Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been ...
PubMed Central
RNA regulatory processes such as transcription, degradation and stabilization control are the major mechanisms that determine the levels of mRNAs in plants. Transcriptional and post-transcriptional regulation of RNAs is drastically altered during plant stress responses. As a result of these molecular processes, plants are capable of adjusting to changing ...
PubMed
Expression of baculovirus anti-apoptotic p35 gene in plants on biotic stress responses has been well studied but its function on abiotic stress has not been documented. In the present study, the p35 gene from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed in ...
BackgroundCultivated chickpea (Cicer arietinum) has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to ...
Progress in understanding the mechanisms of adaptive plant abiotic stress response has historically come from two separate fields. Molecular biologists employ mutagenic screens, experimental manipulations, and controlled stress treatment to identify genes that, when perturbed, have fairly large effects on ...