Sample records for ablation breath-held ungated

  1. Unilateral ablation of pre-Botzinger complex disrupts breathing during sleep but not wakefulness.

    PubMed

    McKay, Leanne C; Feldman, Jack L

    2008-07-01

    In adult rats, bilateral ablation of pre-Bötzinger complex (preBötC) neurokinin 1-expressing (NK1R) neurons leads to a progressive and irreversible disruption in breathing pattern, initially during sleep, eventually resulting in an ataxic breathing pattern during wakefulness. Here we determine whether ablation of fewer preBötC NK1R neurons leads to a persistent pattern of disordered breathing during sleep but not during wakefulness. Adult male Sprague-Dawley rats (n = 12) were instrumented to record diaphragmatic, abdominal, and neck EMG, and EEG. Fourteen days later, a second surgery was performed to stereotaxically microinject into the preBötC on one side the toxin saporin conjugated to substance P (SP-SAP), which selectively ablates NK1R neurons. Postinjection, rats were monitored within a plethysmograph until they were killed (Days 21-51). At Days 6-9 post-unilateral SP-SAP injection, respiratory pattern during sleep, particularly REM sleep, became increasingly disordered, characterized by an increase in frequency of central sleep apnea and hypopneas (36.8 +/- 7.4 episodes/h of REM vs. 6 +/- 2.0 episodes/h in preinjection controls; P < 0.05), whereas breathing during resting wakefulness remained stable. Unlike bilateral SP-SAP-injected rats, an ataxic breathing pattern did not develop during wakefulness. Rats that were monitored up to 51 days post-SP-SAP injection continued to have sleep-disordered breathing; breathing during wakefulness remained relatively stable. Histologic analysis of the ventrolateral medulla confirmed that NK1R neurons within the preBötC on the injected but not on the contralateral side of the medulla were ablated. Gradual loss of preBötC NK1R neurons may be an underlying factor of sleep-disordered breathing, in particular of central sleep apnea.

  2. Unilateral Ablation of Pre-Bötzinger Complex Disrupts Breathing during Sleep but Not Wakefulness

    PubMed Central

    McKay, Leanne C.; Feldman, Jack L.

    2008-01-01

    Rationale: In adult rats, bilateral ablation of pre-Bötzinger complex (preBötC) neurokinin 1–expressing (NK1R) neurons leads to a progressive and irreversible disruption in breathing pattern, initially during sleep, eventually resulting in an ataxic breathing pattern during wakefulness. Objectives: Here we determine whether ablation of fewer preBötC NK1R neurons leads to a persistent pattern of disordered breathing during sleep but not during wakefulness. Methods: Adult male Sprague-Dawley rats (n = 12) were instrumented to record diaphragmatic, abdominal, and neck EMG, and EEG. Fourteen days later, a second surgery was performed to stereotaxically microinject into the preBötC on one side the toxin saporin conjugated to substance P (SP-SAP), which selectively ablates NK1R neurons. Measurements and Main Results: Postinjection, rats were monitored within a plethysmograph until they were killed (Days 21–51). At Days 6–9 post–unilateral SP-SAP injection, respiratory pattern during sleep, particularly REM sleep, became increasingly disordered, characterized by an increase in frequency of central sleep apnea and hypopneas (36.8 ± 7.4 episodes/h of REM vs. 6 ± 2.0 episodes/h in preinjection controls; P < 0.05), whereas breathing during resting wakefulness remained stable. Unlike bilateral SP-SAP–injected rats, an ataxic breathing pattern did not develop during wakefulness. Rats that were monitored up to 51 days post–SP-SAP injection continued to have sleep-disordered breathing; breathing during wakefulness remained relatively stable. Histologic analysis of the ventrolateral medulla confirmed that NK1R neurons within the preBötC on the injected but not on the contralateral side of the medulla were ablated. Conclusions: Gradual loss of preBötC NK1R neurons may be an underlying factor of sleep-disordered breathing, in particular of central sleep apnea. PMID:18420958

  3. Free-breathing imaging of the heart using 2D cine-GRICS (generalized reconstruction by inversion of coupled systems) with assessment of ventricular volumes and function.

    PubMed

    Vuissoz, Pierre-André; Odille, Freddy; Fernandez, Brice; Lohezic, Maelene; Benhadid, Adnane; Mandry, Damien; Felblinger, Jacques

    2012-02-01

    To assess cardiac function by means of a novel free-breathing cardiac magnetic resonance imaging (MRI) strategy. A stack of ungated 2D steady-state free precession (SSFP) slices was acquired during free breathing and reconstructed as cardiac cine imaging based on the generalized reconstruction by inversion of coupled systems (GRICS). A motion-compensated sliding window approach allows reconstructing cine movies with most motion artifacts cancelled. The proposed reconstruction uses prior knowledge from respiratory belts and electrocardiogram recordings and features a piecewise linear model that relates the electrocardiogram signal to cardiac displacements. The free-breathing protocol was validated in six subjects against a standard breath-held protocol. Image sharpness, as assessed by the image gradient entropy, was comparable to that of breath-held images and significantly better than in uncorrected images. Volumetric parameters of cardiac function in the left ventricle (LV) and right ventricle (RV) were similar, including end-systolic volumes, end-diastolic volumes and mass, stroke volumes, and ejection fractions (with differences of 3% ± 2.4 in the LV and 2.9% ± 4.4 in the RV). The duration of the free-breathing protocol was nearly the same as the breath-held protocol. Free-breathing cine-GRICS enables accurate assessment of volumetric parameters of cardiac function with efficient correction of motion. Copyright © 2011 Wiley Periodicals, Inc.

  4. Sleep-disordered breathing after targeted ablation of preBötzinger complex neurons.

    PubMed

    McKay, Leanne C; Janczewski, Wiktor A; Feldman, Jack L

    2005-09-01

    Ablation of preBötzinger complex (preBötC) neurons, critical for respiratory rhythm generation, resulted in a progressive, increasingly severe disruption of respiratory pattern, initially during sleep and then also during wakefulness in adult rats. Sleep-disordered breathing is highly prevalent in elderly humans and in some patients with neurodegenerative disease. We propose that sleep-disordered breathing results from loss of preBötC neurons and could underlie death during sleep in these populations.

  5. Sleep-disordered breathing after targeted ablation of preBötzinger complex neurons

    PubMed Central

    McKay, Leanne C; Janczewski, Wiktor A; Feldman, Jack L

    2010-01-01

    Ablation of preBötzinger complex (preBötC) neurons, critical for respiratory rhythm generation, resulted in a progressive, increasingly severe disruption of respiratory pattern, initially during sleep and then also during wakefulness in adult rats. Sleep-disordered breathing is highly prevalent in elderly humans and in some patients with neurodegenerative disease. We propose that sleep-disordered breathing results from loss of preBötC neurons and could underlie death during sleep in these populations. PMID:16116455

  6. Comparison of respiratory-gated and respiratory-ungated planning in scattered carbon ion beam treatment of the pancreas using four-dimensional computed tomography.

    PubMed

    Mori, Shinichiro; Yanagi, Takeshi; Hara, Ryusuke; Sharp, Gregory C; Asakura, Hiroshi; Kumagai, Motoki; Kishimoto, Riwa; Yamada, Shigeru; Kato, Hirotoshi; Kandatsu, Susumu; Kamada, Tadashi

    2010-01-01

    We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function of respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.

  7. Comparison of Respiratory-Gated and Respiratory-Ungated Planning in Scattered Carbon Ion Beam Treatment of the Pancreas Using Four-Dimensional Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro, E-mail: shinshin@nirs.go.j; Yanagi, Takeshi; Hara, Ryusuke

    2010-01-15

    Purpose: We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Methods and Materials: Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function ofmore » respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Results: Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Conclusions: Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.« less

  8. Dosimetric impact of a change in breathing period on VMAT stereotactic ablative body radiotherapy

    NASA Astrophysics Data System (ADS)

    Olding, T.; Alexander, KM

    2017-05-01

    The dosimetric impact of a change in breathing period during treatment was assessed for a volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) lung plan optimized according to our centre’s planning protocol. Plan delivery was evaluated at three breathing rates ranging from 7 to 23 breaths-per-minute (BPM) against the planning anatomy (15 BPM) calculated dose. Dynamic ion chamber, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose within the internal gross tumour volume (IGTV) target.

  9. Fluoroscopy of spontaneous breathing is more sensitive than phrenic nerve stimulation for detection of right phrenic nerve injury during cryoballoon ablation of atrial fibrillation.

    PubMed

    Linhart, Markus; Nielson, Annika; Andrié, René P; Mittmann-Braun, Erica L; Stöckigt, Florian; Kreuz, Jens; Nickenig, Georg; Schrickel, Jan W; Lickfett, Lars M

    2014-08-01

    Right phrenic nerve palsy (PNP) is a typical complication of cryoballoon ablation of the right-sided pulmonary veins (PVs). Phrenic nerve function can be monitored by palpating the abdomen during phrenic nerve pacing from the superior vena cava (SVC pacing) or by fluoroscopy of spontaneous breathing. We sought to compare the sensitivity of these 2 techniques during cryoballoon ablation for detection of PNP. A total of 133 patients undergoing cryoballoon ablation were monitored with both SVC pacing and fluoroscopy of spontaneous breathing during ablation of the right superior PV. PNP occurred in 27/133 patients (20.0%). Most patients (89%) had spontaneous recovery of phrenic nerve function at the end of the procedure or on the following day. Three patients were discharged with persistent PNP. All PNP were detected first by fluoroscopic observation of diaphragm movement during spontaneous breathing, while diaphragm could still be stimulated by SVC pacing. In patients with no recovery until discharge, PNP occurred at a significantly earlier time (86 ± 34 seconds vs. 296 ± 159 seconds, P < 0.001). No recovery occurred in 2/4 patients who were ablated with a 23 mm cryoballoon as opposed to 1/23 patients with a 28 mm cryoballoon (P = 0.049). Fluoroscopic assessment of diaphragm movement during spontaneous breathing is more sensitive for detection PNP as compared to SVC pacing. PNP as assessed by fluoroscopy is frequent (20.0%) and carries a high rate of recovery (89%) until discharge. Early onset of PNP and use of 23 mm cryoballoon are associated with PNP persisting beyond hospital discharge. © 2014 Wiley Periodicals, Inc.

  10. Breath-held MR Cholangiopancreatography (MRCP) using a 3D Dixon fat–water separated balanced steady state free precession sequence

    PubMed Central

    Glockner, James F.; Saranathan, Manojkumar; Bayram, Ersin; Lee, Christine U.

    2014-01-01

    A novel 3D breath-held Dixon fat–water separated balanced steady state free precession (b-SSFP) sequence for MR cholangiopancreatography (MRCP) is described and its potential clinical utility assessed in a series of patients. The main motivation is to develop a robust breath-held alternative to the respiratory gated 3D Fast Spin Echo (FSE) sequence, the current clinical sequence of choice for MRCP. Respiratory gated acquisitions are susceptible to motion artifacts and blurring in patients with significant diaphragmatic drift, erratic respiratory rhythms or sleep apnea. A two point Dixon fat–water separation scheme was developed which eliminates signal loss arising from B0 inhomogeneity effects and minimizes artifacts from perturbation of the b-SSFP steady state. Preliminary results from qualitative analysis of 49 patients demonstrate robust performance of the 3D Dixon b-SSFP sequence with diagnostic image quality acquired in a 20–24 s breath-hold. PMID:23876262

  11. WE-DE-209-05: Self-Held Breath Control with Respiratory Monitoring and Feedback Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gifford, K.

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBHmore » patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.« less

  12. Respiratory motion influence on catheter contact force during radio frequency ablation procedures

    NASA Astrophysics Data System (ADS)

    Koch, Martin; Brost, Alexander; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation is a common treatment option for atrial fibrillation. A common treatment strategy is pulmonary vein isolation. In this case, individual ablation points need to be placed around the ostia of the pulmonary veins attached to the left atrium to generate transmural lesions and thereby block electric signals. To achieve a durable transmural lesion, the tip of the catheter has to be stable with a sufficient tissue contact during radio-frequency ablation. Besides the steerable interface operated by the physician, the movement of the catheter is also influenced by the heart and breathing motion - particularly during ablation. In this paper we investigate the influence of breathing motion on different areas of the endocardium during radio frequency ablation. To this end, we analyze the frequency spectrum of the continuous catheter contact force to identify areas with increased breathing motion using a classification method. This approach has been applied to clinical patient data acquired during three pulmonary vein isolation procedures. Initial findings show that motion due to respiration is more pronounced at the roof and around the right pulmonary veins.

  13. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Daniel, E-mail: Daniel.Pham@petermac.org; Kron, Tomas; Foroudi, Farshad

    2013-10-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist'smore » discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.« less

  14. Feasibility and potential utility of multicomponent exhaled breath analysis for predicting development of radiation pneumonitis after stereotactic ablative radiotherapy.

    PubMed

    Moré, Jayaji M; Eclov, Neville C W; Chung, Melody P; Wynne, Jacob F; Shorter, Joanne H; Nelson, David D; Hanlon, Alexandra L; Burmeister, Robert; Banos, Peter; Maxim, Peter G; Loo, Billy W; Diehn, Maximilian

    2014-07-01

    In this prospective pilot study, we evaluated the feasibility and potential utility of measuring multiple exhaled gases as biomarkers of radiation pneumonitis (RP) in patients receiving stereotactic ablative radiotherapy (SABR) for lung tumors. Breath analysis was performed for 26 patients receiving SABR for lung tumors. Concentrations of exhaled nitric oxide (eNO), carbon monoxide (eCO), nitrous oxide (eN2O), and carbon dioxide (eCO2) were measured before and immediately after each fraction using real-time, infrared laser spectroscopy. RP development (CTCAE grade ≥2) was correlated with baseline gas concentrations, acute changes in gas concentrations after each SABR fraction, and dosimetric parameters. Exhaled breath analysis was successfully completed in 77% of patients. Five of 20 evaluable patients developed RP at a mean of 5.4 months after SABR. Acute changes in eNO and eCO concentrations, defined as percent changes between each pre-fraction and post-fraction measurement, were significantly smaller in RP versus non-RP cases (p = 0.022 and 0.015, respectively). In an exploratory analysis, a combined predictor of baseline eNO greater than 24 parts per billion and acute decrease in eCO less than 5.5% strongly correlated with RP incidence (p =0.0099). Neither eN2O nor eCO2 concentrations were significantly associated with RP development. Although generally higher in patients destined to develop RP, dosimetric parameters were not significantly associated with RP development. The majority of SABR patients in this pilot study were able to complete exhaled breath analysis. Baseline concentrations and acute changes in concentrations of exhaled breath components were associated with RP development after SABR. If our findings are validated, exhaled breath analysis may become a useful approach for noninvasive identification of patients at highest risk for developing RP after SABR.

  15. Respiratory-gated CT as a tool for the simulation of breathing artifacts in PET and PET/CT.

    PubMed

    Hamill, J J; Bosmans, G; Dekker, A

    2008-02-01

    Respiratory motion in PET and PET/CT blurs the images and can cause attenuation-related errors in quantitative parameters such as standard uptake values. In rare instances, this problem even causes localization errors and the disappearance of tumors that should be detectable. Attenuation errors are severe near the diaphragm and can be enhanced when the attenuation correction is based on a CT series acquired during a breath-hold. To quantify the errors and identify the parameters associated with them, the authors performed a simulated PET scan based on respiratory-gated CT studies of five lung cancer patients. Diaphragmatic motion ranged from 8 to 25 mm in the five patients. The CT series were converted to 511-keV attenuation maps which were forward-projected and exponentiated to form sinograms of PET attenuation factors at each phase of respiration. The CT images were also segmented to form a PET object, moving with the same motion as the CT series. In the moving PET object, spherical 20 mm mobile tumors were created in the vicinity of the dome of the liver and immobile 20 mm tumors in the midchest region. The moving PET objects were forward-projected and attenuated, then reconstructed in several ways: phase-matched PET and CT, gated PET with ungated CT, ungated PET with gated CT, and conventional PET. Spatial resolution and statistical noise were not modeled. In each case, tumor uptake recovery factor was defined by comparing the maximum reconstructed pixel value with the known correct value. Mobile 10 and 30 mm tumors were also simulated in the case of a patient with 11 mm of breathing motion. Phase-matched gated PET and CT gave essentially perfect PET reconstructions in the simulation. Gated PET with ungated CT gave tumors of the correct shape, but recovery was too large by an amount that depended on the extent of the motion, as much as 90% for mobile tumors and 60% for immobile tumors. Gated CT with ungated PET resulted in blurred tumors and caused recovery

  16. Breath-to-breath hypercapnic response in neonatal rats: temperature dependency of the chemoreflexes and potential implications for breathing stability.

    PubMed

    Cummings, Kevin J; Frappell, Peter B

    2009-07-01

    The breathing of newborns is destabilized by warm temperatures. We hypothesized that in unanesthetized, intact newborn rats, body temperature (T(B)) influences the peripheral chemoreflex response (PCR response) to hypercapnia. To test this, we delivered square-wave challenges of 8% CO(2) in air to postnatal day 4-5 (P4-P5) rats held at a T(B) of 30 degrees C (Cold group, n = 11), 33 degrees C (Cool group, n = 10), and 35 degrees C thermoneutral zone group [thermoneutral zone (TNZ) group, n = 11], while measuring ventilation (Ve) directly with a pneumotach and mask. Cool animals were challenged with 8% CO(2) balanced in either air or hyperoxia (n = 10) to identify the PCR response. Breath-to-breath analysis was performed on 30 room air breaths and every breath of the 1-min CO(2) challenge. As expected, warmer T(B) was associated with an unstable breathing pattern in room air: TNZ animals had a coefficient of variation in Ve (Ve CV%) that was double that of animals held at cooler T(B) (P < 0.001). Hyperoxia markedly suppressed the hypercapnic ventilatory response over the first 10 breaths (or approximately 4 s), suggesting that this domain is dominated by the PCR response. The PCR response (P = 0.03) and total response (P = 0.04) were significantly greater in TNZ animals compared with hypothermic animals. The total response had a significant, negative relationship with Vco(2) (R(2) = 0.53; P < 0.001). Breathing stability was positively related to the total response (R(2) = 0.36; P < 0.001) and to a lesser extent, the PCR response (R(2) = 0.19; P = 0.01) and was negatively related to Vco(2) (R(2) = 0.34; P < 0.001). ANCOVA confirmed a significant effect of T(B) alone on breathing stability (P < 0.01), with no independent effects of Vco(2) (P = 0.41), the PCR response (P = 0.82), or the total Ve response (P = 0.08). Our data suggest that in early postnatal life, the chemoreflex responses to CO(2) are highly influenced by T(B), and while related to breathing stability

  17. Relationship between diastolic ventricular dysfunction and subclinical sleep-disordered breathing in atrial fibrillation ablation candidates.

    PubMed

    Kaitani, Kazuaki; Kondo, Hirokazu; Hanazawa, Koji; Onishi, Naoaki; Hayama, Yukiko; Tsujimura, Akira; Kuroda, Maiko; Nishimura, Shunsuke; Yoshikawa, Yusuke; Takahashi, Yusuke; Amano, Masashi; Imamura, Sari; Tamaki, Yodo; Enomoto, Soichiro; Miyake, Makoto; Tamura, Toshihiro; Motooka, Makoto; Izumi, Chisato; Nakagawa, Yoshihisa

    2016-07-01

    Sleep-disordered breathing (SDB) is recognized as a primary factor or mediator of atrial fibrillation (AF). We hypothesized that the severity of SDB among AF ablation candidates would be associated with left ventricular diastolic dysfunction (LVDD) even for subclinical SDB. A total of 246 patients hospitalized for initial pulmonary vein isolation (PVI) were analyzed. Known SDB cases were excluded. We measured the oxygen desaturation index (ODI) by pulse oximetry overnight as an indicator of SDB, and classified SDB severity by 3 % ODI as normal (ODI < 5 events/h), mild (ODI ≤ 5 to <15 events/h), or moderate-to-severe (ODI ≥15 events/h). The LVDD was assessed by echocardiography using combined categories with tissue Doppler imaging and left atrial (LA) volume measurement. Among the participants, 42 patients (17.1 %) had LVDD. The prevalence of LVDD increased with the SDB severity from 8.6 % (normal) to 12.7 % (mild) to 40.0 % (moderate-to-severe SDB) (p < 0.0001). In the multivariate logistic regression analysis, the odds ratio of having LVDD in the moderate-to-severe SDB group (ODI ≥ 15) vs. normal group (ODI < 5) was 5.96 (95 % CI, 2.10-19.00, P = 0.006). The presence of moderate-to-severe SDB in AF ablation candidates adversely affected LV diastolic function even during a subclinical state of SDB.

  18. Impact ionization and band-to-band tunneling in InxGa1-xAs PIN ungated devices: A Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Vasallo, B. G.; González, T.; Talbo, V.; Lechaux, Y.; Wichmann, N.; Bollaert, S.; Mateos, J.

    2018-01-01

    III-V Impact-ionization (II) metal-oxide-semiconductor FETs (I-MOSFETs) and tunnel FETs (TFETs) are being explored as promising devices for low-power digital applications. To assist the development of these devices from the physical point of view, a Monte Carlo (MC) model which includes impact ionization processes and band-to-band tunneling is presented. The MC simulator reproduces the I-V characteristics of experimental ungated In0.53Ga0.47As 100 nm PIN diodes, in which tunneling emerges for lower applied voltages than impact ionization events, thus being appropriate for TFETs. When the structure is enlarged up to 200 nm, the ON-state is achieved by means of impact ionization processes; however, the necessary applied voltage is higher, with the consequent drawback for low-power applications. In InAs PIN ungated structures, the onset of both impact ionization processes and band-to-band tunneling takes place for similar applied voltages, lower than 1 V; thus they are suitable for the design of low-power I-MOSFETs.

  19. The role of size in synchronous air breathing of Hoplosternum littorale.

    PubMed

    Sloman, Katherine A; Sloman, Richard D; De Boeck, Gudrun; Scott, Graham R; Iftikar, Fathima I; Wood, Chris M; Almeida-Val, Vera M F; Val, Adalberto L

    2009-01-01

    Synchronized air breathing may have evolved as a way of minimizing the predation risk known to be associated with air breathing in fish. Little is known about how the size of individuals affects synchronized air breathing and whether some individuals are required to surface earlier than necessary in support of conspecifics, while others delay air intake. Here, the air-breathing behavior of Hoplosternum littorale held in groups or in isolation was investigated in relation to body mass, oxygen tensions, and a variety of other physiological parameters (plasma lactate, hepatic glycogen, hematocrit, hemoglobin, and size of heart, branchial basket, liver, and air-breathing organ [ABO]). A mass-specific relationship with oxygen tension of first surfacing was seen when fish were held in isolation; smaller individuals surfaced at higher oxygen tensions. However, this relationship was lost when the same individuals were held in social groups of four, where synchronous air breathing was observed. In isolation, 62% of fish first surfaced at an oxygen tension lower than the calculated P(crit) (8.13 kPa), but in the group environment this was reduced to 38% of individuals. Higher oxygen tensions at first surfacing in the group environment were related to higher levels of activity rather than any of the physiological parameters measured. In fish held in isolation but denied access to the water surface for 12 h before behavioral testing, there was no mass-specific relationship with oxygen tension at first surfacing. Larger individuals with a greater capacity to store air in their ABOs may, therefore, remain in hypoxic waters for longer periods than smaller individuals when held in isolation unless prior access to the air is prevented. This study highlights how social interaction can affect air-breathing behaviors and the importance of considering both behavioral and physiological responses of fish to hypoxia to understand the survival mechanisms they employ.

  20. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Sun, Y.; Harris, J.R.

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionicmore » cathode RF gun to high average current.« less

  1. OBSERVATION OF REPETITION-RATE DEPENDANT EMISSION FROM AN UN-GATED THERMIONIC CATHODE RF GUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Sun, Y.; Harris, J. R.

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionicmore » cathode RF gun to high average current machines.« less

  2. ANALYTICAL MODELING OF ELECTRON BACK-BOMBARDMENT INDUCED CURRENT INCREASE IN UN-GATED THERMIONIC CATHODE RF GUNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Sun, Y.; Harris, J. R.

    In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.

  3. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    PubMed

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  4. Shielding in ungated field emitter arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less

  5. Cardiac valve calcifications on low-dose unenhanced ungated chest computed tomography: inter-observer and inter-examination reliability, agreement and variability.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; Takx, Richard A P; Eikendal, Anouk L M; Budde, Ricardo P J; Leiner, Tim; Mol, Christian P; Isgum, Ivana; de Jong, Pim A

    2014-07-01

    To determine inter-observer and inter-examination variability for aortic valve calcification (AVC) and mitral valve and annulus calcification (MC) in low-dose unenhanced ungated lung cancer screening chest computed tomography (CT). We included 578 lung cancer screening trial participants who were examined by CT twice within 3 months to follow indeterminate pulmonary nodules. On these CTs, AVC and MC were measured in cubic millimetres. One hundred CTs were examined by five observers to determine the inter-observer variability. Reliability was assessed by kappa statistics (κ) and intra-class correlation coefficients (ICCs). Variability was expressed as the mean difference ± standard deviation (SD). Inter-examination reliability was excellent for AVC (κ = 0.94, ICC = 0.96) and MC (κ = 0.95, ICC = 0.90). Inter-examination variability was 12.7 ± 118.2 mm(3) for AVC and 31.5 ± 219.2 mm(3) for MC. Inter-observer reliability ranged from κ = 0.68 to κ = 0.92 for AVC and from κ = 0.20 to κ = 0.66 for MC. Inter-observer ICC was 0.94 for AVC and ranged from 0.56 to 0.97 for MC. Inter-observer variability ranged from -30.5 ± 252.0 mm(3) to 84.0 ± 240.5 mm(3) for AVC and from -95.2 ± 210.0 mm(3) to 303.7 ± 501.6 mm(3) for MC. AVC can be quantified with excellent reliability on ungated unenhanced low-dose chest CT, but manual detection of MC can be subject to substantial inter-observer variability. Lung cancer screening CT may be used for detection and quantification of cardiac valve calcifications. • Low-dose unenhanced ungated chest computed tomography can detect cardiac valve calcifications. • However, calcified cardiac valves are not reported by most radiologists. • Inter-observer and inter-examination variability of aortic valve calcifications is sufficient for longitudinal studies. • Volumetric measurement variability of mitral valve and annulus calcifications is substantial.

  6. Can handling E85 motor fuel cause positive breath alcohol test results?

    PubMed

    Ran, Ran; Mullins, Michael E

    2013-09-01

    Hand-held breath alcohol analyzers are widely used by police in traffic stops of drivers suspected of driving while intoxicated (DWI). E85 is a motor fuel consisting of 85% ethanol and 15% gasoline or other hydrocarbons, and is available at nearly 2,600 stations in the USA. We sought to determine whether handling E85 fuel could produce measurable breath alcohol results using a hand-held analyzer and to see if this would be a plausible explanation for a positive breath alcohol test. Five healthy adult subjects dispensed or transferred 8 US gallons of E85 fuel in each of four scenarios. We measured breath alcohol concentration in g/210 L of exhaled breath using the BACTrack S50 at 0, 2, 4, 6, 8, 10, 15 and 20 min after each fuel-handling scenario. Most of the subjects had no detectable breath alcohol after handling E85 motor fuel. Transient elevations (0.02-0.04 g/210 L) in breath alcohol measurement occurred up to 6 min after handling E85 in a minority of subjects. We conclude that it is unlikely that handling E85 motor fuel would result in erroneous prosecution for DWI.

  7. Current transmission and nonlinear effects in un-gated thermionic cathode RF guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Harris, J. R.

    Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models thatmore » predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.« less

  8. Can Handling E85 Motor Fuel Cause Positive Breath Alcohol Test Results?

    PubMed Central

    Ran, Ran; Mullins, Michael E.

    2013-01-01

    Hand-held breath alcohol analyzers are widely used by police in traffic stops of drivers suspected of driving while intoxicated (DWI). E85 is a motor fuel consisting of 85% ethanol and 15% gasoline or other hydrocarbons, and is available at nearly 2,600 stations in the USA. We sought to determine whether handling E85 fuel could produce measurable breath alcohol results using a hand-held analyzer and to see if this would be a plausible explanation for a positive breath alcohol test. Five healthy adult subjects dispensed or transferred 8 US gallons of E85 fuel in each of four scenarios. We measured breath alcohol concentration in g/210 L of exhaled breath using the BACTrack S50 at 0, 2, 4, 6, 8, 10, 15 and 20 min after each fuel-handling scenario. Most of the subjects had no detectable breath alcohol after handling E85 motor fuel. Transient elevations (0.02–0.04 g/210 L) in breath alcohol measurement occurred up to 6 min after handling E85 in a minority of subjects. We conclude that it is unlikely that handling E85 motor fuel would result in erroneous prosecution for DWI. PMID:23843422

  9. Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging.

    PubMed

    Cross, Russell; Olivieri, Laura; O'Brien, Kendall; Kellman, Peter; Xue, Hui; Hansen, Michael

    2016-02-25

    Traditional cine imaging for cardiac functional assessment requires breath-holding, which can be problematic in some situations. Free-breathing techniques have relied on multiple averages or real-time imaging, producing images that can be spatially and/or temporally blurred. To overcome this, methods have been developed to acquire real-time images over multiple cardiac cycles, which are subsequently motion corrected and reformatted to yield a single image series displaying one cardiac cycle with high temporal and spatial resolution. Application of these algorithms has required significant additional reconstruction time. The use of distributed computing was recently proposed as a way to improve clinical workflow with such algorithms. In this study, we have deployed a distributed computing version of motion corrected re-binning reconstruction for free-breathing evaluation of cardiac function. Twenty five patients and 25 volunteers underwent cardiovascular magnetic resonance (CMR) for evaluation of left ventricular end-systolic volume (ESV), end-diastolic volume (EDV), and end-diastolic mass. Measurements using motion corrected re-binning were compared to those using breath-held SSFP and to free-breathing SSFP with multiple averages, and were performed by two independent observers. Pearson correlation coefficients and Bland-Altman plots tested agreement across techniques. Concordance correlation coefficient and Bland-Altman analysis tested inter-observer variability. Total scan plus reconstruction times were tested for significant differences using paired t-test. Measured volumes and mass obtained by motion corrected re-binning and by averaged free-breathing SSFP compared favorably to those obtained by breath-held SSFP (r = 0.9863/0.9813 for EDV, 0.9550/0.9685 for ESV, 0.9952/0.9771 for mass). Inter-observer variability was good with concordance correlation coefficients between observers across all acquisition types suggesting substantial agreement. Both motion

  10. Epilepsy and the ketogenic diet: assessment of ketosis in children using breath acetone.

    PubMed

    Musa-Veloso, Kathy; Rarama, Exequiel; Comeau, Felix; Curtis, Rosalind; Cunnane, Stephen

    2002-09-01

    High-fat ketogenic diets increase ketones (acetoacetate, beta-hydroxybutyrate, and acetone) and are used to treat refractory seizures. Although ketosis is an integral aspect of these therapeutic regimens, the direct importance of ketosis to seizure control needs further investigation. An examination of this relationship requires a reliable, minimally invasive measure of ketosis that can be performed frequently. In the present study, we examined the use of breath acetone as a measure of ketosis in children with refractory seizures on a classic ketogenic diet. Results were compared with breath acetone levels in epilepsy and healthy controls. Children on the ketogenic diet had significantly higher fasting breath acetone compared with epilepsy or healthy controls (2530 +/- 600 nmol/L versus 19 +/- 9 nmol/L and 21 +/- 4 nmol/L, respectively; p < 0.05). One hour after consumption of a ketogenic breakfast meal, breath acetone increased significantly in epilepsy and healthy controls (p < 0.05), but not in children on a ketogenic diet. Children who were on the ketogenic diet for longer periods of time had a significantly lower fasting breath acetone (R(2) = 0.55, p = 0.014). In one child on the ketogenic diet, breath acetone was determined hourly over a 9-h period, both by gas chromatography and by a prototype hand-held breath acetone analyzer. Preliminary results using this hand-held breath acetone analyzer are encouraging. Breath acetone may be a useful tool in examining the relationship between ketosis and seizure control and enhancing our understanding of the mechanism of the ketogenic diet.

  11. A Review of Laser Ablation Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser thatmore » is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.« less

  12. Evaluating the Importance of the Carotid Chemoreceptors in Controlling Breathing during Exercise in Man

    PubMed Central

    Parkes, M. J.

    2013-01-01

    Only the carotid chemoreceptors stimulate breathing during hypoxia in Man. They are also ideally located to warn if the brain's oxygen supply falls, or if hypercapnia occurs. Since their discovery ~80 years ago stimulation, ablation, and recording experiments still leave 3 substantial difficulties in establishing how important the carotid chemoreceptors are in controlling breathing during exercise in Man: (i) they are in the wrong location to measure metabolic rate (but are ideally located to measure any mismatch), (ii) they receive no known signal during exercise linking them with metabolic rate and no overt mismatch signals occur and (iii) their denervation in Man fails to prevent breathing matching metabolic rate in exercise. New research is needed to enable recording from carotid chemoreceptors in Man to establish whether there is any factor that rises with metabolic rate and greatly increases carotid chemoreceptor activity during exercise. Available evidence so far in Man indicates that carotid chemoreceptors are either one of two mechanisms that explain breathing matching metabolic rate or have no importance. We still lack key experimental evidence to distinguish between these two possibilities. PMID:24236297

  13. Ablation for Atrial Fibrillation

    PubMed Central

    2006-01-01

    Executive Summary Objective To review the effectiveness, safety, and costing of ablation methods to manage atrial fibrillation (AF). The ablation methods reviewed were catheter ablation and surgical ablation. Clinical Need Atrial fibrillation is characterized by an irregular, usually rapid, heart rate that limits the ability of the atria to pump blood effectively to the ventricles. Atrial fibrillation can be a primary diagnosis or it may be associated with other diseases, such as high blood pressure, abnormal heart muscle function, chronic lung diseases, and coronary heart disease. The most common symptom of AF is palpitations. Symptoms caused by decreased blood flow include dizziness, fatigue, and shortness of breath. Some patients with AF do not experience any symptoms. According to United States data, the incidence of AF increases with age, with a prevalence of 1 per 200 people aged between 50 and 60 years, and 1 per 10 people aged over 80 years. In 2004, the Institute for Clinical Evaluative Sciences (ICES) estimated that the rate of hospitalization for AF in Canada was 582.7 per 100,000 population. They also reported that of the patients discharged alive, 2.7% were readmitted within 1 year for stroke. One United States prevalence study of AF indicated that the overall prevalence of AF was 0.95%. When the results of this study were extrapolated to the population of Ontario, the prevalence of AF in Ontario is 98,758 for residents aged over 20 years. Currently, the first-line therapy for AF is medical therapy with antiarrhythmic drugs (AADs). There are several AADs available, because there is no one AAD that is effective for all patients. The AADs have critical adverse effects that can aggravate existing arrhythmias. The drug selection process frequently involves trial and error until the patient’s symptoms subside. The Technology Ablation has been frequently described as a “cure” for AF, compared with drug therapy, which controls AF but does not cure it

  14. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    PubMed

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  15. News from the Breath Analysis Summit 2011.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 September 2011. The meeting, which was jointly organized by the International Association for Breath Research and the University of Parma, was attended by more than 250 delegates from 33 countries, and offered 34 invited lectures and 64 unsolicited scientific contributions. The summit was organized to provide a forum to scientists, engineers and clinicians to present their latest findings and to meet industry executives and entrepreneurs to discuss key trends, future directions and technologies available for breath analysis. A major focus was on nitric oxide, exhaled breath condensate, electronic nose, mass spectrometry and newer sensor technologies. Medical applications ranged from asthma and other respiratory diseases to gastrointestinal disease, occupational diseases, critical care and cancer. Most people identify breath tests with breathalysers used by police to estimate ethanol concentration in blood. However, breath testing has far more sophisticated applications. Breath analysis is rapidly evolving as a new frontier in medical testing for disease states in the lung and beyond. Every individual has a breath fingerprint-or 'breathprint'-that can provide useful information about his or her state of health. This breathprint comprises the many thousands of molecules that are expelled with each breath we exhale. Breath research in the past few years has uncovered the scientific and molecular basis for such clinical observations. Relying on mass spectrometry, we have been able to identify many such unique substances in exhaled breath, including gases, such as nitric oxide (NO) and carbon monoxide (CO), and a wide array of volatile organic compounds. Exhaled breath also carries aerosolized droplets that can be collected as an exhaled breath condensate that contains endogenously produced non-volatile compounds. Breath

  16. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults.

    PubMed

    Jones, Mandy; Harvey, Alex; Marston, Louise; O'Connell, Neil E

    2013-05-31

    Dysfunctional breathing/hyperventilation syndrome (DB/HVS) is a respiratory disorder, psychologically or physiologically based, involving breathing too deeply and/or too rapidly (hyperventilation) or erratic breathing interspersed with breath-holding or sighing (DB). DB/HVS can result in significant patient morbidity and an array of symptoms including breathlessness, chest tightness, dizziness, tremor and paraesthesia. DB/HVS has an estimated prevalence of 9.5% in the general adult population, however, there is little consensus regarding the most effective management of this patient group. (1) To determine whether breathing exercises in patients with DB/HVS have beneficial effects as measured by quality of life indices (2) To determine whether there are any adverse effects of breathing exercises in patients with DB/HVS SEARCH METHODS: We identified trials for consideration using both electronic and manual search strategies. We searched CENTRAL, MEDLINE, EMBASE, and four other databases. The latest search was in February 2013. We planned to include randomised, quasi-randomised or cluster randomised controlled trials (RCTs) in which breathing exercises, or a combined intervention including breathing exercises as a key component, were compared with either no treatment or another therapy that did not include breathing exercises in patients with DB/HVS. Observational studies, case studies and studies utilising a cross-over design were not eligible for inclusion.We considered any type of breathing exercise for inclusion in this review, such as breathing control, diaphragmatic breathing, yoga breathing, Buteyko breathing, biofeedback-guided breathing modification, yawn/sigh suppression. Programs where exercises were either supervised or unsupervised were eligible as were relaxation techniques and acute-episode management, as long as it was clear that breathing exercises were a key component of the intervention.We excluded any intervention without breathing exercises or

  17. WE-DE-209-02: Active Breathing Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comsa, D.

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBHmore » patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.« less

  18. Comparison of electron-beam and ungated helical CT in detecting coronary arterial calcification by using a working heart phantom and artificial coronary arteries.

    PubMed

    Hopper, Kenneth D; Strollo, Diane C; Mauger, David T

    2002-02-01

    To determine the sensitivity and specificity of cardiac gated electron-beam computed tomography (CT) and ungated helical CT in detecting and quantifying coronary arterial calcification (CAC) by using a working heart phantom and artificial coronary arteries. A working heart phantom simulating normal cardiac motion and providing attenuation equal to that of an adult thorax was used. Thirty tubes with a 3-mm inner diameter were internally coated with pulverized human cortical bone mixed with epoxy glue to simulate minimal (n = 10), mild (n = 10), or severe (n = 10) calcified plaques. Ten additional tubes were not coated and served as normal controls. The tubes were attached to the same location on the phantom heart and scanned with electron-beam CT and helical CT in horizontal and vertical planes. Actual plaque calcium content was subsequently quantified with atopic spectroscopy. Two blinded experienced radiologic imaging teams, one for each CT system, separately measured calcium content in the model vessels by using a Hounsfield unit threshold of 130 or greater. The sensitivity and specificity of electron-beam CT in detecting CAC were 66.1% and 80.0%, respectively. The sensitivity and specificity of helical CT were 96.4% and 95.0%, respectively. Electron-beam CT was less reliable when vessels were oriented vertically (sensitivity and specificity, 71.4% and 70%; 95% CI: 39.0%, 75.0%) versus horizontally (sensitivity and specificity, 60.7% and 90.0%; 95% CI: 48.0%, 82.0%). When a correction factor was applied, the volume of calcified plaque was statistically better quantified with helical CT than with electron-beam CT (P =.004). Ungated helical CT depicts coronary arterial calcium better than does gated electron-beam CT. When appropriate correction factors are applied, helical CT is superior to electron-beam CT in quantifying coronary arterial calcium. Although further work must be done to optimize helical CT grading systems and scanning protocols, the data of this

  19. Breath-hold device for laboratory rodents undergoing imaging procedures.

    PubMed

    Rivera, Belinda; Bushman, Mark J; Beaver, Richard G; Cody, Dianna D; Price, Roger E

    2006-07-01

    The increased use in noninvasive imaging of laboratory rodents has prompted innovative techniques in animal handling. Lung imaging of rodents can be a difficult task because of tissue motion caused by breathing, which affects image quality. The use of a prototype flat-panel computed tomography unit allows the acquisition of images in as little as 2, 4, or 8 s. This short acquisition time has allowed us to improve the image quality of this instrument by performing a breath-hold during image acquisition. We designed an inexpensive and safe method for performing a constant-pressure breath-hold in intubated rodents. Initially a prototypic manual 3-way valve system, consisting of a 3-way valve, an air pressure regulator, and a manometer, was used to manually toggle between the ventilator and the constant-pressure breath-hold equipment. The success of the manual 3-way valve system prompted the design of an electronically actuated valve system. In the electronic system, the manual 3-way valve was replaced with a custom designed 3-way valve operated by an electrical solenoid. The electrical solenoid is triggered by using a hand-held push button or a foot pedal that is several feet away from the gantry of the scanner. This system has provided improved image quality and is safe for the animals, easy to use, and reliable.

  20. Hand-Held Volatilome Analyzer Based on Elastically Deformable Nanofibers.

    PubMed

    Yucel, Muge; Akin, Osman; Cayoren, Mehmet; Akduman, Ibrahim; Palaniappan, Alagappan; Liedberg, Bo; Hizal, Gurkan; Inci, Fatih; Yildiz, Umit Hakan

    2018-04-17

    This study reports on a hand-held volatilome analyzer for selective determination of clinically relevant biomarkers in exhaled breath. The sensing platform is based on electrospun polymer nanofiber-multiwalled carbon nanotube (MWCNT) sensing microchannels. Polymer nanofibers of poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(methyl methacrylate) (PMMA) incorporated with MWCNT exhibits a stable response to interferences of humidity and CO 2 and provides selective deformations upon exposure of exhaled breath target volatilomes acetone and toluene, exhibiting correlation to diabetes and lung cancer, respectively. The sensing microchannels "P1" (PVDF-MWCNT), "P2" (PS-MWCNT), and "P3" (PMMA-MWCNT) are integrated with a microfluidic cartridge (μ-card) that facilitates collection and concentration of exhaled breath. The volatilome analyzer consists of a conductivity monitoring unit, signal conditioning circuitries and a low energy display module. A combinatorial operation algorithm was developed for analyzing normalized resistivity changes of the sensing microchannels upon exposure to breath in the concentration ranges between 35 ppb and 3.0 ppm for acetone and 1 ppb and 10 ppm for toluene. Subsequently, responses of volatilomes from individuals in the different risk groups of diabetes were evaluated for validation of the proposed methodology. We foresee that proposed methodology provides an avenue for rapid detection of volatilomes thereby enabling point of care diagnosis in high-risk group individuals.

  1. Breath-collection device for delayed breath-alcohol analysis

    DOT National Transportation Integrated Search

    1980-12-01

    The report includes the details of a study to develop, evaluate, and validate a breath collection device (BCD) for delayed breath-alcohol analysis. Primary applications of the BCD include collection of breath-alcohol samples for field surveys or for ...

  2. How to breathe when you are short of breath

    MedlinePlus

    ... pursed lip breathing; Hypoxia - pursed lip breathing; Chronic respiratory failure - pursed lip breathing ... et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  3. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation.

    PubMed

    Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish

    2017-01-01

    Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

  4. Bedside diagnosis of alcohol intoxication with a pocket-size breath-alcohol device: sampling from unconscious subjects and specificity for ethanol.

    PubMed

    Falkensson, M; Jones, W; Sörbo, B

    1989-06-01

    We describe a novel mouth-cup device for sampling breath from unconscious subjects and analysis with a hand-held breath-alcohol instrument, the "Alcolmeter SD-2." This equipment was evaluated in healthy volunteers after they drank a moderate dose of alcohol. Three kinds of breath were analyzed: (a) end-expired air from a conventional mouth-tube, (b) breath sampled from the mouth-cup, and (c) air from a nasal tube supplied with the breath analyzer. The ethanol concentration in breath from the mouth-cup was slightly less than in end-expired air but significantly greater than in nasal air. Results with mouth-tube and mouth-cup correlated highly with blood-ethanol concentration as determined by gas chromatography; nasal-tube air correlated less well. The Alcolmeter responded not only to ethanol but also to methanol, 1-propanol, and 2-propanol, whereas ethylene glycol gave no response. The time-response curve for methanol was different, and this might permit differential diagnosis of methanol poisoning.

  5. How to deal with morning bad breath: A randomized, crossover clinical trial.

    PubMed

    Oliveira-Neto, Jeronimo M; Sato, Sandra; Pedrazzi, Vinícius

    2013-11-01

    The absence of a protocol for the treatment of halitosis has led us to compare mouthrinses with mechanical oral hygiene procedures for treating morning breath by employing a hand-held sulfide monitor. To compare the efficacy of five modalities of treatment for controlling morning halitosis in subjects with no dental or periodontal disease. This is a five-period, randomized, crossover clinical trial. Twenty volunteers were randomly assigned to the trial. Testing involved the use of a conventional tongue scraper, a tongue scraper joined to the back of a toothbrush's head, two mouthrinses (0.05% cetylpyridinium chloride and 0.12% chlorhexidine digluconate) and a soft-bristled toothbrush and fluoride toothpaste for practicing oral hygiene. Data analysis was performed using SPSS version 17 for Windows and NCSS 2007 software (P < 0.05). The products and the periods were compared with each other using the Friedman's test. When significant differences (P < 0.05) were determined, the products and periods were compared in pairs by using the Wilcoxon's test and by adjusting the original significance level (0.05) for multiple comparisons by using the Bonferroni's method. The toothbrush's tongue scraper was able to significantly reduce bad breath for up to 2 h. Chlorhexidine reduced bad breath only at the end of the second hour, an effect that lasted for 3 h. Mechanical tongue cleaning was able to immediately reduce bad breath for a short period, whereas chlorhexidine and mechanical oral hygiene reduced bad breath for longer periods, achieving the best results against morning breath.

  6. Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams

    NASA Astrophysics Data System (ADS)

    Lehmann, H. Immo; Graeff, Christian; Simoniello, Palma; Constantinescu, Anna; Takami, Mitsuru; Lugenbiel, Patrick; Richter, Daniel; Eichhorn, Anna; Prall, Matthias; Kaderka, Robert; Fiedler, Fine; Helmbrecht, Stephan; Fournier, Claudia; Erbeldinger, Nadine; Rahm, Ann-Kathrin; Rivinius, Rasmus; Thomas, Dierk; Katus, Hugo A.; Johnson, Susan B.; Parker, Kay D.; Debus, Jürgen; Asirvatham, Samuel J.; Bert, Christoph; Durante, Marco; Packer, Douglas L.

    2016-12-01

    High-energy ion beams are successfully used in cancer therapy and precisely deliver high doses of ionizing radiation to small deep-seated target volumes. A similar noninvasive treatment modality for cardiac arrhythmias was tested here. This study used high-energy carbon ions for ablation of cardiac tissue in pigs. Doses of 25, 40, and 55 Gy were applied in forced-breath-hold to the atrioventricular junction, left atrial pulmonary vein junction, and freewall left ventricle of intact animals. Procedural success was tracked by (1.) in-beam positron-emission tomography (PET) imaging; (2.) intracardiac voltage mapping with visible lesion on ultrasound; (3.) lesion outcomes in pathohistolgy. High doses (40-55 Gy) caused slowing and interruption of cardiac impulse propagation. Target fibrosis was the main mediator of the ablation effect. In irradiated tissue, apoptosis was present after 3, but not 6 months. Our study shows feasibility to use high-energy ion beams for creation of cardiac lesions that chronically interrupt cardiac conduction.

  7. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  8. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.

  9. How to deal with morning bad breath: A randomized, crossover clinical trial

    PubMed Central

    Oliveira-Neto, Jeronimo M.; Sato, Sandra; Pedrazzi, Vinícius

    2013-01-01

    Context: The absence of a protocol for the treatment of halitosis has led us to compare mouthrinses with mechanical oral hygiene procedures for treating morning breath by employing a hand-held sulfide monitor. Aims: To compare the efficacy of five modalities of treatment for controlling morning halitosis in subjects with no dental or periodontal disease. Settings and Design: This is a five-period, randomized, crossover clinical trial. Materials and Methods: Twenty volunteers were randomly assigned to the trial. Testing involved the use of a conventional tongue scraper, a tongue scraper joined to the back of a toothbrush's head, two mouthrinses (0.05% cetylpyridinium chloride and 0.12% chlorhexidine digluconate) and a soft-bristled toothbrush and fluoride toothpaste for practicing oral hygiene. Statistical Analysis Used: Data analysis was performed using SPSS version 17 for Windows and NCSS 2007 software (P < 0.05). The products and the periods were compared with each other using the Friedman's test. When significant differences (P < 0.05) were determined, the products and periods were compared in pairs by using the Wilcoxon's test and by adjusting the original significance level (0.05) for multiple comparisons by using the Bonferroni's method. Results: The toothbrush's tongue scraper was able to significantly reduce bad breath for up to 2 h. Chlorhexidine reduced bad breath only at the end of the second hour, an effect that lasted for 3 h. Conclusions: Mechanical tongue cleaning was able to immediately reduce bad breath for a short period, whereas chlorhexidine and mechanical oral hygiene reduced bad breath for longer periods, achieving the best results against morning breath. PMID:24554886

  10. Navigational Guidance and Ablation Planning Tools for Interventional Radiology.

    PubMed

    Sánchez, Yadiel; Anvari, Arash; Samir, Anthony E; Arellano, Ronald S; Prabhakar, Anand M; Uppot, Raul N

    Image-guided biopsy and ablation relies on successful identification and targeting of lesions. Currently, image-guided procedures are routinely performed under ultrasound, fluoroscopy, magnetic resonance imaging, or computed tomography (CT) guidance. However, these modalities have their limitations including inadequate visibility of the lesion, lesion or organ or patient motion, compatibility of instruments in an magnetic resonance imaging field, and, for CT and fluoroscopy cases, radiation exposure. Recent advances in technology have resulted in the development of a new generation of navigational guidance tools that can aid in targeting lesions for biopsy or ablations. These navigational guidance tools have evolved from simple hand-held trajectory guidance tools, to electronic needle visualization, to image fusion, to the development of a body global positioning system, to growth in cone-beam CT, and to ablation volume planning. These navigational systems are promising technologies that not only have the potential to improve lesion targeting (thereby increasing diagnostic yield of a biopsy or increasing success of tumor ablation) but also have the potential to decrease radiation exposure to the patient and staff, decrease procedure time, decrease the sedation requirements, and improve patient safety. The purpose of this article is to describe the challenges in current standard image-guided techniques, provide a definition and overview for these next-generation navigational devices, and describe the current limitations of these, still evolving, next-generation navigational guidance tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Human breath metabolomics using an optimized noninvasive exhaled breath condensate sampler

    PubMed Central

    Zamuruyev, Konstantin O.; Aksenov, Alexander A.; Pasamontes, Alberto; Brown, Joshua F.; Pettit, Dayna R.; Foutouhi, Soraya; Weimer, Bart C.; Schivo, Michael; Kenyon, Nicholas J.; Delplanque, Jean-Pierre; Davis, Cristina E.

    2017-01-01

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017). PMID:28004639

  12. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  13. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (<1 min) and on site breath acetone measurement can be used for diabetic screening and management under a specifically controlled condition.

  14. Effect of hypobaric air, oxygen, heliox (50:50), or heliox (80:20) breathing on air bubbles in adipose tissue.

    PubMed

    Hyldegaard, O; Madsen, J

    2007-09-01

    The fate of bubbles formed in tissues during decompression to altitude after diving or due to accidental loss of cabin pressure during flight has only been indirectly inferred from theoretical modeling and clinical observations with noninvasive bubble-measuring techniques of intravascular bubbles. In this report we visually followed the in vivo resolution of micro-air bubbles injected into adipose tissue of anesthetized rats decompressed from 101.3 kPa to and held at 71 kPa corresponding to approximately 2.750 m above sea level, while the rats breathed air, oxygen, heliox (50:50), or heliox (80:20). During air breathing, bubbles initially grew for 30-80 min, after which they remained stable or began to shrink slowly. Oxygen breathing caused an initial growth of all bubbles for 15-85 min, after which they shrank until they disappeared from view. Bubble growth was significantly greater during breathing of oxygen compared with air and heliox breathing mixtures. During heliox (50:50) breathing, bubbles initially grew for 5-30 min, from which point they shrank until they disappeared from view. After a shift to heliox (80:20) breathing, some bubbles grew slightly for 20-30 min, then shrank until they disappeared from view. Bubble disappearance was significantly faster during breathing of oxygen and heliox mixtures compared with air. In conclusion, the present results show that oxygen breathing at 71 kPa promotes bubble growth in lipid tissue, and it is possible that breathing of heliox may be beneficial in treating decompression sickness during flight.

  15. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.

    PubMed

    Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E

    2016-12-22

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube ™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).

  16. Breathing and Relaxation

    MedlinePlus

    ... Programs Health Information Doctors & Departments Clinical Research & Science Education & Training Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ...

  17. Deep breathing after surgery

    MedlinePlus

    ... and taking big breaths can be uncomfortable. A device called an incentive spirometer can help you take deep breaths correctly. If you do not have this device, you can still practice deep breathing on your ...

  18. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

    PubMed

    Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L

    2009-09-01

    To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.

  19. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  20. The effect of breath freshener strips on two types of breath alcohol testing instruments.

    PubMed

    Moore, Ronald L; Guillen, Jennifer

    2004-07-01

    The potential for breath freshener strips to interfere with the accuracy of a breath alcohol test was studied. Twelve varieties of breath freshener strips from five manufacturers were examined. Breath tests were conducted using the infrared based BAC DataMaster or the fuel cell based Alco-Sensor IV-XL, 30 and 150 seconds after placing a breath strip on the tongue. No effect was observed using the Alco-Sensor system. Some of the strips gave a small reading at 30 seconds (less than or equal to 0.010 g/210 L apparent alcohol) using the DataMaster. Readings on the DataMaster returned to zero by the 150 second test. A proper pre-test observation and deprivation period should prevent any interference from breath freshener strips on breath alcohol testing.

  1. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. © 2014 S. Karger AG, Basel.

  2. Positron emission tomography-based evidence of low-amplitude respiratory motion in patients with chronic obstructive pulmonary disease.

    PubMed

    Daouk, Joël; Bailly, Pascal; Kamimura, Mitsuhiro; Sacksick, David; Jounieaux, Vincent; Meyer, Marc-Etienne

    2015-05-01

    Chronic obstructive pulmonary disease (COPD) is characterized by low vital capacity and tidal volume, which translate into smaller respiratory motions. We sought to demonstrate the limited respiratory motion in COPD by comparing respiratory-gated and free-breathing positron emission tomography (PET) images of lung nodules ("CT-based" and "Ungated" images) in patients with and without COPD. We studied 74 lung lesions (37 malignant) in 60 patients (23 patients with COPD; 37 without). An Ungated PET examination was followed by a CT-based acquisition. Maximum standard uptake value (SUVmax) for each lesion on PET images was measured. On CT images, we checked for the presence of emphysema and pleural adhesions or indentations associated with the nodules. Lastly, we used univariate and then multivariate analyses to determine the lung function parameters possibly affecting respiratory motion in patients with and without COPD. The mean "CT-based" vs. "Ungated" difference in SUVmax was 0.3 and 0.6 for patients with and without COPD, respectively. Statistical analysis revealed that lesion site, hyperinflation and pleural indentation were independently associated with a difference in SUVmax. PET lung lesion images in patients with COPD are barely influenced by respiratory motion. Thoracic hyperinflation in patients with COPD was found to be independently associated with an effect of respiratory motion on PET images. Moreover, pleural indentation limits the respiratory motion of lung nodules, regardless of the presence or absence of COPD.

  3. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    PubMed

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  4. Global ablation techniques.

    PubMed

    Woods, Sarah; Taylor, Betsy

    2013-12-01

    Global endometrial ablation techniques are a relatively new surgical technology for the treatment of heavy menstrual bleeding that can now be used even in an outpatient clinic setting. A comparison of global ablation versus earlier ablation technologies notes no significant differences in success rates and some improvement in patient satisfaction. The advantages of the newer global endometrial ablation systems include less operative time, improved recovery time, and decreased anesthetic risk. Ablation procedures performed in an outpatient surgical or clinic setting provide advantages both of potential cost savings for patients and the health care system and improved patient convenience. Copyright © 2013. Published by Elsevier Inc.

  5. [Effects of breathing exercises on breathing pattern and thoracoabdominal motion after gastroplasty].

    PubMed

    Tomich, Georgia Miranda; França, Danielle Corrêa; Diniz, Marco Túlio Costa; Britto, Raquel Rodrigues; Sampaio, Rosana Ferreira; Parreira, Verônica Franco

    2010-01-01

    To evaluate breathing pattern and thoracoabdominal motion during breathing exercises. Twenty-four patients with class II or III obesity (18 women; 6 men) were studied on the second postoperative day after gastroplasty. The mean age was 37 +/- 11 years, and the mean BMI was 44 +/- 3 kg/m(2). Diaphragmatic breathing, incentive spirometry with a flow-oriented device and incentive spirometry with a volume-oriented device were performed in random order. Respiratory inductive plethysmography was used in order to measure respiratory variables and thoracoabdominal motion. Comparisons among the three exercises showed significant differences: tidal volume was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing; the respiratory rate was lower during incentive spirometry with the volume-oriented device than during incentive spirometry with the flow-oriented device; and minute ventilation was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing. Rib cage motion did not vary during breathing exercises, although there was an increase in thoracoabdominal asynchrony, especially during incentive spirometry with the flow-oriented device. Among the breathing exercises evaluated, incentive spirometry with the volume-oriented device provided the best results, because it allowed slower, deeper inhalation.

  6. Standardization of exhaled breath condensate (EBC) collection using a feedback regulated breathing pattern

    EPA Science Inventory

    Collection of exhaled breath condensate (EBC) fluid by cooling of expired breath is a potentially valuable approach for the detection of biomarkers associated with disease or exposure to xenobiotics. EBC is generally collected using unregulated breathing patterns, perceived to el...

  7. Breath biomarkers in toxicology.

    PubMed

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  8. Robotically assisted ablation produces more rapid and greater signal attenuation than manual ablation.

    PubMed

    Koa-Wing, Michael; Kojodjojo, Pipin; Malcolme-Lawes, Louisa C; Salukhe, Tushar V; Linton, Nick W F; Grogan, Aaron P; Bergman, Dale; Lim, Phang Boon; Whinnett, Zachary I; McCarthy, Karen; Ho, Siew Yen; O'Neill, Mark D; Peters, Nicholas S; Davies, D Wyn; Kanagaratnam, Prapa

    2009-12-01

    Robotic remote catheter ablation potentially provides improved catheter-tip stability, which should improve the efficiency of radiofrequency energy delivery. Percentage reduction in electrogram peak-to-peak voltage has been used as a measure of effectiveness of ablation. We tested the hypothesis that improved catheter-tip stability of robotic ablation can diminish signals to a greater degree than manual ablation. In vivo NavX maps of 7 pig atria were constructed. Separate lines of ablation were performed robotically and manually, recording pre- and postablation peak-to-peak voltages at 10, 20, 30, and 60 seconds and calculating signal amplitude reduction. Catheter ablation settings were constant (25W, 50 degrees , 17 mL/min, 20-30 g catheter tip pressure). The pigs were sacrificed and ablation lesions correlated with NavX maps. Robotic ablation reduced signal amplitude to a greater degree than manual ablation (49 +/- 2.6% vs 29 +/- 4.5% signal reduction after 1 minute [P = 0.0002]). The mean energy delivered (223 +/- 184 J vs 231 +/- 190 J, P = 0.42), power (19 +/- 3.5 W vs 19 +/- 4 W, P = 0.84), and duration of ablation (15 +/- 9 seconds vs 15 +/- 9 seconds, P = 0.89) was the same for manual and robotic. The mean peak catheter-tip temperature was higher for robotic (45 +/- 5 degrees C vs 42 +/- 3 degrees C [P < 0.0001]). The incidence of >50% signal reduction was greater for robotic (37%) than manual (21%) ablation (P = 0.0001). Robotically assisted ablation appears to be more effective than manual ablation at signal amplitude reduction, therefore may be expected to produce improved clinical outcomes.

  9. Hydrogen breath test in schoolchildren.

    PubMed Central

    Douwes, A C; Schaap, C; van der Klei-van Moorsel, J M

    1985-01-01

    The frequency of negative hydrogen breath tests due to colonic bacterial flora which are unable to produce hydrogen was determined after oral lactulose challenge in 98 healthy Dutch schoolchildren. There was a negative result in 9.2%. The probability of a false normal lactose breath test (1:77) was calculated from these results together with those from a separate group of children with lactose malabsorption (also determined by hydrogen breath test). A study of siblings and mothers of subjects with a negative breath test did not show familial clustering of this condition. Faecal incubation tests with various sugars showed an increase in breath hydrogen greater than 100 parts per million in those with a positive breath test while subjects with a negative breath test also had a negative faecal incubation test. The frequency of a false negative hydrogen breath test was higher than previously reported, but this does not affect the superiority of this method of testing over the conventional blood glucose determination. PMID:4004310

  10. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    PubMed

    Wu, Po-Hung; Brace, Chris L

    2016-08-21

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  11. Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing.

    PubMed

    Lim, Sangwook; Park, Sung Ho; Ahn, Seung Do; Suh, Yelin; Shin, Seong Soo; Lee, Sang-wook; Kim, Jong Hoon; Choi, Eun Kyoung; Yi, Byong Yong; Kwon, Soo Il; Kim, Sookil; Jeung, Tae Sig

    2007-11-01

    Adapting radiation fields to a moving target requires information continuously on the location of internal target by detecting it directly or indirectly. The aim of this study is to make the breathing regular effectively with minimizing stress to the patient. A system for regulating patient's breath consists of a respiratory monitoring mask (ReMM), a thermocouple module, a screen, inner earphones, and a personal computer. A ReMM with thermocouple was developed previously to measure the patient's respiration. A software was written in LabView 7.0 (National Instruments, TX), which acquires respiration signal and displays its pattern. Two curves are displayed on the screen: One is a curve indicating the patient's current breathing pattern; the other is a guiding curve, which is iterated with one period of the patient's normal breathing curve. The guiding curves were acquired for each volunteer before they breathed with guidance. Ten volunteers participated in this study to evaluate this system. A cycle of the representative guiding curve was acquired by monitoring each volunteer's free breathing with ReMM and was then generated iteratively. The regularity was compared between a free breath curve and a guided breath curve by measuring standard deviations of amplitudes and periods of two groups of breathing. When the breathing was guided, the standard deviation of amplitudes and periods on average were reduced from 0.0029 to 0.00139 (arbitrary units) and from 0.359 s to 0.202 s, respectively. And the correlation coefficients between breathing curves and guiding curves were greater than 0.99 for all volunteers. The regularity was improved statistically when the guiding curve was used.

  12. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  13. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  14. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  15. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  16. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  17. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  18. Effects of breathing exercises on breathing patterns in obese and non-obese subjects.

    PubMed

    Olsén, M F; Lönroth, H; Bake, B

    1999-05-01

    Chest physiotherapy in connection with abdominal surgery includes different deep-breathing exercises to prevent post-operative pulmonary complications. The therapy is effective in preventing pulmonary complications, especially in high-risk patients such as obese persons. The mechanisms behind the effect is unclear, but part of the effect may be explained by the changes in breathing patterns. The aim of this study was therefore to describe and to analyse the breathing patterns in obese and non-obese subjects during three different breathing techniques frequently used in the treatment of post-operative patients. Twenty-one severely obese [body mass index (BMI) > 40] and 21 non-obese (BMI 19-25) subjects were studied. All persons denied having any lung disease and were non-smokers. The breathing techniques investigated were: deep breaths without any resistance (DB), positive expiratory pressure (PEP) with an airway resistance of approximately +15 cmH2O (1.5 kPa) during expiration, inspiratory resistance positive expiratory pressure (IR-PEP) with a pressure of approximately -10 cmH2O (-1.0 kPa) during inspiration. Expiratory resistance as for PEP. Volume against time was monitored while the subjects were sitting in a body plethysmograph. Variables for volume and flow during the breathing cycle were determined. Tidal volume and alveolar ventilation were highest during DB, and peak inspiratory volume was significantly higher than during PEP and IR-PEP in the group of obese subjects. The breathing cycles were prolonged in all techniques but were most prolonged in PEP and IR-PEP. The functional residual capacity (FRC) was significantly lower during DB than during PEP and IR-PEP in the group of obese subjects. FRC as determined within 2 min of finishing each breathing technique was identical to before the breathing manoeuvres.

  19. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Shin, Yung C.

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse.more » The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.« less

  20. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Kraft M. Approach to the patient with respiratory disease. In: ... Elsevier Saunders; 2016:chap 83. McGee S. Respiratory rate and ...

  1. Endometrial Ablation

    MedlinePlus

    ... or lighter levels. If ablation does not control heavy bleeding, further treatment or surgery may be needed. ... ablation is used to treat many causes of heavy bleeding. In most cases, women with heavy bleeding ...

  2. Breath in the technoscientific imaginary

    PubMed Central

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. PMID:27542677

  3. Recovery of Percent Vital Capacity by Breathing Training in Patients With Panic Disorder and Impaired Diaphragmatic Breathing.

    PubMed

    Yamada, Tatsuji; Inoue, Akiomi; Mafune, Kosuke; Hiro, Hisanori; Nagata, Shoji

    2017-09-01

    Slow diaphragmatic breathing is one of the therapeutic methods used in behavioral therapy for panic disorder. In practice, we have noticed that some of these patients could not perform diaphragmatic breathing and their percent vital capacity was initially reduced but could be recovered through breathing training. We conducted a comparative study with healthy controls to investigate the relationship between diaphragmatic breathing ability and percent vital capacity in patients with panic disorder. Our findings suggest that percent vital capacity in patients with impaired diaphragmatic breathing was significantly reduced compared with those with normal diaphragmatic breathing and that diaphragmatic breathing could be restored by breathing training. Percent vital capacity of the healthy controls was equivalent to that of the patients who had completed breathing training. This article provides preliminary findings regarding reduced vital capacity in relation to abnormal respiratory movements found in patients with panic disorder, potentially offering alternative perspectives for verifying the significance of breathing training for panic disorder.

  4. Breathing metabolic simulator.

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1971-01-01

    Description of a device for simulation of the human breathing and metabolic parameters required for the evaluation of respiratory diagnostic, monitoring, support and resuscitation equipment. The remotely controlled device allows wide variations in breathing rate and depth, breath velocity contour, oxygen uptake and carbon dioxide release to simulate conditions from sleep to hard work, with respiration exchange ratios ranging from hypoventilation to hyperventilation. It also reduces the cost of prolonged testing when simulation chambers with human subjects require three shifts of crews and standby physicians. Several block diagrams of the device and subsystems are given.

  5. Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling.

    PubMed

    White, Benjamin M; Zhao, Tianyu; Lamb, James; Bradley, Jeffrey D; Low, Daniel A

    2013-06-01

    The purpose of this study was to develop a methodology to quantitatively measure the thorax-to-abdomen breathing ratio from a 4DCT dataset for breathing motion modeling and breathing motion studies. The thorax-to-abdomen breathing ratio was quantified by measuring the rate of cross-sectional volume increase throughout the thorax and abdomen as a function of tidal volume. Twenty-six 16-slice 4DCT patient datasets were acquired during quiet respiration using a protocol that acquired 25 ciné scans at each couch position. Fifteen datasets included data from the neck through the pelvis. Tidal volume, measured using a spirometer and abdominal pneumatic bellows, was used as breathing-cycle surrogates. The cross-sectional volume encompassed by the skin contour when compared for each CT slice against the tidal volume exhibited a nearly linear relationship. A robust iteratively reweighted least squares regression analysis was used to determine η(i), defined as the amount of cross-sectional volume expansion at each slice i per unit tidal volume. The sum Ση(i) throughout all slices was predicted to be the ratio of the geometric expansion of the lung and the tidal volume; 1.11. The Xiphoid process was selected as the boundary between the thorax and abdomen. The Xiphoid process slice was identified in a scan acquired at mid-inhalation. The imaging protocol had not originally been designed for purposes of measuring the thorax-to-abdomen breathing ratio so the scans did not extend to the anatomy with η(i) = 0. Extrapolation of η(i)-η(i) = 0 was used to include the entire breathing volume. The thorax and abdomen regions were individually analyzed to determine the thorax-to-abdomen breathing ratios. There were 11 image datasets that had been scanned only through the thorax. For these cases, the abdomen breathing component was equal to 1.11 - Ση(i) where the sum was taken throughout the thorax. The average Ση(i) for thorax and abdomen image datasets was found to be 1.20

  6. Whole-heart magnetic resonance coronary angiography with multiple breath-holds and automatic breathing-level tracking

    NASA Astrophysics Data System (ADS)

    Kuhara, Shigehide; Ninomiya, Ayako; Okada, Tomohisa; Kanao, Shotaro; Kamae, Toshikazu; Togashi, Kaori

    2010-05-01

    Whole-heart (WH) magnetic resonance coronary angiography (MRCA) studies are usually performed during free breathing while monitoring the position of the diaphragm with real-time motion correction. However, this results in a long scan time and the patient's breathing pattern may change, causing the study to be aborted. Alternatively, WH MRCA can be performed with multiple breath-holds (mBH). However, one problem in the mBH method is that patients cannot hold their breath at the same position every time, leading to image degradation. We have developed a new WH MRCA imaging method that employs both the mBH method and automatic breathing-level tracking to permit automatic tracking of the changes in breathing or breath-hold levels. Evaluation of its effects on WH MRCA image quality showed that this method can provide high-quality images within a shorter scan time. This proposed method is expected to be very useful in clinical WH MRCA studies.

  7. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Westphal, Saskia, E-mail: swestphal@ukaachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MWmore » ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.« less

  8. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    PubMed

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  9. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  10. Breath in the technoscientific imaginary.

    PubMed

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  12. Localization of gaps during redo ablations of paroxysmal atrial fibrillation: Preferential patterns depending on the choice of cryoballoon ablation or radiofrequency ablation for the initial procedure.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Auffret, Vincent; Fénéon, Damien; Behaghel, Albin; Daubert, Jean-Claude; Mabo, Philippe; Martins, Raphaël P

    2016-11-01

    Pulmonary vein (PV) isolation, using cryoballoon or radiofrequency ablation, is the cornerstone therapy for symptomatic paroxysmal atrial fibrillation (AF) refractory to antiarrhythmic drugs. One-third of the patients have recurrences, mainly due to PV reconnections. To describe the different locations of reconnection sites in patients who had previously undergone radiofrequency or cryoballoon ablation, and to compare the characteristics of the redo procedures in both instances. Demographic data and characteristics of the initial ablation (cryoballoon or radiofrequency) were collected. Number and localization of reconduction gaps, and redo characteristics were reviewed. Seventy-four patients scheduled for a redo ablation of paroxysmal AF were included; 38 had been treated by radiofrequency ablation and 36 by cryoballoon ablation during the first procedure. For the initial ablation, procedural and fluoroscopy times were significantly shorter for cryoballoon ablation (147.8±52.6min vs. 226.6±64.3min [P<0.001] and 37.0±17.7min vs. 50.8±22.7min [P=0.005], respectively). Overall, an identical number of gaps was found during redo procedures of cryoballoon and radiofrequency ablations. However, a significantly higher number of gaps were located in the right superior PV for patients first ablated with radiofrequency (0.9±1.0 vs. 0.5±0.9; P=0.009). Gap localization displayed different patterns. Although not significant, redo procedures of cryoballoon ablation were slightly shorter and needed shorter durations of radiofrequency to achieve PV isolation. During redo procedures, gap localization pattern is different for patients first ablated with cryoballoon or radiofrequency ablation, and right superior PV reconnections occur more frequently after radiofrequency ablation. Redo ablation of a previous cryoballoon ablation appears to be easier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Practice It: Deep Conscious Breathing Exercise

    Cancer.gov

    No time to sit and breathe? No problem; take your breathing practice with you! Deep conscious breathing can also be done with the eyes open wherever you happen to be—simply pause and take two to three full deep breaths (inhale deeply and exhale completely).

  14. Dosimetric comparison of moderate deep inspiration breath-hold and free-breathing intensity-modulated radiotherapy for left-sided breast cancer.

    PubMed

    Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z

    2015-05-01

    This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume

  15. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    PubMed

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  16. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  17. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  18. Social relations and breath odour.

    PubMed

    McKeown, L

    2003-11-01

    In this retrospective qualitative study, the researcher reviewed 55 client records of The Breath Odour Clinic. The purpose was to determine if individuals attended a clinic specialised in treating oral malodour for medical or social reasons. The study focused on the psychosocial and breath odour history. Clients had agreed to the use of information for research purposes. Society uses odour as a means to define and interact with the world. The olfactory, smelling experience is intimate, emotionally charged and connects us with the world. It follows that the smell from mouth breath odour can connect or disconnect a person from their social environment and intimate relationships. How one experiences one's own body is very personal and private but also very public. Breath odour is public as it occurs within a social and cultural context and personal as it affects one's body image and self-confidence. Body image, self-image and social relations mesh, interact and impact upon each other. Breath odour is a dynamic and interactive aspect of the self-image. In addition, breath odour may be value-coded as 'bad'. In 75% of the cases reviewed, decreased self-confidence and insecurity in social and intimate relations led clients to seek treatment at the specialised breath odour clinic. Their doctor, dental hygienist or dentist had treated medical and oral conditions but not resolved their breath odour problem. When a person perceives a constant bad breath problem, she/he uses defence techniques, and may avoid social situations and social relations. This affects a person's well-being.

  19. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    NASA Astrophysics Data System (ADS)

    Park, C.; Bowen, S. W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.

  20. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    PubMed

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  1. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  2. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  3. Minimizing Shortness of Breath

    MedlinePlus

    ... and hyperventilation as well as factors like emotional stress, overexertion, habitual postures and exposure to environmental irritants. Pursed-Lip Breathing One focus of occupational therapy is to teach pursed-lip breathing. This ...

  4. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with the conventional contrast-enhanced breath-hold 3D VIBE sequence.

    PubMed

    Li, Huan-Huan; Zhu, Hui; Yue, Lei; Fu, Yi; Grimm, Robert; Stemmer, Alto; Fu, Cai-Xia; Peng, Wei-Jun

    2018-05-01

    To investigate the feasibility and diagnostic value of free-breathing, radial, stack-of-stars three-dimensional (3D) gradient echo (GRE) sequence ("golden angle") on dynamic contrast-enhanced (DCE) MRI of gastric cancer. Forty-three gastric cancer patients were divided into cooperative and uncooperative groups. Respiratory fluctuation was observed using an abdominal respiratory gating sensor. Those who breath-held for more than 15 s were placed in the cooperative group and the remainder in the uncooperative group. The 3-T MRI scanning protocol included 3D GRE and conventional breath-hold VIBE (volume-interpolated breath-hold examination) sequences, comparing images quantitatively and qualitatively. DCE-MRI parameters from VIBE images of normal gastric wall and malignant lesions were compared. For uncooperative patients, 3D GRE scored higher qualitatively, and had higher SNRs (signal-to-noise ratios) and CNRs (contrast-to-noise ratios) than conventional VIBE quantitatively. Though 3D GRE images scored lower in qualitative parameters compared with conventional VIBE for cooperative patients, it provided images with fewer artefacts. DCE parameters differed significantly between normal gastric wall and lesions, with higher Ve (extracellular volume) and lower Kep (reflux constant) in gastric cancer. The free-breathing, golden-angle, radial stack-of-stars 3D GRE technique is feasible for DCE-MRI of gastric cancer. Dynamic enhanced images can be used for quantitative analysis of this malignancy. • Golden-angle radial stack-of-stars VIBE aids gastric cancer MRI diagnosis. • The 3D GRE technique is suitable for patients unable to suspend respiration. • Method scored higher in the qualitative evaluation for uncooperative patients. • The technique produced images with fewer artefacts than conventional VIBE sequence. • Dynamic enhanced images can be used for quantitative analysis of gastric cancer.

  5. Family history of atrial fibrillation as a predictor of atrial substrate and arrhythmia recurrence in patients undergoing atrial fibrillation catheter ablation.

    PubMed

    Kapur, Sunil; Kumar, Saurabh; John, Roy M; Stevenson, William G; Tedrow, Usha B; Koplan, Bruce A; Epstein, Laurence M; MacRae, Calum A; Michaud, Gregory F

    2018-06-01

    A commonly held notion is that patients with a family history of atrial fibrillation (AF) have worse atrial substrate and higher rates of arrhythmia recurrence following ablation. We sought to examine differences in atrial substrate and catheter ablation outcomes in patients with a 1st degree family member with paroxysmal or persistent AF (PeAF) compared to those without. A total of 256 consecutive patients undergoing their 1st ablation for AF (123 paroxysmal, 133 persistent) with >1 year follow up were included. The presence of one 1st-degree family relative was defined as a 'positive family history'. Clinical characteristics, electroanatomic map findings, ablation characteristics and outcomes were compared in patients with and without a positive family history of AF. Patients with paroxysmal fibrillation with a positive family history (n = 57; 46%) had similar clinical characteristics and arrhythmia recurrence after catheter ablation as those without. Of those that recurred, patients with a positive family history were more likely to have progressed to PeAF (P = 0.05). Patients with PeAF with a positive family history (n = 75; 56%) had similar clinical characteristics, electroanatomic mapping findings and ablation characteristics, but worse long term arrhythmia free survival (P = 0.04). The presence of a 1st-degree family member with AF does not impact the clinical outcomes of catheter ablation for paroxysmal AF. However, a positive family history is associated with worse arrhythmia free survival in patients with PeAF. This finding is not explained by differences in clinical characteristics, atrial substrate assessed by voltage maps or ablation characteristics.

  6. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. PREFACE AND CONFERENCE INFORMATION: Eighth International Conference on Laser Ablation

    NASA Astrophysics Data System (ADS)

    Hess, Wayne P.; Herman, Peter R.; Bäuerle, Dieter; Koinuma, Hideomi

    2007-04-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11-16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in a unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications. Laser ablation continues to grow and evolve, touching forefront areas in science and driving new technological trends in laser processing applications. Please

  8. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  9. Traveling with breathing problems

    MedlinePlus

    ... obstructive lung disease - travel; Chronic bronchitis - travel; Emphysema - travel ... you: Are short of breath most of the time Get short of breath ... doctor if you plan to travel in a place at a high altitude (such ...

  10. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  11. Probing plasmonic breathing modes optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Markus K., E-mail: markus.krug@uni-graz.at; Reisecker, Michael; Hohenau, Andreas

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  12. Is AF Ablation Cost Effective?

    PubMed Central

    Martin-Doyle, William; Reynolds, Matthew R.

    2010-01-01

    The use of catheter ablation to treat AF is increasing rapidly, but there is presently an incomplete understanding of its cost-effectiveness. AF ablation procedures involve significant up-front expenditures, but multiple randomized trials have demonstrated that ablation is more effective than antiarrhythmic drugs at maintaining sinus rhythm in a second-line and possibly first-line rhythm control setting. Although truly long-term data are limited, ablation, as compared with antiarrrhythmic drugs, also appears associated with improved symptoms and quality of life and a reduction in downstream hospitalization and other health care resource utilization. Several groups have developed cost effectiveness models comparing AF ablation primarily to antiarrhythmic drugs and the model results suggest that ablation likely falls within the range generally accepted as cost-effective in developed nations. This paper will review available information on the cost-effectiveness of catheter ablation for the treatment of atrial fibrillation, and discuss continued areas of uncertainty where further research is required. PMID:20936083

  13. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  14. Robotic navigation and ablation.

    PubMed

    Malcolme-Lawes, L; Kanagaratnam, P

    2010-12-01

    Robotic technologies have been developed to allow optimal catheter stability and reproducible catheter movements with the aim of achieving contiguous and transmural lesion delivery. Two systems for remote navigation of catheters within the heart have been developed; the first is based on a magnetic navigation system (MNS) Niobe, Stereotaxis, Saint-Louis, Missouri, USA, the second is based on a steerable sheath system (Sensei, Hansen Medical, Mountain View, CA, USA). Both robotic and magnetic navigation systems have proven to be feasible for performing ablation of both simple and complex arrhythmias, particularly atrial fibrillation. Studies to date have shown similar success rates for AF ablation compared to that of manual ablation, with many groups finding a reduction in fluoroscopy times. However, the early learning curve of cases demonstrated longer procedure times, mainly due to additional setup times. With centres performing increasing numbers of robotic ablations and the introduction of a pressure monitoring system, lower power settings and instinctive driving software, complication rates are reducing, and fluoroscopy times have been lower than manual ablation in many studies. As the demand for catheter ablation for arrhythmias such as atrial fibrillation increases and the number of centres performing these ablations increases, the demand for systems which reduce the hand skill requirement and improve the comfort of the operator will also increase.

  15. NICMOS Focus and HST Breathing

    NASA Astrophysics Data System (ADS)

    Suchkov, A.; Hershey, J.

    1998-09-01

    The program 7608 monitored on a biweekly basis NICMOS camera foci from June 9, 1997, through February 18, 1998. Each of the biweekly observations included 17 measurements of focus position (focus sweeps), individually for each of the three cameras. The measurements for camera 1 and camera 3 foci covered one or two HST orbital periods. Comparison of these measurements with the predictions of the three OTA focus breathing models has shown the following. (1). Focus variations seen in NICMOS focus sweeps correlate well with the OTA focus thermal breathing as predicted by breathing models (“4- temperature”, “full-temperature”, and “attitude” models). Thus they can be attributed mostly to the HST orbital temperature variation. (2). The amount of breathing (breathing amplitude) has been found to be on average larger in the first orbit after a telescope slew to a new target. This is explained as being due to additional thermal perturbations caused by the change in the HST attitude as the telescope repoints to a new target. (3). In the first orbit, the amount of focus change predicted by the 4-temperature model is about the same as that seen in the focus sweeps data (breathing scale factor ~1). However the full-temperature model predicts a two times smaller breathing amplitude (breathing scale factor ~1.7). This suggests that the light shield temperatures are more responsive to the attitude change than temperatures from the other temperature sensors. The results of this study may help to better understand the HST thermal cycles and to improve the models describing the impact of those on both the OTA and NICMOS focus.

  16. Calculating rhythmicity of infant breathing using wavelets

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.; Harper, Ronald M.; Macey, Paul M.; Ford, Rodney P. K.

    2000-12-01

    Breathing signals are one set of physiological data that may provide information regarding the mechanisms that cause SIDS. Isolated breathing pauses have been implicated in fatal events. Other features of interest include slow amplitude modulation of the breathing signal, a phenomenon whose origin is unclear, and periodic breathing. The latter describes a repetitive series of apnea, and may be considered an extreme manifestation of amplitude modulation with successive cessations of breathing. Rhythmicity is defined to assess the impact of amplitude modulation on breathing signals and describes the extent to which frequency components remain constant for the duration of the signal. The wavelet transform was used to identify sections of constant frequency components within signals. Rhythmicity can be evaluated for all the frequency components in a signal, for individual frequencies. The rhythmicity of eight breathing epochs from sleeping infants at high and low risk for SIDS was calculated. Initial results show breathing from infants at high risk for SIDS exhibits greater rhythmicity of modulating frequencies than breathing from low risk infants.

  17. Drinking influences exhaled breath condensate acidity.

    PubMed

    Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó

    2008-01-01

    Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.

  18. Epicardial Radiofrequency Ablation Failure During Ablation Procedures for Ventricular Arrhythmias: Reasons and Implications for Outcomes.

    PubMed

    Baldinger, Samuel H; Kumar, Saurabh; Barbhaiya, Chirag R; Mahida, Saagar; Epstein, Laurence M; Michaud, Gregory F; John, Roy; Tedrow, Usha B; Stevenson, William G

    2015-12-01

    Radiofrequency ablation (RFA) from the epicardial space for ventricular arrhythmias is limited or impossible in some cases. Reasons for epicardial ablation failure and the effect on outcome have not been systematically analyzed. We assessed reasons for epicardial RFA failure relative to the anatomic target area and the type of heart disease and assessed the effect of failed epicardial RFA on outcome after ablation procedures for ventricular arrhythmias in a large single-center cohort. Epicardial access was attempted during 309 ablation procedures in 277 patients and was achieved in 291 procedures (94%). Unlimited ablation in an identified target region could be performed in 181 cases (59%), limited ablation was possible in 22 cases (7%), and epicardial ablation was deemed not feasible in 88 cases (28%). Reasons for failed or limited ablation were unsuccessful epicardial access (6%), failure to identify an epicardial target (15%), proximity to a coronary artery (13%), proximity to the phrenic nerve (6%), and complications (<1%). Epicardial RFA was impeded in the majority of cases targeting the left ventricular summit region. Acute complications occurred in 9%. The risk for acute ablation failure was 8.3× higher (4.5-15.0; P<0.001) after no or limited epicardial RFA compared with unlimited RFA, and patients with unlimited epicardial RFA had better recurrence-free survival rates (P<0.001). Epicardial RFA for ventricular arrhythmias is often limited even when pericardial access is successful. Variability of success is dependent on the target area, and the presence of factors limiting ablation is associated with worse outcomes. © 2015 American Heart Association, Inc.

  19. Outcomes of repeat catheter ablation using magnetic navigation or conventional ablation.

    PubMed

    Akca, Ferdi; Theuns, Dominic A M J; Abkenari, Lara Dabiri; de Groot, Natasja M S; Jordaens, Luc; Szili-Torok, Tamas

    2013-10-01

    After initial catheter ablation, repeat procedures could be necessary. This study evaluates the efficacy of the magnetic navigation system (MNS) in repeat catheter ablation as compared with manual conventional techniques (MANs). The results of 163 repeat ablation procedures were analysed. Ablations were performed either using MNS (n = 84) or conventional manual ablation (n = 79). Procedures were divided into four groups based on the technique used during the initial and repeat ablation procedure: MAN-MAN (n = 66), MAN-MNS (n = 31), MNS-MNS (n = 53), and MNS-MAN (n = 13). Three subgroups were analysed: supraventricular tachycardias (SVTs, n = 68), atrial fibrillation (AF, n = 67), and ventricular tachycardias (VT, n = 28). Recurrences were assessed during 19 ± 11 months follow-up. Overall, repeat procedures using MNS were successful in 89.0% as compared with 96.2% in the MAN group (P = ns). The overall recurrence rate was significantly lower using MNS (25.0 vs. 41.4%, P = 0.045). Acute success and recurrence rates for the MAN-MAN, MAN-MNS, MNS-MNS, and MNS-MAN groups were comparable. For the SVT subgroup a higher acute success rate was achieved using MAN (87.9 vs. 100.0%, P = 0.049). The use of MNS for SVT is associated with longer procedure times (205 ± 82 vs. 172 ± 69 min, P = 0.040). For AF procedure and fluoroscopy times were longer (257 ± 72 vs. 185 ± 64, P = 0.001; 59.5 ± 19.3 vs. 41.1 ± 18.3 min, P < 0.001). Less fluoroscopy was used for MNS-guided VT procedures (22.8 ± 14.7 vs. 41.2 ± 10.9, P = 0.011). Our data suggest that overall MNS is comparable with MAN in acute success after repeat catheter ablation. However, MNS is related to fewer recurrences as compared with MAN.

  20. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, G; Yin, Y

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group,more » 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.« less

  1. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  2. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  3. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques.

    PubMed

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Segersvärd, Ralf; Albiin, Nils

    2012-10-01

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm(2)) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 × 10(-3) mm(2)/s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. • Diffusion-weighted magnetic resonance imaging is increasingly used to detect pancreatic cancer • Images are acquired using various breathing techniques and multiple b-values • Breathing techniques used: respiratory-triggering, free-breathing and breath-hold • Respiratory-triggering seems the optimal breathing technique for demonstrating pancreatic cancer.

  4. Ion acceleration enhanced by target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, S.; State Key Laboratory of Nuclear Physics and Technology, and Key Lab of HEDPS, CAPT, Peking University, Beijing 100871; Institute of Radiation, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  5. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  6. Visualizing Breath using Digital Holography

    NASA Astrophysics Data System (ADS)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  7. Laboratory Simulations of Micrometeoroid Ablation

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  8. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  9. Breath-Hold Diving.

    PubMed

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  10. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    PubMed

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Controlled breathing protocols probe human autonomic cardiovascular rhythms

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.

    1998-01-01

    The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

  12. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    PubMed

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  13. Reaction time following yoga bellows-type breathing and breath awareness.

    PubMed

    Telles, Shirley; Yadav, Arti; Gupta, Ram Kumar; Balkrishna, Acharya

    2013-08-01

    The reaction time (RT) was assessed in two groups of healthy males, yoga group (M age = 29.0 yr.) and non-yoga or control group (M age = 29.0 yr.), with 35 participants each. The yoga group had an average experience of 6 months, while the control group was yoga-naïve. The yoga group was assessed in two sessions, (i) bhastrika pranayama or bellows breathing and (ii) breath awareness, while the control group had a single control session. The two experimental sessions, one with each type of breathing, and the control session consisted of pre- (5 min.), during (18 min.), and post-session epochs (5 min.). Assessments were made in the pre- and post-session epochs using a Multi-Operational Apparatus for Reaction Time. Following 18 min. of bhastrika pranayama there was a statistically significant reduction in number of anticipatory responses compared to before the practice. This suggests that the immediate effect of bhastrika pranayama is to inhibit unnecessary responding to stimuli.

  14. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  15. CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma: specific technical aspects and clinical results.

    PubMed

    Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L

    2013-06-01

    This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  16. Ablative heat shield design for space shuttle

    NASA Technical Reports Server (NTRS)

    Seiferth, R. W.

    1973-01-01

    Ablator heat shield configuration optimization studies were conducted for the orbiter. Ablator and reusable surface insulation (RSI) trajectories for design studies were shaped to take advantage of the low conductance of ceramic RSI and high temperature capability of ablators. Comparative weights were established for the RSI system and for direct bond and mechanically attached ablator systems. Ablator system costs were determined for fabrication, installation and refurbishment. Cost penalties were assigned for payload weight penalties, if any. The direct bond ablator is lowest in weight and cost. A mechanically attached ablator using a magnesium subpanel is highly competitive for both weight and cost.

  17. Transgenic Reproductive Cell Ablation.

    PubMed

    Lawit, Shai J; Chamberlin, Mark A

    2017-01-01

    Numerous cell ablation technologies are available and have been used in reproductive tissues, particularly for male tissues and cells. The importance of ablation of reproductive tissues is toward a fundamental understanding reproductive tissue development and fertilization, as well as, in developing sterility lines important to breeding strategies. Here, we describe techniques for developing ablation lines for both male and female reproductive cells. Also discussed are techniques for analysis, quality control, maintenance, and the lessening of pleiotropism in such lines.

  18. Atrial Tachycardias Following Atrial Fibrillation Ablation

    PubMed Central

    Sághy, László; Tutuianu, Cristina; Szilágyi, Judith

    2015-01-01

    One of the most important proarrhythmic complications after left atrial (LA) ablation is regular atrial tachycardia (AT) or flutter. Those tachycardias that occur after atrial fibrillation (AF) ablation can cause even more severe symptoms than those from the original arrhythmia prior to the index ablation procedure since they are often incessant and associated with rapid ventricular response. Depending on the method and extent of LA ablation and on the electrophysiological properties of underlying LA substrate, the reported incidence of late ATs is variable. To establish the exact mechanism of these tachycardias can be difficult and controversial but correlates with the ablation technique and in the vast majority of cases the mechanism is reentry related to gaps in prior ablation lines. When tachycardias occur, conservative therapy usually is not effective, radiofrequency ablation procedure is mostly successful, but can be challenging, and requires a complex approach. PMID:25308808

  19. The role of arterial chemoreceptors in the breath-by-breath augmentation of inspiratory effort in rabbits during airway occlusion or elastic loading.

    PubMed

    Callanan, D; Read, D J

    1974-08-01

    1. The breath-by-breath augmentation of inspiratory effort in the five breaths following airway occlusion or elastic loading was assessed in anaesthetized rabbits from changes of airway pressure, diaphragm e.m.g. and lung volume.2. When the airway was occluded in animals breathing air, arterial O(2) tension fell by 20 mmHg and CO(2) tension rose by 7 mmHg within the time of the first five loaded breaths.3. Inhalation of 100% O(2) or carotid denervation markedly reduced the breath-by-breath progression but had little or no effect on the responses at the first loaded breath.4. These results indicate that the breath-by-breath augmentation of inspiratory effort following addition of a load is mainly due to asphyxial stimulation of the carotid bodies, rather than to the gradual emergence of a powerful load-compensating reflex originating in the chest-wall, as postulated by some workers.5. The small residual progression seen in animals breathing 100% O(2) or following carotid denervation was not eliminated (a) by combining these procedures or (b) by addition of gas to the lungs to prevent the progressive lung deflation which occurred during airway occlusion.6. Bilateral vagotomy, when combined with carotid denervation, abolished the residual breath-by-breath progression of inspiratory effort.

  20. Analysis of Exhaled Breath for Disease Detection

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  1. Air sampling unit for breath analyzers

    NASA Astrophysics Data System (ADS)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  2. WE-DE-209-00: Practical Implementation of Deep Inspiration Breath Hold Techniques for Breast Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBHmore » patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.« less

  3. BREATHE to Understand©

    ERIC Educational Resources Information Center

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  4. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  5. Quiet breathing in hindlimb casted mice.

    PubMed

    Receno, Candace N; Roffo, Katelynn E; Mickey, Marisa C; DeRuisseau, Keith C; DeRuisseau, Lara R

    2018-06-07

    The hindlimb casting model was developed to study skeletal muscle reloading following a period of unloading. It is unknown if ventilation parameters of mice are affected by the casting model. We tested the hypothesis that hindlimb casted mice have similar ventilatory patterns compared to mice with the casts removed. Male CD-1 mice underwent 14 days of hindlimb immobilization via plaster casting. Breathing parameters were obtained utilizing unrestrained barometric plethysmography (UBP). Breathing traces were analyzed with Ponemah software for breathing frequency, tidal volume (TV), and minute ventilation (MV). Frequency, TV and MV did not show any differences in quiet breathing patterns during or post-casting in mice. Thus, the hindlimb casting model does not complicate breathing during and after casting and should not interfere with the unloading and reloading of skeletal muscle. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Is Cryoballoon Ablation Preferable to Radiofrequency Ablation for Treatment of Atrial Fibrillation by Pulmonary Vein Isolation? A Meta-Analysis

    PubMed Central

    Xu, Junxia; Huang, Yingqun; Cai, Hongbin; Qi, Yue; Jia, Nan; Shen, Weifeng; Lin, Jinxiu; Peng, Feng; Niu, Wenquan

    2014-01-01

    Objective Currently radiofrequency and cryoballoon ablations are the two standard ablation systems used for catheter ablation of atrial fibrillation; however, there is no universal consensus on which ablation is the optimal choice. We therefore sought to undertake a meta-analysis with special emphases on comparing the efficacy and safety between cryoballoon and radiofrequency ablations by synthesizing published clinical trials. Methods and Results Articles were identified by searching the MEDLINE and EMBASE databases before September 2013, by reviewing the bibliographies of eligible reports, and by consulting with experts in this field. Data were extracted independently and in duplicate. There were respectively 469 and 635 patients referred for cryoballoon and radiofrequency ablations from 14 qualified clinical trials. Overall analyses indicated that cryoballoon ablation significantly reduced fluoroscopic time and total procedure time by a weighted mean of 14.13 (95% confidence interval [95% CI]: 2.82 to 25.45; P = 0.014) minutes and 29.65 (95% CI: 8.54 to 50.77; P = 0.006) minutes compared with radiofrequency ablation, respectively, whereas ablation time in cryoballoon ablation was nonsignificantly elongated by a weighted mean of 11.66 (95% CI: −10.71 to 34.04; P = 0.307) minutes. Patients referred for cryoballoon ablation had a high yet nonsignificant success rate of catheter ablation compared with cryoballoon ablation (odds ratio; 95% CI; P: 1.34; 0.53 to 3.36; 0.538), and cryoballoon ablation was also found to be associated with the relatively low risk of having recurrent atrial fibrillation (0.75; 0.3 to 1.88; 0.538) and major complications (0.46; 0.11 to 1.83; 0.269). There was strong evidence of heterogeneity and low probability of publication bias. Conclusion Our findings demonstrate greater improvement in fluoroscopic time and total procedure duration for atrial fibrillation patients referred for cryoballoon ablation than those for

  7. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  8. Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature

    NASA Astrophysics Data System (ADS)

    Dixit, Saurabh; Shukla, A. K.

    2018-06-01

    In this article, single-walled carbon nanotubes (SWCNTs) are synthesized at room temperature using pulsed laser ablation of ferrocene mixed graphitic target. Radial breathing mode (RBM) reveals the presence of semiconducting SWCNTs of multiple diameters. Quantum confinement model is developed for Raman line-shape of G - feature. It is invoked here that G-feature is the manifestation of TO phonons in the semiconducting SWCNTs. Disorder in the SWCNTs is studied here as a function of the concentration of ferrocene in the graphitic target using X-ray diffraction analysis, oscillator strength of G - feature and D mode and Raman line-shape model of G - feature. Furthermore, phonon softening of G - feature of semiconducting SWCNTs is observed as a function of the diameter of nanotube.

  9. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.

    PubMed

    Kim, Do-Yeon; Robergs, Robert Andrew

    2012-02-01

    Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC.

  10. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation

  11. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    NASA Astrophysics Data System (ADS)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  12. Breath-based biomarkers for tuberculosis

    NASA Astrophysics Data System (ADS)

    Kolk, Arend H. J.; van Berkel, Joep J. B. N.; Claassens, Mareli M.; Walters, Elisabeth; Kuijper, Sjoukje; Dallinga, Jan W.; van Schooten, Fredrik-Jan

    2012-06-01

    We investigated the potential of breath analysis by gas chromatography - mass spectrometry (GC-MS) to discriminate between samples collected prospectively from patients with suspected tuberculosis (TB). Samples were obtained in a TB endemic setting in South Africa where 28% of the culture proven TB patients had a Ziehl-Neelsen (ZN) negative sputum smear. A training set of breath samples from 50 sputum culture proven TB patients and 50 culture negative non-TB patients was analyzed by GC-MS. A classification model with 7 compounds resulted in a training set with a sensitivity of 72%, specificity of 86% and accuracy of 79% compared with culture. The classification model was validated with an independent set of breath samples from 21 TB and 50 non-TB patients. A sensitivity of 62%, specificity of 84% and accuracy of 77% was found. We conclude that the 7 volatile organic compounds (VOCs) that discriminate breath samples from TB and non-TB patients in our study population are probably host-response related VOCs and are not derived from the VOCs secreted by M. tuberculosis. It is concluded that at present GC-MS breath analysis is able to differentiate between TB and non-TB breath samples even among patients with a negative ZN sputum smear but a positive culture for M. tuberculosis. Further research is required to improve the sensitivity and specificity before this method can be used in routine laboratories.

  13. Brain Emboli After Left Ventricular Endocardial Ablation.

    PubMed

    Whitman, Isaac R; Gladstone, Rachel A; Badhwar, Nitish; Hsia, Henry H; Lee, Byron K; Josephson, S Andrew; Meisel, Karl M; Dillon, William P; Hess, Christopher P; Gerstenfeld, Edward P; Marcus, Gregory M

    2017-02-28

    Catheter ablation for ventricular tachycardia and premature ventricular complexes (PVCs) is common. Catheter ablation of atrial fibrillation is associated with a risk of cerebral emboli attributed to cardioversions and numerous ablation lesions in the low-flow left atrium, but cerebral embolic risk in ventricular ablation has not been evaluated. We enrolled 18 consecutive patients meeting study criteria scheduled for ventricular tachycardia or PVC ablation over a 9-month period. Patients undergoing left ventricular (LV) ablation were compared with a control group of those undergoing right ventricular ablation only. Patients were excluded if they had implantable cardioverter defibrillators or permanent pacemakers. Radiofrequency energy was used for ablation in all cases and heparin was administered with goal-activated clotting times of 300 to 400 seconds for all LV procedures. Pre- and postprocedural brain MRI was performed on each patient within a week of the ablation procedure. Embolic infarcts were defined as new foci of reduced diffusion and high signal intensity on fluid-attenuated inversion recovery brain MRI within a vascular distribution. The mean age was 58 years, half of the patients were men, half had a history of hypertension, and the majority had no known vascular disease or heart failure. LV ablation was performed in 12 patients (ventricular tachycardia, n=2; PVC, n=10) and right ventricular ablation was performed exclusively in 6 patients (ventricular tachycardia, n=1; PVC, n=5). Seven patients (58%) undergoing LV ablation experienced a total of 16 cerebral emboli, in comparison with zero patients undergoing right ventricular ablation ( P =0.04). Seven of 11 patients (63%) undergoing a retrograde approach to the LV developed at least 1 new brain lesion. More than half of patients undergoing routine LV ablation procedures (predominately PVC ablations) experienced new brain emboli after the procedure. Future research is critical to understanding the

  14. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    PubMed

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited

  15. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  16. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    NASA Astrophysics Data System (ADS)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  17. Dual-Gated Motion-Frozen Cardiac PET with Flurpiridaz F 18.

    PubMed

    Slomka, Piotr J; Rubeaux, Mathieu; Le Meunier, Ludovic; Dey, Damini; Lazewatsky, Joel L; Pan, Tinsu; Dweck, Marc R; Newby, David E; Germano, Guido; Berman, Daniel S

    2015-12-01

    A novel PET radiotracer, Flurpiridaz F 18, has undergone phase II clinical trial evaluation as a high-resolution PET cardiac perfusion imaging agent. In a subgroup of patients imaged with this agent, we assessed the feasibility and benefit of simultaneous correction of respiratory and cardiac motion. In 16 patients, PET imaging was performed on a 4-ring scanner in dual cardiac and respiratory gating mode. Four sets of data were reconstructed with high-definition reconstruction (HD•PET): ungated and 8-bin electrocardiography-gated images using 5-min acquisition, optimal respiratory gating (ORG)-as developed for oncologic imaging-using a narrow range of breathing amplitude around end-expiration level with 35% of the counts in a 7-min acquisition, and 4-bin respiration-gated and 8-bin electrocardiography-gated images (32 bins in total) using the 7-min acquisition (dual-gating, using all data). Motion-frozen (MF) registration algorithms were applied to electrocardiography-gated and dual-gated data, creating cardiac-MF and dual-MF images. We computed wall thickness, wall/cavity contrast, and contrast-to-noise ratio for standard, ORG, cardiac-MF, and dual-MF images to assess image quality. The wall/cavity contrast was similar for ungated (9.3 ± 2.9) and ORG (9.5 ± 3.2) images and improved for cardiac-MF (10.8 ± 3.6) and dual-MF images (14.8 ± 8.0) (P < 0.05). The contrast-to-noise ratio was 22.2 ± 9.1 with ungated, 24.7 ± 12.2 with ORG, 35.5 ± 12.8 with cardiac-MF, and 42.1 ± 13.2 with dual-MF images (all P < 0.05). The wall thickness was significantly decreased (P < 0.05) with dual-MF (11.6 ± 1.9 mm) compared with ungated (13.9 ± 2.8 mm), ORG (13.1 ± 2.9 mm), and cardiac-MF images (12.1 ± 2.7 mm). Dual (respiratory/cardiac)-gated perfusion imaging with Flurpiridaz F 18 is feasible and improves image resolution, contrast, and contrast-to-noise ratio when MF registration methods are applied. © 2015 by the Society of Nuclear Medicine and Molecular Imaging

  18. Sphere-enhanced microwave ablation (sMWA) versus bland microwave ablation (bMWA): technical parameters, specific CT 3D rendering and histopathology.

    PubMed

    Gockner, T L; Zelzer, S; Mokry, T; Gnutzmann, D; Bellemann, N; Mogler, C; Beierfuß, A; Köllensperger, E; Germann, G; Radeleff, B A; Stampfl, U; Kauczor, H U; Pereira, P L; Sommer, C M

    2015-04-01

    This study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA). In six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output, ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL). Resulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm(3) for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm(3) for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features. Specific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.

  19. Cardiorespiratory interactions during resistive load breathing.

    PubMed

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  20. Ablation of Rotor and Focal Sources Reduces Late Recurrence of Atrial Fibrillation Compared to Trigger Ablation Alone

    PubMed Central

    Narayan, Sanjiv M.; Baykaner, Tina; Clopton, Paul; Schricker, Amir; Lalani, Gautam; Krummen, David E.; Shivkumar, Kalyanam; Miller, John M.

    2014-01-01

    Objectives To determine if ablation that targets patient-specific AF-sustaining substrates (rotors or focal sources) is more durable than trigger ablation alone at preventing late AF recurrences. Background Late recurrence substantially limits the efficacy of pulmonary vein (PV) isolation for AF, and is associated with PV reconnection and the emergence of new triggers. Methods We performed 3 year follow-up of the CONFIRM trial, in which 92 consecutive AF patients (70.7% persistent) underwent novel computational mapping to reveal a median of 2 (IQR 1–2) rotors or focal sources in 97.7% of patients during AF. Ablation comprised source (Focal Impulse and Rotor Modulation, FIRM) then conventional ablation in n=27 (FIRM-guided), and conventional ablation alone in n=65 (FIRM-blinded). Patients were followed with implanted ECG monitors when possible (85.2% FIRM guided, 23.1% FIRM-blinded). Results On 890 days follow-up (median; IQR 224–1563) compared FIRM-blinded therapy, patients receiving FIRM-guided ablation maintained higher freedom from AF after 1.2±0.4 procedures (median 1, IQR 1–1) (77.8% vs 38.5%; p=0.001) and a single procedure (p>0.001), and higher freedom from all atrial arrhythmias (p=0.003). Freedom from AF was higher when ablation directly or coincidentally passed through sources than when it missed sources (p>0.001). CONCLUSIONS FIRM-guided ablation is more durable than conventional trigger-based ablation at preventing 3 year AF recurrence. Future studies should investigate how ablation of patient-specific AF-sustaining rotors and focal sources alters the natural history of arrhythmia recurrence. PMID:24632280

  1. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes ('Temperature Control' and 'Power Control') on Procedural Outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Arnegger, F.; Koch, V.

    2012-06-15

    Purpose: This study was designed to analyze the effect of two different ablation modes ('temperature control' and 'power control') of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Signmore » C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 {+-} 0 s in group I and 102 {+-} 21 s in group II. Long axis diameter was 20.3 {+-} 4.6 mm in group I and 19.8 {+-} 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 {+-} 2 mm in group I and 10.5 {+-} 2.4 mm in group II (NS). Circularity was 0.5 {+-} 0.1 in group I and 0.5 {+-} 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.« less

  2. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in the...

  3. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in the...

  4. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    PubMed

    Arden-Close, Emily; Yardley, Lucy; Kirby, Sarah; Thomas, Mike; Bruton, Anne

    2017-10-05

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retraining delivered by digital versatile disc (DVD) or face-to-face sessions with a respiratory physiotherapist) took part in semi-structured telephone interviews about their experiences. Interviews were analysed using thematic analysis. Breathing retraining was perceived positively as a method of asthma management. Motivations for taking part included being asked, to enhance progress in research, to feel better/reduce symptoms, and to reduce medication. Participants were positive about the physiotherapist, liked having the materials tailored, found meetings motivational, and liked the DVD and booklet. The impact of breathing retraining following regular practice included increased awareness of breathing and development of new habits. Benefits of breathing retraining included increased control over breathing, reduced need for medication, feeling more relaxed, and improved health and quality of life. Problems included finding time to practice the exercises, and difficulty mastering techniques. Breathing retraining was acceptable and valued by almost all participants, and many reported improved wellbeing. Face to face physiotherapy was well received. However, some participants in the DVD group mentioned being unable to master techniques. PATIENTS RECEPTIVE TO BREATHING RETRAINING: Patients with asthma taught how to change their unconscious breathing patterns generally like non-pharmacological interventions. Researchers in the UK, led by Mike Thomas from the University of Southampton

  5. [Catheter ablation for paroxysmal atrial fibrillation: new generation cryoballoon or contact force sensing radiofrequency ablation?].

    PubMed

    Nagy, Zsófia; Kis, Zsuzsanna; Som, Zoltán; Földesi, Csaba; Kardos, Attila

    2016-05-29

    Contact force sensing radiofrequency ablation and the new generation cryoballoon ablation are prevalent techniques for the treatment of paroxysmal atrial fibrillation. The authors aimed to compare the procedural and 1-year outcome of patients after radiofrequency and cryoballoon ablation. 96 patients with paroxysmal atrial fibrillation (radiofrequency ablation: 58, cryoballoon: 38 patients; 65 men and 31 women aged 28-70 years) were enrolled. At postprocedural 1, 3, 6 and 12 months ECG, Holter monitoring and telephone interviews were performed. Procedure and fluorosocopy time were: radiofrequency ablation, 118.5 ± 15 min and 15.8 ± 6 min; cryoballoon, 73.5 ± 16 min (p<0.05) and 13.8 ± 4.,1 min (p = 0.09), respectively. One year later freedom from atrial fibrillation was achieved in 76.5% of patients who underwent radiofrequency ablation and in 81% of patients treated with cryoballoon. Temporary phrenic nerve palsy occurred in two patients and pericardial tamponade developed in one patient. In this single center study freedom from paroxysmal atrial fibrillation was similar in the two groups with significant shorter procedure time in the cryoballoon group.

  6. Percutaneous Microwave Ablation of Renal Angiomyolipomas.

    PubMed

    Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T

    2016-03-01

    To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  7. Breathing simulator of workers for respirator performance test

    PubMed Central

    YUASA, Hisashi; KUMITA, Mikio; HONDA, Takeshi; KIMURA, Kazushi; NOZAKI, Kosuke; EMI, Hitoshi; OTANI, Yoshio

    2014-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker’s respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns. PMID:25382381

  8. Breathing simulator of workers for respirator performance test.

    PubMed

    Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio

    2015-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.

  9. Influence of breathing resistance of heat and moisture exchangers on tracheal climate and breathing pattern in laryngectomized individuals.

    PubMed

    Scheenstra, Renske J; Muller, Sara H; Vincent, Andrew; Sinaasappel, Michiel; Hilgers, Frans J M

    2010-08-01

    The aim of this study was to determine the influence of breathing resistance of heat and moisture exchangers (HMEs) on endotracheal climate and breathing pattern. Endotracheal temperature and humidity and tidal volumes were measured in 11 laryngectomized patients with a regularly used HME with "standard" breathing resistance (Provox Normal HME; R-HME), a low breathing-resistance HME (Provox HiFlow HME; L-HME), and without HME. Both R-HME and L-HME increased end-inspiratory humidity (+5.8 and 4.7 mgH(2)O/L, respectively), decreased end-inspiratory temperature (-1.6 and -1.0 degrees C, respectively), and prolonged the exhalation breath length to approximately 0.5 seconds. The R-HME significantly enlarged tidal volumes (0.07 L; p < .05). Both HMEs significantly improve tracheal climate. The R-HME has better moistening properties and a small but significant positive effect on tidal volume. Therefore, if the higher resistance is tolerated, the R-HME is the preferred pulmonary rehabilitation device. The L-HME is indicated if lower breathing resistance is required. 2009 Wiley Periodicals, Inc. Head Neck, 2010.

  10. A Gaussian method to improve work-of-breathing calculations.

    PubMed

    Petrini, M F; Evans, J N; Wall, M A; Norman, J R

    1995-01-01

    The work of breathing is a calculated index of pulmonary function in ventilated patients that may be useful in deciding when to wean and when to extubate. However, the accuracy of the calculated work of breathing of the patient (WOBp) can suffer from artifacts introduced by coughing, swallowing, and other non-breathing maneuvers. The WOBp in this case will include not only the usual work of inspiration, but also the work of performing these non-breathing maneuvers. The authors developed a method to objectively eliminate the calculated work of these movements from the work of breathing, based on fitting to a Gaussian curve the variable P, which is obtained from the difference between the esophageal pressure change and the airway pressure change during each breath. In spontaneously breathing adults the normal breaths fit the Gaussian curve, while breaths that contain non-breathing maneuvers do not. In this Gaussian breath-elimination method (GM), breaths that are two standard deviations from that mean obtained by the fit are eliminated. For normally breathing control adult subjects, GM had little effect on WOBp, reducing it from 0.49 to 0.47 J/L (n = 8), while there was a 40% reduction in the coefficient of variation. Non-breathing maneuvers were simulated by coughing, which increased WOBp to 0.88 (n = 6); with the GM correction, WOBp was 0.50 J/L, a value not significantly different from that of normal breathing. Occlusion also increased WOBp to 0.60 J/L, but GM-corrected WOBp was 0.51 J/L, a normal value. As predicted, doubling the respiratory rate did not change the WOBp before or after the GM correction.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. [Radiofrequency ablation of hepatocellular carcinoma].

    PubMed

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  12. Sports-related lung injury during breath-hold diving.

    PubMed

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage. Copyright ©ERS 2016.

  13. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  14. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  15. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  16. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  17. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  18. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  19. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  20. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a patient...

  1. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  2. Emerging needle ablation technology in urology.

    PubMed

    Leveillee, Raymond J; Pease, Karli; Salas, Nelson

    2014-01-01

    Thermal ablation of urologic tumors in the form of freezing (cryoablation) and heating (radiofrequency ablation) have been utilized successfully to treat and ablate soft tissue tumors for over 15 years. Multiple studies have demonstrated efficacy nearing that of extirpative surgery for certain urologic conditions. There are technical limitations to their speed and safety profile because of the physical limits of thermal diffusion. Recently, there has been a desire to investigate other forms of energy in an effort to circumvent the limitations of cryoblation and radiofrequency ablation. This review will focus on three relatively new energy applications as they pertain to tissue ablation: microwave, irreversible electroporation, and water vapor. High-intensity-focused ultrasound nor interstitial lasers are discussed, as there have been no recently published updates. Needle and probe-based ablative treatments will continue to play an important role. As three-dimensional imaging workstations move from the advanced radiologic interventional suite to the operating room, surgeons will likely still play a pivotal role in the +-application of these probe ablative devices. It is essential that the surgeon understands the fundamentals of these devices in order to optimize their application.

  3. Sphere-Enhanced Microwave Ablation (sMWA) Versus Bland Microwave Ablation (bMWA): Technical Parameters, Specific CT 3D Rendering and Histopathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gockner, T. L., E-mail: theresa.gockner@med.uni-heidelberg.de; Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de; Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de

    PurposeThis study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA).MethodsIn six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output,more » ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL).ResultsResulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm{sup 3} for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm{sup 3} for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features.ConclusionsSpecific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.« less

  4. ABA-Cloud: support for collaborative breath research

    PubMed Central

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2016-01-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research. PMID:23619467

  5. ABA-Cloud: support for collaborative breath research.

    PubMed

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  6. Optimal ventilatory patterns in periodic breathing.

    PubMed

    Ghazanshahi, S D; Khoo, M C

    1993-01-01

    The goal of this study was to determine whether periodic breathing (PB), which is highly prevalent during sleep at high altitudes, imposes physiological penalties on the respiratory system in the absence of any accompanying disease. Using a computer model of respiratory gas exchange, we compared the effects of a variety of PB patterns on the chemical and mechanical costs of breathing to those resulting from regular tidal breathing. Although PB produced considerable fluctuation in arterial blood gas tensions, for the same cycle-averaged ventilation, higher arterial oxygen saturation and lower arterial carbon dioxide levels were achieved. This result can be explained by the fact that the combination of large breaths and apnea in PB leads to a substantial reduction in dead space ventilation. At the same time, the savings in mechanical cost achieved by the respiratory muscles during apnea partially offset the increase during the breathing phase. Consequently, the "pressure cost," a criterion based on mean inspiratory pressure, was elevated only slightly, although the average work rate of breathing increased significantly. We found that, at extreme altitudes, PB patterns with clusters of 2 to 4 large breaths that alternate with apnea produce the highest arterial oxygenation levels and lowest pressure costs. The common occurrence of PB patterns with closely similar features has been reported in sleeping healthy sojourners at extreme altitudes. Taken together, these findings suggest that PB favors a reduction in the oxygen demands of the respiratory muscles and therefore may not be as detrimental as it is generally believed to be.

  7. Breath analysis in disease diagnosis: methodological considerations and applications.

    PubMed

    Lourenço, Célia; Turner, Claire

    2014-06-20

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. "Breath fingerprinting", indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.

  8. [Thoracoscopic, epicardial ablation of atrial fibrillation using the COBRA Fusion system as the first part of hybrid ablation].

    PubMed

    Budera, P; Osmančík, P; Talavera, D; Fojt, R; Kraupnerová, A; Žďárská, J; Vaněk, T; Straka, Z

    2017-01-01

    Treatment of persistent and long-standing persistent atrial fibrillation is not successfully managed by methods of catheter ablation or pharmacotherapy. Hybrid ablation (i.e. combination of minimally invasive surgical ablation, followed by electrophysiological assessment and subsequent endocardial catheter ablation to complete the entire intended procedure) presents an ever more used and very promising treatment method. Patients underwent thoracoscopic ablation of pulmonary veins and posterior wall of the left atrium (the box-lesion) with use of the COBRA Fusion catheter; thoracoscopic occlusion of the left atrial appendage using the AtriClip system was also done in later patients. After 23 months, electrophysiological assessment and catheter ablation followed. In this article we summarize a strategy of the surgical part of the hybrid procedure performed in our centre. We describe the surgery itself (including possible periprocedural complications) and we also present our short-term results, especially with respect to subsequent electrophysiological findings. Data of the first 51 patients were analyzed. The first 25 patients underwent unilateral ablation; the mean time of surgery was 102 min. Subsequent 26 patients underwent the bilateral procedure with the mean surgery time of 160 min. Serious complications included 1 stroke, 1 phrenic nerve palsy and 2 surgical re-explorations for bleeding. After 1 month, 65% of patients showed sinus rhythm. The box-lesion was found complete during electrophysiological assessment in 38% of patients and after catheter ablation, 96% of patients were discharged in sinus rhythm. The surgical part of the hybrid procedure with use of the minimally invasive approach and the COBRA Fusion catheter is a well-feasible method with a low number of periprocedural complications. For electrophysiologists, it provides a very good basis for successful completion of the hybrid ablation.Key words: atrial fibrillation hybrid ablation - thoracoscopy

  9. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing frequency monitor. 868.2375 Section 868.2375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory)...

  10. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  11. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  12. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  13. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  14. Bad Breath

    MedlinePlus

    ... cabbage. And of course smoking causes its own bad smell. Some diseases and medicines can cause a specific breath odor. Having good dental habits, like brushing and flossing regularly, help fight bad ...

  15. Pleural Puncture that Excludes the Ablation Zone Decreases the Risk of Pneumothorax after Percutaneous Microwave Ablation in Porcine Lung

    PubMed Central

    Lee, Kyungmouk Steve; Takaki, Haruyuki; Yarmohammadi, Hooman; Srimathveeravalli, Govindarajan; Luchins, Kerith; Monette, Sébastien; Nair, Sreejit; Kishore, Sirish; Erinjeri, Joseph P.

    2017-01-01

    Purpose To test the hypothesis that the geometry of probe placement with respect to the pleural puncture site affects the risk of pneumothorax after microwave (MW) ablation in the lung. Materials and Methods Computed tomography–guided MW ablation of the lung was performed in 8 swine under general anesthesia and mechanical ventilation. The orientation of the 17-gauge probe was either perpendicular (90°) or parallel (< 30°) with respect to the pleural puncture site, and the ablation power was 30 W or 65 W for 5 minutes. After MW ablation, swine were euthanized, and histopathologic changes were assessed. Frequency and factors affecting pneumothorax were evaluated by multivariate analysis. Results Among 62 lung MW ablations, 13 (21%) pneumothoraces occurred. No statistically significant difference was noted in the rate of pneumothorax between the perpendicular and the parallel orientations of the probe (31% vs 14%; odds ratio [OR], 2.8; P = .11). The pneumothorax rate was equal for 65-W and 30-W ablation powers (21% and 21%; OR, 1.0; P = .94). Under multivariate analysis, 2 factors were independent positive predictors of pneumothorax: ablation zone inclusive of pleural insertion point (OR, 7.7; P = .02) and time since intubation (hours) (OR, 2.7; P = .02). Conclusions Geometries where the pleural puncture site excluded the ablation zone decreased pneumothorax in swine undergoing MW ablation in the lung. Treatment planning to ensure that the pleural puncture site excludes the subsequent ablation zone may reduce the rate of pneumothorax in patients undergoing MW ablation in the lung. PMID:25753501

  16. Efficacy and Safety of Radiofrequency Ablation for Focal Hepatic Lesions Adjacent to Gallbladder: Reconfiguration of the Ablation Zone through Probe Relocation and Ablation Time Reduction.

    PubMed

    Choi, In Young; Kim, Pyo Nyun; Lee, Sung Gu; Won, Hyung Jin; Shin, Yong Moon

    2017-10-01

    To evaluate the safety and efficacy of radiofrequency (RF) ablation for treatment of focal hepatic lesions adjacent to the gallbladder with electrode relocation and ablation time reduction. Thirty-nine patients who underwent RF ablation for focal hepatic lesions adjacent to the gallbladder (≤ 10 mm) were evaluated retrospectively from January 2011 to December 2014 (30 men and 9 women; age range, 51-85 y; mean age, 65 y). Of 36 patients with hepatocellular carcinoma, 3 had a second treatment for recurrence (mean tumor size, 15 mm ± 6). Patients were divided into 2 subgroups based on lesion distance from the gallbladder: nonabutting (> 5 mm; n = 19) and abutting (≤ 5 mm; n = 20). Electrodes were inserted parallel to the gallbladder through the center of a tumor in the nonabutting group and through the center of the expected ablation zone between a 5-mm safety zone on the liver side and the gallbladder in the abutting group. Ablation time was decreased in proportion to the transverse diameter of the expected ablation zone. Technical success and technical effectiveness rates were 89.7% and 97.4%, respectively, with no significant differences between groups (P = 1.00). Local tumor progression was observed in 3 patients (1 in the nonabutting group and 2 in the abutting group; P = 1.00). There were no major complications. The gallbladder was thickened in 10 patients, with no significant difference between groups (P = .72). Biloma occurred in 1 patient in the nonabutting group. RF ablation with electrode relocation and reduction of ablation time can be a safe and effective treatment for focal hepatic lesions adjacent to the gallbladder. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  17. Optimal approach for complete liver tumor ablation using radiofrequency ablation: a simulation study.

    PubMed

    Givehchi, Sogol; Wong, Yin How; Yeong, Chai Hong; Abdullah, Basri Johan Jeet

    2018-04-01

    To investigate the effect of radiofrequency ablation (RFA) electrode trajectory on complete tumor ablation using computational simulation. The RFA of a spherical tumor of 2.0 cm diameter along with 0.5 cm clinical safety margin was simulated using Finite Element Analysis software. A total of 86 points inside one-eighth of the tumor volume along the axial, sagittal and coronal planes were selected as the target sites for electrode-tip placement. The angle of the electrode insertion in both craniocaudal and orbital planes ranged from -90° to +90° with 30° increment. The RFA electrode was simulated to pass through the target site at different angles in combination of both craniocaudal and orbital planes before being advanced to the edge of the tumor. Complete tumor ablation was observed whenever the electrode-tip penetrated through the epicenter of the tumor regardless of the angles of electrode insertion in both craniocaudal and orbital planes. Complete tumor ablation can also be achieved by placing the electrode-tip at several optimal sites and angles. Identification of the tumor epicenter on the central slice of the axial images is essential to enhance the success rate of complete tumor ablation during RFA procedures.

  18. Functional Analysis and Intervention for Breath Holding.

    ERIC Educational Resources Information Center

    Kern, Lee; And Others

    1995-01-01

    A functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome indicated that breath holding served an operant function, primarily to gain access to attention. Use of extinction, scheduled attention, and a picture card communication system decreased breath holding. (Author/SW)

  19. Aluminum X-ray mass-ablation rate measurements

    DOE PAGES

    Kline, John L.; Hager, Jonathan D.

    2016-10-15

    Measurements of the mass ablation rate of aluminum (Al) have been completed at the Omega Laser Facility. Measurements of the mass-ablation rate show Al is higher than plastic (CH), comparable to high density carbon (HDC), and lower than beryllium. The mass-ablation rate is consistent with predictions using a 1D Lagrangian code, Helios. Lastly, the results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators warranting further investigation into the viability of Al capsules for ignition should be pursued.

  20. The effect of mouth breathing on chewing efficiency.

    PubMed

    Nagaiwa, Miho; Gunjigake, Kaori; Yamaguchi, Kazunori

    2016-03-01

    To examine the effect of mouth breathing on chewing efficiency by evaluating masticatory variables. Ten adult nasal breathers with normal occlusion and no temporomandibular dysfunction were selected. Subjects were instructed to bite the chewing gum on the habitual side. While breathing through the mouth and nose, the glucide elution from the chewing gum, number of chewing strokes, duration of chewing, and electromyography (EMG) activity of the masseter muscle were evaluated as variables of masticatory efficiency. The durations required for the chewing of 30, 60, 90, 120, 180, and 250 strokes were significantly (P < .05) longer while breathing through the mouth. There was no significant difference in the glucide elution rate (%) for each chewing stroke between nose and mouth breathings. The glucide elution rates for 1- and 3-minute chewing were significantly (P < .05) lower while breathing through the mouth. However, there was no significant difference in the glucide elution rate for 5-minute chewing between nose and mouth breathings. While chewing for 1, 3, and 5 minutes, the chewing stroke and EMG activity of the masseter muscle were significantly (P < .05) lower during mouth breathing. It takes a longer amount of time to complete chewing to obtain higher masticatory efficiency when breathing through the mouth. Therefore, mouth breathing will decrease the masticatory efficiency if the duration of chewing is restricted in everyday life.

  1. [Iodine 131 joint radio frequency ablation treatment for child with hyperthyroidism goiter: one case report].

    PubMed

    Chen, Yonghua; Liang, Li; Fang, Yanlan; Wang, Chunlin; Li, Linfa; Jiang, Tian'an

    2017-01-25

    A 12-year-old girl presented with a history of cervical mass, and one week of throat discomfort and dyspnea. Five years ago, the patient was diagnosed as Hashimoto's thyroiditis and hyperthyroidism; she received antithyroid drug treatment, but the result was not satisfactory. B-ultrasonic showed that the size of thyroid gland was 8.1 cm×3.2 cm in the left and 8.2 cm×4.8 cm in the right. After iodine 131 combined with radiofrequency ablation (RFA) treatment, throat discomfort and recumbent breathing difficulties disappeared, and B-ultrasonic showed that the size of thyroid reduced to 2.3 cm×1.7 cm (left) and 2.8 cm×2.0 cm (right). No recurrence was observed during the two and a half years of follow-up.

  2. Breath odor

    MedlinePlus

    ... drain their stomach. The breath may have an ammonia-like odor (also described as urine-like or " ... Is there a specific odor (such as fish, ammonia, fruit, feces, or alcohol)? Have you recently eaten ...

  3. Breath sounds

    MedlinePlus

    The lung sounds are best heard with a stethoscope. This is called auscultation. Normal lung sounds occur ... the bottom of the rib cage. Using a stethoscope, the doctor may hear normal breathing sounds, decreased ...

  4. Bad Breath

    MedlinePlus

    ... a lot, you may need to visit your dentist or doctor . What Causes Bad Breath? Here are ... particles wedged between your teeth. Also, visit your dentist twice a year for regular checkups and cleanings. ...

  5. Optical ablation/temperature gage (COTA)

    NASA Astrophysics Data System (ADS)

    Cassaing, J.; Balageas, D.

    ONERA has ground and flight tested for heat-shield recession a novel technique, different from current radiation and acoustic measurement methods. It uses a combined ablation/temperature gage that views the radiation optically from a cavity embedded within the heat shield. Flight measurements, both of temperature and of passage of the ablation front, are compared with data generated by a predictive numerical code. The ablation and heat diffusion into the instrumented ablator can be simulated numerically to evaluate accurately the errors due to the presence of the gage. This technology was established in 1978 and finally adopted after ground tests in arc heater facilities. After four years of flight evaluations, it is possible to evaluate and criticize the sensor reliability.

  6. Exhaled breath analysis for lung cancer

    PubMed Central

    Sutedja, Tom G.; Zimmerman, Paul V.

    2013-01-01

    Early diagnosis of lung cancer results in improved survival compared to diagnosis with more advanced disease. Early disease is not reliably indicated by symptoms. Because investigations such as bronchoscopy and needle biopsy have associated risks and substantial costs, they are not suitable for population screening. Hence new easily applicable tests, which can be used to screen individuals at risk, are required. Biomarker testing in exhaled breath samples is a simple, relatively inexpensive, non-invasive approach. Exhaled breath contains volatile and non-volatile organic compounds produced as end-products of metabolic processes and the composition of such compounds varies between healthy subjects and subjects with lung cancer. Many studies have analysed the patterns of these compounds in exhaled breath. In addition studies have also reported that the exhaled breath condensate (EBC) can reveal gene mutations or DNA abnormalities in patients with lung cancer. This review has summarised the scientific evidence demonstrating that lung cancer has distinct chemical profiles in exhaled breath and characteristic genetic changes in EBC. It is not yet possible to accurately identify individuals with lung cancer in at risk populations by any of these techniques. However, analysis of both volatile organic compounds in exhaled breath and of EBC have great potential to become clinically useful diagnostic and screening tools for early stage lung cancer detection. PMID:24163746

  7. Breath condenser coatings affect measurement of biomarkers in exhaled breath condensate.

    PubMed

    Rosias, P P; Robroeks, C M; Niemarkt, H J; Kester, A D; Vernooy, J H; Suykerbuyk, J; Teunissen, J; Heynens, J; Hendriks, H J; Jöbsis, Q; Dompeling, E

    2006-11-01

    Exhaled breath condensate collection is not yet standardised and biomarker measurements are often close to lower detection limits. In the current study, it was hypothesised that adhesive properties of different condenser coatings interfere with measurements of eicosanoids and proteins in breath condensate. In vitro, condensate was derived from a collection model using two test solutions (8-isoprostane and albumin) and five condenser coatings (silicone, glass, aluminium, polypropylene and Teflon). In vivo, condensate was collected using these five coatings and the EcoScreen condenser to measure 8-isoprostane, and three coatings (silicone, glass, EcoScreen) to measure albumin. In vitro, silicone and glass coatings had significantly higher albumin recovery compared with the other coatings. A similar trend was observed for 8-isoprostane recovery. In vivo, median (interquartile range) 8-isoprostane concentrations were significantly higher using silicone (9.2 (18.8) pg.mL(-1)) or glass (3.0 (4.5) pg.mL(-1)) coating, compared with aluminium (0.5 (2.4) pg.mL(-1)), polypropylene (0.5 (0.5) pg.mL(-1)), Teflon (0.5 (0.0) pg.mL(-1)), and EcoScreen (0.5 (2.0) pg.mL(-1)). Albumin in vivo was mainly detectable using glass coating. In conclusion, a condenser with silicone or glass coating is more efficient for measurement of 8-isoprostane or albumin in exhaled breath condensate, than EcoScreen, aluminium, polypropylene or Teflon. Guidelines for exhaled breath condensate standardisation should include the most valid condenser coating to measure a specific biomarker.

  8. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications

    PubMed Central

    Lourenço, Célia; Turner, Claire

    2014-01-01

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. “Breath fingerprinting”, indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles. PMID:24957037

  9. Breathing difficulty

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003075.htm Breathing difficulty To use the sharing features on this page, ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map ...

  10. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated with... Institute upon request. (d) The air within the bag(s) shall not contain more than 100 parts per million of... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing bag test. 84.88 Section 84.88 Public...

  11. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  12. The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.

    2007-09-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less

  13. 42 CFR 84.70 - Self-contained breathing apparatus; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Self-contained breathing apparatus; description. 84...-Contained Breathing Apparatus § 84.70 Self-contained breathing apparatus; description. (a) Self-contained breathing apparatus, including all completely assembled, portable, self-contained devices designed for use...

  14. 42 CFR 84.70 - Self-contained breathing apparatus; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Self-contained breathing apparatus; description. 84...-Contained Breathing Apparatus § 84.70 Self-contained breathing apparatus; description. (a) Self-contained breathing apparatus, including all completely assembled, portable, self-contained devices designed for use...

  15. Magnetic Resonance Mediated Radiofrequency Ablation.

    PubMed

    Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L

    2018-02-01

    To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.

  16. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis

    PubMed Central

    Mathew, Thalakkotur Lazar; Pownraj, Prabhahari; Abdulla, Sukhananazerin; Pullithadathil, Biji

    2015-01-01

    This review elucidates the technologies in the field of exhaled breath analysis. Exhaled breath gas analysis offers an inexpensive, noninvasive and rapid method for detecting a large number of compounds under various conditions for health and disease states. There are various techniques to analyze some exhaled breath gases, including spectrometry, gas chromatography and spectroscopy. This review places emphasis on some of the critical biomarkers present in exhaled human breath, and its related effects. Additionally, various medical monitoring techniques used for breath analysis have been discussed. It also includes the current scenario of breath analysis with nanotechnology-oriented techniques. PMID:26854142

  17. Micrometeoroid ablation simulated in the laboratory

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  18. Effect of Yogic Breathing on Accommodate Braille Version of Six-letter Cancellation Test in Students with Visual Impairment.

    PubMed

    Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex

    2018-01-01

    Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1 st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari ; on the 2 nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days ( P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA ( P < 0.05), but the increase in the score after Bhramari was not significant. Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied.

  19. Effect of Yogic Breathing on Accommodate Braille Version of Six-letter Cancellation Test in Students with Visual Impairment

    PubMed Central

    Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex

    2018-01-01

    Context: Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). Aim: This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. Methods: This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari; on the 2nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. Results: The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days (P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA (P < 0.05), but the increase in the score after Bhramari was not significant. Conclusions: Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied. PMID:29755219

  20. Breathing Difficulties

    MedlinePlus

    ... frequently during the night (insomnia) Difficulty lying flat ALS and your lungs Breathing in and out is ... improve effective coughing. Techniques are explained in The ALS Association’s Living with ALS manual #6 “Adapting to ...

  1. Percutaneous radiofrequency ablation of lung tumors in a large animal model.

    PubMed

    Ahrar, Kamran; Price, Roger E; Wallace, Michael J; Madoff, David C; Gupta, Sanjay; Morello, Frank A; Wright, Kenneth C

    2003-08-01

    Percutaneous radiofrequency ablation (RFA) is accepted therapy for liver tumors in the appropriate clinical setting, but its use in lung neoplasms remains investigational. We undertook this study to evaluate the feasibility and immediate effectiveness of RFA for treatment of both solitary pulmonary nodules and clusters of lung tumors in a large animal model. Percutaneous RFA of 14 lung tumors in five dogs was performed under CT guidance. Animals were euthanatized 8-48 hours after the procedure. The lungs and adjacent structures were harvested for gross and histopathologic evaluation. Five solitary pulmonary nodules (range, 17-26 mm) and three clusters of three nodules each (range, 7-17 mm per nodule) were treated with RFA. All ablations were technically successful. Perilesional ground-glass opacity and small asymptomatic pneumothoraces (n = 4) were visualized during the RFA sessions. One dog developed a large pneumothorax treated with tube thoracostomy but was euthanatized 8 hours post-RFA for persistent pneumothorax and continued breathing difficulty. Follow-up CT 48 hours post-RFA revealed opacification of the whole lung segment. Gross and histopathologic evaluation showed complete thermal coagulation necrosis of all treated lesions without evidence of any viable tumor. The region of thermal coagulation necrosis typically extended to the lung surface. Small regions of pulmonary hemorrhage and congestion often surrounded the areas of coagulation necrosis. RFA can be used to treat both solitary pulmonary nodules and clusters of tumor nodules in the canine lung tumor model. This model may be useful for development of specific RFA protocols for human lung tumors.

  2. Off-line breath acetone analysis in critical illness.

    PubMed

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p < 0.0001) and arterial beta-hydroxybutyrate (rs = 0.52, p < 0.0001) concentrations. Changes in breath acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  3. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  4. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  5. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  6. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  7. Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors.

    PubMed

    Sivaramakrishnan, Shyam; Rajamani, Rajesh; Johnson, Bruce D

    2009-01-01

    Respiratory CO(2) measurement (capnography) is an important diagnosis tool that lacks inexpensive and wearable sensors. This paper develops techniques to enable use of inexpensive but slow CO(2) sensors for breath-by-breath tracking of CO(2) concentration. This is achieved by mathematically modeling the dynamic response and using model-inversion techniques to predict input CO(2) concentration from the slow-varying output. Experiments are designed to identify model-dynamics and extract relevant model-parameters for a solidstate room monitoring CO(2) sensor. A second-order model that accounts for flow through the sensor's filter and casing is found to be accurate in describing the sensor's slow response. The resulting estimate is compared with a standard-of-care respiratory CO(2) analyzer and shown to effectively track variation in breath-by-breath CO(2) concentration. This methodology is potentially useful for measuring fast-varying inputs to any slow sensor.

  8. Bad Breath

    MedlinePlus

    ... for lunch. But certain strong-smelling foods like onions and garlic can cause bad breath. So can ... leave behind strong smells, like cabbage, garlic, raw onions, and coffee. If you’re trying to lose ...

  9. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    NASA Astrophysics Data System (ADS)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  10. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    PubMed

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  11. Exhaled breath temperature in children: reproducibility and influencing factors.

    PubMed

    Vermeulen, S; Barreto, M; La Penna, F; Prete, A; Martella, S; Biagiarelli, F; Villa, M P

    2014-09-01

    This study will investigate the reproducibility and influencing factors of exhaled breath temperature measured with the tidal breathing technique in asthmatic patients and healthy children. Exhaled breath temperature, fractional exhaled nitric oxide, and spirometry were assessed in 124 children (63 healthy and 61 asthmatic), aged 11.2 ± 2.5 year, M/F 73/51. A modified version of the American Thoracic Society questionnaire on the child's present and past respiratory history was obtained from parents. Parents were also asked to provide detailed information on their child's medication use during the previous 4 weeks. Ear temperature, ambient temperature, and relative-ambient humidity were also recorded. Exhaled breath temperature measurements were highly reproducible; the second measurement was higher than the first measurement, consistent with a test-retest situation. In 13 subjects, between-session within-day reproducibility of exhaled breath temperature was still high. Exhaled breath temperature increased with age and relative-ambient humidity. Exhaled breath temperature was comparable in healthy and asthmatic children; when adjusted for potential confounders (i.e. ambient conditions and subject characteristics), thermal values of asthmatic patients exceeded those of the healthy children by 1.1 °C. Normalized exhaled breath temperature, by subtracting ambient temperature, was lower in asthmatic patients treated with inhaled corticosteroids than in those who were corticosteroid-naive. Measurements of exhaled breath temperature are highly reproducible, yet influenced by several factors. Corrected values, i.e. normalized exhaled breath temperature, could help us to assess the effect of therapy with inhaled corticosteroids. More studies are needed to improve the usefulness of the exhaled breath temperature measured with the tidal breathing technique in children.

  12. Radiofrequency ablation versus electrocautery in tonsillectomy.

    PubMed

    Hall, Daniel J; Littlefield, Philip D; Birkmire-Peters, Deborah P; Holtel, Michael R

    2004-03-01

    The objective of this study was to compare the safety, difficulty of removal, and postoperative pain profile of radiofrequency ablation versus standard electrocautery removal of tonsils. A prospective, blinded study was designed to remove 1 tonsil with each of the 2 methods. Time of operation, estimated blood loss, difficulty of operation, postoperative pain, rate of postoperative hemorrhage, and the patient's preferred technique were evaluated. The operating time was significantly longer (P < 0.007) and the patients reported significantly less pain (P < 0.001) with radiofrequency ablation. There were no differences in blood loss, difficulty of operation, or postoperative hemorrhage rates. The patients preferred the radiofrequency ablation technique (P < 0.001). Radiofrequency ablation is a viable method to remove tonsillar tissue. Operating time for this procedure will likely decrease with experience. There was significantly less pain reported with radiofrequency ablation compared with standard electrocautery.

  13. Clinical applications of breath testing

    PubMed Central

    Paschke, Kelly M; Mashir, Alquam

    2010-01-01

    Breath testing has the potential to benefit the medical field as a cost-effective, non-invasive diagnostic tool for diseases of the lung and beyond. With growing evidence of clinical worth, standardization of methods, and new sensor and detection technologies the stage is set for breath testing to gain considerable attention and wider application in upcoming years. PMID:21173863

  14. Optimal technique for deep breathing exercises after cardiac surgery.

    PubMed

    Westerdahl, E

    2015-06-01

    Cardiac surgery patients often develop a restrictive pulmonary impairment and gas exchange abnormalities in the early postoperative period. Chest physiotherapy is routinely prescribed in order to reduce or prevent these complications. Besides early mobilization, positioning and shoulder girdle exercises, various breathing exercises have been implemented as a major component of postoperative care. A variety of deep breathing maneuvres are recommended to the spontaneously breathing patient to reduce atelectasis and to improve lung function in the early postoperative period. Different breathing exercises are recommended in different parts of the world, and there is no consensus about the most effective breathing technique after cardiac surgery. Arbitrary instructions are given, and recommendations on performance and duration vary between hospitals. Deep breathing exercises are a major part of this therapy, but scientific evidence for the efficacy has been lacking until recently, and there is a lack of trials describing how postoperative breathing exercises actually should be performed. The purpose of this review is to provide a brief overview of postoperative breathing exercises for patients undergoing cardiac surgery via sternotomy, and to discuss and suggest an optimal technique for the performance of deep breathing exercises.

  15. Breath-hold times in air compared to breath-hold times during cold water immersions.

    PubMed

    Taber, Michael J; MacKinnon, Scott N; Power, Jonathan; Walker, Robert

    2015-02-01

    Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time. After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire. The first BH was completed while standing on the pool deck. The second BH was completed while fully immersed (face down) in 2-3°C water. There were 40 of the volunteers who also breathed from an emergency breathing system (EBS) while in the cold water. Results demonstrated that BH capabilities in cold water were significantly lower than those in ambient air. A significant correlation was also found between BH in air and the difference in cold water vs. air BH capabilities, which suggests that subjects who can hold their breath the longest in air experienced the greatest decrease in BH when immersed. Results indicate that 92% of the subjects reported that the practical cold water immersion exercise had a high value. Finally, 58% of those who used the EBS reported that it was harder to breathe in cold water than while in the training pool (approximately 22°C). The BH times for this group were similar to those reported in previous cold water immersion studies. Based on the questionnaire results, it is possible, when carefully applied, to include a practical cold water immersion exercise into existing HUET programs.

  16. Upper airway sleep-disordered breathing in women.

    PubMed

    Guilleminault, C; Stoohs, R; Kim, Y D; Chervin, R; Black, J; Clerk, A

    1995-04-01

    To investigate the various clinical presentations of sleep-disordered breathing in women. A retrospective case-control study. A sleep disorders clinic. 334 women, aged 18 years and older, seen between 1988 and 1993, who were diagnosed with upper airway sleep-disordered breathing. Controls were 60 women with insomnia and 100 men with sleep-disordered breathing. Clinical, anatomic, and polygraphic information. The mean lag time (+/- SD) in women between the appearance of symptoms and a positive diagnosis was 9.7 +/- 3.1 years; among participants 30 to 60 years of age, the duration of untreated symptoms differed (P < 0.001) between women and men. Sleep-disordered breathing was blamed for divorce or social isolation by 40% of the case patients. Abnormal maxillomandibular features were noted in 45% of the women with disordered breathing. Dysmenorrhea and amenorrhea (which disappeared after treatment with nasal continuous positive airway pressure) were reported in 43% of premenopausal women compared with 13% of persons in the control group of women with insomnia. Thirty-eight women (11.4%) with upper airway sleep-disordered breathing had a respiratory disturbance index of less than 5 and were significantly younger, had a smaller neck circumference, and had a lower body mass index than women with a respiratory disturbance index of 5 or more. Physicians should revise their understanding of upper airway sleep-disordered breathing so that they notice women with certain craniofacial features, a low body mass index, a small neck circumference, and a respiratory disturbance index of less than 5. These revisions may enable more rapid diagnosis and treatment of women with sleep-disordered breathing.

  17. Breath stacking in children with neuromuscular disorders.

    PubMed

    Jenkins, H M; Stocki, A; Kriellaars, D; Pasterkamp, H

    2014-06-01

    Respiratory muscle weakness in neuromuscular disorders (NMD) can lead to shallow breathing and respiratory insufficiency over time. Children with NMD often cannot perform maneuvers to recruit lung volume. In adults, breath stacking with a mask and one-way valve can achieve significantly increased lung volumes. To evaluate involuntary breath stacking (IBS) in NMD, we studied 23 children of whom 15 were cognitively aware and able to communicate verbally. For IBS, a one-way valve and pneumotachograph were attached to a face mask. Tidal volumes (Vt) and minute ventilation (VE ) were calculated from airflow over 30 sec before and after 15 sec of expiratory valve closure. Six cooperative male subjects with Duchenne muscular dystrophy (DMD) participated in a subsequent comparison of IBS with voluntary breath stacking (VBS) and supported breath stacking (SBS). The average Vt in those studied with IBS was 277 ml (range 29-598 ml). The average increase in volume by stacking was 599 ml (range -140 to 2,916 ml) above Vt . The average number of stacked breaths was 4.5 (range 0-17). VE increased on average by 18% after stacking (P < 0.05, paired t-test). Oxygen saturation did not change after stacking. Four of the 23 children did not breath stack. Compared to IBS, VBS achieved similar volumes in the six subjects with DMD but SBS was more successful in those with greatest muscle weakness. IBS may achieve breath volumes of approximately three times Vt and may be particularly useful in non-cooperative subjects with milder degrees of respiratory muscle weakness. © 2013 Wiley Periodicals, Inc.

  18. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS... 46 Shipping 3 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78...

  19. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS... 46 Shipping 3 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78...

  20. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers

    PubMed Central

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  1. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    PubMed

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  2. Calculation algorithms for breath-by-breath alveolar gas exchange: the unknowns!

    PubMed

    Golja, Petra; Cettolo, Valentina; Francescato, Maria Pia

    2018-06-25

    Several papers (algorithm papers) describe computational algorithms that assess alveolar breath-by-breath gas exchange by accounting for changes in lung gas stores. It is unclear, however, if the effects of the latter are actually considered in literature. We evaluated dissemination of algorithm papers and the relevant provided information. The list of documents investigating exercise transients (in 1998-2017) was extracted from Scopus database. Documents citing the algorithm papers in the same period were analyzed in full text to check consistency of the relevant information provided. Less than 8% (121/1522) of documents dealing with exercise transients cited at least one algorithm paper; the paper of Beaver et al. (J Appl Physiol 51:1662-1675, 1981) was cited most often, with others being cited tenfold less. Among the documents citing the algorithm paper of Beaver et al. (J Appl Physiol 51:1662-1675, 1981) (N = 251), only 176 cited it for the application of their algorithm/s; in turn, 61% (107/176) of them stated the alveolar breath-by-breath gas exchange measurement, but only 1% (1/107) of the latter also reported the assessment of volunteers' functional residual capacity, a crucial parameter for the application of the algorithm. Information related to gas exchange was provided consistently in the methods and in the results in 1 of the 107 documents. Dissemination of algorithm papers in literature investigating exercise transients is by far narrower than expected. The information provided about the actual application of gas exchange algorithms is often inadequate and/or ambiguous. Some guidelines are provided that can help to improve the quality of future publications in the field.

  3. Oral breathing challenge in participants with vocal attrition.

    PubMed

    Sivasankar, Mahalakshmi; Fisher, Kimberly V

    2003-12-01

    Vocal folds undergo osmotic challenge by mouth breathing during singing, exercising, and loud speaking. Just 15 min of obligatory oral breathing, to dry the vocal folds, increases phonation threshold pressure (Pth) and expiratory vocal effort in healthy speakers (M. Sivasankar & K. Fisher, 2002). We questioned whether oral breathing is more detrimental to phonation in healthy participants with a history of temporary vocal attrition. The effects of a 15-min oral or nasal breathing challenge on Pth and perceived expiratory vocal effort were compared for participants reporting symptoms of vocal attrition (N = 18, ages 19-38 years) and normal controls (N = 20, ages 19-33 years). Post-challenge-prechallenge differences in Pth (deltaPth) and effort (deltaEffort) revealed that oral breathing, but not nasal breathing, increased Pth (p < .001 ) and effort (p < .001) at low, comfortable, and high pitch. deltaPth was significantly greater in participants with vocal attrition than in normal controls (p < .001). Nasal breathing reduced Pth for all controls but not for all participants reporting vocal attrition. deltaPth was significantly and linearly correlated with deltaEffort (rvocal attrition = .81, p < .001; rcontrol = .84, p < .001). We speculate that the greater increases in Pth in participants reporting vocal attrition may result from delayed or inadequate compensatory response to superficial laryngeal dehydration. Obligatory oral breathing may place voice users at risk for exacerbating vocal attrition. That sol layer depletion by obligatory oral breathing increased Pth and vocal effort provides support for the role of superficial hydration in maintaining ease of phonation.

  4. An approach to ablate and pace:AV junction ablation and pacemaker implantation performed concurrently from the same venous access site.

    PubMed

    Issa, Ziad F

    2007-09-01

    Atrioventricular junction (AVJ) ablation combined with permanent pacemaker implantation (the "ablate and pace" approach) remains an acceptable alternative treatment strategy for symptomatic, drug-refractory atrial fibrillation (AF) with rapid ventricular response. This case series describes the feasibility and safety of catheter ablation of the AVJ via a superior vena caval approach performed during concurrent dual-chamber pacemaker implantation. A total of 17 consecutive patients with symptomatic, drug-refractory, paroxysmal AF underwent combined AVJ ablation and dual-chamber pacemaker implantation procedure using a left axillary venous approach. Two separate introducer sheaths were placed into the axillary vein. The first sheath was used for implantation of the pacemaker ventricular lead, which was then connected to the pulse generator. Subsequently, a standard ablation catheter was introduced through the second axillary venous sheath and used for radiofrequency (RF) ablation of the AVJ. After successful ablation, the catheter was withdrawn and the pacemaker atrial lead was advanced through that same sheath and implanted in the right atrium. Catheter ablation of the AVJ was successfully achieved in all patients. The median number of RF applications required to achieve complete AV block was three (range 1-10). In one patient, AV conduction recovered within the first hour after completion of the procedure, and AVJ ablation was then performed using the conventional femoral venous approach. There were no procedural complications. Catheter ablation of the AVJ can be performed successfully and safely via a superior vena caval approach in patients undergoing concurrent dual-chamber pacemaker implantation.

  5. 75 FR 61386 - Emergency Escape Breathing Apparatus Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ...-0044, Notice No. 1] RIN 2130-AC14 Emergency Escape Breathing Apparatus Standards AGENCY: Federal... breathing apparatus (EEBA) to the members of the train crew and certain other employees while they are... EEBA--emergency escape breathing apparatus FRA--Federal Railroad Administration FRSA--the former...

  6. Noninvasive detection of lung cancer using exhaled breath

    PubMed Central

    Fu, Xiao-An; Li, Mingxiao; Knipp, Ralph J; Nantz, Michael H; Bousamra, Michael

    2014-01-01

    Early detection of lung cancer is a key factor for increasing the survival rates of lung cancer patients. The analysis of exhaled breath is promising as a noninvasive diagnostic tool for diagnosis of lung cancer. We demonstrate the quantitative analysis of carbonyl volatile organic compounds (VOCs) and identification of lung cancer VOC markers in exhaled breath using unique silicon microreactor technology. The microreactor consists of thousands of micropillars coated with an ammonium aminooxy salt for capture of carbonyl VOCs in exhaled breath by means of oximation reactions. Captured aminooxy-VOC adducts are analyzed by nanoelectrospray Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). The concentrations of 2-butanone, 2-hydroxyacetaldehyde, 3-hydroxy-2-butanone, and 4-hydroxyhexenal (4-HHE) in the exhaled breath of lung cancer patients (n = 97) were significantly higher than in the exhaled breath of healthy smoker and nonsmoker controls (n = 88) and patients with benign pulmonary nodules (n = 32). The concentration of 2-butanone in exhaled breath of patients (n = 51) with stages II though IV non–small cell lung cancer (NSCLC) was significantly higher than in exhaled breath of patients with stage I (n = 34). The carbonyl VOC profile in exhaled breath determined using this new silicon microreactor technology provides for the noninvasive detection of lung cancer. PMID:24402867

  7. Ablative Thermal Protection Systems Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2017-01-01

    This is a presentation of the fundamentals of ablative TPS materials for a short course at TFAWS 2017. It gives an overall description of what an ablator is, the equations that define it, and how to model it.

  8. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients.

    PubMed

    Cho, Suhyun; Choi, Min Ju; Zheng, Zhenlong; Goo, Boncheol; Kim, Do-Young; Cho, Sung Bin

    2013-04-01

    Both ablative and non-ablative fractional lasers have been applied to various uncommon hair disorders. The purpose of this study was to demonstrate the clinical effects of fractional laser therapy on the course of primary follicular and perifollicular pathologies and subsequent hair regrowth. A retrospective review of 17 patients with uncommon hair disorders - including ophiasis, autosomal recessive woolly hair/hypotrichosis, various secondary cicatricial alopecias, pubic hypotrichosis, frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens - was conducted. All patients had been treated with non-ablative and/or ablative fractional laser therapies. The mean clinical improvement score in these 17 patients was 2.2, while the mean patient satisfaction score was 2.5. Of the 17 subjects, 12 (70.6%) demonstrated a clinical response to non-ablative and/or ablative fractional laser treatments, including individuals with ophiasis, autosomal recessive woolly hair/hypotrichosis, secondary cicatricial alopecia (scleroderma and pressure-induced alopecia), frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens. Conversely, patients with long-standing ophiasis, surgical scar-induced secondary cicatricial alopecia, and pubic hypotrichosis did not respond to fractional laser therapy. Our findings demonstrate that the use of non-ablative and/or ablative fractional lasers promoted hair growth in certain cases of uncommon hair disorders without any remarkable side effects.

  9. Patient's breath controls comfort devices

    NASA Technical Reports Server (NTRS)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  10. Methodology on quantification of sonication duration for safe application of MR guided focused ultrasound for liver tumour ablation.

    PubMed

    Mihcin, Senay; Karakitsios, Ioannis; Le, Nhan; Strehlow, Jan; Demedts, Daniel; Schwenke, Michael; Haase, Sabrina; Preusser, Tobias; Melzer, Andreas

    2017-12-01

    Magnetic Resonance Guided Focused Ultrasound (MRgFUS) for liver tumour ablation is a challenging task due to motion caused by breathing and occlusion due the ribcage between the transducer and the tumour. To overcome these challenges, a novel system for liver tumour ablation during free breathing has been designed. The novel TRANS-FUSIMO Treatment System (TTS, EUFP7) interacts with a Magnetic Resonance (MR) scanner and a focused ultrasound transducer to sonicate to a moving target in liver. To meet the requirements of ISO 13485; a quality management system for medical device design, the system needs to be tested for certain process parameters. The duration of sonication and, the delay after the sonication button is activated, are among the parameters that need to be quantified for efficient and safe ablation of tumour tissue. A novel methodology is developed to quantify these process parameters. A computerised scope is programmed in LabVIEW to collect data via hydrophone; where the coordinates of fiber-optic sensor assembly was fed into the TRANS-FUSIMO treatment software via Magnetic Resonance Imaging (MRI) to sonicate to the tip of the sensor, which is synchronised with the clock of the scope, embedded in a degassed water tank via sensor assembly holder. The sonications were executed for 50 W, 100 W, 150 W for 10 s to quantify the actual sonication duration and the delay after the emergency stop by two independent operators for thirty times. The deviation of the system from the predefined specs was calculated. Student's-T test was used to investigate the user dependency. The duration of sonication and the delay after the sonication were quantified successfully with the developed method. TTS can sonicate with a maximum deviation of 0.16 s (Std 0.32) from the planned duration and with a delay of 14 ms (Std 0.14) for the emergency stop. Student's T tests indicate that the results do not depend on operators (p > .05). The evidence obtained via this

  11. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 108.635 Section 108...

  12. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.635 Section 108...

  13. Radiofrequency Ablation Followed by Percutaneous Ethanol Ablation Leading to Long-Term Remission of Hyperparathyroidism

    PubMed Central

    Menon, Arun S.; Nazar, P. K.; Moorthy, Srikanth; Kumar, Harish; Nair, Vasantha; Pavithran, Praveen Valiyaparambil; Bhavani, Nisha; Menon, Vadayath Usha; Abraham, Nithya; Jayakumar, R. Vasukutty

    2017-01-01

    A 30-year-old male with cerebral palsy and motor impairment presented with right femur fracture. He had gradually worsening mobility and contractures of all extremities for the preceding 5 years. Evaluation showed multiple vertebral and femoral fractures, severe osteoporosis, a large parathyroid adenoma, and parathormone (PTH) exceeding 2500 pg/mL. Because of poor general health and high anesthetic risk, parathyroidectomy was deemed impractical. Ultrasound-guided radiofrequency ablation (RFA) helped achieve 50% size reduction and PTH levels with better control of hypercalcemia. Later, as calcium and PTH remained elevated, percutaneous ethanol ablation was performed with resultant normalization of PTH and substantial symptomatic improvement. Two years later, he still remains normocalcaemic with normal PTH levels. We propose that RFA and percutaneous ethanol ablation be considered as effective short-term options for surgically difficult cases, which could even help achieve long-term remission. Although not previously reported, our case illustrates that both RFA and percutaneous ethanol ablation could be safely performed successively achieving long-term remission. PMID:29264521

  14. Breathing Monitor Using Dye-Doped Optical Fiber

    NASA Astrophysics Data System (ADS)

    Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi

    1990-08-01

    A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.

  15. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    PubMed

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  16. Syllable-related breathing in infants in the second year of life.

    PubMed

    Parham, Douglas F; Buder, Eugene H; Oller, D Kimbrough; Boliek, Carol A

    2011-08-01

    This study explored whether breathing behaviors of infants within the 2nd year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Vocalizations and breathing kinematics of 9 infants between 53 and 90 weeks of age were recorded. A strict selection protocol was used to identify analyzable breath cycles. Syllables were categorized on the basis of consensus coding. Inspiratory and expiratory durations, excursions, and slopes were calculated for the 3 breath cycle types and were normalized using mean tidal breath measures. Tidal breathing cycles were significantly different from syllable-related cycles on all breathing measures. There were no significant differences between unarticulated syllable cycles and canonical syllable cycles, even after controlling for utterance duration and sound pressure level. Infants in the 2nd year of life exhibit clear differences between tidal breathing and speech-related breathing, but categorically distinct breath support for syllable types with varying articulatory demands was not evident in the present findings. Speech development introduces increasingly complex utterances, so older infants may produce detectable articulation-related adaptations of breathing kinematics. For younger infants, breath support may vary systematically among utterance types, due more to phonatory variations than to articulatory demands.

  17. Syllable-Related Breathing in Infants in the Second Year of Life

    PubMed Central

    Parham, Douglas F.; Buder, Eugene H.; Oller, D. Kimbrough; Boliek, Carol A.

    2010-01-01

    Purpose This study explored whether breathing behaviors of infants within the second year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Method Vocalizations and breathing kinematics of nine infants between 53 and 90 weeks of age were recorded. A strict selection protocol was used to identify analyzable breath cycles. Syllables were categorized based on consensus coding. Inspiratory and expiratory durations, excursions, and slopes were calculated for the three breath cycle types and normalized using mean tidal breath measures. Results Tidal breathing cycles were significantly different from syllable-related cycles on all breathing measures. There were no significant differences between unarticulated syllable cycles and canonical syllable cycles, even after controlling for utterance duration and sound pressure level. Conclusions Infants in the second year of life exhibit clear differences between tidal breathing and speech-related breathing, but categorically distinct breath support for syllable types with varying articulatory demands was not evident in the current findings. Speech development introduces increasingly complex utterances, so older infants may produce detectable articulation-related adaptations of breathing kinematics. For younger infants, breath support may vary systematically among utterance types, due more to phonatory variations than to articulatory demands. PMID:21173390

  18. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED...

  19. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED...

  20. Dirty breathing

    NASA Astrophysics Data System (ADS)

    Wisham, M.

    2017-12-01

    Breathing issues befall most asthmatics. However, the symptoms are not caused randomly. Particulate matter is a cause that has been collected and sampled at several bus stops. The following experiment provides the results of collected particulate matter in several locations around LSU.

  1. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  2. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    PubMed

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  3. NASA firefighters breathing system program report

    NASA Technical Reports Server (NTRS)

    Wood, W. B.

    1977-01-01

    Because of the rising incidence of respiratory injury to firefighters, local governments expressed the need for improved breathing apparatus. A review of the NASA firefighters breathing system program, including concept definition, design, development, regulatory agency approval, in-house testing, and program conclusion is presented.

  4. The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance.

    PubMed

    Clark, T J; Godfrey, S

    1969-05-01

    1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.

  5. Artificial meteor ablation studies - Iron oxides.

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.

    1972-01-01

    Artificial meteor ablation was performed on natural minerals composed predominantly of magnetite and hematite by using an arc-heated plasma stream of air. Analysis indicates that most of the ablated debris was composed of two or more minerals. Wustite, a metastable mineral, was found to occur as a common product. The 'magnetite' sample, which was 80% magnetite, 14% hematite, 4% apatite, and 2% quartz, yielded ablated products consisting of more than 12 different minerals. Magnetite occurred in 91% of the specimens examined, hematite in 16%, and wustite in 30%. The 'hematite' sample, which was 96% hematite and 3% quartz, yielded ablated products consisting of more than 13 different minerals. Hematite occurred in 47% of the specimens examined, magnetite in 60%, and wustite in 28%. The more volatile elements (Si, P, and Cl) were depleted by about 50%. This study has shown that artificially created ablation products from iron oxides exhibit unique properties that can be used for identification.

  6. Voluntary control of breathing does not alter vagal modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Evans, J. M.; Bruce, E. N.; Eckberg, D. L.; Knapp, C. F.

    1995-01-01

    Variations in respiratory pattern influence the heart rate spectrum. It has been suggested, hence, that metronomic respiration should be used to correctly assess vagal modulation of heart rate by using spectral analysis. On the other hand, breathing to a metronome has been reported to increase heart rate spectral power in the high- or respiratory frequency region; this finding has led to the suggestion that metronomic respiration enhances vagal tone or alters vagal modulation of heart rate. To investigate whether metronomic breathing complicates the interpretation of heart rate spectra by altering vagal modulation, we recorded the electrocardiogram and respiration from eight volunteers during three breathing trials of 10 min each: 1) spontaneous breathing (mean rate of 14.4 breaths/min); 2) breathing to a metronome at the rate of 15, 18, and 21 breaths/min for 2, 6, and 2 min, respectively; and 3) breathing to a metronome at the rate of 18 breaths/min for 10 min. Data were also collected from eight volunteers who breathed spontaneously for 20 min and breathed metronomically at each subject's mean spontaneous breathing frequency for 20 min. Results from the three 10-min breathing trials showed that heart rate power in the respiratory frequency region was smaller during metronomic breathing than during spontaneous breathing. This decrease could be explained fully by the higher breathing frequencies used during trials 2 and 3 of metronomic breathing. When the subjects breathed metronomically at each subject's mean breathing frequency, the heart rate powers during metronomic breathing were similar to those during spontaneous breathing. Our results suggest that vagal modulation of heart rate is not altered and vagal tone is not enhanced during metronomic breathing.

  7. Timing of the breath analyzer: does it make a difference?

    PubMed

    Cherpitel, C J

    1993-09-01

    The purpose of this article is to examine in an emergency room (ER) population the concordance of self-reports of no alcohol consumption prior to injury with breath-analyzer readings in two groups: (1) those patients from whom reports were obtained after they were breath analyzed compared to (2) patients from whom reports were obtained prior to obtaining the breath-analyzer reading. Data were collected on a probability sample of patients attending three health maintenance organization ERs. Among those sampled were 159 patients admitted for initial treatment of an injury, who were breath analyzed within 6 hours of the event and reported no drinking following the event that lead to injury. Of these, 119 were breath analyzed prior to the interview, and none who reported not drinking were positive on the breath analyzer, while of the 37 breath analyzed after the interview, only one was positive who had reported not drinking. Obtaining the breath-analyzer reading following the interview was not found to affect the rate of refusal to provide a breath-analyzer reading; however, it was found to adversely affect obtaining the breath-analyzer reading for other reasons. The data suggest that the concordance of negative self-reports of consumption with breath-analyzer readings remains high in ER populations regardless of when the breath-analyzer reading is obtained; however, it appears best to obtain the reading prior to interviewing the patient for reasons explained below.

  8. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  9. Persistent Atrial Fibrillation Ablation using the Tip-Versatile Ablation Catheter.

    PubMed

    Davies, Edward J; Clayton, Ben; Lines, Ian; Haywood, Guy A

    2016-07-01

    The mechanisms by which persistent atrial fibrillation (PsAF) develops are incompletely understood. Consequently, the optimal strategy for the ablative management of PsAF remains debated. Current methods are often time consuming, complex and non-reproducible. We assessed the Tip-Versatile Ablation Catheter (T-VAC) technique, a rapidly delivered, empirical technique based on the box-set concept using duty-cycled linear catheter ablation technology. Forty-four procedures in 40 patients undergoing PsAF ablation with the novel technique were prospectively entered onto a database: 27 de novo. Primary endpoint was freedom from arrhythmia at over two-year follow-up. Secondary endpoints were time to first arrhythmia recurrence, freedom from atrial fibrillation (AF) on and off antiarrhythmic drugs (AAD), procedural and fluoroscopy duration and complication rate. At mean follow-up of 33 months, absolute freedom from arrhythmia recurrence was 45% in the de novo group. Overall, at 33 (IQR 24-63) months, 60% of de novo patients were in sustained normal sinus rhythm and a further 15% reported only occasional paroxysms of AF at long-term follow-up. Procedure time was 192±25 mins, total energy delivered 2239±883s and fluoroscopy time was 60±10mins. In selected patients with persistent AF, a long-term rate of 60% arrhythmia free survival off AAD can be achieved using this novel T-VAC technique. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  10. Oral Breathing Challenge in Participants with Vocal Attrition

    ERIC Educational Resources Information Center

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2003-01-01

    Vocal folds undergo osmotic challenge by mouth breathing during singing, exercising, and loud speaking. Just 15 min of obligatory oral breathing, to dry the vocal folds, increases phonation threshold pressure (P[subscript th]) and expiratory vocal effort in healthy speakers (M. Sivasankar & K. Fisher, 2002). We questioned whether oral breathing is…

  11. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 108.703 Section 108...

  12. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.703 Section 108...

  13. Acute Effects of Cannabis on Breath-Holding Duration

    PubMed Central

    Farris, Samantha G.; Metrik, Jane

    2016-01-01

    Distress intolerance (an individual’s perceived or actual inability to tolerate distressing psychological or physiological states) is associated with cannabis use. It is unknown whether a bio-behavioral index of distress intolerance, breath-holding duration, is acutely influenced (increased or decreased) by cannabis. Such information may further inform understanding of the expression of psychological or physiological distress post-cannabis use. This within-subjects study examined whether smoked marijuana with 2.7–3.0 % delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed duration of breath-holding. Participants (n = 88; 65.9% male) were non-treatment seeking frequent cannabis users who smoked placebo or active THC cigarette on two separate study days and completed breath-holding task. Controlling for baseline breath-holding duration and participant sex, THC produced significantly lower breath-holding durations relative to placebo. There was a significant interaction of drug administration x frequency of cannabis use, such that THC decreased breath-holding time among less frequent but not among more frequent users. Findings indicate that cannabis may be exacerbating distress intolerance (via breath-holding duration). As compared to less frequent cannabis users, frequent users display tolerance to cannabis’ acute effects including increased ability to tolerate respiratory distress when holding breath. Objective measures of distress intolerance are sensitive to contextual factors such as acute drug intoxication, and may inform the link between cannabis use and the expression of psychological distress. PMID:27454678

  14. BreathDx - molecular analysis of exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multicentre observational study.

    PubMed

    van Oort, Pouline M P; Nijsen, Tamara; Weda, Hans; Knobel, Hugo; Dark, Paul; Felton, Timothy; Rattray, Nicholas J W; Lawal, Oluwasola; Ahmed, Waqar; Portsmouth, Craig; Sterk, Peter J; Schultz, Marcus J; Zakharkina, Tetyana; Artigas, Antonio; Povoa, Pedro; Martin-Loeches, Ignacio; Fowler, Stephen J; Bos, Lieuwe D J

    2017-01-03

    The diagnosis of ventilator-associated pneumonia (VAP) remains time-consuming and costly, the clinical tools lack specificity and a bedside test to exclude infection in suspected patients is unavailable. Breath contains hundreds to thousands of volatile organic compounds (VOCs) that result from host and microbial metabolism as well as the environment. The present study aims to use breath VOC analysis to develop a model that can discriminate between patients who have positive cultures and who have negative cultures with a high sensitivity. The Molecular Analysis of Exhaled Breath as Diagnostic Test for Ventilator-Associated Pneumonia (BreathDx) study is a multicentre observational study. Breath and bronchial lavage samples will be collected from 100 and 53 intubated and ventilated patients suspected of VAP. Breath will be analysed using Thermal Desorption - Gas Chromatography - Mass Spectrometry (TD-GC-MS). The primary endpoint is the accuracy of cross-validated prediction for positive respiratory cultures in patients that are suspected of VAP, with a sensitivity of at least 99% (high negative predictive value). To our knowledge, BreathDx is the first study powered to investigate whether molecular analysis of breath can be used to classify suspected VAP patients with and without positive microbiological cultures with 99% sensitivity. UKCRN ID number 19086, registered May 2015; as well as registration at www.trialregister.nl under the acronym 'BreathDx' with trial ID number NTR 6114 (retrospectively registered on 28 October 2016).

  15. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  16. Affective brain areas and sleep disordered breathing

    PubMed Central

    Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Ogren, Jennifer A.

    2014-01-01

    The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing found in obstructive sleep apnea, heart failure (HF), and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude- distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, raphé, ventrolateral medulla, basal ganglia and, in CCHS, the locus coeruleus. Raphé and locus coeruleus injury may modify serotonergic and adrenergic modulation of upper airway and arousal characteristics. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several affected rostral sites, including the insular and cingulate cortices and hippocampus, mediate aspects of dyspnea, especially in CCHS, while others, including the anterior cingulate and thalamus, participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation. PMID:24746053

  17. An Ultrasonic Contactless Sensor for Breathing Monitoring

    PubMed Central

    Arlotto, Philippe; Grimaldi, Michel; Naeck, Roomila; Ginoux, Jean-Marc

    2014-01-01

    The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569). PMID:25140632

  18. Afternoon serum-melatonin in sleep disordered breathing.

    PubMed

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  19. The Effect of Breathing Exercises on the Nocturnal Enuresis in the Children with the Sleep-Disordered Breathing

    PubMed Central

    Khaleghipour, Shahnaz; Masjedi, Mohsen; Kelishadi, Roya

    2013-01-01

    Background The nocturnal enuresis is one of the most common complaints of childhood. Upper airway obstruction and nocturnal snoring affect the nocturnal enuresis in children. Objectives The aim of this study was to investigate the effects of breathing exercises on the nocturnal enuresis in the children with the sleep-disordered breathing. Patients and Methods This study was conducted in year of 2011 by a semi-experimental design with the control group among 40 children, aged 6 - 12 years, who had the nocturnal enuresis. Participants were examined based on the criteria of nocturnal enuresis, oral breathing, and nocturnal snoring. Subsequently, they were randomly assigned to the case and control groups. In the case group, the breathing exercises were performed for 45 minutes, and were pursued for four weeks in the morning following and prior to sleeping, and subsequently the arterial blood gases were measured and the frequency of enuresis and the respiratory rates (RR) were recorded. Results After intervention the means of PaCO2 and RR in the control group were significantly higher than the case group (P < 0.0001). Likewise, O2sat, PaO2 in the case group were higher than the control group (P < 0.0001). The nocturnal enuresis decreased significantly in the case group, compared to the control group (P < 0.0001). Conclusions This study suggests that the breathing exercises may reduce the frequency of nocturnal enuresis in the patients with the oral breathing and nocturnal snore. The clinical implications of these findings should be verified in the future longitudinal studies. PMID:24719691

  20. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  1. Hard tissue ablation with a spray-assisted mid-IR laser

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  2. Fractional ablative laser skin resurfacing: a review.

    PubMed

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  3. Air-breathing adaptation in a marine Devonian lungfish.

    PubMed

    Clement, Alice M; Long, John A

    2010-08-23

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.

  4. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  5. Toward Anatomical Simulation for Breath Training in Mind/Body Medicine

    NASA Astrophysics Data System (ADS)

    Sanders, Benjamin; Dilorenzo, Paul; Zordan, Victor; Bakal, Donald

    The use of breath in healing is poorly understood by patients and professionals alike. Dysfunctional breathing is a characteristic of many unexplained symptoms and mind/body medical professionals seek methods for breath training to alleviate such problems. Our approach is to re-purpose and evolve a recently developed anatomically inspired respiration simulation which was created for synthesizing motion in entertainment for the use of visualization in breath training. In mind/body medicine, problems are often created from patients being advised to breathe according to some standard based on pace or volume. However, a breathing pattern that is comfortable and effortless for one person may not have the same benefits for the next person. The breathing rhythm which is most effortless for each person needs to be dynamically identified. To this end, in this chapter, we employ optimization to modify a generic model of respiration to fit the breath patterns of specific individuals. In practice, the corresponding visualization which is specific to individual patients could be used to train proper breath behavior, both by showing specific (abnormal) practice and recommended modification(s).

  6. Alternate energy sources for catheter ablation.

    PubMed

    Wang, P J; Homoud, M K; Link, M S; Estes III, N A

    1999-07-01

    Because of the limitations of conventional radiofrequency ablation in creating large or linear lesions, alternative energy sources have been used as possible methods of catheter ablation. Modified radiofrequency energy, cryoablation, and microwave, laser, and ultrasound technologies may be able to create longer, deeper, and more controlled lesions and may be particularly suited for the treatment of ventricular tachycardias and for linear atrial ablation. Future studies will establish the efficacy of these new and promising technologies.

  7. Emergency catheter ablation in critical patients

    PubMed Central

    Tebbenjohanns, Jürgen; Rühmkorf, Klaus

    2010-01-01

    Emergency catheter ablation is justified in critical patients with drug-refractory life-threatening arrhythmias. The procedure can be used for ablation of an accessory pathway in preexcitation syndrome with high risk of ventricular fibrillation and in patients with shock due to ischemic cardiomyopathy and incessant ventricular tachycardia. Emergency catheter ablation can also be justified in patients with an electrical storm of the implanted cardioverter-defibrillator or in patients with idiopathic ventricular fibrillation. PMID:20606793

  8. Ablation properties of carbon/carbon composites with tungsten carbide

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Huang, Baiyun; Zuo, Jinlv

    2009-02-01

    The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO 3, and denudation of WC, WO 3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO 3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.

  9. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  10. Neural control of breathing and CO2 homeostasis

    PubMed Central

    Guyenet, P.G.; Bayliss, D.A

    2015-01-01

    Summary Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state-dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, “central command” and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation. PMID:26335642

  11. Bad-breath: Perceptions and misconceptions of Nigerian adults.

    PubMed

    Nwhator, S O; Isiekwe, G I; Soroye, M O; Agbaje, M O

    2015-01-01

    To provide baseline data about bad-breath perception and misconceptions among Nigerian adults. Multi-center cross-sectional study of individuals aged 18-64 years using examiner-administered questionnaires. Age comparisons were based on the model of emerging adults versus full adults. Data were recoded for statistical analyses and univariate and secondary log-linear statistics applied. Participants had lopsided perceptions about bad-breath. While 730 (90.8%) identified the dentist as the expert on halitosis and 719 (89.4%) knew that bad-breath is not contagious, only 4.4% and 2.5% associated bad-breath with tooth decay and gum disease respectively. There were no significant sex differences but the older adults showed better knowledge in a few instances. Most respondents (747, 92.9%) would tell a spouse about their bad-breath and 683 (85%) would tell a friend. Participants had lop-sided knowledge and perceptions about bad-breath. Most Nigerian adults are their "brothers' keepers" who would tell a spouse or friend about their halitosis so they could seek treatment.

  12. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing

    PubMed Central

    2015-01-01

    Background The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Methods Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. Results The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. Conclusion The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates. PMID:26192188

  13. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A breathing system heater is a device that is intended to warm breathing gases before they enter a patient's airway. The device may include a temperature controller. (b) Classification. Class II...

  14. Automated planning of ablation targets in atrial fibrillation treatment

    NASA Astrophysics Data System (ADS)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  15. 42 CFR 84.71 - Self-contained breathing apparatus; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Self-contained breathing apparatus; required...-Contained Breathing Apparatus § 84.71 Self-contained breathing apparatus; required components. (a) Each self-contained breathing apparatus described in § 84.70 shall, where its design requires, contain the following...

  16. 42 CFR 84.71 - Self-contained breathing apparatus; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Self-contained breathing apparatus; required...-Contained Breathing Apparatus § 84.71 Self-contained breathing apparatus; required components. (a) Each self-contained breathing apparatus described in § 84.70 shall, where its design requires, contain the following...

  17. Study of the detectability of controlled substances on breath

    DOT National Transportation Integrated Search

    1975-07-01

    The University of Missouri used high pressure liquid chromatography plus mass spectrometry for a quantitative analysis of marijuana metabolites in blood and breath. A breath collector was developed for road-side sampling of human breath and subsequen...

  18. Investigation of Exhaled Breath Samples from Patients with Alzheimer's Disease Using Gas Chromatography-Mass Spectrometry and an Exhaled Breath Sensor System.

    PubMed

    Lau, Hui-Chong; Yu, Joon-Boo; Lee, Ho-Won; Huh, Jeung-Soo; Lim, Jeong-Ok

    2017-08-03

    Exhaled breath is a body secretion, and the sampling process of this is simple and cost effective. It can be non-invasively collected for diagnostic procedures. Variations in the chemical composition of exhaled breath resulting from gaseous exchange in the extensive capillary network of the body are proposed to be associated with pathophysiological changes. In light of the foreseeable potential of exhaled breath as a diagnostic specimen, we used gas chromatography and mass spectrometry (GC-MS) to study the chemical compounds present in exhaled breath samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD), and from healthy individuals as a control group. In addition, we also designed and developed a chemical-based exhaled breath sensor system to examine the distribution pattern in the patient and control groups. The results of our study showed that several chemical compounds, such as 1-phenantherol and ethyl 3-cyano-2,3-bis (2,5,-dimethyl-3-thienyl)-acrylate, had a higher percentage area in the AD group than in the PD and control groups. These results may indicate an association of these chemical components in exhaled breath with the progression of disease. In addition, in-house fabricated exhaled breath sensor systems, containing several types of gas sensors, showed significant differences in terms of the normalized response of the sensitivity characteristics between the patient and control groups. A subsequent clustering analysis was able to distinguish between the AD patients, PD patients, and healthy individuals using principal component analysis, Sammon's mapping, and a combination of both methods, in particular when using the exhaled breath sensor array system A consisting of eight sensors. With this in mind, the exhaled breath sensor system could provide alternative option for diagnosis and be applied as a useful, effective tool for the screening and diagnosis of AD in the near future.

  19. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  20. Evolution of the ablation region after magnetic resonance-guided high-intensity focused ultrasound ablation in a Vx2 tumor model.

    PubMed

    Wijlemans, Joost W; Deckers, Roel; van den Bosch, Maurice A A J; Seinstra, Beatrijs A; van Stralen, Marijn; van Diest, Paul J; Moonen, Chrit T W; Bartels, Lambertus W

    2013-06-01

    Volumetric magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) is a completely noninvasive image-guided thermal ablation technique. Recently, there has been growing interest in the use of MR-HIFU for noninvasive ablation of malignant tumors. Of particular interest for noninvasive ablation of malignant tumors is reliable treatment monitoring and evaluation of response. At this point, there is limited evidence on the evolution of the ablation region after MR-HIFU treatment. The purpose of the present study was to comprehensively characterize the evolution of the ablation region after volumetric MR-HIFU ablation in a Vx2 tumor model using MR imaging, MR temperature data, and histological data. Vx2 tumors in the hind limb muscle of New Zealand White rabbits (n = 30) were ablated using a clinical MR-HIFU system. Twenty-four animals were available for analyses. Magnetic resonance imaging was performed before and immediately after ablation; MR temperature mapping was performed during the ablation. The animals were distributed over 7 groups with different follow-up lengths. Depending on the group, animals were reimaged and then killed on day 0, 1, 3, 7, 14, 21, or 28 after ablation. For all time points, the size of nonperfused areas (NPAs) on contrast-enhanced T1-weighted (CE-T1-w) images was compared with lethal thermal dose areas (ie, the tissue area that received a thermal dose of 240 equivalent minutes or greater [EM] at 43°C) and with the necrotic tissue areas on histology sections. The NPA on CE-T1-w imaging showed an increase in median size from 266 ± 148 to 392 ± 178 mm(2) during the first day and to 343 ± 170 mm(2) on day 3, followed by a gradual decrease to 113 ± 103 mm(2) on day 28. Immediately after ablation, the NPA was 1.6 ± 1.4 times larger than the area that received a thermal dose of 240 EM or greater in all animals. The median size of the necrotic area on histology was 1.7 ± 0.4 times larger than the NPA immediately after

  1. Qualitative assessment of contrast-enhanced magnetic resonance angiography using breath-hold and non-breath-hold techniques in the portal venous system

    NASA Astrophysics Data System (ADS)

    Goo, Eun-Hoe; Kim, Sun-Ju; Dong, Kyung-Rae; Kim, Kwang-Choul; Chung, Woon-Kwan

    2016-09-01

    The purpose of this study is to evaluate the image quality in delineation of the portal venous systems with two different methods, breath-hold and non-breath-hold by using the 3D FLASH sequence. We used a 1.5 T system to obtain magnetic resonance(MR)images. Arterial and portal phase 3D FLASH images were obtained with breath-hold after a bolus injection of GD-DOTA. The detection of PVS on the MR angiograms was classified into three grades. First, the angiograms of the breath-hold method showed well the portal vein, the splenic vein and the superior mesenteric vein systems in 13 of 15 patients (86%) and the inferior mesenteric vein system in 6 of 15 patients (40%), Second, MR angiograms of the non-breath-hold method demonstrated the PVS and the SMV in 12 of 15 patients (80%) and the IMV in 5 of 15 patients (33%). Our study showed contrast-enhanced 3D FLASH MR angiography, together with the breath-hold technique, may provide reliable and accurate information on the portal venous system.

  2. Breathing pattern and head posture: changes in craniocervical angles.

    PubMed

    Sabatucci, A; Raffaeli, F; Mastrovincenzo, M; Luchetta, A; Giannone, A; Ciavarella, D

    2015-04-01

    The aim of this study was to observe the influence of oral breathing on head posture and to establish possible postural changes observing the variation of craniocervical angles NSL/OPT and NSL/CVT between oral breathing subjects and physiological breathing subjects. A cross-sectional study was conducted. The sample included 115 subject, 56 boys and 59 girls, 5-22-year-old. Among these, 80 were classified as oral breathers and 35 as physiological breathers. The diagnosis of oral breathing was carried out thanks to characteristic signs and symptoms evaluated on clinical examination, the analysis of characteristic X-ray images, ENT examination with active anterior rhinomanometric (AAR) test. The structural and postural analysis was carried out, calculating the craniofacial angles NSL/OPT and NSL/CVT. Both NSL/OPT and NSL/CVT appear to be significantly greater to those observed in physiological breathing patients. This means that patients who tend to breathe through the mouth rather than exclusively through the nose show a reduction of cervical lordosis and a proinclination of the head. Our study confirms that the oral breathing modifies head position. The significant increase of the craniocervical angles NSL/OPT and NSL/CVT in patients with this altered breathing pattern suggests an elevation of the head and a greater extension of the head compared with the cervical spine. So, to correct the breathing pattern early, either during childhood or during adolescence, can lead to a progressive normalization of craniofacial morphology and head posture.

  3. Sensing the effects of mouth breathing by using 3-tesla MRI

    NASA Astrophysics Data System (ADS)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  4. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  5. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  6. Real-time rotational ICE imaging of the relationship of the ablation catheter tip and the esophagus during atrial fibrillation ablation.

    PubMed

    Helms, Adam; West, J Jason; Patel, Amit; Mounsey, J Paul; DiMarco, John P; Mangrum, J Michael; Ferguson, John D

    2009-02-01

    Atrioesophageal fistula is a rare complication of atrial fibrillation (AF) ablation that should be avoided. We investigated whether rotational intracardiac echocardiography (ICE) can help to minimize ablation close to the esophagus. We studied 41 patients referred for catheter ablation of refractory AF. A rotational ICE catheter was inserted into the (LA) to determine the location of the esophagus. The esophagus was identified to be either adjacent to the pulmonary vein (PV) ostium or to a cuff 2 cm outside the ostium. Circumferential ablation was performed at the PV ostium, with the exact ablation location determined by ICE. The relationship of the catheter tip to the esophagus was imaged during energy delivery, allowing interruption when respiration moved the tip closer to the esophagus. Out of 41 patients, the esophagus was seen near left-sided PVs in 32 and near right-sided PVs in three patients. The median distance from LA endocardium to esophagus was 2.2 mm (range, 1.4-6 mm). In 21 of 35 patients with a closely related esophagus, ablation over the esophagus was avoided by ablating either lateral or medial to the esophagus. In 14 patients, the esophagus could not be avoided, and risk was minimized by limiting lesion size. Significant movement (>10 mm) of the esophagus during the procedure occurred in 3/41 cases. Rotational ICE can accurately determine the distance of ablation sites from the esophagus. Real-time imaging of the relationship of the ablation catheter tip to the esophagus may reduce the incidence of esophageal injury.

  7. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  8. Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation.

    PubMed

    Yamada, Takumi; Maddox, William R; McElderry, H Thomas; Doppalapudi, Harish; Plumb, Vance J; Kay, G Neal

    2015-04-01

    Idiopathic ventricular arrhythmias (VAs) originating from the left ventricular outflow tract (LVOT) sometimes require catheter ablation from the endocardial and epicardial sides for their elimination, suggesting the presence of intramural VA foci. This study investigated the efficacy of sequential and simultaneous unipolar radiofrequency catheter ablation from the endocardial and epicardial sides in treating intramural LVOT VAs. Fourteen consecutive LVOT VAs, which required sequential or simultaneous irrigated unipolar radiofrequency ablation from the endocardial and epicardial sides for their elimination, were studied. The first ablation was performed at the site with the earliest local ventricular activation and best pace map on the endocardial or epicardial side. When the first ablation was unsuccessful, the second ablation was delivered on the other surface. If this sequential unipolar ablation failed, simultaneous unipolar ablation from both sides was performed. The first ablation was performed on the epicardial side in 9 VAs and endocardial side in 5 VAs. The intramural LVOT VAs were successfully eliminated by the sequential (n=9) or simultaneous (n=5) unipolar catheter ablation. Simultaneous ablation was most likely to be required for the elimination of the VAs when the distance between the endocardial and epicardial ablation sites was >8 mm and the earliest local ventricular activation time relative to the QRS onset during the VAs of <-30 ms was recorded at those ablation sites. LVOT VAs originating from intramural foci could usually be eliminated by sequential unipolar radiofrequency ablation and sometimes required simultaneous ablation from both the endocardial and epicardial sides. © 2015 American Heart Association, Inc.

  9. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  10. Approaches to catheter ablation for persistent atrial fibrillation.

    PubMed

    Verma, Atul; Jiang, Chen-yang; Betts, Timothy R; Chen, Jian; Deisenhofer, Isabel; Mantovan, Roberto; Macle, Laurent; Morillo, Carlos A; Haverkamp, Wilhelm; Weerasooriya, Rukshen; Albenque, Jean-Paul; Nardi, Stefano; Menardi, Endrj; Novak, Paul; Sanders, Prashanthan

    2015-05-07

    Catheter ablation is less successful for persistent atrial fibrillation than for paroxysmal atrial fibrillation. Guidelines suggest that adjuvant substrate modification in addition to pulmonary-vein isolation is required in persistent atrial fibrillation. We randomly assigned 589 patients with persistent atrial fibrillation in a 1:4:4 ratio to ablation with pulmonary-vein isolation alone (67 patients), pulmonary-vein isolation plus ablation of electrograms showing complex fractionated activity (263 patients), or pulmonary-vein isolation plus additional linear ablation across the left atrial roof and mitral valve isthmus (259 patients). The duration of follow-up was 18 months. The primary end point was freedom from any documented recurrence of atrial fibrillation lasting longer than 30 seconds after a single ablation procedure. Procedure time was significantly shorter for pulmonary-vein isolation alone than for the other two procedures (P<0.001). After 18 months, 59% of patients assigned to pulmonary-vein isolation alone were free from recurrent atrial fibrillation, as compared with 49% of patients assigned to pulmonary-vein isolation plus complex electrogram ablation and 46% of patients assigned to pulmonary-vein isolation plus linear ablation (P=0.15). There were also no significant differences among the three groups for the secondary end points, including freedom from atrial fibrillation after two ablation procedures and freedom from any atrial arrhythmia. Complications included tamponade (three patients), stroke or transient ischemic attack (three patients), and atrioesophageal fistula (one patient). Among patients with persistent atrial fibrillation, we found no reduction in the rate of recurrent atrial fibrillation when either linear ablation or ablation of complex fractionated electrograms was performed in addition to pulmonary-vein isolation. (Funded by St. Jude Medical; ClinicalTrials.gov number, NCT01203748.).

  11. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  12. Aspiration tests in aqueous foam using a breathing simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion inmore » an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.« less

  13. Bimodal electric tissue ablation (BETA) - in-vivo evaluation of the effect of applying direct current before and during radiofrequency ablation of porcine liver.

    PubMed

    Cockburn, J F; Maddern, G J; Wemyss-Holden, S A

    2007-03-01

    To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Omega or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p<0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone.

  14. Endometrial ablation: normal appearance and complications.

    PubMed

    Drylewicz, Monica R; Robinson, Kathryn; Siegel, Cary Lynn

    2018-03-14

    Global endometrial ablation is a commonly performed, minimally invasive technique aimed at improving/resolving abnormal uterine bleeding and menorrhagia in women. As non-resectoscopic techniques have come into existence, endometrial ablation performance continues to increase due to accessibility and decreased requirements for operating room time and advanced technical training. The increased utilization of this method translates into increased imaging of patients who have undergone the procedure. An understanding of the expected imaging appearances of endometrial ablation using different modalities is important for the abdominal radiologist. In addition, the frequent usage of the technique naturally comes with complications requiring appropriate imaging work-up. We review the expected appearance of the post-endometrial ablated uterus on multiple imaging modalities and demonstrate the more common and rare complications seen in the immediate post-procedural time period and remotely.

  15. Developmental Changes in Short-Term Plasticity at the Rat Calyx of Held Synapse

    PubMed Central

    Crins, Tom T. H.; Rusu, Silviu I.; Rodríguez-Contreras, Adrian; Borst, J. Gerard G.

    2015-01-01

    The calyx of Held synapse of the medial nucleus of the trapezoid body functions as a relay synapse in the auditory brainstem. In vivo recordings have shown that this synapse displays low release probability and that the average size of synaptic potentials does not depend on recent history. We used a ventral approach to make in vivo extracellular recordings from the calyx of Held synapse in rats aged postnatal day 4 (P4) to P29 to study the developmental changes that allow this synapse to function as a relay. Between P4 and P8, we observed evidence for the presence of large short-term depression, which was counteracted by short-term facilitation at short intervals. Major changes occurred in the last few days before the onset of hearing for air-borne sounds, which happened at P13. The bursting pattern changed into a primary-like pattern, the amount of depression and facilitation decreased strongly, and the decay of facilitation became much faster. Whereas short-term plasticity was the most important cause of variability in the size of the synaptic potentials in immature animals, its role became minor around hearing onset and afterward. Similar developmental changes were observed during stimulation experiments both in brain slices and in vivo following cochlear ablation. Our data suggest that the strong reduction in release probability and the speedup of the decay of synaptic facilitation that happen just before hearing onset are important events in the transformation of the calyx of Held synapse into an auditory relay synapse. PMID:21832200

  16. Effect of nonparallel placement of in-circle bipolar radiofrequency ablation probes on volume of tissue ablated with heat sink.

    PubMed

    Pillai, Krishna; Al-Alem, Ihssan; Akhter, Javed; Chua, Terence C; Shehata, Mena; Morris, David L

    2015-06-01

    Percutaneous bipolar radiofrequency ablation (RFA) is a minimally invasive technique for treating liver tumors. It is not always possible to insert the bipolar probes parallel to each other on either side of tumor, since it restricts maneuverability away from vital structures or ablate certain tumor shape. Therefore, we investigated how nonparallel placement of probes affected ablation. Bipolar RFA in parallel and in divergent positions were submerged in tissue model (800 mL egg white) at 37°C and ablated. Temperature probes, T1 and T2 were placed 8.00 mm below the tip of the probes, T3 in between the probe coil elements and T4 and T5 at water inlet and outlet, respectively. Both models with heat sink (+HS) and without (-HS) were investigated. The mean ablated tissue volume, mass, density and height increased linearly with unit angle increase for -HS model. With +HS, a smaller increase in mean volume and mass, a slightly greater increase in mean density but a reduction in height of tissue was seen. The mean ablation time and duration of maximum temperature with +HS was slightly larger, compared with -HS, while -HS ablated at a slightly higher temperature. The heat sink present was minimal for probes in parallel position compared to nonparallel positions. Divergence from parallel insertion of bipolar RFA probes increased the mean volume, mass, and density of tissue ablated. However, the presence of large heat sinks may limit the application of this technique, when tumors border on larger vessels. © The Author(s) 2014.

  17. Outcomes of Cryoballoon Ablation in High- and Low-Volume Atrial Fibrillation Ablation Centres: A Russian Pilot Survey

    PubMed Central

    Mikhaylov, Evgeny N.; Lebedev, Dmitry S.; Pokushalov, Evgeny A.; Davtyan, Karapet V.; Ivanitskii, Eduard A.; Nechepurenko, Anatoly A.; Kosonogov, Alexey Ya.; Kolunin, Grigory V.; Morozov, Igor A.; Termosesov, Sergey A.; Maykov, Evgeny B.; Khomutinin, Dmitry N.; Eremin, Sergey A.; Mayorov, Igor M.; Romanov, Alexander B.; Shabanov, Vitaliy V.; Shatakhtsyan, Victoria; Tsivkovskii, Viktor; Revishvili, Amiran Sh.; Shlyakhto, Evgeny V.

    2015-01-01

    Purpose. The results of cryoballoon ablation (CBA) procedure have been mainly derived from studies conducted in experienced atrial fibrillation (AF) ablation centres. Here, we report on CBA efficacy and complications resulting from real practice of this procedure at both high- and low-volume centres. Methods. Among 62 Russian centres performing AF ablation, 15 (24%) used CBA technology for pulmonary vein isolation. The centres were asked to provide a detailed description of all CBA procedures performed and complications, if encountered. Results. Thirteen sites completed interviews on all CBAs in their centres (>95% of CBAs in Russia). Six sites were high-volume AF ablation (>100 AF cases/year) centres, and 7 were low-volume AF ablation. There was no statistical difference in arrhythmia-free rates between high- and low-volume centres (64.6 versus 60.8% at 6 months). Major complications developed in 1.5% of patients and were equally distributed between high- and low-volume centres. Minor procedure-related events were encountered in 8% of patients and were more prevalent in high-volume centres. Total event and vascular access site event rates were higher in women than in men. Conclusions. CBA has an acceptable efficacy profile in real practice. In less experienced AF ablation centres, the major complication rate is equal to that in high-volume centres. PMID:26640789

  18. Individuality of breathing during volitional moderate hyperventilation.

    PubMed

    Besleaga, Tudor; Blum, Michaël; Briot, Raphaël; Vovc, Victor; Moldovanu, Ion; Calabrese, Pascale

    2016-01-01

    The aim of this study is to investigate the individuality of airflow shapes during volitional hyperventilation. Ventilation was recorded on 18 healthy subjects following two protocols: (1) spontaneous breathing (SP1) followed by a volitional hyperventilation at each subject's spontaneous (HVSP) breathing rate, (2) spontaneous breathing (SP2) followed by hyperventilation at 20/min (HV20). HVSP and HV20 were performed at the same level of hypocapnia: end tidal CO2 (FETCO2) was maintained at 1% below the spontaneous level. At each breath, the tidal volume (VT), the breath (TTOT), the inspiratory (TI) and expiratory durations, the minute ventilation, VT/TI, TI/TTOT and the airflow shape were quantified by harmonic analysis. Under different conditions of breathing, we test if the airflow profiles of the same individual are more similar than airflow profiles between individuals. Minute ventilation was not significantly different between SP1 (6.71 ± 1.64 l·min(-1)) and SP2 (6.57 ± 1.31 l·min(-1)) nor between HVSP (15.88 ± 4.92 l·min(-1)) and HV20 (15.87 ± 4.16 l·min(-1)). Similar results were obtained for FETCO2 between SP1 (5.06 ± 0.54 %) and SP2 (5.00 ± 0.51%), and HVSP (4.07 ± 0.51%) and HV20 (3.88 ± 0.42%). Only TI/TTOT remained unchanged in all four conditions. Airflow shapes were similar when comparing SP1-SP2, HVSP-HV20, and SP1-HVSP but not similar when comparing SP2-HV20. These results suggest the existence of an individuality of airflow shape during volitional hyperventilation. We conclude that volitional ventilation alike automatic breathing follows inherent properties of the ventilatory system. Registered by Pascale Calabrese on ClinicalTrials.gov, # NCT01881945.

  19. Shortness of Breath

    MedlinePlus

    ... with blood clots in the legs or pelvis (deep venous thrombosis), debilitating medical conditions, immobility, or inherited ... it hard for a person to take a deep breath, which usually results in retention of carbon ...

  20. Volatile Biomarkers in Breath Associated With Liver Cirrhosis — Comparisons of Pre- and Post-liver Transplant Breath Samples

    PubMed Central

    Fernández del Río, R.; O'Hara, M.E.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C.A.

    2015-01-01

    Background The burden of liver disease in the UK has risen dramatically and there is a need for improved diagnostics. Aims To determine which breath volatiles are associated with the cirrhotic liver and hence diagnostically useful. Methods A two-stage biomarker discovery procedure was used. Alveolar breath samples of 31 patients with cirrhosis and 30 healthy controls were mass spectrometrically analysed and compared (stage 1). 12 of these patients had their breath analysed after liver transplant (stage 2). Five patients were followed longitudinally as in-patients in the post-transplant period. Results Seven volatiles were elevated in the breath of patients versus controls. Of these, five showed statistically significant decrease post-transplant: limonene, methanol, 2-pentanone, 2-butanone and carbon disulfide. On an individual basis limonene has the best diagnostic capability (the area under a receiver operating characteristic curve (AUROC) is 0.91), but this is improved by combining methanol, 2-pentanone and limonene (AUROC curve 0.95). Following transplant, limonene shows wash-out characteristics. Conclusions Limonene, methanol and 2-pentanone are breath markers for a cirrhotic liver. This study raises the potential to investigate these volatiles as markers for early-stage liver disease. By monitoring the wash-out of limonene following transplant, graft liver function can be non-invasively assessed. PMID:26501124

  1. Poster - Thur Eve - 26: Interfraction reproducibility of heart position during breast irradiation using Active Breathing Control.

    PubMed

    Comsa, D; Zhang, B; Mosely, D; Yeung, I

    2012-07-01

    The moderate deep-inspiration breath hold (mDIBH) technique using the Active Breathing Coordinator (ABC) from Elekta is used in our clinic to lower the heart dose during left breast irradiations. The purpose of this work was to investigate the interfraction reproducibility of the heart to chest distance during these treatments and to evaluate the dosimetric effect of any changes in the heart position. Daily CBCT images were available for 5 patients who had been treated with ABC tangents and a cavity boost. On these images, one-dimensional measurements of the distance between the heart and the chest wall were taken at two anatomical locations corresponding roughly with the location where the radiation field most likely intercepts the heart. The average change in this distance was interpreted as a shift of the heart position. To assess the effect of this shift on the delivered heart dose, the heart contours in the clinical plans of the corresponding patients were shifted towards the treatment field using standard Pinnacle tools. Although the ABC device allows good reproducibility of the volume of air held, this does not warrant reproducibility of heart position for all patients during treatment. The largest average heart shift extracted from CBCT images in this study was 6.2mm. The heart dose reconstructed using this shift for the corresponding patient also showed the largest effect. However, even in the presence of a systematic heart shift of this magnitude, the ABC plan still showed superior heart dose reduction compared to the free-breathing plan. © 2012 American Association of Physicists in Medicine.

  2. How Does a Hopping Kangaroo Breathe?

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  3. Mapleson's Breathing Systems.

    PubMed

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  4. Microembolism and catheter ablation I: a comparison of irrigated radiofrequency and multielectrode-phased radiofrequency catheter ablation of pulmonary vein ostia.

    PubMed

    Haines, David E; Stewart, Mark T; Dahlberg, Sarah; Barka, Noah D; Condie, Cathy; Fiedler, Gary R; Kirchhof, Nicole A; Halimi, Franck; Deneke, Thomas

    2013-02-01

    Cerebral diffusion-weighted MRI lesions have been observed after catheter ablation of atrial fibrillation. We hypothesized that conditions predisposing to microembolization could be identified using a porcine model of pulmonary vein ablation and an extracorporeal circulation loop. Ablations of the pulmonary veins were performed in 18 swine with echo monitoring. The femoral artery and vein were cannulated and an extracorporeal circulation loop with 2 ultrasonic bubble detectors and a 73-μm filter were placed in series. Microemboli and microbubbles were compared between ablation with an irrigated radiofrequency system (Biosense-Webster) and a phased radiofrequency multielectrode system (pulmonary vein ablation catheter [PVAC], Medtronic, Inc, Carlsbad, CA) in unipolar and 3 blended unipolar/bipolar modes. Animal pathology was examined. The size and number of microbubbles observed during ablation ranged from 30 to 180 μm and 0 to 3253 bubbles per ablation. Microbubble volumes with PVAC (29.1 nL) were greater than with irrigated radiofrequency (0.4 nL; P=0.045), and greatest with type II or III microbubbles on transesophageal echocardiography. Ablation with the PVAC showed fewest microbubbles in the unipolar mode (P=0.012 versus bipolar). The most occurred during bipolar energy delivery with overlap of proximal and distal electrodes (median microbubble volume, 1744 nL; interquartile range, 737-4082 nL; maximum, 19 516 nL). No cerebral MRI lesions were seen, but 2 animals had renal embolization. Left atrial ablation with irrigated radiofrequency and PVAC catheters in swine is associated with microbubble and microembolus production. Avoiding overlap of electrodes 1 and 10 on PVAC should reduce the microembolic burden associated with this procedure.

  5. Radiofrequency thermo-ablation of PVNS in the knee: initial results.

    PubMed

    Lalam, Radhesh K; Cribb, Gillian L; Cassar-Pullicino, Victor N; Cool, Wim P; Singh, Jaspreet; Tyrrell, Prudencia N M; Tins, Bernhard J; Winn, Naomi

    2015-12-01

    Pigmented villonodular synovitis (PVNS) is normally treated by arthroscopic or open surgical excision. We present our initial experience with radiofrequency thermo-ablation (RF ablation) of PVNS located in an inaccessible location in the knee. Review of all patients with histologically proven PVNS treated with RF ablation and with at least 2-year follow-up. Three patients met inclusion criteria and were treated with RF ablation. Two of the patients were treated successfully by one ablation procedure. One of the three patients had a recurrence which was also treated successfully by repeat RF ablation. There were no complications and all patients returned to their previous occupations following RF ablation. In this study we demonstrated the feasibility of performing RF ablation to treat PVNS in relatively inaccessible locations with curative intent. We have also discussed various post-ablation imaging appearances which can confound the assessment for residual/recurrent disease.

  6. Novel Laser Ablation Technology for Surface Decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquidmore » for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.« less

  7. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    PubMed

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  8. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  9. Comparison of the Three NIF Ablators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kritcher, A. L.; Clark, D. S.; Haan, S. W.

    Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed sincemore » NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is

  10. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  11. Recent Advances in Tumor Ablation for Hepatocellular Carcinoma

    PubMed Central

    Kang, Tae Wook; Rhim, Hyunchul

    2015-01-01

    Image-guided tumor ablation for early stage hepatocellular carcinoma (HCC) is an accepted non-surgical treatment that provides excellent local tumor control and favorable survival benefit. This review summarizes the recent advances in tumor ablation for HCC. Diagnostic imaging and molecular biology of HCC has recently undergone marked improvements. Second-generation ultrasonography (US) contrast agents, new computed tomography (CT) techniques, and liver-specific contrast agents for magnetic resonance imaging (MRI) have enabled the early detection of smaller and inconspicuous HCC lesions. Various imaging-guidance tools that incorporate imaging-fusion between real-time US and CT/MRI, that are now common for percutaneous tumor ablation, have increased operator confidence in the accurate targeting of technically difficult tumors. In addition to radiofrequency ablation (RFA), various therapeutic modalities including microwave ablation, irreversible electroporation, and high-intensity focused ultrasound ablation have attracted attention as alternative energy sources for effective locoregional treatment of HCC. In addition, combined treatment with RFA and chemoembolization or molecular agents may be able to overcome the limitation of advanced or large tumors. Finally, understanding of the biological mechanisms and advances in therapy associated with tumor ablation will be important for successful tumor control. All these advances in tumor ablation for HCC will result in significant improvement in the prognosis of HCC patients. In this review, we primarily focus on recent advances in molecular tumor biology, diagnosis, imaging-guidance tools, and therapeutic modalities, and refer to the current status and future perspectives for tumor ablation for HCC. PMID:26674766

  12. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  13. Investigations on laser hard tissue ablation under various environments

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Oh, J.; Welch, A. J.

    2008-06-01

    The purpose of this study was to investigate the effect of liquid environments upon laser bone ablation. A long-pulsed Er,Cr:YSGG laser was employed to ablate bovine bone tibia at various radiant exposures under dry, wet (using water or perfluorocarbon) and spray environmental conditions. Energy loss by the application of liquid during laser irradiation was evaluated, and ablation performance for all conditions was quantitatively measured by optical coherence tomography (OCT). Microscope images were also used to estimate thermal side effects in tissue after multiple-pulse ablation. Wet using water and spray conditions equally attenuated the 2.79 µm wavelength laser beam. Higher transmission efficiency was obtained utilizing a layer of perfluorocarbon. Dry ablation exhibited severe carbonization due to excessive heat accumulation. Wet condition using water resulted in similar ablation volume to the dry case without carbonization. The perfluorocarbon layer produced the largest ablation volume but some carbonization due to the poor thermal conductivity. Spray induced clean cutting with slightly reduced efficiency. Liquid-assisted ablation provided significant beneficial effects such as augmented material removal and cooling/cleaning effects during laser osteotomy.

  14. 46 CFR 195.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 195.30-15 Section... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 195.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for...

  15. 46 CFR 195.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 195.30-15 Section... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 195.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for...

  16. 46 CFR 96.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 96.30-15 Section 96... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 96.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for...

  17. 46 CFR 96.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 96.30-15 Section 96... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 96.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for...

  18. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  19. Shortness-of-Breath

    MedlinePlus

    ... can lead to shortness of breath include anxiety, panic attacks, anemia and even constipation. The experience of shortness ... are used to treat patients with anxiety or panic attacks. Other commonly used drugs include bronchodilators to widen ...

  20. Breath holding spell

    MedlinePlus

    ... such as Riley-Day syndrome or Rett syndrome Iron deficiency anemia A family history of breath holding spells ( ... tests may be done to check for an iron deficiency. Other tests that may be done include: EKG ...

  1. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.

    PubMed

    Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang

    2013-07-01

    Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.

  2. Caring for women undergoing cardiac ablation.

    PubMed

    Keegan, Beryl

    2008-09-01

    Radiofrequency cardiac ablation (RFCA) has become the treatment of choice for many cardiac arrhythmias that have not responded to medication. Complications of cardiac ablation include bleeding, thrombosis, pericardial tamponade, and stroke. Many complications are procedure specific, and several complications can be avoided with appropriate nursing care. Quality patient outcomes begin with competent nursing care. Therefore it is vital for a patient undergoing a percutaneous cardiac ablation procedure to receive supportive care and pre- and post-interventional patient education. This article discusses the nursing care of women undergoing RFCA.

  3. Catheter ablation in patients with persistent atrial fibrillation

    PubMed Central

    Kirchhof, Paulus; Calkins, Hugh

    2017-01-01

    Catheter ablation is increasingly offered to patients who suffer from symptoms due to atrial fibrillation (AF), based on a growing body of evidence illustrating its efficacy compared with antiarrhythmic drug therapy. Approximately one-third of AF ablation procedures are currently performed in patients with persistent or long-standing persistent AF. Here, we review the available information to guide catheter ablation in these more chronic forms of AF. We identify the following principles: Our clinical ability to discriminate paroxysmal and persistent AF is limited. Pulmonary vein isolation is a reasonable and effective first approach for catheter ablation of persistent AF. Other ablation strategies are being developed and need to be properly evaluated in controlled, multicentre trials. Treatment of concomitant conditions promoting recurrent AF by life style interventions and medical therapy should be a routine adjunct to catheter ablation of persistent AF. Early rhythm control therapy has a biological rationale and trials evaluating its value are underway. There is a clear need to generate more evidence for the best approach to ablation of persistent AF beyond pulmonary vein isolation in the form of adequately powered controlled multi-centre trials. PMID:27389907

  4. EXHALED BREATH ANALYSIS FOR HUMAN EXPOSURE RESEARCH

    EPA Science Inventory

    Exhaled breath collection and analysis has historically been used in environmental research studies to characterize exposures to volatile organic compounds. The use of this approach is based on the fact that many compounds present in blood are reflected in the breath, and that...

  5. Control of Breathing During Mechanical Ventilation: Who Is the Boss?

    PubMed Central

    Williams, Kathleen; Hinojosa-Kurtzberg, Marina; Parthasarathy, Sairam

    2011-01-01

    Over the past decade, concepts of control of breathing have increasingly moved from being theoretical concepts to “real world” applied science. The purpose of this review is to examine the basics of control of breathing, discuss the bidirectional relationship between control of breathing and mechanical ventilation, and critically assess the application of this knowledge at the patient’s bedside. The principles of control of breathing remain under-represented in the training curriculum of respiratory therapists and pulmonologists, whereas the day-to-day bedside application of the principles of control of breathing continues to suffer from a lack of outcomes-based research in the intensive care unit. In contrast, the bedside application of the principles of control of breathing to ambulatory subjects with sleep-disordered breathing has out-stripped that in critically ill patients. The evolution of newer technologies, faster real-time computing abilities, and miniaturization of ventilator technology can bring the concepts of control of breathing to the bedside and benefit the critically ill patient. However, market forces, lack of scientific data, lack of research funding, and regulatory obstacles need to be surmounted. PMID:21333174

  6. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF...

  7. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF...

  8. The effects of inspiratory diaphragm breathing exercise and expiratory pursed-lip breathing exercise on chronic stroke patients' respiratory muscle activation.

    PubMed

    Seo, KyoChul; Hwan, Park Seung; Park, KwangYong

    2017-03-01

    [Purpose] The purpose of this study is to examine the effects of inspiratory diaphragm breathing exercise and expiratory pursed-lip breathing exercise on chronic stroke patients' respiratory muscle activation. [Subjects and Methods] All experimental subjects performed exercises five times per week for four weeks. Thirty chronic stroke patients were randomly assign to an experimental group of 15 patients and a control group of 15 patients. The experimental group underwent exercises consisting of basic exercise treatment for 15 minutes and inspiratory diaphragm breathing exercise and expiratory pursed-lip breathing exercise for 15 minutes and the control group underwent exercises consisting of basic exercise treatment for 15 minutes and auto-med exercise for 15 minutes. The activation levels of respiratory muscles were measured before and after the experiment using MP 150WSW to obtain the results of the experiment. [Results] In the present study, when the pulmonary functions of the experimental group and the control group before and after the experiment were compared, whereas the experimental group showed significant differences in all sections. In the verification of intergroup differences between the experimental group and the control group before and after the experiment. [Conclusion] The respiratory rehabilitation exercise is considered to be capable of inducing positive effects on stroke patients' respiratory muscles through diaphragm breathing exercise and lip puckering breathing exercise.

  9. Hyperbaric nitrogen prolongs breath-holding time in humans.

    PubMed

    Morooka, H; Wakasugi, Y; Shimamoto, H; Shibata, O; Sumikawa, K

    2000-09-01

    Either an increase in PaCO(2) or a decrease in PaO(2), can affect respiratory stimulation through respiratory centers, thus influencing breath-holding time (BHT). This study was designed to determine whether and how hyperbaric air could influence BHT in comparison with hyperbaric oxygen in humans. We studied 36 healthy volunteers in a multiplace hyperbaric chamber. BHT, pulse oximeter, and transcutaneous carbon dioxide tension were measured at 1 and 2.8 atmosphere absolute (ATA) in two groups. Group A (n = 20) breathed air. Group O (n = 16) breathed oxygen with a face mask (5 L/min). BHTs were 108 +/- 28 s at 1.0 ATA and 230 +/- 71 s at 2.8 ATA in Group A, and 137 +/- 48 s at 1.0 ATA and 180 +/- 52 s at 2.8 ATA in Group O. Transcutaneous carbon dioxide tension in Group A (59 +/- 2 mm Hg) was higher than that in Group O (54 +/- 2 mm Hg) at the end of maximal breath-holding at 2.8 ATA. The prolongation of BHT in hyperbaric air is significantly greater than that in hyperbaric oxygen. Breath-holding time is significantly prolonged in hyperbaric air than it is in hyperbaric oxygen. The mechanism involves the anesthetic effect of nitrogen suppressing the suffocating feeling during breath-holding.

  10. Breath-Holding Spells

    MedlinePlus

    ... reviewed: October 2016 More on this topic for: Parents Is It Normal for Children to Hold Their Breath? Taming Tempers Disciplining Your Child Disciplining Your Toddler Temper Tantrums Separation Anxiety View more About Us Contact Us Partners ...

  11. Progress of air-breathing cathode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  12. Does rhinoplasty improve nasal breathing?

    PubMed

    Xavier, Rui

    2010-08-01

    Rhinoplasty is a surgical procedure that aims to improve nasal aesthetics and nasal breathing. The aesthetic improvement of the nose is usually judged subjectively by the patient and the surgeon, but the degree of improvement of nasal obstruction is difficult to assess by clinical examination only. The measurement of peak nasal inspiratory flow (PNIF) is a reliable tool that has been shown to correlate with other objective methods of assessing nasal breathing and with patients' symptoms of nasal obstruction. Twenty-three consecutive patients undergoing rhinoplasty have been evaluated by measurement of PNIF before and after surgery. All but three patients had an increase in PNIF after surgery. The mean preoperative PNIF was 86.5 L/min and the mean postoperative PNIF was 123.0 L/min ( P < 0.001). Not surprisingly, the greatest improvement in PNIF was achieved when bilateral spreader grafts were used. This study suggests that rhinoplasty does improve nasal breathing. (c) Thieme Medical Publishers

  13. Effect of Time-of-Flight Information on PET/MR Reconstruction Artifacts: Comparison of Free-breathing versus Breath-hold MR-based Attenuation Correction.

    PubMed

    Delso, Gaspar; Khalighi, Mohammed; Ter Voert, Edwin; Barbosa, Felipe; Sekine, Tetsuro; Hüllner, Martin; Veit-Haibach, Patrick

    2017-01-01

    Purpose To evaluate the magnitude and anatomic extent of the artifacts introduced on positron emission tomographic (PET)/magnetic resonance (MR) images by respiratory state mismatch in the attenuation map. Materials and Methods The method was tested on 14 patients referred for an oncologic examination who underwent PET/MR imaging. The acquisition included standard PET and MR series for each patient, and an additional attenuation correction series was acquired by using breath hold. PET data were reconstructed with and without time-of-flight (TOF) information, first by using the standard free-breathing attenuation map and then again by using the additional breath-hold map. Two-tailed paired t testing and linear regression with 0 intercept was performed on TOF versus non-TOF and free-breathing versus breath-hold data for all detected lesions. Results Fluorodeoxyglucose-avid lesions were found in eight of the 14 patients included in the study. The uptake differences (maximum standardized uptake values) between PET reconstructions with free-breathing versus breath-hold attenuation ranged, for non-TOF reconstructions, from -18% to 26%. The corresponding TOF reconstructions yielded differences from -15% to 18%. Conclusion TOF information was shown to reduce the artifacts caused at PET/MR by respiratory mismatch between emission and attenuation data. © RSNA, 2016 Online supplemental material is available for this article.

  14. Medical Issues: Breathing

    MedlinePlus

    ... Funding Opportunities Research Conference Recruit for Clinical Trials Research Publications Spinraza Support & Care For Newly Diagnosed Care Packages Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At School At Home ...

  15. Breath test refusals

    DOT National Transportation Integrated Search

    2007-11-01

    The National Highway Traffic Safety Administration has found that the percentage of people who refuse to provide breath samples when arrested for Driving While Intoxicated (DWI) varies considerably across States, and this creates a concern in the cri...

  16. Meta-analysis of bipolar radiofrequency endometrial ablation versus thermal balloon endometrial ablation for the treatment of heavy menstrual bleeding.

    PubMed

    Zhai, Yan; Zhang, Zihan; Wang, Wei; Zheng, Tingping; Zhang, Huili

    2018-01-01

    Heavy menstrual bleeding is a common problem that can severely affect quality of life. To compare bipolar radiofrequency endometrial ablation and thermal balloon ablation for heavy menstrual bleeding in terms of efficacy and health-related quality of life (HRQoL). Online registries were systematically searched using relevant terms without language restriction from inception to November 24, 2016. Randomized control trials or cohort studies of women with heavy menstrual bleeding comparing the efficacy of two treatments were eligible. Data were extracted. Results were expressed as risk ratios (RRs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs). Six studies involving 901 patients were included. Amenorrhea rate at 12 months was significantly higher after bipolar radiofrequency endometrial ablation than after thermal balloon ablation (RR 2.73, 95% CI 2.00-3.73). However, no difference at 12 months was noted for dysmenorrhea (RR 1.04, 95% CI 0.68-1.58) or treatment failure (RR 0.78, 95% CI 0.38-1.60). The only significant difference for HRQoL outcomes was for change in SAQ pleasure score (12 months: WMD -3.51, 95% CI -5.42 to -1.60). Bipolar radiofrequency endometrial ablation and thermal balloon ablation reduce menstrual loss and improve quality of life. However, bipolar radiofrequency endometrial ablation is more effective in terms of amenorrhea rate and SAQ pleasure. © 2017 International Federation of Gynecology and Obstetrics.

  17. Increased Prevalence of Sleep-Disordered Breathing in Adults

    PubMed Central

    Peppard, Paul E.; Young, Terry; Barnet, Jodi H.; Palta, Mari; Hagen, Erika W.; Hla, Khin Mae

    2013-01-01

    Sleep-disordered breathing is a common disorder with a range of harmful sequelae. Obesity is a strong causal factor for sleep-disordered breathing, and because of the ongoing obesity epidemic, previous estimates of sleep-disordered breathing prevalence require updating. We estimated the prevalence of sleep-disordered breathing in the United States for the periods of 1988–1994 and 2007–2010 using data from the Wisconsin Sleep Cohort Study, an ongoing community-based study that was established in 1988 with participants randomly selected from an employed population of Wisconsin adults. A total of 1,520 participants who were 30–70 years of age had baseline polysomnography studies to assess the presence of sleep-disordered breathing. Participants were invited for repeat studies at 4-year intervals. The prevalence of sleep-disordered breathing was modeled as a function of age, sex, and body mass index, and estimates were extrapolated to US body mass index distributions estimated using data from the National Health and Nutrition Examination Survey. The current prevalence estimates of moderate to severe sleep-disordered breathing (apnea-hypopnea index, measured as events/hour, ≥15) are 10% (95% confidence interval (CI): 7, 12) among 30–49-year-old men; 17% (95% CI: 15, 21) among 50–70-year-old men; 3% (95% CI: 2, 4) among 30–49-year-old women; and 9% (95% CI: 7, 11) among 50–70 year-old women. These estimated prevalence rates represent substantial increases over the last 2 decades (relative increases of between 14% and 55% depending on the subgroup). PMID:23589584

  18. From Laser Desorption to Laser Ablation of Biopolymers

    NASA Astrophysics Data System (ADS)

    Franz, Hillenkamp

    1998-03-01

    For selected indications laser ablation and cutting of biological tissues is clinical practice. Preferentially lasers with emission wavelengths in the far UV and the mid IR are used, for which tissue absorption is very high. Morphologically the ablation sites look surprisingly similar for the two wavelength ranges, despite of the very different prim y putative interaction mechanisms. Ablation depth as a function of fluence follows a sigmoidal curve. Even factors below the nominal ablation threshold superficial layers of material get removed from the surface. This is the fluence range for Matrix-Assisted Laser Desorption/Ionization (MALDI). Evidence will be presented which suggest that strong similarities exist between the desorption and ablation processes both for UV- as well as for IR-wavelengths.

  19. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  20. Microwave Tissue Ablation: Biophysics, Technology and Applications

    PubMed Central

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  1. Early Efficacy Analysis of Biatrial Ablation versus Left and Simplified Right Atrial Ablation for Atrial Fibrillation Treatment in Patients with Rheumatic Heart Disease.

    PubMed

    Liu, Hong; Chen, Lin; Xiao, Yingbin; Ma, Ruiyan; Hao, Jia; Chen, Baicheng; Qin, Chuan; Cheng, Wei

    2015-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia. About 60% of patients with rheumatic heart disease have persistent AF. A total of 197 patients underwent valve replacement concomitant bipolar radiofrequency ablation (BRFA). Patients were divided into the biatrial ablation group and the simplified right atrial ablation group. In biatrial ablation group, the patients underwent a complete left and right atrial ablation. In simplified right atrial ablation group, the patients underwent a complete left atrial ablation and a simplified right atrial ablation. The conversion of sinus rhythm (SR) was high in both groups during the follow-up period. In the simplified right atrial ablation group, SR conversion rate was 88.29% at discharge. At six months and 12 months after surgery, 87.39% of patients and 86.49% of patients were in SR free of antiarrhythmic drugs, respectively. While in the biatrial ablation group, SA conversion rate was 89.53% at discharge. Percentage of patients in SR free of antiarrhythmic drugs was 88.37% and 88.37% at six months and 12 months after surgery, respectively. Echocardiography showed left atrial diameter decreased significantly after the surgery in the two groups. The ejection fraction and fractional shortening were improved significantly, without significant differences between the two groups. The results suggest that the concomitant left atrial and simplified right atrial BRFA for AF in patients undergoing valve replacement can achieve similar early efficiency as biatrial ablation. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  2. Interferometric analysis of the ablation profile in refractive surgery

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, M. I.; López-Olazagasti, E.; Rosales, M. A.; Ramírez-Zavaleta, G.; Cantú, R.; Tepichín, E.

    2008-08-01

    In ophthalmology, the laser excimer corneal surface ablation used to correct the refractive eye defects, such as myopia, astigmatism and hyperopia and, more recently, presbyopia is known as refractive surgery. Typically, the characterization of the corresponding technique, as well as the laser accuracy, is performed by analyzing standard ablation profiles made on PMMA (polymethylmethacrylate) plates. A drawback of this technique is that those plates do not necessarily represent the dimensions of the cornea during the ablation. On the other hand, due to the time varying process of the eye aberrations, the direct eye refractometric measurements can produce some errors. We report in this work the interferometric analysis of the ablation profile obtained with refractive surgery, applied directly on a contact lens. In this case, the resultant ablation profile might be closer to the real profile as well as time invariant. We use, as a reference, a similar contact lens without ablation. The preliminary results of the characterization of the corresponding ablation profile are also presented.

  3. Thermal distribution of microwave antenna for atrial fibrillation catheter ablation.

    PubMed

    Zhang, Huijuan; Nan, Qun; Liu, Youjun

    2013-09-01

    The aim of this study is to investigate the effects of ablation parameters on thermal distribution during microwave atrial fibrillation catheter ablation, such as ablation time, ablation power, blood condition and antenna placement, and give proper ablative parameters to realise transmural ablation. In this paper, simplified 3D antenna-myocardium-blood finite element method models were built to simulate the endocardial ablation operation. Thermal distribution was obtained based on the coupled electromagnetic-thermal analysis. Under different antenna placement conditions and different microwave power inputs within 60 s, the lesion dimensions (maximum depth, maximum width) of the ablation zones were analysed. The ablation width and depth increased with the ablation time. The increase rate significantly slowed down after 10 s. The maximum temperature was located in 1 mm under the antenna tip when perpendicular to the endocardium, while 1.5 mm away from the antenna axis and 26 mm along the antenna (with antenna length about 30 mm) in the myocardium when parallel to the endocardium. The maximum temperature in the ablated area decreased and the effective ablation area (with the temperature raised to 50°C) shifted deeper into the myocardium due to the blood cooling. The research validated that the microwave antenna can provide continuous long and linear lesions for the treatment of atrial fibrillation. The dimensions of the created lesion widths were all larger than those of the depths. It is easy for the microwave antenna to produce transmural lesions for an atrial wall thickness of 2-6 mm by adjusting the applied power and ablation time.

  4. Femtosecond laser lithotripsy: feasibility and ablation mechanism.

    PubMed

    Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E

    2010-01-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  5. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Air breathing equipment. 154.1852 Section 154.1852 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing...

  6. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing tube support. 868.5280 Section 868.5280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a...

  7. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing tube support. 868.5280 Section 868.5280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a...

  8. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthesia breathing circuit. 868.5240 Section 868.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a...

  9. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a...

  10. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a...

  11. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a...

  12. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a...

  13. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing gas mixer. 868.5330 Section 868.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...

  14. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthesia breathing circuit. 868.5240 Section 868.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a...

  15. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing tube support. 868.5280 Section 868.5280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a...

  16. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing gas mixer. 868.5330 Section 868.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...

  17. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  18. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  19. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  20. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  1. 2D shear-wave ultrasound elastography (SWE) evaluation of ablation zone following radiofrequency ablation of liver lesions: is it more accurate?

    PubMed Central

    Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H

    2016-01-01

    Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p < 0.001, and 0.856, p = 0.002, respectively) with those by gross pathological specimen, whereas both conventional ultrasound and SE underestimated the volume of the whole ablation zone. The SWV values of the central necrotic zone, lateral necrotic zone, transitional zone and unablated liver parenchyma were 7.54–8.03 m s−1, 5.13–5.28 m s−1, 3.31–3.53 m s−1 and 2.11–2.21 m s−1, respectively (p < 0.001 for all the comparisons). The SWV value for each ablation zone did not change significantly at different observation times within an hour after RFA

  2. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.

  3. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han-Oh, Sarah; Department of Radiation Oncology, University of Maryland Medical System, Baltimore, MD; Yi, Byong Yong

    2009-02-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lungmore » cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 {+-} 0.8 mm and 92% {+-} 5%, 1.9 {+-} 1.0 mm and 93% {+-} 6%, and 1.8 {+-} 0.7 mm and 92% {+-} 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking.« less

  4. Global microwave endometrial ablation for menorrhagia treatment

    NASA Astrophysics Data System (ADS)

    Fallahi, Hojjatollah; Å ebek, Jan; Frattura, Eric; Schenck, Jessica; Prakash, Punit

    2017-02-01

    Thermal ablation is a dominant therapeutic option for minimally invasive treatment of menorrhagia. Compared to other energy modalities for ablation, microwaves offer the advantages of conformal energy delivery to tissue within short times. The objective of endometrial ablation is to destroy the endometrial lining of the uterine cavity, with the clinical goal of achieving reduction in bleeding. Previous efforts have demonstrated clinical use of microwaves for endometrial ablation. A considerable shortcoming of most systems is that they achieve ablation of the target by translating the applicator in a point-to-point fashion. Consequently, treatment outcome may be highly dependent on physician skill. Global endometrial ablation (GEA) not only eliminates this operator dependence and simplifies the procedure but also facilitates shorter and more reliable treatments. The objective of our study was to investigate antenna structures and microwave energy delivery parameters to achieve GEA. Another objective was to investigate a method for automatic and reliable determination of treatment end-point. A 3D-coupled FEM electromagnetic and heat transfer model with temperature and frequency dependent material properties was implemented to characterize microwave GEA. The unique triangular geometry of the uterus where lateral narrow walls extend from the cervix to the fundus forming a wide base and access afforded through an endocervical approach limit the overall diameter of the final device. We investigated microwave antenna designs in a deployed state inside the uterus. The impact of ablation duration on treatment outcome was investigated. Prototype applicators were fabricated and experimentally evaluated in ex vivo tissue to verify the simulation results and demonstrate proof-of-concept.

  5. Guidance of aortic ablation using optical coherence tomography.

    PubMed

    Patel, Nirlep A; Li, Xingde; Stamper, Debra L; Fujimoto, James G; Brezinski, Mark E

    2003-04-01

    There is a significant need for an imaging modality that is capable of providing guidance for intravascular procedures, as current technologies suffer from significant limitations. In particular, laser ablation of in-stent restenosis, revascularization of chronic total occlusions, and pulmonary vein ablation could benefit from guidance. Optical coherence tomography (OCT), a recently introduced technology, is similar to ultrasound except that it measures the back-reflection of infrared light instead of sound. This study examines the ability of OCT to guide vascular laser ablation. Aorta samples underwent laser ablation using an argon laser at varying power outputs and were monitored with OCT collecting images at 4 frames. Samples were compared to the corresponding histopathology. Arterial layers could be differentiated in the images sequences. This allowed correlation of changes in the OCT image with power and duration in addition to histopathology. OCT provides real-time guidance of arterial ablation. At 4 frames, OCT was successfully able to show the microstructural changes in the vessel wall during laser ablation. Since current ablation procedures often injure surrounding tissue, the ability to minimize collateral damage to the adjoining tissue represents a useful advantage of this system. This study suggests a possible role for OCT in the guidance of intravascular procedures.

  6. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  7. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  8. Syllable-Related Breathing in Infants in the Second Year of Life

    ERIC Educational Resources Information Center

    Parham, Douglas F.; Buder, Eugene H.; Oller, D. Kimbrough; Boliek, Carol A.

    2011-01-01

    Purpose: This study explored whether breathing behaviors of infants within the 2nd year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Method: Vocalizations and breathing kinematics of 9 infants between 53 and 90 weeks of age were recorded. A strict selection…

  9. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... taken at the connection point to the distribution system— (1) Every 6 months; and (2) After every repair or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked before... commencement of diving operations, at the umbilical or underwater breathing apparatus connection point for the...

  10. Breathing efficiency during inspiratory threshold loading in patients with chronic obstructive pulmonary disease.

    PubMed

    Baarends, E M; Schols, A M; Nusmeier, C M; van der Grinten, C P; Wouters, E F

    1998-05-01

    Patients with chronic obstructive pulmonary disease (COPD) demonstrate an increased oxygen cost of breathing. It is as yet unclear whether this is related to a decreased breathing efficiency. The aim of the present study was to compare breathing efficiency in 16 patients with COPD (11 men, five women) and 16 healthy elderly subjects (seven men, nine women), and to investigate a possible relationship between breathing efficiency and resting energy expenditure (REE). REE was measured using a ventilated hood system. Breathing efficiency was assessed by measuring oxygen consumption (V'O2), mean inspiratory mouth pressure (MIP) and flow during breathing at rest and subsequently during breathing against an inspiratory threshold (40% of maximal inspiratory pressure). During loaded breathing there was a significant increase in V'O2, MIP, and external work of breathing compared with unloaded breathing in both groups. As intended, ventilation did not increase significantly during the breathing efficiency test in the patients with COPD. The breathing efficiency (median, range) of the patients with COPD was similar (3.7%, 1.4-8.7%) to that of the healthy elderly subjects (3.2%, 1.7-8.3%). Breathing efficiency was not correlated with REE in either group. In the present study, in which dynamic hyperinflation was probably prevented, no difference in breathing efficiency was found between healthy elderly subjects and COPD patients when breathing against an external inspiratory threshold. Furthermore, breathing efficiency was not related to REE in both groups.

  11. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  12. Amalgam ablation with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-04-01

    Any laser that will be used by dentist to replace the dental drill (handpiece) must remove dental hard tissues safely. These lasers must also have the ability to ablate the restorative dental materials which are present in the teeth being treated. Prior to any laser being used to treat humans a thorough knowledge of the effects of the laser treatment on dental materials must be understood. Cores of dental amalgam were created and sliced into thin wafers for this experiment. Ablation efficiency and thermal changes were evaluated with and without water. It appears as if the Er:YAG laser can effectively ablate amalgam dental material with and without water. The water prevents the temperature from increasing much above baseline and does not reduce efficiency of ablation.

  13. Sleep-disordered breathing in epilepsy: epidemiology, mechanisms, and treatment.

    PubMed

    Sivathamboo, Shobi; Perucca, Piero; Velakoulis, Dennis; Jones, Nigel C; Goldin, Jeremy; Kwan, Patrick; O'Brien, Terence J

    2018-04-01

    Epilepsy is a group of neurological conditions in which there is a pathological and enduring predisposition to generate recurrent seizures. Evidence over the last few decades suggests that epilepsy may be associated with increased sleep-disordered breathing, which may contribute towards sleep fragmentation, daytime somnolence, reduced seizure control, and cardiovascular-related morbidity and mortality. Chronic sleep-disordered breathing can result in loss of gray matter and cause deficits to memory and global cognitive function. Sleep-disordered breathing is a novel and independent predictor of sudden cardiac death and, as such, may be involved in the mechanisms leading to sudden unexpected death in epilepsy. Despite this, the long-term consequences of sleep-disordered breathing in epilepsy remain unknown, and there are no guidelines for screening or treating this population. There is currently insufficient evidence to indicate continuous positive airway pressure (CPAP) for the primary or secondary prevention of cardiovascular disease, and recent evidence has failed to show any reduction of fatal or nonfatal cardiovascular endpoints. Treatment of sleep-disordered breathing may potentially improve seizure control, daytime somnolence, and neurocognitive outcomes, but few studies have examined this relationship. In this review, we examine sleep-disordered breathing in epilepsy, and discuss the potential effect of epilepsy treatments. We consider the role of CPAP and other interventions for sleep-disordered breathing and discuss their implications for epilepsy management.

  14. Biophysics and clinical utility of irrigated-tip radiofrequency catheter ablation.

    PubMed

    Houmsse, Mahmoud; Daoud, Emile G

    2012-01-01

    Catheter ablation by radiofrequency (RF) energy has successfully eliminated cardiac tachyarrhythmias. RF ablation lesions are created by thermal energy. Electrode catheters with 4-mm-tips have been adequate to ablate arrhythmias located near the endocardium; however, the 4-mm-tip electrode does not readily ablate deeper tachyarrhythmia substrate. With 8- and 10-mm-tip RF electrodes, ablation lesions were larger; yet, these catheters are associated with increased risk for coagulum, char and thrombus formation, as well as myocardial steam rupture. Cooled-tip catheter technology was designed to cool the electrode tip, prevent excessive temperatures at the electrode tip-tissue interface, and thus allow continued delivery of RF current into the surrounding tissue. This ablation system creates larger and deeper ablation lesions and minimizes steam pops and thrombus formation. The purpose of this article is to review cooled-tip RF ablation biophysics and outcomes of clinical studies as well as to discuss future technological improvements.

  15. Pulsed laser ablation of IC packages for device failure analyses

    NASA Astrophysics Data System (ADS)

    Hong, Ming Hui; Mai, ZhiHong; Chen, G. X.; Thiam, Thomas; Song, Wen D.; Lu, Yongfeng; Soh, Chye E.; Chong, Tow Chong

    2002-06-01

    Pulsed laser ablation of mold compounds for IC packaging in air and with steam assistance is investigated. It is applied to decap IC packages and expose computer CPU dies for the device failure analyses. Compared with chemical decapping, the laser ablation has advantages of being fast speed, non- contact and dry processing. Laser ablation with the steam assistance results in higher ablation rate and wider ablated crater with much smoother surface morphology. It implies that the steam assisted laser ablation can achieve a faster and better quality laser processing. Audible acoustic wave and plasma optical signal diagnostics are also carried out to have a better understanding of the mechanisms behind. Light wavelength and laser fluence applied in the decapping are two important parameters. The 532 nm Nd:YAG laser decapping at a low laser fluence can achieve a large decapping area with a fine ablation profile. IC packages decapped by the laser ablation show good quality for the device failure analyses.

  16. Catheter Ablation versus Thoracoscopic Surgical Ablation in Long Standing Persistent Atrial Fibrillation (CASA-AF): study protocol for a randomised controlled trial.

    PubMed

    Khan, Habib Rehman; Kralj-Hans, Ines; Haldar, Shouvik; Bahrami, Toufan; Clague, Jonathan; De Souza, Anthony; Francis, Darrel; Hussain, Wajid; Jarman, Julian; Jones, David Gareth; Mediratta, Neeraj; Mohiaddin, Raad; Salukhe, Tushar; Jones, Simon; Lord, Joanne; Murphy, Caroline; Kelly, Joanna; Markides, Vias; Gupta, Dhiraj; Wong, Tom

    2018-02-20

    Atrial fibrillation is the commonest arrhythmia which raises the risk of heart failure, thromboembolic stroke, morbidity and death. Pharmacological treatments of this condition are focused on heart rate control, rhythm control and reduction in risk of stroke. Selective ablation of cardiac tissues resulting in isolation of areas causing atrial fibrillation is another treatment strategy which can be delivered by two minimally invasive interventions: percutaneous catheter ablation and thoracoscopic surgical ablation. The main purpose of this trial is to compare the effectiveness and safety of these two interventions. Catheter Ablation versus Thoracoscopic Surgical Ablation in Long Standing Persistent Atrial Fibrillation (CASA-AF) is a prospective, multi-centre, randomised controlled trial within three NHS tertiary cardiovascular centres specialising in treatment of atrial fibrillation. Eligible adults (n = 120) with symptomatic, long-standing, persistent atrial fibrillation will be randomly allocated to either catheter ablation or thoracoscopic ablation in a 1:1 ratio. Pre-determined lesion sets will be delivered in each treatment arm with confirmation of appropriate conduction block. All patients will have an implantable loop recorder (ILR) inserted subcutaneously immediately following ablation to enable continuous heart rhythm monitoring for at least 12 months. The devices will be programmed to detect episodes of atrial fibrillation and atrial tachycardia ≥ 30 s in duration. The patients will be followed for 12 months, completing appropriate clinical assessments and questionnaires every 3 months. The ILR data will be wirelessly transmitted daily and evaluated every month for the duration of the follow-up. The primary endpoint in the study is freedom from atrial fibrillation and atrial tachycardia at the end of the follow-up period. The CASA-AF Trial is a National Institute for Health Research-funded study that will provide first-class evidence on the

  17. Microwave ablation devices for interventional oncology.

    PubMed

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  18. Use of bipolar radiofrequency catheter ablation in treatment of cardiac arrhythmias.

    PubMed

    Soucek, Filip; Starek, Zdenek

    2018-05-23

    Background Arrhythmia management is a complex process involving both pharmacological and non-pharmacological approaches. Radiofrequency ablation is the pillar of non-pharmacological arrhythmia treatment. Unipolar ablation is considered to be the gold standard in the treatment of the majority of arrhythmias; however, its efficacy is limited to specific cases. In particular, the creation of deep or transmural lesions to eliminate intramurally originating arrhythmias remains inadequate. Bipolar ablation is proposed as an alternative to overcome unipolar ablation boundaries. Results Despite promising results gained from in vitro and animal studies showing that bipolar ablation is superior in creating transmural lesions, the use of bipolar ablation in daily clinical practice is limited. Several studies have been published showing that bipolar ablation is effective in the treatment of clinical arrhythmias after failed unipolar ablation, however there is inconsistency regarding safety of bipolar ablation within the available research papers. According to research evidence the most common indications for bipolar ablation use are ventricular originating rhythmic disorders in patients with structural heart disease resistant to standard radiofrequency ablation. Conclusions To allow wider clinical application the efficiency and safety of bipolar ablation need to be verified in future studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A chlorate candle/lithium hydroxide personal breathing apparatus

    NASA Technical Reports Server (NTRS)

    Martin, F. E.

    1972-01-01

    A portable coal mine rescue and survival equipment is reported that consists of a chlorate candle with a lithium hydroxide carbon-dioxide absorbent for oxygen generation, a breathing bag and tubing to conduct breathing to and from the man. A plastic hood incorporating a mouth piece for communication provides also eye protection and prevents inhalation through the nose. Manned testing of a prototype system demonstrated the feasibility of this closed circuit no-maintenance breathing apparatus that provides for good voice communication.

  20. Modelling ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Rethfeld, Baerbel; Ivanov, Dmitriy S.; E Garcia, Martin; Anisimov, Sergei I.

    2017-05-01

    This review is devoted to the study of ultrafast laser ablation of solids and liquids. The ablation of condensed matter under exposure to subpicosecond laser pulses has a number of peculiar properties which distinguish this process from ablation induced by nanosecond and longer laser pulses. The process of ultrafast ablation includes light absorption by electrons in the skin layer, energy transfer from the skin layer to target interior by nonlinear electronic heat conduction, relaxation of the electron and ion temperatures, ultrafast melting, hydrodynamic expansion of heated matter accompanied by the formation of metastable states and subsequent formation of breaks in condensed matter. In case of ultrashort laser excitation, these processes are temporally separated and can thus be studied separately. As for energy absorption, we consider peculiarities of the case of metal irradiation in contrast to dielectrics and semiconductors. We discuss the energy dissipation processes of electronic thermal wave and lattice heating. Different types of phase transitions after ultrashort laser pulse irradiation as melting, vaporization or transitions to warm dense matter are discussed. Also nonthermal phase transitions, directly caused by the electronic excitation before considerable lattice heating, are considered. The final material removal occurs from the physical point of view as expansion of heated matter; here we discuss approaches of hydrodynamics, as well as molecular dynamic simulations directly following the atomic movements. Hybrid approaches tracing the dynamics of excited electrons, energy dissipation and structural dynamics in a combined simulation are reviewed as well.

  1. Applications of breath gas analysis in medicine

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Poupart, Guy; Telser, Stefan; Ledochowski, Maximilian; Schmid, Alex; Mechtcheriakov, Sergei

    2004-12-01

    Volatile organic compounds (VOCs) in exhaled breath gas provide valuable information about the subjects' physiological and pathophysiological condition. Proton-transfer-reaction mass spectrometry (PTR-MS) allows rapid and online measurements of these substances. We present results of three studies illustrating the potential of breath gas analysis by PTR-MS in various contexts: long-time online monitoring of VOCs in sleeping subjects suggests that VOC profiles are related to sleep stages. Analysis of VOC concentrations in the breath of carbohydrate malabsorbers emphasizes the role played by bacteria in the gut. Finally, we demonstrate the large intra- and intersubject concentration variability of VOCs by considering one particular mass.

  2. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... valves in an open position and reducing mechanical dead space and resistance in the breathing circuit. (b...

  3. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... valves in an open position and reducing mechanical dead space and resistance in the breathing circuit. (b...

  4. A cost-utility analysis of ablative therapy for Barrett’s esophagus

    PubMed Central

    Inadomi, John M.; Somsouk, Ma; Madanick, Ryan D.; Thomas, Jennifer P.; Shaheen, Nicholas J.

    2009-01-01

    Background & Aims Recommendations for patients with Barrett’s esophagus (BE) include endoscopic surveillance with esophagectomy for early-stage cancer, although new technologies to ablate dysplasia and metaplasia are available. This study compares the cost-utility of ablation with that of endoscopic surveillance strategies. Methods A decision analysis model was created to examine a population of patients with BE (mean age 50), with separate analyses for patients with no dysplasia, low-grade dysplasia (LGD), or high-grade dysplasia (HGD). Strategies compared were: no endoscopic surveillance; endoscopic surveillance with ablation for incident dysplasia; immediate ablation followed by endoscopic surveillance in all patients or limited to patients in whom metaplasia persisted, and esophagectomy. Ablation modalities modeled included radiofrequency, argon plasma coagulation, multipolar electrocoagulation and photodynamic therapy. Results Endoscopic ablation for patients with HGD could increase life expectancy by 3 quality-adjusted years at an incremental cost of < $6,000, compared with no intervention. Patients with LGD or no dysplasia can also be optimally managed with ablation, but continued surveillance after eradication of metaplasia is expensive. If ablation permanently eradicates at least 28% of LGD or 40% of non-dysplastic metaplasias, ablation would be preferred to surveillance. Conclusions Endoscopic ablation could be the preferred strategy for managing patients with BE with HGD. Ablation might also be preferred in subjects with LGD or no dysplasia, but the cost-effectiveness depends on the long-term effectiveness of ablation and whether surveillance endoscopy can be discontinued following successful ablation. As further post-ablation data become available, the optimal management strategy will be clarified. PMID:19272389

  5. Pacemaker implantation after catheter ablation for atrial fibrillation.

    PubMed

    Deshmukh, Abhishek J; Yao, Xiaoxi; Schilz, Stephanie; Van Houten, Holly; Sangaralingham, Lindsey R; Asirvatham, Samuel J; Friedman, Paul A; Packer, Douglas L; Noseworthy, Peter A

    2016-01-01

    Sinus node dysfunction requiring pacemaker implantation is commonly associated with atrial fibrillation (AF), but may not be clinically apparent until restoration of sinus rhythm with ablation or cardioversion. We sought to determine frequency, time course, and predictors for pacemaker implantation after catheter ablation, and to compare the overall rates to a matched cardioversion cohort. We conducted a retrospective analysis using a large US commercial insurance database and identified 12,158 AF patients who underwent catheter ablation between January 1, 2005 and December 31, 2012. Over an average of 2.4 years of follow-up, 5.6 % of the patients underwent pacemaker implantation. Using the Cox proportional hazards models, we found that risk of risks of pacemaker implantation was associated with older age (50-64 and ≥65 versus <50 years), female gender, higher CHADS2 score (≥2 and 1 versus 0), higher Charlson index (≥2 versus 0-1), certain baseline comorbidities (conduction disorder, coronary atherosclerosis, and congestive heart failure), and the year of ablation. There was no significant difference in the risk of pacemaker implantation between ablation patients and propensity score (PS)-matched cardioversion groups (3.5 versus. 4.1 % at 1 year and 8.8 versus 8.3 % at 5 years). Overall, pacemaker implantation occurs in about 1/28 patients within 1 year of catheter ablation. The overall implantation rate decreased between 2005 and 2012. Furthermore, the risk after ablation is similar to cardioversion, suggesting that patients require pacing due to a common underlying electrophysiologic substrate, rather than the ablation itself.

  6. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  7. In vivo evaluation of virtual electrode mapping and ablation utilizing a direct endocardial visualization ablation catheter.

    PubMed

    Chik, William W B; Barry, M A; Malchano, Zach; Wylie, Bryan; Pouliopoulos, Jim; Huang, Kaimin; Lu, Juntang; Thavapalachandran, Sujitha; Robinson, David; Saadat, Vahid; Thomas, Stuart P; Ross, David L; Kovoor, Pramesh; Thiagalingam, Aravinda

    2012-01-01

    Radiofrequency (RF) ablation utilizing direct endocardial visualization (DEV) requires a "virtual electrode" to deliver RF energy while preserving visualization. This study aimed to: (1) examine the virtual electrode RF ablation efficacy; (2) determine the optimal power and duration settings; and (3) evaluate the utility of virtual electrode unipolar electrograms. The DEV catheter lesions were compared to lesions formed using a 3.5 mm open irrigated tip catheter within the right atria of 12 sheep. Generator power settings for DEV were titrated from 12W, 14W and 16W for 20, 30 and 40 seconds duration with 25 mL/min saline irrigation. Standard irrigated tip catheter settings of 30W, 50°C for 30 seconds and 30 mL/min were used. The DEV lesions were significantly greater in surface area and both major and minor axes compared to irrigated tip lesions (surface area 19.43 ± 9.09 vs 10.88 ± 4.72 mm, P<0.01) with no difference in transmurality (93/94 vs 46/47) or depth (1.86 ± 0.75 vs 1.85 ± 0.57 mm). Absolute electrogram amplitude reduction was greater for DEV lesions (1.89 ± 1.31 vs 1.49 ± 0.78 mV, P = 0.04), but no difference in percentage reduction. Pre-ablation pacing thresholds were not different between DEV (0.79 ± 0.36 mA) and irrigated tip (0.73 ± 0.25 mA) lesions. There were no complications noted during ablation with either catheter. Virtual electrode ablation consistently created wider lesions at lower power compared to irrigated tip ablation. Virtual electrode electrograms showed a comparable pacing and sensing efficacy in detecting local myocardial electrophysiological changes. © 2011 Wiley Periodicals, Inc.

  8. Control of gill ventilation and air-breathing in the bowfin amia calva

    PubMed

    Hedrick; Jones

    1999-01-01

    The purpose of this study was to investigate the roles of branchial and gas bladder reflex pathways in the control of gill ventilation and air-breathing in the bowfin Amia calva. We have previously determined that bowfin use two distinct air-breathing mechanisms to ventilate the gas bladder: type I air breaths are characterized by exhalation followed by inhalation, are stimulated by aquatic or aerial hypoxia and appear to regulate O2 gas exchange; type II air breaths are characterized by inhalation alone and possibly regulate gas bladder volume and buoyancy. In the present study, we test the hypotheses (1) that gill ventilation and type I air breaths are controlled by O2-sensitive chemoreceptors located in the branchial region, and (2) that type II air breaths are controlled by gas bladder mechanosensitive stretch receptors. Hypothesis 1 was tested by examining the effects of partial or complete branchial denervation of cranial nerves IX and X to the gill arches on gill ventilation frequency (fg) and the proportion of type I air breaths during normoxia and hypoxia; hypothesis II was tested by gas bladder inflation and deflation. Following complete bilateral branchial denervation, fg did not differ from that of sham-operated control fish; in addition, fg was not significantly affected by aquatic hypoxia in sham-operated or denervated fish. In sham-operated fish, aquatic hypoxia significantly increased overall air-breathing frequency (fab) and the percentage of type I breaths. In fish with complete IX-X branchial denervation, fab was also significantly increased during aquatic hypoxia, but there were equal percentages of type I and type II air breaths. Branchial denervation did not affect the frequency of type I air breaths during aquatic hypoxia. Gas bladder deflation via an indwelling catheter resulted in type II breaths almost exclusively; furthermore, fab was significantly correlated with the volume removed from the gas bladder, suggesting a volume

  9. The physiological effects of slow breathing in the healthy human

    PubMed Central

    Russo, Marc A.; Santarelli, Danielle M.; O’Rourke, Dean

    2017-01-01

    Slow breathing practices have been adopted in the modern world across the globe due to their claimed health benefits. This has piqued the interest of researchers and clinicians who have initiated investigations into the physiological (and psychological) effects of slow breathing techniques and attempted to uncover the underlying mechanisms. The aim of this article is to provide a comprehensive overview of normal respiratory physiology and the documented physiological effects of slow breathing techniques according to research in healthy humans. The review focuses on the physiological implications to the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems, with particular focus on diaphragm activity, ventilation efficiency, haemodynamics, heart rate variability, cardiorespiratory coupling, respiratory sinus arrhythmia and sympathovagal balance. The review ends with a brief discussion of the potential clinical implications of slow breathing techniques. This is a topic that warrants further research, understanding and discussion. Key points Slow breathing practices have gained popularity in the western world due to their claimed health benefits, yet remain relatively untouched by the medical community. Investigations into the physiological effects of slow breathing have uncovered significant effects on the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems. Key findings include effects on respiratory muscle activity, ventilation efficiency, chemoreflex and baroreflex sensitivity, heart rate variability, blood flow dynamics, respiratory sinus arrhythmia, cardiorespiratory coupling, and sympathovagal balance. There appears to be potential for use of controlled slow breathing techniques as a means of optimising physiological parameters that appear to be associated with health and longevity, and that may extend to disease states; however, there is a dire need for further research into the area. Educational aims To provide

  10. Design calculations for NIF convergent ablator experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less

  11. Left Septal Slow Pathway Ablation for Atrioventricular Nodal Reentrant Tachycardia.

    PubMed

    Katritsis, Demosthenes G; John, Roy M; Latchamsetty, Rakesh; Muthalaly, Rahul G; Zografos, Theodoros; Katritsis, George D; Stevenson, William G; Efimov, Igor R; Morady, Fred

    2018-03-01

    Immunohistochemistry studies suggest that the anatomic substrate of the slow pathway in atrioventricular nodal reentrant tachycardia (AVNRT) is the left inferior nodal extension. We hypothesized that slow pathway ablation from the left septum is an effective alternative to right-sided ablation. We analyzed our databases of AVNRT in search of cases that had used slow pathway ablation from the left septum because of failure of right septal ablation, and then prospectively subjected consenting patients to a left septal-only procedure. Of 1342 patients subjected to right septal slow pathway ablation for AVNRT, 15 patients, 11 with typical and 4 with atypical AVNRT, had a left septal approach after unsuccessful right-sided ablation (R+L group). Eleven patients were subjected to a left septal-only approach for slow pathway ablation without a previous right septal attempt (L group). Fluoroscopy times in the R+L and L groups were 30.5 (21.0-44.0) and 20.0 (17.0-25.0) minutes, respectively ( P =0.061), and radiofrequency current delivery times were 11.3 (5.0-19.1) and 10.0 (7.0-12.0) minutes, respectively ( P =0.897). There was no need for additional ablation lesions at other anatomic sites in either group, and no cases of atrioventricular block were encountered. Recurrence rates of the arrhythmia for the R+L and L groups were 6.7% and 0%, respectively, in the 3 months after ablation ( P =1.000). Left septal ablation at the anatomic site of the left inferior nodal extension is an alternative for ablation of both typical and atypical AVNRT when ablation at the right posterior septum is ineffective. © 2018 American Heart Association, Inc.

  12. Improving the Diagnostic Specificity of CT for Early Detection of Lung Cancer: 4D CT-Based Pulmonary Nodule Elastometry

    DTIC Science & Technology

    2015-10-01

    malignant PNs treated with stereotactic ablative radiotherapy ( SABR ) with those of the lung. Methods: We analyzed breath-hold images of 30...patients with malignant PNs who underwent SABR in our department. A parametric nonrigid transformation model based on multi-level B-spline guided by Sum of...and 50 of 4D CT and deep inhale and natural exhale of breath-hold CT images of 30 MPN treated with stereotactic ablative radiotherapy ( SABR ). The

  13. Are questionnaires reliable in diagnosing sleep-disordered breathing in university students?

    PubMed

    Migacz, E; Wichniak, A; Kukwa, W

    2017-11-01

    This study aimed to screen young adults for sleep-disordered breathing, and compare those with high and low risk for sleep-disordered breathing. A survey based on the Berlin questionnaire was completed by 330 university students, and the results were used to divide them into sleep-disordered breathing positive and sleep-disordered breathing negative groups. A representative group was selected from each cohort (positive group, n = 16; negative group, n = 21), and assessed with sleep study, ENT examination, the Nose Obstruction Symptom Evaluation scale, and the Epworth Sleepiness Scale. Sleep-disordered breathing prevalence was 11.2 per cent in the questionnaire and 24 per cent according to the sleep study. The sleep-disordered breathing positive and negative groups significantly differed in terms of coexisting sleep-disordered breathing symptoms. There were no significant differences between the positive and negative groups with regard to sleep study parameters (apnoea/hypopnoea index, respiratory disturbance index, oxygen desaturation index, snoring intensity) and the Epworth Sleepiness Scale. Subjective and objective diagnostic tools revealed that sleep-disordered breathing is a common problem among young adults.

  14. Cartilage ablation studies using mid-IR free electron laser

    NASA Astrophysics Data System (ADS)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  15. Factors affecting tumor ablation during high intensity focused ultrasound treatment.

    PubMed

    Hassanuddin, Aizan; Choi, Jun-Ho; Seo, Dong-Wan; Ryu, Choong Heon; Kim, Su-Hui; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan

    2014-07-01

    High intensity focused ultrasound (HIFU) utilizes a targeted extracorporeal focused ultrasound beam to ablate neoplastic pancreatic tissue. We used an in vitro model to examine the effects of bone, metallic stents, plastic stents, metal plates, and cyst-like lesions on HIFU treatment. HIFU was delivered to the phantom models implanted with foreign bodies, and the location, shape, and size of the ablated zones were evaluated. Bone and metallic plates reflected the ultrasound beam, shifting the ablation zone from the focal zone to the prefocal area. In the phantoms containing metal stent, plastic stent, and cyst, most of the ablative energy was reflected to the prefocal area by the surface, with the remainder penetrating through the phantom. The area of the ablated margins was significantly larger in size and volume than the intended focal ablation zone. During HIFU therapy, artificial or anatomical barriers could affect the direction of the ultrasound beams, shifting the ablation zone from the focal area to a prefocal site with a larger than expected ablation zone. These factors should be considered prior to HIFU treatment for pancreatic tumors because they could limit ablation success, in addition to causing complications.

  16. Active cycle of breathing technique for cystic fibrosis.

    PubMed

    Mckoy, Naomi A; Wilson, Lisa M; Saldanha, Ian J; Odelola, Olaide A; Robinson, Karen A

    2016-07-05

    People with cystic fibrosis experience chronic airway infections as a result of mucus build up within the lungs. Repeated infections often cause lung damage and disease. Airway clearance therapies aim to improve mucus clearance, increase sputum production, and improve airway function. The active cycle of breathing technique (also known as ACBT) is an airway clearance method that uses a cycle of techniques to loosen airway secretions including breathing control, thoracic expansion exercises, and the forced expiration technique. This is an update of a previously published review. To compare the clinical effectiveness of the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 25 April 2016. Randomised or quasi-randomised controlled clinical studies, including cross-over studies, comparing the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. Two review authors independently screened each article, abstracted data and assessed the risk of bias of each study. Our search identified 62 studies, of which 19 (440 participants) met the inclusion criteria. Five randomised controlled studies (192 participants) were included in the meta-analysis; three were of cross-over design. The 14 remaining studies were cross-over studies with inadequate reports for complete assessment. The study size ranged from seven to 65 participants. The age of the participants ranged from six to 63 years (mean age 22.33 years). In 13 studies, follow up lasted a single day. However, there were two long-term randomised controlled studies with follow up of one to three years. Most of the studies did not report on key quality items, and therefore, have an unclear risk of

  17. Velocity navigator for motion compensated thermometry.

    PubMed

    Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael

    2012-02-01

    Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.

  18. Glue septal ablation: A promising alternative to alcohol septal ablation

    PubMed Central

    Aytemir, Kudret; Oto, Ali

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is defined as myocardial hypertrophy in the absence of another cardiac or systemic disease capable of producing the magnitude of present hypertrophy. In about 70% of patients with HCM, there is left ventricular outflow tract (LVOT) obstruction (LVOTO) and this is known as obstructive type of hypertrophic cardiomyopathy (HOCM). Cases refractory to medical treatment have had two options either surgical septal myectomy or alcohol septal ablation (ASA) to alleviate LVOT gradient. ASA may cause some life-threatening complications including conduction disturbances and complete heart block, hemodynamic compromise, ventricular arrhythmias, distant and massive myocardial necrosis. Glue septal ablation (GSA) is a promising technique for the treatment of HOCM. Glue seems to be superior to alcohol due to some intrinsic advantageous properties of glue such as immediate polymerization which prevents the leak into the left anterior descending coronary artery and it is particularly useful in patients with collaterals to the right coronary artery in whom alcohol ablation is contraindicated. In our experience, GSA is effective and also a safe technique without significant complications. GSA decreases LVOT gradient immediately after the procedure and this reduction persists during 12 months of follow-up. It improves New York Heart Association functional capacity and decrease interventricular septal wall thickness. Further studies are needed in order to assess the long-term efficacy and safety of this technique. PMID:27011786

  19. Sleep-Disordered Breathing and Mortality: A Prospective Cohort Study

    PubMed Central

    Punjabi, Naresh M.; Caffo, Brian S.; Goodwin, James L.; Gottlieb, Daniel J.; Newman, Anne B.; O'Connor, George T.; Rapoport, David M.; Redline, Susan; Resnick, Helaine E.; Robbins, John A.; Shahar, Eyal; Unruh, Mark L.; Samet, Jonathan M.

    2009-01-01

    Background Sleep-disordered breathing is a common condition associated with adverse health outcomes including hypertension and cardiovascular disease. The overall objective of this study was to determine whether sleep-disordered breathing and its sequelae of intermittent hypoxemia and recurrent arousals are associated with mortality in a community sample of adults aged 40 years or older. Methods and Findings We prospectively examined whether sleep-disordered breathing was associated with an increased risk of death from any cause in 6,441 men and women participating in the Sleep Heart Health Study. Sleep-disordered breathing was assessed with the apnea–hypopnea index (AHI) based on an in-home polysomnogram. Survival analysis and proportional hazards regression models were used to calculate hazard ratios for mortality after adjusting for age, sex, race, smoking status, body mass index, and prevalent medical conditions. The average follow-up period for the cohort was 8.2 y during which 1,047 participants (587 men and 460 women) died. Compared to those without sleep-disordered breathing (AHI: <5 events/h), the fully adjusted hazard ratios for all-cause mortality in those with mild (AHI: 5.0–14.9 events/h), moderate (AHI: 15.0–29.9 events/h), and severe (AHI: ≥30.0 events/h) sleep-disordered breathing were 0.93 (95% CI: 0.80–1.08), 1.17 (95% CI: 0.97–1.42), and 1.46 (95% CI: 1.14–1.86), respectively. Stratified analyses by sex and age showed that the increased risk of death associated with severe sleep-disordered breathing was statistically significant in men aged 40–70 y (hazard ratio: 2.09; 95% CI: 1.31–3.33). Measures of sleep-related intermittent hypoxemia, but not sleep fragmentation, were independently associated with all-cause mortality. Coronary artery disease–related mortality associated with sleep-disordered breathing showed a pattern of association similar to all-cause mortality. Conclusions Sleep-disordered breathing is associated with

  20. Catheter ablation of atrial fibrillation in patients with concomitant sinus bradycardia-Insights from the German Ablation Registry.

    PubMed

    Zylla, Maura M; Brachmann, Johannes; Lewalter, Thorsten; Hoffmann, Ellen; Kuck, Karl-Heinz; Andresen, Dietrich; Willems, Stephan; Hochadel, Matthias; Senges, Jochen; Katus, Hugo A; Thomas, Dierk

    2016-01-01

    This investigation addresses procedural characteristics of catheter ablation in patients with atrial fibrillation (AF) and sinus bradycardia. From the prospective, multi-center German Ablation Registry 1073 patients with sinus rhythm at the time of AF ablation were divided into two groups according to heart rate at start of procedure (A, <60 beats per minute (bpm), n=197; B, 60-99bpm, n=876). Acute procedural success was high (≥98%) and similar between groups. Procedure duration and energy application time were increased in group A (180min vs. 155min and 2561s vs. 1879s, respectively). Major complications were more frequent in group A (2.2% vs. 0.5%), and a greater proportion of these patients was discharged under antiarrhythmic medication (64% vs. 52%). Catheter ablation of AF with concomitant sinus bradycardia is associated with high procedural efficacy, longer procedure- and energy application durations, and a slightly elevated complication rate. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    PubMed Central

    Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu

    2011-01-01

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553

  2. Cooled radiofrequency ablation for bilateral greater occipital neuralgia.

    PubMed

    Vu, Tiffany; Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy.

  3. Cooled Radiofrequency Ablation for Bilateral Greater Occipital Neuralgia

    PubMed Central

    Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy. PMID:24716017

  4. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197.450 Breathing gas tests. The diving...

  5. Effects of hypercapnia and hypoxemia on fetal breathing after decortication.

    PubMed

    Ioffe, S; Jansen, A H; Chernick, V

    1986-09-01

    The effects of hypercapnia and hypoxemia on breathing movements were studied in 12 chronically decorticated fetal sheep, 127-140 days gestation. The fetal state of consciousness was defined in terms of activity of the lateral rectus and nuchal muscles. Arterial blood pressure was monitored. Fetal breathing was determined by integrated diaphragmatic electromyogram (EMG) and analyzed in terms of inspiratory time (TI), expiratory time (TE), electrical equivalent of tidal volume (EVT), breath interval (TT), duty cycle (TI/TT), mean inspiratory flow equivalent (EVT/TI), and instantaneous ventilation equivalent (EVT/TT). Fetal breathing occurred only during episodes of rapid-eye movements, and the response to hypercapnia consisted of an increase in EVT, TI, EVE, and EVT/TI and a decrease in the coefficient of variation of all measured parameters. Induction of hypoxia during episodes of spontaneous fetal breathing produced a decrease in the rate of breathing and an increase in EVT and TI with no change in the variability of all parameters studied. Since similar responses to hypercapnia and hypoxemia are seen in the intact fetus, we conclude that the cerebral cortex has no obvious effect on the chemical control of fetal breathing.

  6. Breathing Mode in Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Fujioka, K.; Henning, C.; Ludwig, P.; Bonitz, M.; Melzer, A.; Vitkalov, S.

    2007-11-01

    The breathing mode is a fundamental normal mode present in Coulomb systems, and may have utility in identifying particle charge and the Debye length of certain systems. The question remains whether this mode can be extended to strongly coupled Yukawa balls [1]. These systems are characterized by particles confined within a parabolic potential well and interacting through a shielded Coulomb potential [2,3]. The breathing modes for a variety of systems in 1, 2, and 3 dimensions are computed by solving the eigenvalue problem given by the dynamical (Hesse) matrix. These results are compared to theoretical investigations that assume a strict definition for a breathing mode within the system, and an analysis is made of the most fitting model to utilize in the study of particular systems of complex plasmas [1,4]. References [1] T.E. Sheridan, Phys. of Plasmas. 13, 022106 (2006)[2] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[3] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[4] C. Henning et al., submitted for publication

  7. Automated microwave ablation therapy planning with single and multiple entry points

    NASA Astrophysics Data System (ADS)

    Liu, Sheena X.; Dalal, Sandeep; Kruecker, Jochen

    2012-02-01

    Microwave ablation (MWA) has become a recommended treatment modality for interventional cancer treatment. Compared with radiofrequency ablation (RFA), MWA provides more rapid and larger-volume tissue heating. It allows simultaneous ablation from different entry points and allows users to change the ablation size by controlling the power/time parameters. Ablation planning systems have been proposed in the past, mainly addressing the needs for RFA procedures. Thus a planning system addressing MWA-specific parameters and workflows is highly desirable to help physicians achieve better microwave ablation results. In this paper, we design and implement an automated MWA planning system that provides precise probe locations for complete coverage of tumor and margin. We model the thermal ablation lesion as an ellipsoidal object with three known radii varying with the duration of the ablation and the power supplied to the probe. The search for the best ablation coverage can be seen as an iterative optimization problem. The ablation centers are steered toward the location which minimizes both un-ablated tumor tissue and the collateral damage caused to the healthy tissue. We assess the performance of our algorithm using simulated lesions with known "ground truth" optimal coverage. The Mean Localization Error (MLE) between the computed ablation center in 3D and the ground truth ablation center achieves 1.75mm (Standard deviation of the mean (STD): 0.69mm). The Mean Radial Error (MRE) which is estimated by comparing the computed ablation radii with the ground truth radii reaches 0.64mm (STD: 0.43mm). These preliminary results demonstrate the accuracy and robustness of the described planning algorithm.

  8. Outcome of breath tests in adult patients with suspected small intestinal bacterial overgrowth

    PubMed Central

    Mattsson, Johanna; Minaya, Maria Teresa; Monegro, Milka; Lebwohl, Benjamin; Lewis, Suzanne K.; Green, Peter HR; Stenberg, Reidun

    2017-01-01

    Aim: The aim was to investigate breath test outcomes in patients with suspected SIBO and indicative symptoms of SIBO, diagnosed by breath testing. Background: Breath testing is used to detect small intestinal bacterial overgrowth (SIBO) by measuring hydrogen and methane produced by intestinal bacteria. Methods: This retrospective cross sectional study included 311 patients with gastrointestinal symptoms who underwent the breath test for evaluation of SIBO at Celiac Disease Center at Columbia University, New York, in 2014-2015. The patients were divided into two groups based on the physician’s choice: lactulose breath test group (72%) and glucose breath test group (28%). Among them, 38% had a history of celiac disease or non-celiac gluten sensitivity. Results: In total, 46% had a positive breath test: 18% were positive for methane, 24 % positive for hydrogen and 4% positive for both gases (p=0.014). Also, 50% had a positive lactulose breath result and 37% had a positive glucose breath result (p=0.036). The most common symptom for performing the breath test was bloating and the only clinical symptom that significantly showed a positive glucose breath test was increased gas (p=0.028). Conclusion: Lactulose breath test was more often positive than glucose breath test. Positivity for hydrogen was more common than methane. Bloating was the most frequently perceived symptom of the patients undergoing the breath test but the only statistically significant clinical symptom for a positive glucose breath test was increased gas. Furthermore, the results showed that there was no significant association between positive breath test result and gender, age, non-celiac gluten sensitivity or celiac disease. PMID:29118931

  9. Use of CT Hounsfield unit density to identify ablated tumor after laparoscopic radiofrequency ablation of hepatic tumors.

    PubMed

    Berber, E; Foroutani, A; Garland, A M; Rogers, S J; Engle, K L; Ryan, T L; Siperstein, A E

    2000-09-01

    When attempting to interpret CT scans after radiofrequency thermal ablation (RFA) of liver tumors, it is sometimes difficult to distinguish ablated from viable tumor tissue. Identification of the two types of tissue is specially problematic for lesions that are hypodense before ablation. The aim of this study was to determine whether quantitative Hounsfield unit (HU) density measurements can be used to document the lack of tumor perfusion and thereby identify ablated tissue. Liver spiral CT scans of 13 patients with 51 lesions undergoing laparoscopic RFA for metastatic liver tumors within a 2-year time period were reviewed. HU density of the lesions as well as normal liver were measured pre- and postoperatively in each CT phase (noncontrast, arterial, portovenous). Statistical analyses were performed using Student's paired t-test and ANOVA. Normal liver parenchyma, which was used as a control, showed a similar increase with contrast injection in both pre- and postprocedure CT scans (56.4 +/- 2.4 vs 57.1 +/- 2.4 HU, respectively; p = 0.3). In contrast, ablated liver lesions showed a preablation increase of 45.7 +/- 3.4 HU but only a minimal postablation increase of 6.6 +/- 0.7 HU (p < 0.0001). This was true for highly vascular tumors (neuroendocrine) as well as hypovascular ones (adenocarcinoma). This is the first study to define quantitative radiological criteria using HU density for the evaluation of ablated tissues. A lack of increase in HU density with contrast injection indicates necrotic tissue, whereas perfused tissue shows an increase in HU density. This technique can be used in the evaluation of patients undergoing RFA.

  10. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.

    PubMed

    Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J

    2017-04-01

    For conventional needless injection, there still remain many unresolved issues such as the potential for cross-contamination, poor reliability of targeted delivery dose, and significantly painstaking procedures. As an alternative, the use of microjets generated with Er:YAG laser for delivering small doses with controlled penetration depths has been reported. In this study, a new system with two stages is evaluated for effective transdermal drug delivery. First, the skin is pre-ablated to eliminate the hard outer layer and second, laser-driven microjet penetrates the relatively weaker and freshly exposed epidermis. Each stage of operation shares a single Er:YAG laser that is suitable for skin ablation as well as for the generation of a microjet. In this study, pig skin is selected for quantification of the injection depth based on the two-stage procedure, namely pre-ablation and microjet injection. The three types of pre-ablation devised here consists of bulk ablation, fractional ablation, and fractional-rotational ablation. The number of laser pulses are 12, 18, and 24 for each ablation type. For fractional-rotational ablation, the fractional beams are rotated by 11.25° at each pulse. The drug permeation in the skin is evaluated using tissue marking dyes. The depth of penetration is quantified by a cross sectional view of the single spot injections. Multi-spot injections are also carried out to control the dose and spread of the drug. The benefits of a pre-ablation procedure prior to the actual microjet injection to the penetration is verified. The four possible combinations of injection are (a) microjet only; (b) bulk ablation and microjet injection; (c) fractional ablation and microjet injection; and (d) fractional-rotational ablation and microjet injection. Accordingly, the total depth increases with injection time for all cases. In particular, the total depth of penetration attained via fractional pre-ablation increased by 8 ∼ 11% and that of fractional

  11. Surgical ablation of atrial fibrillation during mitral-valve surgery.

    PubMed

    Gillinov, A Marc; Gelijns, Annetine C; Parides, Michael K; DeRose, Joseph J; Moskowitz, Alan J; Voisine, Pierre; Ailawadi, Gorav; Bouchard, Denis; Smith, Peter K; Mack, Michael J; Acker, Michael A; Mullen, John C; Rose, Eric A; Chang, Helena L; Puskas, John D; Couderc, Jean-Philippe; Gardner, Timothy J; Varghese, Robin; Horvath, Keith A; Bolling, Steven F; Michler, Robert E; Geller, Nancy L; Ascheim, Deborah D; Miller, Marissa A; Bagiella, Emilia; Moquete, Ellen G; Williams, Paula; Taddei-Peters, Wendy C; O'Gara, Patrick T; Blackstone, Eugene H; Argenziano, Michael

    2015-04-09

    Among patients undergoing mitral-valve surgery, 30 to 50% present with atrial fibrillation, which is associated with reduced survival and increased risk of stroke. Surgical ablation of atrial fibrillation has been widely adopted, but evidence regarding its safety and effectiveness is limited. We randomly assigned 260 patients with persistent or long-standing persistent atrial fibrillation who required mitral-valve surgery to undergo either surgical ablation (ablation group) or no ablation (control group) during the mitral-valve operation. Patients in the ablation group underwent further randomization to pulmonary-vein isolation or a biatrial maze procedure. All patients underwent closure of the left atrial appendage. The primary end point was freedom from atrial fibrillation at both 6 months and 12 months (as assessed by means of 3-day Holter monitoring). More patients in the ablation group than in the control group were free from atrial fibrillation at both 6 and 12 months (63.2% vs. 29.4%, P<0.001). There was no significant difference in the rate of freedom from atrial fibrillation between patients who underwent pulmonary-vein isolation and those who underwent the biatrial maze procedure (61.0% and 66.0%, respectively; P=0.60). One-year mortality was 6.8% in the ablation group and 8.7% in the control group (hazard ratio with ablation, 0.76; 95% confidence interval, 0.32 to 1.84; P=0.55). Ablation was associated with more implantations of a permanent pacemaker than was no ablation (21.5 vs. 8.1 per 100 patient-years, P=0.01). There were no significant between-group differences in major cardiac or cerebrovascular adverse events, overall serious adverse events, or hospital readmissions. The addition of atrial fibrillation ablation to mitral-valve surgery significantly increased the rate of freedom from atrial fibrillation at 1 year among patients with persistent or long-standing persistent atrial fibrillation, but the risk of implantation of a permanent pacemaker

  12. Measurement of intrahepatic pressure during radiofrequency ablation in porcine liver.

    PubMed

    Kawamoto, Chiaki; Yamauchi, Atsushi; Baba, Yoko; Kaneko, Keiko; Yakabi, Koji

    2010-04-01

    To identify the most effective procedures to avoid increased intrahepatic pressure during radiofrequency ablation, we evaluated different ablation methods. Laparotomy was performed in 19 pigs. Intrahepatic pressure was monitored using an invasive blood pressure monitor. Radiofrequency ablation was performed as follows: single-step standard ablation; single-step at 30 W; single-step at 70 W; 4-step at 30 W; 8-step at 30 W; 8-step at 70 W; and cooled-tip. The array was fully deployed in single-step methods. In the multi-step methods, the array was gradually deployed in four or eight steps. With the cooled-tip, ablation was performed by increasing output by 10 W/min, starting at 40 W. Intrahepatic pressure was as follows: single-step standard ablation, 154.5 +/- 30.9 mmHg; single-step at 30 W, 34.2 +/- 20.0 mmHg; single-step at 70 W, 46.7 +/- 24.3 mmHg; 4-step at 30 W, 42.3 +/- 17.9 mmHg; 8-step at 30 W, 24.1 +/- 18.2 mmHg; 8-step at 70 W, 47.5 +/- 31.5 mmHg; and cooled-tip, 114.5 +/- 16.6 mmHg. The radiofrequency ablation-induced area was spherical with single-step standard ablation, 4-step at 30 W, and 8-step at 30 W. Conversely, the ablated area was irregular with single-step at 30 W, single-step at 70 W, and 8-step at 70 W. The ablation time was significantly shorter for the multi-step method than for the single-step method. Increased intrahepatic pressure could be controlled using multi-step methods. From the shapes of the ablation area, 30-W 8-step expansions appear to be most suitable for radiofrequency ablation.

  13. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  14. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  15. Assessment of liver ablation using cone beam computed tomography.

    PubMed

    Abdel-Rehim, Mohamed; Ronot, Maxime; Sibert, Annie; Vilgrain, Valérie

    2015-01-14

    To investigate the feasibility and accuracy of cone beam computed tomography (CBCT) in assessing the ablation zone after liver tumor ablation. Twenty-three patients (17 men and 6 women, range: 45-85 years old, mean age 65 years) with malignant liver tumors underwent ultrasound-guided percutaneous tumor ablation [radiofrequency (n = 14), microwave (n = 9)] followed by intravenous contrast-enhanced CBCT. Baseline multidetector computed tomography (MDCT) and peri-procedural CBCT images were compared. CBCT image quality was assessed as poor, good, or excellent. Image fusion was performed to assess tumor coverage, and quality of fusion was rated as bad, good, or excellent. Ablation zone volumes on peri-procedural CBCT and post-procedural MDCT were compared using the non-parametric paired Wilcoxon t-test. Rate of primary ablation effectiveness was 100%. There were no complications related to ablation. Local tumor recurrence and new liver tumors were found 3 mo after initial treatment in one patient (4%). The ablation zone was identified in 21/23 (91.3%) patients on CBCT. The fusion of baseline MDCT and peri-procedural CBCT images was feasible in all patients and showed satisfactory tumor coverage (at least 5-mm margin). CBCT image quality was poor, good, and excellent in 2 (9%), 8 (35%), and 13 (56%), patients respectively. Registration quality between peri-procedural CBCT and post-procedural MDCT images was good to excellent in 17/23 (74%) patients. The median ablation volume on peri-procedural CBCT and post-procedural MDCT was 30 cm(3) (range: 4-95 cm(3)) and 30 cm(3) (range: 4-124 cm(3)), respectively (P-value > 0.2). There was a good correlation (r = 0.79) between the volumes of the two techniques. Contrast-enhanced CBCT after tumor ablation of the liver allows early assessment of the ablation zone.

  16. Breath analysis with broadly tunable quantum cascade lasers.

    PubMed

    Wörle, Katharina; Seichter, Felicia; Wilk, Andreas; Armacost, Chris; Day, Tim; Godejohann, Matthias; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Mizaikoff, Boris

    2013-03-05

    With the availability of broadly tunable external cavity quantum cascade lasers (EC-QCLs), particularly bright mid-infrared (MIR; 3-20 μm) light sources are available offering high spectral brightness along with an analytically relevant spectral tuning range of >2 μm. Accurate isotope ratio determination of (12)CO2 and (13)CO2 in exhaled breath is of critical importance in the field of breath analysis, which may be addressed via measurements in the MIR spectral regime. Here, we combine for the first time an EC-QCL tunable across the (12)CO2/(13)CO2 spectral band with a miniaturized hollow waveguide gas cell for quantitatively determining the (12)CO2/(13)CO2 ratio within the exhaled breath of mice. Due to partially overlapping spectral features, these studies are augmented by appropriate multivariate data evaluation and calibration techniques based on partial least-squares regression along with optimized data preprocessing. Highly accurate determinations of the isotope ratio within breath samples collected from a mouse intensive care unit validated via hyphenated gas chromatography-mass spectrometry confirm the viability of IR-HWG-EC-QCL sensing techniques for isotope-selective exhaled breath analysis.

  17. New optical analyzer for 13C-breath test

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Dressler, Matthias; Helmrich, Günther; Wolff, Marcus; Groninga, Hinrich

    2008-04-01

    Medical breath tests are well established diagnostic tools, predominantly for gastroenterological inspections, but also for many other examinations. Since the composition and concentration of exhaled volatile gases reflect the physical condition of a patient, a breath analysis allows one to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that is based on photoacoustic spectroscopy and uses a DFB diode laser at 2.744 μm. The concentration ratio of the CO II isotopologues is determined by measuring the absorption on a 13CO II line in comparison to a 12CO II line. In the specially selected spectral range the lines have similar strengths, although the concentrations differ by a factor of 90. Therefore, the signals are well comparable. Due to an excellent signal-noise-ratio isotope variations of less than 1% can be resolved as required for the breath test.

  18. A simple, remote, video based breathing monitor.

    PubMed

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  19. Changes in respiratory activity induced by mastication during oral breathing in humans.

    PubMed

    Daimon, Shigeru; Yamaguchi, Kazunori

    2014-06-01

    We examined the effect of oral breathing on respiratory movements, including the number of respirations and the movement of the thoracic wall at rest and while chewing gum. Forty normal nose breathers were selected by detecting expiratory airflow from the mouth using a CO2 sensor. Chest measurements were recorded using a Piezo respiratory belt transducer, and electromyographic (EMG) activity of the masseter and trapezius muscles were recorded at rest and while chewing gum during nasal or oral breathing. Oral breathing was introduced by completely occluding the nostrils with a nose clip. During oral breathing, the respiration rate was significantly lower while chewing gum than while at rest (P < 0.05). While chewing gum, the respiration rate was significantly lower during oral breathing than during nasal breathing (P < 0.05). During oral breathing, thoracic movement was significantly higher while chewing gum than while at rest (P < 0.05). Thoracic movement was significantly greater during oral breathing than during nasal breathing (P < 0.05). The trapezius muscle exhibited significant EMG activity when chewing gum during oral breathing. The activity of the trapezius muscle coincided with increased movement of the thoracic wall. Chewing food while breathing through the mouth interferes with and decreases the respiratory cycle and promotes unusual respiratory movement of the thoracic wall, which is directed by the activity of accessory muscles of respiration. Copyright © 2014 the American Physiological Society.

  20. Sex differences in sleep disordered breathing in adults.

    PubMed

    Lozo, Tijana; Komnenov, Dragana; Badr, M Safwan; Mateika, Jason H

    2017-11-01

    The prevalence of sleep disordered breathing is greater in men compared to women. This disparity could be due to sex differences in the diagnosis and presentation of sleep apnea, and the pathophysiological mechanisms that instigate this disorder. Women tend to report more non-typical symptoms of sleep apnea compared to men, and the presentation of apneic events are more prevalent in rapid compared to non-rapid eye movement sleep. In addition, there is evidence of sex differences in upper airway structure and mechanics and in neural mechanisms that impact on the control of breathing. The purpose of this review is to summarize the literature that addresses sex differences in sleep-disordered breathing, and to discuss the influence that upper airway mechanics, chemoreflex properties, and sex hormones have in modulating breathing during sleep in men and women. Published by Elsevier B.V.

  1. Intraoperative microwave ablation of pulmonary malignancies with tumor permittivity feedback control: ablation and resection study in 10 consecutive patients.

    PubMed

    Wolf, Farrah J; Aswad, Bassam; Ng, Thomas; Dupuy, Damian E

    2012-01-01

    To determine histologic changes induced by microwave ablation (MWA) in patients with pulmonary malignancy by using an ablation system with tumor permittivity feedback control, enabling real-time modulation of energy power and frequency. Institutional review board approval and patient informed consent were obtained for this prospective HIPAA-complaint ablation and resection study. Between March 2009 and January 2010, 10 patients (four women, six men; mean age, 71 years; age range, 52-82 years) underwent intraoperative MWA of pulmonary malignancies. Power (10-32 W) and frequency (908-928 MHz) were continuously adjusted by the generator to maintain a temperature of 110°-120°C at the 14-gauge antenna tip for one 10-minute application. After testing for an air leak, tumors were resected surgically. Gross inspection, slicing, and hematoxylin-eosin (10 specimens) and nicotinamide adenine dinucleotide (six specimens) staining were performed. Tumors included adenocarcinomas (n = 5), squamous cell carcinomas (n = 3), and metastases from endometrial (n = 1) and colorectal (n = 1) primary carcinomas. Mean maximum tumor diameter was 2.4 cm (range, 0.9-5.0 cm), and mean maximum volume was 8.6 cm(3) (range, 0.5-52.7 cm(3)). One air leak was detected. Five of 10 specimens were grossly measurable, revealing a mean maximum ablation zone diameter of 4.8 cm (range, 3.0-6.5 cm) and a mean maximum ablation zone volume of 15.1 cm(3) (range, 7.3-25.1 cm(3)). At hematoxylin-eosin staining, coagulation necrosis was observed in all ablation zones, extended into the normal lung in nine of 10 specimens, and up to blood vessel walls without evidence of vessel (>4 mm) thrombosis. Nicotinamide adenine dinucleotide staining enabled confirmation of no viability within ablation zones extending into normal lung in five of six specimens. MWA with tumor permittivity feedback control results in cytotoxic intratumoral temperatures and extension of ablation zones into aerated peritumoral pulmonary

  2. Mucosal ablation in Barrett's esophagus.

    PubMed

    Walker, S J; Selvasekar, C R; Birbeck, N

    2002-01-01

    Barrett's esophagus is a prevalent, premalignant condition affecting the gastroesophageal junction and distal esophagus. Ablation plus antireflux therapy has recently been advocated to prevent the development of adenocarcinoma or to treat those unfit or unwilling to undergo esophagectomy. The present article, based on a search of Medline/ISI databases and cross-referencing of relevant articles, reviews the literature on this subject. A number of techniques have been used to remove the affected mucosa, including laser, electrocoagulation, argon plasma coagulation and photodynamic therapy but, as yet, none has been shown to be superior. Depending on the method used, ablation results in complete removal of Barrett's esophagus in approximately one third of patients and a partial response in nearly two-thirds. The resultant squamous mucosa is apparently 'normal' but may regress. To promote and maintain regeneration, antireflux therapy must be sufficient to reduce repetitive injury to the esophageal mucosa. Whether ablation reduces the cancer risk or delays its occurrence is unknown, though recent data suggests benefit. Complications are infrequent and usually mild. Regular follow-up endoscopy and deep biopsies continue to be necessary. Careful data from much larger populations with long-term follow-up is required before ablation reaches the stage of broad clinical application.

  3. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  4. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  5. Avoiding Complications in Bone and Soft Tissue Ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, A. Nicholas, E-mail: kurup.anil@mayo.edu; Schmit, Grant D., E-mail: schmit.grant@mayo.edu; Morris, Jonathan M., E-mail: morris.jonathan@mayo.edu

    As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitormore » critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.« less

  6. Breathing multichimera states in nonlocally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  7. Ultrafast dynamics of hard tissue ablation using fs-lasers.

    PubMed

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Huber, Heinz P; Sroka, Ronald

    2018-05-29

    Several studies on hard tissue laser ablation demonstrated that ultrafast lasers enable precise material removal without thermal side effects. Although the principle ablation mechanisms have been thoroughly investigated, there are still open questions regarding the influence of material properties on transient dynamics. In this investigation, we applied pump-probe microscopy to record ablation dynamics of biomaterials with different tensile strengths (dentin, chicken bone, gallstone, kidney stones) at delay times between 1 ps and 10 μs. Transient reflectivity changes, pressure and shock wave velocities, and elastic constants were determined. The result revealed that absorption and excitation show the typical well-known transient behaviour of dielectric materials. We observed for all samples a photomechanical laser ablation process, where ultrafast expansion of the excited volume generates pressure waves leading to fragmentation around the excited region. Additionally, we identified tensile-strength-related differences in the size of ablated craters and ejected particles. The elastic constants derived were in agreement with literature values. In conclusion, pressure-wave-assisted material removal seems to be a general mechanism for hard tissue ablation with ultrafast lasers. This photomechanical process increases ablation efficiency and removes heated material, thus ultrafast laser ablation is of interest for clinical application where heating of the tissue must be avoided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.

    PubMed

    Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas

    2018-01-01

    The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  9. Spatiotemporal Variability of Great Lakes Basin Snow Cover Ablation Events

    NASA Astrophysics Data System (ADS)

    Suriano, Z. J.; Leathers, D. J.

    2017-12-01

    In the Great Lakes basin of North America, annual runoff is dominated by snowmelt. This snowmelt-induced runoff plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer Lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960-2009. An ablation event is defined as an inter-diurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event frequency is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the inter-annual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.

  10. Bipolar radiofrequency ablation of spinal tumors: predictability, safety and outcome.

    PubMed

    Gazis, Angelos N; Beuing, Oliver; Franke, Jörg; Jöllenbeck, Boris; Skalej, Martin

    2014-04-01

    Bone metastases are often the cause of tumor-associated pain and reduction of quality of life. For patients that cannot be treated by surgery, a local minimally invasive therapy such as radiofrequency ablation can be a useful option. In cases in which tumorous masses are adjacent to vulnerable structures, the monopolar radiofrequency can cause severe neuronal damage because of the unpredictability of current flow. The aim of this study is to show that the bipolar radiofrequency ablation provides an opportunity to safely treat such spinal lesions because of precise predictability of the emerging ablation zone. Prospective cohort study of 36 patients undergoing treatment at a single institution. Thirty-six patients in advanced tumor stage with primary or secondary tumor involvement of spine undergoing radiofrequency ablation. Prediction of emerging ablation zone. Clinical outcome of treated patients. X-ray-controlled treatment of 39 lesions by bipolar radiofrequency ablation. Magnetic resonance imaging was performed pre- and postinterventionally. Patients were observed clinically during their postinterventional stay. The extent of the ablation zones was predictable to the millimeter because it did not cross the peri-interventional planned dorsal and ventral boundaries in any case. No complications were observed. Ablation of tumorous masses adjacent to vulnerable structures is feasible and predictable by using the bipolar radiofrequency ablation. Damage of neuronal structures can be avoided through precise prediction of the ablation area. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Quantitative Analysis of Periodic Breathing and Very Long Apnea in Preterm Infants

    NASA Astrophysics Data System (ADS)

    Mohr, Mary A.

    Electronic signals from bedside monitors in University of Virginia's Neonatal Intensive Care Unit (NICU) are routinely collected and stored. The overall goal of our research is predictive monitoring: we seek patterns in signals that give early warning of impending pathology. This work focuses on apnea (pauses in regular respiration), and on periodic breathing (regular cycles of breathing and apnea). Our examination of apnea events revealed a disturbing number of cases in which the cessation of breathing lasted at least 60 seconds. These observations were validated, clinical correlations of these events were identified, and a theory was developed that partially explains how they occur. Periodic breathing in neonates is a normal developmental phenomenon. It arises when there is instability in the respiratory control system. A mathematical model of periodic breathing was developed to analyze the stability of the control system in infants. Periodic breathing has long been thought to be benign, however, exaggerated durations of periodic breathing may be an indicator of pathology. Characterization of periodic breathing has previously been limited to short monitoring times in small numbers of infants. An automated system for measurement and characterization of periodic breathing was developed and applied to 5 years of data from the NICU. The amount of periodic breathing that infants had was found to increase with gestational age (up to 32 weeks). Also, times of excessive periodic breathing were recorded and clinical correlations were sought. A significant increase in periodic breathing in the 24 hours before diagnosis of necrotizing enterocolitis was found.

  12. Percutaneous laser ablation of benign and malignant thyroid nodules.

    PubMed

    Papini, Enrico; Bizzarri, Giancarlo; Pacella, Claudio M

    2008-10-01

    Percutaneous image-guided procedures, largely based on thermal ablation, are at present under investigation for achieving a nonsurgical targeted cytoreduction in benign and malignant thyroid lesions. In several uncontrolled clinical trials and in two randomized clinical trials, laser ablation has demonstrated a good efficacy and safety for the shrinkage of benign cold thyroid nodules. In hyperfunctioning nodules, laser ablation induced a nearly 50% volume reduction with a variable frequency of normalization of thyroid-stimulating hormone levels. Laser ablation has been tested for the palliative treatment of poorly differentiated thyroid carcinomas, local recurrences or distant metastases. Laser ablation therapy is indicated for the shrinkage of benign cold nodules in patients with local pressure symptoms who are at high surgical risk. The treatment should be performed only by well trained operators and after a careful cytological evaluation. Laser ablation does not seem to be consistently effective in the long-term control of hyperfunctioning thyroid nodules and is not an alternative treatment to 131I therapy. Laser ablation may be considered for the cytoreduction of tumor tissue prior to external radiation therapy or chemotherapy of local or distant recurrences of thyroid malignancy that are not amenable to surgical or radioiodine treatment.

  13. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  14. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  15. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  16. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  17. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  18. Impact of Breathing 100% Oxygen on Radiation-Induced Cognitive Impairment

    PubMed Central

    Wheeler, Kenneth T.; Payne, Valerie; D’Agostino, Ralph B.; Walb, Matthew C.; Munley, Michael T.; Metheny-Barlow, Linda J.; Robbins, Mike E.

    2015-01-01

    Future space missions are expected to include increased extravehicular activities (EVAs) during which astronauts are exposed to high-energy space radiation while breathing 100% oxygen. Given that brain irradiation can lead to cognitive impairment, and that oxygen is a potent radiosensitizer, there is a concern that astronauts may be at greater risk of developing cognitive impairment when exposed to space radiation while breathing 100% O2 during an EVA. To address this concern, unanesthetized, unrestrained, young adult male Fischer 344 × Brown Norway rats were allowed to breathe 100% O2 for 30 min prior to, during and 2 h after whole-body irradiation with 0, 1, 3, 5 or 7 Gy doses of 18 MV X rays delivered from a medical linear accelerator at a dose rate of ~425 mGy/min. Irradiated and unirradiated rats breathing air (~21% O2) served as controls. Cognitive function was assessed 9 months postirradiation using the perirhinal cortex-dependent novel object recognition task. Cognitive function was not impaired until the rats breathing either air or 100% O2 received a whole-body dose of 7 Gy. However, at all doses, cognitive function of the irradiated rats breathing 100% O2 was improved over that of the irradiated rats breathing air. These data suggest that astronauts are not at greater risk of developing cognitive impairment when exposed to space radiation while breathing 100% O2 during an EVA. PMID:25338095

  19. Theoretical analyses of the refractive implications of transepithelial PRK ablations.

    PubMed

    Arba Mosquera, Samuel; Awwad, Shady T

    2013-07-01

    To analyse the refractive implications of single-step, transepithelial photorefractive keratectomy (TransPRK) ablations. A simulation for quantifying the refractive implications of TransPRK ablations has been developed. The simulation includes a simple modelling of corneal epithelial profiles, epithelial ablation profiles as well as refractive ablation profiles, and allows the analytical quantification of the refractive implications of TransPRK in terms of wasted tissue, achieved optical zone (OZ) and induced refractive error. Wasted tissue occurs whenever the actual corneal epithelial profile is thinner than the applied epithelial ablation profile, achieved OZ is reduced whenever the actual corneal epithelial profile is thicker than the applied epithelial ablation profile and additional refractive errors are induced whenever the actual difference centre-to-periphery in the corneal epithelial profile deviates from the difference in the applied epithelial ablation profile. The refractive implications of TransPRK ablations can be quantified using simple theoretical simulations. These implications can be wasted tissue (∼14 µm, if the corneal epithelial profile is thinner than the ablated one), reduced OZ (if the corneal epithelial profile is thicker than ablated one, very severe for low corrections) and additional refractive errors (∼0.66 D, if the centre-to-periphery progression of the corneal epithelial profile deviates from the progression of the ablated one). When TransPRK profiles are applied to normal, not previously treated, non-pathologic corneas, no specific refractive implications associated to the transepithelial profile can be anticipated; TransPRK would provide refractive outcomes equal to those of standard PRK. Adjustments for the planned OZ and, in the event of retreatments, for the target sphere can be easily derived.

  20. Applications of laser ablation to microengineering

    NASA Astrophysics Data System (ADS)

    Gower, Malcolm C.; Rizvi, Nadeem H.

    2000-08-01

    Applications of pulsed laser ablation to the manufacture of micro- electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems (MOEMS) devices are presented. Laser ablative processes used to manufacture a variety of microsystems technology (MST) components in the computer peripheral, sensing and biomedical industries are described together with a view of some future developments.

  1. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components.

    PubMed

    de Menezes, Rebeca Ferraz; Harvey, Catherine Malinda; de Martínez Gerbi, Marleny Elizabeth Márquez; Smith, Zachary J; Smith, Dan; Ivaldi, Juan C; Phillips, Alton; Chan, James W; Wachsmann-Hogiu, Sebastian

    2017-10-01

    The goal of this work is to investigate the thermal effects of femtosecond laser (fs-laser) ablation for the removal of carious dental tissue. Additional studies identify different tooth tissues through femtosecond laser induced breakdown spectroscopy (fsLIBS) for the development of a feedback loop that could be utilized during ablation in a clinical setting. Scanning Election Microscope (SEM) images reveal that minimal morphological damages are incurred at repetition rates below the carbonization threshold of each tooth tissue. Thermal studies measure the temperature distribution and temperature decay during laser ablation and after laser cessation, and demonstrate that repetition rates at or below 10kHz with a laser fluence of 40 J/cm 2 would inflict minimal thermal damage on the surrounding nerve tissues and provide acceptable clinical removal rates. Spectral analysis of the different tooth tissues is also conducted and differences between the visible wavelength fsLIBS spectra are evident, though more robust classification studies are needed for clinical translation. These results have initiated a set of precautionary recommendations that would enable the clinician to utilize femtosecond laser ablation for the removal of carious lesions while ensuring that the solidity and utility of the tooth remain intact. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations.

    PubMed

    McCafferty, J B; Bradshaw, T A; Tate, S; Greening, A P; Innes, J A

    2004-08-01

    The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated. Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions. The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) microl, 1019 (313) microl, and 1358 (364) microl, respectively (p<0.001) and TEW was 1879 (378) microl, 2986 (496) microl, and 4679 (700) microl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 microl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v 7.6 microl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH. These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample.

  3. Laser ablation in analytical chemistry - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less

  4. Modeling topology formation during laser ablation

    NASA Astrophysics Data System (ADS)

    Hodapp, T. W.; Fleming, P. R.

    1998-07-01

    Micromachining high aspect-ratio structures can be accomplished through ablation of surfaces with high-powered lasers. Industrial manufacturers now use these methods to form complex and regular surfaces at the 10-1000 μm feature size range. Despite its increasingly wide acceptance on the manufacturing floor, the underlying photochemistry of the ablation mechanism, and hence the dynamics of the machining process, is still a question of considerable debate. We have constructed a computer model to investigate and predict the topological formation of ablated structures. Qualitative as well as quantitative agreement with excimer-laser machined polyimide substrates has been demonstrated. This model provides insights into the drilling process for high-aspect-ratio holes.

  5. Theoretical and experimental analysis of amplitude control ablation and bipolar ablation in creating linear lesion and discrete lesions for treating atrial fibrillation.

    PubMed

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2017-09-01

    Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.

  6. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    PubMed

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  7. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  8. Breath-by-breath analysis of expiratory gas concentration in chickens.

    PubMed

    Itabisashi, T

    1981-01-01

    Expiratory oxygen and carbon-dioxide concentration were analysed breath by breath in order to examine their wave forms in adult awake hens restrained in various postural positions, including supine, prone and sitting positions. Expired gas was collected at the nostril in almost all the hens. In the sitting position free from vocalization, feeding, drinking, panting, and restlessness, hens showed various forms of stable pattern of oxygen-gas curves. These forms were classified into three types, or the ascending, flat and descending types, with respect to the plateau inclination. The waves of carbon-dioxide were not always a mirror image of those of oxygen. The rate of occurrence of each type varied with the hen's postural position. The wave form was altered with the experimental body-rotation of the hen. When placed between the deflections of stable pattern, the episodes of wave deformation resembling that seen at the time of uneven pulmonary ventilation in mammals could frequently be observed in any hen's posture examined. Cardiogenic oscillation appeared on the plateau of expired-gas curves.

  9. Metabolic breath analyzer

    NASA Technical Reports Server (NTRS)

    Perry, C. L.

    1971-01-01

    Instrument measures metabolic breathing rate and dynamics of human beings in atmospheres ranging from normal air to 100 percent oxygen at ambient pressures from 14.7 to 3.0 psia. Measurements are made at rest or performing tasks up to maximum physical capacity under either zero or normal gravity.

  10. Life and Breath

    ERIC Educational Resources Information Center

    Ellis, Helen D.

    1974-01-01

    This article describes a public education program combining the screening process and a follow-up program for teaching victims of emphysema and other respiratory diseases how to better their living condition through proper breathing, avoidance of air pollutants and cigarette smoking, and taking better care of themselves physically. (PD)

  11. Breath measurement instrumentation as alcohol safety interlock systems

    DOT National Transportation Integrated Search

    1974-09-01

    This report describes the results of field tests of in-car instruments which measure alcohol on the driver's breath and prevent him from operating his vehicle if intoxicated. Two types of breath alcohol sensors were used for these tests; a fuel-cell ...

  12. Effects of pressure rise on cw laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  13. Pulsed Tm:YAG laser ablation of knee joint tissues

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  14. Ablation of aluminum nitride films by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Tzou, Robert; Salakhutdinov, Ildar; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-02-01

    We present results of comparative study of laser-induced ablation of AlN films with variable content of oxygen as a surface-doping element. The films deposited on sapphire substrate were ablated by a single nanosecond pulse at wavelength 248 nm, and by a single femtosecond pulse at wavelength 775 nm in air at normal pressure. Ablation craters were inspected by AFM and Nomarski high-resolution microscope. Irradiation by nanosecond pulses leads to a significant removal of material accompanied by extensive thermal effects, chemical modification of the films around the ablation craters and formation of specific defect structures next to the craters. Remarkable feature of the nanosecond experiments was total absence of thermo-mechanical fracturing near the edges of ablation craters. The femtosecond pulses produced very gentle ablation removing sub-micrometer layers of the films. No remarkable signs of thermal, thermo-mechanical or chemical effects were found on the films after the femtosecond ablation. We discuss mechanisms responsible for the specific ablation effects and morphology of the ablation craters.

  15. Miniaturization of Microwave Ablation Antennas

    NASA Astrophysics Data System (ADS)

    Luyen, Hung

    Microwave ablation (MWA) is a promising minimally invasive technique for the treatment of various types of cancers as well as non-oncological diseases. In MWA, an interstitial antenna is typically used to deliver microwave energy to the diseased tissue and heat it up to lethal temperature levels that induce cell death. The desired characteristics of the interstitial antenna include a narrow diameter to minimize invasiveness of the treatment, a low input reflection coefficient at the operating frequency, and a localized heating zone. Most interstitial MWA antennas are fed by coaxial cables and designed for operation at either 915 MHz or 2.45 GHz. Coax-fed MWA antennas are commonly equipped with coaxial baluns to achieve localized heating. However, the conventional implementation of coaxial baluns increases the overall diameters of the antennas and therefore make them more invasive. It is highly desirable to develop less invasive antennas with shorter active lengths and smaller diameters for MWA applications. In this work, we demonstrate the feasibility of using higher frequency microwaves for tissue ablation and present several techniques for decreasing diameters of MWA antennas. First, we investigated MWA at higher frequencies by conducting numerical and experimental studies to compare ablation performance at 10 GHz and 1.9 GHz. Simulation and ex vivo ablation experiment results demonstrate comparable ablation zone dimensions achieved at these two frequencies. Operating at higher frequencies enables interstitial antennas with shorter active lengths. This can be combined with smaller-diameter antenna designs to create less invasive applicators or allow integration of multiple radiating elements on a single applicator to have better control and customization of the heating patterns. Additionally, we present three different coax-fed antenna designs and a non-coaxial-based balanced antenna that have smaller-diameter configurations than conventional coax-fed balun

  16. Solid-state gas sensors for breath analysis: a review.

    PubMed

    Di Natale, Corrado; Paolesse, Roberto; Martinelli, Eugenio; Capuano, Rosamaria

    2014-05-08

    The analysis of volatile compounds is an efficient method to appraise information about the chemical composition of liquids and solids. This principle is applied to several practical applications, such as food analysis where many important features (e.g. freshness) can be directly inferred from the analysis of volatile compounds. The same approach can also be applied to a human body where the volatile compounds, collected from the skin, the breath or in the headspace of fluids, might contain information that could be used to diagnose several kinds of diseases. In particular, breath is widely studied and many diseases can be potentially detected from breath analysis. The most fascinating property of breath analysis is the non-invasiveness of the sample collection. Solid-state sensors are considered the natural complement to breath analysis, matching the non-invasiveness with typical sensor features such as low-cost, easiness of use, portability, and the integration with the information networks. Sensors based breath analysis is then expected to dramatically extend the diagnostic capabilities enabling the screening of large populations for the early diagnosis of pathologies. In the last years there has been an increased attention to the development of sensors specifically aimed to this purpose. These investigations involve both specific sensors designed to detect individual compounds and non-specific sensors, operated in array configurations, aimed at clustering subjects according to their health conditions. In this paper, the recent significant applications of these sensors to breath analysis are reviewed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Breath sulfides and pulmonary function in cystic fibrosis.

    PubMed

    Kamboures, M A; Blake, D R; Cooper, D M; Newcomb, R L; Barker, M; Larson, J K; Meinardi, S; Nussbaum, E; Rowland, F S

    2005-11-01

    We have determined the concentrations of carbonyl sulfide (OCS), dimethylsulfide, and carbon disulfide (CS(2)) in the breath of a group of cystic fibrosis (CF) patients and one of healthy controls. At the detection sensitivity in these experiments, room air always contained measurable quantities of these three gases. For each subject the inhaled room concentrations were subtracted from the time-coincident concentrations in exhaled breath air. The most significant differences between the CF and control cohorts in these breath-minus-room values were found for OCS. The control group demonstrated a net uptake of 250 +/- 20 parts-per-trillion-by-volume (pptv), whereas the CF cohort had a net uptake of 110 +/- 60 pptv (P = 0.00003). Three CF patients exhaled more OCS than they inhaled from the room. The OCS concentrations in the CF cohort were strongly correlated with pulmonary function. The dimethylsulfide concentrations in breath were greatly enhanced over ambient, but no significant difference was observed between the CF and healthy control groups. The net (breath minus room) CS(2) concentrations for individuals ranged between +180 and -100 pptv. They were slightly greater in the CF cohort (+26 +/- 38 pptv) vs. the control group (-17 +/- 15 pptv; P = 0.04). Lung disease in CF is accompanied by the subsistence of chronic bacterial infections. Sulfides are known to be produced by bacteria in various systems and were therefore the special target for this investigation. Our results suggest that breath sulfide content deserves attention as a noninvasive marker of respiratory colonization.

  18. Computed Tomography Assessment of Ablation Zone Enhancement in Patients With Early-Stage Lung Cancer After Stereotactic Ablative Radiotherapy.

    PubMed

    Moore, William; Chaya, Yair; Chaudhry, Ammar; Depasquale, Britney; Glass, Samantha; Lee, Susan; Shin, James; Mikhail, George; Bhattacharji, Priya; Kim, Bong; Bilfinger, Thomas

    2015-01-01

    Stereotactic ablative radiotherapy (SABR) offers a curative treatment for lung cancer in patients who are marginal surgical candidates. However, unlike traditional surgery the lung cancer remains in place after treatment. Thus, imaging follow-up for evaluation of recurrence is of paramount importance. In this retrospective designed Institutional Review Board-approved study, follow-up contrast-enhanced computed tomography (CT) exams were performed on sixty one patients to evaluate enhancement pattern in the ablation zone at 1, 3, 6, and 12 months after SABR. Eleven patients had recurrence within the ablation zone after SABR. The postcontrast enhancement in the recurrence group showed a washin and washout phenomenon, whereas the radiation-induced lung injury group showed continuous enhancement suggesting an inflammatory process. The textural feature of the ablation zone of enhancement and perfusion as demonstrated in computed tomography nodule enhancement may allow early differentiation of recurrence from radiation-induced lung injury in patients' status after SABR or primary lung cancer.

  19. Experimental measurement of ablation effects in plasma armature railguns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.V.; Parsons, W.M.

    1986-01-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  20. Experimental measurement of ablation effects in plasma armature railguns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.V.; Parsons, W.M.

    1986-11-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  1. Numerical study of double-pulse laser ablation of Al

    NASA Astrophysics Data System (ADS)

    Förster, G. D.; Lewis, Laurent J.

    2018-06-01

    The effect of double laser pulses (DPs) on the ablation process in solids is studied using a hybrid two-temperature model combining a continuum description of the conduction band electrons with a classical molecular dynamics (MD) approach for the ions. The study is concerned with double pulses with delays in the range of 0-50 ps and absorbed laser fluences of 0.5, 1.0, and 1.5 J/m 2 [i.e., 1-3 times the ablation threshold for single-pulse ablation (SP)], taking Al as a generic example of simple metals. A detailed analysis, including the assessment of thermodynamic pathways and cavitation rates, leads to a comprehensive picture of the mechanisms active during the different stages of the ablation process initiated by DPs. This study provides an explanation for several phenomena observed in DP ablation experiments. In particular, with respect to SP ablation, crater depths are reduced, which can be explained by the compensation of the rarefaction wave from the first laser pulse with the compression wave from the second pulse, or, at higher fluences and larger delays, by the fact that the target surface is shielded with matter ablated by the first laser pulse. Also, we discuss how smoother surface structures obtained using DPs may be related to features found in the simulations—viz., reduced mechanical strain and peak lattice temperatures. Finally, vaporization appears to be enhanced in DP ablation, which may improve the resolution of emission spectra.

  2. Effects of Diaphragmatic Breathing Patterns on Balance: A Preliminary Clinical Trial.

    PubMed

    Stephens, Rylee J; Haas, Mitchell; Moore, William L; Emmil, Jordan R; Sipress, Jayson A; Williams, Alex

    The purpose of this study was to determine the feasibility of performing a larger study to determine if training in diaphragmatic breathing influences static and dynamic balance. A group of 13 healthy persons (8 men, 5 women), who were staff, faculty, or students at the University of Western States participated in an 8-week breathing and balance study using an uncontrolled clinical trial design. Participants were given a series of breathing exercises to perform weekly in the clinic and at home. Balance and breathing were assessed at the weekly clinic sessions. Breathing was evaluated with Liebenson's breathing assessment, static balance with the Modified Balance Error Scoring System, and dynamic balance with OptoGait's March in Place protocol. Improvement was noted in mean diaphragmatic breathing scores (1.3 to 2.6, P < .001), number of single-leg stance balance errors (7.1 to 3.8, P = .001), and tandem stance balance errors (3.2 to 0.9, P = .039). A decreasing error rate in single-leg stance was associated with improvement in breathing score within participants over the 8 weeks of the study (-1.4 errors/unit breathing score change, P < .001). Tandem stance performance did not reach statistical significance (-0.5 error/unit change, P = .118). Dynamic balance was insensitive to balance change, being error free for all participants throughout the study. This proof-of-concept study indicated that promotion of a costal-diaphragmatic breathing pattern may be associated with improvement in balance and suggests that a study of this phenomenon using an experimental design is feasible. Copyright © 2017. Published by Elsevier Inc.

  3. Combination acetabular radiofrequency ablation and cementoplasty using a navigational radiofrequency ablation device and ultrahigh viscosity cement: technical note.

    PubMed

    Wallace, Adam N; Huang, Ambrose J; Vaswani, Devin; Chang, Randy O; Jennings, Jack W

    2016-03-01

    Percutaneous radiofrequency ablation and cementoplasty is an alternative palliative therapy for painful metastases involving axial load-bearing bones. This technical report describes the use of a navigational radiofrequency probe to ablate acetabular metastases from an anterior approach followed by instillation of ultrahigh viscosity cement under CT-fluoroscopic guidance. The tumor ablation databases of two institutions were retrospectively reviewed to identify patients who underwent combination acetabular radiofrequency ablation and cementoplasty using the STAR Tumor Ablation and StabiliT Vertebral Augmentation Systems (DFINE; San Jose, CA). Pre-procedure acetabular tumor volume was measured on cross-sectional imaging. Pre- and post-procedure pain scores were measured using the Numeric Rating Scale (10-point scale) and compared. Partial pain improvement was categorically defined as ≥ 2-point pain score reduction. Patients were evaluated for evidence of immediate complications. Electronic medical records were reviewed for evidence of delayed complications. During the study period, 12 patients with acetabular metastases were treated. The median tumor volume was 54.3 mL (range, 28.3-109.8 mL). Pre- and post-procedure pain scores were obtained from 92% (11/12) of the cohort. The median pre-procedure pain score was 8 (range, 3-10). Post-procedure pain scores were obtained 7 days (82%; 9/11), 11 days (9.1%; 1/11) or 21 days (9.1%; 1/11) after treatment. The median post-treatment pain score was 3 (range, 1-8), a statistically significant difference compared with pre-treatment (P = 0.002). Categorically, 73% (8/11) of patients reported partial pain relief after treatment. No immediate symptomatic complications occurred. Three patients (25%; 3/12) were discharged to hospice within 1 week of treatment. No delayed complications occurred in the remaining 75% (9/12) of patients during median clinical follow-up of 62 days (range, 14-178 days). Palliative percutaneous

  4. Breath Group Analysis for Reading and Spontaneous Speech in Healthy Adults

    PubMed Central

    Wang, Yu-Tsai; Green, Jordan R.; Nip, Ignatius S.B.; Kent, Ray D.; Kent, Jane Finley

    2010-01-01

    Aims The breath group can serve as a functional unit to define temporal and fundamental frequency (f0) features in continuous speech. These features of the breath group are determined by the physiologic, linguistic, and cognitive demands of communication. Reading and spontaneous speech are two speaking tasks that vary in these demands and are commonly used to evaluate speech performance for research and clinical applications. The purpose of this study is to examine differences between reading and spontaneous speech in the temporal and f0 aspects of their breath groups. Methods Sixteen participants read two passages and answered six questions while wearing a circumferentially vented mask connected to a pneumotach. The aerodynamic signal was used to identify inspiratory locations. The audio signal was used to analyze task differences in breath group structure, including temporal and f0 components. Results The main findings were that spontaneous speech task exhibited significantly more grammatically inappropriate breath group locations and longer breath group duration than did the passage reading task. Conclusion The task differences in the percentage of grammatically inadequate breath group locations and in breath group duration for healthy adult speakers partly explain the differences in cognitive-linguistic load between the passage reading and spontaneous speech. PMID:20588052

  5. Breath group analysis for reading and spontaneous speech in healthy adults.

    PubMed

    Wang, Yu-Tsai; Green, Jordan R; Nip, Ignatius S B; Kent, Ray D; Kent, Jane Finley

    2010-01-01

    The breath group can serve as a functional unit to define temporal and fundamental frequency (f0) features in continuous speech. These features of the breath group are determined by the physiologic, linguistic, and cognitive demands of communication. Reading and spontaneous speech are two speaking tasks that vary in these demands and are commonly used to evaluate speech performance for research and clinical applications. The purpose of this study is to examine differences between reading and spontaneous speech in the temporal and f0 aspects of their breath groups. Sixteen participants read two passages and answered six questions while wearing a circumferentially vented mask connected to a pneumotach. The aerodynamic signal was used to identify inspiratory locations. The audio signal was used to analyze task differences in breath group structure, including temporal and f0 components. The main findings were that spontaneous speech task exhibited significantly more grammatically inappropriate breath group locations and longer breath group duration than did the passage reading task. The task differences in the percentage of grammatically inadequate breath group locations and in breath group duration for healthy adult speakers partly explain the differences in cognitive-linguistic load between the passage reading and spontaneous speech. Copyright © 2010 S. Karger AG, Basel.

  6. Atrial fibrillation ablation using very short duration 50 W ablations and contact force sensing catheters.

    PubMed

    Winkle, Roger A; Moskovitz, Ryan; Hardwin Mead, R; Engel, Gregory; Kong, Melissa H; Fleming, William; Salcedo, Jonathan; Patrawala, Rob A; Tranter, John H; Shai, Isaac

    2018-06-01

    The optimal radiofrequency (RF) power and lesion duration using contact force (CF) sensing catheters for atrial fibrillation (AF) ablation are unknown. We evaluate 50 W RF power for very short durations using CF sensing catheters during AF ablation. We evaluated 51 patients with paroxysmal (n = 20) or persistent (n = 31) AF undergoing initial RF ablation. A total of 3961 50 W RF lesions were given (average 77.6 ± 19.1/patient) for an average duration of only 11.2 ± 3.7 s. As CF increased from < 10 to > 40 g, the RF application duration decreased from 13.7 ± 4.4 to 8.6 ± 2.5 s (p < 0.0005). Impedance drops occurred in all ablations, and for patients in sinus rhythm, there was loss of pacing capture during RF delivery suggesting lesion creation. Only 3% of the ablation lesions were at < 5 g and 1% at > 40 g of force. As CF increased, the force time integral (FTI) increased from 47 ± 24 to 376 ± 102 gs (p < 0.0005) and the lesion index (LSI) increased from 4.10 ± 0.51 to 7.63 ± 0.50 (p < 0.0005). Both procedure time (101 ± 19.7 min) and total RF energy time (895 ± 258 s) were very short. For paroxysmal AF, the single procedure freedom from AF was 86% at 1 and 2 years. For persistent AF, it was 83% at 1 year and 72% at 2 years. There were no complications. Short duration 50 W ablations using CF sensing catheters are safe and result in excellent long-term freedom from AF for both paroxysmal and persistent AF with short procedure times and small amounts of total RF energy delivery.

  7. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  8. Multi-window PIV measurements around a breathing manikin

    NASA Astrophysics Data System (ADS)

    Marr, David

    2005-11-01

    The presented work includes multi-scale measurements via a stereo article Image Velocimetry (PIV) system to view a pair of two-component windows of dissimilar scale using a varied focal length. These measurements are taken in the breathing zone of an isothermal breathing manikin (from mouth) in an environmental chamber of average office cubicle dimensions without ventilation and are analogous to an oscillatory jet. From these phase-averaged measurements, we can extract information concerning length scales, turbulence quantities and low dimensional information in order to both determine correlation between data at different length scales as well as continuing research in exposure assessment for the indoor environment. In this talk we will present these turbulence quantities and interpret their influence on the breathing zone. While the largest scale is that of the room itself, we find that the relevant spatial scales associated with the breathing zone are much lower in magnitude. In future experiments, we will expand the multi window PIV technique to include PIV window configured to obtain scales of order the cubicle simultaneously with those of the breathing zone. This will aid in our understanding of the combined impact of these multiple scales on occupant exposure in the indoor environment.

  9. Advances in local ablation of malignant liver lesions

    PubMed Central

    Eisele, Robert M

    2016-01-01

    Local ablation of liver tumors matured during the recent years and is now proven to be an effective tool in the treatment of malignant liver lesions. Advances focus on the improvement of local tumor control by technical innovations, individual selection of imaging modalities, more accurate needle placement and the free choice of access to the liver. Considering data found in the current literature for conventional local ablative treatment strategies, virtually no single technology is able to demonstrate an unequivocal superiority. Hints at better performance of microwave compared to radiofrequency ablation regarding local tumor control, duration of the procedure and potentially achievable larger size of ablation areas favour the comparably more recent treatment modality; image fusion enables more patients to undergo ultrasound guided local ablation; magnetic resonance guidance may improve primary success rates in selected patients; navigation and robotics accelerate the needle placement and reduces deviation of needle positions; laparoscopic thermoablation results in larger ablation areas and therefore hypothetically better local tumor control under acceptable complication rates, but seems to be limited to patients with no, mild or moderate adhesions following earlier surgical procedures. Apart from that, most techniques appear technically feasible, albeit demanding. Which technology will in the long run become accepted, is subject to future work. PMID:27099433

  10. Predictors of sleep disordered breathing in children: the PANIC study.

    PubMed

    Ikävalko, Tiina; Närhi, Matti; Eloranta, Aino-Maija; Lintu, Niina; Myllykangas, Riitta; Vierola, Anu; Tuomilehto, Henri; Lakka, Timo; Pahkala, Riitta

    2018-05-25

    We studied longitudinally the associations of craniofacial morphology, mouth breathing, orthodontic treatment, and body fat content with the risk of having and developing sleep disordered breathing (SDB) in childhood. We hypothesized that deviant craniofacial morphology, mouth breathing, and adiposity predict SDB among children. The participants were 412 children 6-8 years of age examined at baseline and 329 children aged 9-11 years re-examined at an average 2.2-year follow-up. An experienced orthodontist evaluated facial proportions, dental occlusion, soft tissue structures, and mode of breathing and registered malocclusions in orthodontic treatment. Body fat percentage was assessed by dual-energy X-ray absorptiometry and SDB symptoms by a questionnaire. Children with SDB more likely had convex facial profile, increased lower facial height, mandibular retrusion, tonsillar hypertrophy, and mouth breathing at baseline and convex facial profile, mandibular retrusion, and mouth breathing at follow-up than children without SDB at these examinations. Male gender and body adiposity, mouth breathing, and distal molar occlusion at baseline were associated with SDB later in childhood. Adipose tissue under the chin, mandibular retrusion, vertically large or normal throat and malocclusion in orthodontic treatment at baseline predicted developing SDB during follow-up of among children without SDB at baseline. We could not conduct polysomnographic examinations to define sleep disturbances. Instead, we used a questionnaire filled out by the parents to assess symptoms of SDB. The results indicate that among children, deviant craniofacial morphology, mouth breathing, body adiposity, and male gender seem to have implications in the pathophysiology of SDB.

  11. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    PubMed Central

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  12. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  13. Prophylactic Catheter Ablation for the Prevention of Defibrillator Therapy

    PubMed Central

    Reddy, Vivek Y.; Reynolds, Matthew R.; Neuzil, Petr; Richardson, Allison W.; Taborsky, Milos; Jongnarangsin, Krit; Kralovec, Stepan; Sediva, Lucie; Ruskin, Jeremy N.; Josephson, Mark E.

    2008-01-01

    BACKGROUND For patients who have a ventricular tachyarrhythmic event, implantable cardioverter–defibrillators (ICDs) are a mainstay of therapy to prevent sudden death. However, ICD shocks are painful, can result in clinical depression, and do not offer complete protection against death from arrhythmia. We designed this randomized trial to examine whether prophylactic radiofrequency catheter ablation of arrhythmogenic ventricular tissue would reduce the incidence of ICD therapy. METHODS Eligible patients with a history of a myocardial infarction underwent defibrillator implantation for spontaneous ventricular tachycardia or fibrillation. The patients did not receive antiarrhythmic drugs. Patients were randomly assigned to defibrillator implantation alone or defibrillator implantation with adjunctive catheter ablation (64 patients in each group). Ablation was performed with the use of a substrate-based approach in which the myocardial scar is mapped and ablated while the heart remains predominantly in sinus rhythm. The primary end point was survival free from any appropriate ICD therapy. RESULTS The mortality rate 30 days after ablation was zero, and there were no significant changes in ventricular function or functional class during the mean (±SD) follow-up period of 22.5±5.5 months. Twenty-one patients assigned to defibrillator implantation alone (33%) and eight patients assigned to defibrillator implantation plus ablation (12%) received appropriate ICD therapy (antitachycardia pacing or shocks) (hazard ratio in the ablation group, 0.35; 95% confidence interval, 0.15 to 0.78, P = 0.007). Among these patients, 20 in the control group (31%) and 6 in the ablation group (9%) received shocks (P = 0.003). Mortality was not increased in the group assigned to ablation as compared with the control group (9% vs. 17%, P = 0.29). CONCLUSIONS In this randomized trial, prophylactic substrate-based catheter ablation reduced the incidence of ICD therapy in patients with a

  14. Breathing difficulty - lying down

    MedlinePlus

    ... orthopnea Images Breathing References Davis JL, Murray JF. History and physical examination. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier ...

  15. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  16. Left Atrial Anatomy Relevant to Catheter Ablation

    PubMed Central

    Sánchez-Quintana, Damián; Cabrera, José Angel; Saremi, Farhood

    2014-01-01

    The rapid development of interventional procedures for the treatment of arrhythmias in humans, especially the use of catheter ablation techniques, has renewed interest in cardiac anatomy. Although the substrates of atrial fibrillation (AF), its initiation and maintenance, remain to be fully elucidated, catheter ablation in the left atrium (LA) has become a common therapeutic option for patients with this arrhythmia. Using ablation catheters, various isolation lines and focal targets are created, the majority of which are based on gross anatomical, electroanatomical, and myoarchitectual patterns of the left atrial wall. Our aim was therefore to review the gross morphological and architectural features of the LA and their relations to extracardiac structures. The latter have also become relevant because extracardiac complications of AF ablation can occur, due to injuries to the phrenic and vagal plexus nerves, adjacent coronary arteries, or the esophageal wall causing devastating consequences. PMID:25057427

  17. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  18. No-Touch Radiofrequency Ablation: A Comparison of Switching Bipolar and Switching Monopolar Ablation in Ex Vivo Bovine Liver

    PubMed Central

    Chang, Won; Lee, Sang Min; Han, Joon Koo

    2017-01-01

    Objective To evaluate the feasibility, efficiency, and safety of no-touch switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) using ex vivo bovine livers. Materials and Methods A pork loin cube was inserted as a tumor mimicker in the bovine liver block; RFA was performed using the no-touch technique in the SM (group A1; 10 minutes, n = 10, group A2; 15 minutes, n = 10) and SB (group B; 10 minutes, n = 10) modes. The groups were compared based on the creation of confluent necrosis with sufficient safety margins, the dimensions, and distance between the electrode and ablation zone margin (DEM). To evaluate safety, small bowel loops were placed above the liver surface and 30 additional ablations were performed in the same groups. Results Confluent necroses with sufficient safety margins were created in all specimens. SM RFA created significantly larger volumes of ablation compared to SB RFA (all p < 0.001). The DEM of group B was significantly lower than those of groups A1 and A2 (all p < 0.001). Although thermal injury to the small bowel was noted in 90%, 100%, and 30% of the cases in groups A1, A2, and B, respectively, full depth injury was noted only in 60% of group A2 cases. Conclusion The no-touch RFA technique is feasible in both the SB and SM modes; however, SB RFA appears to be more advantageous compared to SM RFA in the creation of an ablation zone while avoiding the unnecessary creation of an adjacent parenchymal ablation zone or adjacent small bowel injuries. PMID:28246508

  19. Oral breathing and speech disorders in children.

    PubMed

    Hitos, Silvia F; Arakaki, Renata; Solé, Dirceu; Weckx, Luc L M

    2013-01-01

    To assess speech alterations in mouth-breathing children, and to correlate them with the respiratory type, etiology, gender, and age. A total of 439 mouth-breathers were evaluated, aged between 4 and 12 years. The presence of speech alterations in children older than 5 years was considered delayed speech development. The observed alterations were tongue interposition (TI), frontal lisp (FL), articulatory disorders (AD), sound omissions (SO), and lateral lisp (LL). The etiology of mouth breathing, gender, age, respiratory type, and speech disorders were correlated. Speech alterations were diagnosed in 31.2% of patients, unrelated to the respiratory type: oral or mixed. Increased frequency of articulatory disorders and more than one speech disorder were observed in males. TI was observed in 53.3% patients, followed by AD in 26.3%, and by FL in 21.9%. The co-occurrence of two or more speech alterations was observed in 24.8% of the children. Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. [Application of the breath hydrogen test in gastroenterology].

    PubMed

    Loranskaia, I D; Panina, N A; Zheltakova, O V

    2006-01-01

    The diagnostic capacities of the breath hydrogen test in gastroenterology are discussed in the article. The authors describe the results of their own research--determination of the intestinal bacterial contamination in patients with chronic biliary pancreatitis with the help of the Micro H2 breath hydrogen analyzer.