kang

    2016-01-01

    Summary As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population. PMID:27716505

  9. Auxin and the integration of environmental signals into plant root development

    PubMed Central

    Kazan, Kemal

    2013-01-01

    Background Auxin is a versatile plant hormone with important roles in many essential physiological processes. In recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of environmental adaptation in plants. Scope This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify their root system architecture when responding to diverse biotic and abiotic rhizosphere signals, including macro- and micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environment-mediated root development are also briefly highlighted. Conclusions The auxin pathway constitutes an essential component of the plant's biotic and abiotic stress tolerance mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately lead to the development of crops better adapted to stressful environments. PMID:24136877

  10. Chromium released from leather - II: the importance of environmental parameters.

    PubMed

    Mathiason, Frederik; Lidén, Carola; Hedberg, Yolanda S

    2015-05-01

    Approximately 1-3% of the adult population in Europe are allergic to chromium (Cr). A new restriction in Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) based on the ISO 17075 standard has recently been adopted in the EU to limit Cr(VI) in consumer and occupational leather products to < 3 mg/kg. To investigate the influence of storage conditions [relative humidity, temperature, ultraviolet (UV) irradiation, and duration] on Cr release, and to assess several parameters relevant for occupational exposure (repeated exposure, wear, alkaline solutions, and sequential wet and dry exposures). A leather of relevance for work gloves was investigated for its release of Cr(III) and Cr(VI) under these different experimental conditions. Relative humidity (water content in leather) during storage prior to Cr extraction was the single most important parameter. Cr(VI) levels could vary from non-detectable to levels significantly exceeding the restriction limit, depending on the relative humidity. Leather contact with alkaline solution and UV irradiation during storage could increase the Cr(VI) levels in subsequent extractions. The amount of Cr(VI) in leather is not an intrinsic property, but is influenced by environmental conditions of relevance for occupations and skin exposure. © 2015 The Authors. Contact Dermatitis published by John Wiley & Sons Ltd.

  11. A Modelling Study for Predicting Life of Downhole Tubes Considering Service Environmental Parameters and Stress

    PubMed Central

    Zhao, Tianliang; Liu, Zhiyong; Du, Cuiwei; Hu, Jianpeng; Li, Xiaogang

    2016-01-01

    A modelling effort was made to try to predict the life of downhole tubes or casings, synthetically considering the effect of service influencing factors on corrosion rate. Based on the discussed corrosion mechanism and corrosion processes of downhole tubes, a mathematic model was established. For downhole tubes, the influencing factors are environmental parameters and stress, which vary with service duration. Stress and the environmental parameters including water content, partial pressure of H2S and CO2, pH value, total pressure and temperature, were considered to be time-dependent. Based on the model, life-span of an L80 downhole tube in oilfield Halfaya, an oilfield in Iraq, was predicted. The results show that life-span of the L80 downhole tube in Halfaya is 247 months (approximately 20 years) under initial stress of 0.1 yield strength and 641 months (approximately 53 years) under no initial stress, which indicates that an initial stress of 0.1 yield strength will reduce the life-span by more than half. PMID:28773872

  12. Abiotic ligation of DNA oligomers templated by their liquid crystal ordering

    NASA Astrophysics Data System (ADS)

    Fraccia, Tommaso P.; Smith, Gregory P.; Zanchetta, Giuliano; Paraboschi, Elvezia; Yi, Yougwooo; Walba, David M.; Dieci, Giorgio; Clark, Noel A.; Bellini, Tommaso

    2015-03-01

    It has been observed that concentrated solutions of short DNA oligomers develop liquid crystal ordering as the result of a hierarchically structured supramolecular self-assembly. In mixtures of oligomers with various degree of complementarity, liquid crystal microdomains are formed via the selective aggregation of those oligomers that have a sufficient degree of duplexing and propensity for physical polymerization. Here we show that such domains act as fluid and permeable microreactors in which the order-stabilized molecular contacts between duplex terminals serve as physical templates for their chemical ligation. In the presence of abiotic condensing agents, liquid crystal ordering markedly enhances ligation efficacy, thereby enhancing its own phase stability. The coupling between order-templated ligation and selectivity provided by supramolecular ordering enables an autocatalytic cycle favouring the growth of DNA chains, up to biologically relevant lengths, from few-base long oligomers. This finding suggests a novel scenario for the abiotic origin of nucleic acids.

  13. Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces

    PubMed Central

    Oze, Christopher; Jones, L. Camille; Goldsmith, Jonas I.; Rosenbauer, Robert J.

    2012-01-01

    Molecular hydrogen (H2) is derived from the hydrothermal alteration of olivine-rich planetary crust. Abiotic and biotic processes consume H2 to produce methane (CH4); however, the extent of either process is unknown. Here, we assess the temporal dependence and limit of abiotic CH4 related to the presence and formation of mineral catalysts during olivine hydrolysis (i.e., serpentinization) at 200 °C and 0.03 gigapascal. Results indicate that the rate of CH4 production increases to a maximum value related to magnetite catalyzation. By identifying the dynamics of CH4 production, we kinetically model how the H2 to CH4 ratio may be used to assess the origin of CH4 in deep subsurface serpentinization systems on Earth and Mars. Based on our model and available field data, low H2/CH4 ratios (less than approximately 40) indicate that life is likely present and active. PMID:22679287

  14. Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces.

    PubMed

    Oze, Christopher; Jones, L Camille; Goldsmith, Jonas I; Rosenbauer, Robert J

    2012-06-19

    Molecular hydrogen (H(2)) is derived from the hydrothermal alteration of olivine-rich planetary crust. Abiotic and biotic processes consume H(2) to produce methane (CH(4)); however, the extent of either process is unknown. Here, we assess the temporal dependence and limit of abiotic CH(4) related to the presence and formation of mineral catalysts during olivine hydrolysis (i.e., serpentinization) at 200 °C and 0.03 gigapascal. Results indicate that the rate of CH(4) production increases to a maximum value related to magnetite catalyzation. By identifying the dynamics of CH(4) production, we kinetically model how the H(2) to CH(4) ratio may be used to assess the origin of CH(4) in deep subsurface serpentinization systems on Earth and Mars. Based on our model and available field data, low H(2)/CH(4) ratios (less than approximately 40) indicate that life is likely present and active.

  15. Assessing the effects of abiotic stress and livestock grazing disturbance on an alpine grassland with CSR model

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Luo, Peng; Mou, Chengxiang; Yang, Hao; Mo, Li; Luo, Chuan; Kattge, Jens

    2016-04-01

    How the abiotic factors represented by cold environment and biotic factors represented by livestock grazing will affect the vegetation structure of alpine grassland is a core issue in understanding the cause of biodiversity change on Tibetan Plateau. Past studies on changes of floristic composition, growth forms did not adequately answer question. Given the fact that the response of plant to environment change depend on its life strategy, a synthetical method that based on plant life strategy may deepen our understanding of the mechanism. Using Grime's concept of CSR plant classification, we carried out a vegetation survey along a gradient (three levels) of graze intensity on the south-east of Tibet Plateau, in order to evaluate the role and mechanism of abiotic stress and grazing disturbance in driving plant diversity change, by analyzing the plant life strategy compositions in each of the community and by comparing the characteristic of the strategy compositions along the graze gradient. When the graze intensity was relative low, the dominant plant life strategy gathered in the stress tolerance corner, which conformed the theory of environmental filter, indicating that the ideal top plant community may be dominated by the species with stress tolerant strategy. We also found that the response of strategy dominance to graze intensity increase is positively correlated with the competitive capacity (R 2=0.671; P<0.001) and negatively correlated with the capacity of tolerating stress (R 2=0.378; P=0.011), but is not affected by the ruderal strategy (R 2=0.047; P=0.42). This reflected a general shift of plant strategy from stress tolerant to competitive (rather than ruderal as expected) and suggested that the mechanism of graze to affect plant community is different from that of other disturbance like fire, clipping, till, etc. The particular selective foraging and escaping from feces may provide more opportunities for competitive than ruderal strategy to dominant the

  16. Predicting the risk of toxic blooms of golden alga from cell abundance and environmental covariates

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Denny, Shawn

    2016-01-01

    Golden alga (Prymnesium parvum) is a toxic haptophyte that has caused considerable ecological damage to marine and inland aquatic ecosystems worldwide. Studies focused primarily on laboratory cultures have indicated that toxicity is poorly correlated with the abundance of golden alga cells. This relationship, however, has not been rigorously evaluated in the field where environmental conditions are much different. The ability to predict toxicity using readily measured environmental variables and golden alga abundance would allow managers rapid assessments of ichthyotoxicity potential without laboratory bioassay confirmation, which requires additional resources to accomplish. To assess the potential utility of these relationships, several a priori models relating lethal levels of golden alga ichthyotoxicity to golden alga abundance and environmental covariates were constructed. Model parameters were estimated using archived data from four river basins in Texas and New Mexico (Colorado, Brazos, Red, Pecos). Model predictive ability was quantified using cross-validation, sensitivity, and specificity, and the relative ranking of environmental covariate models was determined by Akaike Information Criterion values and Akaike weights. Overall, abundance was a generally good predictor of ichthyotoxicity as cross validation of golden alga abundance-only models ranged from ∼ 80% to ∼ 90% (leave-one-out cross-validation). Environmental covariates improved predictions, especially the ability to predict lethally toxic events (i.e., increased sensitivity), and top-ranked environmental covariate models differed among the four basins. These associations may be useful for monitoring as well as understanding the abiotic factors that influence toxicity during blooms.

  17. Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents

    EPA Science Inventory

    While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zer...

  18. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth.

    PubMed

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T; Artaev, Viatcheslav B; Jiang, Liying; Ilag, Leopold L; Zubarev, Roman A

    2015-09-28

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms.

  19. Carbohydrates protect protein against abiotic fragmentation by soil minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reardon, Patrick N.; Walter, Eric D.; Marean-Reardon, Carrie L.

    The degradation and turnover of soil organic matter is an important part of global carbon cycling and of particular importance with respect to attempts to predict the response of ecosystems to global climate change. Thus, it is important to mechanistically understand the processes by which organic matter can be degraded in the soil environment, including contact with reactive or catalytic mineral surfaces. We have characterized the outcome of the interaction of two minerals, birnessite and kaolinite, with two disaccharides, cellobiose and trehalose. These results show that birnessite reacts with and degrades the carbohydrates, while kaolinite does not. The reaction ofmore » disaccharides with birnessite produces Mn(II), indicating that degradation of the disaccharides is the result of their oxidation by birnessite. Furthermore, we find that both sugars can inhibit the degradation of a model protein by birnessite, demonstrating that the presence of one organic constituent can impact abiotic degradation of another. Therefore, both the reactivity of the mineral matrix and the presence of certain organic constituents influence the outcomes of abiotic degradation. These results suggest the possibility that microorganisms may be able to control the functionality of exoenzymes through the concomitant excretion of protective organic substances, such as those found in biofilms.« less

  20. Alfalfa Cellulose Synthase Gene Expression under Abiotic Stress: A Hitchhiker’s Guide to RT-qPCR Normalization

    PubMed Central

    Guerriero, Gea; Legay, Sylvain; Hausman, Jean-Francois

    2014-01-01

    Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses. PMID:25084115

  1. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  2. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-08-05

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.

  3. LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2

    PubMed Central

    Garcia-Molina, Antoni; Altmann, Melina; Alkofer, Angela; Epple, Petra M.; Dangl, Jeffery L.

    2017-01-01

    Abstract In natural environments, plants often experience different stresses simultaneously, and adverse abiotic conditions can weaken the plant immune system. Interactome mapping revealed that the LOW SULPHUR UPREGULATED (LSU) proteins are hubs in an Arabidopsis protein interaction network that are targeted by virulence effectors from evolutionarily diverse pathogens. Here we show that LSU proteins are up-regulated in several abiotic and biotic stress conditions, such as nutrient depletion or salt stress, by both transcriptional and post-translational mechanisms. Interference with LSU expression prevents chloroplastic reactive oxygen species (ROS) production and proper stomatal closure during sulphur stress. We demonstrate that LSU1 interacts with the chloroplastic superoxide dismutase FSD2 and stimulates its enzymatic activity in vivo and in vitro. Pseudomonas syringae virulence effectors interfere with this interaction and preclude re-localization of LSU1 to chloroplasts. We demonstrate that reduced LSU levels cause a moderately enhanced disease susceptibility in plants exposed to abiotic stresses such as nutrient deficiency, high salinity, or heavy metal toxicity, whereas LSU1 overexpression confers significant disease resistance in several of these conditions. Our data suggest that the network hub LSU1 plays an important role in co-ordinating plant immune responses across a spectrum of abiotic stress conditions. PMID:28207043

  4. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants.

    PubMed

    Zhai, Yiqian; Zhang, Lichao; Xia, Chuan; Fu, Silu; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2016-05-13

    Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. CLUSTER ANALYSIS OF GREAT BASIN ECOREGIONS USING R-EMAP STREAM DATA

    EPA Science Inventory

    Ecological regions ( ecoregions ) are defined as areas of relative homogeneity in ecosystem type, quality and quantity of environmental resources. Ecoregions are identified by analyzing biotic and abiotic geographic patterns, which are natural and human related. Parameters used i...

  6. Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.

    PubMed

    Halford, Nigel G; Curtis, Tanya Y; Chen, Zhiwei; Huang, Jianhua

    2015-03-01

    The effects of abiotic stresses and crop management on cereal grain composition are reviewed, focusing on phytochemicals, vitamins, fibre, protein, free amino acids, sugars, and oils. These effects are discussed in the context of nutritional and processing quality and the potential for formation of processing contaminants, such as acrylamide, furan, hydroxymethylfurfuryl, and trans fatty acids. The implications of climate change for cereal grain quality and food safety are considered. It is concluded that the identification of specific environmental stresses that affect grain composition in ways that have implications for food quality and safety and how these stresses interact with genetic factors and will be affected by climate change needs more investigation. Plant researchers and breeders are encouraged to address the issue of processing contaminants or risk appearing out of touch with major end-users in the food industry, and not to overlook the effects of environmental stresses and crop management on crop composition, quality, and safety as they strive to increase yield. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Aquatic community structure in Mediterranean edge-of-field waterbodies as explained by environmental factors and the presence of pesticide mixtures.

    PubMed

    Pereira, Ana Santos; Dâmaso-Rodrigues, Maria Luísa; Amorim, Ana; Daam, Michiel A; Cerejeira, Maria José

    2018-06-16

    Studies addressing the predicted effects of pesticides in combination with abiotic and biotic factors on aquatic biota in ditches associated with typical Mediterranean agroecosystems are scarce. The current study aimed to evaluate the predicted effects of pesticides along with environmental factors and biota interactions on macroinvertebrate, zooplankton and phytoplankton community compositions in ditches adjacent to Portuguese maize and tomato crop areas. Data was analysed with the variance partitioning procedure based on redundancy analysis (RDA). The total variance in biological community composition was divided into the variance explained by the multi-substance potentially affected fraction [(msPAF) arthropods and primary producers], environmental factors (water chemistry parameters), biotic interactions, shared variance, and unexplained variance. The total explained variance reached 39.4% and the largest proportion of this explained variance was attributed to msPAF (23.7%). When each group (phytoplankton, zooplankton and macroinvertebrates) was analysed separately, biota interactions and environmental factors explained the largest proportion of variance. Results of this study indicate that besides the presence of pesticide mixtures, environmental factors and biotic interactions also considerably influence field freshwater communities. Subsequently, to increase our understanding of the risk of pesticide mixtures on ecosystem communities in edge-of-field water bodies, variations in environmental and biological factors should also be considered.

  8. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    USDA-ARS?s Scientific Manuscript database

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  9. Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters.

    PubMed

    Johnson, Riegardt M; Ramond, Jean-Baptiste; Gunnigle, Eoin; Seely, Mary; Cowan, Don A

    2017-03-01

    The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R 2  = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R 2  ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH 4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.

  10. Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers

    USGS Publications Warehouse

    Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.

    2006-01-01

    Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to

  11. The effects of climate change associated abiotic stresses on maize phytochemical defenses

    USDA-ARS?s Scientific Manuscript database

    Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. ...

  12. Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Laneuville, M.; Kameya, M.; Cleaves, H. J.

    2017-07-01

    N is the major component of the atmosphere and plays important roles in biochemistry. Presently, the surface N-cycle is dominated by biology. However, before the origin of life, abiotic N-cycling would have set the stage for the origin of life.

  13. Ovarian parameters and ovarian blood flow of women living in the area of environmental crisis.

    PubMed

    Balmagambetova, Aru; Abdelazim, Ibrahim A; Bekmukhambetov, Erbol; Zhurabekova, Gulmira; Yehia, Amr H; AbuFaza, Mohannad

    2016-05-01

    Exposure to environmental hazards will destroy a number of ovarian primordial follicles, reduce ovarian reserve and subsequent reproductive ability. This study designed to evaluate ovarian parameters and ovarian blood flow of women living in the area of environmental crisis Shalkar city (Kazakhstan) compared to women living in Aktobe city (Kazakhstan). 220 women in their reproductive age studied and classified into two groups; study (Shalkar) group and control (Aktobe) group. Blood sample taken from studied women during follicular phase (day 3) for hormonal level evaluation including; follicle stimulating hormone (FSH) and anti-Mullerian hormone (AMH). Studied women evaluated using trans-vaginal ultrasound (TVS) to detect antral follicle count (AFC) during follicular scan and ovarian volume (OV), ovarian blood flow (OBF) using pulsatility index (PI) during follicular scan and luteal scan. Both ovaries AFC was significantly less in study (Shalkar) group compared to and control (Aktobe) group (p=0.0001). Mean ovarian volume was significantly less in Shalkar group in both follicular phase and luteal phase (5.86±0.23 and 6.19±0.22Cm(3); respectively) compared to Aktobe group (6.85±0.19 and 6.92±0.18Cm(3); respectively). In addition, mean ovarian pulsatility index was significantly high with subsequent decrease in ovarian blood flow in Shalkar group in both follicular phase and luteal phase (3.36±0.20 and 3.45±0.19Cm/s; respectively) compared to Aktobe group (2.96±0.16 and 2.92±0.15Cm/s; respectively). This study suggests definite environmental effect on ovarian parameters as indicated by decreased AFC, decreased both follicular and luteal OV and OBF in women living in environmental crisis Shalkar group compared to Aktobe group. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Synergistic interactions of biotic and abiotic environmental stressors on gene expression.

    PubMed

    Altshuler, Ianina; McLeod, Anne M; Colbourne, John K; Yan, Norman D; Cristescu, Melania E

    2015-03-01

    Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis - cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) - using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors.

  15. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    NASA Astrophysics Data System (ADS)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  16. LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2.

    PubMed

    Garcia-Molina, Antoni; Altmann, Melina; Alkofer, Angela; Epple, Petra M; Dangl, Jeffery L; Falter-Braun, Pascal

    2017-02-01

    In natural environments, plants often experience different stresses simultaneously, and adverse abiotic conditions can weaken the plant immune system. Interactome mapping revealed that the LOW SULPHUR UPREGULATED (LSU) proteins are hubs in an Arabidopsis protein interaction network that are targeted by virulence effectors from evolutionarily diverse pathogens. Here we show that LSU proteins are up-regulated in several abiotic and biotic stress conditions, such as nutrient depletion or salt stress, by both transcriptional and post-translational mechanisms. Interference with LSU expression prevents chloroplastic reactive oxygen species (ROS) production and proper stomatal closure during sulphur stress. We demonstrate that LSU1 interacts with the chloroplastic superoxide dismutase FSD2 and stimulates its enzymatic activity in vivo and in vitro. Pseudomonas syringae virulence effectors interfere with this interaction and preclude re-localization of LSU1 to chloroplasts. We demonstrate that reduced LSU levels cause a moderately enhanced disease susceptibility in plants exposed to abiotic stresses such as nutrient deficiency, high salinity, or heavy metal toxicity, whereas LSU1 overexpression confers significant disease resistance in several of these conditions. Our data suggest that the network hub LSU1 plays an important role in co-ordinating plant immune responses across a spectrum of abiotic stress conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Model for detection and assessment of abiotic stress caused by uranium mining in European Black Pine landscapes

    NASA Astrophysics Data System (ADS)

    Filchev, Lachezar; Roumenina, Eugenia

    2013-10-01

    The article presents the results obtained from a study for detection and assessment of abiotic stress through pollution with heavy metals, metalloids, and natural radionuclides in European Black Pine (Pinus nigra L.) forests caused by uranium mining using ground-based biogeochemical, biophysical, and field spectrometry data. The forests are located on a territory subject to underground and open uranium mining. An operational model of the study is proposed. The areas subject to technogeochemical load are outlined based on the aggregate pollution index Zc. Laboratory and field spectrometry data were used to detect the signals of abiotic stress at pixel level. The methods used for determination of stressed and unstressed black pine forests are: four vegetation indices (TCARI, MCARI, MTVI 2, and PRI 1) for stress detection, and the position, depth, asymmetry, and shift of the red-edge. Based on the "blue shift" and the depth and position of the red-edge, registered by the laboratory analysis and field spectral reflectance, it is established that coniferous forests subject to abiotic stress show an increase in total chlorophyll content and carotene. It has been found that the vegetation indices MTVI 2 and PRI 1, as well as the combination of vegetation indices and pigments may be used as a direct indicator of abiotic stress in coniferous forests caused by uranium mining.

  18. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses.

    PubMed

    Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa

    2010-03-01

    Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.

  19. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.

    PubMed

    Wang, Lu; Waters, Mark T; Smith, Steven M

    2018-07-01

    The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  20. Evaluation of Parameter Uncertainty Reduction in Groundwater Flow Modeling Using Multiple Environmental Tracers

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Gardner, P.

    2013-12-01

    Calibration of groundwater flow models for the purpose of evaluating flow and aquifer heterogeneity typically uses observations of hydraulic head in wells and appropriate boundary conditions. Environmental tracers have a wide variety of decay rates and input signals in recharge, resulting in a potentially broad source of additional information to constrain flow rates and heterogeneity. A numerical study was conducted to evaluate the reduction in uncertainty during model calibration using observations of various environmental tracers and combinations of tracers. A synthetic data set was constructed by simulating steady groundwater flow and transient tracer transport in a high-resolution, 2-D aquifer with heterogeneous permeability and porosity using the PFLOTRAN software code. Data on pressure and tracer concentration were extracted at well locations and then used as observations for automated calibration of a flow and transport model using the pilot point method and the PEST code. Optimization runs were performed to estimate parameter values of permeability at 30 pilot points in the model domain for cases using 42 observations of: 1) pressure, 2) pressure and CFC11 concentrations, 3) pressure and Ar-39 concentrations, and 4) pressure, CFC11, Ar-39, tritium, and He-3 concentrations. Results show significantly lower uncertainty, as indicated by the 95% linear confidence intervals, in permeability values at the pilot points for cases including observations of environmental tracer concentrations. The average linear uncertainty range for permeability at the pilot points using pressure observations alone is 4.6 orders of magnitude, using pressure and CFC11 concentrations is 1.6 orders of magnitude, using pressure and Ar-39 concentrations is 0.9 order of magnitude, and using pressure, CFC11, Ar-39, tritium, and He-3 concentrations is 1.0 order of magnitude. Data on Ar-39 concentrations result in the greatest parameter uncertainty reduction because its half-life of 269

  1. Adaptive introgression of abiotic tolerance traits in the sunflower Helianthus annuus.

    PubMed

    Whitney, Kenneth D; Randell, Rebecca A; Rieseberg, Loren H

    2010-07-01

    *Adaptive trait introgression is increasingly recognized as common. However, it is unclear whether adaptive genetic exchanges typically affect only a single trait, or instead affect multiple aspects of the phenotype. Here, we examine introgression of abiotic tolerance traits between two hybridizing North American sunflower species, Helianthus annuus and Helianthus debilis. *In two common gardens in the hybrid range, we measured 10 ecophysiological, phenological, and architectural traits for parents and their natural and artificial hybrids, and examined how fitness covaried with trait values. *Eight of the 10 traits showed patterns consistent with introgression from H. debilis into H. annuus, and suggested that H. debilis-like traits allowing rapid growth and reproduction before summer heat and drought have been favored in the hybrid range. Natural selection currently favors BC(1) hybrids with H. debilis-like branching traits. *We demonstrate that introgression has altered multiple aspects of the H. annuus phenotype in an adaptive manner, has affected traits relevant to both biotic and abiotic environments, and may have aided expansion of the H. annuus range into central Texas, USA.

  2. Pharmacological Evidence for Calcium Involvement in the Long-Term Processing of Abiotic Stimuli in Plants

    PubMed Central

    Verdus, Marie-Claire; Le Sceller, Lois; Norris, Victor; Thellier, Michel

    2007-01-01

    Information about abiotic conditions is stored for long periods in plants and, in flax seedlings, can lead to the production of meristems. To investigate the underlying mechanism, flax seedlings were given abiotic stimuli that included a mechanical stimulus (by manipulation), one or two cold shocks, a slow cold treatment and a drought stress and, if these seedlings were then subjected to a temporary (1 to 3 days) depletion of calcium, epidermal meristems were produced in the seedling hypocotyls. This production was inhibited by the addition to the nutrient media of EGTA, ruthenium red, lanthanum or gadolinium that affect calcium availability or calcium transport. Use of these agents revealed a period of vulnerability in information processing that was less than two min for mechanical stimuli and over five min for other abiotic stimuli, consistent with information about mechanical stimuli being stored particularly fast. We propose that external calcium is needed for the transduction/storage of the information for meristem production whilst a temporary depletion of external calcium is needed for the actual production of meristems. Such roles for calcium would be consistent with a mechanism based on ion condensation on charged polymers. PMID:19516991

  3. Pharmacological evidence for calcium involvement in the long-term processing of abiotic stimuli in plants.

    PubMed

    Verdus, Marie-Claire; Le Sceller, Lois; Norris, Victor; Thellier, Michel; Ripoll, Camille

    2007-07-01

    Information about abiotic conditions is stored for long periods in plants and, in flax seedlings, can lead to the production of meristems. To investigate the underlying mechanism, flax seedlings were given abiotic stimuli that included a mechanical stimulus (by manipulation), one or two cold shocks, a slow cold treatment and a drought stress and, if these seedlings were then subjected to a temporary (1 to 3 days) depletion of calcium, epidermal meristems were produced in the seedling hypocotyls. This production was inhibited by the addition to the nutrient media of EGTA, ruthenium red, lanthanum or gadolinium that affect calcium availability or calcium transport. Use of these agents revealed a period of vulnerability in information processing that was less than two min for mechanical stimuli and over five min for other abiotic stimuli, consistent with information about mechanical stimuli being stored particularly fast. We propose that external calcium is needed for the transduction/storage of the information for meristem production whilst a temporary depletion of external calcium is needed for the actual production of meristems. Such roles for calcium would be consistent with a mechanism based on ion condensation on charged polymers.

  4. African Orphan Crops under Abiotic Stresses: Challenges and Opportunities.

    PubMed

    Tadele, Zerihun

    2018-01-01

    A changing climate, a growing world population, and a reduction in arable land devoted to food production are all problems facing the world food security. The development of crops that can yield under uncertain and extreme climatic and soil growing conditions can play a key role in mitigating these problems. Major crops such as maize, rice, and wheat are responsible for a large proportion of global food production but many understudied crops (commonly known as "orphan crops") including millets, cassava, and cowpea feed millions of people in Asia, Africa, and South America and are already adapted to the local environments in which they are grown. The application of modern genetic and genomic tools to the breeding of these crops can provide enormous opportunities for ensuring world food security but is only in its infancy. In this review, the diversity and types of understudied crops will be introduced, and the beneficial traits of these crops as well as their role in the socioeconomics of Africa will be discussed. In addition, the response of orphan crops to diverse types of abiotic stresses is investigated. A review of the current tools and their application to the breeding of enhanced orphan crops will also be described. Finally, few examples of global efforts on tackling major abiotic constraints in Africa are presented.

  5. African Orphan Crops under Abiotic Stresses: Challenges and Opportunities

    PubMed Central

    2018-01-01

    A changing climate, a growing world population, and a reduction in arable land devoted to food production are all problems facing the world food security. The development of crops that can yield under uncertain and extreme climatic and soil growing conditions can play a key role in mitigating these problems. Major crops such as maize, rice, and wheat are responsible for a large proportion of global food production but many understudied crops (commonly known as “orphan crops”) including millets, cassava, and cowpea feed millions of people in Asia, Africa, and South America and are already adapted to the local environments in which they are grown. The application of modern genetic and genomic tools to the breeding of these crops can provide enormous opportunities for ensuring world food security but is only in its infancy. In this review, the diversity and types of understudied crops will be introduced, and the beneficial traits of these crops as well as their role in the socioeconomics of Africa will be discussed. In addition, the response of orphan crops to diverse types of abiotic stresses is investigated. A review of the current tools and their application to the breeding of enhanced orphan crops will also be described. Finally, few examples of global efforts on tackling major abiotic constraints in Africa are presented. PMID:29623231

  6. Community Structure of Macrobiota and Environmental Parameters in Shallow Water Hydrothermal Vents off Kueishan Island, Taiwan

    PubMed Central

    Chan, Benny Kwok Kan; Wang, Teng-Wei; Chen, Pin-Chen; Lin, Chia-Wei; Chan, Tin-Yam; Tsang, Ling Ming

    2016-01-01

    Hydrothermal vents represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. Vents are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water vents have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water vents off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant vent fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the vent, and continuing for a distance of 2000 m, indicating that the vent fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of vent fluid were influencing the associated fauna. Only the vent crabs of Kueishan Island may have an obligated relationship with vents and inhabit the vent mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments. PMID:26849440

  7. Identification of QTL in a tepary bean RIL population under abiotic stress

    USDA-ARS?s Scientific Manuscript database

    High temperatures and drought are critical abiotic factors that limit the production of grain legumes, especially in tropical countries. Tepary bean (Phaseolus acutifolius A. Gray) is a species that is tolerant to high temperatures and drought. It is also closely related to common bean (Phaseolus vu...

  8. DISTINGUISHING A HYPOTHETICAL ABIOTIC PLANET–MOON SYSTEM FROM A SINGLE INHABITED PLANET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tong; Tian, Feng; Wei, Wanjing

    It has recently been suggested that an exomoon with a CH{sub 4} atmosphere, orbiting an abiotic Earth-mass planet with an O{sub 2}-rich atmosphere, can produce a false positive biosignature at a low–moderate spectral resolution (R = λ/Δλ ≤ 2000). If this were true, inferring the presence of life on exoplanets will be beyond our reach in the next several decades. Here we use a line-by-line radiative transfer model to compute the relevant reflection spectrum between 1 and 3.3 μm. We show that it is possible to separate the combined spectra of such planet–moon systems from an inhabited planet by multiple-band NIR observations.more » We suggest that future observations near the 2.3 μm CH{sub 4} absorption band at a resolution of 100 and an SNR of 10 or more may be a good way to distinguish an abiotic planet–moon system from a inhabited single planet.« less

  9. Seasonal variation of semen parameters correlates with environmental temperature and air pollution: A big data analysis over 6 years.

    PubMed

    Santi, Daniele; Magnani, Elisa; Michelangeli, Marco; Grassi, Roberto; Vecchi, Barbara; Pedroni, Gioia; Roli, Laura; De Santis, Maria Cristina; Baraldi, Enrica; Setti, Monica; Trenti, Tommaso; Simoni, Manuela

    2018-04-01

    Male fertility is progressively declining in many developed countries, but the relationship between male infertility and environmental factors is still unclear. To assess the influence of environmental temperature and air pollution on semen parameters, using a big-data approach. A big data analysis of parameters related to 5131 men, living in a province of Northern Italy and undergoing semen analyses between January 2010 and March 2016 was performed. Ambient temperature was recorded on the day of analysis and the 90 days prior to the analysis and the average value of particulate matter (PM) and NO2 in the year of the test. All data were acquired by geocoding patients residential address. A data warehouse containing 990,904,591 data was generated and analysed by multiple regressions. 5573 semen analyses were collected. Both maximum and minimum temperatures registered on the day of collection were inversely related to total sperm number (p < .001), non-progressive motility (NPrM) (p < .005) and normal forms (p < .001). Results were confirmed considering temperature in the 30 and 60 days before collection, but not in the 90 days before collection. Total sperm number was lower in summer/autumn (p < .001) and was inversely related with daylight duration (p < .001). PM10 and PM2.5 were inversely related to PrM (p < .001 and p < .005) and abnormal forms (p < .001). This is the first evaluation of the relationship between male fertility-related parameters and environment using a big-data approach. A seasonal change in semen parameters was found, with a fluctuation related to both temperature and daylight duration. A negative correlation between air pollution and semen quality is suggested. Such seasonal and environmental associations should be considered when assessing changes of male fertility-related parameters over time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Monthly Distribution of Phlebotomine Sand Flies, and Biotic and Abiotic Factors Related to Their Abundance, in an Urban Area to Which Visceral Leishmaniasis Is Endemic in Corumbá, Brazil.

    PubMed

    Falcão de Oliveira, Everton; Casaril, Aline Etelvina; Fernandes, Wagner Souza; Ravanelli, Michelle de Saboya; Medeiros, Márcio José de; Gamarra, Roberto Macedo; Paranhos Filho, Antônio Conceição; Oshiro, Elisa Teruya; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi

    2016-01-01

    The monthly distribution and abundance of sand flies are influenced by both biotic and abiotic factors. The present study aimed to evaluate the seasonal distribution of sand flies and the relation between their abundance and environmental parameters, including vegetation and climate. This study was conducted over a 2-year period (April 2012 to March 2014). Monthly distribution was evaluated through the weekly deployment of CDC light traps in the peridomicile area of 5 residences in an urban area of the municipality of Corumbá in the State of Mato Grosso do Sul, Brazil. Meteorological data were obtained from the Mato Grosso do Sul Center for Weather, Climate, and Water Resources. The spectral indices were calculated based on spatial resolution images (GeoEye) and the percentage of vegetal coverage. Differences in the abundance of sand flies among the collection sites were assessed using the Kruskal-Wallis test, and the strength of correlations between environmental variables was determined by calculating Spearman's correlation coefficients. Lutzomyia cruzi, Lu. forattinii, and Evandromyia corumbaensis were the most frequently found species. Although no significant association was found among these sand fly species and the tested environmental variables (vegetation and climate), high population peaks were found during the rainy season, whereas low peaks were observed in the dry season. The monthly distribution of sand flies was primarily determined by Lu. cruzi, which accounted for 93.94% of the specimens collected each month throughout the experimental period. The fact that sand flies were detected year-round indicates a continuous risk of infection to humans, demonstrating the need for targeted management and education programs.

  11. Using thermodynamics to assess biotic and abiotic impediments to root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, Marcel; Hildebrandt, Anke; Kleidon, Axel

    2016-04-01

    Root water uptake has been the subject of extensive research, dealing with understanding the processes limiting transpiration and understanding strategies of plants to avoid water stress. Many of those studies use models of water flow from the soil through the plant into the atmosphere to learn about biotic and abiotic factors affecting plant water relations. One important question in this context is to identify those processes that are most limiting to water transport, and specifically whether these processes lie within the plant or the soil? Here, we propose to use a thermodynamic formulation of root water uptake to answer this question. The method allows us to separate the energy exported at the root collar into a sum of energy fluxes related to all processes along the flow path, notably including the effect of increasing water retention in drier soils. Evaluation of the several contributions allows us to identify and rank the processes by how much these impede water flow from the soil to the atmosphere. The application of this approach to a complex 3-dimensional root water uptake model reveals insights on the role of root versus soil resistances to limit water flow. We investigate the efficiency of root water uptake in an ensemble of root systems with varying root hydraulic properties. While root morphology is kept the same, root radial and axial resistances are artificially varied. Starting with entirely young systems (uptake roots, high radial, low axial conductance) we increasingly add older roots (transport roots, high axial, low radial conductance) to improve transport within root systems. This yields a range of root hydraulic architectures, where the extremes are limited either by radial uptake capacity or low capacity to transport water along the root system. We model root water uptake in this range of root systems with a 3-dimensional root water uptake model in two different soils, applying constant flux boundary conditions in a dry down experiment and

  12. Abiotic Transformation Of Estrogens In Synthetic Municipal Wastewater: An Alternative For Treatment?

    EPA Science Inventory

    The abiotic transformation of estrogens, including estrone (E1), estradiol (E2), estriol (E3) and ethinylestradiol (EE2), in the presence of model vegetable matter was confirmed in this study. Batch experiments were performed to model the catalytic conversion of E1, E2, E3, and ...

  13. Successful introgression of abiotic stress tolerance from wild tepary bean to common bean

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris L.) production is severely limited due to abiotic stresses, including drought and sub-zero temperatures. Tepary bean (Phaseolus acutifolius Gray), a relative of common bean, has demonstrated tolerance to these stresses. Preliminary studies screening tepary accessions ...

  14. Proposed definition of environmental damage illustrated by the cases of genetically modified crops and invasive species.

    PubMed

    Bartz, Robert; Heink, Ulrich; Kowarik, Ingo

    2010-06-01

    The introduction of non-native plant species and the release of genetically modified (GM) crops can induce environmental changes at gene to ecosystem levels. Regulatory frameworks such as the Convention on Biological Diversity or the EU Deliberate Release Directive aim to prevent environmental damage but do not define the term. Although ecologists and conservationists often refer to environmental effects of GM crops or invasive species as damage, most authors do not disclose their normative assumptions or explain why some environmental impacts are regarded as detrimental and others are not. Thus far, a concise definition of environmental damage is missing and is necessary for a transparent assessment of environmental effects or risks. Therefore, we suggest defining environmental damage as a significant adverse effect on a biotic or abiotic conservation resource (i.e., a biotic or abiotic natural resource that is protected by conservational or environmental legislation) that has an impact on the value of the conservation resource, the conservation resource as an ecosystem component, or the sustainable use of the conservation resource. This definition relies on three normative assumptions: only concrete effects on a conservation resource can be damages; only adverse effects that lead to a decrease in the value of the conservation resource can be damages; and only significant adverse effects constitute damage to a conservation resource. Applying this definition within the framework of environmental risk assessment requires further normative determinations, for example, selection of a threshold to distinguish between adverse and significant adverse effects and approaches for assessing the environmental value of conservation resources. Such determinations, however, are not part of the definition of environmental damage. Rather they are part of the definition's operationalization through assessment procedures, which must be grounded in a comprehensible definition of

  15. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species.

    PubMed

    Wu, Honghong; Tito, Nicholas; Giraldo, Juan P

    2017-11-28

    Plant abiotic stress leads to accumulation of reactive oxygen species (ROS) and a consequent decrease in photosynthetic performance. We demonstrate that a plant nanobionics approach of localizing negatively charged, sub-11 nm, spherical cerium oxide nanoparticles (nanoceria) inside chloroplasts in vivo augments ROS scavenging and photosynthesis of Arabidopsis thaliana plants under excess light (2000 μmol m -2 s -1 , 1.5 h), heat (35 °C, 2.5 h), and dark chilling (4 °C, 5 days). Poly(acrylic acid) nanoceria (PNC) with a hydrodynamic diameter (10.3 nm)-lower than the maximum plant cell wall porosity-and negative ζ-potential (-16.9 mV) exhibit significantly higher colocalization (46%) with chloroplasts in leaf mesophyll cells than aminated nanoceria (ANC) (27%) of similar size (12.6 nm) but positive charge (9.7 mV). Nanoceria are transported into chloroplasts via nonendocytic pathways, influenced by the electrochemical gradient of the plasma membrane potential. PNC with a low Ce 3+ /Ce 4+ ratio (35.0%) reduce leaf ROS levels by 52%, including hydrogen peroxide, superoxide anion, and hydroxyl radicals. For the latter ROS, there is no known plant enzyme scavenger. Plants embedded with these PNC that were exposed to abiotic stress exhibit an increase up to 19% in quantum yield of photosystem II, 67% in carbon assimilation rates, and 61% in Rubisco carboxylation rates relative to plants without nanoparticles. In contrast, PNC with high Ce 3+ /Ce 4+ ratio (60.8%) increase overall leaf ROS levels and do not protect photosynthesis from oxidative damage during abiotic stress. This study demonstrates that anionic, spherical, sub-11 nm PNC with low Ce 3+ /Ce 4+ ratio can act as a tool to study the impact of oxidative stress on plant photosynthesis and to protect plants from abiotic stress.

  16. Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2013-10-24

    Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes directmore » quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.« less

  17. An alternative pathway for marine nitrous oxide production at oxic-anoxic interfaces from coupled biotic-abiotic reactions

    NASA Astrophysics Data System (ADS)

    Glass, J. B.; Stanton, C. L.; Ochoa, H.; Haslun, J. A.; Gandhi, H.; Taillefert, M.; Dichristina, T. J.; Stewart, F. J.; Klotz, M. G.; Ostrom, N. E.

    2016-02-01

    Marine emissions of nitrous oxide (N2O), a potent greenhouse gas, comprise approximately a third of global sources. Recent evidence suggests that the dominant source of N2O in seawater is the activity of ammonia-oxidizing Thaumarchaeota that lack characterized N2O-generating enzymes. Nitrous oxide may arise from a novel enzyme and/or abiotic reactions between nitrification intermediates, hydroxylamine (NH2OH) and nitric oxide (NO), and redox-active metals in seawater. Isotopic site preference, or difference in δ15N between the two nitrogen atoms in N2O, has been used as tracer for microbial N2O production pathways (-10 to 0‰ for nitrifier-denitrification and denitrification vs. 30-37‰ for nitrification via NH2OH oxidation). Seawater N2O site preference falls in between these two characterized end members, suggesting simultaneous production via a combination of both microbial pathways or via a novel mechanism with intermediate site preference. Here we show significant N2O production in abiotic experiments after addition of iron to seawater containing NH2OH and NO. The N2O produced from chemical reduction of NO by Fe(II) had a site preference of 16‰ whereas N2O produced from abiotic NH2OH oxidation had a site preference of 31‰. We propose that coupled biotic-abiotic N2O production pathways could contribute significant sources of N2O at marine oxic-anoxic interfaces.

  18. Survey of the Physical and Environmental Parameters of the Moon

    NASA Technical Reports Server (NTRS)

    Niedz, F. J.; Kopal, Zdenek

    1963-01-01

    This document presents, in summary, a compilation of the physical and environmental parameters of the moon. A determined attempt has been made to be objective at all times. Many of the physical sciences are presented in sufficient depth to adequately identify the basic information available. It is expected that the appropriate references will be consulted when additional detail is required. It is obvious both from the text and the reference material that divergent opinions prevail and uncertainties exist in almost every phase of lunar science; e.g., the existence of the lunar bulge, the thickness of the dust layer, etc. No pretense is made to resolve these differences, but by bringing together many references, it is hoped that some contribution will be made in lunar science. The subject index will be of particular value since it relates the reference section by subject. A glossary of terms used throughout the text is also provided.

  19. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Seasonal microbial and environmental parameters at Crocker Reef, Florida Keys, 2014–2015

    USGS Publications Warehouse

    Kellogg, Christina A.; Yates, Kimberly K.; Lawler, Stephanie N.; Moore, Christopher S.; Smiley, Nathan A.

    2015-11-04

    Microbial measurements included enumeration of total bacteria, enumeration of virus-like particles, and plate counts of Vibrio spp. colony-forming units (CFU). These measurements were intended to give a sense of any seasonal changes in the total microbial load and to provide an indication of water quality. Additional environmental parameters measured included water temperature, salinity, dissolved oxygen, and pH. Four sites (table 1) were intensively sampled for periods of approximately 48 hours during summer (July 2014) and winter (January–February 2015), during which water samples were collected every 4 hours for analysis, except when prevented by weather conditions.

  1. Feeding in deep-sea demosponges: Influence of abiotic and biotic factors

    NASA Astrophysics Data System (ADS)

    Robertson, Leah M.; Hamel, Jean-François; Mercier, Annie

    2017-09-01

    In shallow benthic communities, sponges are widely recognized for their ability to contribute to food webs by cycling nutrients and mediating carbon fluxes through filter feeding. In comparison, little is known about filter feeding in deep-sea species and how it may be modulated by environmental conditions. Here, a rare opportunity to maintain live healthy deep-sea sponges for an extended period led to a preliminary experimental study of their feeding metrics. This work focused on demosponges collected from the continental slope of eastern Canada at 1000 m depth. Filtration rates (as clearance of phytoplankton cells) at holding temperature (6 °C) were positively correlated with food particle concentration, ranging on average from 18.8 to 160.6 cells ml-1 h-1 at nominal concentrations of 10,000-40,000 cells ml-1. Cell clearance was not significantly affected by decreasing seawater temperature, from 6 °C to 3 °C or 0 °C, although two of the sponges showed decreased filtration rates. Low pH ( 7.5) and the presence of a predatory sea star markedly depressed or inhibited feeding activity in all sponges tested. While performed under laboratory conditions on a limited number of specimens, this work highlights the possible sensitivity of deep-sea demosponges to various types and levels of biotic and abiotic factors, inferring a consequent vulnerability to natural and anthropogenic disturbances.

  2. Biometric parameters of the bream (Abramis brama) as indicators for long-term changes in fish health and environmental quality--data from the German ESB.

    PubMed

    Teubner, Diana; Paulus, Martin; Veith, Michael; Klein, Roland

    2015-02-01

    Piscifaunal health depends upon the state and quality of the aquatic environment. Variations in physical condition of fish may therefore be attributed to changes in environmental quality. Based on time series of up to 20 years of biometric data of bream from multiple sampling sites of the German environmental specimen bank (ESB), this study assessed whether changes in biometric parameters are able to indicate long-term alterations in fish health and environmental quality. Evaluated biometric parameters of fish health comprised length and weight of individuals of a defined age class, the condition factor, lipid content and hepatosomatic index (HSI). Although there are negative trends of the HSI, the overall development of health parameters can be interpreted as positive. This seems to suggest that health parameters conclusively mirror the long-term improvement of water quality in the selected rivers. However, the applicability of the condition factor as well as lipid content as indicators for fish health remained subject to restrictions. Altogether, the results from the ESB confirmed the high value of biometric parameters for monitoring of long-term changes in state and quality of aquatic ecosystems.

  3. Long-term prospects for the environmental profile of advanced sugar cane ethanol.

    PubMed

    da Silva, Cinthia R U; Franco, Henrique Coutinho Junqueira; Junqueira, Tassia Lopes; van Oers, Lauran; van der Voet, Ester; Seabra, Joaquim E A

    2014-10-21

    This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.

  4. High-throughput profiling and analysis of plant responses over time to abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Energy sorghum (Sorghum bicolor (L.) Moench) is a rapidly growing, high-biomass, annual crop prized for abiotic stress tolerance. Measuring genotype-by-environment (G x E) interactions remains a progress bottleneck. High throughput phenotyping within controlled environments has been proposed as a po...

  5. The importance of disturbance by fire and other abiotic and biotic factors in driving cheatgrass invasion varies based on invasion stage

    Treesearch

    Becky K. Kerns; Michelle A. Day

    2017-01-01

    Disturbances create fluctuations in resource availability that alter abiotic and biotic constraints. Exotic invader response may be due to multiple factors related to disturbance regimes and complex interactions between other small- and largescale abiotic and biotic processes that may vary across invasion stages. We explore how cheatgrass responds to both frequency and...

  6. Development and Substantiation of Parameters of Environmentally Friendly Technology for Filling the Vertical Mine Workings with Autoclaved Slag-Concrete

    NASA Astrophysics Data System (ADS)

    Uglyanitca, Andrey; Solonin, Kirill

    2017-11-01

    The environmentally friendly technology for filling the vertical mine workings with autoclaved slag-concrete, prefabricated on the surface of the mine is presented in the article; the optimal parameters of filling technology are proposed. The developed technology for filling the abandoned vertical mine workings allows ensuring the environmental safety of the territories adjacent to the abandoned mine, utilizing slag dumps and providing the possibility of shaft recovery, if necessary, with minimal labor and material costs.

  7. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members.

    PubMed

    Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis

    2012-01-01

    Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role.

  8. Functional and Transcriptome Analysis Reveals an Acclimatization Strategy for Abiotic Stress Tolerance Mediated by Arabidopsis NF-YA Family Members

    PubMed Central

    Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis

    2012-01-01

    Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role. PMID:23118940

  9. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  10. Interaction of abiotic and microbial processes in hexachloroethane reduction in groundwater

    USGS Publications Warehouse

    Roberts, A. Lynn; Gschwend, Philip M.

    1994-01-01

    In order to gain insight into mechanisms of hexachloroethane reduction, hexa- and pentachloroethane transformation rates were measured in anaerobic groundwater samples. For samples spiked with pentachloroethane, disappearance of pentachloroethane was accompanied by tetrachloroethylene production. Transformation rates were similar in unpoisoned and in HgCl2-poisoned samples, and rates were within ±20% of predictions based on measured pH and second-order dehydrochlorination rate constants determined in clean laboratory systems, indicating that the fate of pentachloroethane in this system is dominated by abiotic reactions. No hexachloroethane transformation was observed in HgCl2-poisoned samples, whereas in unpoisoned samples, hexachloroethane disappearance was accompanied by production of tetrachloroethylene as well as traces of pentachloroethane. Although only minor amounts of pentachloroethane accumulated, as much as 30% of the hexachloroethane transformation pathway proceeds via a pentachloroethane intermediate. This suggests that the microbial reduction of hexachloroethane proceeds at least in part through a free-radical mechanism. To the extent that hexachloroethane reduction to tetrachloroethylene occurs through a pentachloroethane intermediate, the first step in the sequence, the microbially-mediated step, is the slow step; the subsequent abiotic dehydrohalogenation step occurs much more rapidly.

  11. Relative contribution of biotic and abiotic factors to the population density of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae).

    PubMed

    Rêgo, Adriano S; Teodoro, Adenir V; Maciel, Anilde G S; Sarmento, Renato A

    2013-08-01

    The cassava green mite, Mononychellus tanajoa, is a key pest of cassava, Manihot esculenta Crantz (Euphorbiaceae), and it may be kept in check by naturally occurring predatory mites of the family Phytoseiidae. In addition to predatory mites, abiotic factors may also contribute to regulate pest mite populations in the field. Here, we evaluated the population densities of both M. tanajoa and the generalist predatory mite Euseius ho DeLeon (Acari: Phytoseiidae) over the cultivation cycle (11 months) of cassava in four study sites located around the city of Miranda do Norte, Maranhão, Brazil. The abiotic variables rainfall, temperature and relative humidity were also recorded throughout the cultivation cycle of cassava. We determined the relative importance of biotic (density of E. ho) and abiotic (rainfall, temperature and relative humidity) factors to the density of M. tanajoa. The density of M. tanajoa increased whereas the density of E. ho remained constant throughout time. A hierarchical partitioning analysis revealed that most of the variance for the density of M. tanajoa was explained by rainfall and relative humidity followed by E. ho density and temperature. We conclude that abiotic factors, especially rainfall, were the main mechanisms driving M. tanajoa densities.

  12. Identification of reference genes for RT-qPCR in the Antarctic moss Sanionia uncinata under abiotic stress conditions

    PubMed Central

    Park, Mira; Hong, Soon Gyu; Park, Hyun; Lee, Byeong-ha

    2018-01-01

    Sanionia uncinata is a dominant moss species in the maritime Antarctic. Due to its high adaptability to harsh environments, this extremophile plant has been considered a good target for studying the molecular adaptation mechanisms of plants to a variety of environmental stresses. Despite the importance of S. uncinata as a representative Antarctic plant species for the identification and characterization of genes associated with abiotic stress tolerance, suitable reference genes, which are critical for RT-qPCR analyses, have not yet been identified. In this report, 11 traditionally used and 6 novel candidate reference genes were selected from transcriptome data of S. uncinata and the expression stability of these genes was evaluated under various abiotic stress conditions using three statistical algorithms; geNorm, NormFinder, and BestKeeper. The stability ranking analysis selected the best reference genes depending on the stress conditions. Among the 17 candidates, the most stable references were POB1 and UFD2 for cold stress, POB1 and AKB for drought treatment, and UFD2 and AKB for the field samples from a different water contents in Antarctica. Overall, novel genes POB1 and AKB were the most reliable references across all samples, irrespective of experimental conditions. In addition, 6 novel candidate genes including AKB, POB1 and UFD2, were more stable than the housekeeping genes traditionally used for internal controls, indicating that transcriptome data can be useful for identifying novel robust normalizers. The reference genes validated in this study will be useful for improving the accuracy of RT-qPCR analysis for gene expression studies of S. uncinata in Antarctica and for further functional genomic analysis of bryophytes. PMID:29920565

  13. Development of a Model of Geophysical and Geochemical Controls on Abiotic Carbon Cycling on Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water

  14. Life without water: cross-resistance of anhydrobiotic cell line to abiotic stresses

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg

    2016-07-01

    Anhydrobiosis is an intriguing phenomenon of natural ability of some organisms to resist water loss. The larvae of Polypedilum vanderplanki, the sleeping chironomid is the largest and most complex anhydrobionts known to date. The larvae showed ability to survive variety of abiotic stresses, including outer space environment. Recently cell line (Pv11) derived from the embryonic mass of the chironomid was established. Initially sensitive to desiccation cells, are capable to "induced" anhydrobiosis, when the resistance to desiccation can be developed by pre-treatment of the cells with trehalose followed by quick desiccation. We have further conducted complex analysis of the whole genome transcription response of Pv11 cells to different abiotic stresses, including oxidative stress and irradiation. Comparative analysis showed that the gene set, responsible for formation of desiccation resistance (ARID regions in the genome) is also activated in response to other types of stresses and likely to contribute to general enhancing of the resistance of the cells to harsh environment. We have further demonstrated that the cells are able to protect recombinant proteins from harmful effect of desiccation

  15. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate.

    PubMed

    Rubasinghege, Gayan; Spak, Scott N; Stanier, Charles O; Carmichael, Gregory R; Grassian, Vicki H

    2011-04-01

    Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.

  16. Cyclone tolerance in new world arecaceae: biogeographic variation and abiotic natural selection.

    PubMed

    Griffith, M Patrick; Noblick, Larry R; Dowe, John L; Husby, Chad E; Calonje, Michael A

    2008-10-01

    Consistent abiotic factors can affect directional selection; cyclones are abiotic phenomena with near-discrete geographic limits. The current study investigates selective pressure of cyclones on plants at the species level, testing for possible natural selection. New World Arecaceae (palms) are used as a model system, as plants with monopodial, unbranched arborescent form are most directly affected by the selective pressure of wind load. Living specimens of known provenance grown at a common site were affected by the same cyclone. Data on percentage mortality were compiled and analysed in biogeographic and phylogenetic contexts. Palms of cyclone-prone provenance exhibited a much lower (one order of magnitude) range in cyclone tolerance, and significantly lower (P < 0.001) mean percentage mortality than collections from cyclone-free areas. Palms of cyclone-free provenance had much greater variation in tolerance, and significantly greater mean percentage mortality. A test for serial independence recovered no significant phylogenetic autocorrelation of percentage mortality. Variation in cyclone tolerance in New World Arecaceae correlates with biogeography, and is not confounded with phylogeny. These results suggest natural selection of cyclone tolerance in cyclone-prone areas.

  17. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants

    PubMed Central

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-01-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. PMID:28712388

  18. Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry

    PubMed Central

    Qi, Yanxiang; Liu, Xiaomei; Pu, Jinji

    2018-01-01

    The NAC transcription factors involved plant development and response to various stress stimuli. However, little information is available concerning the NAC family in the woodland strawberry. Herein, 37 NAC genes were identified from the woodland strawberry genome and were classified into 13 groups based on phylogenetic analysis. And further analyses of gene structure and conserved motifs showed closer relationship of them in every subgroup. Quantitative real-time PCR evaluation different tissues revealed distinct spatial expression profiles of the FvNAC genes. The comprehensive expression of FvNAC genes revealed under abiotic stress (cold, heat, drought, salt), signal molecule treatments (H2O2, ABA, melatonin, rapamycin), biotic stress (Colletotrichum gloeosporioides and Ralstonia solanacearum). Expression profiles derived from quantitative real-time PCR suggested that 5 FvNAC genes responded dramatically to the various abiotic and biotic stresses, indicating their contribution to abiotic and biotic stresses resistance in woodland strawberry. Interestingly, FvNAC genes showed greater extent responded to the cold treatment than other abiotic stress, and H2O2 exhibited a greater response than ABA, melatonin, and rapamycin. For biotic stresses, 3 FvNAC genes were up-regulated during infection with C. gloeosporioides, while 6 FvNAC genes were down-regulated during infection with R. solanacearum. In conclusion, this study identified candidate FvNAC genes to be used for the genetic improvement of abiotic and biotic stress tolerance in woodland strawberry. PMID:29897926

  19. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.

    PubMed

    Ortega-Galisteo, Ana P; Rodríguez-Serrano, María; Pazmiño, Diana M; Gupta, Dharmendra K; Sandalio, Luisa M; Romero-Puertas, María C

    2012-03-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.

  20. Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotopes in phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaisi, Deb P.; Kukkadapu, Ravi K.; Stout, Lisa M.

    2011-07-06

    A key question to address in the development of oxygen isotope ratios in phosphate (18Op) as a tracer of biogeochemical cycling of phosphorus in ancient and modern environments is the nature of isotopic signatures associated with uptake and cycling of mineral-bound phosphate by microorganisms. Here we present experimental results aimed at understanding the biotic and abiotic pathway of P cycling during biological uptake of phosphate sorbed to ferrihydrite and the selective uptake of specific sedimentary phosphate phases by Escherichia coli, Vibrio fischeri and Marinobacter aquaeolei. Results indicate that a significant fraction of ferrihydrite-bound phosphate is biologically available. The fraction ofmore » phosphate taken up by E. coli attained an equilibrium isotopic composition in a short time (<50 hrs) due to efficient O-isotope exchange between phosphate and water (biotic pathway). The difference in isotopic composition between newly equilibrated aqueous and residual sorbed phosphate promoted the exchange of intact phosphate radicals (abiotic pathway) so that this difference gradually became negligible. In sediment containing different P phases, E. coli and V. fischeri ‘extracted’ loosely sorbed phosphate first while M. aquaeolei preferred iron-oxide bound phosphate. Each bacterium imprinted a biotic isotopic signature on each P phase that it took up and cycled. For example, the 18Op value of the sorbed phosphate phase shifted gradually towards equilibrium isotopic composition and the value of Fe oxide-bound phosphate showed slight changes at first, but when new iron oxides were formed, co-precipitated/occluded phosphate retained 18O values of aqueous phosphate at that time. Concentrations and isotopic compositions of authigenic and detrital phosphates did not change, suggesting that these phosphate phases were not utilized by bacteria. These findings support burgeoning applications of 18Op as a tracer of phosphorus cycling in sediments, soils and

  1. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  2. Interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations.

    PubMed

    Simic, Vladimir

    2016-06-01

    As the number of end-of-life vehicles (ELVs) is estimated to increase to 79.3 million units per year by 2020 (e.g., 40 million units were generated in 2010), there is strong motivation to effectively manage this fast-growing waste flow. Intensive work on management of ELVs is necessary in order to more successfully tackle this important environmental challenge. This paper proposes an interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations. The proposed model can incorporate various uncertainty information in the modeling process. The complex relationships between different ELV management sub-systems are successfully addressed. Particularly, the formulated model can help identify optimal patterns of procurement from multiple sources of ELV supply, production and inventory planning in multiple vehicle recycling factories, and allocation of sorted material flows to multiple final destinations under rigorous environmental regulations. A case study is conducted in order to demonstrate the potentials and applicability of the proposed model. Various constraint-violation probability levels are examined in detail. Influences of parameter uncertainty on model solutions are thoroughly investigated. Useful solutions for the management of ELVs are obtained under different probabilities of violating system constraints. The formulated model is able to tackle a hard, uncertainty existing ELV management problem. The presented model has advantages in providing bases for determining long-term ELV management plans with desired compromises between economic efficiency of vehicle recycling system and system-reliability considerations. The results are helpful for supporting generation and improvement of ELV management plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin.

    PubMed

    Jore, Solveig; Vanwambeke, Sophie O; Viljugrein, Hildegunn; Isaksen, Ketil; Kristoffersen, Anja B; Woldehiwet, Zerai; Johansen, Bernt; Brun, Edgar; Brun-Hansen, Hege; Westermann, Sebastian; Larsen, Inger-Lise; Ytrehus, Bjørnar; Hofshagen, Merete

    2014-01-08

    Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 - 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change.

  4. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses.

    PubMed

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.

  5. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum L.

    USDA-ARS?s Scientific Manuscript database

    Forage and turf grasses are utilized in diverse environments which exposes them to a variety of abiotic stresses, however very little is known concerning the perception or molecular responses to these various stresses. In the model grass species Lolium temulentum (Lt), a 46 kDa mitogen-activated pro...

  6. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium

    PubMed Central

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses. PMID:26973673

  7. Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales

    EPA Science Inventory

    Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...

  8. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation

    PubMed Central

    Agler, Matthew T.; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M.

    2016-01-01

    Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe–microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe–microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe effect on communities. By documenting these microbe–microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on “hub” microbes, which, via microbe–microbe interactions, transmit the effects to the microbial community. We analyzed two “hub” microbes (the

  9. Approaches in highly parameterized inversion - PEST++, a Parameter ESTimation code optimized for large environmental models

    USGS Publications Warehouse

    Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.

    2012-01-01

    An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.

  10. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits

    PubMed Central

    Pandey, Prachi; Irulappan, Vadivelmurugan; Bagavathiannan, Muthukumar V.; Senthil-Kumar, Muthappa

    2017-01-01

    Global warming leads to the concurrence of a number of abiotic and biotic stresses, thus affecting agricultural productivity. Occurrence of abiotic stresses can alter plant–pest interactions by enhancing host plant susceptibility to pathogenic organisms, insects, and by reducing competitive ability with weeds. On the contrary, some pests may alter plant response to abiotic stress factors. Therefore, systematic studies are pivotal to understand the effect of concurrent abiotic and biotic stress conditions on crop productivity. However, to date, a collective database on the occurrence of various stress combinations in agriculturally prominent areas is not available. This review attempts to assemble published information on this topic, with a particular focus on the impact of combined drought and pathogen stresses on crop productivity. In doing so, this review highlights some agriculturally important morpho-physiological traits that can be utilized to identify genotypes with combined stress tolerance. In addition, this review outlines potential role of recent genomic tools in deciphering combined stress tolerance in plants. This review will, therefore, be helpful for agronomists and field pathologists in assessing the impact of the interactions between drought and plant-pathogens on crop performance. Further, the review will be helpful for physiologists and molecular biologists to design agronomically relevant strategies for the development of broad spectrum stress tolerant crops. PMID:28458674

  11. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range

    USGS Publications Warehouse

    Stueve, K.M.; Isaacs, R.E.; Tyrrell, L.E.; Densmore, R.V.

    2011-01-01

    Throughout interior Alaska (USA), a gradual warming trend in mean monthly temperatures occurred over the last few decades (;2-48C). The accompanying increases in woody vegetation at many alpine treeline (hereafter treeline) locations provided an opportunity to examine how biotic and abiotic local site conditions interact to control tree establishment patterns during warming. We devised a landscape ecological approach to investigate these relationships at an undisturbed treeline in the Alaska Range. We identified treeline changes between 1953 (aerial photography) and 2005 (satellite imagery) in a geographic information system (GIS) and linked them with corresponding local site conditions derived from digital terrain data, ancillary climate data, and distance to 1953 trees. Logistic regressions enabled us to rank the importance of local site conditions in controlling tree establishment. We discovered a spatial transition in the importance of tree establishment controls. The biotic variable (proximity to 1953 trees) was the most important tree establishment predictor below the upper tree limit, providing evidence of response lags with the abiotic setting and suggesting that tree establishment is rarely in equilibrium with the physical environment or responding directly to warming. Elevation and winter sun exposure were important predictors of tree establishment at the upper tree limit, but proximity to trees persisted as an important tertiary predictor, indicating that tree establishment may achieve equilibrium with the physical environment. However, even here, influences from the biotic variable may obscure unequivocal correlations with the abiotic setting (including temperature). Future treeline expansion will likely be patchy and challenging to predict without considering the spatial variability of influences from biotic and abiotic local site conditions. ?? 2011 by the Ecological Society of America.

  12. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska range.

    PubMed

    Stueve, Kirk M; Isaacs, Rachel E; Tyrrell, Lucy E; Densmore, Roseann V

    2011-02-01

    Throughout interior Alaska (U.S.A.), a gradual warming trend in mean monthly temperatures occurred over the last few decades (approximatlely 2-4 degrees C). The accompanying increases in woody vegetation at many alpine treeline (hereafter treeline) locations provided an opportunity to examine how biotic and abiotic local site conditions interact to control tree establishment patterns during warming. We devised a landscape ecological approach to investigate these relationships at an undisturbed treeline in the Alaska Range. We identified treeline changes between 1953 (aerial photography) and 2005 (satellite imagery) in a geographic information system (GIS) and linked them with corresponding local site conditions derived from digital terrain data, ancillary climate data, and distance to 1953 trees. Logistic regressions enabled us to rank the importance of local site conditions in controlling tree establishment. We discovered a spatial transition in the importance of tree establishment controls. The biotic variable (proximity to 1953 trees) was the most important tree establishment predictor below the upper tree limit, providing evidence of response lags with the abiotic setting and suggesting that tree establishment is rarely in equilibrium with the physical environment or responding directly to warming. Elevation and winter sun exposure were important predictors of tree establishment at the upper tree limit, but proximity to trees persisted as an important tertiary predictor, indicating that tree establishment may achieve equilibrium with the physical environment. However, even here, influences from the biotic variable may obscure unequivocal correlations with the abiotic setting (including temperature). Future treeline expansion will likely be patchy and challenging to predict without considering the spatial variability of influences from biotic and abiotic local site conditions.

  13. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress.

    PubMed

    Qian, Wenjun; Yue, Chuan; Wang, Yuchun; Cao, Hongli; Li, Nana; Wang, Lu; Hao, Xinyuan; Wang, Xinchao; Xiao, Bin; Yang, Yajun

    2016-11-01

    Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses. In this study, 14 INV genes were identified from the transcriptome data of the tea plant (Camellia sinensis (L.) O. Kuntze), and named CsINV1-5 and CsINV7-15. Based on the results of a Blastx search and phylogenetic analysis, the CsINV genes could be clustered into 6 acid invertase (AI) genes and 8 alkaline/neutral invertase (A/N-Inv) genes. The results of tissue-specific expression analysis showed that the transcripts of all the identified CsINV genes are detectable in various tissues. Under various abiotic stress conditions, the expression patterns of the 14 CsINV genes were diverse in both the leaves and roots, and some of them were shown to be significantly expressed. Overall, we hypothesize that the identified CsINV genes all participate in regulating growth and development in the tea plant, and most likely through different signaling pathways that regulate the carbohydrate allocation and the ratio of hexose and sucrose for improving the resistance of the leaves and the roots of the tea plant to various abiotic stresses.

  14. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants.

    PubMed

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-08-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].

  15. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses.

    PubMed

    Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang

    2017-11-01

    The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.

  16. Organization and Regulation of Soybean SUMOylation System under Abiotic Stress Conditions

    PubMed Central

    Li, Yanjun; Wang, Guixin; Xu, Zeqian; Li, Jing; Sun, Mengwei; Guo, Jingsong; Ji, Wei

    2017-01-01

    Covalent attachment of the small ubiquitin-related modifier, SUMO, to substrate proteins plays a significant role in plants under stress conditions, which can alter target proteins' function, location, and protein-protein interactions. Despite this importance, information about SUMOylation in the major legume crop, soybean, remains obscure. In this study, we performed a bioinformatics analysis of the entire soybean genome and identified 40 genes belonged to six families involved in a cascade of enzymatic reactions in soybean SUMOylation system. The cis-acting elements analysis revealed that promoters of SUMO pathway genes contained different combinations of stress and development-related cis-regulatory elements. RNA-seq data analysis showed that SUMO pathway components exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. qRT-PCR analysis of 13 SUMO pathway members indicated that majority of the SUMO pathway members were transcriptionally up-regulated by NaCl, heat and ABA stimuli during the 24 h period of treatment. Furthermore, SUMOylation dynamics in soybean roots under abiotic stress treatment were analyzed by western blot, which were characterized by regulation of SUMOylated proteins. Collectively, this study defined the organization of the soybean SUMOylation system and implied an essential function for SUMOylation in soybean abiotic stress responses. PMID:28878795

  17. Abiotic formation of RNA-like oligomers by montmorillonite catalysis: part II

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Snellinger-O'Brien, Ann M.; Ertem, M. C.; Rogoff, D. A.; Dworkin, Jason P.; Johnston, Murray V.; Hazen, Robert M.

    2008-01-01

    This work is an extension of our previous studies carried out to investigate the possible catalytic role of minerals in the abiotic synthesis of biologically important molecules. In the presence of montmorillonite, a member of the phyllosilicate group minerals that are abundant on Earth and identified on Mars, activated RNA monomers, namely 5‧-phosphorimidazolides of nucleosides (ImpNs), undergo condensation reactions in aqueous electrolyte solution producing oligomers with similar structures to short RNA fragments. Analysis of the linear trimer isomers formed in the reaction of a mixture of activated adenosine and cytidine monomers (ImpA and ImpC, respectively) employing high-performance liquid chromatography, selective enzymatic hydrolysis and matrix-assisted laser desorption/ionization mass spectroscopy molecular weight measurements demonstrate that montmorillonite catalysis facilitates the formation of hetero-isomers containing 56% A- and 44% C-monomer incorporated in their structure. The results also show that 56% of the monomer units are linked together by RNA-like 3‧, 5‧-phosphodiester bonds. These results follow the same trend observed in our most recent work studying the reaction of activated adenosine and uridine monomers, and support Bernal's hypothesis proposing the possible catalytic role of minerals in the abiotic processes in the course of chemical evolution.

  18. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes aremore » involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are

  19. Envirotyping for deciphering environmental impacts on crop plants.

    PubMed

    Xu, Yunbi

    2016-04-01

    Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts.

  20. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    PubMed Central

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif; Alves, Eliane G.; Yanez Serrano, Ana Maria; Kesselmeier, Jürgen; Karl, Thomas; Guenther, Alex; Vickers, Claudia; Chambers, Jeffrey Q.

    2013-01-01

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance. PMID:23881400

  1. Emissions of putative isoprene oxidation products from mango branches under abiotic stress.

    PubMed

    Jardine, Kolby J; Meyers, Kimberly; Abrell, Leif; Alves, Eliane G; Yanez Serrano, Ana Maria; Kesselmeier, Jürgen; Karl, Thomas; Guenther, Alex; Chambers, Jeffrey Q; Vickers, Claudia

    2013-09-01

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze-thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under (13)CO2 resulted in rapid (<30 min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.

  2. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    DOE PAGES

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif; ...

    2013-07-23

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putativemore » isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO 2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.« less

  3. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putativemore » isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO 2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.« less

  4. Functional strategies drive community assembly of stream fishes along environmental gradients and across spatial scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troia, Matthew J.; Gido, Keith B.

    Trade-offs among functional traits produce multi-trait strategies that shape species interactions with the environment and drive the assembly of local communities from regional species pools. Stream fish communities vary along stream size gradients and among hierarchically structured habitat patches, but little is known about how the dispersion of strategies varies along environmental gradients and across spatial scales. We used null models to quantify the dispersion of reproductive life history, feeding, and locomotion strategies in communities sampled at three spatial scales in a prairie stream network in Kansas, USA. Strategies were generally underdispersed at all spatial scales, corroborating the longstanding notionmore » of abiotic filtering in stream fish communities. We tested for variation in strategy dispersion along a gradient of stream size and between headwater streams draining different ecoregions. Reproductive life history strategies became increasingly underdispersed moving from downstream to upstream, suggesting that abiotic filtering is stronger in headwaters. This pattern was stronger among reaches compared to mesohabitats, supporting the premise that differences in hydrologic regime among reaches filter reproductive life history strategies. Feeding strategies became increasingly underdispersed moving from upstream to downstream, indicating that environmental filters associated with stream size affect the dispersion of feeding and reproductive life history in opposing ways. Weak differences in strategy dispersion were detected between ecoregions, suggesting that different abiotic filters or strategies drive community differences between ecoregions. Lastly, given the pervasiveness of multi-trait strategies in plant and animal communities, we conclude that the assessment of strategy dispersion offers a comprehensive approach for elucidating mechanisms of community assembly.« less

  5. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress

    PubMed Central

    Ortega-Galisteo, Ana P.; Rodríguez-Serrano, María; Pazmiño, Diana M.; Gupta, Dharmendra K.; Sandalio, Luisa M.; Romero-Puertas, María C.

    2012-01-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H2O2 level under abiotic stress. PMID:22213812

  6. Biotic and abiotic factors affecting stemflow variability in downy oak and Scots pine stands in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cayuela, Carles; Garcia-Estringana, Pablo; Latron, Jérôme; Llorens, Pilar

    2015-04-01

    Although stemflow is only a small portion of rainfall, it may represent an important local input of water and nutrients at the plant stem. Previous studies have shown that stemflow has a significant influence on hydrological and biogeochemical processes. Stemflow volume is affected by many biotic factors as species, age, branch or bark characteristics. Moreover, the seasonality of the rainfall regime in Mediterranean areas, which includes both frontal rainfall events and short convective storms, can add complexity to the rainfall-stemflow relationship. This work investigates stemflow dynamics and the influence of biotic and abiotic factors on stemflow rates in two Mediterranean stands during the leafed period - from May to October. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). The monitoring design of each plot consists of 7 stemflow rings connected to tipping-buckets, bulk rainfall measured in a nearby clearing and meteorological conditions above the canopies. All data were recorded at 5 min interval. Biometric characteristics of the measured trees were also measured. The analysis of 39 rainfall events (65% smaller than 10 mm) shows that stemflow accounted for less than 1% of the bulk rainfall in both stands. Results also show that, on average, the rainfall amount required for the start of the stemflow and the time delay between the beginning of the precipitation and the start of stemflow are higher in the Downy oak forest. As suggested by stemflow funneling ratios, these differences might be linked to the canopy structure and bark water storage capacity of the trees, indicating that during low magnitude events, oaks have more difficulty to reach storage capacity. The role of other biotic and abiotic parameters on stemflow variability in both stands is still under investigation.

  7. Contrasting distribution patterns of invasive and naturalized non-native species along environmental gradients in a semi-arid montane ecosystem

    Treesearch

    Kelly M. Andersen; Bridgett J. Naylor; Bryan A. Endress; Catherine G. Parks

    2015-01-01

    Questions: Mountain systems have high abiotic heterogeneity over local spatial scales, offering natural experiments for examining plant species invasions. We ask whether functional groupings explain non-native species spread into native vegetation and up elevation gradients.We examine whether non-native species distribution patterns are related to environmental...

  8. Carbon Isotopes of Alkanes in Hydrothermal Abiotic Organic Synthesis Processes at High Temperatures and Pressures: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2010-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.

  9. An Ribonuclease T2 Family Protein Modulates Acinetobacter baumannii Abiotic Surface Colonization

    PubMed Central

    Jacobs, Anna C.; Blanchard, Catlyn E.; Catherman, Seana C.; Dunman, Paul M.; Murata, Yoshihiko

    2014-01-01

    Acinetobacter baumannii is an emerging bacterial pathogen of considerable medical concern. The organism's transmission and ability to cause disease has been associated with its propensity to colonize and form biofilms on abiotic surfaces in health care settings. To better understand the genetic determinants that affect biomaterial attachment, we performed a transposon mutagenesis analysis of abiotic surface-colonization using A. baumannii strain 98-37-09. Disruption of an RNase T2 family gene was found to limit the organism's ability to colonize polystyrene, polypropylene, glass, and stainless steel surfaces. DNA microarray analyses revealed that in comparison to wild type and complemented cells, the RNase T2 family mutant exhibited reduced expression of 29 genes, 15 of which are predicted to be associated with bacterial attachment and surface-associated motility. Motility assays confirmed that RNase T2 mutant displays a severe motility defect. Taken together, our results indicate that the RNase T2 family protein identified in this study is a positive regulator of A. baumannii's ability to colonize inanimate surfaces and motility. Moreover, the enzyme may be an effective target for the intervention of biomaterial colonization, and consequently limit the organism's transmission within the hospital setting. PMID:24489668

  10. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. © 2013.

  11. Local environmental context conditions the impact of Russian olive in a heterogeneous riparian ecosystem

    USGS Publications Warehouse

    Tuttle, Graham M.; Katz, Gabrielle L.; Friedman, Jonathan M.; Norton, Andrew P.

    2016-01-01

    Local abiotic and biotic conditions can alter the strength of exotic species impacts. To better understand the effects of exotic species on invaded ecosystems and to prioritize management efforts, it is important that exotic species impacts are put in local environmental context. We studied how differences in plant community composition, photosynthetically active radiation (PAR), and available soil N associated with Russian olive presence are conditioned by local environmental variation within a western U.S. riparian ecosystem. In four sites along the South Fork of the Republican River in Colorado, we established 200 pairs of plots (underneath and apart from Russian olive) to measure the effects of invasion across the ecosystem. We used a series of a priori mixed models to identify environmental variables that altered the effects of Russian olive. For all response variables, models that included the interaction of environmental characteristics, such as presence/absence of an existing cottonwood canopy, with the presence/absence of Russian olive canopy were stronger candidate models than those that just included Russian olive canopy presence as a factor. Compared with reference plots outside of Russian olive canopy, plots underneath Russian olive had higher relative exotic cover (exotic/total cover), lower perennial C4 grass cover, and higher perennial forb cover. These effects were reduced, however, in the presence of a cottonwood canopy. As expected, Russian olive was associated with reduced PAR and increased N, but these effects were reduced under cottonwood canopy. Our results demonstrate that local abiotic and biotic environmental factors condition the effects of Russian olive within a heterogeneous riparian ecosystem and suggest that management efforts should be focused in open areas where Russian olive impacts are strongest.

  12. Biotic and abiotic mechanisms in the establishment of northern red oak seedlings: a review

    Treesearch

    Linda S. Gribko; Thomas M. Schuler; W. Mark Ford

    2002-01-01

    This review of literature pertaining to the biotic and abiotic mechanisms in the establishment of northern red oak seedlings is designed to aid forest managers and researchers interested in sustaining the oak component of the eastern and central hardwood forest regions. Recommendations for future research are presented.

  13. Multiple Reaction Monitoring Mode Based Liquid Chromatography-Mass Spectrometry Method for Simultaneous Quantification of Brassinolide and Other Plant Hormones Involved in Abiotic Stresses.

    PubMed

    Kasote, Deepak M; Ghosh, Ritesh; Chung, Jun Young; Kim, Jonggeun; Bae, Inhwan; Bae, Hanhong

    2016-01-01

    Plant hormones are the key regulators of adaptive stress response. Abiotic stresses such as drought and salt are known to affect the growth and productivity of plants. It is well known that the levels of plant hormones such as zeatin (ZA), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and brassinolide (BR) fluctuate upon abiotic stress exposure. At present, there is not any single suitable liquid chromatography-mass spectrometry (LC-MS) method for simultaneous analysis of BR and other plant hormones involved in abiotic stresses. In the present study, we developed a simple, sensitive, and rapid method for simultaneous analysis of five major plant hormones, ZA, ABA, JA, SA, and BR, which are directly or indirectly involved in drought and salt stresses. The optimized extraction procedure was simple and easy to use for simultaneous measurement of these plant hormones in Arabidopsis thaliana. The developed method is highly reproducible and can be adapted for simultaneous measurement of changes in plant hormones (ZA, ABA, JA, SA, and BR) in response to abiotic stresses in plants like A. thaliana and tomato.

  14. Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants

    PubMed Central

    Prasad, Abhishek; Xue, Qing-Shan; Dieme, Robert; Sankar, Viswanath; Mayrand, Roxanne C.; Nishida, Toshikazu; Streit, Wolfgang J.; Sanchez, Justin C.

    2014-01-01

    Pt/Ir electrodes have been extensively used in neurophysiology research in recent years as they provide a more inert recording surface as compared to tungsten or stainless steel. While floating microelectrode arrays (FMA) consisting of Pt/Ir electrodes are an option for neuroprosthetic applications, long-term in vivo functional performance characterization of these FMAs is lacking. In this study, we have performed comprehensive abiotic-biotic characterization of Pt/Ir arrays in 12 rats with implant periods ranging from 1 week up to 6 months. Each of the FMAs consisted of 16-channel, 1.5 mm long, and 75 μm diameter microwires with tapered tips that were implanted into the somatosensory cortex. Abiotic characterization included (1) pre-implant and post-explant scanning electron microscopy (SEM) to study recording site changes, insulation delamination and cracking, and (2) chronic in vivo electrode impedance spectroscopy. Biotic characterization included study of microglial responses using a panel of antibodies, such as Iba1, ED1, and anti-ferritin, the latter being indicative of blood-brain barrier (BBB) disruption. Significant structural variation was observed pre-implantation among the arrays in the form of irregular insulation, cracks in insulation/recording surface, and insulation delamination. We observed delamination and cracking of insulation in almost all electrodes post-implantation. These changes altered the electrochemical surface area of the electrodes and resulted in declining impedance over the long-term due to formation of electrical leakage pathways. In general, the decline in impedance corresponded with poor electrode functional performance, which was quantified via electrode yield. Our abiotic results suggest that manufacturing variability and insulation material as an important factor contributing to electrode failure. Biotic results show that electrode performance was not correlated with microglial activation (neuroinflammation) as we were able

  15. Fast Abiotic Production of Methane at Temperatures Below 100°C

    NASA Astrophysics Data System (ADS)

    Etiope, G.; Ionescu, A.

    2015-12-01

    Fischer-Tropsch Type (FTT) reactions, e.g., the Sabatier synthesis between H2 and CO2, are considered a main source of abiotic methane on Earth and likely on other planets. Several laboratory FTT experiments demonstrated abiotic CH4 production at temperatures above 200°C, by using Fe, Ni or Cr catalysts, simulating hydrothermal conditions in peridotite-hosted systems in mid-ocean ridges. Nevertheless, at least on laboratory experiment time-scale, Fe-Ni-Cr catalysts do not support CH4 generation at T<100°C, such as those of land-based serpentinization systems. We have recently reported rapid production of considerable amounts of CH4 (>800 ppmv in 155 mL bottles after 1 day) via Sabatier reaction at 90, 50 and 25°C, using small concentrations of non-pretreated ruthenium (Ru) equivalent to those occurring in chromitites in continental ultramafic rocks (Etiope & Ionescu, 2014; Geofluids, doi:10.1111/gfl.12106). We have repeated the experiments by using 13C-enriched CO2 and we confirm fast production of CH4at percentage levels. The experiments performed so far show that: 1. considerable amounts of CH4can be produced in dry conditions below 100°C with small quantities of Ru; 2. under the same experimental conditions (<100°C), Fe, Ni and Cr oxides do not produce CH4; 3. low T Sabatier reaction can produce CH4 with a large C isotope fractionation between CO2 and CH4, leading to relatively " light" (13C-depleted) CH4, resembling microbial gas; 4. the CO2-CH4isotope separation decreases over time and by increasing the temperature; 5. minor amounts of C2-C6hydrocarbons are also generated. Our laboratory data are compatible with the isotopic patterns of CH4 naturally occurring in land-based seeps and springs. Our experiments suggest that Ru-enriched chromitites could potentially generate CH4 at low T. Since Ru is reported in Martian meteorites, low T abiotic CH4 production on Mars via Sabatier reaction cannot be excluded (Etiope et al. 2013, Icarus, 224, 276-285).

  16. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment.

    PubMed

    Kröber, Wenzel; Li, Ying; Härdtle, Werner; Ma, Keping; Schmid, Bernhard; Schmidt, Karsten; Scholten, Thomas; Seidler, Gunnar; von Oheimb, Goddert; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2015-09-01

    While functional diversity (FD) has been shown to be positively related to a number of ecosystem functions including biomass production, it may have a much less pronounced effect than that of environmental factors or species-specific properties. Leaf and wood traits can be considered particularly relevant to tree growth, as they reflect a trade-off between resources invested into growth and persistence. Our study focussed on the degree to which early forest growth was driven by FD, the environment (11 variables characterizing abiotic habitat conditions), and community-weighted mean (CWM) values of species traits in the context of a large-scale tree diversity experiment (BEF-China). Growth rates of trees with respect to crown diameter were aggregated across 231 plots (hosting between one and 23 tree species) and related to environmental variables, FD, and CWM, the latter two of which were based on 41 plant functional traits. The effects of each of the three predictor groups were analyzed separately by mixed model optimization and jointly by variance partitioning. Numerous single traits predicted plot-level tree growth, both in the models based on CWMs and FD, but none of the environmental variables was able to predict tree growth. In the best models, environment and FD explained only 4 and 31% of variation in crown growth rates, respectively, while CWM trait values explained 42%. In total, the best models accounted for 51% of crown growth. The marginal role of the selected environmental variables was unexpected, given the high topographic heterogeneity and large size of the experiment, as was the significant impact of FD, demonstrating that positive diversity effects already occur during the early stages in tree plantations.

  17. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment

    PubMed Central

    Kröber, Wenzel; Li, Ying; Härdtle, Werner; Ma, Keping; Schmid, Bernhard; Schmidt, Karsten; Scholten, Thomas; Seidler, Gunnar; von Oheimb, Goddert; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2015-01-01

    While functional diversity (FD) has been shown to be positively related to a number of ecosystem functions including biomass production, it may have a much less pronounced effect than that of environmental factors or species-specific properties. Leaf and wood traits can be considered particularly relevant to tree growth, as they reflect a trade-off between resources invested into growth and persistence. Our study focussed on the degree to which early forest growth was driven by FD, the environment (11 variables characterizing abiotic habitat conditions), and community-weighted mean (CWM) values of species traits in the context of a large-scale tree diversity experiment (BEF-China). Growth rates of trees with respect to crown diameter were aggregated across 231 plots (hosting between one and 23 tree species) and related to environmental variables, FD, and CWM, the latter two of which were based on 41 plant functional traits. The effects of each of the three predictor groups were analyzed separately by mixed model optimization and jointly by variance partitioning. Numerous single traits predicted plot-level tree growth, both in the models based on CWMs and FD, but none of the environmental variables was able to predict tree growth. In the best models, environment and FD explained only 4 and 31% of variation in crown growth rates, respectively, while CWM trait values explained 42%. In total, the best models accounted for 51% of crown growth. The marginal role of the selected environmental variables was unexpected, given the high topographic heterogeneity and large size of the experiment, as was the significant impact of FD, demonstrating that positive diversity effects already occur during the early stages in tree plantations. PMID:26380685

  18. Environmental stressors alter relationships between physiology and behaviour.

    PubMed

    Killen, Shaun S; Marras, Stefano; Metcalfe, Neil B; McKenzie, David J; Domenici, Paolo

    2013-11-01

    Although correlations have frequently been observed between specific physiological and behavioural traits across a range of animal taxa, the nature of these associations has been shown to vary. Here we argue that a major source of this inconsistency is the influence of environmental stressors, which seem capable of revealing, masking, or modulating covariation in physiological and behavioural traits. These effects appear to be mediated by changes in the observed variation of traits and differential sensitivity to stressors among phenotypes. Considering that wild animals routinely face a range of biotic and abiotic stressors, increased knowledge of these effects is imperative for understanding the causal mechanisms of a range of ecological phenomena and evolutionary responses to stressors associated with environmental change. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses.

    PubMed

    Brulle, Franck; Bernard, Fabien; Vandenbulcke, Franck; Cuny, Damien; Dumez, Sylvain

    2014-04-01

    Real-time quantitative PCR is nowadays a standard method to study gene expression variations in various samples and experimental conditions. However, to interpret results accurately, data normalization with appropriate reference genes appears to be crucial. The present study describes the identification and the validation of suitable reference genes in Brassica oleracea leaves. Expression stability of eight candidates was tested following drought and cold abiotic stresses by using three different softwares (BestKeeper, NormFinder and geNorm). Four genes (BolC.TUB6, BolC.SAND1, BolC.UBQ2 and BolC.TBP1) emerged as the most stable across the tested conditions. Further gene expression analysis of a drought- and a cold-responsive gene (BolC.DREB2A and BolC.ELIP, respectively), confirmed the stability and the reliability of the identified reference genes when used for normalization in the leaves of B. oleracea. These four genes were finally tested upon a benzene exposure and all appeared to be useful reference genes along this toxicological condition. These results provide a good starting point for future studies involving gene expression measurement on leaves of B. oleracea exposed to environmental modifications.

  20. Abiotic Hydrolysis of Fluorotelomer-Based Polymers as a Source of Perfluorocarboxylates at the Global Scale

    EPA Science Inventory

    Fluorotelomer-based polymers (FTPs) are the main product of the fluorotelomer industry. For nearly 10 years, whether FTPs degrade to form perfluorooctanoate (PFOA) and perfluorocarboxylate (PFCA) homologues has been vigorously contested. Here we show that circum-neutral abiotic h...

  1. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    NASA Astrophysics Data System (ADS)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  2. Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps.

    PubMed

    Hadjisolomou, Ekaterini; Stefanidis, Konstantinos; Papatheodorou, George; Papastergiadou, Evanthia

    2018-03-19

    During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters' relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl - a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication.

  3. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin

    PubMed Central

    2014-01-01

    Background Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. Methods We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Results Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Conclusions Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change. PMID:24401487

  4. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    PubMed Central

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  5. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    NASA Astrophysics Data System (ADS)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  6. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    PubMed

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the

  7. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review.

    PubMed

    Parmar, Nehanjali; Singh, Kunwar Harendra; Sharma, Deepika; Singh, Lal; Kumar, Pankaj; Nanjundan, J; Khan, Yasin Jeshima; Chauhan, Devendra Kumar; Thakur, Ajay Kumar

    2017-08-01

    Genetic engineering technique offers myriads of applications in improvement of horticultural crops for biotic and abiotic stress tolerance, and produce quality enhancement. During last two decades, a large number of transgenic horticultural crops has been developed and more are underway. A number of genes including natural and synthetic Cry genes, protease inhibitors, trypsin inhibitors and cystatin genes have been used to incorporate insect and nematode resistance. For providing protection against fungal and bacterial diseases, various genes like chitinase, glucanase, osmotin, defensin and pathogenesis-related genes are being transferred to many horticultural crops world over. RNAi technique has been found quite successful in inducing virus resistance in horticultural crops in addition to coat protein genes. Abiotic stresses such as drought, heat and salinity adversely affect production and productivity of horticultural crops and a number of genes encoding for biosynthesis of stress protecting compounds including mannitol, glycine betaine and heat shock proteins have been employed for abiotic stress tolerance besides various transcription factors like DREB1, MAPK, WRKY, etc. Antisense gene and RNAi technologies have revolutionized the pace of improvement of horticultural crops, particularly ornamentals for color modification, increasing shelf-life and reducing post-harvest losses. Precise genome editing tools, particularly CRISPR/Cas9, have been efficiently applied in tomato, petunia, citrus, grape, potato and apple for gene mutation, repression, activation and epigenome editing. This review provides comprehensive overview to draw the attention of researchers for better understanding of genetic engineering advancements in imparting biotic and abiotic stress tolerance as well as on improving various traits related to quality, texture, plant architecture modification, increasing shelf-life, etc. in different horticultural crops.

  8. Evolution under environmental stress at macro- and microscales.

    PubMed

    Nevo, Eviatar

    2011-01-01

    Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589-610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717-745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) "Evolution Canyon"; 5) human brain evolution, and 6) global warming.

  9. Mechanisms and Dynamics of Abiotic and Biotic Interactions at Environmental Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roso, Kevin M.

    The Stanford EMSI (SEMSI) was established in 2004 through joint funding by the National Science Foundation and the OBER-ERSD. It encompasses a number of universities and national laboratories. The PNNL component of the SEMSI is funded by ERSD and is the focus of this report. This component has the objective of providing theory support to the SEMSI by bringing computational capabilities and expertise to bear on important electron transfer problems at mineral/water and mineral/microbe interfaces. PNNL staff member Dr. Kevin Rosso, who is also ''matrixed'' into the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, is a co-PI on the SEMSImore » project and the PNNL lead. The EMSL computational facilities being applied to the SEMSI project include the 11.8 teraflop massively-parallel supercomputer. Science goals of this EMSL/SEMSI partnership include advancing our understanding of: (1) The kinetics of U(VI) and Cr(VI) reduction by aqueous and solid-phase Fe(II), (2) The structure of mineral surfaces in equilibrium with solution, and (3) Mechanisms of bacterial electron transfer to iron oxide surfaces via outer-membrane cytochromes.« less

  10. Spatial variation in abiotic and biotic factors in a floodplain determine anuran body size and growth rate at metamorphosis.

    PubMed

    Indermaur, Lukas; Schmidt, Benedikt R; Tockner, Klement; Schaub, Michael

    2010-07-01

    Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.

  11. Distance and environmental difference in alpine plant communities

    USGS Publications Warehouse

    Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.

    2017-01-01

    Differences in plant communities are a response to the abiotic environment, species interactions, and dispersal. The role of geographic distance relative to the abiotic environment is explored for alpine tundra vegetation from 319 plots of four regions along the Rocky Mountain cordillera in the USA. The site by species data were ordinated using nonmetric multidimensional scaling to produce dependent variables for use in best-subsets regression. For independent variables, observations of local topography and microtopography were used as environmental indicators. Two methods of including distance in studies of vegetation and environment are used and contrasted. The relative importance of geographic distance in accounting for the pattern of alpine tundra similarity indicates that location is a factor in plant community composition. Mantel tests provide direct correlations between difference and distance but have known weaknesses. Moran spatial eigenvectors used in regression based approaches have greater geographic specificity, but require another step, ordination, in creating a vegetation variable. While the spatial eigenvectors are generally preferable, where species–environment relations are weak, as seems to be the case for the alpine sites studied here, the fewer abstractions of the Mantel test may be useful.

  12. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis.

    PubMed

    Ali, Muhammad Amjad; Azeem, Farrukh; Nawaz, Muhammad Amjad; Acet, Tuba; Abbas, Amjad; Imran, Qari Muhammad; Shah, Kausar Hussain; Rehman, Hafiz Mamoon; Chung, Gyuhwa; Yang, Seung Hwan; Bohlmann, Holger

    2018-04-17

    Plant WRKY transcription factors play a vital role in abiotic stress tolerance and regulation of plant defense responses. This study examined AtWRKY11 and AtWRKY17 expression under ABA, salt, and osmotic stress at different developmental stages in Arabidopsis. We used reverse transcriptase PCR, quantitative real-time PCR, and promoter:GUS lines to analyze expression. Both genes were upregulated in response to abiotic stress. Next, we applied the same stressors to seedlings of T-DNA insertion wrky11 and 17 knock-out mutants (single and double). Under stress, the mutants exhibited slower germination and compromised root growth compared with the wild type. In most cases, double-mutant seedlings were more affected than single mutants. These results suggest that wrky11 and wrky17 are not strictly limited to plant defense responses but are also involved in conferring stress tolerance. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae--an AFM study.

    PubMed

    Ovchinnikova, Ekaterina S; van der Mei, Henny C; Krom, Bastiaan P; Busscher, Henk J

    2013-10-01

    Staphylococcus aureus and Candida albicans are the second and third most commonly isolated microorganisms in hospital-related-infections, that are often multi-species in nature causing high morbidity and mortality. Here, adhesion forces between a S. aureus strain and abiotic (tissue-culture-polystyrene, TCPS) or partly biotic (TCPS with adhering hyphae of C. albicans) surfaces were investigated in presence of fetal-bovine-serum or individual serum proteins and related with staphylococcal adhesion. Atomic-force-microscopy was used to measure adhesion forces between S. aureus and the abiotic and biotic surfaces. Adsorption of individual serum proteins like albumin and apo-transferrin to abiotic TCPS surfaces during 60min, impeded development of strong adhesion forces as compared to fibronectin, while 60min adsorption of proteins from fetal-bovine-serum yielded a decrease in adhesion force from -5.7nN in phosphate-buffered-saline to -0.6nN. Adsorption of albumin and apo-transferrin also decreased staphylococcal adhesion forces to hyphae as compared with fibronectin. During 60min exposure to fetal-bovine-serum however, initial (5min protein adsorption) staphylococcal adhesion forces were low (-1.6nN), but strong adhesion forces of around -5.5nN were restored within 60min. This suggests for the first time that in whole fetal-bovine-serum exchange of non-adhesive proteins by fibronectin occurs on biotic C. albicans hyphal surfaces. No evidence was found for such protein exchange on abiotic TCPS surfaces. Staphylococcal adhesion of abiotic and biotic surfaces varied in line with the adhesion forces and was low on TCPS in presence of fetal-bovine-serum. On partly biotic TCPS, staphylococci aggregated in presence of fetal-bovine-serum around adhering C. albicans hyphae. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods.

    PubMed

    Girela, Jose L; Gil, David; Johnsson, Magnus; Gomez-Torres, María José; De Juan, Joaquín

    2013-04-01

    Fertility rates have dramatically decreased in the last two decades, especially in men. It has been described that environmental factors as well as life habits may affect semen quality. In this paper we use artificial intelligence techniques in order to predict semen characteristics resulting from environmental factors, life habits, and health status, with these techniques constituting a possible decision support system that can help in the study of male fertility potential. A total of 123 young, healthy volunteers provided a semen sample that was analyzed according to the World Health Organization 2010 criteria. They also were asked to complete a validated questionnaire about life habits and health status. Sperm concentration and percentage of motile sperm were related to sociodemographic data, environmental factors, health status, and life habits in order to determine the predictive accuracy of a multilayer perceptron network, a type of artificial neural network. In conclusion, we have developed an artificial neural network that can predict the results of the semen analysis based on the data collected by the questionnaire. The semen parameter that is best predicted using this methodology is the sperm concentration. Although the accuracy for motility is slightly lower than that for concentration, it is possible to predict it with a significant degree of accuracy. This methodology can be a useful tool in early diagnosis of patients with seminal disorders or in the selection of candidates to become semen donors.

  15. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    PubMed

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Spatio-temporal pattern of eco-environmental parameters in Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Saini, V.; Gupta, R. P.; Arora, M. K.

    2015-10-01

    Jharia coal-field holds unequivocal importance in the Indian context as it is the only source of prime coking coal in the country. The coalfield is also known for its infamous coal mine fires which have been burning since last more than a century. Haphazard mining over a century has led to eco-environmental changes to a large extent such as changes in vegetation distribution and widespread development of surface and subsurface fires. This article includes the spatiotemporal study of remote sensing derived eco-environmental parameters like vegetation index (NDVI), tasseled cap transformation (TCT) and temperature distribution in fire areas. In order to have an estimate of the temporal variations of NDVI over the years, a study has been carried out on two subsets of the Jharia coalfield using Landsat images of 1972 (MSS), 1992 (TM), 1999 (ETM+) and 2013 (OLI). To assess the changes in brightness and greenness over the year s, difference images have been calculated using the 1992 (TM) and 2013 (OLI) images. Radiance images derived from thermal bands have been used to calculate at-sensor brightness temperature over a 23 year period from 1991 to 2013. It has been observed that during the years 1972 to 2013, moderate to dense vegetation has decreased drastically due to the intense mining going on in the area. TCT images show the areas that have undergone changes in both brightness and greenness from 1992 to 2013. Surface temperature data obtained shows a constant increase from 1991 to 2013 apparently due to coal fires. The utility of remote sensing data in such EIA studies has been emphasized.

  17. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled

  18. Biotic and abiotic factors influencing zooplankton vertical distribution in Lake Huron

    USGS Publications Warehouse

    Nowicki, Carly J.; Bunnell, David B.; Armenio, Patricia M.; Warner, David M.; Vanderploeg, Henry A.; Cavaletto, Joann F.; Mayer, Christine M.; Adams, Jean V.

    2017-01-01

    The vertical distribution of zooplankton can have substantial influence on trophic structure in freshwater systems, particularly by determining spatial overlap for predator/prey dynamics and influencing energy transfer. The zooplankton community in some of the Laurentian Great Lakes has undergone changes in composition and declines in total biomass, especially after 2003. Mechanisms underlying these zooplankton changes remain poorly understood, in part, because few studies have described their vertical distributions during daytime and nighttime conditions or evaluated the extent to which predation, resources, or environmental conditions could explain their distribution patterns. Within multiple 24-h periods during July through October 2012 in Lake Huron, we conducted daytime and nighttime sampling of zooplankton, and measured food (chlorophyll-a), temperature, light (Secchi disk depth), and planktivory (biomass of Bythotrephes longimanus and Mysis diluviana). We used linear mixed models to determine whether the densities for 22 zooplankton taxa varied between day and night in the epi-, meta-, and hypolimnion. For eight taxa, higher epilimnetic densities were observed at night than during the day; general linear models revealed these patterns were best explained by Mysis diluviana (four taxa), Secchi disk depth (three taxa), epilimnetic water temperature (three taxa), chlorophyll (one taxon), and biomass of Bythotrephes longimanus (one taxon). By investigating the potential effects of both biotic and abiotic variables on the vertical distribution of crustacean zooplankton and rotifers, we provide descriptions of the Lake Huron zooplankton community and discuss how future changes in food web dynamics or climate change may alter zooplankton distribution in freshwater environments.

  19. Effects of biotic and abiotic factors on the distribution and abundance of larval two-lined salamanders (Eurycea bislineata) across spatial scales.

    PubMed

    Barr, Garrett E; Babbitt, Kimberly J

    2002-10-01

    We sampled eight streams in the White Mountain National Forest, New Hampshire, throughout their elevational reach for larval salamanders and predatory fish to examine the effects of abiotic factors and predation on the distribution and abundance of larval salamanders. Eurycea bislineata (two-lined salamander) and Salvelinus fontinalis (brook trout) abundance varied among and within streams. Eurycea bislineata showed a negative association with S. fontinalis across spatial scales (micro-scale, among quadrats; meso-scale, among pool/riffle pairs; macro-scale, among streams). At the smallest scale, the average density of larval E. bislineata was greatest in microhabitats with relatively high boulder cover and low sand and bare rock cover only in the presence of S. fontinalis; no such relationship was observed in the absence of S. fontinalis. In a mesocosm experiment, larval salamander survival was higher in enclosures containing cobbles than enclosures containing a gravel mix, illustrating the advantage of coarse substrates with interstitial spaces that are inaccessible to predatory fish. At the meso-scale, E. bislineata larvae were less abundant in stream sections with S. fontinalis than those without. Among streams, those with many S. fontinalis had fewer E. bislineata. Of the abiotic parameters measured, water temperature and pH were positively related to E. bislineata presence, and elevation, water temperature, pH, canopy cover, and gradient were positively related to E. bislineata abundance. Larval Plethodontid salamanders can reach high densities and appear to have strong interactions with stream biota, thus their functional role in stream communities deserves further attention.

  20. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin

    PubMed Central

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. PMID:25225478

  1. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants

    NASA Astrophysics Data System (ADS)

    Sampaio, Bruno Leite; Edrada-Ebel, Ruangelie; da Costa, Fernando Batista

    2016-07-01

    Tithonia diversifolia is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant’s metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of T. diversifolia which included leaves, stems, roots, and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for T. diversifolia and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts.

  2. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants

    PubMed Central

    Sampaio, Bruno Leite; Edrada-Ebel, RuAngelie; Da Costa, Fernando Batista

    2016-01-01

    Tithonia diversifolia is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant’s metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of T. diversifolia which included leaves, stems, roots, and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for T. diversifolia and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts. PMID:27383265

  3. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants.

    PubMed

    Sampaio, Bruno Leite; Edrada-Ebel, RuAngelie; Da Costa, Fernando Batista

    2016-07-07

    Tithonia diversifolia is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant's metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of T. diversifolia which included leaves, stems, roots, and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for T. diversifolia and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts.

  4. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.

    PubMed

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2017-04-01

    Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under

  5. Life cycle assessment of metal alloys for structural applications

    NASA Astrophysics Data System (ADS)

    Malovrh Rebec, K.; Markoli, B.; Leskovar, B.

    2018-03-01

    The study compared environmental footprints of two types of Al-alloys: well-known 5083 aluminium alloy with magnesium and traces of manganese and chromium in its composition. This material is highly resistant to seawater corrosion and the influence of industrial chemicals. Furthermore, it retains exceptional strength after welding. The comparisons were made to an innovative alloy where the aluminium based matrix is reinforced by metastable quasicrystals (QC), thus avoiding magnesium in its composition. Furthermore, we checked other aluminium ingots’ footprints and compared European average and Germany country specific production data. Environmental footprints were assessed via cradle to gate life cycle assessment. Our findings normalized to 1 m2 plate suggest, that newly proposed alloy could save around 50 % in value of parameters abiotic resources depletion of fossil fuels, acidification, eutrophication, global warming potential and photochemical ozone creation potential if we compare Qc5 to 6 mm 5083 alloy plate. Only abiotic resources depletion of elements and ozone depletion parameters increase for Qc5 compared to 6 mm 5083 alloy plate.

  6. Somewhere, Beyond the Sea: Advancing Geochemical Sensor Technologies for Biological and Abiotic Analyses on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.; Hoer, D.; Michel, A.; Wankel, S. D.; Baker, I.; Farr, N.

    2018-05-01

    Here we present our data from recent efforts aimed at examining the relationships among abiotic and biological processes in our ocean. These technologies may help us address that enduring question as to whether life exists on other celestial bodies.

  7. Contributions of Abiotic and Biotic Dechlorination Following Carboxymethyl Cellulose Stabilized Nanoscale Zero Valent Iron Injection.

    PubMed

    Kocur, Chris M D; Lomheim, Line; Boparai, Hardiljeet K; Chowdhury, Ahmed I A; Weber, Kela P; Austrins, Leanne M; Edwards, Elizabeth A; Sleep, Brent E; O'Carroll, Denis M

    2015-07-21

    A pilot scale injection of nanoscale zerovalent iron (nZVI) stabilized with carboxymethyl cellulose (CMC) was performed at an active field site contaminated with a range of chlorinated volatile organic compounds (cVOC). The cVOC concentrations and microbial populations were monitored at the site before and after nZVI injection. The remedial injection successfully reduced parent compound concentrations on site. A period of abiotic degradation was followed by a period of enhanced biotic degradation. Results suggest that the nZVI/CMC injection created conditions that stimulated the native populations of organohalide-respiring microorganisms. The abundance of Dehalococcoides spp. immediately following the nZVI/CMC injection increased by 1 order of magnitude throughout the nZVI/CMC affected area relative to preinjection abundance. Distinctly higher cVOC degradation occurred as a result of the nZVI/CMC injection over a 3 week evaluation period when compared to control wells. This suggests that both abiotic and biotic degradation occurred following injection.

  8. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora.

    PubMed

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C Berny Mier Y; Mooney, Kailen A; Moreira, Xoaquín

    2018-01-12

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.

  9. The Late Embryogenesis Abundant Protein Family in Cassava (Manihot esculenta Crantz): Genome-Wide Characterization and Expression during Abiotic Stress.

    PubMed

    Wu, Chunlai; Hu, Wei; Yan, Yan; Tie, Weiwei; Ding, Zehong; Guo, Jianchun; He, Guangyuan

    2018-05-17

    Late embryogenesis abundant (LEA) proteins, as a highly diverse group of polypeptides, play an important role in plant adaptation to abiotic stress; however, LEAs from cassava have not been studied in cassava. In this study, 26 LEA members were genome-wide identified from cassava, which were clustered into seven subfamily according to evolutionary relationship, protein motif, and gene structure analyses. Chromosomal location and duplication event analyses suggested that 26 MeLEAs distributed in 10 chromosomes and 11 MeLEA paralogues were subjected to purifying selection. Transcriptomic analysis showed the expression profiles of MeLEAs in different tissues of stem, leaves, and storage roots of three accessions. Comparative transcriptomic analysis revealed that the function of MeLEAs in response to drought may be differentiated in different accessions. Compared with the wild subspecies W14, more MeLEA genes were activated in cultivated varieties Arg7 and SC124 after drought treatment. Several MeLEA genes showed induction under various stresses and related signaling treatments. Taken together, this study demonstrates the transcriptional control of MeLEAs in tissue development and the responses to abiotic stress in cassava and identifies candidate genes for improving crop resistance to abiotic stress.

  10. Predicting macropores in space and time by earthworms and abiotic controls

    NASA Astrophysics Data System (ADS)

    Hohenbrink, Tobias Ludwig; Schneider, Anne-Kathrin; Zangerlé, Anne; Reck, Arne; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Macropore flow increases infiltration and solute leaching. The macropore density and connectivity, and thereby the hydrological effectiveness, vary in space and time due to earthworms' burrowing activity and their ability to refill their burrows in order to survive drought periods. The aim of our study was to predict the spatiotemporal variability of macropore distributions by a set of potentially controlling abiotic variables and abundances of different earthworm species. We measured earthworm abundances and effective macropore distributions using tracer rainfall infiltration experiments in six measurement campaigns during one year at six field sites in Luxembourg. Hydrologically effective macropores were counted in three soil depths (3, 10, 30 cm) and distinguished into three diameter classes (<2, 2-6, >6 mm). Earthworms were sampled and determined to species-level. In a generalized linear modelling framework, we related macropores to potential spatial and temporal controlling factors. Earthworm species such as Lumbricus terrestris and Aporrectodea longa, local abiotic site conditions (land use, TWI, slope), temporally varying weather conditions (temperature, humidity, precipitation) and soil moisture affected the number of effective macropores. Main controlling factors and explanatory power of the models (uncertainty and model performance) varied depending on the depth and diameter class of macropores. We present spatiotemporal predictions of macropore density by daily-resolved, one year time series of macropore numbers and maps of macropore distributions at specific dates in a small-scale catchment with 5 m resolution.

  11. Strategies for Distinguishing Abiotic Chemistry from Martian Biochemistry in Samples Returned from Mars

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Callahan, M. P.; Elsila, J. E.; Stern, J. C.; Dworkin, J. P.

    2012-01-01

    A key goal in the search for evidence of extinct or extant life on Mars will be the identification of chemical biosignatures including complex organic molecules common to all life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, and nucleobases, which serve as the structural basis of information storage in DNA and RNA. However, many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1]. Therefore, an important challenge in the search for evidence of life on Mars will be distinguishing between abiotic chemistry of either meteoritic or martian origin from any chemical biosignatures from an extinct or extant martian biota. Although current robotic missions to Mars, including the 2011 Mars Science Laboratory (MSL) and the planned 2018 ExoMars rovers, will have the analytical capability needed to identify these key classes of organic molecules if present [2,3], return of a diverse suite of martian samples to Earth would allow for much more intensive laboratory studies using a broad array of extraction protocols and state-of-theart analytical techniques for bulk and spatially resolved characterization, molecular detection, and isotopic and enantiomeric compositions that may be required for unambiguous confirmation of martian life. Here we will describe current state-of-the-art laboratory analytical techniques that have been used to characterize the abundance and distribution of amino acids and nucleobases in meteorites, Apollo samples, and comet- exposed materials returned by the Stardust mission with an emphasis on their molecular characteristics that can be used to distinguish abiotic chemistry from biochemistry as we know it. The study of organic compounds in carbonaceous meteorites is highly relevant to Mars sample return analysis, since exogenous organic matter should have accumulated in the martian regolith over the last several billion years and the

  12. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2017-01-01

    One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.

  13. [Environmental behavior and effect of biomass-derived black carbon in soil: a review].

    PubMed

    Liu, Yu-Xue; Liu, Wei; Wu, Wei-Xiang; Zhong, Zhe-Ke; Chen, Ying-Xu

    2009-04-01

    Biomass-derived black carbon, also named biochar, has the characteristics of high stability against decay and high capability of adsorption, and can affect the environment through its interactions with climate and geology, playing a significant role in global climate change, carbon biogeochemical cycle, and environmental system. In recent years, more and more researchers in the fields of atmospheric sciences, geology, and environmental science focused on the environmental behavior and effect of biochar. As one possible source of the components with high aromatic structure in soil humus, biochar is of great importance in increasing soil carbon storage and improving soil fertility, and in maintaining the balance of soil ecosystem. This paper offered the latest information regarding the characteristics and biotic and abiotic oxidation mechanisms of biochar, its effects on global climate change, and the environmental effect of biochar in soil. Research prospects were briefly discussed on the environmental behavior and effect of biochar in soil ecosystem.

  14. Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.

    2017-11-01

    Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

  15. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana.

    PubMed

    Han, Zhaofen; Yu, Huimin; Zhao, Zhong; Hunter, David; Luo, Xinjuan; Duan, Jun; Tian, Lining

    2016-01-01

    The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.

  16. Seasonal variation in abiotic factors and ferulic acid toxicity in snail-attractant pellets against the intermediate host snail Lymnaea acuminata.

    PubMed

    Agrahari, P; Singh, D K

    2013-11-01

    Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline + ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12 months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid + starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September. © 2012 Blackwell Verlag GmbH.

  17. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

    PubMed

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-Xian; Reiter, Russel J; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-02-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. ABIOTIC DEHALOGENATION OF 1,2-DICHLOROETHANE AND 1,2-DIBROMETHANE IN AQUEOUS SOLUTION CONTAINING HYDROGEN SULFIDE

    EPA Science Inventory

    The detection of significant levels of halogenated ali- phatic contaminants in groundwater resources in the U- nited States (1, 2) has spurred a considerable effort to understand the various mechanisms-both microbiological and abiotic-by which these compounds may be trans- formed...

  19. FATE OF PAH COMPOUNDS IN TWO SOIL TYPES: INFLUENCE OF VOLATILIZATION, ABIOTIC LOSS, AND BIOLOGICAL ACTIVITY

    EPA Science Inventory

    The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. Volatilization and abiotic and biotic fate of the PAHs were determined using two soils not p...

  20. Isolation and Abiotic Stress Resistance Analyses of a Catalase Gene from Ipomoea batatas (L.) Lam.

    PubMed

    Yong, Bin; Wang, Xiaoyan; Xu, Pan; Zheng, Haiyan; Fei, Xueting; Hong, Zixi; Ma, Qinqin; Miao, Yuzhi; Yuan, Xianghua; Jiang, Yusong; Shao, Huanhuan

    2017-01-01

    As an indicator of the antioxidant capability of plants, catalase can detoxify reactive oxygen species (ROS) generated by environmental stresses. Sweet potato is one of the top six most important crops in the world. However, its catalases remain largely unknown. In this study, a catalase encoding gene, IbCAT2 (accession number: KY615708), was identified and cloned from sweet potato cv. Xushu 18. It contained a 1479 nucleotides' open reading frame (ORF). S-R-L, Q-K-L, and a putative calmodulin binding domain were located at the C-terminus of IbCAT2, which suggests that IbCAT2 could be a peroxisomal catalase. Next-generation sequencing (NGS) based quantitative analyses showed that IbCAT2 was mainly expressed in young leaves and expanding tuberous roots under normal conditions. When exposed to 10% PEG6000 or 200 mmol/L NaCl solutions, IbCAT2 was upregulated rapidly in the first 11 days and then downregulated, although different tissues showed different degree of change. Overexpression of IbCAT2 conferred salt and drought tolerance in Escherichia coli and Saccharomyces cerevisiae . The positive response of IbCAT2 to abiotic stresses suggested that IbCAT2 might play an important role in stress responses.

  1. Isolation and Abiotic Stress Resistance Analyses of a Catalase Gene from Ipomoea batatas (L.) Lam

    PubMed Central

    Yong, Bin; Wang, Xiaoyan; Xu, Pan; Zheng, Haiyan; Fei, Xueting; Hong, Zixi; Ma, Qinqin; Miao, Yuzhi; Yuan, Xianghua; Jiang, Yusong

    2017-01-01

    As an indicator of the antioxidant capability of plants, catalase can detoxify reactive oxygen species (ROS) generated by environmental stresses. Sweet potato is one of the top six most important crops in the world. However, its catalases remain largely unknown. In this study, a catalase encoding gene, IbCAT2 (accession number: KY615708), was identified and cloned from sweet potato cv. Xushu 18. It contained a 1479 nucleotides' open reading frame (ORF). S-R-L, Q-K-L, and a putative calmodulin binding domain were located at the C-terminus of IbCAT2, which suggests that IbCAT2 could be a peroxisomal catalase. Next-generation sequencing (NGS) based quantitative analyses showed that IbCAT2 was mainly expressed in young leaves and expanding tuberous roots under normal conditions. When exposed to 10% PEG6000 or 200 mmol/L NaCl solutions, IbCAT2 was upregulated rapidly in the first 11 days and then downregulated, although different tissues showed different degree of change. Overexpression of IbCAT2 conferred salt and drought tolerance in Escherichia coli and Saccharomyces cerevisiae. The positive response of IbCAT2 to abiotic stresses suggested that IbCAT2 might play an important role in stress responses. PMID:28638833

  2. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    PubMed Central

    Khraiwesh, Basel; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. PMID:21605713

  3. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults.

    PubMed

    Colinet, Hervé; Chertemps, Thomas; Boulogne, Isabelle; Siaussat, David

    2016-12-01

    Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Abiotic gas formation drives nitrogen loss from a desert ecosystem.

    PubMed

    McCalley, Carmody K; Sparks, Jed P

    2009-11-06

    In arid environments such as deserts, nitrogen is often the most limiting nutrient for biological activity. The majority of the ecosystem nitrogen flux is typically thought to be driven by production and loss of reactive nitrogen species by microorganisms in the soil. We found that high soil-surface temperatures (greater than 50 degrees C), driven by solar radiation, are the primary cause of nitrogen loss in Mojave Desert soils. This abiotic pathway not only enables the balancing of arid ecosystem nitrogen budgets, but also changes our view of global nitrogen cycling and the predicted impact of climate change and increased temperatures on nitrogen bioavailability.

  5. Evolution Under Environmental Stress at Macro- and Microscales

    PubMed Central

    Nevo, Eviatar

    2011-01-01

    Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589–610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717–745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) “Evolution Canyon”; 5) human brain evolution, and 6) global warming. PMID:21979157

  6. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems

    USDA-ARS?s Scientific Manuscript database

    Mercury (Hg) in the environment can have serious toxic effects on a variety of living organisms, and is a pollutant of concern worldwide. The reduction of mercury from the toxic Hg2+ form to Hg0 is especially important. One pathway for this reduction to occur is through an abiotic process with humic...

  7. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Xia, Shuhua; Liang, Baocui; Zhang, Wei

    2016-06-05

    Dinitroaniline herbicides such as trifluralin and pendimethalin are persistent bioaccumulative toxins to aquatic organisms. Thus, in-situ remediation of contaminated sediments is desired. This study investigated whether black carbons (BCs), including apple wood charcoal (BC1), rice straw biochar (BC2), and activated carbon (BC3), could facilitate abiotic reduction of trifluralin and pendimethalin by sulfides of environmentally-relevant concentrations in anoxic coastal sediments. The reduction rates of trifluralin and pendimethalin increased substantially with increasing BC dosages in the sediments. This enhancing effect was dependent on BC type with the greatest for BC3 followed by BC1 and BC2, which well correlated with their specific surface area. The pseudo-first order reduction rate constants (kobs) for BC3-amended sediment (2%) were 13- and 14 times the rate constants in the BC-free sediment. The reduction rates increased with increasing temperature from 8 to 25°C in the BC-amended sediment, following the Arrhenius relationship. Finally, through molecular modeling by density functional theory and reaction species identification from mass spectra, molecular pathways of trifluralin and pendimethalin reduction were elucidated. In contrary to the separate sequential reduction of each nitro group to amine group, both nitro groups, first reduced to nitroso, then eventually to amine groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Surveillance and Control of Malaria Transmission in Thailand using Remotely Sensed Meteorological and Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Soika, Valerii; Nigro, Joseph

    2007-01-01

    These slides address the use of remote sensing in a public health application. Specifically, this discussion focuses on the of remote sensing to detect larval habitats to predict current and future endemicity and identify key factors that sustain or promote transmission of malaria in a targeted geographic area (Thailand). In the Malaria Modeling and Surveillance Project, which is part of the NASA Applied Sciences Public Health Applications Program, we have been developing techniques to enhance public health's decision capability for malaria risk assessments and controls. The main objectives are: 1) identification of the potential breeding sites for major vector species; 2) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity; 3) implementation of a dynamic transmission model to identify the key factors that sustain or intensify malaria transmission. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. !> Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of the remotely sensed parameters. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Discrete event simulations are used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors

  9. Influence of environmental parameters on the concentration of subsurface dissolved methane in two hydroelectric power plants in Brazil

    NASA Astrophysics Data System (ADS)

    Silva, M. G.; Marani, L.; Alvala, P. C.

    2013-12-01

    Methane (CH4) is a trace gas in the atmosphere of great importance for atmospheric chemistry as one of the main greenhouse gases. There are different sources with the largest individual production associated with the degradation of organic matter submerged in flooded areas. The amount of dissolved methane that reaches the surface depends on the production in the sediments and consumption in the water column. Both processes are associated with microbial activity and consequently dependent on the physico-chemical environmental conditions. The construction of hydroelectric dams cause flooding of areas near the river that can change the characteristics of the environment and cause changes in subsurface methane concentration. In this work, we studied two hydroelectric plants located in Brazil: Batalha (17°20'39.52"S, 47°29'34.29"W), under construction when the samples were take, and Itaipu (25°24'45.00"S, 54°35'39.00"W) which has been floated over 30 years ago. The water samples to determine dissolved methane were collected approximately 5 cm near the surface. In each collection point was measured depth, water temperature, pH and redox potential. The range of dissolved methane between the two dams was similar: 0.07-10.33 μg/l (Batalha) and 0.15-10.93 μg/l (Itaipu). However, the Batalha's average (4.04 × 3.43 μg/l; median = 3.66 μg/l) was higher than that observed in Itaipu (2.15 × 1.59 μg/l; median = 2.53 μg/l). The influence of environmental parameters on the concentration of dissolved methane was evaluated by multivariate statistical techniques (Principal Component Analysis - PCA). All of the parameters had some correlation with dissolved methane, however, the greatest contribution in Batalha was associated with pH while in Itaipu was the depth. The pH variation of the various points studied in Batalha may be associated with periods of drought and flooding of the river and hence the incorporation of organic matter in the environment. The organisms

  10. Confinement Effects on Carbon Dioxide Methanation: A Novel Mechanism for Abiotic Methane Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Thu; Striolo, Alberto; Turner, C. Heath

    An important scientific debate focuses on the possibility of abiotic synthesis of hydrocarbons during oceanic crust-seawater interactions. While on-site measurements near hydrothermal vents support this possibility, laboratory studies have provided data that are in some cases contradictory. At conditions relevant for sub-surface environments it has been shown that classic thermodynamics favour the production of CO 2 from CH 4, while abiotic methane synthesis would require the opposite. However, confinement effects are known to alter reaction equilibria. This report shows that indeed thermodynamic equilibrium can be shifted towards methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal vents and deeper inmore » the magma-hydrothermal system is possible. We report reactive ensemble Monte Carlo simulations for the CO 2 methanation reaction. We compare the predicted equilibrium composition in the bulk gaseous phase to that expected in the presence of confinement. In the bulk phase we obtain excellent agreement with classic thermodynamic expectations. When the reactants can exchange between bulk and a confined phase our results show strong dependency of the reaction equilibrium conversions, X CO2, on nanopore size, nanopore chemistry, and nanopore morphology. Some physical conditions that could shift significantly the equilibrium composition of the reactive system with respect to bulk observations are discussed.« less

  11. Confinement Effects on Carbon Dioxide Methanation: A Novel Mechanism for Abiotic Methane Formation

    DOE PAGES

    Le, Thu; Striolo, Alberto; Turner, C. Heath; ...

    2017-08-21

    An important scientific debate focuses on the possibility of abiotic synthesis of hydrocarbons during oceanic crust-seawater interactions. While on-site measurements near hydrothermal vents support this possibility, laboratory studies have provided data that are in some cases contradictory. At conditions relevant for sub-surface environments it has been shown that classic thermodynamics favour the production of CO 2 from CH 4, while abiotic methane synthesis would require the opposite. However, confinement effects are known to alter reaction equilibria. This report shows that indeed thermodynamic equilibrium can be shifted towards methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal vents and deeper inmore » the magma-hydrothermal system is possible. We report reactive ensemble Monte Carlo simulations for the CO 2 methanation reaction. We compare the predicted equilibrium composition in the bulk gaseous phase to that expected in the presence of confinement. In the bulk phase we obtain excellent agreement with classic thermodynamic expectations. When the reactants can exchange between bulk and a confined phase our results show strong dependency of the reaction equilibrium conversions, X CO2, on nanopore size, nanopore chemistry, and nanopore morphology. Some physical conditions that could shift significantly the equilibrium composition of the reactive system with respect to bulk observations are discussed.« less

  12. [Response of Calliphora vicina larval hemocytes to abiotic and biotic foreign particles injection].

    PubMed

    Kind, T V

    2012-01-01

    Human erythrocytes injection into the body cavity of Calliphora vicina postfeeding larvae results to their fast binding by thrombocytoidal fragments with agglutinates formation. There were almost none sites of lysis and degradation of erythrocytes in agglutinates even after shape modification and strands generation. Exceptions are zones of agglutinates with juvenile hemocytes, where destruction of erythrocytes is seen. The sequential injection of erythrocytes and charcoal particles leads to charcoal adhesion at first to agglutinates periphery and later to more deep stratum of cytoplasm between the erythrocytes. Under such conditions agglutinate formation period is accompanied with morphology variations which do not influence the intensity of agglutinating reaction. Juvenile plasmatocytes phagocytized the charcoal particles regardless of their concentration and duration of previous contact with erythrocytes. When mixture of abiotic and biotic particles was injected into post feeding larvae, crythrocytes and charcoal generate independent aggregations in the range of separate agglutinates. At the same time plasmatocytes form nodules consisting of temporary cell aggregations covered with cores of non phagocytized charcoal particles. These data testified that presumably lectin receptors responsible for foreign biotic and abiotic particles recognition are very near but not identical for different types of hemocytes. They may be specifical (for plasmatocytes) or integrated to different parts of cellular membrane (in thrombocytoids).

  13. Effects of environmental and water quality parameters on the functioning of copepod assemblages in tropical estuaries

    NASA Astrophysics Data System (ADS)

    Araujo, Adriana V.; Dias, Cristina O.; Bonecker, Sérgio L. C.

    2017-07-01

    We examined changes in the functioning of copepod assemblages with increasing pollution in estuaries, using sampling standardization of the salinity range to enable comparisons. Copepod assemblages were analyzed in four southeast Brazilian estuaries with different water quality levels and hydrodynamic characteristics over two years. We obtained mesozooplankton samples together with environmental and water quality parameters in the estuaries, every two months under predetermined salinities ranging from 15 to 25. The values of parameters, except species size, associated with the functioning of the copepod assemblages (biomass, productivity, and turnover rate) did not differ among estuaries. However, in the more polluted estuaries, the biomass and productivity of copepod assemblages of mesozooplankton were negatively correlated with concentration of pollution indicator parameters. Conversely, in the less polluted estuaries some degree of enrichment still seems to increase the system biomass and productivity, as these parameters were inversely related to indicators of improved water quality. The pollution level of estuaries distorted the relationship between temperature and the efficiency of converting energy to organic matter. In the less polluted estuaries, the relationship between turnover rate and temperature was over 70%, while in the most polluted estuaries, this relationship was only approximately 50%. Our results demonstrated that the functioning of assemblages in the estuaries was affected differently by increasing pollution depending on the water quality level of the system. Thus, investigating the functioning of assemblages can be a useful tool for the analysis of estuarine conditions.

  14. Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 1. Causal analysis

    NASA Astrophysics Data System (ADS)

    Gogina, Mayya; Glockzin, Michael; Zettler, Michael L.

    2010-01-01

    In this study we relate patterns in the spatial distribution of macrofaunal communities to patterns in near-bottom environmental parameters, analysing the data observed in a limited area in the western Baltic Sea. The data used represents 208 stations, sampled during the years 2000 to 2007 simultaneously for benthic macrofauna, associated sediment and near-bottom environmental characteristics, in a depth range from 7.5 to 30 m. Only one degree of longitude wide, the study area is geographically bounded by the eastern part of the Mecklenburg Bight and the southwestern Darss Sill Area. Spatial distribution of benthic macrofauna is related to near-bottom environmental patterns by means of various statistical methods (e.g. rank correlation, hierarchical clustering, nMDS, BIO-ENV, CCA). Thus, key environmental descriptors were disclosed. Within the area of investigation, these were: water depth, regarded as a proxy for other environmental factors, and total organic content. Distinct benthic assemblages are defined and discriminated by particular species ( Hydrobia ulvae-Scoloplos armiger, Lagis koreni-Mysella bidentata and Capitella capitata-Halicryptus spinulosus). Each assemblage is related to different spatial subarea and characterised by a certain variability of environmental factors. This study represents a basis for the predictive modeling of species distribution in the selected study area.

  15. Multi-regional synthesis of temporal trends in biotic assemblages in streams and rivers of the continental United States

    USGS Publications Warehouse

    Miller, Matthew P.; Brasher, Anne M.D.; Keenen, Jonathan G.

    2013-01-01

    Biotic assemblages in aquatic ecosystems are excellent integrators and indicators of changing environmental conditions within a watershed. Therefore, temporal changes in abiotic environmental variables often can be inferred from temporal changes in biotic assemblages. Algae, macroinvertebrate, and fish assemblage data were collected from 91 sampling sites in 4 geographic regions (northeastern/north-central, southeastern, south-central, and western), collectively encompassing the continental United States, from 1993 to 2009 as part of the U.S. Geological Survey National Water-Quality Assessment Program. This report uses a multivariate approach to synthesize temporal trends in biotic assemblages and correlations with relevant abiotic parameters as a function of biotic assemblage, geographic region, and land use. Of the three groups of biota, algal assemblages had temporal trends at the greatest percentage of sites. Of the regions, a greater percentage of sites in the northeastern/north-central and western regions had temporal trends in biotic assemblages. In terms of land use, a greater percentage of watersheds draining agricultural, urban, and undeveloped areas had significant temporal changes in biota, as compared to watersheds with mixed use. Correlations between biotic assemblages and abiotic variables indicate that, in general, macroinvertebrate assemblages correlated with water quality and fish assemblages correlated with physical habitat. Taken together, results indicate that there are regional differences in how individual biotic assemblages (algae, macroinvertebrates, and fish) respond to different abiotic drivers of change.

  16. HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock.

    PubMed

    Kolmos, Elsebeth; Chow, Brenda Y; Pruneda-Paz, Jose L; Kay, Steve A

    2014-11-11

    The circadian clock perceives environmental signals to reset to local time, but the underlying molecular mechanisms are not well understood. Here we present data revealing that a member of the heat shock factor (Hsf) family is involved in the input pathway to the plant circadian clock. Using the yeast one-hybrid approach, we isolated several Hsfs, including Heat Shock Factor B2b (HsfB2b), a transcriptional repressor that binds the promoter of Pseudo Response Regulator 7 (PRR7) at a conserved binding site. The constitutive expression of HsfB2b leads to severely reduced levels of the PRR7 transcript and late flowering and elongated hypocotyls. HsfB2b function is important during heat and salt stress because HsfB2b overexpression sustains circadian rhythms, and the hsfB2b mutant has a short circadian period under these conditions. HsfB2b is also involved in the regulation of hypocotyl growth under warm, short days. Our findings highlight the role of the circadian clock as an integrator of ambient abiotic stress signals important for the growth and fitness of plants.

  17. Utilizing genetic resources and precision agriculture to enhance resistance to biotic and abiotic stress in watermelon

    USDA-ARS?s Scientific Manuscript database

    Originally from Africa, watermelon is a staple crop in South Carolina and rich source of important phytochemicals that promote human health. As a result of many years of domestication and selection for desired fruit quality, modern watermelon cultivars are susceptible to biotic and abiotic stress. T...

  18. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets

    PubMed Central

    2011-01-01

    Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously

  19. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana.

    PubMed

    Lopes, Karina L; Rodrigues, Ricardo A O; Silva, Marcos C; Braga, Wiliane G S; Silva-Filho, Marcio C

    2018-01-01

    Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein), which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C 4 -type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP) showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana .

  20. Enhanced bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors.

    PubMed

    Sharma, Munish; Ahuja, Ashok; Gupta, Rajinder; Mallubhotla, Sharada

    2015-01-01

    The effect of different abiotic elicitors [jasmonic acid, copper sulphate (CuSO4) and salicyclic acid] at varying concentrations on the stimulation of biomass and bacoside production in in vitro Bacopa monnieri shoot culture was studied. A systematic study conducted over a period of 35 days indicated that the maximum bacoside production (6.74 mg g(-1) dry weight (DW)) was obtained after a lag of 7 days and thereafter, the content decreased gradually to again increase at 28 days (5.91 mg g(-1) DW). Therefore, elicitation experiments were carried out over a period of 3, 6 and 9 days. The shoot cultures treated with 45 mg L(-1) of CuSO4 exhibited the highest bacoside content of 8.73 mg g(-1) DW (∼1.42-fold higher) than in control cultures (6.14 mg g(-1) DW). This study indicates the effectiveness of abiotic elicitation on bacoside production in in vitro shoot cultures of this medicinally important herb known for its memory-enhancing properties.

  1. Adaptation of primocane fruiting raspberry plants to environmental factors under the influence of Bacillus strains in Western Siberia.

    PubMed

    Belyaev, Anatoly A; Shternshis, Margarita V; Chechenina, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2017-03-01

    In geographical locations with a short vegetative season and continental climate that include Western Siberia, growing primocane fruiting raspberry varieties becomes very important. However, it is necessary to help the plants to overcome the environmental stress factors. This study aimed to evaluate the impact of the pre-planting treatment of primocane fruiting raspberry root system with Bacillus strains on the following plant development under variable environmental conditions. In 2012, Bacillus subtilis RCAM В-10641, Bacillus amyloliquefaciens RCAM В-10642, and Bacillus licheniformis RCAM В-10562 were used for inoculating the root system of primocane fruiting raspberry cultivar Nedosyagaemaya before planting. The test suspensions were 10 5  CFU/ml for each bacterial strains. The effects of this treatment on plant growth and crop productivity were estimated in 2012-2015 growing seasons differed by environmental conditions. The pre-planting treatment by the bacterial strains increased the number of new raspberry canes and the number of plant generative organs as well as crop productivity compared to control. In addition, these bacilli acted as the standard humic fertilizer. Variable environmental factors such as air temperature, relative humidity, and winter and spring frosts seriously influenced the plant biological parameters and crop productivity of control plants. At the same time, the pre-planting primocane fruiting root treatment by Bacillus strains decreased the negative effects of abiotic stresses on plants in all years of the research. Of the three strains studied, B. subtilis was shown to reveal the best results in adaptation of primocane fruiting raspberry plants to environmental factors in Western Siberia. For the first time, the role of Bacillus strains in enhancing frost resistance in primocane fruiting raspberry plants was shown. These bacilli are capable of being the basis of multifunctional biological formulations for effective plant and

  2. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions

    PubMed Central

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidón, Antonio; Wankhade, Shantanu; Sánchez, Héctor; Llinares, Josep; Vicente, Oscar

    2014-01-01

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K+/Na+ ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na+, Cl−, K+ and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However—except for P. crassifolia—proline may play a role in stress tolerance based on its ‘osmoprotectant’ functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural

  3. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    PubMed

    Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  4. Abiotic versus Biotic Drivers of Ocean pH Variation under Fast Sea Ice in McMurdo Sound, Antarctica

    PubMed Central

    Matson, Paul G.; Washburn, Libe; Martz, Todd R.; Hofmann, Gretchen E.

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes – in this case algal photosynthesis – to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound. PMID:25221950

  5. The effect of environmental parameters to dust concentration in air-conditioned space

    NASA Astrophysics Data System (ADS)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  6. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    NASA Astrophysics Data System (ADS)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  7. Genome-Wide Analysis of C2H2 Zinc-Finger Family Transcription Factors and Their Responses to Abiotic Stresses in Poplar (Populus trichocarpa)

    PubMed Central

    Liu, Quangang; Wang, Zhanchao; Xu, Xuemei; Zhang, Haizhen; Li, Chenghao

    2015-01-01

    Background C2H2 zinc-finger (C2H2-ZF) proteins are a large gene family in plants that participate in various aspects of normal plant growth and development, as well as in biotic and abiotic stress responses. To date, no overall analysis incorporating evolutionary history and expression profiling of the C2H2-ZF gene family in model tree species poplar (Populus trichocarpa) has been reported. Principal Findings Here, we identified 109 full-length C2H2-ZF genes in P. trichocarpa, and classified them into four groups, based on phylogenetic analysis. The 109 C2H2-ZF genes were distributed unequally on 19 P. trichocarpa linkage groups (LGs), with 39 segmental duplication events, indicating that segmental duplication has been important in the expansion of the C2H2-ZF gene family. Promoter cis-element analysis indicated that most of the C2H2-ZF genes contain phytohormone or abiotic stress-related cis-elements. The expression patterns of C2H2-ZF genes, based on heatmap analysis, suggested that C2H2-ZF genes are involved in tissue and organ development, especially root and floral development. Expression analysis based on quantitative real-time reverse transcription polymerase chain reaction indicated that C2H2-ZF genes are significantly involved in drought, heat and salt response, possibly via different mechanisms. Conclusions This study provides a thorough overview of the P. trichocarpa C2H2-ZF gene family and presents a new perspective on the evolution of this gene family. In particular, some C2H2-ZF genes may be involved in environmental stress tolerance regulation. PtrZFP2, 19 and 95 showed high expression levels in leaves and/or roots under environmental stresses. Additionally, this study provided a solid foundation for studying the biological roles of C2H2-ZF genes in Populus growth and development. These results form the basis for further investigation of the roles of these candidate genes and for future genetic engineering and gene functional studies in Populus. PMID

  8. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats

    PubMed Central

    2012-01-01

    Background Anopheles arabiensis (Diptera: Culicidae) is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats. Methods In an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties. Results Whilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7]) was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]). Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat. Conclusions If the larval ecology of An. arabiensis is in general very complex and factors affecting

  9. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    PubMed

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transcript Profiling Reveals the Presence of Abiotic Stress and Developmental Stage Specific Ascorbate Oxidase Genes in Plants

    PubMed Central

    Batth, Rituraj; Singh, Kapil; Kumari, Sumita; Mustafiz, Ananda

    2017-01-01

    Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants. PMID:28261251

  11. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.

    PubMed

    Hossain, Mohammad Anwar; Li, Zhong-Guang; Hoque, Tahsina Sharmin; Burritt, David J; Fujita, Masayuki; Munné-Bosch, Sergi

    2018-01-01

    Plants growing under field conditions are constantly exposed, either simultaneously or sequentially, to more than one abiotic stress factor. Plants have evolved sophisticated sensory systems to perceive a number of stress signals that allow them to activate the most adequate response to grow and survive in a given environment. Recently, cross-stress tolerance (i.e. tolerance to a second, strong stress after a different type of mild primary stress) has gained attention as a potential means of producing stress-resistant crops to aid with global food security. Heat or cold priming-induced cross-tolerance is very common in plants and often results from the synergistic co-activation of multiple stress signalling pathways, which involve reactive nitrogen species (RNS), reactive oxygen species (ROS), reactive carbonyl species (RCS), plant hormones and transcription factors. Recent studies have shown that the signalling functions of ROS, RNS and RCS, most particularly hydrogen peroxide, nitric oxide (NO) and methylglyoxal (MG), provide resistance to abiotic stresses and underpin cross-stress tolerance in plants by modulating the expression of genes as well as the post-translational modification of proteins. The current review highlights the key regulators and mechanisms underlying heat or cold priming-induced cross-stress tolerance in plants, with a focus on ROS, MG and NO signalling, as well as on the role of antioxidant and glyoxalase systems, osmolytes, heat-shock proteins (HSPs) and hormones. Our aim is also to provide a comprehensive idea on the topic for researchers using heat or cold priming-induced cross-tolerance as a mechanism to improve crop yields under multiple abiotic stresses.

  12. The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland.

    PubMed

    Magalhaes, Isabel S; D'Agostino, Daniele; Hohenlohe, Paul A; MacColl, Andrew D C

    2016-09-01

    There has been a large focus on the genetics of traits involved in adaptation, but knowledge of the environmental variables leading to adaptive changes is surprisingly poor. Combined use of environmental data with morphological and genomic data should allow us to understand the extent to which patterns of phenotypic and genetic diversity within a species can be explained by the structure of the environment. Here, we analyse the variation of populations of three-spined stickleback from 27 freshwater lakes on North Uist, Scotland, that vary greatly in their environment, to understand how environmental and genetic constraints contribute to phenotypic divergence. We collected 35 individuals per population and 30 abiotic and biotic environmental parameters to characterize variation across lakes and analyse phenotype-environment associations. Additionally, we used RAD sequencing to estimate the genetic relationships among a subset of these populations. We found a large amount of phenotypic variation among populations, most prominently in armour and spine traits. Despite large variation in the abiotic environment, namely in ion composition, depth and dissolved organic Carbon, more phenotypic variation was explained by the biotic variables (presence of predators and density of predator and competitors), than by associated abiotic variables. Genetic structure among populations was partly geographic, with closer populations being more similar. Altogether, our results suggest that differences in body shape among stickleback populations are the result of both canalized genetic and plastic responses to environmental factors, which shape fish morphology in a predictable direction regardless of their genetic starting point. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae)

    PubMed Central

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-01-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  14. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae).

    PubMed

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-12-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  15. Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps

    PubMed Central

    Stefanidis, Konstantinos; Papatheodorou, George

    2018-01-01

    During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters’ relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl-a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication. PMID:29562675

  16. A Hypothesis for the Abiotic and Non-Martian Origins of Putative Signs of Ancient Martian Life in ALH84001

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    2001-01-01

    Putative evidence of martian life in ALH84001 can be explained by abiotic and non-martian processes consistent with the meteorite's geological history. Additional information is contained in the original extended abstract.

  17. The effects of simulated space environmental parameters on six commercially available composite materials

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Sykes, George F., Jr.

    1989-01-01

    The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.

  18. Fungal and herbivore elicitation of a newly identified maize sesquiterpenoid, zealexin A4, is constrained by abiotic stress

    USDA-ARS?s Scientific Manuscript database

    The existence of microbe- or abiotic stress-inducible antimicrobials, termed phytoalexins, has only recently been discovered in maize. Identification and structural elucidation of the labdane-related diterpenoid kauralexins and sesquiterpenoid zealexins has collectively resulted in 10 novel pathogen...

  19. Advancing environmental risk assessment for transgenic biofeedstock crops

    PubMed Central

    Wolt, Jeffrey D

    2009-01-01

    Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization. PMID:19883509

  20. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum).

    PubMed

    Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng

    2014-01-01

    Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.