Sample records for ablation icp ms

  1. Analysis and comparison of glass fragments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and ICP-MS.

    PubMed

    Trejos, Tatiana; Montero, Shirly; Almirall, José R

    2003-08-01

    The discrimination potential of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is compared with previously reported solution ICP-MS methods using external calibration (EC) with internal standardization and a newly reported solution isotope dilution (ID) method for the analysis of two different glass populations. A total of 91 different glass samples were used for the comparison study; refractive index and elemental composition were measured by the techniques mentioned above. One set consisted of 45 headlamps taken from a variety of automobiles that represents a range of 20 years of manufacturing dates. A second set consisted of 46 automotive glasses (side windows, rear windows, and windshields) representing casework glass from different vehicle manufacturers over several years. The element menu for the LA-ICP-MS and EC-ICP-MS methods include Mg, Al, Ca, Mn, Ce, Ti, Zr, Sb, Ga, Ba, Rb, Sm, Sr, Hf, La, and Pb. The ID method was limited to the analysis of two isotopes each of Mg, Sr, Zr, Sb, Ba, Sm, Hf, and Pb. Laser ablation analyses were performed with a Q switched Nd:YAG, 266 nm, 6 mJ output energy laser. The laser was used in depth profile mode while sampling using a 50 microm spot size for 50 sec at 10 Hz (500 shots). The typical bias for the analysis of NIST 612 by LA-ICP-MS was less than 5% in all cases and typically better than 5% for most isotopes. The precision for the vast majority of the element menu was determined generally less than 10% for all the methods when NIST 612 was measured (40 microg x g(-1)). Method detection limits (MDL) for the EC and LA-ICP-MS methods were similar and generally reported as less than 1 microg x g(-1) for the analysis of NIST 612. While the solution sample introduction methods using EC and ID presented excellent sensitivity and precision, these methods have the disadvantages of destroying the sample, and also involve complex sample preparation. The laser ablation method was simpler, faster, and

  2. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  3. Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Bi, Melody; Ruiz, Antonio M.; Gornushkin, Igor; Smith, Ben W.; Winefordner, James D.

    2000-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for profiling patterned thin metal layers on a polymer/silicon substrate. The parameters of the laser and ICP-MS operating conditions have been studied and optimized for this purpose. A new laser ablation chamber was designed and built to achieve the best spatial resolution. The results of the profiling by LA-ICP-MS were compared to those obtained from a laser ablation optical emission spectrometry (LA-OES) instrument, which measured the emission of the plasma at the sample surface, and thus, eliminated the time delay caused by the sample transport into the ICP-MS system. Emission spectra gave better spatial resolution than mass spectra. However, LA-ICP-MS provided much better sensitivity and was able to profile thin metal layers (on the order of a few nanometers) on the silicon surface. A lateral spatial resolution of 45 μm was achieved.

  4. Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS.

    PubMed

    Ek, Kristine H; Morrison, Gregory M; Lindberg, Peter; Rauch, Sébastien

    2004-08-01

    Cadmium, copper, lead, palladium, platinum, rhodium, and zinc profiles were investigated along feather shafts of raptor and other bird species by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The distribution of external versus internal metal contamination of feathers was investigated. The species examined were peregrine falcon (Falco peregrinus), sparrowhawk ( Accipiter nisus), willow grouse (Lagopus lagopus), and house sparrow (Passer domesticus) in Sweden. For habitat comparisons, total Cu, Pb, Zn, and Cd concentrations were analyzed by ICP-MS in feathers of the examined species as well as captive peregrine falcon. For investigation of metal distribution and correlation in different biological materials of raptors, total concentrations of Cu, Pb, Cd, and Zn were also investigated by ICP-MS in feathers, eggs, blood, feces, liver, and kidney of wild peregrine falcon from southwestern Sweden. Laser ablation of feathers revealed that Pb contamination is both external and internal, Zn contamination is internal, and Cd and Cu contamination is predominantly internal, with a few externally attached particles of high concentration. Pb, Cu, and Cd signal intensities were highest in urban habitats and contamination was mainly external in feathers. The background signal intensity of Zn was also higher in birds from urban habitats. The laser ablation profile of PGE (Pt, Pd, Rh) demonstrated that PGE contamination of feathers consists almost exclusively of externally attached PGE-containing particles, with little evidence of internally deposited PGE.Generally, total metal concentrations in feathers were highest in sparrowhawk and house sparrow due to their urban habitat. Total Cu, Zn, and Cd concentrations were highest in liver and kidney due to binding to metallothionein, while the total Pb concentration was highest in feces due to the high excretion rate of Pb. A decreasing temporal trend for Pb in feathers, showing that Pb levels in feathers have

  5. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  6. [Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].

    PubMed

    Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou

    2014-08-01

    In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

  7. Application of isotope-dilution laser ablation ICP-MS for direct determination of Pu concentrations in soils at pg g(-1) levels.

    PubMed

    Boulyga, Sergei F; Tibi, Markus; Heumann, Klaus G

    2004-01-01

    The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP-MS resulted in detection limits as low as 3x10(-13) g g(-1) for Pu isotopes in soil samples containing uranium at a concentration of a few microg g(-1). The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA-ICP-MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of alpha-spectrometry, ICP-MS with sample decomposition, and LA-ICP-IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of (239+240)Pu (9.8 +/- 3.0 mBq g(-1)) calculated from LA-ICP-IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4 +/- 0.2 mBq g(-1). However, the precision of LA-ICP-MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA-ICP-MS analysis of environmental samples.

  8. Laser-ablation ICP-MS as a tool for whole rock trace element analyses on fused powders

    NASA Astrophysics Data System (ADS)

    Girard, G.; Rooney, T. O.

    2013-12-01

    Here we present an accurate and precise technique for routine trace element analysis of geologic materials by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We focus on rock powders previously prepared for X-ray fluorescence by fusion in a Li2B4O7 flux, and subsequently quenched in a Pt mold to form a glass disk. Our method allows for the analysis up to 30 trace elements by LA-ICP-MS using a Photon-Machines Analyte G2 193 nm excimer laser coupled to a Thermo-Fisher Scientific ICAP Q quadrupole ICP-MS. Analyses are run as scans on the surface of the disks. Laser ablation conditions for which trace element fractionation effects are minimal have been empirically determined to be ~ 4 J m-2 fluence, at 10 Hz , and 10 μm s-1 scan speed, using a 110 μm laser beam size. Ablated material is carried into the ICP-MS by a He carrier at a rate of 0.75 L min-1. Following pre-ablation to remove surface particles, samples are ablated for 200 s, of which 140 s are used for data acquisition. At the end of each scan, a gas blank is collected for 30 s. Dwell times for each element vary between 15 and 60 μs, depending on abundance and instrument sensitivity, allowing 120 readings of each element during the data acquisition time window. To correct for variations in the total volume of material extracted by the laser, three internal standards are used, Ca, Fe and Zr. These elements are routinely analyzed by X-ray fluorescence by the Geoanalytical laboratory at Michigan State University with precision and accuracy of <5%. The availability of several internal standards allows for better correction of possible persisting laser ablation fractionation effects; for a particular trace element, we correct using the internal standard that best reproduces its ablation behavior. Our calibration is based on a combination of fused powders of US Geological Survey and Geological Survey of Japan rock standards, NIST SRM 612 glass, and US Geological Survey natural and

  9. Analysis of Trace Siderophile Elements at High Spatial Resolution Using Laser Ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Humayun, M.

    2006-05-01

    Laser ablation inductively coupled plasma mass spectometry is an increasingly important method of performing spatially resolved trace element analyses. Over the last several years we have applied this technique to measure siderophile element distributions at the ppm level in a variety of natural and synthetic samples, especially metallic phases in meteorites and experimental run products intended for trace element partitioning studies. These samples frequently require trace element analyses to be made at a finer spatial resolution (25 microns or better) than is frequently attained using LA-ICP-MS. In this presentation we review analytical protocols that were developed to optimize the LA-ICP-MS measurements for high spatial resolution. Particular attention is paid to the trade-offs involving sensitivity, ablation pit depth and diameter, background levels, and number of elements measured. To maximize signal/background ratios and avoid difficulties associated with ablating to depths greater than the ablation pit diameter, measurement involved integration of rapidly varying, transient but well-behaved signals. The abundances of platinum group elements and other siderophile elements in ferrous metals were calibrated against well-characterized standards, including iron meteorites and NIST certified steels. The calibrations can be set against the known abundance of an independently determined element, but normalization to 100 percent can also be employed, and was more useful in many circumstances. Evaluation of uncertainties incorporated counting statistics as well as a measure of instrumental uncertainty, determined by replicate analyses of the standards. These methods have led to a number of insights into the formation and chemical processing of metal in the early solar system.

  10. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    NASA Astrophysics Data System (ADS)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  11. Trace elemental analysis of glass and paint samples of forensic interest by ICP-MS using laser ablation solid sample introduction

    NASA Astrophysics Data System (ADS)

    Almirall, Jose R.; Trejos, Tatiana; Hobbs, Andria; Furton, Kenneth G.

    2003-09-01

    The importance of small amounts of glass and paint evidence as a means to associate a crime event to a suspect or a suspect to another individual has been demonstrated in many cases. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. Previous work has demonstrated the utility of elemental analysis by solution ICP-MS of small amounts of glass for the comparison between a fragment found at a crime scene to a possible source of the glass. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The direct solid sample introduction technique of laser ablation (LA) is reported as an alternative to the solution method. Direct solid sampling provides several advantages over solution methods and shows great potential for a number of solid sample analyses in forensic science. The advantages of laser ablation include the simplification of sample preparation, thereby reducing the time and complexity of the analysis, the elimination of handling acid dissolution reagents such as HF and the reduction of sources of interferences in the ionization plasma. Direct sampling also provides for essentially "non-destructive" sampling due to the removal of very small amounts of sample needed for analysis. The discrimination potential of LA-ICP-MS is compared with previously reported solution ICP-MS methods using external calibration with internal standardization and a newly reported solution isotope dilution (ID) method. A total of ninety-one different glass samples were used for the comparison study using the techniques mentioned. One set consisted of forty-five headlamps taken from a variety of automobiles representing a range of twenty years of manufacturing dates. A second set consisted of forty

  12. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    PubMed

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  13. Laser ablation ICP-MS applications using the timescales of geologic and biologic processes

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.

    2003-04-01

    Geochemists commonly examine geologic processes on timescales of 10^4--10^9 years, and accept that often age relations, e.g., chemical zoning in minerals, can only be measured in a relative sense. The progression of a geologic process that involves geochemical changes may be assessed using trace element microbeam techniques, because the textural, and therefore spatial context, of the analytical scheme can be preserved. However, quantification requires appropriate calibration standards. Laser ablation ICP-MS (LA-ICP-MS) is proving particularly useful now that appropriate standards are becoming available. For instance, trace element zoning patterns in primary sulfides (e.g., pyrite, sphalerite, chalcopyrite, galena) and secondary phases can be inverted to examine relative changes in fluid composition during cycles of hydrothermal mineralization. In turn such information provides insights into fluid sources, migration pathways and depositional processes. These studies have only become possible with the development of appropriate sulfide calibration standards. Another example, made possible with the development of appropriate silicate calibration standards, is the quantitative spatial mapping of REE variations in amphibolite-grade garnets. The recognition that the trace and major elements are decoupled provides a better understanding of the various sources of elements during metamorphic re-equilibration. There is also a growing realization that LA-ICP-MS has potential in biochemical studies, and geochemists have begun to turn their attention in this direction, working closely with biologists. Unlike many geologic processes, the timescales of biologic processes are measured in years to centuries and are frequently amenable to absolute dating. Examples that can be cited where LA-ICP-MS has been applied include annual trace metal variations in tree rings, corals, teeth, bones, bird feathers and various animal vibrissae (sea lion, walrus, wolf). The aim of such studies is

  14. Trace element study in scallop shells by laser ablation ICP-MS: the example of Ba/Ca ratios

    NASA Astrophysics Data System (ADS)

    Lorrain, A.; Pécheyran, C.; Paulet, Y.-M.; Chauvaud, L.; Amouroux, D.; Krupp, E.; Donard, O.

    2003-04-01

    As scallop shells grow incrementally at a rate of one line per day, environmental changes could then be evidenced on a daily basis. As an example for trace element incorporation studies, barium is a geochemical tracer that can be directly related to oceanic primary productivity. Hence, monitoring Ba/Ca variations in a scallop shell should give information about phytoplanktonic events encountered day by day during its life. The very high spatial resolution (typically 40 - 200 µm) and the high elemental sensitivity required can only be achieved by the combination of laser ablation coupled to inductively coupled plasma mass spectrometry. This study demonstrates that Laser ablation coupled to ICP-MS determination is a relevant tool for high resolution distribution measurement of trace elements in calcite matrix. The ablation strategy related to single line rastering and calcium normalisation were found to be the best analytical conditions in terms of reproducibility and sensitivity. The knowledge of P. maximus growth rings periodicity (daily), combined with LA-ICP-MS micro analysis allows the acquisition of time dated profiles with high spatial and thus temporal resolution. This resolution makes P. maximus a potential tool for environmental reconstruction and especially for accurate calibration of proxies. However, the relations among Ba/Ca peaks and phytoplanktonic events differed according to the animals and some inter-annual discrepancies complexify the interpretation.

  15. Usefulness of laser ablation ICP-MS for analysis of metallic particles released to oral mucosa after insertion of dental implants.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Makuch, Krzysztof; Barałkiewicz, Danuta

    2018-03-01

    Despite the fact that titanium is considered highly biocompatible, its presence in the oral cavity (an environment of frequently changing pH and temperature) may result in the release of titanium from intraosseous implants into the oral mucosa, causing a range of reactions from the human body. Fragments of oral mucosa collected from patients after dental implant insertion were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study revealed an elevated content of elements (Ti, Al, V) which are components of the metal implants and temporary cover screws. Dynamic ablation of the tissue surface was used in order to obtain maps of the content and distribution of analyzed elements. The material consisted of 30 oral mucosa tissue fragments collected 3-5 months after implantation and 10 samples collected before implantation (control group). The application of optical microscope allowed for indication and confirmation of the location of metal particles prior to LA-ICP-MS analysis. The so-obtained map permitted location of regions containing metal particles. LA-ICP-MS analysis revealed groups of samples with similar properties of metal particles, thus confirming that those metal particles were the main source of the elevated content of metals (Ti, Al, V) in the tissue after implantation. A calibration strategy based on matrix matched solid standards with powdered egg white proteins as matrix material was applied with 34 S as an internal standard. The accuracy of the analytical method was verified by ablating pellets of certified reference material ERM-BB422 Fish muscle. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: documenting the uptake of elemental toxicants.

    PubMed

    Seltzer, Michaeld; Berry, Kristinh

    2005-03-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  17. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants

    USGS Publications Warehouse

    Seltzer, M.D.; Berry, K.H.

    2005-01-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  18. Simultaneous in situ determination of both U-Th-Pb and Sm-Nd isotopes in monazite by laser ablation using a magnetic sector ICP-MS and a multicollector ICP-MS

    NASA Astrophysics Data System (ADS)

    Goudie, D. J.; Fisher, C. M.; Hanchar, J. M.; Davis, W. J.; Crowley, J. L.; Ayers, J. C.

    2012-12-01

    We present a method for the simultaneous in situ determination of U-Th-Pb and Sm-Nd isotopes in monazite, using a laser ablation (LA) system coupled to both a magnetic sector inductively coupled plasma mass spectrometer (HR) ICP-MS and a multicollector (MC) ICP-MS. The ablated material is split using a glass Y-connector and transported simultaneously to both mass spectrometers via helium carrier gas. The MC-ICP-MS is configured to provide relative Ce, Gd, and Eu contents, in addition to Sm and Nd. This approach obtains both age (U-Pb), tracer isotope (Sm-Nd), and REE element data (Ce, Gd, and Eu), in the same ablation volume, thus reducing sampling problems associated with fine-scale zoning and other internal structures. The accuracy and precision of the U-Pb data are demonstrated using six well characterized monazite reference materials from the Geological Survey of Canada (three of which are currently used as SHRIMP standards) and agree well with previously determined ID-TIMS ages. The accuracy of the Sm-Nd isotopic data was assessed by comparison to TIMS measurements on a well-characterized in-house monazite standard. The dual LA-ICP-MS method was applied to the Birch Creek Pluton (BCP) in the White Mountains, California in a case study to test the utility of U-Th-Pb dating coupled with Sm-Nd (and Ce, Gd, Eu) isotopic data for solving geologic problems. Previous work on the Cretaceous BCP [1] used Th-Pb ages coupled with O isotopic data to constrain hydrothermal fluid events, as recorded in monazite. The original study suggested that the high delta 18O monazite in Paleozoic country rocks adjacent to the BCP grew in response to fluid alternation associated with the intrusion of the BCP, based on overlapping age with the BCP. New monazite split-stream U-Pb and Sm-Nd data show that monazite from the BCP pluton and monazite from altered country rock have homogenous and overlapping initial Nd isotopic composition, further strengthening the proposal that monazite in

  19. LA-ICP-MS of magnetite: Methods and reference materials

    USGS Publications Warehouse

    Nadoll, P.; Koenig, A.E.

    2011-01-01

    Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.

  20. Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Boulyga, Sergei F.; Heumann, Klaus G.

    2005-04-01

    Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) with a special laser ablation system for bulk analyses (LINA-Spark(TM)-Atomiser) was applied for direct determinations of chlorine, bromine, and iodine in rock and sediment samples. Special attention was focused on possible inter-halogen fractionations and analyte/spike isotope fractionations by using LA-ICP-MS and LA-ICP-IDMS, respectively. A variation of Br/Cl and I/Cl element intensity ratios by a factor of 1.3-3 was observed when changing the nebulizer gas flow rate in the range of 0.84-1.0 L min-1 and the laser power density in the range of 2-10 GW cm-2, respectively. When using an internal standard for halogen quantification in LA-ICP-MS, this inter-element fractionation can cause systematic errors, which can be avoided by applying the isotope dilution technique. However, at high laser power densities (>5.7 GW cm-2 for iodine and >4.0 GW cm-2 for bromine and chlorine) the corresponding measured isotope ratio of the isotope-diluted sample deviates significantly from the target value. Under optimised conditions concentrations in the range of 30 [mu]g g-1-16 × 103 [mu]g g-1 for chlorine, <2-140 [mu]g g-1 for bromine, and <0.1-31 [mu]g g-1 for iodine were determined by LA-ICP-IDMS in two sediment reference materials (SRM 1646, SRM 2704) and three rock reference samples (GS-N, Granite; BX-N, Bauxite; DT-N, Disthene), which have not been certified for these halogens. The sediment results agree well within the given uncertainties with indicative values by different methods and the results of the rock samples with those obtained by negative thermal ionisation isotope dilution mass spectrometry. The detection limits of LA-ICP-IDMS are 8 [mu]g g-1 for chlorine, 1.7 [mu]g g-1 for bromine, and 0.1 [mu]g g-1 for iodine.

  1. High resolution analysis of trace elements in corals by laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Sinclair, Daniel J.; Kinsley, Leslie P. J.; McCulloch, Malcolm T.

    1998-06-01

    A method has been developed using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for rapid high resolution analysis of B, Mg, Sr, Ba, and U in corals. Corals represent a challenge for a microbeam technique due to their compositional and structural heterogeneity, their nonsilicate matrix, and their unusual range of trace element compositions relative to available standards. The method employs an argon-fluoride excimer laser (λ = 193 nm), masked to produce a beam 600 μm wide by 20 μm across to average ablation sampling over a range of structural features. Coral sections are scanned at a constant rate beneath the laser to produce a continuous sampling of the coral surface. Sensitivity drift is controlled by careful preconditioning of the ICP-MS to carbonate material, and standardisation is carried out by bracketing each traverse down the coral sample by analyses of a CaSiO 3 glass synthesised from coral powder. The method demonstrates excellent reproducibility of both the shape and magnitude of coralline trace element profiles, with typical precisions of between 1.0 and 3.7% based on analysis of the synthetic standard. Accuracy varies between 3.8% for B and 31% for U. Discrepancies are attributed to heterogeneities in the synthetic standard, and matrix differences between the silicate standard and carbonate sample. The method is demonstrated by analysis of a coral collected from Australia's Great Barrier Reef near a weather station recording in-situ sea-surface-temperature (SST). The elements B, Mg, Sr, and U show seasonal compositional cycles, and tentative calibrations against SST have been derived. Using independent ICP-MS solution estimates of the coral composition to correct for standardisation uncertainties, the following calibrations have been derived: B/Ca (μmol/mol)= 1000 (±20)- 20.6 (±0.8)× SSTMg/Ca (mmol/mol)= 0.0 (±0.3)+ 0.16 (±0.01)× SSTSr/Ca (mmol/mol)= 10.8 (±0.1)- 0.070 (±0.004)× SSTU/Ca (μmol/mol)= 2.24 (±0

  2. Breaking through the uncertainty ceiling in LA-ICP-MS U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, M.

    2016-12-01

    Sources of systematic uncertainty associated with session-to-session bias are the dominant contributor to the 2% (2s) uncertainty ceiling that currently limits the accuracy of LA-ICP-MS U-Pb geochronology. Sources include differential downhole fractionation (LIEF), `matrix effects' and ablation volume differences, which result in irreproducibility of the same reference material across sessions. Current mitigation methods include correcting for LIEF mathematically, using matrix-matched reference materials, annealing material to reduce or eliminate radiation damage effects and tuning for robust plasma conditions. Reducing the depth and volume of ablation can also mitigate these problems and should contribute to the reduction of the uncertainty ceiling. Reducing analysed volume leads to increased detection efficiency, reduced matrix-effects, eliminates LIEF, obviates ablation rate differences and reduces the likelihood of intercepting complex growth zones with depth, thereby apparently improving material homogeneity. High detection efficiencies (% level) and low sampling volumes (20um box, 1-2um deep) can now be achieved using MC-ICP-MS such that low volume ablations should be considered part of the toolbox of methods targeted at improving the reproducibility of LA-ICP-MS U-Pb geochronology. In combination with other strategies these improvements should be feasible on any ICP platform. However, reducing the volume of analysis reduces detected counts and requires a change of analytical approach in order to mitigate this. Appropriate strategies may include the use of high efficiency cell and torch technologies and the optimisation of acquisition protocols and data handling techniques such as condensing signal peaks, using log ratios and total signal integration. The tools required to break the 2% (2s) uncertainty ceiling in LA-ICP-MS U-Pb geochronology are likely now known but require a coherent strategy and change of approach to combine their implementation and realise

  3. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  4. Laser ablation ICP-MS analysis on nano-powder pellets and applications to granite bulk rock analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shitou; Karius, Volker; Wörner, Gerhard

    2017-04-01

    Granites are a ubiquitous component of the continental crust and knowing their precise trace element signatures is essential in understanding the origins and evolution of the continental crust. ICP-MS bulk analysis of granite is generally conducted on solution after acid-digestion. However this technique has several deficiencies related to the difficulty of completely dissolving accessary minerals such as zircon and the instability/adsorption of high valence trace elements (Nb, Ta et al.) in acid solutions. The development of a nano-powder pellet technique by using wet milling procedure, and its combination with laser ablation ICP-MS has been proposed to overcome these problems. In this study, we produced nano-powders from a series of granite rock standards by wet milling in agate using a high power planetary ball mill instrument. The procedure was tested and optimized by modifying parameters (ball to powder ratio, water to powder ratio, milling power etc.). Characterization of nano-powders was conducted by various techniques including electron microprobe (EMP), secondary electron imaging, polarizing microscope, and laser particle size analyzer (LPSA) and laser scanning confocal microscope (LSCM). Particle sizes range from a few nm to 5 μm with a small secondary mode at around 10 to 20 μm that probably represent particle aggregates rather than remaining crystal grains after milling. Pellets of 5 mm in diameter were pressed into molds of cellulose at 1.75 *103 N/cm2. Surface roughness of the pellets was measured by LSCM and gave a Ra of 0.494 μm, which is an order higher than the surface of polished ATGH-G reference glass surface (Ra: 0.048 μm), but sufficient for laser ablation. Sources of contamination either from abrading agate balls or from ultrapure water were evaluated and quantified. The homogeneity of powder pellets down to less than 5 μm size was documented based on EMPA element mapping and statistical analyses of LA-ICP-MS in discrete spot and line

  5. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    PubMed

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  6. Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2006-01-01

    The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and

  7. Imaging of metal bioaccumulation in hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablation ICP-MS.

    PubMed

    Koelmel, Jeremy; Amarasiriwardena, Dulasiri

    2012-09-01

    Understanding Pb removal from the translocation stream is vital to engineering Pb hyperaccumulation in above ground organs, which would enhance the economic feasibility of Pb phytoextraction technologies. We investigated Cu, Pb, Sb and Zn distributions in Hay-scented fern (Dennstaedtia punctilobula) rhizomes on shooting range soils by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), analyzing digested rhizomes, stems, and fronds using ICP-MS. Nutrients Cu and Zn concentrated in fronds while toxic elements Pb and Sb did not, showing potential Pb and Sb sequestration in the rhizome. Frond and rhizome concentration of Pb was 0.17 ± 0.10% and 0.32 ± 0.21% of dry biomass, respectively. The 208Pb/13C and 121Sb/13C determined by LA-ICP-MS increased from inner sclerotic cortex to the epidermis, while Pb concentrated in the starchy cortex only in contaminated sites. These results suggest that concentration dependent bioaccumulation in the rhizome outer cortex removes Pb from the vascular transport stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A New Multielement Method for LA-ICP-MS Data Acquisition from Glacier Ice Cores.

    PubMed

    Spaulding, Nicole E; Sneed, Sharon B; Handley, Michael J; Bohleber, Pascal; Kurbatov, Andrei V; Pearce, Nicholas J; Erhardt, Tobias; Mayewski, Paul A

    2017-11-21

    To answer pressing new research questions about the rate and timing of abrupt climate transitions, a robust system for ultrahigh-resolution sampling of glacier ice is needed. Here, we present a multielement method of LA-ICP-MS analysis wherein an array of chemical elements is simultaneously measured from the same ablation area. Although multielement techniques are commonplace for high-concentration materials, prior to the development of this method, all LA-ICP-MS analyses of glacier ice involved a single element per ablation pass or spot. This new method, developed using the LA-ICP-MS system at the W. M. Keck Laser Ice Facility at the University of Maine Climate Change Institute, has already been used to shed light on our flawed understanding of natural levels of Pb in Earth's atmosphere.

  9. In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS.

    PubMed

    Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Zhao, Kui-Dong; Duan, Deng-Fei

    2017-12-19

    Carbon isotopes have been widely used in tracing a wide variety of geological and environmental processes. The carbon isotope composition of bulk rocks and minerals was conventionally analyzed by isotope ratio mass spectrometry (IRMS), and, more recently, secondary ionization mass spectrometry (SIMS) has been widely used to determine carbon isotope composition of carbon-bearing solid materials with good spatial resolution. Here, we present a new method that couples a RESOlution S155 193 nm laser ablation system with a Nu Plasma II MC-ICP-MS, with the aim of measuring carbon isotopes in situ in carbonate minerals (i.e., calcite and aragonite). Under routine operating conditions for δ 13 C analysis, instrumental bias generally drifts by 0.8‰-2.0‰ in a typical analytical session of 2-3 h. Using a magmatic calcite as the standard, the carbon isotopic composition was determined for a suite of calcite samples with δ 13 C values in the range of -6.94‰ to 1.48‰. The obtained δ 13 C data are comparable to IRMS values. The combined standard uncertainty for magmatic calcite is <0.3‰ (1s). No significant matrix effects have been identified in calcite with the amplitude of chemical composition variation (i.e., MnO, SrO, MgO, or FeO) up to 2.5 wt %. Two modern corals were investigated using magmatic calcite as the calibration standard, and the average δ 13 C values for both corals are similar to the bulk IRMS values. Moreover, coral exhibits significant heterogeneity in carbon isotope compositions, with differences up to 4.85‰ within an individual coral. This study indicates that LA-MC-ICP-MS can serve as an appropriate method to analyze carbon isotopes of carbonate minerals in situ.

  10. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  11. Examination of the Mass Transfer of Additive Elements in Barium Titanate Ceramics during Sintering Process by Laser Ablation ICP-MS.

    PubMed

    Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki

    2018-01-01

    The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.

  12. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS

    NASA Astrophysics Data System (ADS)

    Willigers, B. J. A.; Baker, J. A.; Krogstad, E. J.; Peate, D. W.

    2002-03-01

    To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (≪1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ

  13. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS

    NASA Astrophysics Data System (ADS)

    Eggins, S. M.; Kinsley, L. P. J.; Shelley, J. M. G.

    1998-05-01

    We have used an ArF excimer laser coupled to a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) for the measurement of a range of elements during excavation of a deepening ablation pit in a synthetic glass (NIST 612). Analyte behaviour shows progressive volatile element enrichment at shallow hole depths, with a change to refractory element enrichment as the ablation pit deepens further. Examination of ablation pit morphology and the surface condensate deposited around the ablation site reveals the importance of sequential condensation of refractory, then volatile phases from the cooling plasma plume after the end of the laser pulse. We interpret the observed element fractionation behaviour to reflect a change in ablation processes from photothermal dominated to plasma dominated mechanisms. The development of the surface deposit is greatly reduced by ablating in an ambient atmosphere of He instead of Ar and is accompanied by a two- to four-fold increase in ICP-MS sensitivity.

  14. Association of glass fragments by their trace elemental content using ICP-MS and LA-ICP-MS in the analysis scheme

    NASA Astrophysics Data System (ADS)

    Almirall, Jose R.; Montero, Shirly; Furton, Kenneth G.

    2002-08-01

    The importance of glass as evidence of association between a crime event and a suspect has been recognized for some time. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. The physical and chemical properties of glass can be used to differentiate between possible sources and as evidence of association between two fragments of glass thought to originate from the same source. Refractive index (RI) comparisons have been used for this purpose but due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses, even if the glass originates from different sources. Elemental analysis methods such as NAA, XRF, ICP-AES, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have also been used for the comparison of trace elemental compositions and these techniques have been shown to provide an improvement in the discrimination of glass fragments over RI comparisons alone. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The methodology for solution analysis (digestion procedure) and solid sample analysis (laser ablation) of glass is reported and the analytical results are compared. An isotope dilution method is also reported as a high precision technique for elemental analysis of glass fragments. The optimum sampling parameters for laser ablation, for semi-quantitative analysis and element ratio comparisons are also presented. Finally, the results of a case involving the breaking of 15 vehicle windows in an airport parking lot and the association of a suspect to the breakings by the glass fragments found on his person are also presented.

  15. The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.

    2016-01-01

    Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conductedmore » by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.« less

  16. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.

    PubMed

    Becker, J S; Tenzler, D

    2001-07-01

    The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.

  18. Quantitative bioimaging of trace elements in the human lens by LA-ICP-MS.

    PubMed

    Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; González-Iglesias, Héctor; Coca-Prados, Miguel; Sanz-Medel, Alfredo

    2014-04-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Fe, Cu and Zn in cryostat sections of human eye lenses and for depth profiling analysis in bovine lenses. To ensure a tight temperature control throughout the experiments, a new Peltier-cooled laser ablation cell was employed. For quantification purposes, matrix-matched laboratory standards were prepared from a pool of human lenses from eye donors and spiked with standard solutions containing different concentrations of natural abundance Fe, Cu and Zn. A normalisation strategy was also carried out to correct matrix effects, lack of tissue homogeneity and/or instrumental drifts using a thin gold film deposited on the sample surface. Quantitative images of cryo-sections of human eye lenses analysed by LA-ICP-MS revealed a homogeneous distribution of Fe, Cu and Zn in the nuclear region and a slight increase in Fe concentration in the outer cell layer (i.e. lens epithelium) at the anterior pole. These results were assessed also by isotope dilution mass spectrometry, and Fe, Cu and Zn concentrations determined by ID-ICP-MS in digested samples of lenses and lens capsules.

  19. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences

    NASA Astrophysics Data System (ADS)

    Xu, Gu-feng; Wang, Hong-mei

    2001-08-01

    Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.

  20. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  1. Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis.

    PubMed

    Seltzer, Michael D; Lance, Valentine A; Elsey, Ruth M

    2006-06-15

    A laser ablation ICP-MS technique has been used to examine the radial distribution of lead in transverse sections of alligator femur. Annual bone growth in the femur results in the deposition of incremental layers of calcified tissue at the periphery of existing bone. Patterns of lead concentration within these layers provide a record of time-dependent accumulation from which exposure history can potentially be deduced. Femur specimens obtained from captive-reared alligators exhibited levels of lead accumulation that were entirely consistent with previously documented clinical signs of lead intoxication. In contrast, femurs obtained from wild alligators contained only minor amounts of lead that were likely accumulated as a result of incidental exposure.

  2. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  3. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Kalvoda, Jiří; Nováková, Hana; Škoda, Radek; Kanický, Viktor

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp ( Cyprinus carpio) scales: A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 μm width and 50 μm depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  4. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    USGS Publications Warehouse

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  5. High sensitivity in-situ analysis of light lithophile (Li, Be, B) and alkali (Rb, Cs) elements by laser ablation magnetic sector ICP-MS: application to back arc basin magmatism

    NASA Astrophysics Data System (ADS)

    Kent, A. J.; Ungerer, C. A.

    2003-12-01

    Light lithophile (B, Be, Li) and alkali elements (Rb, Cs) provide many constraints on the origin and evolution of primitive magmatic rocks. However these elements are often present at low abundances, requiring large sample volumes, and may be strongly effected by alteration or sample contamination. We have developed a technique for rapid, in-situ, analysis of B, Be, Li, Rb and Cs abundances in glasses, glass inclusions and minerals using laser ablation microsampling and analysis by magnetic sector ICP-MS. By coupling the high sensitivity, dynamic range and low backgrounds of the ICP-MS with the speed and minimal sample preparation requirements of laser ablation, we can analyze these elements with detection limits that rival many solution-based techniques in ~60 s and using << 200 ng of material. Analyses are conducted using a NewWave DUV 193 nm ArF Excimer laser system, with He carrier gas. Samples were ablated at energies of 10-12 mJ/cm2 with pulse rates between 2-5 hz, and by either translating a 50 μ m laser spot over the surface at a rate of 5 μ m/s or by maintaining a stationary 50-70 μ m spot. Ablated material was analyzed with a VG Axiom single collector ICP-MS using a high-sensitivity sampler cone. All peaks were checked at high mass resolving power for molecular interferences, and analyses were conducted at low resolving power to maximize transmission. Careful monitoring of backgrounds was required for low-abundance measurements. Calculated detection limits are 1-2 ppb (Cs, Be), 5-10 ppb (Li) and 15-20 ppb (B, Rb). Surface contamination was removed with a pre-analysis ablation pass, and the small size of the laser spot allowed us to avoid altered and devitrified areas. Analysis of standard glasses showed excellent agreement with accepted values and repeat analyses suggest external errors are typically < 5-10%. Glasses from the Lau Basin show strong enrichments in B, Rb and Cs that correlate with a slab-fluid signature. B, Be Rb and Cs contents are very

  6. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  7. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  8. Trace analysis of high-purity graphite by LA-ICP-MS.

    PubMed

    Pickhardt, C; Becker, J S

    2001-07-01

    Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.

  9. Quantitative mapping of elements in basil leaves (Ocimum basilicum) based on cesium concentration and growth period using laser ablation ICP-MS.

    PubMed

    Ko, Jung Aa; Furuta, Naoki; Lim, Heung Bin

    2018-01-01

    Quantitative elemental mapping of metallic pollutants in sweet basil was studied by laser ablation (LA)-ICP-MS. For this, the sweet basil was cultivated in Hoagland nutrient solution spiked with 100 and 1000 ng mL -1 of Cs for 10-60 days. Then, the Cs distribution in collected leaves was determined by LA-ICP-MS using lab-synthesized standard pellets based on NIST 1573a tomato leaves. For comparison, S, Ca, and K were also simultaneously determined in this measurement with a 13 C + signal from the leaves as an internal standard. The obtained calibration curves showed linear coefficient of determination (R 2 ) of 0.991 for K and 0.999 for Cs. The concentration of Cs measured in the basil leaves increased with growth period and pollutant concentration, and accumulation followed the order of leaf margin, petiole, midrib, and veins. Although no visible symptom was detected, significant suppression of the growth rate was observed due to the presence of high-concentration Cs. The experimental model demonstrated herein showed potential for studying the influence of radioactive pollutants on plants and other organisms in the food chain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bioimaging of isosteric osmium and ruthenium anticancer agents by LA-ICP-MS.

    PubMed

    Klose, Matthias H M; Theiner, Sarah; Kornauth, Christoph; Meier-Menches, Samuel M; Heffeter, Petra; Berger, Walter; Koellensperger, Gunda; Keppler, Bernhard K

    2018-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatial distribution of two metallodrugs with anticancer activities in vivo, namely the organoruthenium plecstatin-1 (1) and its isosteric osmium analogue (2), in liver, kidneys, muscles and tumours of treated mice bearing a CT-26 tumour after single-dose i.p. administration. To the best of our knowledge, this is the first time that the spatial distribution of an osmium drug candidate has been investigated using LA-ICP-MS in tissues. Independent measurements of the average ruthenium and osmium concentration via microwave digestion and ICP-MS in organs and tumours were in good agreement with the LA-ICP-MS results. Matrix-matched standards (MMS) ranging from 1 to 30 μg g -1 were prepared to quantify the spatial distributions of the metals and the average metal content of the MMS samples was additionally quantified by ICP-MS after microwave digestion. The recoveries for osmium and ruthenium in the MMS were 105% and 101% on average, respectively, validating the sample preparation procedure of the MMS. Preparation of MMS was carried out under an argon atmosphere to prevent oxidation of osmium-species to the volatile OsO 4 . The highest metal concentrations were found in the liver, followed by kidney, lung and tumour tissues, while muscles displayed only very low quantities of the respective metal. Both metallodrugs accumulated in the cortex of the kidneys more strongly compared to the medulla. Interestingly, osmium from 2 was largely located at the periphery and tissue edges, whereas ruthenium from 1 was observed to penetrate deeper into the organs and tumours.

  11. Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?

    PubMed

    Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis

    2010-11-01

    Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. © 2010 American Academy of Forensic Sciences.

  12. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods

    NASA Astrophysics Data System (ADS)

    Böhme, Steffi; Stärk, Hans-Joachim; Meißner, Tobias; Springer, Armin; Reemtsma, Thorsten; Kühnel, Dana; Busch, Wibke

    2014-09-01

    In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size ( x BET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 ( x BET = 111 nm) and Alu3 ( x BET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2-8 µg Al2O3/cm2 cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.

  13. Developments in ICP-MS: electrochemically modulated liquid chromatography for the clean-up of ICP-MS blanks and reduction of matrix effects by flow injection ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Cory Thomas

    2008-01-01

    The focus of this dissertation is the development of techniques with which to enhance the existing abilities of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful technique for trace metal analysis in samples of many types, but like any technique it has certain strengths and weaknesses. Attempts are made to improve upon those strengths and to overcome certain weaknesses.

  14. New Possibilities for the Accurate in Situ Determination of Chalcophile and Siderophile Trace Elements by Laser Ablation Collision and Reaction Cell ICP-MS

    NASA Astrophysics Data System (ADS)

    Mason, P. R.

    2004-05-01

    Our knowledge of how chalcophile and siderophile elements partition in minerals is limited, mainly due to the lack of suitable techniques for their accurate in situ determination. Host minerals (e.g. sulphides) are typically of small size (<30 μ m) and highly heterogeneous in composition, requiring analysis of high spatial resolution. Concentrations of chalcophile elements in silicates and oxides are low (sub μ gg-1) and thus challenging to measure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), offering high sensitivity and good spatial resolution (10-100 μ m) is thus highly suited for this purpose. Unfortunately, the widespread use of this technique has been limited by enhanced problems specific to chalcophile and siderophile elements. These include inaccuracy due to the presence of spectral interferences, elemental fractionation during ablation/ionization and the lack of suitable calibration standards. Polyatomic spectral interferences, present either as a background component (e.g. O2+, ArAr+) or based around the recombination of matrix elements with argon (e.g. ArS+, ArNi+) hinder accurate analysis. These depend upon the relative concentrations of major matrix components and trace elements to be measured and are significant in many relevant minerals (e.g. sulphides). The use of a collision and reaction cells in ICP-MS is a new method for selective interference attenuation, significantly improving detection limits for elements such as Fe, S and Se by between 1 and 4 orders of magnitude. ArNi+ and ArCu+ interferences in sulphides can be attenuated by at least an order of magnitude leading to improved accuracy for the measurement of the Platinum Group elements Rh and Ru. Sulphur isotopes can be measured interference-free at m/z=32 and 34 by eliminating background O2+. These improvements open up new possibilities for the use of LA-ICP-MS in trace element and isotopic studies at the lowest concentration levels or where sample

  15. Measurement of longitudinal sulfur isotopic variations by laser ablation MC-ICP-MS in single human hair strands.

    PubMed

    Santamaria-Fernandez, Rebeca; Giner Martínez-Sierra, Justo; Marchante-Gayón, J M; García-Alonso, J Ignacio; Hearn, Ruth

    2009-05-01

    A new method for the measurement of longitudinal variations of sulfur isotope amount ratios in single hair strands using a laser ablation system coupled to a multicollector inductively coupled plasma mass spectrometer (LA-MC-ICP-MS) is reported here for the first time. Ablation parameters have been optimized for the measurement of sulfur isotope ratios in scalp human hair strands of 80-120-microm thickness and different washing procedures have been evaluated. The repeatability of the method has been tested and the ability to measure sulfur isotopic variations in 1,000-microm-long hair segments has been evaluated. A horse hair sample previously characterized for carbon and nitrogen isotope ratios in an interlaboratory study has been characterized by LA-MC-ICP-MS to be used as an in-house standard for the bracketing of human hair strands. (34)S/(32)S isotope amount ratios have been measured and corrected for instrumental mass bias adopting the external standardization approach using National Institute of Standards and Technology (NIST) RM8553 and full uncertainty budgets have been calculated using the Kragten approach. Results are reported as both (34)S/(32)S isotope amount ratios and deltaS(V-CDT) values (sulfur isotopic differences relative to a reference sample expressed in the Vienna Canyon Diablo Troilite (V-CDT) scale) calculated using NIST RM8553, NIST RM8554, and NIST RM8556 to anchor results to the V-CDT scale. The main advantage of the new method versus conventional gas source isotope ratio mass spectrometry measurements is that longitudinal variations in sulfur isotope amount ratios can be resolved. Proof of concept is shown with human scalp hair strands from three individuals, two UK residents and one traveler (long periods of time abroad). The method enables monitoring of longitudinal isotope ratio variations in single hair strands. Absolute ratios are reported and delta(34)S(V-CDT) values are plotted for comparison. Slight variations of <1.2 per

  16. Environmental applications of single collector high resolution ICP-MS.

    PubMed

    Krachler, Michael

    2007-08-01

    The number of environmental applications of single collector high resolution ICP-MS (HR-ICP-MS) has increased rapidly in recent years. There are many factors that contribute to make HR-ICP-MS a very powerful tool in environmental analysis. They include the extremely low detection limits achievable, tremendously high sensitivity, the ability to separate ICP-MS signals of the analyte from spectral interferences, enabling the reliable determination of many trace elements, and the reasonable precision of isotope ratio measurements. These assets are improved even further using high efficiency sample introduction systems. Therefore, external factors such as the stability of laboratory blanks are frequently the limiting factor in HR-ICP-MS analysis rather than the detection power. This review aims to highlight the most recent applications of HR-ICP-MS in this sector, focusing on matrices and applications where the superior capabilities of the instrumental technique are most useful and often ultimately required.

  17. High resolution mass spectrometric brain proteomics by MALDI-FTICR-MS combined with determination of P, S, Cu, Zn and Fe by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Przybylski, Michael; Becker, J. Sabine

    2007-03-01

    The combination of atomic and molecular mass spectrometric methods was applied for characterization and identification of several human proteins from Alzheimer's diseased brain. A brain protein mixture was separated by two-dimensional (2D) gel electrophoresis and the protein spots were fast screened by microlocal analysis using LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) in respect to phosphorus, sulfur, copper, zinc and iron content. Five selected protein spots in 2D gel containing these elements were investigated after tryptic digestion by matrix assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Than element concentrations (P, Cu, Zn and Fe) were determined in three identified human brain proteins by LA-ICP-MS in the 2D gel. Results of structure analysis of human brain proteins by MALDI-FTICR-MS were combined with those of the direct determination of phosphorus, copper, zinc and iron concentrations in protein spots with LA-ICP-MS. From the results of atomic and molecular mass spectrometric techniques the human brain proteins were characterized in respect to their structure, sequence, phosphorylation state and metal content as well.

  18. Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas

    2014-05-01

    Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected

  19. Self-aliquoting micro-grooves in combination with laser ablation-ICP-mass spectrometry for the analysis of challenging liquids: quantification of lead in whole blood.

    PubMed

    Nischkauer, Winfried; Vanhaecke, Frank; Limbeck, Andreas

    2016-08-01

    We present a technique for the fast screening of the lead concentration in whole blood samples using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The whole blood sample is deposited on a polymeric surface and wiped across a set of micro-grooves previously engraved into the surface. The engraving of the micro-grooves was accomplished with the same laser system used for LA-ICP-MS analysis. In each groove, a part of the liquid blood is trapped, and thus, the sample is divided into sub-aliquots. These aliquots dry quasi instantly and are then investigated by means of LA-ICP-MS. For quantification, external calibration against aqueous standard solutions was relied on, with iron as an internal standard to account for varying volumes of the sample aliquots. The (208)Pb/(57)Fe nuclide ratio used for quantification was obtained via a data treatment protocol so far only used in the context of isotope ratio determination involving transient signals. The method presented here was shown to provide reliable results for Recipe ClinChek® Whole Blood Control levels I-III (nos. 8840-8842), with a repeatability of typically 3 % relative standard deviation (n = 6, for Pb at 442 μg L(-1)). Spiked and non-spiked real whole blood was analysed as well, and the results were compared with those obtained via dilution and sectorfield ICP-MS. A good agreement between both methods was observed. The detection limit (3 s) for lead in whole blood was established to be 10 μg L(-1) for the laser ablation method presented here. Graphical Abstract Micro-grooves are filled with whole blood, dried, and analyzed by laser ablation ICP-mass spectrometry. Notice that the laser moves in perpendicular direction with regard to the micro-grooves.

  20. LA-ICP-MS depth profile analysis of apatite: Protocol and implications for (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Johnstone, Samuel; Hourigan, Jeremy; Gallagher, Christopher

    2013-05-01

    Heterogeneous concentrations of α-producing nuclides in apatite have been recognized through a variety of methods. The presence of zonation in apatite complicates both traditional α-ejection corrections and diffusive models, both of which operate under the assumption of homogeneous concentrations. In this work we develop a method for measuring radial concentration profiles of 238U and 232Th in apatite by laser ablation ICP-MS depth profiling. We then focus on one application of this method, removing bias introduced by applying inappropriate α-ejection corrections. Formal treatment of laser ablation ICP-MS depth profile calibration for apatite includes construction and calibration of matrix-matched standards and quantification of rates of elemental fractionation. From this we conclude that matrix-matched standards provide more robust monitors of fractionation rate and concentrations than doped silicate glass standards. We apply laser ablation ICP-MS depth profiling to apatites from three unknown populations and small, intact crystals of Durango fluorapatite. Accurate and reproducible Durango apatite dates suggest that prolonged exposure to laser drilling does not impact cooling ages. Intracrystalline concentrations vary by at least a factor of 2 in the majority of the samples analyzed, but concentration variation only exceeds 5x in 5 grains and 10x in 1 out of the 63 grains analyzed. Modeling of synthetic concentration profiles suggests that for concentration variations of 2x and 10x individual homogeneous versus zonation dependent α-ejection corrections could lead to age bias of >5% and >20%, respectively. However, models based on measured concentration profiles only generated biases exceeding 5% in 13 of the 63 cases modeled. Application of zonation dependent α-ejection corrections did not significantly reduce the age dispersion present in any of the populations studied. This suggests that factors beyond homogeneous α-ejection corrections are the dominant

  1. Evolving Pb isotope signatures of London airborne particulate matter (PM 10)-constraints from on-filter and solution-mode MC-ICP-MS.

    PubMed

    Noble, Stephen R; Horstwood, Matthew S A; Davy, Pamela; Pashley, Vanessa; Spiro, Baruch; Smith, Steve

    2008-07-01

    Pb isotope compositions of biologically significant PM(10) atmospheric particulates from a busy roadside location in London UK were measured using solution- and laser ablation-mode MC-ICP-MS. The solution-mode data for PM(10) sampled between 1998-2001 document a dramatic shift to increasingly radiogenic compositions as leaded petrol was phased out. LA-MC-ICP-MS isotope analysis, piloted on a subset of the available samples, is shown to be a potential reconnaissance analytical technique. PM(10) particles trapped on quartz filters were liberated from the filter surface, without ablating the filter substrate, using a 266 nm UV laser and a dynamic, large diameter, low-fluence ablation protocol. The Pb isotope evolution noted in the London data set obtained by both analytical protocols is similar to that observed elsewhere in Western Europe following leaded petrol elimination. The data therefore provide important baseline isotope composition information useful for continued UK atmospheric monitoring through the early 21(st) century.

  2. Elemental and Isotopic Analysis of Uranium Oxide an NIST Glass Standards by FEMTOSECOND-LA-ICP-MIC-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Chris; Zamzow, Daniel S.; McBay, Eddie H.

    2009-06-01

    The objective of this work was to test and demonstrate the analytical figures of merit of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-multi-ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system was designed and assembled at Ames Laboratory and shipped to Oak Ridge National Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the integrated systems was February 2-6, 2009. Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS transient signal. The capability of performing high sensitivity, spatiallymore » resolved, isotopic analyses with high accuracy and precision and with virtually no sample preparation makes fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to generate particles from the sample that are more representative of the bulk composition, thereby minimizing weaknesses encountered in previous work using nanosecond-LA (ns-LA). The improvement of fs- over ns-LA sampling arises from the different mechanisms for transfer of energy into the sample in these two laser pulse-length regimes. The shorter duration fs-LA pulses induce less heating and cause less damage to the sample than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer correlation between the composition of the ablated particles and that of the original solid sample), which improves accuracy for both intra- and inter-elemental analysis. The primary samples analyzed in this work are (a) solid uranium oxide powdered samples having different {sup 235}U to {sup 238}U concentration ratios, and (b) glass reference materials (NIST 610, 612, 614, and 616). Solid uranium oxide samples containing {sup 235}U in depleted, natural, and

  3. High-Precision Measurement of Eu/Eu* in Geological Glasses via LA-ICP-MS Analysis

    NASA Technical Reports Server (NTRS)

    Tang, Ming; McDonough, William F.; Arevalo, Ricardo, Jr.

    2014-01-01

    Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements. In this work, however, we observed fractionation between light rare earth elements (LREEs) and heavy rare earth elements (HREEs) when using ablation strategies involving large spot sizes (greater than 100 millimeters) and line scanning mode. In addition: (1) ion yields decrease when using spot sizes above 100 millimeters; (2) (Eu/Eu*)(sub raw) (i.e. Europium anomaly) positively correlates with carrier gas (He) flow rate, which provides control over the particle size distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)(sub raw) shows a positive correlation with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate change, roughly correlate with REE condensation temperatures. The REE fractionation is likely driven by the slight but significant difference in their condensation temperatures. Large particles may not be completely dissociated in the ICP and result in preferential evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu is less refractory than Sm and Gd. The extent of fractionation depends upon the particle size distribution of the aerosol, which in turn is influenced by the laser parameters and matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion of large particles than high aspect ratio ablation, as confirmed by measurements of particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation introduces particles that cannot be decomposed and/or atomized by the ICP and thus results in exacerbated elemental fractionation. Accurate quantification of REE concentrations and Eu/Eu* requires reduction of large particle production during laser ablation. For the reference

  4. Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy.

    PubMed

    Linko, S; Revitzer, H; Zilliacus, R; Kortesniemi, M; Kouri, M; Savolainen, S

    2008-01-01

    The concept of boron neutron capture therapy (BNCT) involves infusion of a (10)B containing tracer into the patient's bloodstream followed by local neutron irradiation(s). Accurate estimation of the blood boron level for the treatment field before irradiation is required. Boron concentration can be quantified by inductively coupled plasma atomic emission spectrometry (ICP-AES), mass spectrometry (ICP-MS), spectrofluorometric and direct current atomic emission spectrometry (DCP-AES) or by prompt gamma photon detection methods. The blood boron concentrations were analysed and compared using ICP-AES and ICP-MS to ensure congruency of the results if the analysis had to be changed during the treatment, e.g. for technical reasons. The effect of wet-ashing on the results was studied in addition. The mean of all samples analysed with ICP-MS was 5.8 % lower than with ICP-AES coupled to wet-ashing (R (2) = 0.88). Without wet-ashing, the mean of all samples analysed with ICP-MS was 9.1 % higher than with ICP-AES (R (2) = 0.99). Boron concentration analysed from whole blood samples with ICP-AES correlated well with the values of ICP-MS with wet-ashing of the sample matrix, which is generally considered the reference method. When using these methods in parallel at certain intervals during the treatments, reliability of the blood boron concentration values remains satisfactory, taking into account the required accuracy of dose determination in the irradiation of cancer patients.

  5. Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS.

    PubMed

    Huelga-Suarez, Gonzalo; Fernández, Beatriz; Moldovan, Mariella; García Alonso, J Ignacio

    2013-03-01

    The present study evaluates the use of an individual-specific transgenerational barium dual-isotope procedure and its application to salmon specimens from the Sella River (Asturias, Spain). For such a purpose, the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in combination with multiple linear regression for the determination of the isotopic mark in the otoliths of the specimens is presented. In this sense, a solution in which two barium-enriched isotopes ((137)Ba and (135)Ba) were mixed at a molar ratio of ca. 1:3 (N Ba137/N Ba135) was administered to eight returning females caught during the spawning period. After injection, these females, as well as their offspring, were reared in a governmental hatchery located in the council of Cangas de Onís (Asturias, Spain). For comparison purposes, as well as for a time-monitoring control, egg and larva data obtained by solution analysis ICP-MS are also given. Otoliths (9-month-old juveniles) of marked offspring were analysed by LA-ICP-MS demonstrating a 100 % marking efficacy of this methodology. The capabilities of the molar fraction approach for 2D imaging of fish otoliths are also addressed.

  6. Application of LA-MC-ICP-MS for analysis of Sr isotope ratios in speleothems

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Scholz, Denis; Wassenburg, Jasper A.; Jochum, Klaus Peter; Breitenbach, Sebastian

    2017-04-01

    Speleothems are well established climate archives. In order to reconstruct past climate variability, several geochemical proxies, such as δ13C and δ18O as well as trace elements are available. Since several factors influence each individual proxy, robust interpretation is often hampered. This calls for multi-proxy approaches involving additional isotope systems that can help to delineate the role of different sources of water within the epikarst and changes in soil composition. Sr isotope ratios (87Sr/86Sr) have been shown to provide useful information about water residence time and water mixing in the host rock. Furthermore, Sr isotopes are not fractionated during calcite precipitation, implying that the 87Sr/86Sr ratio of the speleothem provides a direct record of the drip water. While most speleothem studies applying Sr isotopes used the TIMS methodology, LA-MC-ICP-MS has been utilized for several other archives, such as otoliths and teeth. This method provides the advantage of faster data acquisition, higher spatial resolution, larger sample throughput and the absence of chemical treatment prior to analysis. Here we present the first LA-MC-ICP-MS Sr isotope data for speleothems. The analytical uncertainty of our LA-MC-ICP-MS Sr data is in a similar range as for other carbonate materials. The results of different ablation techniques (i.e. line scan and spots) are reproducible within error, implying that the application of this technique on speleothems is possible. In addition, several comparative measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), such as tests with standard bracketing and comparison of the 87Sr/86Sr ratios with nanosecond laser ablation system and a state-of-the-art femtosecond laser ablation system, show the robustness of the method. We applied the method to samples from Morocco (Grotte de Piste) and India (Mawmluh Cave). Our results show only very small changes in the 87Sr/86Sr ratios of both speleothems

  7. ICP-MS Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  8. LA-iMageS: a software for elemental distribution bioimaging using LA-ICP-MS data.

    PubMed

    López-Fernández, Hugo; de S Pessôa, Gustavo; Arruda, Marco A Z; Capelo-Martínez, José L; Fdez-Riverola, Florentino; Glez-Peña, Daniel; Reboiro-Jato, Miguel

    2016-01-01

    The spatial distribution of chemical elements in different types of samples is an important field in several research areas such as biology, paleontology or biomedicine, among others. Elemental distribution imaging by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an effective technique for qualitative and quantitative imaging due to its high spatial resolution and sensitivity. By applying this technique, vast amounts of raw data are generated to obtain high-quality images, essentially making the use of specific LA-ICP-MS imaging software that can process such data absolutely mandatory. Since existing solutions are usually commercial or hard-to-use for average users, this work introduces LA-iMageS, an open-source, free-to-use multiplatform application for fast and automatic generation of high-quality elemental distribution bioimages from LA-ICP-MS data in the PerkinElmer Elan XL format, whose results can be directly exported to external applications for further analysis. A key strength of LA-iMageS is its substantial added value for users, with particular regard to the customization of the elemental distribution bioimages, which allows, among other features, the ability to change color maps, increase image resolution or toggle between 2D and 3D visualizations.

  9. [High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins].

    PubMed

    Chen, Kai-Yun; Fan, Chao; Yuan, Hong-Lin; Bao, Zhi-An; Zong, Chun-Lei; Dai, Meng-Ning; Ling, Xue; Yang, Ying

    2013-05-01

    In the present study we set up a femtosecond laser ablation MC-ICP-MS method for lead isotopic analysis. Pb isotopic composition of fifteen copper (brass, bronze) standard samples from the National Institute of Standards Material were analyzed using the solution method (MC-ICP-MS) and laser method (fLA-MC-ICPMS) respectively, the results showed that the Pb isotopic composition in CuPb12 (GBW02137) is very homogeneous, and can be used as external reference material for Pb isotopic in situ analysis. On CuPb12 112 fLA-MC-ICPMS Pb isotope analysis, the weighted average values of the Pb isotopic ratio are in good agreement with the results analyzed by bulk solution method within 2sigma error, the internal precision RSEs of the 208 Pb/204 Pb ratio and 207 Pb/206 Pb ratio are less than 90 and 40 ppm respectively, and the external precision RSDs of them are less than 60 and 30 ppm respectively. Pb isotope of thirteen ancient bronze coins was analyzed via fLA-MC-ICPMS, the results showed that the Pb isotopic composition of ancient coins of different dynasties is significantly different, and not all the Pb isotopic compositions in the coins even from the same dynasty are in agreement with each other.

  10. Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine

    2005-04-01

    Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.

  11. Allanite age-dating: Non-matrix-matched standardization in quadrupole LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Burn, M.; Lanari, P.; Pettke, T.; Engi, M.

    2014-12-01

    Allanite Th-U-Pb age-dating has recently been found to be powerful in unraveling the timing of geological processes such as the metamorphic dynamics in subduction zones and crystallization velocity of magmas. However, inconsistencies among analytical techniques have raised doubts about the accuracy of allanite age data. Spot analysis techniques such as LA-ICP-MS are claimed to be crucially dependent on matrix-matched standards, the quality of which is variable. We present a new approach in LA-ICP-MS data reduction that allows non-matrix-matched standardization via well constrained zircon reference materials as primary standards. Our data were obtained using a GeoLas Pro 193 nm ArF excimer laser ablation system coupled to an ELAN DRC-e quadrupole ICP-MS. We use 32 μm and 24 μm spot sizes; laser operating conditions of 9 Hz repetition rate and 2.5 J/cm2 fluence have proven advantageous. Matrix dependent downhole fractionation evolution is empirically determined by analyzing 208Pb/232Th and 206Pb/238U and applied prior to standardization. The new data reduction technique was tested on three magmatic allanite reference materials (SISSb, CAPb, TARA); within error these show the same downhole fractionation evolution for all allanite types and in different analytical sessions, provided measurement conditions remain the same. Although the downhole evolution of allanite and zircon differs significantly, a link between zircon and allanite matrix is established by assuming CAPb and TARA to be fixed at the corresponding reference ages. Our weighted mean 208Pb/232Th ages are 30.06 ± 0.22 (2σ) for SISSb, 275.4 ± 1.3 (2σ) for CAPb, and 409.9 ± 1.8 (2σ) for TARA. Precision of single spot age data varies between 1.5 and 8 % (2σ), dependent on spot size and common lead concentrations. Quadrupole LA-ICP-MS allanite age-dating has thus similar uncertainties as do other spot analysis techniques. The new data reduction technique is much less dependent on quality and homogeneity

  12. Zinc isotope ratio imaging of rat brain thin sections from stable isotope tracer studies by LA-MC-ICP-MS.

    PubMed

    Urgast, Dagmar S; Hill, Sarah; Kwun, In-Sook; Beattie, John H; Goenaga-Infante, Heidi; Feldmann, Jörg

    2012-10-01

    Zinc stable isotope tracers (⁶⁷Zn and ⁷⁰Zn) were injected into rats at two different time points to investigate the feasibility of using tracers to study zinc kinetics at the microscale within distinct tissue features. Laser ablation coupled to multi-collector ICP-MS was used to analyse average isotope ratios in liver thin sections and to generate bio-images showing zinc isotope ratio distribution in brain thin sections. Average isotope ratios of all samples from treated animals were found to be statistically different (P < 0.05) from samples from untreated control animals. Furthermore, differing isotope ratios in physiological features of the brain, namely hippocampus, amygdala, cortex and hypothalamus, were identified. This indicates that these regions differ in their zinc metabolism kinetics. While cortex and hypothalamus contain more tracer two days after injection than 14 days after injection, the opposite is true for hippocampus and amygdala. This study showed that stable isotope tracer experiments can be combined with laser ablation MC-ICP-MS to measure trace element kinetics in tissues at a microscale level.

  13. Single-cell analysis by ICP-MS/MS as a fast tool for cellular bioavailability studies of arsenite.

    PubMed

    Meyer, S; López-Serrano, A; Mitze, H; Jakubowski, N; Schwerdtle, T

    2018-01-24

    Single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) has become a powerful and fast tool to evaluate the elemental composition at a single-cell level. In this study, the cellular bioavailability of arsenite (incubation of 25 and 50 μM for 0-48 h) has been successfully assessed by SC-ICP-MS/MS for the first time directly after re-suspending the cells in water. This procedure avoids the normally arising cell membrane permeabilization caused by cell fixation methods (e.g. methanol fixation). The reliability and feasibility of this SC-ICP-MS/MS approach with a limit of detection of 0.35 fg per cell was validated by conventional bulk ICP-MS/MS analysis after cell digestion and parallel measurement of sulfur and phosphorus.

  14. Genesis of Augite-Bearing Ureilites: Evidence From LA-ICP-MS Analyses of Pyroxenes and Olivine

    NASA Technical Reports Server (NTRS)

    Herrin, J. S.; Lee, C-T. A.; Mittlefehldt, D. W.

    2008-01-01

    Ureilites are ultramafic achondrites composed primarily of coarse-grained low-Ca pyroxene and olivine with interstitial carbonaceous material, but a number of them contain augite [1]. Ureilites are considered to be restites after partial melting of a chondritic precursor, although at least some augite-bearing ureilites may be partially cumulate [1, 2]. In this scenario, the augite is a cumulus phase derived from a melt that infiltrated a restite composed of typical ureilite material (olivine+low-Ca pyroxene) [2]. To test this hypothesis, we examined the major and trace element compositions of silicate minerals in select augite-bearing ureilites with differing mg#. Polished thick sections of the augite-bearing ureilites ALH 84136 , EET 87511, EET 96293, LEW 88201, and META78008 and augite-free typical ureilite EET 90019 were examined by EPMA for major and minor elements and laser ablation ICP-MS (LA-ICP-MS) for trace elements, REE in particular. Although EET 87511 is reported to contain augite, the polished section that we obtained did not.

  15. LA-ICP-MS-derived U-concentrations and microstructural domains within biogenic aragonite of Arctica islandica shell.

    PubMed

    Helama, Samuli; Heikkilä, Pasi; Rinne, Katja; Nielsen, Jan Kresten; Nielsen, Jesper Kresten

    2015-05-01

    Understanding of the uranium uptake processes (both in vivo and post-mortem) into the skeletal structures of marine calcifiers is a subject of multi-disciplinary interest. U-concentration changes within the molluscan shell may serve as a paleoceanographic proxy of the pH history. A proxy of this type is needed to track the effects of fossil fuel emissions to ocean acidification. Moreover, attaining reliable U-series dates using shell materials would be a geochronological breakthrough. Picturing the high-resolution changes of U-concentrations in shell profiles is now possible by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Here, we analyzed in situ U-concentration variations in sub-fossilized shells of ocean quahog (Arctica islandica), a commonly studied bivalve species in Quaternary geoscience, using LA-ICP-MS. Microstructural details of the shell profiles were achieved by the scanning electron microscopy (SEM). Comparison of the shell aragonite microstructure with the changes in U-concentration revealed that uranium of possibly secondary origin is concentrated into the porous granular layers of the shell. Our results reinforce the hypothesis that U-concentration variations can be linked with microstructural differences within the shell. A combination of LA-ICP-MS and SEM analyses is recommended as an interesting approach for understanding the U-concentration variations in similar materials.

  16. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool.

    PubMed

    Ammann, Adrian A

    2007-04-01

    Inductively coupled plasma (ICP) mass spectrometry (MS) is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and matrices introduced by a variety of specialized devices. Outstanding properties such as high sensitivity (ppt-ppq), relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICP MS in efficiently detecting, identifying and reliably quantifying trace elements. The increasing availability of relevant reference compounds and high separation selectivity extend the molecular identification capability of ICP MS hyphenated to species-specific separation techniques. While molecular ion source MS is specialized in determining the structure of unknown molecules, ICP MS is an efficient and highly sensitive tool for target-element orientated discoveries of relevant and unknown compounds. This special-feature, tutorial article presents the principle and advantages of ICP MS, highlighting these using examples from recently published investigations. Copyright 2007 John Wiley & Sons, Ltd.

  17. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  18. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can

  19. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

    PubMed

    Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes

    2018-02-01

    Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

  20. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS.

    PubMed

    Khan, Naeem; Jeong, In Seon; Hwang, In Min; Kim, Jae Sung; Choi, Sung Hwa; Nho, Eun Yeong; Choi, Ji Yeon; Kwak, Byung-Man; Ahn, Jang-Hyuk; Yoon, Taehyung; Kim, Kyong Su

    2013-12-15

    This study aimed to validate the analytical method for simultaneous determination of chromium (Cr), molybdenum (Mo), and selenium (Se) in infant formulas available in South Korea. Various digestion methods of dry-ashing, wet-digestion and microwave were evaluated for samples preparation and both inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were compared for analysis. The analytical techniques were validated by detection limits, precision, accuracy and recovery experiments. Results showed that wet-digestion and microwave methods were giving satisfactory results for sample preparation, while ICP-MS was found more sensitive and effective technique than ICP-OES. The recovery (%) of Se, Mo and Cr by ICP-OES were 40.9, 109.4 and 0, compared to 99.1, 98.7 and 98.4, respectively by ICP-MS. The contents of Cr, Mo and Se in infant formulas by ICP-MS were found in good nutritional values in accordance to nutrient standards for infant formulas CODEX values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  2. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-02-03

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.

  3. Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS.

    PubMed

    Konegger-Kappel, Stefanie; Prohaska, Thomas

    2016-01-01

    Laser ablation-multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) was optimized and investigated with respect to its performance for determining spatially resolved Pu isotopic signatures within radioactive fuel particle clusters. Fuel particles had been emitted from the Chernobyl nuclear power plant (ChNPP) where the 1986 accident occurred and were deposited in the surrounding soil, where weathering processes caused their transformation into radioactive clusters, so-called micro-samples. The size of the investigated micro-samples, which showed surface alpha activities below 40 mBq, ranged from about 200 to 1000 μm. Direct single static point ablations allowed to identify variations of Pu isotopic signatures not only between distinct fuel particle clusters but also within individual clusters. The resolution was limited to 100 to 120 μm as a result of the applied laser ablation spot sizes and the resolving power of the nuclear track radiography methodology that was applied for particle pre-selection. The determined (242)Pu/(239)Pu and (240)Pu/(239)Pu isotope ratios showed a variation from low to high Pu isotope ratios, ranging from 0.007(2) to 0.047(8) for (242)Pu/(239)Pu and from 0.183(13) to 0.577(40) for (240)Pu/(239)Pu. In contrast to other studies, the applied methodology allowed for the first time to display the Pu isotopic distribution in the Chernobyl fallout, which reflects the differences in the spent fuel composition over the reactor core. The measured Pu isotopic signatures are in good agreement with the expected Pu isotopic composition distribution that is typical for a RBMK-1000 reactor, indicating that the analyzed samples are originating from the ill-fated Chernobyl reactor. The average Pu isotope ratios [(240)Pu/(239)Pu = 0.388(86), (242)Pu/(239)Pu = 0.028(11)] that were calculated from all investigated samples (n = 48) correspond well to previously published results of Pu analyses in contaminated samples from

  4. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    PubMed

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W

    2012-05-01

    Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening andmore » collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.« less

  6. Determination of 238u/235u, 236u/238u and uranium concentration in urine using sf-icp-ms and mc-icp-ms: an interlaboratory comparison.

    PubMed

    Parrish, Randall R; Thirlwall, Matthew F; Pickford, Chris; Horstwood, Matthew; Gerdes, Axel; Anderson, James; Coggon, David

    2006-02-01

    Accidental exposure to depleted or enriched uranium may occur in a variety of circumstances. There is a need to quantify such exposure, with the possibility that the testing may post-date exposure by months or years. Therefore, it is important to develop a very sensitive test to measure precisely the isotopic composition of uranium in urine at low levels of concentration. The results of an interlaboratory comparison using sector field (SF)-inductively coupled plasma-mass spectrometry (ICP-MS) and multiple collector (MC)-ICP-MS for the measurement of uranium concentration and U/U and U/U isotopic ratios of human urine samples are presented. Three urine samples were verified to contain uranium at 1-5 ng L and shown to have natural uranium isotopic composition. Portions of these urine batches were doped with depleted uranium (DU) containing small quantities of U, and the solutions were split into 100 mL and 400 mL aliquots that were subsequently measured blind by three laboratories. All methods investigated were able to measure accurately U/U with precisions of approximately 0.5% to approximately 4%, but only selected MC-ICP-MS methods were capable of consistently analyzing U/U to reasonable precision at the approximately 20 fg L level of U abundance. Isotope dilution using a U tracer demonstrates the ability to measure concentrations to better than +/-4% with the MC-ICP-MS method, though sample heterogeneity in urine samples was shown to be problematic in some cases. MC-ICP-MS outperformed SF-ICP-MS methods, as was expected. The MC-ICP-MS methodology described is capable of measuring to approximately 1% precision the U/U of any sample of human urine over the entire range of uranium abundance down to <1 ng L, and detecting very small amounts of DU contained therein.

  7. Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic.

    PubMed

    Heitland, Peter; Blohm, Martin; Breuer, Christian; Brinkert, Florian; Achilles, Eike Gert; Pukite, Ieva; Köster, Helmut Dietrich

    2017-05-01

    ICP-MS and HPLC-ICP-MS were applied for diagnosis and therapeutic monitoring in a severe intoxication with a liquid containing hexavalent chromium (Cr(VI)) and inorganic arsenic (iAs). In this rare case a liver transplantation of was considered as the only chance of survival. We developed and applied methods for the determination of Cr(VI) in erythrocytes and total chromium (Cr) and arsenic (As) in blood, plasma, urine and liver tissue by ICP-MS. Exposure to iAs was diagnosed by determination of iAs species and their metabolites in urine by anion exchange HPLC-ICP-MS. Three days after ingestion of the liquid the total Cr concentrations were 2180 and 1070μg/L in whole blood and plasma, respectively, and 4540μg/L Cr(VI) in erythrocytes. The arsenic concentration in blood was 206μg/L. The urinary As species concentrations were <0.5, 109, 115, 154 and 126μg/L for arsenobetaine, As(III), As(V), methylarsonate (V) and dimethylarsinate (V), respectively. Total Cr and As concentrations in the explanted liver were 11.7 and 0.9mg/kg, respectively. Further analytical results of this case study are tabulated and provide valuable data for physicians and toxicologists. Copyright © 2017. Published by Elsevier GmbH.

  8. Mapping trace element distribution in fossil teeth and bone with LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Hinz, E. A.; Kohn, M. J.

    2009-12-01

    Trace element profiles were measured in fossil bones and teeth from the late Pleistocene (c. 25 ka) Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Laser-ablation ICP-MS can collect element counts along predefined tracks on a sample’s surface using a constant ablation speed allowing for rapid spatial sampling of element distribution. Key elements analyzed included common divalent cations (e.g. Sr, Zn, Ba), a suite of REE (La, Ce, Nd, Sm, Eu, Yb), and U, in addition to Ca for composition normalization and standardization. In teeth, characteristic diffusion penetration distances for all trace elements are at least a factor of 4 greater in traverses parallel to the dentine-enamel interface (parallel to the growth axis of the tooth) than perpendicular to the interface. Multiple parallel traverses in sections parallel and perpendicular to the tooth growth axis were transformed into trace element maps, and illustrate greater uptake of all trace elements along the central axis of dentine compared to areas closer to enamel, or within the enamel itself. Traverses in bone extending from the external surface, through the thickness of cortical bone and several mm into trabecular bone show major differences in trace element uptake compared to teeth: U and Sr are homogeneous, whereas all REE show a kinked profile with high concentrations on outer surfaces that decrease by several orders of magnitude within a few mm inward. The Eu anomaly increases uniformly from the outer edge of bone inward, whereas the Ce anomaly decreases slightly. These observations point to major structural anisotropies in trace element transport and uptake during fossilization, yet transport and uptake of U and REE are not resolvably different. In contrast, transport and uptake of U in bone must proceed orders of magnitude faster than REE as U is homogeneous whereas REE exhibit strong gradients. The kinked REE profiles in bone unequivocally indicate differential transport rates

  9. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  10. Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin.

    PubMed

    Moraleja, Irene; Esteban-Fernández, Diego; Lázaro, Alberto; Humanes, Blanca; Neumann, Boris; Tejedor, Alberto; Luz Mena, M; Jakubowski, Norbert; Gómez-Gómez, M Milagros

    2016-03-01

    The study of the distribution of the cytostatic drugs cisplatin, carboplatin, and oxaliplatin along the kidney may help to understand their different nephrotoxic behavior. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) allows the acquisition of trace element images in biological tissues. However, results obtained are affected by several variations concerning the sample matrix and instrumental drifts. In this work, an internal standardization method based on printing an Ir-spiked ink onto the surface of the sample has been developed to evaluate the different distributions and accumulation levels of the aforementioned drugs along the kidney of a rat model. A conventional ink-jet printer was used to print fresh sagittal kidney tissue slices of 4 μm. A reproducible and homogenous deposition of the ink along the tissue was observed. The ink was partially absorbed on top of the tissue. Thus, this approach provides a pseudo-internal standardization, due to the fact that the ablation sample and internal standard take place subsequently and not simultaneously. A satisfactory normalization of LA-ICP-MS bioimages and therefore a reliable comparison of the kidney treated with different Pt-based drugs were achieved even for tissues analyzed on different days. Due to the complete ablation of the sample, the transport of the ablated internal standard and tissue to the inductively coupled plasma-mass spectrometry (ICP-MS) is practically taking place at the same time. Pt accumulation in the kidney was observed in accordance to the dosages administered for each drug. Although the accumulation rate of cisplatin and oxaliplatin is high in both cases, their Pt distributions differ. The strong nephrotoxicity observed for cisplatin and the absence of such side effect in the case of oxaliplatin could explain these distribution differences. The homogeneous distribution of oxaliplatin in the cortical and medullar areas could be related with its higher affinity for

  11. ICP-MS: Analytical Method for Identification and Detection of Elemental Impurities.

    PubMed

    Mittal, Mohini; Kumar, Kapil; Anghore, Durgadas; Rawal, Ravindra K

    2017-01-01

    Aim of this article is to review and discuss the currently used quantitative analytical method ICP-MS, which is used for quality control of pharmaceutical products. ICP-MS technique has several applications such as determination of single elements, multi element analysis in synthetic drugs, heavy metals in environmental water, trace element content of selected fertilizers and dairy manures. ICP-MS is also used for determination of toxic and essential elements in different varieties of food samples and metal pollutant present in the environment. The pharmaceuticals may generate impurities at various stages of development, transportation and storage which make them risky to be administered. Thus, it is essential that these impurities must be detected and quantified. ICP-MS plays an important function in the recognition and revealing of elemental impurities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. A table of polyatomic interferences in ICP-MS

    USGS Publications Warehouse

    May, Thomas W.; Wiedmeyer, Ray H.

    1998-01-01

    Spectroscopic interferences are probably the largest class of interferences in ICP-MS and are caused by atomic or molecular ions that have the same mass-to-charge as analytes of interest. Current ICP-MS instrumental software corrects for all known atomic “isobaric” interferences, or those caused by overlapping isotopes of different elements, but does not correct for most polyatomic interferences. Such interferences are caused by polyatomic ions that are formed from precursors having numerous sources, such as the sample matrix, reagents used for preparation, plasma gases, and entrained atmospheric gases.

  13. Metabolomic and elemental analysis of camel and bovine urine by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Alhaider, Abdul Qader; Raish, Mohammad; Shakeel, Faiyaz

    2017-01-01

    Recent studies from the author's laboratory indicated that camel urine possesses antiplatelet activity and anti-cancer activity which is not present in bovine urine. The objective of this study is to compare the volatile and elemental components of bovine and camel urine using GC-MS and ICP-MS analysis. We are interested to know the component that performs these biological activities. The freeze dried urine was dissolved in dichloromethane and then derivatization process followed by using BSTFA for GC-MS analysis. Thirty different compounds were analyzed by the derivatization process in full scan mode. For ICP-MS analysis twenty eight important elements were analyzed in both bovine and camel urine. The results of GC-MS and ICP-MS analysis showed marked difference in the urinary metabolites. GC-MS evaluation of camel urine finds a lot of products of metabolism like benzene propanoic acid derivatives, fatty acid derivatives, amino acid derivatives, sugars, prostaglandins and canavanine. Several research reports reveal the metabolomics studies on camel urine but none of them completely reported the pharmacology related metabolomics. The present data of GC-MS suggest and support the previous studies and activities related to camel urine.

  14. QEMSCAN+LA-ICP-MS: a 'big data' generator for sedimentary provenance analysis

    NASA Astrophysics Data System (ADS)

    Vermeesch, Pieter; Rittner, Martin; Garzanti, Eduardo

    2017-04-01

    Sedimentary provenance may be traced by 'fingerprinting' sediments with chemical, mineralogical or isotopic means. Normally, each of these provenance proxies is characterised on a separate aliquot of the same sample. For example, the chemical composition of the bulk sample may be analysed by X-ray fluorescence (XRF) on one aliquot, framework petrography on another, heavy mineral analysis on a density separate of a third split, and zircon U-Pb dating on a further density separate of the heavy mineral fraction. The labour intensity of this procedure holds back the widespread application of multi-method provenance studies. We here present a new method to solve this problem and avoid mineral separation by coupling a QEMSCAN electron microscope to an LA-ICP-MS instrument and thereby generate all four aforementioned provenance datasets as part of the same workflow. Given a polished hand specimen, a petrographic thin section, or a grain mount, the QEMSCAN+LA-ICP-MS method produces chemical and mineralogical maps from which the X-Y coordinates of the datable mineral are extracted. These coordinates are subsequently passed on to the laser ablation system for isotopic and, hence, geochronological analysis. In the process of finding all the zircons in a sediment grain mount, the QEMSCAN yields the compositional and mineralogical compositions as byproducts. We have applied the new QEMSCAN+LA-ICP-MS instrument suite to over 100 samples from three large sediment routing systems: (1) the Tigris-Euphrates river catchments and Rub' Al Khali desert in Arabia; (2) the Nile catchment in northeast Africa and (3) desert and beach sands between the Orange and Congo rivers in southwest Africa. These studies reveal (1) that Rub' Al Khali sand is predominantly derived from the Arabian Shield and not from Mesopotamia; (2) that the Blue Nile is the principal source of Nile sand; and (3) that Orange River sand is carried northward by longshore drift nearly 1,800km from South Africa to southern

  15. Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens.

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2014-01-01

    Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data

  16. High spatial resolution analysis of ferromanganese concretions by LA-ICP-MS†

    PubMed Central

    Axelsson, Mikael D; Rodushkin, Ilia; Baxter, Douglas C; Ingri, Johan; Öhlander, Björn

    2002-01-01

    A procedure was developed for the determination of element distributions in cross-sections of ferromanganese concretions using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The effects of carrier flow rates, rf forward power, ablation energy, ablation spot size, repetition rate and number of shots per point on analyte intensity were studied. It is shown that different carrier gas flow rates are required in order to obtain maximum sensitivities for different groups of elements, thus complicating the optimisation of ICP parameters. On the contrary, LA parameters have very similar effects on almost all elements studied, thus providing a common optimum parameter set for the entire mass range. However, for selected LA parameters, the use of compromise conditions was necessary in order to compensate for relatively slow data acquisition by ICP-MS and maintain high spatial resolution without sacrificing the multielemental capabilities of the technique. Possible variations in ablation efficiency were corrected for mathematically using the sum of Fe and Mn intensities. Quantification by external calibration against matrix-matched standards was successfully used for more than 50 elements. These standards, in the form of pressed pellets (no binder), were prepared in-house using ferromanganese concentrates from a deep-sea nodule reference material as well as from shallow-marine concretions varying in size and having different proportions of three major phases: aluminosilicates, Fe- and Mn-oxyhydroxides. Element concentrations in each standard were determined by means of conventional solution nebulisation ICP-MS following acid digestion. Examples of selected inter-element correlations in distribution patterns along the cross-section of a concretion are given.

  17. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    PubMed

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten

  18. 87Sr/86Sr isotope ratio analysis by laser ablation MC-ICP-MS in scales, spines, and fin rays as a nonlethal alternative to otoliths for reconstructing fish life history

    USGS Publications Warehouse

    Willmes, Malte; Glessner, Justin J. G.; Carleton, Scott A.; Gerrity, Paul C.; Hobbs, James A.

    2016-01-01

    Strontium isotope ratios (87Sr/86Sr) in otoliths are a well-established tool to determine origins and movement patterns of fish. However, otolith extraction requires sacrificing fish, and when working with protected or endangered species, the use of nonlethal samples such as scales, spines, and fin rays is preferred. Unlike otoliths that are predominantly aragonite, these tissues are composed of biological apatite. Laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) analysis of biological apatite can induce significant interference on mass 87, causing inaccurate 87Sr/86Sr measurements. To quantify this interference, we applied LA-MC-ICP-MS to three marine samples (white seabass (Atractoscion nobilis) otolith; green sturgeon (Acipenser medirostris) pectoral fin ray; salmon shark (Lamna ditropis) tooth), and freshwater walleye (Sander vitreus) otoliths, scales, and spines). Instrument conditions that maximize signal intensity resulted in elevated 87Sr/86Sr isotope ratios in the bioapatite samples, related to a polyatomic interference (40Ca31P16O, 40Ar31P16O). Retuning instrument conditions to reduce oxide levels removed this interference, resulting in accurate 87Sr/86Sr ratios across all tissue samples. This method provides a novel, nonlethal alternative to otolith analysis to reconstruct fish life histories.

  19. Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES).

    PubMed

    de la Calle, Inmaculada; Menta, Mathieu; Klein, Marlène; Séby, Fabienne

    2017-08-15

    Cosmetics are part of the daily life of most of the people. Thus, a complete characterization of the products we applied in our skin is necessary. In this work, an analytical investigation of a wide variety of cosmetics from the point of view of total element content and metallic nanoparticles (NPs) has been performed. Firstly, we analyzed the total element content by ICP-MS and ICP-OES after acid digestion as an assessment of the presence of metal impurities. Prohibited elements in cosmetics, according to the European Commission regulation No 1223/2009, were not detected, and only elements mentioned in the label were found (e.g. Al, Fe, Ti and Si). Secondly, a screening of the presence of NPs has been performed by Dynamic Light Scattering (DLS) and Single Particle Inductively-Coupled Plasma Mass Spectrometry (SP-ICP-MS). Two sample preparation procedures were applied. The first protocol consisted in the preparation of suspensions in 0.1% w/v SDS and the second based on defatting with hexane followed by resuspension in water. DLS was employed as a routine method for a fast analysis of NPs, but this technique showed limitations due to the lack of specificity. SP-ICP-MS analyses were then performed, first as a screening technique to evaluate the presence of TiO 2 and Au NPs in cosmetics suspensions prepared in SDS; and second, when a positive answer was obtained about the presence of NPs from the screening, SP-ICP-MS was used for particle size determination. Results showed that only TiO 2 NPs were present in two sunscreens, one anti-wrinkle day cream, one lip balm protector labeled as 'nano' and in one brand of toothpaste not labeled as 'nano'. Sizes obtained for both sample preparations were compared and ranged from 30 to 120nm in most of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Metabolomics and Trace Element Analysis of Camel Tear by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Raish, Mohammad; Yaqoob, Syed Hilal; Khan, Altaf; Shakeel, Faiyaz

    2017-06-01

    Camel tear metabolomics and elemental analysis are useful in getting the information regarding the components responsible for maintaining the protective system that allows living in the desert and dry regions. The aim of this study was to correlate that the camel tears can be used as artificial tears for the evaluation of dryness in the eye. Eye biomarkers of camel tears were analyzed by gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma mass spectroscopy (ICP-MS). The major compounds detected in camel tears by GC-MS were alanine, valine, leucine, norvaline, glycine, cadaverine, urea, ribitol, sugars, and higher fatty acids like octadecanoic acid and hexadecanoic acid. GC-MS analysis of camel tears also finds several products of metabolites and its associated metabolic participants. ICP-MS analysis showed the presence of different concentration of elemental composition in the camel tears.

  1. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata.

    PubMed

    Bluemlein, Katharina; Raab, Andrea; Meharg, Andrew A; Charnock, John M; Feldmann, Jörg

    2008-04-01

    The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP-MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L(-1) as arsenate. The approach of formic acid extraction followed by HPLC-ES-MS/ICP-MS identified different As(III)-PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP-qMS, or when HR-ICP-MS was used in medium resolution, the As:S ratio gave misleading results in the identification of As(III)-PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As-peptides in plants. Hence only the parallel use of ES-MS/ICP-MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as As(III)(PC(2))(2), As(III)(PC(3)) and As(III)(PC(4)). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As-S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As-S and As-O bonds occur in the plants. This study confirms, for the first time, that As-peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.

  2. Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine

    2005-04-01

    Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.

  3. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  4. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Characterization of Nanomaterials Using Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometery (FFF-ICP-MS and SP-ICP-MS): Scientific Operating Procedure SOP-C

    DTIC Science & Technology

    2015-04-01

    monodisperse particles. ENPs in environmental samples will likely have much broader size distributions and thus FFF-ICP-MS was tested over a greater...Figure 6). Resolution is based on ICP-MS sensitivity, and will likely decrease as the difference in particle diameter decreases. Second, this...Alvarez. 2006. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environmental Science

  6. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    PubMed

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.

  7. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS.

    PubMed

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-11-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.

  8. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.

  9. Advances in the measurement of sulfur isotopes by multi-collector ICP-MS (MC-ICP- MS)

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Wilson, S. A.; Anthony, M. W.

    2006-12-01

    The demonstrated capability to measure 34S/32S by MC-ICP-MS with a precision (2ó) of ~0.2 per mil has many potential applications in geochemistry. However, a number of obstacles limit this potential. First, to achieve the precision indicated above requires sufficient mass resolution to separate isobaric interferences of 16O2 and 17O2 on 32S and 34S, respectively. These requirements for high resolution mean overall instrument sensitivity is reduced. Second, current methods preclude analysis of samples with complex matrices, a common characteristic of sulfur-bearing geologic materials. Here, we describe and discuss a method that provides both efficient removal of matrix constituents, and provides pre-concentration of S, thus overcoming these obstacles. The method involves the separation of sulfur from matrix constituents by high pressure (1000 psi) ion chromatography (HPIC), followed by isotope measurement using MC-ICP-MS. This combination allows for analysis of liquid samples with a wide range of S concentrations. A powerful advantage of this technique is the efficient separation of many sulfur species from matrix cations and anions (for instance in a seawater or acid mine drainage matrix), as well as the separation of sulfur species, e.g., sulfate, sulfite, thiosulfate, thiocynate, from each other for isotope analysis. The automated HPIC system uses a carbonate-bicarbonate eluent with eluent suppression, and has sufficient baseline separation to collect the various sulfur species as pure fractions. The individual fractions are collected over a specific time interval based upon a pre-determined elution profile and peak retention times. The addition of a second ion exchange column into the system allows pre-concentration of sulfur species by 2-3 orders of magnitude for samples that otherwise would have sulfur concentrations too low to provide precise isotopic ratios. The S isotope ratios are measured by MC-ICP-MS using a desolvating sample introduction system, a

  10. Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice.

    PubMed

    Egger, Alexander E; Theiner, Sarah; Kornauth, Christoph; Heffeter, Petra; Berger, Walter; Keppler, Bernhard K; Hartinger, Christian G

    2014-09-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatially-resolved distribution of ruthenium and platinum in viscera (liver, kidney, spleen, and muscle) originating from mice treated with the investigational ruthenium-based antitumor compound KP1339 or cisplatin, a potent, but nephrotoxic clinically-approved platinum-based anticancer drug. Method development was based on homogenized Ru- and Pt-containing samples (22.0 and 0.257 μg g(-1), respectively). Averaging yielded satisfactory precision and accuracy for both concentrations (3-15% and 93-120%, respectively), however when considering only single data points, the highly concentrated Ru sample maintained satisfactory precision and accuracy, while the low concentrated Pt sample yielded low recoveries and precision, which could not be improved by use of internal standards ((115)In, (185)Re or (13)C). Matrix-matched standards were used for quantification in LA-ICP-MS which yielded comparable metal distributions, i.e., enrichment in the cortex of the kidney in comparison with the medulla, a homogenous distribution in the liver and the muscle and areas of enrichment in the spleen. Elemental distributions were assigned to histological structures exceeding 100 μm in size. The accuracy of a quantitative LA-ICP-MS imaging experiment was validated by an independent method using microwave-assisted digestion (MW) followed by direct infusion ICP-MS analysis.

  11. Trace Element Study of MORB Glasses from 14¡ã-16¡ãN along Mid-Atlantic Ridge by LA-ICP- MS

    NASA Astrophysics Data System (ADS)

    Barzoi, C. A.; Casey, J. F.; Gao, Y.; Lapen, T.

    2007-12-01

    A comparison of 20 MORB glasses from 14°-16° N along the Mid-Atlantic Ridge using both solution-based and in situ laser ablation-based ICP-MS trace element analyses on the same samples was conducted. Li, Be, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb,Lu, Hf, Ta, Pb, Th, and U were analyzed using the Varian 810 quadrupole ICP-MS. The instrument features a 90 degree ion mirror and low noise double-off-axis quadrupole that allows high sensitivity and low backgrounds. Precision in term of relative standard deviation (RSD) of the measurements for both methods based on repeated analyses of USGS BIR-1G and BHVO-2G glass standards and Max Planck KL-2G glass standard is within 5 % for all trace elements with the exception of Pb, which averaged 12 %. Measured trace element abundances are within 2% of recommended standard values using both solution and laser ablation methods. Comparison between the analyte concentrations obtained by solution-based ICP-MS and in situ microanalysis by laser ablation reveals little systematic differences in abundances(<5% for all elements). The two-method correlation and strong repeatability of the results indicate that rapid in situ trace element analysis by laser ablation ICP-MS is likely to become a preferred method of trace element analysis for MORB glasses. Our geochemical results and previous studies of MORB glasses in the region of the MAR between 14°-16°N show that basalts are characterized isotopic and incompatible element enrichment.The nature of the enrichment has been the topic of significant discussion and speculation because a specific mantle plume is not well defined in the region. Likewise the magma supply is probably small in the region as the magmatic crust is interpreted to be very thin in most of the area studied. Integrated studies of major element, trace element, and isotopic variations among basalts, gabbroic rocks and igneous and residual ultramafic

  12. A matrix effect and accuracy evaluation for the determination of elements in milk powder LIBS and laser ablation/ICP-OES spectrometry.

    PubMed

    Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J

    2011-11-01

    Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.

  13. Implementation of ICP-MS protocols for uranium urinary measurements in worker monitoring.

    PubMed

    Baglan, N; Cossonnet, C; Trompier, F; Ritt, J; Bérard, P

    1999-10-01

    The uranium concentration in human urine spiked with natural uranium and rat urine containing metabolized depleted uranium was determined by ICP-MS. The use of ICP-MS was investigated without any chemical treatment or after the different stages of a purification protocol currently carried out for routine monitoring. In the case of spiked urine, the measured uranium concentrations were consistent with those certified by an intercomparison network in radiotoxicological analysis (PROCORAD) and with those obtained by alpha spectrometry in the case of the urine containing metabolized uranium. The quantitative information which could be obtained in the different protocols investigated shows the extent to which ICP-MS provides greater flexibility for setting up appropriate monitoring approaches in radiation protection routines and accidental situations. This is due to the combination of high sensitivity and the accuracy with which traces of uranium in urine can be determined in a shorter time period. Moreover, it has been shown that ICP-MS measurement can be used to quantify the 235U isotope, which is useful for characterizing the nature of the uranium compound, but difficult to perform using alpha spectrometry.

  14. Intra- and inter-tooth variation in strontium isotope ratios from prehistoric seals by laser ablation (LA)-MC-ICP-MS.

    PubMed

    Glykou, A; Eriksson, G; Storå, J; Schmitt, M; Kooijman, E; Lidén, K

    2018-05-04

    Strontium isotope ratios ( 87 Sr/ 86 Sr) in modern-day marine environments are considered to be homogeneous (~0.7092). However, in the Baltic Sea, the Sr ratios are controlled by mixing seawater and continental drainage from major rivers discharging into the Baltic. This pilot study explores if variations in Sr can be detected in marine mammals from archaeological sites in the Baltic Sea. 87 Sr/ 86 Sr ratios were measured in tooth enamel from three seal species by laser ablation (LA)-MC-ICP-MS. The method enables micro-sampling of solid materials. This is the first time that the method has been applied to marine samples from archaeological collections. The analyses showed inter-tooth 87 Sr/ 86 Sr variation suggesting that different ratios can be detected in different regions of the Baltic Sea. Furthermore, the intra-tooth variation suggests possible different geographic origin or seasonal movement of seals within different regions in the Baltic Sea through their life time. The method was successfully applied to archaeological marine samples showing that: (1) the 87 Sr/ 86 Sr ivalue n marine environments is not uniform, (2) 87 Sr/ 86 Sr differences might reflect differences in ecology and life history of different seal species, and (3) archaeological mobility studies based on 87 Sr/ 86 Sr ratio in humans should therefore be evaluated together with diet reconstruction. This article is protected by copyright. All rights reserved.

  15. Trace element analysis of synthetic mono- and poly-crystalline CaF 2 by ultraviolet laser ablation inductively coupled plasma mass spectrometry at 266 and 193 nm

    NASA Astrophysics Data System (ADS)

    Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.

    2002-06-01

    The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.

  16. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    PubMed

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  17. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.

    PubMed

    Yang, Lu

    2009-01-01

    For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.

  18. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome.

    PubMed

    Konz, Tobias; Migliavacca, Eugenia; Dayon, Loïc; Bowman, Gene; Oikonomidi, Aikaterini; Popp, Julius; Rezzi, Serge

    2017-05-05

    We here describe the development, validation and application of a quantitative methodology for the simultaneous determination of 29 elements in human serum using state-of-the-art inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). This new methodology offers high-throughput elemental profiling using simple dilution of minimal quantity of serum samples. We report the outcomes of the validation procedure including limits of detection/quantification, linearity of calibration curves, precision, recovery and measurement uncertainty. ICP-MS/MS-based ionomics was used to analyze human serum of 120 older adults. Following a metabolomic data mining approach, the generated ionome profiles were subjected to principal component analysis revealing gender and age-specific differences. The ionome of female individuals was marked by higher levels of calcium, phosphorus, copper and copper to zinc ratio, while iron concentration was lower with respect to male subjects. Age was associated with lower concentrations of zinc. These findings were complemented with additional readouts to interpret micronutrient status including ceruloplasmin, ferritin and inorganic phosphate. Our data supports a gender-specific compartmentalization of the ionome that may reflect different bone remodelling in female individuals. Our ICP-MS/MS methodology enriches the panel of validated "Omics" approaches to study molecular relationships between the exposome and the ionome in relation with nutrition and health.

  19. Metrological approach to quantitative analysis of clinical samples by LA-ICP-MS: A critical review of recent studies.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Barałkiewicz, Danuta

    2018-05-15

    Analysis of clinical specimens by imaging techniques allows to determine the content and distribution of trace elements on the surface of the examined sample. In order to obtain reliable results, the developed procedure should be based not only on the properly prepared sample and performed calibration. It is also necessary to carry out all phases of the procedure in accordance with the principles of chemical metrology whose main pillars are the use of validated analytical methods, establishing the traceability of the measurement results and the estimation of the uncertainty. This review paper discusses aspects related to sampling, preparation and analysis of clinical samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with emphasis on metrological aspects, i.e. selected validation parameters of the analytical method, the traceability of the measurement result and the uncertainty of the result. This work promotes the introduction of metrology principles for chemical measurement with emphasis to the LA-ICP-MS which is the comparative method that requires studious approach to the development of the analytical procedure in order to acquire reliable quantitative results. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Detection and characterisation of aluminium-containing nanoparticles in Chinese noodles by single particle ICP-MS.

    PubMed

    Loeschner, Katrin; Correia, Manuel; López Chaves, Carlos; Rokkjær, Inge; Sloth, Jens J

    2018-01-01

    This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined by conventional ICP-MS without or with the use of hydrofluoric acid for digestion, were 5.4 ± 1.9 µg/g and 10.1 ± 2.2 µg/g (N = 21), respectively. Aluminium-containing nanoparticles were detected by spICP-MS in all 21 samples. Depending on the assumed particle composition, Al 2 O 3 or Al 2 O 3 ∙2SiO 2 ∙2H 2 O, the median particle diameters were either below or above 100 nm, respectively. The minimum detectable particle diameter by spICP-MS was between 54 and 83 nm. The mass recovery of aluminium in the form of particles was between 5% and 18%. The presented work reports for the first time the detection of Al-containing particles in food by spICP-MS.

  1. Rapid age determination of oysters using LA-ICP-MS line scans of shell Mg/Ca ratios

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Durham, S. R.; Goodwin, D. H.

    2016-02-01

    Magnesium to calcium (Mg/Ca) ratios exhibit a strong temperature dependence in foraminifera and corals, but not in bivalve mollusks. Various studies have reported Mg/Ca-temperature relationships with R2 values ranging from 0.3 to 0.8 and significantly different relationships for bivalves growing at different salinities. However, this poor temperature correlation does not render Mg/Ca data useless. A weak temperature dependence would allow time (seasons and years) to be determined along the growth axis of shells. This would provide information about age, growth rate and also allow other proxies to be aligned with time. Typically, oxygen isotopes (δ18O) are used to age shells without clear periodic growth lines, which is time consuming and expensive. Line scans using laser ablation systems can cover several centimeters of shell in a few minutes. We test this method on the resilifer of two oyster species (Crassostrea gigas and C. virginica) using a 193 nm Laser-Ablation-ICP-MS. Living oysters were collected from San Francisco Bay, North Carolina, South Carolina, and the Gulf of Mexico; fossil shells (Pleistocene) were also collected in South Carolina. Shells were sampled for δ18O values and Mg/Ca ratios. We use annual cycles in δ18O values to confidently determine age, then apply the Mg/Ca technique. Shells of both species exhibit annual cyclicity in Mg/Ca ratios using spot and line scan laser sampling, which matche the seasonal cyclicity determined using δ18O values. Results show a good correlation between ages determined using the different methods. We conclude that LA-ICP-MS line scans offer a rapid and inexpensive technique for determining age, growth rate, and timing of shell growth in oyster reslifers.

  2. In situ sulfur isotopes (δ(34)S and δ(33)S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS.

    PubMed

    Fu, Jiali; Hu, Zhaochu; Zhang, Wen; Yang, Lu; Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong

    2016-03-10

    The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4-8 ml min(-1) nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min(-1)). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis

  3. Laser ablation ICP-MS and traditional micromorphological techniques applied to the study of different genetic horizons in thin sections: soil genesis and trace element distribution

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Barca, Donatella; de Rosa, Rosanna; Pulice, Iolanda; Vacca, Andrea

    2010-05-01

    This work focuses on an innovative methodological approach to investigate in situ chemical composition of trace and rare earth (REE) elements in discrete soil features from different soil horizons: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to clay coatings, pedogenic matrix and skeletal parent rock fragments in thin sections, coupled with traditional pedological investigations, specially clay mineralogy and micromorphology. Analyses were performed on 80 μm-thick sections obtained from undisturbed soil samples, which represent three reddish argillic (Bt) horizons from an Alfisol developed on late Pleistocene slope deposits and three brown organic-mineral (A) horizons from an Entisol formed on Holocene aggrading fluvial sediments in the Muravera area (southeast Sardinia, Italy). Validation of the LA-ICP-MS technique provides in situ accurate and reproducible (RSD 13-18%) analysis of low concentration trace elements in the studied soil samples (0.001-0.1 ppm). Our results showed a high reliability of this method on soil thin sections and revealed that concentrations of trace and rare earth elements in the different portions of a soil profile can be used to investigate their distribution, as a response to soil-forming processes. A general trend of increase of most trace elements from rock fragments to (both clayey and organic-rich) soil matrix, to clay coatings in argillic horizons is clearly highlighted. On this basis a prominent role of pedogenetic processes in element fractionation and distribution during weathering can be supposed. In particular, element adsorption onto reactive sites of organic matter and clay particles (and possibly Fe-oxyhydroxides) and clay illuviation appear the main pedogenetic processes able to promote element enrichment after their release from the weathering of primary minerals. As clay coatings exhibit the highest concentration of trace elements, and specifically of REEs, and represent the most

  4. Analysis of I-Br-Cl in single fluid inclusions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Giehl, C.; Fusswinkel, T.; Beermann, O.; Garbe-Schönberg, D.; Scholten, L.; Wagner, T.

    2017-12-01

    Halogens are excellent tracers of hydrothermal fluid sources and in-situ LA-ICP-MS analysis of Cl and Br in single fluid inclusions has provided fundamentally new insight into hydrothermal fluid flow and ore formation. There is mounting evidence that enrichment and depletion of Br relative to Cl may be caused by a number of processes beyond seawater evaporation and halite dissolution which cannot be discriminated on the basis of Br/Cl ratios alone. Expanding the analytical capabilities of fluid inclusion LA-ICP-MS analysis to include iodine would allow to discern between selective and coupled enrichment processes of Cl, Br and I, even in geologically complex samples that are inaccessible to bulk extraction techniques. We present iodine concentration data determined by LA-ICP-MS analysis of synthetic fluid inclusions, using the Sca17 scapolite reference material for external standardization (Seo et al., 2011). Iodine concentrations in Sca17 were determined using the Durango apatite standard. Four starting solutions containing I (0.3, 1.5, 27, 78 µg/g), Br (941, 1403, 2868, 4275 µg/g), Na (30.7, 94.7 mg/g), and Cl (50, 137 mg/g) (analyzed by ICP-OES and ICP-MS at CAU Kiel) were prepared by dissolving reagent grade chemical powders in ultra-pure water. Spherical inclusions (up to 40 µm) were synthesized from the starting solutions in pre-cracked, HF-treated synthetic quartz crystals which were placed in gold capsules and equilibrated at 600°C, 100/200 MPa in cold seal pressure vessels. Fluid inclusion LA-ICP-MS analysis (University of Helsinki) yielded average I concentrations in excellent agreement with the starting solutions (27.3 µg/g ± 14 %RSD for the 27 µg/g solution and 77.6 µg/g ± 8.3 %RSD for the 78 µg/g solution). Average Br and I concentrations deviate less than 10 % from solution concentration values. For the low I concentration solutions, the synthetic inclusions were too small to detect I. Thus, given suitable standard materials and sufficient

  5. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    NASA Technical Reports Server (NTRS)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample

  6. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  7. Determination of phosphorus in small amounts of protein samples by ICP-MS.

    PubMed

    Becker, J Sabine; Boulyga, Sergei F; Pickhardt, Carola; Becker, J; Buddrus, Stefan; Przybylski, Michael

    2003-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is used for phosphorus determination in protein samples. A small amount of solid protein sample (down to 1 micro g) or digest (1-10 micro L) protein solution was denatured in nitric acid and hydrogen peroxide by closed-microvessel microwave digestion. Phosphorus determination was performed with an optimized analytical method using a double-focusing sector field inductively coupled plasma mass spectrometer (ICP-SFMS) and quadrupole-based ICP-MS (ICP-QMS). For quality control of phosphorus determination a certified reference material (CRM), single cell proteins (BCR 273) with a high phosphorus content of 26.8+/-0.4 mg g(-1), was analyzed. For studies on phosphorus determination in proteins while reducing the sample amount as low as possible the homogeneity of CRM BCR 273 was investigated. Relative standard deviation and measurement accuracy in ICP-QMS was within 2%, 3.5%, 11% and 12% when using CRM BCR 273 sample weights of 40 mg, 5 mg, 1 mg and 0.3 mg, respectively. The lowest possible sample weight for an accurate phosphorus analysis in protein samples by ICP-MS is discussed. The analytical method developed was applied for the analysis of homogeneous protein samples in very low amounts [1-100 micro g of solid protein sample, e.g. beta-casein or down to 1 micro L of protein or digest in solution (e.g., tau protein)]. A further reduction of the diluted protein solution volume was achieved by the application of flow injection in ICP-SFMS, which is discussed with reference to real protein digests after protein separation using 2D gel electrophoresis.The detection limits for phosphorus in biological samples were determined by ICP-SFMS down to the ng g(-1) level. The present work discusses the figure of merit for the determination of phosphorus in a small amount of protein sample with ICP-SFMS in comparison to ICP-QMS.

  8. Potentialities of mass spectrometry (ICP-MS) for actinides determination in urine.

    PubMed

    Bouvier-Capely, C; Ritt, J; Baglan, N; Cossonnet, C

    2004-05-01

    The applicability of inductively coupled plasma-mass spectrometry (ICP-MS) for determining actinides in urine was investigated. Performances of ICP-MS including detection limit and analysis time were studied and compared with alpha spectrometry performances. In the field of individual monitoring of workers, the comparison chart obtained in this study can be used as a guide for medical laboratories to select the most adequate procedure to be carried out depending on the case in question (the radioisotope to be measured, the required sensitivity, and the desired response time).

  9. ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids.

    PubMed

    Sarmiento-González, Alejandro; Marchante-Gayón, Juan Manuel; Tejerina-Lobo, José María; Paz-Jiménez, José; Sanz-Medel, Alfredo

    2005-06-01

    A sector field high-resolution (HR)-ICP-MS and an octapole reaction system (ORS)-ICP-MS have been compared for the simultaneous determination of traces of metals (Ti, V, Cr, Co, Ni, and Mo) released from dental implants and articular prostheses in human biological fluids. Optimum sample treatments were evaluated to minimize matrix effects in urine and whole blood. Urine samples were diluted tenfold with ultrapure water, whereas whole blood samples were digested with high-purity nitric acid and hydrogen peroxide and finally diluted tenfold with ultrapure water. In both matrices, internal standardization (Ga and Y) was employed to avoid potential matrix interferences and ICP-MS signal drift. Spectral interferences arising from the plasma gases or the major components of urine and whole blood were identified by (HR)-ICP-MS at 3,000 resolving power. The capabilities of (HR)-ICP-MS and (ORS)-ICP-MS for the removal of such spectral interferences were evaluated and compared. Results indicate that polyatomic interferences, which hamper the determination of such metallic elements in these biological samples, could be overcome by using a resolving power of 3,000. Using (ORS)-ICP-MS, all those elements could be quantified except Ti and V (due to the polyatomic ions 31P16O and 35Cl16O, respectively). The accuracy of the proposed methodologies by (HR)- and (ORS)-ICP-MS was checked against two reference materials. Good agreement between the given values and the concentrations obtained for all the analytes under scrutiny was found except for Ti and V when analyzed by (ORS)-ICP-MS.

  10. A powerful tool for assessing distribution and fate of potentially toxic metals (PTMs) in soils: integration of laser ablation spectrometry (LA-ICP-MS) on thin sections with soil micromorphology and geochemistry.

    PubMed

    Scarciglia, Fabio; Barca, Donatella

    2017-04-01

    The dynamic behavior and inherent spatial heterogeneity, at different hierarchic levels, of the soil system often make the spatial distribution of potentially toxic metals (PTMs) quite complex and difficult to assess correctly. This work demonstrates that the application of laser ablation spectrometry (LA-ICP-MS) to soil thin sections constitutes an ancillary powerful tool to well-established analytical methods for tracing the behavior and fate of potential soil contaminants at the microsite level. It allowed to discriminate the contribution of PTMs in distinct soil sub-components, such as parent rock fragments, neoformed, clay-enriched or humified matrix, and specific pedogenetic features of illuvial origin (unstained or iron-stained clay coatings) even at very low contents. PTMs were analyzed in three soil profiles located in the Muravera area (Sardinia, Italy), where several, now abandoned mines were exploited. Recurrent trends of increase of many PTMs from rock to pedogenic matrix and to illuvial clay coatings, traced by LA-ICP-MS compositional data, revealed a pedogenetic control on metal fractionation and distribution, based on adsorption properties of clay minerals, iron oxyhydroxides or organic matter, and downprofile illuviation processes. The main PTMs patterns coupled with SEM-EDS analyses suggest that heavy metal-bearing mineral grains were sourced from the mine plants, in addition to the natural sedimentary input. The interplay between soil-forming processes and geomorphic dynamics significantly contributed to the PTMs spatial distribution detected in the different pedogenetic horizons and soil features.

  11. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  12. Validation of uranium determination in urine by ICP-MS.

    PubMed

    Bouvier-Capely, C; Baglan, N; Montègue, A; Ritt, J; Cossonnet, C

    2003-08-01

    A rapid procedure--dilution of urine+ICP-MS measurement--for the determination of uranium in urine was validated. Large ranges of concentration and isotopic composition were studied on urine samples excreted by occupationally exposed workers. The results were consistent with those obtained by fluorimetry and by alpha spectrometry after a purification procedure, two currently used techniques. However, the proposed procedure is limited for determination of the minor isotope 234U. Thus for worker monitoring, the conversion of 234U mass concentration into activity concentration can lead to an erroneous value of the effective dose, in particular for a contamination at very low level with highly enriched uranium. A solution to avoid this hazard is to perform a chemical purification prior to ICP-MS measurement to lower uncertainty and detection limit for 234U.

  13. Comparative evaluation of GFAAS and ICP-MS for analyses of cadmium in blood.

    PubMed

    Fukui, Yoshinari; Ohashi, Fumiko; Sakuragi, Sonoko; Moriguchi, Jiro; Ikeda, Masayuki

    2011-01-01

    Cadmium in blood (Cd-B) is an important indicator, next to Cd in urine, in biological monitoring of exposure to Cd. The present study was initiated to examine compatibility in results of analysis for Cd-B between graphite furnace atomic absorption spectrophotometry (GFAAS) and inductively-coupled plasma mass-spectrometry (ICP-MS). For this purpose, 1,159 blood samples were collected from adult women (with no occupational exposure to Cd) in eight prefectures nation-widely in Japan. The samples were analyzed by the two methods; geometric mean (the maximum) concentrations were 1.22 (6.90) μg/l by ICP-MS, and 1.47 (7.40) μg/l by GFAAS. Statistical analyses showed that there was a close correlation between the results by the two methods. The regression line (with ICP-MS and GFAAS results as an independent variable and a dependent variable, respectively) had a slope close to one and an intercept next to zero to suggest that ICP-MS gave values compatible with that of GFAAS. Further analysis with the ratio of Cd-B by GFAAS over that by ICP-MS revealed that the two results were close to each other, and that the agreement was even closer when Cd-B was >2 μg/l. Thus, the two methods can be employed inter-convertibly when Cd-B is relatively high, e.g. >2 μg/l. Care may need to be practiced, however, for possible 'between methods' difference when Cd-B is low, e.g., ≤2 μg/l.

  14. EXTRACTION AND DETECTION OF A NEW ARSINE SULFIDE CONTAINING ARSENOSUGAR IN MOLLUSCS BY IC-ICP-MS AND IC-ESI-MS/MS

    EPA Science Inventory

    Using IC-ICP-MS and IC-ESI-MS/MS, an unknown arsenical compound in mollusks has been identified as a new arsine sulfide containing analog of a known arsenosugar and is referred to as As(498). This species has been observed in four separate shellfish species following a mild metha...

  15. An integrated analysis for determining the geographical origin of medicinal herbs using ICP-AES/ICP-MS and (1)H NMR analysis.

    PubMed

    Kwon, Yong-Kook; Bong, Yeon-Sik; Lee, Kwang-Sik; Hwang, Geum-Sook

    2014-10-15

    ICP-MS and (1)H NMR are commonly used to determine the geographical origin of food and crops. In this study, data from multielemental analysis performed by ICP-AES/ICP-MS and metabolomic data obtained from (1)H NMR were integrated to improve the reliability of determining the geographical origin of medicinal herbs. Astragalus membranaceus and Paeonia albiflora with different origins in Korea and China were analysed by (1)H NMR and ICP-AES/ICP-MS, and an integrated multivariate analysis was performed to characterise the differences between their origins. Four classification methods were applied: linear discriminant analysis (LDA), k-nearest neighbour classification (KNN), support vector machines (SVM), and partial least squares-discriminant analysis (PLS-DA). Results were compared using leave-one-out cross-validation and external validation. The integration of multielemental and metabolomic data was more suitable for determining geographical origin than the use of each individual data set alone. The integration of the two analytical techniques allowed diverse environmental factors such as climate and geology, to be considered. Our study suggests that an appropriate integration of different types of analytical data is useful for determining the geographical origin of food and crops with a high degree of reliability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. High-precision Ru isotopic measurements by multi-collector ICP-MS.

    PubMed

    Becker, Harry; Dalpe, Claude; Walker, Richard J

    2002-06-01

    Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 epsilon unit = 1 part in 10(4)) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5-1.7 epsilon level (2sigma). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for 104Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10(4)), uncertainties on the Mo interference correction propagate through the mass bias correction and yield inaccurate results for Ru isotopic compositions. Second-order linear corrections may be used to correct for these inaccuracies, but such results are generally less precise than N-TIMS data.

  17. Application of CE-ICP-MS and CE-ESI-MS/MS for identification of Zn-binding ligands in Goji berries extracts.

    PubMed

    Ruzik, Lena; Kwiatkowski, Piotr

    2018-06-01

    The identification of groups of ligands binding metals is a crucial issue for the better understanding of their bioaccessibility. In the current study, we have intended an approach for identification of Zn-binding ligands based on using capillary electrophoresis combined with inductively coupled plasma mass spectrometry (CE-ICP-MS) and tandem electrospray ionization mass spectrometry (CE-ESI-MS/MS). The approach, which featured the use of the coupling of capillary electrophoresis with inductively coupled plasma mass spectrometry allows to separate and observe zinc ions present in complexes with respect to their size and charge and to identify nine compounds with zinc isotopic profile. CE-ICP-MS provides us with information about presence of zinc species and elemental information about zinc distribution. CE-ESI-MS/MS provide us with information about the most favorable Zn binding ligands: amino acids, flavonols, stilbenoids, fenolic acids and carotenoids. The presented work is the continuation of previous studies based on using LC-ESI-MS/MS, though, now we presented a new solutions with the possibility of changing detectors without changing the separation techniques, what is important without re-optimizing the method. The new presented method allows to identify the zinc-binding ligands in shorter time. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

    PubMed

    Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R

    2015-09-01

    Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.

  19. Elemental bioimaging by means of LA-ICP-OES: investigation of the calcium, sodium and potassium distribution in tobacco plant stems and leaf petioles.

    PubMed

    Thyssen, G M; Holtkamp, M; Kaulfürst-Soboll, H; Wehe, C A; Sperling, M; von Schaewen, A; Karst, U

    2017-06-21

    Laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) is presented as a valuable tool for elemental bioimaging of alkali and earth alkali elements in plants. Whereas LA-ICP-OES is commonly used for micro analysis of solid samples, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advanced to the gold standard for bioimaging. However, especially for easily excitable and ubiquitous elements such as alkali and earth alkali elements, LA-ICP-OES holds some advantages regarding simultaneous detection, costs, contamination, and user-friendliness. This is demonstrated by determining the calcium, sodium and potassium distribution in tobacco plant stem and leaf petiole tissues. A quantification of the calcium contents in a concentration range up to 1000 μg g -1 using matrix-matched standards is presented as well. The method is directly compared to a LA-ICP-MS approach by analyzing parallel slices of the same samples.

  20. Provenance establishment of coffee using solution ICP-MS and ICP-AES.

    PubMed

    Valentin, Jenna L; Watling, R John

    2013-11-01

    Statistical interpretation of the concentrations of 59 elements, determined using solution based inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma emission spectroscopy (ICP-AES), was used to establish the provenance of coffee samples from 15 countries across five continents. Data confirmed that the harvest year, degree of ripeness and whether the coffees were green or roasted had little effect on the elemental composition of the coffees. The application of linear discriminant analysis and principal component analysis of the elemental concentrations permitted up to 96.9% correct classification of the coffee samples according to their continent of origin. When samples from each continent were considered separately, up to 100% correct classification of coffee samples into their countries, and plantations of origin was achieved. This research demonstrates the potential of using elemental composition, in combination with statistical classification methods, for accurate provenance establishment of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Quantitative 3-D elemental mapping by LA-ICP-MS of a basaltic clast from the Hanford 300 Area, Washington, USA.

    PubMed

    Peng, Sheng; Hu, Qinhong; Ewing, Robert P; Liu, Chongxuan; Zachara, John M

    2012-02-21

    Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100-μm scale in a 3-dimensional manner within a basaltic clast sample collected from the Hanford 300 Area in south-central Washington State, United States. A calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-Dimensional maps (stacked 2-D contour layers, each representing 2100 μm × 2100 μm) show relatively uniform concentration with depth for intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the sample surface, consistent with the site's release history of these contaminants. U and Cu show substantial heterogeneity in their concentration distributions within horizontal slices, while the intrinsic elements are essentially uniformly distributed. From these measured U concentrations and published grain size distributions, gravel and cobbles were estimated to contain about 1% of the contaminant U, implicating the coarse fraction as a long-term release source.

  2. LC coupled to ESI, MALDI and ICP MS - A multiple hyphenation for metalloproteomic studies.

    PubMed

    Coufalíková, Kateřina; Benešová, Iva; Vaculovič, Tomáš; Kanický, Viktor; Preisler, Jan

    2017-05-22

    A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Potential Health Benefits and Metabolomics of Camel Milk by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Raish, Mohammad; Ahmad, Ajaz; Shakeel, Faiyaz

    2017-02-01

    None of the research reports reveals the metabolomics and elemental studies on camel milk. Recent studies showed that camel milk possesses anticancer and anti-inflammatory activity. Metabolomics and elemental studies were carried out in camel milk which showed us the pathways and composition that are responsible for the key biological role of camel milk. Camel milk was dissolved in methanol and chloroform fraction and then vortexed and centrifuged. Both the fractions were derivatized by N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) and TMCS after nitrogen purging and analyzed by GC-MS. Camel milk was also analyzed by ICP-MS after microwave digestion. We found that higher alkanes and fatty acids are present in the chloroform fraction and amino acids, sugars and fatty acid derivatives are present in aqueous fractions. All the heavy metals like As, Pb, Cd, Co, Cu, and Ni were in the safe limits in terms of maximum daily intake of these elements. Na, K, Mg, and Ca were also present in the safe limits in terms of maximum daily intake of these elements. These results suggested that the camel milk drinking is safe and there is no health hazard. The present data of GC-MS and ICP-MS correlate the activities related to camel milk.

  4. Online immunocapture ICP-MS for the determination of the metalloprotein ceruloplasmin in human serum.

    PubMed

    Bernevic, Bogdan; El-Khatib, Ahmed H; Jakubowski, Norbert; Weller, Michael G

    2018-04-02

    The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32 S mass trace. The ICP-MS signals were normalized on a 59 Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS.

  5. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    DOE PAGES

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; ...

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd (x)Sb 2 and T´-La 2CuOmore » 4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less

  6. Measurement of technetium-99 in Marshall Islands soil samples by ICP-MS

    PubMed

    Tagami; Uchida; Hamilton; Robison

    2000-07-01

    Extraction techniques for recovery of technetium-99 (99Tc) for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements were evaluated using soil samples collected from the Marshall Islands. The results of three different extraction techniques were compared: (MI) acid leaching of Tc from ashed soil; (M2) acid leaching of Tc from raw dry soil; and (M3) Tc volatilization from ashed soil using a combustion apparatus. Total Tc recoveries varied considerably between the extraction techniques but each method yielded similar analytical results for 99Tc. Applications of these extraction techniques to a series of environmental samples and ICP-MS measurements have yielded first data on the 99Tc content of Marshall Islands soil samples contaminated with close-in radioactive fallout from nuclear weapons testing. The 99Tc activity concentration in the soil samples ranged between 0.1 and 1.1 mBq g(-1) dry weight (dw). The limit of detection for 99Tc by ICP-MS was 0.17 mBq per sample or 0.014 mBq g(-1) dw under standard operating conditions.

  7. A candidate reference method using ICP-MS for sweat chloride quantification.

    PubMed

    Collie, Jake T; Massie, R John; Jones, Oliver A H; Morrison, Paul D; Greaves, Ronda F

    2016-04-01

    The aim of the study was to develop a method for sweat chloride (Cl) quantification using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to present to the Joint Committee for Traceability in Laboratory Medicine (JCTLM) as a candidate reference method for the diagnosis of cystic fibrosis (CF). Calibration standards were prepared from sodium chloride (NaCl) to cover the expected range of sweat Cl values. Germanium (Ge) and scandium (Sc) were selected as on-line (instrument based) internal standards (IS) and gallium (Ga) as the off-line (sample based) IS. The method was validated through linearity, accuracy and imprecision studies as well as enrolment into the Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP) for sweat electrolyte testing. Two variations of the ICP-MS method were developed, an on-line and off-line IS, and compared. Linearity was determined up to 225 mmol/L with a limit of quantitation of 7.4 mmol/L. The off-line IS demonstrated increased accuracy through the RCPAQAP performance assessment (CV of 1.9%, bias of 1.5 mmol/L) in comparison to the on-line IS (CV of 8.0%, bias of 3.8 mmol/L). Paired t-tests confirmed no significant differences between sample means of the two IS methods (p=0.53) or from each method against the RCPAQAP target values (p=0.08 and p=0.29). Both on and off-line IS methods generated highly reproducible results and excellent linear comparison to the RCPAQAP target results. ICP-MS is a highly accurate method with a low limit of quantitation for sweat Cl analysis and should be recognised as a candidate reference method for the monitoring and diagnosis of CF. Laboratories that currently practice sweat Cl analysis using ICP-MS should include an off-line IS to help negate any pre-analytical errors.

  8. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  9. Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods

    PubMed Central

    Jackson, Brian; Liba, Amir; Nelson, Jenny

    2014-01-01

    Recent reports of As concentrations in certain food and drinks have garnered public concern and led to a lowering of the US guideline maximum concentration for inorganic As in apple juice and proposed limits for As in rice products. In contrast Se is an essential micro-nutrient that can be limiting when Se-poor soils yield Se-poor food crops. Rare earth element (REE) doubly charged interferences on As and Se can be significant even when initial ICP-MS tuning minimizes doubly charged formation. We analyzed NIST 1547 (peach leaves) and 1515 (apple leaves), which contain high levels of REEs, by quadrupole ICP-MS with (He) collision mode, H2 reaction mode or triple quadrupole ICP-MS (ICP-QQQ) in mass-shift mode (O2 and O2/H2). Analysis by collision cell ICP-MS significantly over-estimated As and Se concentration due to REE doubly charged formation; mathematical correction increased the accuracy of analysis but is prone to error when analyte concentration and sensitivity is low and interferent is high. For Se, H2 reaction mode was effective in suppressing Gd2+ leading to accurate determination of Se in both SRMs without the need for mathematical correction. ICP-QQQ using mass-shift mode for As+ from m/z 75 to AsO+ at m/z 91 and Se+ from m/z 78 to SeO+ at m/z 94 alleviated doubly charged effects and resulted in accurate determination of As and Se in both SRMs without the need for correction equations. Zr and Mo isobars at 91 and 94 were shown to be effectively rejected by the MS/MS capability of the ICP-QQQ. PMID:25609851

  10. Isotope dilution ICP-MS with laser-assisted sample introduction for direct determination of sulfur in petroleum products.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Heumann, Klaus G

    2005-08-01

    Inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with direct laser-assisted introduction of isotope-diluted samples into the plasma, using a laser ablation system with high ablation rates, was developed for accurate sulfur determinations in different petroleum products such as 'sulfur-free' premium gasoline, diesel fuel, and heating oil. Two certified gas oil reference materials were analyzed for method validation. Two different 34S-enriched spike compounds, namely, elementary sulfur dissolved in xylene and dibenzothiophene in hexane, were synthesized and tested for their usefulness in this isotope dilution technique. The isotope-diluted sample was adsorbed on a filter-paper-like material, which was fixed in a special holder for irradiation by the laser beam. Under these conditions no time-dependent spike/analyte fractionation was only observed for the dibenzothiophene spike during the laser ablation process, which means that the measured 34S/32S isotope ratio of the isotope-diluted sample remained constant-a necessary precondition for accurate results with the isotope dilution technique. A comparison of LA-ICP-IDMS results with the certified values of the gas oil reference materials and with results obtained from ICP-IDMS analyses with wet sample digestion demonstrated the accuracy of the new LA-ICP-IDMS method in the concentration range of 9.2 microg g(-1) ('sulfur-free' premium gasoline) to 10.4 mg g(-1) (gas oil reference material BCR 107). The detection limit for sulfur by LA-ICP-IDMS is 0.04 microg g(-1) and the analysis time is only about 10 min, which therefore also qualifies this method for accurate determinations of low sulfur contents in petroleum products on a routine level.

  11. Two-dimensional on-line detection of brominated and iodinated volatile organic compounds by ECD and ICP-MS after GC separation.

    PubMed

    Schwarz, A; Heumann, K G

    2002-09-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.

  12. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; le Roux, Petrus J; Grimes, Vaughan; Lee-Thorp, Julia A; de Ruiter, Darryl J; Richards, Michael P

    2008-10-01

    Strontium isotope ratios (87Sr/86Sr) in tooth enamel provide a means to investigate migration and landscape use in humans and other animals. Established methods for measuring (87)Sr/(86)Sr in teeth use bulk sampling (5-20 mg) and labor-intensive elemental purification procedures before analysis by either thermal ionization mass spectrometry (TIMS) or multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Another method for measuring 87Sr/86Sr is laser ablation MC-ICP-MS, but concerns have been expressed about its accuracy for measuring tooth enamel. In this study we test the precision and accuracy of the technique by analyzing 30 modern rodent teeth from the Sterkfontein Valley, South Africa by laser ablation MC-ICP-MS and solution MC-ICP-MS. The results show a mean difference in 87Sr/86Sr measured by laser ablation and by solution of 0.0003 +/- 0.0002. This degree of precision is well within the margin necessary for investigating the potential geographic origins of humans or animals in many areas of the world. Because laser ablation is faster, less expensive, and less destructive than bulk sampling solution methods, it opens the possibility for conducting 87Sr/86Sr analyses of intra-tooth samples and small and/or rare specimens such as micromammal and fossil teeth.

  13. [Interest and limits of inductively coupled plasma mass spectrometry (ICP-MS) for urinary diagnosis of radionuclide internal contamination].

    PubMed

    Lecompte, Yannick; Bohand, Sandra; Laroche, Pierre; Cazoulat, Alain

    2013-01-01

    After a review of radiometric reference methods used in radiotoxicology, analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for the workplace urinary diagnosis of internal contamination by radionuclides are evaluated. A literature review (covering the period from 2000 to 2012) is performed to identify the different applications of ICP-MS in radiotoxicology for urine analysis. The limits of detection are compared to the recommendations of the International commission on radiological protection (ICRP 78: "Individual monitoring for internal exposure of workers"). Except one publication describing the determination of strontium-90 (β emitter), all methods using ICP-MS reported in the literature concern actinides (α emitters). For radionuclides with a radioactive period higher than 10(4) years, limits of detection are most often in compliance with ICRP publication 78 and frequently lower than radiometric methods. ICP-MS allows the specific determination of plutonium-239 + 240 isotopes which cannot be discriminated by α spectrometry. High resolution ICP-MS can also measure uranium isotopic ratios in urine for total uranium concentrations lower than 20 ng/L. The interest of ICP-MS in radiotoxicology concerns essentially the urinary measurement of long radioactive period actinides, particularly for uranium isotope ratio determination and 239 and 240 plutonium isotopes discrimination. Radiometric methods remain the most efficient for the majority of other radionuclides.

  14. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions

  15. Quantitative 3-D Elemental Mapping by LA-ICP-MS of a Basaltic Clast from the Hanford 300 Area, Washington, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Peng; Hu, Qinhong; Ewing, Robert P.

    2012-03-01

    Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100 {micro}m scale in a 3-dimensional manner in a basalt sample collected from the Hanford 300 Area in south-central Washington State. A modified calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-dimensional maps (stacked 2-D contour layers, each measuring 2100 {micro}m x 2100 {micro}m) show relatively uniform concentration with depth formore » intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the rock surface, consistent with the site's release history of these pollutants. U and Cu show substantial heterogeneity in their concentration distributions in horizontal slices, while the intrinsic elements are essentially uniformly distributed. From measured U concentrations of this work and reported mass fractions, cobbles and gravels were estimated to contain from 0.6% to 7.5% of the contaminant U, implicating the coarse fraction as a long-term release source.« less

  16. Quantitative Evaluation of Cisplatin Uptake in Sensitive and Resistant Individual Cells by Single-Cell ICP-MS (SC-ICP-MS).

    PubMed

    Corte Rodríguez, M; Álvarez-Fernández García, R; Blanco, E; Bettmer, J; Montes-Bayón, M

    2017-11-07

    One of the main limitations to the Pt-therapy in cancer is the development of associated drug resistance that can be associated with a significant reduction of the intracellular platinum concentration. Thus, intracellular Pt concentration could be considered as a biomarker of cisplatin resistance. In this work, an alternative method to address intracellular Pt concentration in individual cells is explored to permit the evaluation of different cell models and alternative therapies in a relatively fast way. For this aim, total Pt analysis in single cells has been implemented using a total consumption nebulizer coupled to inductively coupled plasma mass spectrometric detection (ICP-MS). The efficiency of the proposed device has been evaluated in combination with flow cytometry and turned out to be around 25% (cells entering the ICP-MS from the cells in suspension). Quantitative uptake studies of a nontoxic Tb-containing compound by individual cells were conducted and the results compared to those obtained by bulk analysis of the same cells. Both sets of data were statistically comparable. Thus, final application of the developed methodology to the comparative uptake of Pt-species in cisplatin resistant and sensitive cell lines (A2780cis and A2780) was conducted. The results obtained revealed the potential of this analytical strategy to differentiate between different cell lines of different sensitivity to the drug which might be of high medical interest.

  17. A rapid and reliable method for Pb isotopic analysis of peat and lichens by laser ablation-quadrupole-inductively coupled plasma-mass spectrometry for biomonitoring and sample screening.

    PubMed

    Kylander, M E; Weiss, D J; Jeffries, T E; Kober, B; Dolgopolova, A; Garcia-Sanchez, R; Coles, B J

    2007-01-16

    An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were <1.1% and <0.3%, respectively, on both (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios. LA-Q-ICP-MS internal precisions on (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios were lower with values for the different sample sets <14.3% while external precisions were <2.9%. The level of external precision acquired in this study is high enough to distinguish between most modern Pb sources. LA-MC-ICP-MS measurements differed from thermal ionisation mass spectrometry (TIMS) values by 1% or less while the accuracy obtained using LA-Q-ICP-MS compared to solution MC-ICP-MS was 3.1% or better using a run bracketing (RB) mass bias correction method. Sample heterogeneity and detector switching when measuring (208)Pb by Q-ICP-MS are identified as sources of reduced analytical performance.

  18. Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    Szumila, Ian; Danielson, Lisa; Trail, Dustin

    2017-01-01

    Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures

  19. Low pressure laser ablation coupled to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fliegel, Daniel; Günther, Detlef

    2006-07-01

    The particle size distribution in laser ablation inductively coupled plasma mass spectrometry is known to be a critical parameter for complete vaporization of particles. Any strategy to reduce the particle size distribution of laser generated aerosols has the potential to increase the ion signal intensity and to reduce fractionation effects. Due to the fact that vapor generation, nucleation, condensation, and agglomeration take place within an extremely short period of time, ablation under atmospheric pressure might not allow influencing these processes while under reduced pressure condition the cooling of the aerosol and therefore the condensation is expected to be slower. In this study, a low pressure laser ablation cell for the generation of laser aerosols was coupled to an ICP-MS. In contrast to the previously developed trapped ablation mode, the newly designed cell allows the adjustment of the pressure in the ablation cell between 20 and 1400 mbar prior to the ablation. Ablation experiments carried out using this configuration showed a dependence of the aerosol properties (size distribution and particle structure) on the ablation cell pressure. The intensity ratio U/Th measured as a figure of merit for complete vaporization within the ICP indicated a change in the aerosol structure at approximately 500 mbar toward smaller particle size. A significant difference between low pressure and at ambient pressure ablated aerosol was observed. The intensity ratios (U/Th) of the ablated sample moves closer to the bulk composition at lower pressures at the expense of sensitivity. Therefore the decrease in the ICP-MS signal intensity in the low pressure cell can be attributed to vapor deposition within the ablation cell walls. Moreover, scanning electron microscope images of aerosols collected on filters after the low pressure ablation cell suggest the possibility of a slower cooling velocity of the aerosol, which was observed in the condensed material on the surface of

  20. Determination of uranium in tap water by ICP-MS.

    PubMed

    El Himri, M; Pastor, A; de la Guardia, M

    2000-05-01

    A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.

  1. Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS.

    PubMed

    Candás-Zapico, S; Kutscher, D J; Montes-Bayón, M; Bettmer, J

    2018-04-01

    Titanium dioxide (TiO 2 ) belongs to the materials that have gained great importance in many applications. In its particulate form (micro- or nanoparticles), it has entered a huge number of consumer products and food-grade TiO 2 , better known as E171 within the European Union, represents an important food additive. Thus, there is an increasing need for analytical methods able to detect and quantify such particles. In this regard, inductively coupled-mass spectrometry (ICP-MS), in particular single particle ICP-MS (spICP-MS), has gained importance due to its simplicity and ease of use. Nevertheless, the number of applications for Ti nanoparticles is rather limited. In this study, we have applied the spICP-MS strategy by comparing different measuring modes available in triple quadrupole ICP-MS. First, single quadrupole mode using the collision/reaction cell system was selected for monitoring the isotope 47 Ti. Different cell gases like He, O 2 and NH 3 were tested under optimised conditions for its applicability in spICP-MS of standard suspensions of TiO 2 . The determined analytical figures of merit were compared to those obtained by triple quadrupole mode using the 47 Ti or 48 Ti reaction products using O 2 and NH 3 as reaction gases. This comparison demonstrated that the triple quadrupole mode (TQ mode) was superior in terms of sensitivity due to the more efficient removal of spectral interferences. Particle size detection limits down to 26nm were obtained using the best instrumental conditions for TiO 2 particles at a dwell time of 10ms. Finally, the different measuring modes were applied to the analysis of chewing gum samples after a simple extraction procedure using an ultrasonic bath. The obtained results showed a good agreement for the detected particle size range using the different TQ modes. The size range of TiO 2 particles was determined to be between approximately 30 and 200nm, whereas roughly 40% of the particles were smaller than 100nm. For the

  2. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields.

    PubMed

    Gulson, Brian; Kamenov, George D; Manton, William; Rabinowitz, Michael

    2018-04-11

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208 Pb/ 206 Pb and 207 Pb/ 206 Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields.

  3. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields

    PubMed Central

    Gulson, Brian; Manton, William; Rabinowitz, Michael

    2018-01-01

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208Pb/206Pb and 207Pb/206Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields. PMID:29641487

  4. Efficient analysis of complex natural materials using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Kent, A. J.; Loewen, M. W.; Koleszar, A. M.; Miller, J.; Ungerer, C. "

    2011-12-01

    Many natural materials exhibit complex variations in chemical or isotopic composition over relatively short length scales, and these compositional variations often record important information about the environment or nature of the processes that lead to formation. Examples include complexly zoned crystals within volcanic rocks that record magmatic and volcanic signals, otoliths and other biominerals that record life history and environmental information, and speleothems that record climatic variables. Laser ablation ICP-MS analyses offer several advantages for quantifying compositional in chemically complex natural materials. These include the speed of analysis, the ability to sample at atmospheric pressures, the wide diversity of possible analytes, and the ability to make measurements in both spot and raster modes. The latter in particular offers advantages for analyses that require efficient acquisition of information over significant length scales, as in raster mode compositional data can be rapidly obtained by translating the laser laterally over a compositional variable material during a single analysis. In this fashion elemental or isotopic composition at a given analysis time corresponds to the lateral spatial dimension. This contrasts with a record obtained by a row of individual spots, which require a large number of discrete analyses, and requires significantly more analysis time. However there are also disadvantages to this style of analysis. Translation of the circular spots typically used for analysis results in significant signal attenuation and production of artifacts that may mirror natural diffusion profiles or other gradual changes. The ability to ablate using non-circular spots significantly reduces this effect, although the degree of attenuation is also increased by slower ablation cell response times. For single volume cells this may result in 50-100% additional attenuation than that produced by the translation of the spot alone, although two

  5. Comment on "Zircon U-Th-Pb dating using LA-ICP-MS: Simultaneous U-Pb and U-Th dating on 0.1 Ma Toya Tephra, Japan" by Hisatoshi Ito

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Schmitt, A. K.; Bachmann, O.

    2015-04-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of eight zircon reference materials and synthetic zircon-hafnon end-members indicate that corrections for abundance sensitivity and molecular zirconium sesquioxide ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. Other polyatomic interferences in the mass range 223-233 amu are insignificant. When corrected for abundance sensitivity and interferences, activity ratios of (230Th)/(238U) for the zircon reference materials we used average 1.001 ± 0.010 (1σ error; mean square of weighted deviates MSWD = 1.45; n = 8). This includes the 91500 and Plešovice zircons, which were deemed unsuitable for calibration of (230Th)/(238U) by Ito (2014). Uranium series zircon ages generated by LA-ICP-MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th such as those presented by Ito (2014) are potentially unreliable.

  6. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were

  7. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swafford, A.M.; Keller, J.M.

    1993-03-17

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less

  8. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  9. Simultaneous Speciation of Arsenic, Selenium, and Chromium by HPLC-ICP-MS

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Morrison, Jean M.; Lamothe, Paul J.

    2008-01-01

    An adaptation of an analytical method developed for chromium speciation has been utilized for the simultaneous determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) species using high performance liquid chromatography (HPLC) separation with ICP-MS detection. Reduction of interferences for the determination of As, Se, and Cr by ICP-MS is a major consideration for this method. Toward this end, a Dynamic Reaction Cell (DRC) ICP-MS system was used to detect the species eluted from the chromatographic column. A variety of reaction cell gases and conditions may be utilized, and the advantages and limitations of the gases tested to date will be presented and discussed. The separation and detection of the As, Se, and Cr species of interest can be achieved using the same chromatographic conditions in less than 2 minutes by complexing the Cr(III) with EDTA prior to injection on the HPLC column. Practical aspects of simultaneous speciation analysis will be presented and discussed, including issues with HPLC sample vial contamination, standard and sample contamination, species stability, and considerations regarding sample collection and preservation methods. The results of testing to determine the method's robustness to common concomitant element and anion effects will also be discussed. Finally, results will be presented using the method for the analysis of a variety of environmental and geological samples including waters, soil leachates and simulated bio-fluid leachates.

  10. An approach for quantification of platinum distribution in tissues by LA-ICP-MS imaging using isotope dilution analysis.

    PubMed

    Moraleja, I; Mena, M L; Lázaro, A; Neumann, B; Tejedor, A; Jakubowski, N; Gómez-Gómez, M M; Esteban-Fernández, D

    2018-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been revealed as a convenient technique for trace elemental imaging in tissue sections, providing elemental 2D distribution at a quantitative level. For quantification purposes, in the last years several approaches have been proposed in the literature such as the use of CRMs or matrix matched standards. The use of Isotope Dilution (ID) for quantification by LA-ICP-MS has been also described, being mainly useful for bulk analysis but not feasible for spatial measurements so far. In this work, a quantification method based on ID analysis was developed by printing isotope-enriched inks onto kidney slices from rats treated with antitumoral Pt-based drugs using a commercial ink-jet device, in order to perform an elemental quantification in different areas from bio-images. For the ID experiments 194 Pt enriched platinum was used. The methodology was validated by deposition of natural Pt standard droplets with a known amount of Pt onto the surface of a control tissue, where could be quantified even 50pg of Pt, with recoveries higher than 90%. The amount of Pt present in the whole kidney slices was quantified for cisplatin, carboplatin and oxaliplatin-treated rats. The results obtained were in accordance with those previously reported. The amount of Pt distributed between the medullar and cortical areas was also quantified, observing different behavior for the three drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  12. Low level detection of Cs-135 and Cs-137 in environmental samples by ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP

    2009-10-01

    The measurement of the fission product cesium isotopes 135Cs and 137Cs at low femtogram (fg) 10-15 levels in ground water by Inductively Coupled Plasma-Mass Spectrometry ICP-MS is reported. To eliminate the potential natural barium isobaric interference on the cesium isotopes, in-line chromatographic separation of the cesium from barium was performed followed by high sensitivity ICP-MS analysis. A high efficiency desolvating nebulizer system was employed to maximize ICP-MS sensitivity ~10cps/femtogram. The three sigma detection limit measured for 135Cs was 2fg/ml (0.1uBq/ml) and for 137Cs 0.9fg/ml (0.0027Bq/ml) with analysis time of less than 30 minutes/sample. Cesium detection and 135/137 isotope ratio measurementmore » at very low femtogram levels using this method in a ground water matrix is also demonstrated.« less

  13. Prospects for dating monazite via single-collector HR-ICP-MS

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Vervoort, J. D.

    2006-12-01

    ICP-MS analysis permits rapid and precise dating of minerals with high U and Th contents. Here we describe a new method for in situ determination of 206Pb/238U, 207Pb/^{235}U, ^{208}Pb/232Th, and 207Pb/206Pb ages in monazite via laser ablation (New Wave Research UP-213 laser system), single-collector, magnetic sector ICP-MS (ThermoFinnigan Element2), using spot sizes of 8-30 μm, a repetition rate of 5 Hz, and a fluence of 10 J/cm2. Based on analysis of 9 monazite samples of known ages ranging from 280 to 1800 Ma, analytical precision (single sample) is ±2-3% (2σ), and reproducibility (single sample) is ±2-4% (2σ), yielding age precisions of ±3- 5% (2σ) for single points, or ±1-2% (2 s.e.) for pooled multiple analyses (n > 4). Issues of accuracy are paramount. 207Pb/206Pb ages are consistently the most accurate and agree to ±2% with accepted TIMS ages. In contrast, 206Pb/238U, 207Pb/^{235}U, and ^{208}Pb/232Th ages can differ by as much as ±5% (2σ), a problem that has also been observed for SIMS Th-Pb dating. The sources of the interelement standardization disparities among monazites remain enigmatic, but do not result from molecular interferences on Pb, U, or Th peaks. Unresolvable mass interference between 204Pb and trace contaminant 204Hg in commercial Ar gas precludes precise common Pb corrections. Instead common Pb corrections are made assuming concordancy between 207Pb/^{235}U and either 206Pb/238U or ^{208}Pb/232Th ages. The new method offers rapid analysis (~1 minute), minimal sample preparation (polished thin section), and high sensitivity. Comparatively large errors on the 206Pb/238U, 207Pb/^{235}U, and ^{208}Pb/232Th ages will likely restrict analysis of younger monazite grains (<250 Ma) to applications where 5% accuracy is sufficient. Older grains (c. 500 Ma and older) can be dated more precisely and accurately using 207Pb/206Pb. One application to young materials involves dating a large vein monazite from the Llallagua tin district of Bolivia

  14. Precise and traceable carbon isotope ratio measurements by multicollector ICP-MS: what next?

    PubMed

    Santamaria-Fernandez, Rebeca

    2010-06-01

    This article reviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) to provide high-precision carbon isotope ratio measurements. MC-ICP-MS could become an alternative method to isotope ratio mass spectrometry (IRMS) for rapid carbon isotope ratio determinations in organic compounds and characterisation and certification of isotopic reference materials. In this overview, the advantages, drawbacks and potential of the method for future applications are critically discussed. Furthermore, suggestions for future improvements in terms of precision and sensitivity are made. No doubt, this is an exciting analytical challenge and, as such, hurdles will need to be cleared.

  15. Analysis of inorganic and organic constituents of myrrh resin by GC-MS and ICP-MS: An emphasis on medicinal assets.

    PubMed

    Ahamad, Syed Rizwan; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Qamar, Wajhul; Aljarboa, Suliman

    2017-07-01

    The aim of the present investigation was to explore the constituents of the Arabian myrrh resin obtained from Commiphora myrrha. The organic and inorganic composition of the myrrh gum resin has been investigated using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analysis executed by ICP-MS reveals the presence of various inorganic elements in significant amount in the myrrh resin. The elements that were found to be present in large amounts include calcium, magnesium, aluminum, phosphorus, chlorine, chromium, bromine and scandium. The important organic constituents identified in the myrrh ethanolic extract include limonene, curzerene, germacrene B, isocericenine, myrcenol, beta selinene, and spathulenol,. The present work complements other myrrh associated investigations done in the past and provides additional data for the future researches.

  16. Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations.

    PubMed

    Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał

    2016-06-01

    The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak.

  17. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS.

    PubMed

    Yang, Yuan; Luo, Li; Li, Hai-Pu; Wang, Qiang; Yang, Zhao-Guang; Qu, Zhi-Peng; Ding, Ru

    2018-05-15

    Developing quantification and characterization methodology for metallic nanoparticles (MNPs) and their ionic component in complex matrix are crucial for the evaluation of their environmental behavior and health risks to humans. In this study, reversed phase high performance liquid chromatography combined ICP-MS was established for the characterization of MNPs in complex matrix. The ionic component could be separated from NPs with the optimized parameters of aqueous mobile phase. Good linear relationship between average diameter and retention time of NPs was obtained using HPLC-ICP-MS and the size smaller than 40 nm could be determined with this method, the detected results were in accordance with TEM results. The low detection limit of AuNPs and Au(Ⅲ) (both in sub-μg/L level) showed that this method was promising for the characterization of AuNPs and Au(Ⅲ) in environmental water. The mass concentration of ionic Au(Ⅲ) in environmental water could be detected using the proposed HPLC-ICP-MS and the concentration of AuNPs was obtained by subtracting the Au(Ⅲ) concentration from the total Au (The concentration of total Au was detected by ICP-MS after microwave digestion). Furthermore this proposed HPLC-ICP-MS method and single particle-ICPMS (SP-ICP-MS) was used for the analysis of the Ag speciation in commercial antibacterial products. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes.

    PubMed

    Boros, Eszter; Pinkhasov, Omar R; Caravan, Peter

    2018-01-01

    Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Two known peptide-DOTA conjugates were chelated with nat Ga and nat In. Limit of detection of HPLC-ICP-MS for 69 Ga and 115 In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. The limits of detection were 0.16 pmol for 115 In and 0.53 pmol for 69 Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.

  19. Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides.

    PubMed

    Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J

    2017-01-15

    The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La 2 O 3 , as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La 2 O 3 nanoparticles (La 2 O 3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La 3+ (over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (<10%). Furthermore, each part of the sample introduction system (nebulizers made of perfluoroalkoxy alkane (PFA) or glass, PFA capillary tubing, and polyvinyl chloride (PVC) peristaltic pump tubing) contributed to La 3+ adsorptive losses. On the other hand, the presence of natural organic matter in the nanoparticle suspensions led to a decreased adsorptive loss in both the sample containers and the introduction system, suggesting that SP-ICP-MS may nonetheless be appropriate for NP analysis in environmental matrices. Coupling of an ion-exchange resin to the SP-ICP-MS led to more accurate determinations of the La 2 O 3 NP size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparative evaluation of ICP sample introduction systems to be used in the metabolite profiling of chlorine-containing pharmaceuticals via HPLC-ICP-MS.

    PubMed

    Klencsár, Balázs; Sánchez, Carlos; Balcaen, Lieve; Todolí, José; Lynen, Frederic; Vanhaecke, Frank

    2018-05-10

    A systematic evaluation of four different ICP sample introduction systems to be used in the context of metabolite profiling of chlorine-containing pharmaceuticals via HPLC-ICP-MS was carried out using diclofenac and its major metabolite, 4'-hydroxy-diclofenac, as model compounds. The strict requirements for GMP validation of chromatographic methods in the pharmaceutical industry were adhered to in this context. The final aim of this investigation is an extension of the applicability and validatability of HPLC-ICP-MS in the field of pharmaceutical R&D. Five different gradient programmes were tested while the baseline peak width (w b ), peak capacity (P), USP tailing factor (A s ) and USP signal-to-noise ratio (USP S/N) were determined as major indicators of the chromatographic performance and the values obtained were compared to the corresponding FDA recommendations (if applicable). Four different ICP-MS sample introductions systems were investigated involving two units typically working at higher flow rates (∼1.0 mL min -1 ) and another two systems working at lower flow rates (∼0.1 mL min -1 ). Optimal conditions with potential for applicability under GMP conditions were found at a mobile phase flow rate of 1.0 mL min -1 by using a pneumatic micro-flow LC nebulizer mounted onto a Peltier-cooled cyclonic spray chamber cooled to -1 °C for sample introduction. Under these conditions, HPLC-ICP-MS provided a chromatographic performance similar to that of HPLC with UV detection. The peak shape (USP tailing factor = 1.1-1.4) was significantly improved compared to that obtained with the Peltier-cooled Scott-type spray chamber. Two alternative sample introduction systems - a POINT ® and a High-Temperature Torch-Integrated Sample Introduction System (hTISIS) - were also tested at a flow rate of 0.1 mL min -1 using a chromatographic column with 1.0 mm ID. Although these systems allowed the peak shape to be improved compared to that obtained with

  1. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  2. In-situ Cl/Br measurements in scapolite and fluid inclusions by LA-ICP-MS: A powerful tool to constrain fluid sources

    NASA Astrophysics Data System (ADS)

    Hammerli, J.; Rusk, B.; Spandler, C.; Oliver, N. H. S.; Emsbo, P.

    2012-04-01

    Chlorine and bromine are highly conservative elements, and are therefore widely used to trace the origin of fluids in sedimentary and hydrothermal/magmatic systems (e.g. Hanor & McIntosh, 2007; Nahnybida et al., 2009). Halogens are important ligands for metal transport in hydrothermal solutions and thus their behavior in hydrothermal environments is crucial for comprehending ore-forming processes. Besides fluid inclusions, scapolite-group minerals hold great potential as a tracer of igneous, metamorphic, and hydrothermal processes, as no Cl/Br fractionation in scapolite has been observed and therefore halogen ratios in scapolite are thought to mirror the halogen ratios in coexisting melts and fluids (Pan & Dong, 2003). Hence, Cl/Br ratios in fluid inclusions and minerals can be utilized to trace the origin of fluids and fluid-rock interaction pathways. Due to their high ionization energies, bromine and chlorine are not routinely measured by LA-ICP-MS and suitable standards are rare. Little is known about the potential interferences and analytical limitations of in-situ chlorine and bromine analysis by LA-ICP-MS. Nevertheless, Seo et al. (2011) showed that quantification of Br and Cl in single synthetic and natural fluid inclusions is possible. In this study, we have analyzed several scapolite grains of known bromine and chlorine concentrations by LA-ICP-MS and assess the capabilities and limitations of this method. The results show that Cl/Br ratios measured by LA-ICP-MS closely reproduce known values determined by microprobe (Cl), the Noble Gas Method (Br) and INAA (Br) (Kendrick, 2011; Lieftink et al., 1993) using laser ablation spot sizes from 24-120 μm. The well-characterized scapolite grains cover bromine concentrations from 50-883 ppm and chlorine concentrations from 3 to 4 wt.%. In order to further assess the method, we analyzed Cl/Br ratios in natural fluid inclusions hosted in sphalerite that were previously characterized by crush and leach ion

  3. Direct determination of platinum group elements and their distributions in geological and environmental samples at the ng g(-1) level using LA-ICP-IDMS.

    PubMed

    Boulyga, Sergei F; Heumann, Klaus G

    2005-10-01

    Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) was applied to the direct and simultaneous determination of the platinum group elements (PGEs) Pt, Pd, Ru, and Ir in geological and environmental samples. A special laser ablation system with high ablation rates was used, along with sector field ICP-MS. Special attention was paid to deriving the distributions of PGEs in the pulverized samples. IDMS could not be applied to the (mono-isotopic) Rh, but the similar ablation behavior of Ru and Rh allowed Rh to be simultaneously determined via relative sensitivity coefficients. The laser ablation process produces hardly any oxide ions (which usually cause interference in PGE analysis with liquid sample injection), so the ICP-MS can be run in its low mass resolution but high-sensitivity mode. The detection limits obtained for the geological samples were 0.16 ng g(-1), 0.14 ng g(-1), 0.08 ng g(-1), 0.01 ng g(-1) and 0.06 ng g(-1) for Ru, Rh, Pd, Ir and Pt, respectively. LA-ICP-IDMS was applied to different geological reference materials (TDB-1, WGB-1, UMT-1, WMG-1, SARM-7) and the road dust reference material BCR-723, which are only certified for some of the PGEs. Comparisons with certified values as well as with indicative values from the literature demonstrated the validity of the LA-ICP-IDMS method. The PGE concentrations in subsamples of the road dust reference material correspond to a normal distribution, whereas the distributions in the geological reference materials TDB-1, WGB-1, UMT-1, WMG-1, and SARM-7 are more complex. For example, in the case of Ru, a logarithmic normal distribution best fits the analyzed concentrations in TDB-1 subsamples, whereas a pronounced nugget effect was found for Pt in most geological samples.

  4. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements†

    PubMed Central

    Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3–0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%). PMID:27812369

  5. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements.

    PubMed

    Hanousek, Ondrej; Brunner, Marion; Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-11-14

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3-0.5% ( u c,rel ), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement u c,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%).

  6. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS.

    PubMed

    Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas

    2017-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.

  7. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate

    PubMed Central

    Fresquez, Mark R.; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H.; Pappas, R. Steven

    2017-01-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method limit of detection (LOD) was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. PMID:28164228

  8. Multi-element screening by ICP-MS of two specimens of Napoleon's hair.

    PubMed

    Kintz, Pascal; Ginet, Morgane; Cirimele, Vincent

    2006-10-01

    Since 1960, it has been demonstrated by various analytical procedures that high concentrations of arsenic were present in Napoleon's hair. Various authors, indicating that the detected arsenic levels are a consequence of external contamination, have challenged the results of these examinations. In order to shed more light on this historical controversy, we have tested two samples of Napoleon's hair by inductively coupled plasma-mass spectrometry (ICP-MS). The samples of hair were decontaminated with acetone and were cut into small segments. For multi-element screening, hair samples were mineralized in concentrated nitric acid for 1 h at 70 degrees C, diluted 1:40 in specific solution with rhodium as an internal standard, and finally analyzed by ICP-MS on a Thermo Electron ICP/MS X7. Multi-element analysis of Napoleon's hair samples revealed massive amounts of arsenic (42.1 and 37.4 ng/mg), antimony (2.1 and 1.8 ng/mg) and elevated levels of mercury (3.3 and 4.7 ng/mg) and lead (229 and 112 ng/mg). In the case of arsenic, these concentrations, 40 times higher than the normal values, confirm the hypothesis of a significant exposure to arsenic. The concentrations of the other elements, in particular antimony and mercury, are in agreement with the data already known about the therapeutic treatments given to Napoleon, which were based on calomel (salt of mercury) and tartar emetic (antimony).

  9. Small Volume Isotopic Analysis of Zircon Using LA-MC-ICP-MS U-Pb and Lu-Hf and Sub-ng Amounts of Hf in Solution

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Horstwood, M. S.

    2016-12-01

    Crust-mantle evolution studies are greatly informed by zircon U-Pb and Lu-Hf isotopic datasets and the ease with which these data can now be acquired has seen their application become commonplace. In order to deconvolute geochemical change and interpret geologic variation in complexly zoned zircons, this information is most ideally obtained on the smallest volume of zircon by successive SIMS U-Pb and LA-MC-ICP-MS Lu-Hf isotopic analyses. However, due to variations in zircon growth zone geometry at depth, the Lu-Hf analysis may not relate to the lower volume U-Pb analysis, potentially causing inaccuracy of the resultant age-corrected Hf isotope signature. Laser ablation split-stream methods are applied to be certain that U-Pb and Lu-Hf data represent the same volume of zircon, however, the sampling volume remains relatively large at 40x30µm1. Coupled ID-TIMS U-Pb and solution MC-ICP-MS Lu-Hf work traditionally utilize whole-zircon dissolution ( 10-50ng Hf), which has the potential to homogenize different zones of geologic significance within an analysis. Conversely, modern ID-TIMS U-Pb methods utilize microsampling of zircon grains, often providing < 5ng Hf, thereby challenging conventional Lu-Hf acquisition protocols to achieve the required precision. In order to obtain usable precision on minimal zircon volumes, we developed laser ablation methods using successive 25um spot U-Pb and Lu-Hf ablation pits with a combined depth of 18um, and low-volume solution introduction methods without Hf-REE separation utilizing Hf amounts as low as 0.4ng, while retaining an uncertainty level of ca. 1 ɛHf for both methods. We investigated methods of Yb interference correction and the potential for matrix effects, with a particular focus on the accurate quantification of 176Lu/177Hf. These improvements reduce the minimum amount of material required for U-Pb and Hf isotopic analysis of zircon by about an order of magnitude. 1Ibanez-Mejia et al (2015). PreRes, 267, 285-310.

  10. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  11. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    PubMed Central

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2015-01-01

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation. PMID:26640294

  12. A multifunctional probe for ICP-MS determination and multimodal imaging of cancer cells.

    PubMed

    Yang, Bin; Zhang, Yuan; Chen, Beibei; He, Man; Yin, Xiao; Wang, Han; Li, Xiaoting; Hu, Bin

    2017-10-15

    Inductively coupled plasma-mass spectrometry (ICP-MS) based bioassay and multimodal imaging have attracted increasing attention in the current development of cancer research and theranostics. Herein, a sensitive, simple, timesaving, and reliable immunoassay for cancer cells counting and dual-modal imaging was proposed by using ICP-MS detection and down-conversion fluorescence (FL)/upconversion luminescence (UCL) with the aid of a multifunctional probe for the first time. The probe consisted of a recognition unit of goat anti-mouse IgG to label the anti-EpCAM antibody attached cells, a fluorescent dye (Cy3) moiety for FL imaging as well as upconversion nanoparticles (UCNPs) tag for both ICP-MS quantification and UCL imaging of cancer cells. Under the optimized conditions, an excellent linearity and sensitivity were achieved owing to the signal amplification effect of nanoparticles and low spectral interference. Accordingly, a limit of detection (3σ) of 1×10 2 HepG2 cells and a relative standard deviation of 7.1% for seven replicate determinations of 1×10 3 HepG2 cells were obtained. This work proposed a method to employ UCNPs with highly integrated functionalities enabling us not only to count but also to see the cancer cells, opening a promising avenue for biological research and clinical theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less

  14. Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less

  15. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  16. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate.

    PubMed

    Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H; Pappas, R Steven

    2017-05-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection (LODs) for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method LOD was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. [Determination of heavy metals in four traditional Chinese medicines by ICP-MS].

    PubMed

    Wen, Hui-Min; Chen, Xiao-Hui; Dong, Ting-Xia; Zhan, Hua-Qiang; Bi, Kai-Shun

    2006-08-01

    To establish a ICP-MS method for the determination of heavy metals, including As, Hg, Pb, Cd, in four traditional Chinese medicines. The samples were digested by closed-versel microwave. The four heavy metals were directly analyzed by ICP-MS. Select internal standard element in for the method by which the analyse signal drife is corrected by the signal of another element (internal standard elements) added to both the standard solution and sample. For all of the analyzed heary methals, the correlative coefficient of the calibration curves was over 0.999 2. The recovery rates of the procedure were 97.5%-108.0%, and its RSD was lower than 11.6%. This method was convenient, quick-acquired, accurate and highly sensitive. The method can be used for the quality control of trace elements in traditional Chinese medicines and for the contents determination of traditional Chinese medicines from different habitats and species.

  18. Determination of Trace and Volatile Element Abundance Systematics of Lunar Pyroclastic Glasses 74220 and 15426 Using LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    McIntosh, E. Carrie; Porrachia, Magali; McCubbin, Francis M.; Day, James M. D.

    2017-01-01

    Since their recognition as pyroclastic glasses generated by volcanic fire fountaining on the Moon, 74220 and 15426 have garnered significant scientific interest. Early studies recognized that the glasses were particularly enriched in volatile elements on their surfaces. More recently, detailed analyses of the interiors of the glasses, as well as of melt inclusions within olivine grains associated with the 74220 glass beads, have determined high H2O, F, Cl and S contents. Such elevated volatile contents seem at odds with evidence from moderately volatile elements (MVE), such as Zn and K, for a volatile- depleted Moon. In this study, we present initial results from an analytical campaign to study trace element abundances within the pyroclastic glass beads. We report trace element data determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for 15426 and 74220.

  19. Advances in HPLC-ICP-MS interface techniques for metal speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, S.J.

    The relentless demand for lower detection limits is increasingly coupled to the requirement for elemental speciation. This is particularly true in environmental and clinical fields where total levels are often insufficient for mobility and toxicity studies. This demand for both qualitative and quantitative data on the individual species present in complex samples has led to the development of various interfaces to couple some form of chromatography, usually gas chromatography (GC) or high performance liquid chromatography (HPLC) to an element specific detector. Today inductively coupled plasma-mass spectrometry is often employed since it offers excellent detection limits, element specific information (including isotopicmore » data) and the potential for multi-element studies. Ms presentation will concentrate on HPLC couplings although the advantages and disadvantages of both GC and HPLC couplings to ICP-MS will be discussed. Particular attention will be given to the optimization of both the chromatography and detection systems. Details will be presented of several successful HPLC interface designs and ways of facilitating high levels of a range of organic solvents (e.g. methanol and THF) in the HPLC mobile phase will be highlighted. The advantages of using a sheath gas and practical ways of achieving this will also be discussed. Finally the use of isotope dilution analysis in conjunction with HPLC-ICP-MS will be outlined. In all cases the impact of using the most appropriate approach will be demonstrated using both environmental and clinical samples.« less

  20. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  1. Evaluating the cause(s) of Ti, Ta, and Nb (TITAN) enrichment in ocean island basalts using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Lyakov, J.; Durkin, K.; Hirsch, L.; Peters, B.; Hattingh, R.; Day, J. M.

    2017-12-01

    Titanium, Ta, and Nb (TITAN) enrichments in some ocean island basalt (OIB) lavas have been attributed to mantle source, or to partial melting and fractional crystallization Iprocesses. TITAN anomalies in the mantle sources of OIB would imply these trace elements can be used to track mantle heterogeneity in a manner similar to some isotopic tracers (e.g., He, Os, W), whereas a petrogenetic process to account for TITAN anomalies would be more prosaic. To further evaluate this issue, we have performed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of phenocryst phases and matrix on petrographically well-characterized polished-sections of OIB samples. These samples come from five ocean island archipelagos (Canary Islands, the Azores, Samoa, Tubuai'i, Réunion), and are used to assess the citing of Ti, Ta, Nb and associated trace-elements within bulk-rocks. We find poorly-defined but broadly positive correlations between olivine and clinopyroxene modal abundance and Ta/Ta*, Nb/Nb*, but no correlation with Ti/Ti* (where, for example, Ti/Ti* is the primitive mantle normalized ratio, written as: Ti/√[Sm × Tb]). Abundances of olivine and clinopyroxene with samples spanned a wide-range, from 0-70 modal %. We determined trace-element abundances by LA-ICP-MS in a sub-set of samples for major (olivine, clinopyroxene) and minor (e.g., magnetite) phenocryst phases, and for the typically vitrophyric to partly crystallized matrices of samples. Modal reconstruction relative to the bulk rock are broadly similar, although the Ta/Ta*, Nb/Nb* and, especially Ti/Ti* anomalies cannot always be reproduced, especially if Fe-Ti oxide phases were not analyzed due to their limited presence within polished sections. LA-ICP-MS analyses reveal that, while TITAN anomalies are dominantly preserved in the matrix and oxide phases, the role of fractional crystallization of olivine and clinopyroxene is a controlling factor in the magnitude of TITAN anomaly generated. Our

  2. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  3. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE PAGES

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam; ...

    2017-10-07

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  4. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2002-12-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  5. Elemental Analysis in Biological Matrices Using ICP-MS.

    PubMed

    Hansen, Matthew N; Clogston, Jeffrey D

    2018-01-01

    The increasing exploration of metallic nanoparticles for use as cancer therapeutic agents necessitates a sensitive technique to track the clearance and distribution of the material once introduced into a living system. Inductively coupled plasma mass spectrometry (ICP-MS) provides a sensitive and selective tool for tracking the distribution of metal components from these nanotherapeutics. This chapter presents a standardized method for processing biological matrices, ensuring complete homogenization of tissues, and outlines the preparation of appropriate standards and controls. The method described herein utilized gold nanoparticle-treated samples; however, the method can easily be applied to the analysis of other metals.

  6. Spatial investigation of the elemental distribution in Wilson's disease liver after d-penicillamine treatment by LA-ICP-MS.

    PubMed

    Hachmöller, Oliver; Zibert, Andree; Zischka, Hans; Sperling, Michael; Groba, Sara Reinartz; Grünewald, Inga; Wardelmann, Eva; Schmidt, Hartmut H-J; Karst, Uwe

    2017-12-01

    At present, the copper chelator d-penicillamine (DPA) is the first-line therapy of Wilson's disease (WD), which is characterized by an excessive copper overload. Lifelong DPA treatments aim to reduce the amount of detrimental excess copper retention in the liver and other organs. Although DPA shows beneficial effect in many patients, it may cause severe adverse effects. Despite several years of copper chelation therapy, discontinuation of DPA therapy can be linked to a rapidly progressing liver failure, indicating a high residual liver copper load. In order to investigate the spatial distribution of remaining copper and additional elements, such as zinc and iron, in rat and human liver samples after DPA treatment, a high resolution (spotsize of 10μm) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method was applied. Untreated LPP -/- rats, an established animal model for WD, appeared with a high overall copper concentration and a copper distribution of hotspots distributed over the liver tissue. In contrast, a low (>2-fold decreased) overall copper concentration was detected in liver of DPA treated animals. Importantly, however, copper distribution was highly inhomogeneous with lowest concentrations in direct proximity to blood vessels, as observed using novel zonal analysis. A human liver needle biopsy of a DPA treated WD patient substantiated the finding of an inhomogeneous copper deposition upon chelation therapy. In contrast, comparatively homogenous distributions of zinc and iron were observed. Our study indicates that a high resolution LA-ICP-MS analysis of liver samples is excellently suited to follow efficacy of chelator therapy in WD patients. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Specific determination of bromate in bread by ion chromatography with ICP-MS.

    PubMed

    Akiyama, Takumi; Yamanaka, Michiko; Date, Yukiko; Kubota, Hiroki; Nagaoka, Megumi Hamano; Kawasaki, Yoko; Yamazaki, Takeshi; Yomota, Chikako; Maitani, Tamio

    2002-12-01

    A sensitive method for detecting bromate in bread by ion chromatography with inductively-coupled plasma mass spectrometry (IC/ICP-MS) was developed. Bromate was extracted from bread with water. The clean-up procedure included a 0.2 micron filter, a C18 cartridge for defatting, a silver cartridge to remove halogen anions, a centrifugal ultrafiltration unit to remove proteins, and a cation-exchange cartridge to remove silver ions. A 500 microL sample solution was applied to IC/ICP-MS. The detection limit and the quantitation limit of bromate in the solution were 0.3 ng/mL and 1.0 ng/mL, expressed as HBrO3, respectively, which corresponded to 2 ng/g and 5 ng/g, respectively, in bread. Recovery of bromate was about 90%, and the CV was about 2%. Based on the detection limit in solution and recovery from bread, the detection limit of bromate in bread was estimated to be 2 ng/g.

  8. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Patrick Allen

    2005-12-17

    Quantification in liquid chromatography (LC) is becoming very important as more researchers are using LC, not as an analytical tool itself, but as a sample introduction system for other analytical instruments. The ability of LC instrumentation to quickly separate a wide variety of compounds makes it ideal for analysis of complex mixtures. For elemental speciation, LC is joined with inductively coupled plasma mass spectrometry (ICP-MS) to separate and detect metal-containing, organic compounds in complex mixtures, such as biological samples. Often, the solvent gradients required to perform complex separations will cause matrix effects within the plasma. This limits the sensitivity ofmore » the ICP-MS and the quantification methods available for use in such analyses. Traditionally, isotope dilution has been the method of choice for LC-ICP-MS quantification. The use of naturally abundant isotopes of a single element in quantification corrects for most of the effects that LC solvent gradients produce within the plasma. However, not all elements of interest in speciation studies have multiple naturally occurring isotopes; and polyatomic interferences for a given isotope can develop within the plasma, depending on the solvent matrix. This is the case for reverse phase LC separations, where increasing amounts of organic solvent are required. For such separations, an alternative to isotope dilution for quantification would be is needed. To this end, a new method was developed using the Apex-Q desolvation system (ESI, Omaha, NE) to couple LC instrumentation with an ICP-MS device. The desolvation power of the system allowed greater concentrations of methanol to be introduced to the plasma prior to destabilization than with direct methanol injection into the plasma. Studies were performed, using simulated and actual linear methanol gradients, to find analyte-internal standard (AIS) pairs whose ratio remains consistent (deviations {+-} 10%) over methanol concentration ranges

  9. Validation and use of three complementary analytical methods (LC-FLS, LC-MS/MS and ICP-MS) to evaluate the pharmacokinetics, biodistribution and stability of motexafin gadolinium in plasma and tissues.

    PubMed

    Miles, Dale R; Mesfin, Mimi; Mody, Tarak D; Stiles, Mark; Lee, Jean; Fiene, John; Denis, Bernie; Boswell, Garry W

    2006-05-01

    Liquid chromatography-fluorescence (LC-FLS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) methods were developed and validated for the evaluation of motexafin gadolinium (MGd, Xcytrin) pharmacokinetics and biodistribution in plasma and tissues. The LC-FLS method exhibited the greatest sensitivity (0.0057 microg mL(-1)), and was used for pharmacokinetic, biodistribution, and protein binding studies with small sample sizes or low MGd concentrations. The LC-MS/MS method, which exhibited a short run time and excellent selectivity, was used for routine clinical plasma sample analysis. The ICP-MS method, which measured total Gd, was used in conjunction with LC methods to assess MGd stability in plasma. All three methods were validated using human plasma. The LC-FLS method was also validated using plasma, liver and kidneys from mice and rats. All three methods were shown to be accurate, precise and robust for each matrix validated. For three mice, the mean (standard deviation) concentration of MGd in plasma/tissues taken 5 hr after dosing with 23 mg kg(-1) MGd was determined by LC-FLS as follows: plasma (0.025+/-0.002 microg mL(-1)), liver (2.89+/-0.45 microg g(-1)), and kidney (6.09+/-1.05 microg g(-1)). Plasma samples from a subset of patients with brain metastases from extracranial tumors were analyzed using both LC-MS/MS and ICP-MS methods. For a representative patient, > or = 90% of the total Gd in plasma was accounted for as MGd over the first hour post dosing. By 24 hr post dosing, 63% of total Gd was accounted for as MGd, indicating some metabolism of MGd.

  10. Magnetophoretic separation ICP-MS immunoassay using Cs-doped multicore magnetic nanoparticles for the determination of salmonella typhimurium.

    PubMed

    Jeong, Arong; Lim, H B

    2018-02-01

    In this work, a magnetophoretic separation ICP-MS immunoassay using newly synthesized multicore magnetic nanoparticles (MMNPs) was developed for the determination of salmonella typhimurium (typhi). The uniqueness of this method was the use of MMNPs doped with Cs for both separation and detection, which enable us to achieve fast analysis, high sensitivity, and good reliability. For demonstration, heat-killed typhi in a phosphate buffer solution was determined by ICP-MS after the MMNP-typhi reaction product was separated from unreacted MMNPs in a micropipette tip filled with 25% polyethylene glycol through magnetophoretic separation. The calibration curve obtained by plotting 133 Cs intensity vs. the number of synthetic standard, showed a coefficient of determination (R 2 ) of 0.94 with a limit of detection (LOD) of 102 cells/mL without cell culturing. Excellent recoveries, between 98-100%, were obtained from four replicates and compared with a sandwich-type ICP-MS immunoassay for further confirmation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rapid and simple determination of selenium in blood serum by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Labat, L; Dehon, B; Lhermitte, M

    2003-05-01

    An inductively coupled plasma mass spectrometer (ICP-MS) with a rapid sample-preparative procedure was used for the determination of selenium in blood serum. Blood serum was prepared by dilution in an acidic solution consisting of nitric acid (1%), X-triton (0.1%) and 1-butanol (0.8%). A calibration curve was established for 1-40 microg mL(-1) (r(2)>0.99). The limit of detection was 0.5 microg mL(-1). Repeatability and intermediate precision were satisfactory with relative standard deviations (RSD) of 2.0% and 3.2%, respectively. This method was easily applied to reference materials with satisfactory accuracy. Good correlation (r(2)=0.96) was observed between ICP-MS and atomic absorption spectrometry (AAS) for the determination of (82)Se in blood serum from 23 patients. These results suggest that the sample preparative procedure coupled with ICP-MS can be used for the routine determination of (82)Se in human blood serum.

  12. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  13. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  14. Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles.

    PubMed

    Johnson, Monique E; Montoro Bustos, Antonio R; Winchester, Michael R

    2016-11-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) is shown to be a practical technique to study the efficacy of rate-zonal sucrose density gradient centrifugation (SDGC) separations of mixtures of gold nanoparticles (AuNPs) in liquid suspension. spICP-MS enabled measurements of AuNP size distributions and particle number concentrations along the gradient, allowing unambiguous evaluations of the effectiveness of the separation. Importantly, these studies were conducted using AuNP concentrations that are directly relevant to environmental studies (sub ng mL -1 ). At such low concentrations, other techniques [e.g., dynamic light scattering (DLS), transmission and scanning electron microscopies (TEM and SEM), UV-vis spectroscopy, atomic force microscopy (AFM)] do not have adequate sensitivity, highlighting the inherent value of spICP-MS for this and similar applications. In terms of the SDGC separations, a mixture containing three populations of AuNPs, having mean diameters of 30, 80, and 150 nm, was fully separated, while separations of two other mixtures (30, 60, 100 nm; and 20, 50, 100 nm) were less successful. Finally, it is shown that the separation capacity of SDGC can be overwhelmed when particle number concentrations are excessive, an especially relevant finding in view of common methodologies taken in nanotechnology research. Graphical Abstract Characterization of the separation of a gold nanoparticle mixture by sucrose density gradient centrifugation by conventional and single particle ICP-MS analysis.

  15. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution.

    PubMed

    Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor

    2018-03-01

    In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A lead isotope distribution study in swine tissue using ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brown, L.D.; Casteel, S.W.

    1999-01-01

    In the United States lead is an ubiquitous environmental pollutant that is a serious human health hazard, especially for women of childbearing age, developing fetuses, and young children. Information concerning the uptake and distribution of lead to maternal and fetal tissues during pregnancy is poorly documented. A study was designed using domestic swine and lead isotope enrichment methodology to focus on maternal absorption and distribution of lead into bone and soft tissues, including the fetal compartment, under varying conditions of oral lead exposure and during altered physiological states (pregnant vs unbred). Total lead levels and Pb207/Pb206 ratios in bone (femur and vertebra), blood, and soft tissues (liver, kidney, brain) were determined by ICP-MS. Lead in fetal tissues derived from maternal bone could be differentiated from that derived from exogenous dosing. Unbred swine absorbed much less lead than pregnant females receiving the same dose. The accuracy and precision of ICP-MS at the instrumental level and for the entire method (sample collection, digestion, and analysis) were evaluated for both Pb207/Pb206 ratios and total lead. Several changes were suggested in method design to improve both instrumental and total method precision.

  17. Evaluation of the accuracy of the determination of lead isotope ratios in wine by ICP MS using quadrupole, multicollector magnetic sector and time-of-flight analyzers.

    PubMed

    Barbaste, M; Halicz, L; Galy, A; Medina, B; Emteborg, H; C Adams, F; Lobinski, R

    2001-04-12

    Different mass analysers [(quadrupole (Q), time-of-flight (TOF) and multicollector (MC) sector-field (SF)] of ions produced in an inductively coupled plasma were evaluated for the determination of lead isotope ratios in wine samples. A population of 20 wines of different origin including two reference wines from the EC Standards, Measurement and Testing Programme with concentrations varying between 7-140 mug Pb l(-1) was investigated. Wines were analyzed directly by Q ICP MS and MC ICP MS. The poor sensitivity of the TOF instrument, further aggravated by matrix signal suppression, did not allow the acquisition of data for wine samples that contained less than 50 mug l(-1) in the direct sample introduction mode. The separation and preconcentration of lead were therefore required. The precision obtained for the (206)Pb/(207)Pb and (208)Pb/(206)Pb were similar and equal to 0.14-2.7% for Q ICP MS, 0.04-0.17% for TOF ICP MS and 0.01-0.12% for MC ICP MS. The precision for (206)Pb/(204)Pb was 0.44-5.29, 0.15-1.7, 0.08-1.6%, respectively. On the level of accuracy, the data from TOF ICP MS and MC ICP MS were in good agreement. The accuracy of Q ICP MS data was judged satisfactory in comparison with the other techniques but their poor precision was a significant obstacle on the way of using these data for the determination of the geographic origin of wine.

  18. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials.

    PubMed

    Holá, Markéta; Mikuska, Pavel; Hanzlíková, Renáta; Kaiser, Jozef; Kanický, Viktor

    2010-03-15

    A study of LA-ICP-MS analysis of pressed powdered tungsten carbide precursors was performed to show the advantages and problems of nanosecond laser ablation of matrix-unified samples. Five samples with different compositions were pressed into pellets both with silver powder as a binder serving to keep the matrix unified, and without any binder. The laser ablation was performed by nanosecond Nd:YAG laser working at 213 nm. The particle formation during ablation of both sets of pellets was studied using an optical aerosol spectrometer allowing the measurement of particle concentration in two size ranges (10-250 nm and 0.25-17 microm) and particle size distribution in the range of 0.25-17 microm. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using a scanning electron microscope (SEM) and the particle chemical composition was determined by an energy dispersive X-ray spectroscope (EDS). The matrix effect was proved to be reduced using the same silver powdered binder for pellet preparation in the case of the laser ablation of powdered materials. The LA-ICP-MS signal dependence on the element content present in the material showed an improved correlation for Co, Ti, Ta and Nb of the matrix-unified samples compared to the non-matrix-unified pellets. In the case of W, the ICP-MS signal of matrix-unified pellets was influenced by the changes in the particle formation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. In-situ Strontium Isotopes Analysis on Single Conodont Apatite by LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhang, L.; Chen, Z. Q.; Ma, D.; Qiu, H.; Lv, Z.; Hu, Z.; Wang, F.

    2014-12-01

    Strontium isotope played an important role in stratigraphic chronology and sedimentary geochemistry research (McArthur et al., 2001). Conodonts is a kind of extinct species of marine animals and widely distributed in marine sediments all over the world. Rich in radiogenic Sr contents and difficulty to be affected during diagenesis alteration makes conodonts a good choice in seawater Sr isotope composition studies (John et al., 2008). Conodont samples were collected from 24th to 39th layer across Permian-Triassic boundary at Meishan D section (GSSP), Zhejiang Province, South China (Yin et al., 2001). Conodonts was originated from fresh limestone and only conodont elements with CAI<2 were chosen for in-situ strontium isotope analysis using laser-ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Conodont samples are from totally 25 layers in seven conodont zones making it possible for a high resolution 87Sr/ 86Sr curve reconstruction during the Permian-Triassic transition. 87Sr/ 86Sr ratio kept a relatively high value (0.70752) in the middle part of the Clarkina yini zone and a lower value (0.70634) in the upperpart of Clarkina taylorae zone. Of which, 87Sr/ 86Sr ratio emerged a rapid decrease within the Clarkina taylorae zone. After a subsequent increase, 87Sr/ 86Sr ratio dropped to 0.70777 in the Isarcicella staeschei zone. These results helps providing reference data for the biological mass extinction events during the Permian-Triassic transition. Our study also makes is possible for high resolution 87Sr/ 86Sr ratio testing on the single conodont apatite and riched the in-situ studies on the conodont apatite, which of great significance for the future conodont Sr isotope research (Zhao et al., 2009; Zhao et al., 2013). Keywords: Conodonts, Strontium isotope, LA-MC-ICP-MS, Permian-Triassic transition, Meishan D section [1] John et al., 2008 3P[2] McArthur et al., 2001 J. of Geology [3] Yin et al., 2001 Episodes [4] Zhao et al

  20. New procedure of quantitative mapping of Ti and Al released from dental implant and Mg, Ca, Fe, Zn, Cu, Mn as physiological elements in oral mucosa by LA-ICP-MS.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2017-12-01

    A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg -1 to 450μgg -1 for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of Plutonium Isotope Ratios at Very Low Levels by ICP-MS using On-Line Electrochemically Modulated Separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Lehn, Scott A; Olsen, Khris B

    2009-10-01

    Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO 3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by themore » applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.« less

  2. Isotope ratios of trace elements in samples from human nutrition studies determined by TIMS and ICP-MS: precision and accuracy compared.

    PubMed

    Turnlund, Judith R; Keyes, William R

    2002-09-01

    Stable isotopes are used with increasing frequency to trace the metabolic fate of minerals in human nutrition studies. The precision of the analytical methods used must be sufficient to permit reliable measurement of low enrichments and the accuracy should permit comparisons between studies. Two methods most frequently used today are thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to compare the two methods. Multiple natural samples of copper, zinc, molybdenum, and magnesium were analyzed by both methods to compare their internal and external precision. Samples with a range of isotopic enrichments that were collected from human studies or prepared from standards were analyzed to compare their accuracy. TIMS was more precise and accurate than ICP-MS. However, the cost, ease, and speed of analysis were better for ICP-MS. Therefore, for most purposes, ICP-MS is the method of choice, but when the highest degrees of precision and accuracy are required and when enrichments are very low, TIMS is the method of choice.

  3. Determination of 99Tc in fresh water using TRU resin by ICP-MS.

    PubMed

    Guérin, Nicolas; Riopel, Remi; Kramer-Tremblay, Sheila; de Silva, Nimal; Cornett, Jack; Dai, Xiongxin

    2017-10-02

    Technetium-99 ( 99 Tc) determination at trace level by inductively coupled plasma mass spectrometry (ICP-MS) is challenging because there is no readily available appropriate Tc isotopic tracer. A new method using Re as a recovery tracer to determine 99 Tc in fresh water samples, which does not require any evaporation step, was developed. Tc(VII) and Re(VII) were pre-concentrated on a small anion exchange resin (AER) cartridge from one litre of water sample. They were then efficiently eluted from the AER using a potassium permanganate (KMnO 4 ) solution. After the reduction of KMnO 4 in 2 M sulfuric acid solution, the sample was passed through a small TRU resin cartridge. Tc(VII) and Re(VII) retained on the TRU resin were eluted using near boiling water, which can be directly used for the ICP-MS measurement. The results for method optimisation, validation and application were reported. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS

    PubMed Central

    El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.

    2016-01-01

    The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759

  5. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  6. Geochemistry of the Spor Mountain rhyolite, western Utah, as revealed by laser ablation ICP-MS, cathodoluminescence, and electron microprobe analysis

    NASA Astrophysics Data System (ADS)

    Dailey, S. R.; Christiansen, E. H.; Dorais, M.; Fernandez, D. P.

    2015-12-01

    The Miocene topaz rhyolite at Spor Mountain in western Utah hosts one of the largest beryllium deposits in the world and was responsible for producing 85% of the beryllium mined worldwide in 2010 (Boland, 2012). The Spor Mountain rhyolite is composed primarily of Ca-poor plagioclase (An8), sodic sanidine (Or40), Fe-rich biotite (Fe/(Fe+Mg)>0.95; Al 1.2-1.4 apfu), and Ti-poor quartz, along with several trace-element rich accessory phases including zircon, monazite, thorite, columbite, and allanite. Cathodoluminescence (CL) studies of quartz show oscillatory zoning, with 80% of the examined crystals displaying euhedral edges and slightly darker rims. CL images were used to guide laser ablation (LA) ICP-MS analysis of quartz, along with analyses of plagioclase, sanidine, biotite, and glass. Ti concentrations in quartz are 20±6 ppm; there is no quantifiable variation of Ti from core to rim within the diameter of the laser spot (53 microns). Temperatures, calculated using Ti in quartz (at 2 kb, aTiO2=0.34), vary between 529±10 C (Thomas et al., 2011), 669±13 C (Huang and Audetat, 2012), and 691±13 C (Wark and Watson, 2006). Two feldspar thermometry yield temperatures of 686±33 C (Elkins and Grove, 1990) and 670±41 C (Benisek et al., 2010). Zr saturation temperatures (Watson and Harrison, 1983) average 711±28 C. Analysis of the glass reveal the Spor Mountain rhyolite is greatly enriched in rare elements (i.e. Li, Be, F, Ga, Rb, Nb, Mo, Sn, and Ta) compared to average continental crust (Rudnick and Gao, 2003). Be in the glass can have as much as 100 ppm, nearly 50 times the concentration in continental crust. REE partition coefficients for sanidine are 2 to 3 times higher in the Spor Mountain rhyolite when compared to other silicic magmas (Nash and Crecraft, 1985; Mahood and Hildreth, 1983), although plagioclase tends to have lower partition coefficients; biotite has lower partition coefficients for LREE and higher partition coefficients for HREE. The patterns of

  7. Synthesis of cross-linked chitosan modified with the glycine moiety for the collection/concentration of bismuth in aquatic samples for ICP-MS determination.

    PubMed

    Oshita, Koji; Noguchi, Osamu; Oshima, Mitsuko; Motomizu, Shoji

    2007-10-01

    A chelating resin, cross-linked chitosan modified with the glycine moiety (glycine-type chitosan resin), was developed for the collection and concentration of bismuth in aquatic samples for ICP-MS measurements. The adsorption behavior of bismuth and 55 elements on glycine-type chitosan resin was systematically examined by passing a sample solution containing 56 elements through a mini-column packed with the resin (wet volume; 1 ml). After eluting the elements adsorbed on the resin with nitric acid, the eluates were measured by ICP-MS. The glycine-type chitosan resin could adsorb several cations by a chelating mechanism and several oxoanions by an anion-exchange mechanism. Especially, the resin could adsorb almost 100% Bi(III) over a wide pH region from pH 2 to 6. Bismuth could be strongly adsorbed at pH 3, and eluted quantitatively with 10 ml of 3 M nitric acid. A column pretreatment method with the glycine-type chitosan resin was used prior to removal of high concentrations of matrices in a seawater sample and the preconcentration of trace bismuth in river water samples for ICP-MS measurements. The column pretreatment method was also applied to the determination of bismuth in real samples by ICP-MS. The LOD of bismuth was 0.1 pg ml(-1) by 10-fold column preconcentration for ICP-MS measurements. The analytical results for bismuth in sea and river water samples by ICP-MS were 22.9 +/- 0.5 pg ml(-1) (RSD, 2.2%) and 2.08 +/- 0.05 pg ml(-1) (RSD, 2.4%), respectively.

  8. Measurement of isotope ratios on transient signals by MC-ICP-MS.

    PubMed

    Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef

    2004-01-01

    Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).

  9. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay.

    PubMed

    Li, Yan; Sun, Shao-kai; Yang, Jia-lin; Jiang, Yan

    2011-12-07

    Detecting a specific DNA sequence and discriminating single base-mismatch is critical to clinical diagnosis, paternity testing, forensic sciences, food and drug industry, pathology, genetics, environmental monitoring, and anti-bioterrorism. To this end, capillary electrophoresis (CE) coupled with the inductively coupled plasma mass spectrometry (ICP-MS) method is developed using the displacing interaction between the target ssDNA and the competitor Hg(2+) for the first time. The thymine-rich capture ssDNA 1 is interacted with the competitor Hg(2+), forming an assembled complex in a hairpin-structure between the thymine bases arrangement at both sides of the capture ssDNA 1. In the presence of a target ssDNA with stronger affinity than that of the competitor Hg(2+), the energetically favorable hybridization between capture ssDNA 1 and the target ssDNA destroys the hairpin-structure and releases the competitor as free Hg(2+), which was then read out and accurately quantified by CE-ICP-MS assay. Under the optimal CE separation conditions, free Hg(2+) ions and its capture ssDNA 1 adduct were baseline separated and detected on-line by ICP-MS; the increased peak intensity of free Hg(2+) against the concentration of perfectly complementary target ssDNA was linear over the concentration range of 30-600 nmol L(-1) with a limit of detection of 8 nmol L(-1) (3s, n = 11) in the pre-incubated mixture containing 1 μmol L(-1) Hg(2+) and 0.2 μmol L(-1) capture ssDNA 1. This new assay method is simple in design since any target ssDNA binding can in principle result in free Hg(2+) release by 6-fold Hg(2+) signal amplification, avoiding oligonucleotide labeling or assistance by excess signal transducer and signal reporter to read out the target. Due to element-specific detection of ICP-MS in our assay procedure, the interference from the autofluorescence of substrata was eliminated.

  10. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements

  11. Determination of the total drug-related chlorine and bromine contents in human blood plasma using high performance liquid chromatography-tandem ICP-mass spectrometry (HPLC-ICP-MS/MS).

    PubMed

    Klencsár, Balázs; Bolea-Fernandez, Eduardo; Flórez, María R; Balcaen, Lieve; Cuyckens, Filip; Lynen, Frederic; Vanhaecke, Frank

    2016-05-30

    A fast, accurate and precise method for the separation and determination of the total contents of drug-related Cl and Br in human blood plasma, based on high performance liquid chromatography - inductively coupled plasma - tandem mass spectrometry (HPLC-ICP-MS/MS), has been developed. The novel approach was proved to be a suitable alternative to the presently used standard methodology (i.e. based on a radiolabelled version of the drug molecule and radiodetection), while eliminating the disadvantages of the latter. Interference-free determination of (35)Cl has been accomplished via ICP-MS/MS using H2 as reaction gas and monitoring the (35)ClH2(+) reaction product at mass-to-charge ratio of 37. Br could be measured "on mass" at a mass-to-charge of 79. HPLC was relied on for the separation of the drug-related entities from the substantial amount of inorganic Cl. The method developed was found to be sufficiently precise (repeatability <10% RSD) and accurate (recovery between 95 and 105%) and shows a linear dynamic range (R(2)>0.990) from the limit of quantification (0.05 and 0.01 mg/L for Cl and Br in blood plasma, respectively) to at least 5 and 1mg/L for Cl and Br, respectively. Quantification via either external or internal standard calibration provides reliable results for both elements. As a proof-of-concept, human blood plasma samples from a clinical study involving a newly developed Cl- and Br-containing active pharmaceutical ingredient were analysed and the total drug exposure was successfully described. Cross-validation was achieved by comparing the results obtained on Cl- and on Br-basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Resolution of rare earth element interferences in fossil energy by-product samples using sector-field ICP-MS

    DOE PAGES

    Thompson, Robert L.; Bank, Tracy; Roth, Elliot; ...

    2016-07-30

    Here, the supply and price of rare earth elements (REEs) have become a concern to many countries in the world, which has led to renewed interest in exploration and recovery of REEs from secondary or waste sources. Potential high REE waste sources that are of particular interest are coal mining, preparation, combustion, and other fossil energy by-products, including those from natural gas production. In this work, we have examined a set of five solid samples from the treatment of produced and flowback water containing elevated concentrations of barium. In order to confirm the correct concentrations of Eu, we studied thesemore » materials using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), which is capable of resolving species of nearly identical masses, including Eu and BaO. While the use of quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) for the REE analysis of most geological sample matrices should pose no problem, the presence of large amounts of Ba, as encountered in water treatment solids from natural gas produced and flowback samples may require SF-ICP-MS for accurate determination of all REEs.« less

  13. Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Day, James M. D.; Pernet-Fisher, John F.; Goodrich, Cyrena A.; Pearson, D. Graham; Luo, Yan; Ryabov, Viktor V.; Taylor, Lawrence A.

    2017-04-01

    Primary native Fe is a rare crystallizing phase from terrestrial basaltic magmas, requiring highly reducing conditions (fO2 ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are lowest in the Bühl basalt, (∼0.05 ppm), intermediate in the Disko Island basalts (4-8 ppm), and highest the Siberian Khungtukun and Dzhaltul intrusions (10-30 ppm). These differences demonstrate that, while native Fe formation is the result of carbonaceous crustal assimilation, HSE enrichment is not ubiquitous during this process. The Siberian occurrences are characterized by Pt PGE (PPGE: Pt, Pd) enrichment relative to the Ir PGE (IPGE: Rh, Ru, Ir, Os), consistent with models of early stage fractionation of olivine, chromite and metallic IPGE in staging magma reservoirs, prior to the addition of C-rich crustal materials in the shallow crust. Relative to Noril'sk Ni-Cu-PGE sulfide ores

  14. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Günther, Detlef; Liu, Yongsheng; Ling, Wenli; Zong, Keqing; Chen, Haihong; Gao, Shan

    2016-12-15

    In situ Pb isotope data of sulfide samples measured by LA-MC-ICP-MS provide valuable geochemical information for studies of the origin and evolution of ore deposits. However, the severe isobaric interference of 204 Hg on 204 Pb and the lack of matrix-matched sulfide reference materials limit the precision of Pb isotopic analyses for Hg-rich sulfides. In this study, we observe that Hg forms vapor and can be completely removed from sample aerosol particles produced by laser ablation using a gas exchange device. Additionally, this device does not influence the signal intensities of Pb isotopes. The within-run precision, the external reproducibility and the analytical accuracy are significantly improved for the Hg-rich sulfide samples using this mercury-vapor-removing device. Matrix effects are observed when using silicate glass reference materials as the external standards to assess the relationship of mass fractionation factors between Tl and Pb in sulfide samples, resulting in a maximum deviation of ∼0.20% for 20x Pb/ 204 Pb. Matrix-matched reference materials are therefore required for the highly precise and accurate Pb isotope analyses of sulfide samples. We investigated two sulfide samples, MASS-1 (the Unites States Geological Survey reference materials) and Sph-HYLM (a natural sphalerite), as potential candidates. Repeated analyses of the two proposed sulfide reference materials by LA-MC-ICP-MS yield good external reproducibility of <0.04% (RSD, k = 2) for 20x Pb/ 206 Pb and <0.06% (RSD, k = 2) for 20x Pb/ 204 Pb with the exception of 20x Pb/ 204 Pb in MASS-1, which provided an external reproducibility of 0.24% (RSD, k = 2). Because the concentration of Pb in MASS-1 (76 μg g -1 ) is ∼5.2 times lower than that in Sph-HYLM (394 ± 264 μg g -1 ). The in situ analytical results of MASS-1 and Sph-HYLM are consistent with the values obtained by solution MC-ICP-MS, demonstrating the reliability and robustness of our analytical protocol. Copyright

  15. Development of dried serum spot sampling techniques for the assessment of trace elements in serum samples by LA-ICP-MS.

    PubMed

    Chantada-Vázquez, María Pilar; Moreda-Piñeiro, Jorge; Cantarero-Roldán, Alicia; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2018-08-15

    A novel approach for serum analysis by dried matrix spot (DMS) technique is proposed. The methodology consists of sampling filter paper discs (2.7 mm in diameter) containing the large amount of serum retained after a single spotting. Several oxidizers (sodium chlorate, sodium azide, acetic acid, formic acid, 1-butyl-3-methylimidazoliumm chloride/bromide) were tested (oxidizers premixed with the sample before spotting, and papers previously soaked in concentrated additive/oxidizer solutions). Direct multi-element determination (Al, Be, Ca, Cu, Fe, K, Li, Mg, Mn, Mo, Na, P, Rb, Se, V, and Zn) in dried serum spots at very low levels was therefore assessed by laser ablation (LA) coupled with inductively coupled plasma - mass spectrometry (ICP-MS). Laser ablation was performed using a focused Nd: YAG laser beam in lineal scan mode (wavelength 213 nm, laser fluency 2.2 J cm -2 , repetition rate 20 Hz, laser spot diameter 90 µm, depth 0 µm, scanning speed 12 µm s -1 ). Matrix-matched calibration mode and 13 C as internal standard (for signal intensities normalization) was used throughout the work. Limits of quantification were found to be from 21 µg L -1 to 221 mg L -1 . Repeatability (seven ablations of the same dried serum spot) and reproducibility (two ablations of seven dried serum spot from the same material) offered RSDs below 12% for all analytes, which seems satisfactory for clinical purposes. The method was validated by analyzing several certified reference materials (Seronorm™ level I and II trace elements in serum), and it was applied to several DMS from serum samples from healthy adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Correlating Cu-sulfide and Au mineralization in the Ertsberg-Grasberg District using LA-ICP-MS and HRXCT

    NASA Astrophysics Data System (ADS)

    Wright, K. A.; Miller, N. R.; Ketcham, R. A.; Kyle, R.

    2016-12-01

    The Ertsberg-Grasberg district in Papua, Indonesia, hosts to two of the largest intrusion-related Cu-Au deposits in the world: the Ertsberg East Skarn system and the Grasberg Intrusive Complex. Cu mineralization within the Grasberg porphyry and Ertsberg skarn systems primarily consists of bornite and chalcopyrite, with minor digenite and idiate. Native Au is commonly found in association with Cu mineralization where Au occurs as inclusions within or immediately proximal to primary Cu-sulfide minerals. At hydrothermal-ore forming temperatures, approximately 400° to 700° C, bornite and chalcopyrite can host up to 1800 ppm Au within the Cu-sulfide lattice. Upon retrograde cooling of the hydrothermal system, the ability of bornite and chalcopyrite to host Au decreases significantly to about 10 ppm, indicating that the Au could be expulsed from the sulfide lattice. Given the close association of native Au and Cu-sulfide concentrations, it is possible that native gold grains form as the Au emerges from the Cu-sulfides. Constraining the genetic and spatio-temporal relationship between Cu-sulfide and Au mineralization within these deposits is of significant interest with regard to the geometallurgical processing of the ore, and to future exploration. This study seeks to evaluate this relationship using High Resolution X-ray Computed Tomography (HRXCT) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Previous HRXCT studies on Ertsberg-Grasberg ore samples have identified numerous occurrences of native Au grains at the edges of Cu-sulfide masses. HRXCT data are used here to construct 3D Voronoi regions of potential Au "diffusional drainage" from within the Cu-sulfides, where the expectation is a positive correlation between Au grain size and modified Voronoi polyhedron volume, defined as the volume of sulfide closer to that grain than any other via a connected path through sulfide. LA-ICP-MS data are used to determine variations in Au contents

  17. Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from Small Samples.

    NASA Astrophysics Data System (ADS)

    Field, P.; Lloyd, N. S.

    2016-12-01

    V002: Advances in approaches and instruments for isotope studies Session ID#: 12653 Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from small samples.M. Paul Field 1 & Nicholas S. Lloyd. 1 Elemental Scientific Inc., Omaha, Nebraska, USA. field@icpms.com 2 Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany. nicholas.lloyd@thermofisher.com Uranium isotope ratio determination for nuclear, nuclear safeguards and for environmental applications can be challenging due to, 1) the large isotopic differences between samples and 2) low abundance of 234U and 236U. For some applications the total uranium quantities can be limited, or it is desirable to run at lower concentrations for radiological protection. Recent developments in inlet systems and detector technologies allow small samples to be analyzed at higher precisions using MC-ICP-MS. Here we evaluate the combination of Elemental Scientific apex omega desolvation system and microFAST-MC dual loop-loading flow-injection system with the Thermo Scientific NEPTUNE Plus MC-ICP-MS. The inlet systems allow for the automated syringe loading and injecting handling of small sample volumes with efficient desolvation to minimize the hydride interference on 236U. The highest ICP ion sampling efficiency is realized using the Thermo Scientific Jet Interface. Thermo Scientific 1013 ohm amplifier technology allows small ion beams to be measured at higher precision, offering the highest signal/noise ratio with a linear and stable response that covers a wide dynamic range (ca. 1 kcps - 30 Mcps). For nanogram quantities of low enriched and depleted uranium standards the 235U was measured with 1013 ohm amplifier technology. The minor isotopes (234U and 236U) were measured by SEM ion counters with RPQ lens filters, which offer the lowest detection limits. For sample amounts ca. 20 ng the minor isotopes can be moved onto 1013 ohm amplifiers and the 235U onto standard 1011 ohm amplifier. To illustrate the

  18. Simultaneous quantification of iodine and high valent metals via ICP-MS under acidic conditions in complex matrices.

    PubMed

    Brix, Kristina; Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-05-15

    The determination of iodine as a main fission product (especially the isotopes I-129 and I-131) of stored HLW in a disposal beside its distribution as a natural ingredient of many different products like milk, food and seawater is a matter of particular interest. The simultaneous ICP-MS determination of iodine as iodide together with other elements (especially higher valent metal ions) relevant for HLW is analytically very problematic. A reliable ICP-MS quantification of iodide must be performed at neutral or alkaline conditions in contrast to the analysis of metal ions which are determined in acidic pH ranges. Herein, we present a method to solve this problem by changing the iodine speciation resulting in an ICP-MS determination of iodide as iodate. The oxidation from iodide to iodate with sodium hypochlorite at room temperature is a fast and convenient method with flexible reaction time, from one hour up to three days, thus eliminating the disadvantages of quantifying iodine species via ICP-MS. In the analysed concentration range of iodine (0.1-100µgL -1 ) we obtain likely quantitative recovery rates for iodine between 91% and 102% as well as relatively low RSD values (0.3-4.0%). As an additional result, it is possible to measure different other element species in parallel together with the generated iodate, even high valent metals (europium and uranium beside caesium) at recovery rates in the same order of magnitude (93-104%). In addition, the oxidation process operates above pH 7 thus offering a wide pH range for sample preparation. Even analytes in complex matrices, like 5M saline (NaCl) solution or artificial cement pore water (ACW) can be quantified with this robust sample preparation method. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Determination of arsenic species in marine samples by HPLC-ICP-MS.

    PubMed

    Hirata, Shizuko; Toshimitsu, Hideki; Aihara, Masato

    2006-01-01

    Arsenic speciation analysis in marine samples was performed using high performance liquid chromatography (HPLC) with ICP-MS detection. The separation of eight arsenic species viz. arsenite (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), arsenobetaine, trimethylarsine oxide (TMAO), arsenocholine and tetramethylarsonium ion (TeMAs) was achieved on a Shiseido Capcell Pak C18 column by using an isocratic eluent (pH 3.0), in which condition As(III) and MMA were co-eluted. The entire separation was accomplished in 15 min. The detection limits for 8 arsenic species by HPLC/ICP-MS were in the range of 0.02 - 0.10 microg L(-1) based on 3sigma of blank response (n=9). The precision was calculated to be 3.1-7.3% (RSD) for all eight species. The method then successfully applied to several marine samples e.g., oyster, scallop, fish, and shrimps. For the extraction of arsenic species from seafood products, the low power microwave digestion was employed. The extraction efficiency was in the range of 52.9 - 112.3%. Total arsenic concentrations were analyzed by using the microwave acid digestion. The total arsenics in the certified reference materials (DORM-2 and TORT-2) were analyzed and agreed with the certified values. The concentrations of arsenics in marine samples were in the range 6.6 - 35.1 microg g(-1).

  20. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  1. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources

    USGS Publications Warehouse

    Hammerli, Johannes; Rusk, Brian; Spandler, Carl; Emsbo, Poul; Oliver, Nicholas H.S.

    2013-01-01

    Bromine and chlorine are important halogens for fluid source identification in the Earth's crust, but until recently we lacked routine analytical techniques to determine the concentration of these elements in situ on a micrometer scale in minerals and fluid inclusions. In this study, we evaluate the potential of in situ Cl and Br measurements by LA-ICP-MS through analysis of a range of scapolite grains with known Cl and Br concentrations. We assess the effects of varying spot sizes, variable plasma energy and resolve the contribution of polyatomic interferences on Br measurements. Using well-characterised natural scapolite standards, we show that LA-ICP-MS analysis allows measurement of Br and Cl concentrations in scapolite, and fluid inclusions as small as 16 μm in diameter and potentially in sodalite and a variety of other minerals, such as apatite, biotite, and amphibole. As a demonstration of the accuracy and potential of Cl and Br analyses by LA-ICP-MS, we analysed natural fluid inclusions hosted in sphalerite and compared them to crush and leach ion chromatography Cl/Br analyses. Limit of detection for Br is ~8 μg g−1, whereas relatively high Cl concentrations (> 500 μg g−1) are required for quantification by LA-ICP-MS. In general, our LA-ICP-MS fluid inclusion results agree well with ion chromatography (IC) data. Additionally, combined cathodoluminescence and LA-ICP-MS analyses on natural scapolites within a well-studied regional metamorphic suite in South Australia demonstrate that Cl and Br can be quantified with a ~25 μm resolution in natural minerals. This technique can be applied to resolve a range of hydrothermal geology problems, including determining the origins of ore forming brines and ore deposition processes, mapping metamorphic and hydrothermal fluid provinces and pathways, and constraining the effects of fluid–rock reactions and fluid mixing.

  2. [Study on microwave digestion of gypsum for the determination of multielement by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yang, Rui-ming; Yao, Qiang; Chen, Chang-he

    2010-09-01

    Three acids (HNO3, HNO3/HF and HNO3 /HF+ H3BO3) were used to decompose gypsum with microwave digestion system. The contents of 10 mineral elements (Al, Ca, Mg, Fe, K, Na, S, Ti, Si and Sr) in gypsum were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) while 6 heavy metals (V, Cr, Mn, Zn, Se and Ce) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). GBW03109a, GBW03110 and FGD-2 were used as gypsum standard reference materials. The results showed that two-step microwave digestion with HNO3/HF at 210 degrees C and then adding H3BO3 for the removal of HF and fluorides completely decomposed the gypsums, while this method achieved good recoveries for all elements in the three gypsum standard reference materials. The recovery was from 88% to 112% and the RSD of tests was below 3%. The method was applied to the elemental analysis for flue gas desulfurization gypsums from three coal-fired power plants.

  3. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  4. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    PubMed

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.

  5. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  6. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  7. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS.

    PubMed

    Godshaw, Joshua; Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E

    2017-09-25

    Wine elemental composition varies by cultivar, geographic origin, viticultural and enological practices, and is often used for authenticity validation. Elemental analysis of wine by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential for non-spectral interferences and plasma instability arising from organic matrix components. Sample preparation mitigates these interferences, however, conflicting recommendations of best practices in ICP-MS analysis of wine have been reported. This study compared direct dilution, microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to filtration and filtration followed by acidification, in elemental profiling of one white and three red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method, with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope dilution determination of copper based on natural abundances and the 63 Cu: 65 Cu instrument response ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall, microwave digestion did not compare favorably, and direct dilution was found to provide the best compromise between ease of use and result accuracy and precision, although all preparation strategies were able to differentiate the wines.

  8. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay.

    PubMed

    Ko, Jung Aa; Lim, H B

    2016-09-28

    Metal-doped inorganic nanoparticles were synthesized for the multiplex detection of biomarkers by a sandwich-type inductively coupled plasma mass spectrometry (ICP-MS) immunoassay. The synthesized Cs-doped multicore magnetic nanoparticles (MMNPs) were used not only for magnetic extraction of targets but also for ratiometric measurement in ICP-MS. In addition, three different metal/dye-doped silica nanoparticles (SNPs) were synthesized as probes for multiplex detection: Y/RhBITC (rhodamine B isothiocyanate)-doped SNPs for CRP (cardiovascular disease), Cd/RhBITC-doped SNPs for AFP (tumor), and Au/5(6)-XRITC (X-rhodamine-5-(and-6)-isothiocyanate)-doped SNPs for NSE (heart disease). For quantification, the doped metals of SNPs were measured by ICP-MS and then the signal ratio to Cs of MMNPs was plotted with respect to the concentration of targets by a ratiometry. Limits of detection (LOD) of 0.35 ng/mL to 77 ng mL(-1) and recoveries of 83%-125% were obtained for serum samples spiked with the biomarkers. Since no sample treatment was necessary prior to the extraction, the proposed method provided short analysis time and convenience for the multiplex determination of biomarkers, which will be valuable for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the

  10. On the certification of cadmium at trace and ultratrace levels in standard reference materials using ID ICP-MS.

    PubMed

    Murphy, K E; Long, S E; Vocke, R D

    2007-04-01

    Analytical methods used for the isotope dilution inductively coupled plasma mass spectrometric (ID-ICP-MS) measurement of Cd at microg kg(-1) and sub-microg kg(-1) levels are described and applied to the certification of new dietary supplement, blood, and serum Standard Reference Materials (SRMs). The materials are: SRM 3240 Ephedra sinica Stapf Aerial Parts, SRM 3241 Ephedra sinica Stapf Native Extract, SRM 3243 Ephedra-Containing Solid Oral Dosage Form, SRM 3244 Ephedra-Containing Protein Powder, SRM 966 Toxic Metals in Bovine Blood, Level 1 (L1) and Level 2 (L2), and SRM 1598a Animal Serum. The concentration of Cd in the materials ranges from 120 microg kg(-1) down to 0.03 microg kg(-1). At these levels, the factors that most influence the accuracy of the ICP-MS data are the procedure blank and spectral and nonspectral interferences. Nonspectral interference, caused by the high concentration of dissolved solids in the matrices investigated, resulted in signal suppression. Matrix separation was used to enhance signal intensity and to reduce spectral interference for the accurate determination of Cd in SRM 1598a and SRM 3244. Chromatographic separation procedures using Chelex for SRM 1598a and anion exchange for SRM 3244 were optimized to achieve the desired separation characteristics without substantially increasing the procedure blank. Sensitivity for the determination of Cd in serum was additionally enhanced through the use of desolvation nebulization. We determined that separations were not required for the accurate ICP-MS determination of Cd in SRM 3240, SRM 3241, SRM 3243, and SRM 966 L2 under optimized analysis conditions. These samples were diluted to a minimum volume and introduced to the ICP-MS via low flow (40-100 microL/min) microconcentric nebulizers. SRM 966 L1 was also analyzed directly, but results were highly variable. The ID-ICP-MS sample preparation and ratio measurement protocols described here resulted in total expanded uncertainties of less

  11. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast,more » and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.« less

  12. The potential of using laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS) in the forensic analysis of micro debris.

    PubMed

    Scadding, Cameron J; Watling, R John; Thomas, Allen G

    2005-08-15

    The majority of crimes result in the generation of some form of physical evidence, which is available for collection by crime scene investigators or police. However, this debris is often limited in amount as modern criminals become more aware of its potential value to forensic scientists. The requirement to obtain robust evidence from increasingly smaller sized samples has required refinement and modification of old analytical techniques and the development of new ones. This paper describes a new method for the analysis of oxy-acetylene debris, left behind at a crime scene, and the establishment of its co-provenance with single particles of equivalent debris found on the clothing of persons of interest (POI). The ability to rapidly determine and match the elemental distribution patterns of debris collected from crime scenes to those recovered from persons of interest is essential in ensuring successful prosecution. Traditionally, relatively large amounts of sample (up to several milligrams) have been required to obtain a reliable elemental fingerprint of this type of material [R.J. Walting , B.F. Lynch, D. Herring, J. Anal. At. Spectrom. 12 (1997) 195]. However, this quantity of material is unlikely to be recovered from a POI. This paper describes the development and application of laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS), as an analytical protocol, which can be applied more appropriately to the analysis of micro-debris than conventional quadrupole based mass spectrometry. The resulting data, for debris as small as 70mum in diameter, was unambiguously matched between a single spherule recovered from a POI and a spherule recovered from the scene of crime, in an analytical procedure taking less than 5min.

  13. Effective LA-ICP-MS dating of common-Pb bearing accessory minerals with new data reduction schemes in Iolite

    NASA Astrophysics Data System (ADS)

    Kamber, Balz S.; Chew, David M.; Petrus, Joseph A.

    2014-05-01

    Compared to non-destructive geochemical analyses, LA-ICP-MS consumes ca. 0.1 μm of material per ablation pulse. It is therefore to be expected that the combined analyses of ca. 200 pulses will encounter geochemical and isotopic complexities in all but the most perfect minerals. Experienced LA-ICP-MS analysts spot down-hole complexities and choose signal integration areas accordingly. In U-Pb geochronology, the task of signal integration choice is complex as the analyst wants to avoid areas of common Pb and Pb-loss and separate true (concordant) age complexity. Petrus and Kamber (2012) developed VizualAge as a tool for reducing and visualising, in real time, U-Pb geochronology data obtained by LA-ICP-MS as an add-on for the freely available U-Pb geochronology data reduction scheme of Paton et al. (2010) in Iolite. The most important feature of VizualAge is its ability to display a live concordia diagram, allowing users to inspect the data of a signal on a concordia diagram as the integration area it is being adjusted, thus providing immediate visual feedback regarding discordance, uncertainty, and common lead for different regions of the signal. It can also be used to construct histograms and probability distributions, standard and Tera-Wasserburg style concordia diagrams, as well as 3D U-Th-Pb and total U-Pb concordia diagrams. More recently, Chew et al. (2014) presented a new data reduction scheme (VizualAge_UcomPbine) with much improved common Pb correction functionality. Common Pb is a problem for many U-bearing accessory minerals and an under-appreciated difficulty is the potential presence of (possibly unevenly distributed) common Pb in calibration standards, introducing systematic inaccuracy into entire datasets. One key feature of the new method is that it can correct for variable amounts of common Pb in any U-Pb accessory mineral standard as long as the standard is concordant in the U/Pb (and Th/Pb) systems after common Pb correction. Common Pb correction

  14. Determination of Trace Elements in Uranium by HPLC-ID-ICP-MS: NTNFC Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manard, Benjamin Thomas; Wylie, Ernest Miller II; Xu, Ning

    This report covers the FY 16 effort for the HPLC-ID-ICP-MS methodology 1) sub-method validation for the group I&II elements, 2) sub-method stood-up and validation for REE, 3) sub-method development for the transition element, and 4) completion of a comprehensive SOP for three families of elements.

  15. Geochemical differences of magnetite from the Algoma- and Superior- type banded iron formations based on in situ LA-ICP-MS analysis

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Park, J. W.; Yang, X.

    2017-12-01

    Precambrian banded iron formations (BIFs) have been highly attractive study issues for decades about their genesis. Recently, more detailed geochemical studies have been conducted on mineral chemistry of magnetite using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Magnetite geochemistry enables us to constrain the physicochemical controlling factors for abundance of trace elements in magnetite and understand depositional environment of BIFs. In this study, we provide results of magnetite trace elemental features from two representative types of BIFs which are Algoma- and Superior- type BIF in the world, with aims to understand systematic differences in magnetite compositions between Algoma- and Superior- type BIF. The magnetites are divided into two groups according to their Al, Mn, Ti, V, and Ni concentration. The magnetites from the Algoma-type BIFs are more enriched in trace elements than those from the Superior-type. The geochemical differences are caused by difference precipitation condition including oxygen fugacity, temperature and fluid source.

  16. Improved approach for routine monitoring of 129I activity and 129I/127I atom ratio in environmental samples using TMAH extraction and ICP-MS/MS.

    PubMed

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2018-05-30

    To reconstruct 131 I deposition and identify the source of radioiodine due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, 129 I activity and 129 I/ 127 I atom ratio should be obtained by preparing and analyzing large numbers of samples economically. In this study, great efforts were made to realize mild TMAH (tetramethyl ammonium hydroxide) extraction of environmental samples at 90 °C to obtain solutions suitable for the following triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-QQQ) MS/MS mode analysis. After releasing iodine from organic matter in the TMAH extraction solution via K 2 S 2 O 8 oxidation, organic matter was removed effectively by solvent extraction and back-extraction to avoid a serious matrix effect during ICP-QQQ analysis. At the same time, interfering elements, especially, Mo, Cd, and In were also removed effectively, to avoid their undesirable interferences during mass spectrometric analysis. In addition, 0.01% (NH 4 ) 2 SO 3 was selected to introduce I - into ICP-QQQ to ensure there was no memory effect and a stable signal was gotten. Subsequently, ICP-QQQ MS/MS mode was applied to further eliminate polyatomic interferences ( 127 I(H 2 and D) + , 97 MoO 2 + , 113 InO + , and 113 CdO + ) and isobaric interference from 129 Xe + . Finally, the developed method was successfully applied to measure 129 I/ 127 I atom ratios ((2.61-27.0) × 10 -7 ) and 129 I activities (3.51-11.4 mBq kg -1 ) in soil samples. The developed method allows a greater number of ordinary laboratories to participate in the field of radioiodine analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Determination of arsenic species and arsenosugars in marine samples by HPLC-ICP-MS.

    PubMed

    Hirata, Shizuko; Toshimitsu, Hideki

    2005-10-01

    Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP-MS detection. Separation of eight arsenic species--As(III), MMA, DMA, As(V), AB, TMAO, AC and TeMAs(+)--was achieved on a C(18) column with isocratic elution (pH 3.0), under which conditions As(III) and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC-ICP-MS detection limits for the eight arsenic species were in the range 0.03-0.23 microg L(-1) based on 3 sigma for the blank response (n=5). The precision was calculated to be 2.4-8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18-9.59 microg g(-1).

  18. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Characterization of Silver Nanoparticles Internalized by Arabidopsis Plants Using Single Particle ICP-MS Analysis

    PubMed Central

    Bao, Dongping; Oh, Zhen Guo; Chen, Zhong

    2016-01-01

    Plants act as a crucial interface between humans and their environment. The wide use of nanoparticles (NPs) has raised great concerns about their potential impacts on crop health and food safety, leading to an emerging research theme about the interaction between plants and NPs. However, up to this day even the basic issues concerning the eventual fate and characteristics of NPs after internalization are not clearly delineated due to the lack of a well-established technique for the quantitative analysis of NPs in plant tissues. We endeavored to combine a quantitative approach for NP analysis in plant tissues with TEM to localize the NPs. After using an enzymatic digestion to release the NPs from plant matrices, single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) is employed to determine the size distribution of silver nanoparticles (Ag NPs) in tissues of the model plant Arabidopsis thaliana after exposure to 10 nm Ag NPs. Our results show that Macerozyme R-10 treatment can release Ag NPs from Arabidopsis plants without changing the size of Ag NPs. The characteristics of Ag NPs obtained by SP-ICP-MS in both roots and shoots are in agreement with our transmission electron micrographs, demonstrating that the combination of an enzymatic digestion procedure with SP-ICP-MS is a powerful technique for quantitative determination of NPs in plant tissues. Our data reveal that Ag NPs tend to accumulate predominantly in the apoplast of root tissues whereby a minor portion is transported to shoot tissues. Furthermore, the fact that the measured size distribution of Ag NPs in plant tissue is centered at around 20.70 nm, which is larger than the initial 12.84 nm NP diameter, strongly implies that many internalized Ag NPs do not exist as intact individual particles anymore but are aggregated and/or biotransformed in the plant instead. PMID:26870057

  20. Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system.

    PubMed

    Wang, Hailong; Wang, Meng; Wang, Bing; Zheng, Lingna; Chen, Hanqing; Chai, Zhifang; Feng, Weiyue

    2017-02-01

    Cellular heterogeneity is an inherent condition of cell populations, which results from stochastic expression of genes, proteins, and metabolites. The heterogeneity of individual cells can dramatically influence cellular decision-making and cell fate. So far, our knowledge about how the variation of endogenous metals and non-metals in individual eukaryotic cells is limited. In this study, ICP-MS equipped with a high efficiency cell introduction system (HECIS) was developed as a method of single-cell ICP-MS (SC-ICP-MS). The method was applied to the single-cell analysis of Mn, Fe, Co, Cu, Zn, P, and S in human cancer cell lines (HeLa and A549) and normal human bronchial epithelial cell line (16HBE). The analysis showed obvious variation of the masses of Cu, Fe, Zn, and P in individual HeLa cells, and variation of Fe, Zn, and P in individual A549 cells. On the basis of the single-cell data, a multimodal distribution of the elements in the cell population was fitted, which showed marked differences among the various cell lines. Importantly, subpopulations of the elements were found in the cell populations, especially in the HeLa cancer cells. This study demonstrates that SC-ICP-MS is able to unravel the extent of variation of endogenous elements in individual cells, which will help to improve our fundamental understanding of cellular biology and reveal novel insights into human biology and medicine. Graphical abstract The variations of masses and distribution patterns of elements Mn, Fe, Co, Cu, Zn, P, and S in single cells were successfully detected by ICP-MS coupled with a high efficiency cell introduction system (HECIS).

  1. Fast and accurate determination of arsenobetaine in fish tissues using accelerated solvent extraction and HPLC-ICP-MS determination.

    PubMed

    Wahlen, Raimund

    2004-04-01

    A high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method has been developed for the fast and accurate analysis of arsenobetaine (AsB) in fish samples extracted by accelerated solvent extraction. The combined extraction and analysis approach is validated using certified reference materials for AsB in fish and during a European intercomparison exercise with a blind sample. Up to six species of arsenic (As) can be separated and quantitated in the extracts within a 10-min isocratic elution. The method is optimized so as to minimize time-consuming sample preparation steps and allow for automated extraction and analysis of large sample batches. A comparison of standard addition and external calibration show no significant difference in the results obtained, which indicates that the LC-ICP-MS method is not influenced by severe matrix effects. The extraction procedure can process up to 24 samples in an automated manner, yet the robustness of the developed HPLC-ICP-MS approach is highlighted by the capability to run more than 50 injections per sequence, which equates to a total run-time of more than 12 h. The method can therefore be used to rapidly and accurately assess the proportion of nontoxic AsB in fish samples with high total As content during toxicological screening studies.

  2. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-02

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented.

  3. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  4. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  5. [Application of ICP-MS and ICP-AES for Studying on Source Apportionment of PM2.5 during Haze Weather in Urban Beijing].

    PubMed

    Chen, Xi; Du, Peng; Guan, Qing; Feng, Xu; Xu, Dong-qun; Lin, Shao-bin

    2015-06-01

    To investigate the characteristics of chemical constitute and pollution sources of aerosol fine particulate matter during haze-fog day in Beijing in winter 2013. The samples of PM2.5 were collected in Beijing from January to February, 2013. The technique of ICP-MS and ICP-AES coupled with procedure of bathing-ultrasonic extraction was applied to determine the concentration of 40 elements in the aerosol samples to analyze the characteristics of elements distribution statistically. The absolute principal factor method was used to apportion the pollution sources of PM2.5 during the haze weather in Beijing city in winter 2013. The results showed that during the period of sampling, the volume concentration of Li, Mn, Pb, S etc. obeyed normal distribution approximately, and according to National Ambient Air Quality Standard issued by Ministry of Environmental Protection of the People's Republic of China, the geometric mean concentration of As was twice the annual limit of standard reference, while Pb of some aerosol samples beyond the annual limit of standard reference respectively. The mass fraction of Fe, Zn, Pb, Ti accounted for over 0.1%, while that of Mn, Cu, As, Se etc. 0.01%. These elements were primary inorganic pollutants, and especially the hazards and sources of As and Pb should be concerned. There were 6 main pollution sources were chosen by the factor analysis method, including industrial dust and human beings activities, biomass combustion and building dust, soil and sand dusts, fossil fuel, electronic waste and metal smelting, with the variance contribution rate of 40.3%, 27.0%, 9.1%, 4.9%, 4.8% and 4.6% respectively. ICP-MS and ICP-AES can be applied to analyzing multi-elements in PM2.5 accurately and quickly to facilitate source apportionment, and it indicated that the relevant pollution sources should be considered and the effect of regional transferring of haze pollution sources should be taken into account, and specific measures should be taken for

  6. Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection.

    PubMed

    Espina, Juan Gómez; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2015-10-01

    Analytical methods allowing sensitive determination of reduced homocysteine (rHcy), one of the so-called biothiols, in human serum is a topic of growing interest due to its close relation to several human disorders, mainly cardiovascular diseases. Although most widely used analytical strategies to determine total Hcy involve derivatization by means of fluorescent labels, this work proposes the use of ebselen, a Se-containing labelling agent to derivatize the reactive sulfhydryl group of the Hcy molecule in its "free" reduced form, which is more likely to play different roles in disease pathogenesis. Optimization of the derivatization and separation conditions by high-performance liquid chromatography (HPLC) to isolate the excess of derivatizing reagent is carried out here using UV/VIS detection. Further, the study of the Se labelling reaction by electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides a stoichiometry of the derivative of 1:1. The main advantage of using ebselen as a labelling agent is the presence of the Se atom in the molecule that allows the use of inductively coupled plasma mass spectrometry (ICP-MS) as a sensitive and selective Se detector. The coupling of HPLC with ICP-MS provided excellent features for the determination of Se-derivatized rHcy (detection limit of 9.6 nM) in real samples. Quantification was accomplished by using post-column isotope dilution (ID) of Se in serum samples, after precipitation of the main serum proteins. Quantitative results for "free" rHcy turned out to be around 0.18-0.22 μM in serum samples from healthy individuals that could be directly analyzed without sample preconcentration.

  7. Gunshot residue (GSR) analysis by single particle inductively coupled plasma mass spectrometry (spICP-MS).

    PubMed

    Heringer, Rodrigo D; Ranville, James F

    2018-05-25

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) was investigated as a screening-level technique for the analysis and characterization of inorganic gunshot residue (IGSR) nanoparticles. spICP-MS works with undigested samples whereby nanoparticles (NPs) in a suspension are individually atomized and ionized as they reach the plasma, each resulting in a pulse of analyte ions that can be quantified. The method is rapid, and signals from hundreds of NPs can be collected in 1-2min per sample. The technique is quantitative for NP mass and number concentration when only one element (single element mode) is measured using a quadrupole MS. Likewise, a qualitative elemental fingerprint can be obtained for individual NPs when peak-hopping between two elements (dual element mode). For this proof of concept study, each shooter's hand was sampled with ultrapure water or swab to obtain NPs suspensions. Measurements of antimony, barium, and lead were performed using both analysis modes. With no sample preparation and fully automated sample introduction, it is possible to analyze more than 100 samples in a day. Results show that this technique opens a new perspective for future research on GSR sample identification and characterization and can complement SEM/EDX analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. [Determination of 27 elements in Maca nationality's medicine by microwave digestion ICP-MS].

    PubMed

    Yu, Gui-fang; Zhong, Hai-jie; Hu, Jun-hua; Wang, Jing; Huang, Wen-zhe; Wang, Zhen-zhong; Xiao, Wei

    2015-12-01

    An analysis method has been established to test 27 elements (Li, Be, B, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Mo, Cd, Sn, Sb, Ba, La, Hg, Pb, Bi) in Maca nationality's medicine with microwave digestion-ICP-MS. Sample solutions were analyzed by ICP-MS after microwave digestion, and the contents of elements were calculated according to their calibration curves, and internal standard method was adopted to reduce matrix effect and other interference effects. The experimental results showed that the linear relations of all the elements were very good; the correlation coefficient (r) was 0.9994-1.0000 (Hg was 0.9982) ; the limits of detection were 0.003-2.662 microg x L(-1); the relative standard deviations for all elements of reproducibility were lower than 5% (except the individual elements); the recovery rate were 78.5%-123.7% with RSD lower than 5% ( except the individual elements). The analytical results of standard material showed acceptable agreement with the certified values. This method was applicable to determinate the contents of multi-elements in Maca which had a high sensitivity, good specificity and good repeatability, and provide basis for the quality control of Maca.

  9. Determination of (90)Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS).

    PubMed

    Feuerstein, J; Boulyga, S F; Galler, P; Stingeder, G; Prohaska, T

    2008-11-01

    A rapid method is reported for the determination of (90)Sr in contaminated soil samples in the vicinity of the Chernobyl Nuclear Power Plant by ICP-DRC-MS. Sample preparation and measurement procedures focus on overcoming the isobaric interference of (90)Zr, which is present in soils at concentrations higher by more than six orders of magnitude than (90)Sr. Zirconium was separated from strontium in two steps to reduce the interference by (90)Zr(+) ions by a factor of more than 10(7): (i) by ion exchange using a Sr-specific resin and (ii) by reaction with oxygen as reaction gas in a dynamic reaction cell (DRC) of a quadrupole ICP-MS. The relative abundance sensitivity of the ICP-MS was studied systematically and the peak tailing originating from (88)Sr on mass 90 u was found to be about 3 x 10(-9). Detection limits of 4 fg g(-1) (0.02 Bq g(-1)) were achieved when measuring Sr solutions containing no Zr. In digested uncontaminated soil samples after matrix separation as well as in a solution of 5 microg g(-1) Sr and 50 ng g(-1) Zr a detection limit of 0.2 pg g(-1) soil (1 Bq g(-1) soil) was determined. (90)Sr concentrations in three soil samples collected in the vicinity of the Chernobyl Nuclear Power Plant were 4.66+/-0.27, 13.48+/-0.68 and 12.9+/-1.5 pg g(-1) corresponding to specific activities of 23.7+/-1.3, 68.6+/-3.5 and 65.6+/-7.8 Bq g(-1), respectively. The ICP-DRC-MS results were compared to the activities measured earlier by radiometry. Although the ICP-DRC-MS is inferior to commonly used radiometric methods with respect to the achievable minimum detectable activity it represents a time- and cost-effective alternative technique for fast monitoring of high-level (90)Sr contamination in environmental or nuclear industrial samples down to activities of about 1 Bq g(-1).

  10. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    PubMed

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  11. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    PubMed

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  12. Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS

    NASA Astrophysics Data System (ADS)

    Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.

    Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.

  13. Size exclusion chromatography with online ICP-MS enables molecular weight fractionation of dissolved phosphorus species in water samples.

    PubMed

    Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul

    2018-04-15

    Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Lloyd A.

    1996-10-17

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio 63Cu +/ 65Cu + is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurementsmore » for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio 52Cr +/ 53Cr + (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr + signal to 0.12% for the ratio of 51V + to 52Cr +. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li + signal becomes apparent. Space charge effects are consistent with the disturbances seen.« less

  15. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol.

    PubMed

    Legat, Joanna; Matczuk, Magdalena; Timerbaev, Andrei R; Jarosz, Maciej

    2018-01-01

    The cellular uptake of gold nanoparticles (AuNPs) may (or may not) affect their speciation, but information on the chemical forms in which the particles exist in the cell remains obscure. An analytical method based on the use of capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) has been proposed to shed light on the intracellular processing of AuNPs. It was observed that when being introduced into normal cytosol, the conjugates of 10-50 nm AuNPs with albumin evolved in human serum stayed intact. On the contrary, under simulated cancer cytosol conditions, the nanoconjugates underwent decomposition, the rate of which and the resulting metal speciation patterns were strongly influenced by particle size. The new peaks that appeared in ICP-MS electropherograms could be ascribed to nanosized species, as upon ultracentrifugation, they quantitatively precipitated whereas the supernatant showed only trace Au signals. Our present study is the first step to unravel a mystery of the cellular chemistry for metal-based nanomedicines.

  16. Establishment of a method for determination of arsenic species in seafood by LC-ICP-MS.

    PubMed

    Zmozinski, Ariane V; Llorente-Mirandes, Toni; López-Sánchez, José F; da Silva, Márcia M

    2015-04-15

    An analytical method for determination of arsenic species (inorganic arsenic (iAs), methylarsonic acid (MA), dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO) and arsenocholine (AC)) in Brazilian and Spanish seafood samples is reported. This study was focused on extraction and quantification of inorganic arsenic (iAs), the most toxic form. Arsenic speciation was carried out via LC with both anionic and cationic exchange with ICP-MS detection (LC-ICP-MS). The detection limits (LODs), quantification limits (LOQs), precision and accuracy for arsenic species were established. The proposed method was evaluated using eight reference materials (RMs). Arsenobetaine was the main species found in all samples. The total and iAs concentration in 22 seafood samples and RMs ranged between 0.27-35.2 and 0.02-0.71 mg As kg(-1), respectively. Recoveries ranging from 100% to 106% for iAs, based on spikes, were achieved. The proposed method provides reliable iAs data for future risk assessment analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yao, Qiang; Chen, Chang-He; Yu, Fei-Lu

    2012-06-01

    Effects of temperature and four acids (HNO3, HNO3/H2O2, HNO3/HF and HNO3/HF+H3BO3) on the coal decomposition by microwave digestion and the multi-element analysis were studied. SARM20 was used as a coal standard reference material. The contents of 10 mineral elements (Al, Ca, Fe, Mg, K, Na, S, Si, Sr and Ti) in the coal SARM20 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). And the contents of 20 heavy metals (Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Zr, Sn, Cs, Ba, Ce, Eu and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the coal was completely decomposed by microwave digestion with HNO3/HF+ H3BO3 at 210 degrees C. Good recoveries for all elements in the coal SARM20 were obtained by this two-step microwave digestion method. The recoveries of the 10 mineral elements were from 87.5% to 98.8%, and the recoveries of the 20 heavy metals were from 85% to 112.5%. All RSDs of tests were below 3%.

  18. Lead isotope ratios in lichen samples evaluated by ICP-ToF-MS to assess possible atmospheric pollution sources in Havana, Cuba.

    PubMed

    Alvarez, Alfredo Montero; Estévez Alvarez, Juan R; do Nascimento, Clístenes Williams Araújo; González, Iván Pupo; Rizo, Oscar Díaz; Carzola, Lázaro Lima; Torres, Roberto Ayllón; Pascual, Jorge Gómez

    2017-01-01

    Epiphytic lichens, collected from 119 sampling sites grown over "Roistonea Royal Palm" trees, were used to assess the spatial distribution pattern of lead (Pb) and identify possible pollution sources in Havana (Cuba). Lead concentrations in lichens and topsoils were determined by flame atomic absorption spectrophotometry and inductively coupled plasma (ICP) atomic emission spectrometry, respectively, while Pb in crude oils and gasoline samples were measured by ICP-time of flight mass spectrometry (ICP-ToF-MS). Lead isotopic ratios measurements for lichens, soils, and crude oils were obtained by ICP-ToF-MS. We found that enrichment factors (EF) reflected a moderate contamination for 71% of the samples (EF > 10). The 206 Pb/ 207 Pb ratio values for lichens ranged from 1.17 to 1.20 and were a mixture of natural radiogenic and industrial activities (e.g., crude oils and fire plants). The low concentration of Pb found in gasoline (<7.0 μg L -1 ) confirms the official statement that leaded gasoline is no longer used in Cuba.

  19. Challenges in the quality assurance of elemental and isotopic analyses in the nuclear domain benefitting from high resolution ICP-OES and sector field ICP-MS.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Van Winckel, Stefaan

    Accurate analytical data reinforces fundamentally the meaningfulness of nuclear fuel performance assessments and nuclear waste characterization. Regularly lacking matrix-matched certified reference materials, quality assurance of elemental and isotopic analysis of nuclear materials remains a challenging endeavour. In this context, this review highlights various dedicated experimental approaches envisaged at the European Commission-Joint Research Centre-Institute for Transuranium Elements to overcome this limitation, mainly focussing on the use of high resolution-inductively coupled plasma-optical emission spectrometry (HR-ICP-OES) and sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). However, also α- and γ-spectrometry are included here to help characterise extensively the investigated actinide solutions for their actual concentration, potential impurities and isotopic purity.

  20. Determination of 232Th in urine by ICP-MS for individual monitoring purposes.

    PubMed

    Baglan, N; Cossonnet, C; Ritt, J

    2001-07-01

    Thorium is naturally occurring in various ores used for industrial purposes and has numerous applications. This paper sets out to investigate urine analysis as a suitable monitoring approach for workers potentially exposed to thorium. Due to its biokinetic behavior and its low solubility, urinary concentrations are generally very low, requiring therefore high sensitivity analytical methods. An analytical procedure has been developed for detecting 232Th concentrations of below 1 mBq L(-1) quickly and easily. Due to the long half-life (1.41 x 10(10) y) of 232Th, the potential of a procedure based on urine sample dilution and ICP-MS (inductively coupled plasma-mass spectrometry) measurement was investigated first. Two dilution factors were chosen: 100, which is more suitable for long-term measurement trials, and 20, which increases sensitivity. It has been shown that a 100-fold dilution can be used to measure concentrations of below 1 mBq L(-1), whereas a 20-fold one can be used to reach concentrations of below 0.06 mBq L(-1). Then, on the basis of the limitation of the procedure based on urine dilution, the suitable field of application for the different procedures (100-fold and 20-fold dilution and also a chemical purification followed by an ICP-MS measurement) was determined in relation to monitoring objectives.

  1. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  2. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [The matrix effects of organic acid compounds in ICP-MS].

    PubMed

    Nie, Xi-Du; He, Xiao-Mei; Li, Li-Bo; Xie, Hua-Lin

    2007-07-01

    The matrix effects arising from oxalic acid, lactic acid, tartaric acid and citric acid in inductively coupled plasma mass spectrometry (ICP-MS) were investigated. It has been proved that the sensitivity of analytes can be significantly enhanced by adding small amounts of organic acid compounds with adjusted nebulizer gas flow-rate, especially for the elements with ionization potential between 9 and 11 eV. The tartaric acid has higher enhancement effect on the signal intensity of the hard-to-ionize elements than oxalic acid, lactic acid and citric acid. The mechanism of the enhancement was investigated. The method has been used to determine Be, Zn, As, Se, Sb and Hg in water standard reference materials (SRM). The analytical results are very close to the certified values.

  4. Ultra-trace determination of Strontium-90 in environmental soil samples from Qatar by collision/reaction cell-inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Meer, S. H.; Amr, M. A.; Helal, A.I.

    Because of the very low level of {sup 90}Sr in the environmental soil samples and its determination by beta counting may take several weeks, we developed a procedure for ultra-trace determination of {sup 90}Sr using collision reaction cell-inductively coupled plasma tandem mass spectrometry (CRC-ICP-MS/MS, Agilent 8800). Soil samples were dried at 105 deg. C and then heated in a furnace at 550 deg. C to remove any organics present. 500 g of each soil samples were aliquoted into 2000 ml glass beakers. Each Soils samples were soaked in 2 ppm Sr solution carrier to allow determination of chemical yield. Themore » solid to liquid ratio was 1:1. Finally the soil samples were dried at 105 deg. C. Five hundred milliliters concentrated nitric acid and 250 ml hydrochloric acid volumes were added on 500 g soil samples. The samples were digested on hot plate at 80 deg. C to prevent spraying with continuous manual mixing. The leachate solution was separated. The solids were rinsed with 500 ml deionized water, warmed on a hot plate and the leachate plus previous leachate were filtered and the total volume was reduced to 500 ml by evaporation. Final leachate volume was transferred to a centrifuge tubes. The centrifuge tubes were centrifuged at 3,500 rpm for 10 min. The leachate was transferred to a 1 L beaker and heated on a hot plate to evaporate the leachate to dryness. The reside was re-dissolved in 100 ml of 2% HNO{sub 3} and reduced by evaporation to 10 mL. The solution was measured directly by CRC-ICP-MS/MS by setting the first quadruple analyzer to m/z 90 and introducing oxygen gas into the reaction cell for elimination isobar interference from zirconium-90. The method was validated by measurements of standard reference materials and applied on environmental soil samples. The overall time requirement for the measurement of strontium-90 by CRC-ICP-MS/MS is 2 days, significantly shorter than any radioanalytical protocol currently available. (authors)« less

  5. Two-dimensional HPLC coupled to ICP-MS and electrospray ionisation (ESI)-MS/MS for investigating the bioavailability in vitro of arsenic species from edible seaweed.

    PubMed

    Garcia-Sartal, Cristina; Taebunpakul, Sutthinun; Stokes, Emma; Barciela-Alonso, María del Carmen; Bermejo-Barrera, Pilar; Goenaga-Infante, Heidi

    2012-04-01

    Edible seaweed consumption is a route of exposure to arsenic. However, little attention has been paid to estimate the bioaccessibility and/or bioavailability of arsenosugars in edible seaweed and their possible degradation products during gastrointestinal digestion. This work presents first use of combined inductively coupled plasma mass spectroscopy (ICP-MS) with electrospray ionization tandem mass spectrometry (ESI-MS/MS) with two-dimensional HPLC (size exclusion followed by anion exchange) to compare the qualitative and quantitative arsenosugars speciation of different edible seaweed with that of their bioavailable fraction as obtained using an in vitro gastrointestinal digestion procedure. Optimal extraction conditions for As species from four seaweed namely kombu, wakame, nori and sea lettuce were selected as a compromise between As extraction efficiency and preservation of compound identity. For most investigated samples, the use of ammonium acetate buffer as extractant and 1 h sonication in a water bath followed by HPLC-ICP-MS resulted in 40-61% of the total As to be found in the buffered aqueous extract, of which 86-110% was present as arsenosugars (glycerol sugar, phosphate sugar and sulfonate sugar for wakame and kombu and glycerol sugar and phosphate sugar for nori). The exception was sea lettuce, for which the arsenosugar fraction (glycerol sugar, phosphate sugar) only comprised 44% of the total extracted As. Interestingly, the ratio of arsenobetaine and dimethylarsinic acid to arsenosugars in sea lettuce extracts seemed higher than that for the rest of investigated samples. After in vitro gastrointestinal digestion, approximately 11-16% of the total As in the solid sample was found in the dialyzates with arsenosugars comprising 93-120% and 41% of the dialyzable As fraction for kombu, wakame, nori and sea lettuce, respectively. Moreover, the relative As species distribution in seaweed-buffered extracts and dialyzates was found to be very similar

  6. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  7. Speciation of aluminum in drink samples by 8-hydroxyquinoline loaded silylanization silica gel microcolumn separation with off-line ICP-MS detection.

    PubMed

    Chen, Jie; Huang, Chaozhang; Hu, Bin; Jiang, Zucheng

    2004-11-17

    A technique using a flow injection microcolumn separation coupled with ICP-MS detection has been developed for the speciation of Al in drink samples. The retention behaviors of different Al species were studied with 8-hydroxyquinoline (8-HQ) loaded silylanization silica gel as the packing material and inorganic acid (HNO3) as the elution. The results indicated that in a pH range of 5.0 to 8.0, all labile monomeric Al species were retained on the microcolumn while nonlabile monomeric Al species were directly passed through the column. Various Al species after separation were detected by ICP-MS. The detection limit of 0.2 ng mL(-1) and a relative standard deviation (RSD) of 4.2% at 10 ng mL(-1) (n = 11) were achieved, and the recoveries for the spiked samples were 95-108%. The proposed method has been applied to the analysis of Al species in tea infusions, coffee, and tap waters with satisfactory results. The results obtained by this method were compared with that obtained by the cation exchange microcolumn separation and ICP-MS detection system, and some valuable conclusions were drawn.

  8. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    USGS Publications Warehouse

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  9. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  10. Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls.

    PubMed Central

    Schütz, A; Bergdahl, I A; Ekholm, A; Skerfving, S

    1996-01-01

    OBJECTIVES: To test a simple procedure for preparing samples for measurement of lead in blood plasma (P-Pb) and whole blood (B-Pb) by inductively coupled plasma mass spectrometry (ICP-MS), to measure P-Pb and B-Pb in lead workers and controls, and to evaluate any differences in the relation between B-Pb and P-Pb between people. METHODS: P-Pb and B-Pb were measured by ICP-MS in 43 male lead smelter workers and seven controls without occupational exposure to lead. For analysis, plasma and whole blood were diluted 1 in 4 and 1 in 9, respectively, with a diluted ammonia solution containing Triton-X 100 and EDTA. The samples were handled under routine laboratory conditions, without clean room facilities. RESULTS: P-Pb was measured with good precision (CV = 5%) even at concentrations present in the controls. Freeze storage of the samples had no effect on the results. The detection limit was 0.015 microgram/l. The P-Pb was 0.15 (range 0.1-0.3) microgram/l in controls and 1.2 (0.3-3.6) micrograms/l in lead workers, although the corresponding B-Pbs were 40 (24-59) micrograms/l and 281 (60-530) micrograms/l (1 microgram Pb/I = 4.8 nmol/l). B-Pb was closely associated with P-Pb (r = 0.90). The association was evidently non-linear; the ratio B-Pb/P-Pb decreased with increasing P-Pb. CONCLUSIONS: By means of ICP-MS and a simple dilution procedure, P-Pb may be measured accurately and with good precision down to concentrations present in controls. Contamination of blood at sampling and analysis is no major problem. With increasing P-Pb, the percentage of lead in plasma increases. In studies of lead toxicity, P-Pb should be considered as a complement to current indicators of lead exposure and risk. PMID:9038796

  11. Preparation of hair for measurement of elements by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Puchyr, R F; Bass, D A; Gajewski, R; Calvin, M; Marquardt, W; Urek, K; Druyan, M E; Quig, D

    1998-06-01

    The preparation of hair for the determination of elements is a critical component of the analysis procedure. Open-beaker, closed-vessel microwave, and flowthrough microwave digestion are methods that have been used for sample preparation and are discussed. A new digestion method for use with inductively coupled plasma-mass spectrometry (ICP-MS) has been developed. The method uses 0.2 g of hair and 3 mL of concentrated nitric acid in an atmospheric pressure-low-temperature microwave digestion (APLTMD) system. This preparation method is useful in handling a large numbers of samples per day and may be adapted to hair sample weights ranging from 0.08 to 0.3 g. After digestion, samples are analyzed by ICP-MS to determine the concentration of Li, Be, B, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Se, Rb, Sr, Zr, Mo, Pd, Ag, Cd, Sn, Sb, I, Cs, Ba, Pt, Au, Hg, Tl, Pb, Bi, Th, and U. Benefits of the APLTMD include reduced contamination and sample handling, and increased precision, reliability, and sample throughput.

  12. Quantification of 60Fe atoms by MC-ICP-MS for the redetermination of the half-life.

    PubMed

    Kivel, Niko; Schumann, Dorothea; Günther-Leopold, Ines

    2013-03-01

    In many scientific fields, the half-life of radionuclides plays an important role. The accurate knowledge of this parameter has direct impact on, e.g., age determination of archeological artifacts and of the elemental synthesis in the universe. In order to derive the half-life of a long-lived radionuclide, the activity and the absolute number of atoms have to be analyzed. Whereas conventional radiation measurement methods are typically applied for activity determinations, the latter can be determined with high accuracy by mass spectrometric techniques. Over the past years, the half-lives of several radionuclides have been specified by means of multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) complementary to the earlier reported values mainly derived by accelerator mass spectrometry. The present paper discusses all critical aspects (amount of material, radiochemical sample preparation, interference correction, isotope dilution mass spectrometry, calculation of measurement uncertainty) for a precise analysis of the number of atoms by MC-ICP-MS exemplified for the recently published half-life determination of 60Fe (Rugel et al, Phys Rev Lett 103:072502, 2009).

  13. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians).

    PubMed

    Lukács, Réka; Guillong, Marcel; Schmitt, Axel K; Molnár, Kata; Bachmann, Olivier; Harangi, Szabolcs

    2018-06-01

    This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ionization mass spectrometry (SIMS) U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania). The analyses were performed on unpolished zircon prism faces (termed rim analyses) and on crystal interiors exposed through mechanical grinding an polishing (interior analyses). 206 Pb/ 238 U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th)/He zircon geochronology data in the research article entitled "The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation" (Molnár et al., 2018) [1].

  14. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Christopher Hysjulien

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows thatmore » MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.« less

  15. Results of LA-ICP-MS sulfide mapping from Algoma-type BIF gold systems with implications for the nature of mineralizing fluids, metal sources, and deposit models

    NASA Astrophysics Data System (ADS)

    Gourcerol, B.; Kontak, D. J.; Thurston, P. C.; Petrus, J. A.

    2018-01-01

    Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-hosted gold deposits ( 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, 6 Moz Au Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their elemental associations determined. The main gold event in each of these deposits is characterized by the coupling of an As-Se-Te-Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data indicate presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association). Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).

  16. Ir and Rare Earth's Elements determination by Neutron Activation Analysis and ICP - MS in soil samples

    NASA Astrophysics Data System (ADS)

    Salvini, A.; Cattadori, C.; Broggini, C.; Cagnazzo, M.; Ori, Gian Gabriele; Nisi, S.; Borio, A.; Manera, S.

    2006-05-01

    The platinum metals depleted in the earth's crust are relative to their cosmic abundance; concentration of these elements in sediments may thus indicate influxes of extraterrestrial material. Analysis of these parameters are done easily by Neutron Activation Analysis (NAA) and comparative results with ICP-MS technique show a good match. Results, adjust parameters and limits of this method will be displayed in tables.

  17. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS.

    PubMed

    Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A

    2016-08-15

    In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Determination of toxic elements in yerba mate by ICP-MS after diluted acid digestion under O2 pressure.

    PubMed

    Pardinho, Renan B; Dalla Vecchia, Paula; Mendes, Ana L G; Bizzi, Cezar A; Mello, Paola A; Duarte, Fabio A; Flores, Erico M M

    2018-10-15

    In this work, a procedure allowing effective digestion of a high mass of yerba mate (up to 1500 mg) using diluted HNO 3, in a system pressurized with oxygen, is proposed. Digests were suitable for direct analysis by ICP-MS, virtually free of interferences. Digestion was performed using 7 mol l -1 HNO 3 and 8 bar O 2 . The digestion efficiency was better than 92% and digests presented a relatively low acidity (<10 mmol HNO 3 ). The limit of quantification was 4.0, 1.0 and 1.0 ng g -1 for As, Cd and Pb, respectively. Under optimized conditions up to 1500 mg of sample were digested and no interferences were observed during analyses by ICP-MS, making this approach suitable for routine determination of As, Cd and Pb in yerba mate and also in agreement with the quality control requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Determination of traces of 237Np in environmental samples by ICP-MS after separation using TOA extraction chromatography.

    PubMed

    Ji, Y Q; Li, J Y; Luo, S G; Wu, T; Liu, J L

    2001-09-01

    A simple, rapid, cost-efficient, and robust method for separation of 237Np with an extraction chromatographic column (TOA: tri-n-octylamine on Teflon powder) is outlined in detail and further improved for direct ICP-MS analysis. The column efficiently retained 237Np in 2 mol L(-1) HNO3 medium and all of the 237Np was easily eluted with 0.02 mol L(-1) oxalic acid in 0.16 mol L(-1) HNO3 at 95 degrees C. The separated solutions were free from most matrix elements and were aspirated into the ICP-MS directly. The decontamination factor for 238U is more than 10(4). The instrumental detection limit for 237Np was 0.46 pg mL(-1), which corresponds to 1.2 x 10(-5) Bq mL(-1). The method is more rapid than traditional radiometric techniques. It is also considered to be more suitable for environmental monitoring than existing methods based on TOA.

  20. Quantification of Au Nanoparticle Biouptake and Distribution to Freshwater Algae Using Single Cell - ICP-MS.

    PubMed

    Merrifield, R C; Stephan, C; Lead, J R

    2018-02-20

    Quantifying metal and nanoparticle (NP) biouptake and distribution on an individual cellular basis has previously been impossible, given available techniques which provide qualitative data that are laborious to acquire and prone to artifacts. Quantifying metal and metal NP uptake and loss processes in environmental organisms will lead to mechanistic understanding of biouptake and improved understanding of potential hazards and risks of metals and NPs. In this work, we present a new technique, single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), which allows quantification of metal concentrations on an individual cell basis down to the attogram (ag) per cell level. We present data validating the novel method, along with the mass of metal per cell. Finally, we use SC-ICP-MS, with ancillary cell counting methods, to quantify the biouptake and strong sorption and distribution of both dissolved Au and Au NPs in a freshwater alga (Cyptomonas ovate). The data suggests differences between dissolved and NP uptake and loss. In the case of NPs, there was a dose and time dependent uptake, but individual cellular variations; at the highest realistic exposure conditions used in this study up to 40-50% of cells contained NPs, while 50-60% of cells did not.

  1. Green and efficient sample preparation method for the determination of catalyst residues in margarine by ICP-MS.

    PubMed

    Hartwig, Carla Andrade; Pereira, Rodrigo Mendes; Novo, Diogo La Rosa; Oliveira, Dirce Taina Teixeira; Mesko, Marcia Foster

    2017-11-01

    Responding to the need for green and efficient methods to determine catalyst residues with suitable precision and accuracy in samples with high fat content, the present work evaluates a microwave-assisted ultraviolet digestion (MW-UV) system for margarines and subsequent determination of Ni, Pd and Pt using inductively coupled plasma mass spectrometry (ICP-MS). It was possible to digest up to 500mg of margarine using only 10mL of 4molL -1 HNO 3 with a digestion efficiency higher than 98%. This allowed the determination of catalyst residues using the ICP-MS and free of interferences. For this purpose, the following experimental parameters were evaluated: concentration of digestion solution, sample mass and microwave irradiation program. The residual carbon content was used as a parameter to evaluate the efficiency of digestion and to select the most suitable experimental conditions. The accuracy evaluation was performed by recovery tests using a standard solution and certified reference material, and recoveries ranging from 94% to 99% were obtained for all analytes. The limits of detection for Ni, Pd and Pt using the proposed method were 35.6, 0.264 and 0.302ngg -1 , respectively. When compared to microwave-assisted digestion (MW-AD) in closed vessels using concentrated HNO 3 (used as a reference method for sample digestion), the proposed MW-UV could be considered an excellent alternative for the digestion of margarine, as this method requires only a diluted nitric acid solution for efficient digestion. In addition, MW-UV provides appropriate solutions for further ICP-MS determination with suitable precision (relative standard deviation < 7%) and accuracy for all evaluated analytes. The proposed method was applied to margarines from different brands produced in Brazil, and the concentration of catalyst residues was in agreement with the current legislation or recommendations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Effect of the chelator Zn-DTPA on the excretion of lead in lead intoxication mice detected with ICP-MS].

    PubMed

    Li, Chen; Lu, Kai-zhi; Zhou, Qi; Wang, Qiong; Zeng, Yu-liang; Yin, Hong-jun; He, Xuan-hui; Tian, Ying; Dong, Jun-Xing

    2014-11-01

    To study the lead excretion effect of the chelator Zn-DTPA on the lead intoxication mice, inductively coupled plasma mass spectrometry (ICP-MS) was applied to detect the lead content of biological samples. The acute lead intoxication mice model was established by injecting lead acetate intraperitoneally with the dose of 1 mg. Zn-DTPA was administered intraperitoneally to mice once daily for five consecutive days 4 h after intoxication. Control group, model group, combination of Zn-DTPA and Ca-DTPA group were evaluated at the same time. The urine was collected every day. The mice were sacrificed in batches in the 2rd, 4th, 6th day. Biological samples including urine, whole blood, femur and brain were prepared and nitrated. Lead concentration was detected by ICP-MS. The result showed that Zn-DTPA could increase lead content in urine markedly and reduce lead content in blood, femur and brain.

  3. DETECTION AND QUANTIFICATION OF A THIO-ARSENOSUGAR IN MARINE MOLLUSKS BY IC-ICP-MS WITH AN EMPHASIS ON THE INTERACTION OF ARSENOSUGARS WITH SULFIDE

    EPA Science Inventory

    Arsenosugars can make up a significant portion of the total arsenic in shellfish. These arsenosugars can be present in their oxide or sulfide form. IC-ICP-MS and IC-ESI-MS/MS data will be presented that indicates the presence of As(328-S) and As(328) in three species of marine ...

  4. The potential of on-line continuous leach ICP-MS analysis for linking trace elements to mineralogy

    NASA Astrophysics Data System (ADS)

    Roskam, Gerlinde; Verheul, Marc; Moraetis, Daniel; Giannakis, George; van Gaans, Pauline

    2014-05-01

    A set of five soil samples was subjected to an on-line continuous leach inductively coupled plasma mass spectrometry experiment, with progressively reactive solvents (0.01M CaCl2, 0.1 M HNO3, 1M HNO3, 4M HNO3) Each sample was packed in a quartz tube (Ø= 1 cm, length 2 cm) and diluted 1:1 with acid washed quartz to prevent clogging. The gas that was produced during the extraction was removed by leading the effluent into a small container, from where the sample was directly pumped into the ICP-MS. 115In was used as an internal standard. Continuous leach experiments have the advantage of real time (every 2 seconds) full elemental analysis. Mineral breakdown reactions can be monitored via the major elements. The trace elements associated with the minerals are monitored simultaneously, thus eliminating the uncertainties of host mineral-trace element combinations in traditional off-line sequential extractions. The continuous leach experimental data are correlated to XRD-results for mineralogy and total elemental concentrations. The soil samples used were collected from different sites in the Koiliaris River watershed, Crete, Greece 1). The selection of the sites was based on variability in bedrock (limestone, metamorphic and alluvial sediments) and current land use (grape farming, olive trees). Soils were sampled at two depths: at the surface and just above the bedrock. No large differences in the major elements between the two depths were measured. To provide background to the on-line sequential data, also total concentrations of the major elements were analysed by XRF and the mineralogy was analysed by XRD. The fraction <2mm was sieved and digested with HF, HClO4 and HNO3 for additional trace element analysis. 1) See related abstract Roskam et al., 2014: REE profiles in continuous leach ICP-MS (CL-ICP-MS) experiments in soil, linked to REE profiles in surface water in the Koiliaris River Critical Zone Observatory (CZO), Crete, Greece.

  5. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched

  6. Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection.

    PubMed

    Arroyo-Abad, Uriel; Lischka, Susanne; Piechotta, Christian; Mattusch, Jürgen; Reemtsma, Thorsten

    2013-12-01

    The present study was focused on the determination and identification of arsenic species in methanolic extracts of cod liver. Arsenic species were fractionated and the fractions analysed by RP-HPLC-ICP-MS coupled with ESI-Q-TOF-MS. The total concentration of arsenic in the fresh cod liver was analysed by ICP-MS to be 1.53±0.02 mg As kg(-1)w.w. and the extraction recovery was ca. 100% and the column recovery >93%. Besides polar inorganic and methylated arsenic species (>70%) more hydrophobic arsenic-containing fatty acids and hydrocarbons occurred. Based on the mass spectrometric data proposals for molecular structures were elaborated for 20 of the organic As species included 10 arsenic-containing fatty acids (AsFA) and an arsenic-containing hydrocarbon (AsHC) mentioned for the first time in fresh cod liver. Arsenobetaine was found as main water-soluble arsenic compound in cod liver followed by higher molecular mass arsenic-containing fatty acids and hydrocarbons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Trace elements determination in seawater by ICP-MS with on-line pre-concentration on a Chelex-100 column using a ‘standard’ instrument setup.

    PubMed Central

    Søndergaard, Jens; Asmund, Gert; Larsen, Martin M.

    2015-01-01

    Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for ‘off-line’ analyses or complicated sample introduction systems involving several pumps and valves for ‘on-line’ analyses. As an alternative, the following method offers a simple method for ‘on-line’ analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: • Simple and convenient analyses of seawater requiring no changes to the ‘standard’ sample introduction system except from a resin-filled micro-column connected to the sample tube. The ‘standard’ sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and • Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME. PMID:26258050

  8. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.

    PubMed

    Boulyga, S F; Becker, J S

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.

  9. Quantitating Iron in Serum Ferritin by Use of ICP-MS

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Gillman, Patricia L.

    2003-01-01

    A laboratory method has been devised to enable measurement of the concentration of iron bound in ferritin from small samples of blood (serum). Derived partly from a prior method that depends on large samples of blood, this method involves the use of an inductively-coupled-plasma mass spectrometer (ICP-MS). Ferritin is a complex of iron with the protein apoferritin. Heretofore, measurements of the concentration of serum ferritin (as distinguished from direct measurements of the concentration of iron in serum ferritin) have been used to assess iron stores in humans. Low levels of serum ferritin could indicate the first stage of iron depletion. High levels of serum ferritin could indicate high levels of iron (for example, in connection with hereditary hemochromatosis an iron-overload illness that is characterized by progressive organ damage and can be fatal). However, the picture is complicated: A high level of serum ferritin could also indicate stress and/or inflammation instead of (or in addition to) iron overload, and low serum iron concentration could indicate inflammation rather than iron deficiency. Only when concentrations of both serum iron and serum ferritin increase and decrease together can the patient s iron status be assessed accurately. Hence, in enabling accurate measurement of the iron content of serum ferritin, the present method can improve the diagnosis of the patient s iron status. The prior method of measuring the concentration of iron involves the use of an atomic-absorption spectrophotometer with a graphite furnace. The present method incorporates a modified version of the sample- preparation process of the prior method. First, ferritin is isolated; more specifically, it is immobilized by immunoprecipitation with rabbit antihuman polyclonal antibody bound to agarose beads. The ferritin is then separated from other iron-containing proteins and free iron by a series of centrifugation and wash steps. Next, the ferritin is digested with nitric acid

  10. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  11. Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS.

    PubMed

    Fu, Liang; Xie, Hualin; Shi, Shuyun

    2018-06-01

    The concentrations of trace elements (Cr, Ni, As, Cd, Hg, and Pb) in Zanthoxylum bungeanum Maxim. essential oil (ZBMEO) were determined by inductively coupled plasma tandem mass spectrometry. The ZBMEO sample was directly analyzed after simple dilution with n-hexane. Aiming for a relatively high vapor pressure of n-hexane and its resultant loading on plasma, we used a narrow injector torch and optimized plasma radio frequency power and carrier gas flow to ensure stable operation of the plasma. An optional gas flow of 20% O 2 in Ar was added to the carrier gas to prevent the incomplete combustion of highly concentrated organic carbon in plasma and the deposition of carbon on the sampling and skimmer cone orifices. In tandem mass spectrometry mode, O 2 was added to the collision/reaction cell to eliminate the interferences. The limits of detection for Cr, Ni, As, Cd, Hg, and Pb were 2.26, 1.64, 2.02, 1.35, 1.76, and 0.97 ng L -1 , respectively. After determination of 23 ZBMEO samples from different regions in China, we found that the average concentration ranges of trace elements in the 23 ZBMEO samples were 0.72-6.02 ng g -1 , 0.09-2.87 ng g -1 , 0.21-5.84 ng g -1 , 0.16-2.15 ng g -1 , 0.13-0.92 ng g -1 , and 0.17-0.73 ng g -1 for Cr, Ni, As, Cd, Hg, and Pb, respectively. The trace elements in ZBMEO differed significantly when different extraction technologies were used. The study revealed that the contents of the toxic elements As, Cd, Hg, and Pb were extremely low, and hence they are unlikely to pose a health risk following ZBMEO ingestion. Graphical abstract The working mechanism of sample analysis by ICP-MS/MS.

  12. Fate of nanoparticles during alum and ferric coagulation monitored using single particle ICP-MS.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2018-03-01

    In this study, aluminum sulfate, ferric sulfate, ferric chloride, and poly(diallyldimethylammonium chloride) (pDADMAC) coagulation removal of citrate-stabilized silver and gold nanoparticles (NPs) and uncoated titanium dioxide, cerium dioxide, and zinc oxide NPs was investigated using a single particle (SP) ICP-MS direct monitoring technique. Zone 2 (charge neutralization) coagulation was performed in river water and more commonly used Zone 4 (sweep floc) coagulation was performed in both river and lake water with environmentally relevant concentrations of selected NPs added. SP-ICP-MS was used to detect NP and dissolved species, characterize the size distribution, and quantify particle concentration as well as dissolved species before and after treatments. Other parameters including pH, dissolved organic carbon, turbidity, and UV 254 absorbance were monitored to characterize treatment efficiency. Charge neutralization (Zone 2) coagulation resulted in 48-85% removal of citrate-stabilized NPs and 90-99% removal of uncoated NPs from river water. Sweep floc (Zone 4) coagulation in river water resulted in 36-94% removal of citrate-stabilized NPs and 91-99% removal of uncoated NPs both with and without polymer addition. Zone 4 coagulation conditions in lake water resulted in 77-98% removal of citrate-stabilized NPs and 59-96% removal of uncoated NPs without polymer. These results indicate that NP removal depends on NP surface and stability, the nature of the source water, and the coagulant type and approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Elemental analysis of silicon based minerals by ultrasonic slurry sampling electrothermal vaporisation ICP-MS.

    PubMed

    Rodríguez, Pablo Fernández; Marchante-Gayón, Juan Manuel; Sanz-Medel, Alfredo

    2006-01-15

    Ultrasonic slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) was applied to the elemental analysis of silicate based minerals, such as talc or quartz, without any pre-treatment except the grinding of the sample. The electrothermal vaporisation device consists of a tungsten coil connected to a home-made power supply. The voltage program, carrier gas flow rate and sonication time were optimised in order to obtain the best sensitivity for elements determined. The relationship between the amount of sample in the slurry and the signal intensity was also evaluated. Unfortunately, in all cases, quantification had to be carried out by the standard additions method owing to the strong matrix interferences. The global precision of the proposed method was always better than 12%. The limits of detection, calculated as three times the standard deviation of the blank value divided by the slope of the calibration curve, were between 0.5 ng/g for As and 3.5 ng/g for Ba. The method was validated by comparing the concentrations found for Cu, Mn, Cr, V, Li, Pb, Sn, Mg, U, Ba, Sr, Zn, Sb, Rb and Ce using the proposed methodology with those obtained by conventional nebulisation ICP-MS after acid digestion of the samples in a microwave oven. The concentration range in the solid samples was between 0.2 microg/g for Cr and 60 microg/g for Ba. All results were statistically in agreement with those found by conventional nebulisation.

  14. PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.

    2017-08-01

    The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.

  15. Ionic gold in calcrete revealed by LA-ICP-MS, SXRF and XANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lintern, Melvyn J.; Hough, Robert M.; Ryan, Chris G.

    2009-04-02

    Highly anomalous Au concentrations in calcrete were discovered in 1987 at the Bounty Gold Deposit, Western Australia. A strong correlation was noted between the Ca, Mg, Sr and Au in soil profiles which have not only attracted the interest of mineral explorers but also chemists, soil scientists, metallurgists and climatologists. Gold has been considered an inert element and so its strong association with the alkaline earth group of relatively mobile elements is both remarkable and intriguing. Despite widespread interest, there have been few published papers on the Au-calcrete phenomenon. Here, we present work conducted on calcareous soil samples from abovemore » the Bounty mineralization in Western Australia, prior to mining. Using SXRF (synchrotron X-ray fluorescence) and XANES (micro-X-ray absorption near-edge structure), we have shown for the first time the distribution of Au in calcrete and that it occurs in both particulate and ionic form. Much of the ionic Au associated with Br is found in a root tubule. The observations are consistent with an evapotranspiration model for the formation of Au in the calcrete; Au has been mobilized then precipitated as vadose water has been removed from the soil by trees and shrubs. While the association between Au and Ca is very strong in bulk sample analyses down the soil profile, other detailed analyses on sub-samples using wet chemical, LA-ICP-MS (laser ablation inductively coupled mass spectrometry) and SXRF techniques show that it is not apparent at the sub-millimeter scale. This suggests that the Au and Ca are behaving similarly but independently and they do not (at the {micro}m scale) co-precipitate with carbonate minerals. These results corroborate other studies that suggest biotic influences can affect the mobilization and distribution of Au in surficial materials. Water-extractable Au in calcrete has been reported previously and the ionic Au described in this study likely represents that soluble component. The

  16. Separation and identification of selenotrisulfides in epithelial cell homogenates by LC-ICP-MS and LC-ESI-MS after incubation with selenite.

    PubMed

    Gabel-Jensen, Charlotte; Gammelgaard, Bente; Bendahl, Lars; Stürup, Stefan; Jøns, Ole

    2006-02-01

    To elucidate how selenite is metabolised in the intestine after oral intake, it was incubated with homogenized epithelial cells from pigs. When the metabolites were analysed by LC-ICP-MS, two major selenium metabolites were separated in the supernatant from the homogenate. These metabolites were formed instantly but disappeared within 15 min. No other selenium-containing compounds appeared during this time. Hence, the secondary reaction products were either volatilised or precipitated. To verify the identity of the compounds, a larger amount of selenite was incubated with epithelial cells. The presence of Cys-Se-SG and GS-Se-SG was verified by LC-ESI-MS. Selenotrisulfides were synthesized by reaction of L-cysteine and L-glutathione with sodium selenite. The reaction mixture contained three main products: selenodicysteine (Cys-Se-Cys), selenocysteine glutathione (Cys-Se-SG), and selenodiglutathione (GS-Se-SG). The two transient selenium compounds in the epithelial cell incubation mixture co-eluted with the synthesized Cys-Se-SG and GS-Se-SG, respectively. The identities of these compounds were verified by LC-ESI-MS. Hence, these selenium metabolites have now been identified by ESI-MS after isolation from epithelial cells.

  17. Application of SEC-ICP-MS for comparative analyses of metal-containing species in cancerous and healthy human thyroid samples.

    PubMed

    Boulyga, Sergei F; Loreti, Valeria; Bettmer, Jörg; Heumann, Klaus G

    2004-09-01

    Size exclusion chromatography (SEC) was coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for speciation study of trace metals in cancerous thyroid tissues in comparison to healthy thyroids aimed to estimation of changes in metalloprotein speciation in pathological tissue. The study showed a presence of species binding Cu, Zn, Cd and Pb in healthy thyroid tissue with a good reproducibility of chromatographic results, whereas the same species could not be detected in cancerous tissues. Thus, remarkable differences with respect to metal-binding species were revealed between healthy and pathological thyroid samples, pointing out a completely different distribution of trace metals in cancerous tissues. The metal-binding species could not be identified in the frame of this work because of a lack of appropriate standards. Nevertheless, the results obtained confirm the suitability of SEC-ICP-MS for monitoring of changes in trace metal distribution in cancerous tissue and will help to better understand the role of metal-containing species in thyroid pathology.

  18. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    PubMed

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  19. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    USGS Publications Warehouse

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  20. High resolution analysis of uranium and thorium concentration as well as U-series isotope distributions in a Neanderthal tooth from Payre (Ardèche, France) using laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Grün, Rainer; Aubert, Maxime; Joannes-Boyau, Renaud; Moncel, Marie-Hélène

    2008-11-01

    We have mapped U ( 238U) and Th ( 232Th) elemental concentrations as well as U-series isotope distributions in a Neanderthal tooth from the Middle Palaeolithic site of Payre using laser ablation ICP-MS. The U-concentrations in an enamel section varied between 1 and 1500 ppb. The U-concentration maps show that U-migration through the external enamel surface is minute, the bulk of the uranium having migrated internally via the dentine into the enamel. The uranium migration and uptake is critically dependent on the mineralogical structure of the enamel. Increased U-concentrations are observed along lineaments, some of which are associated with cracks, and others may be related to intra-prismatic zones or structural weaknesses reaching from the dentine into the enamel. The uranium concentrations in the dentine vary between about 25,000 and 45,000 ppb. Our systematic mapping of U-concentration and U-series isotopes provides insight into the time domain of U-accumulation. Most of the uranium was accumulated in an early stage of burial, with some much later overprints. None of the uranium concentration and U-series profiles across the root of the tooth complied with a single stage diffusion-adsorption (D-A) model that is used for quality control in U-series dating of bones and teeth. Nevertheless, in the domains that yielded the oldest apparent U-series age estimates, U-leaching could be excluded. This means that the oldest apparent U-series ages of around 200 ka represent a minimum age for this Neanderthal specimen. This is in good agreement with independent age assessments (200-230 ka) for the archaeological layer, in which it was found. The Th elemental concentrations in the dental tissues were generally low (between about 1 and 20 ppb), and show little relationship with the nature of the tissue.

  1. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets.

    PubMed

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin

    2017-03-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.

  2. Analysis of 34S in Individual Organic Compounds by Coupled GC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Amrani, A.; Adkins, J. F.

    2009-12-01

    The abundances of 2H, 13C, and 15N in organic compounds have been extremely useful in many aspects of biogeochemistry. While sulfur plays an equally important role in many earth-surface processes, the isotopes of sulfur in organic matter have not been extensively employed in large part because there has been no direct route to the analysis of 34S in individual organic compounds. To remedy this, we have developed a highly sensitive and robust method for the analysis of 34S in individual organic compounds by coupled gas chromatography (GC) and multicollector inductively-coupled plasma mass spectrometry (ICP-MS). Isobaric interference from O2+ is minimized by employing dry plasma conditions, and is cleanly resolved at all masses using medium resolution on the Thermo Neptune ICP-MS. Correction for mass bias is accomplished using standard-sample bracketing with peaks of SF6 reference gas. The precision of measured δ34S values approaches 0.1‰ for analytes containing >40 pmol S, and is better than 0.5‰ for those containing as little as 6 pmol S. External accuracy is better than 0.3‰. Integrating only the center of chromatographic peaks, rather than the entire peak, offers significant gain in precision and chromatographic resolution with minimal effect on accuracy, but requires further study for verification as a routine method. Coelution of organic compounds that do not contain S can cause degraded analytical precision and accuracy. As a demonstration of the potential for this new method, we will present data from 3 sample types: individual organosulfur compounds from crude oil, dimethyl sulfide from seawater, and trace H2S from bacterial culture headspace.

  3. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    NASA Astrophysics Data System (ADS)

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.

    2008-12-01

    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  4. A novel strategy to evaluate the degradation of quantum dots: identification and quantification of CdTe quantum dots and corresponding ionic species by CZE-ICP-MS.

    PubMed

    Meng, Peijun; Xiong, Yamin; Wu, Yingting; Hu, Yue; Wang, Hui; Pang, Yuanfeng; Jiang, Shuqing; Han, Sihai; Huang, Peili

    2018-05-09

    In view of the significance and urgency of the speciation analysis of quantum dots (QDs) and their degradation products for clarifying their degradation rules and toxicity mechanisms, a method for the identification and quantification of CdTe QDs and corresponding ionic species in complex matrices was developed using capillary zone electrophoresis (CZE) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). The quality assessment of commercial CdTe QDs and serum pharmacokinetics of synthesized CdTe QDs in rats were successfully undertaken using the developed CZE-ICP-MS method.

  5. IsoMark - a comprehensive assessment of the potential of isotopes in hard parts of freshwater fish to determine origin and migratory patterns using LA-(MC)-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zitek, Andreas; Irrgeher, Johanna; Sturm, Monika; Brunner, Marion; Dillinger, Benno; Prohaska, Thomas

    2010-05-01

    The ‘IsoMark' project focuses for the first time on the comprehensive investigation of microchemical information (elemental fingerprint of Ca, Sr, Na, Ba, Mg; isotopic fingerprint of Sr, Ca, and additionally of C and O) in different hard parts of several typical European freshwater fish species like brown trout (Salmo trutta f.f., L.), European grayling (Thymallus thymallus, L.) or nase (Chondrostoma nasus, L.) and the barbel (Barbus barbus, L.). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used as major technique for the direct in situ analysis of trace elements and isotopes, whereby the employment of a multiple collector - inductively coupled plasma - mass spectrometer (MC-ICP-MS) enables high precise isotope ratio analysis of such sample matrices due to its simultaneous detection capabilities. Microchemical patterns in hard parts of farmed and wild fish are analysed resulting in natural site specific elemental and isotopic signatures. Within a pilot study the potential to discriminate between wild and hatchery trout by chronological microchemical patterns of different otolith regions in relation to site specific water chemistry was documented. 100% accuracy of classification of fish to life stage specific habitats and therefore to their origin was achieved by the elemental ratios 88Sr/43Ca, 23Na/43Ca and the isotope ratio of 87Sr/86Sr. Clear differences in otolith chemistry were found, when fish experienced different geological units or specific environmental situations (e.g. groundwater) in hatcheries during a certain period of their life. These results proved the concept that natural microchemical patterns in hard parts linked to specific life stages of fish represent a valuable tool for a wide variety of ecological questions, e.g. discriminating wild and hatchery fish without the necessity of inducing any other artificial mark, or studying natural migration phenomena on small spatial scales in freshwater systems within

  6. Preparation of trout liver microsomes for iron speciation in P-450 enzymes by AE-FPLC with ICP-(ORS)MS detection.

    PubMed

    Rodríguez-Cea, Andrés; de la Campa, María Rosario Fernández; Sanz-Medel, Alfredo

    2005-01-01

    Cytochromes P-450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiological and xenobiotic compounds in eukaryotes and prokaryotes. The multiplicity of this group of enzymes has been widely studied by chromatographic techniques, mainly high-performance liquid chromatography (HPLC). Because these enzymes are membrane-bound proteins, sample preparation for chromatographic separation of P-450 enzymes requires a solubilization step. The sample-preparation procedures are critical, because detergents affect not only the efficiency of protein solubilization but also their further chromatographic resolution. Trout liver microsomes have been taken here as a model sample to investigate iron speciation in cytochrome P-450. Trouts were treated intraperitoneally with beta-naphthoflavone, a potent inducer of some P-450 enzymes, and a microsomal suspension containing 7.4+/-0.1 nmol mL(-1) P-450 enzymes was obtained by ultracentrifugation. Lubrol PX was selected as detergent for solubilization, resulting in about 90% solubilization recovery. The solubilized cytochromes P-450 were further separated by AE-FPLC, with UV detection, or coupled to ICP-MS with an octapole reaction system, ICP-(ORS)MS (monitoring Fe signals at masses 54, 56, and 57). A sampling procedure and chromatographic conditions are developed and were successfully applied to iron speciation in trout liver P-450 enzymes. ICP-(ORS)MS detection of P-450 enzymes is Fe-specific and so will give accurate information on the prosthetic group of the protein, which can constitute an advantageous alternative to classical methods for detection of these hemoproteins.

  7. LA-ICP-MS as Tool for Provenance Analyses in Arctic Marine Sediments

    NASA Astrophysics Data System (ADS)

    Wildau, Antje; Garbe-Schönberg, Dieter

    2015-04-01

    The hydraulic transport of sediments is a major geological process in terrestrial and marine systems and is responsible for the loss, redistribution and accumulation of minerals. Provenance analyses are a powerful tool for assessing the origin and dispersion of material in ancient and modern fluvial and marine sediments. Provenance-specific heavy minerals (e.g., zircon, rutile, tourmaline) can therefore be used to provide valuable information on the formation of ore deposits (placer deposits), and the reconstruction of paleogeography, hydrology, climate conditions and developments. The application of provenances analyses for the latter reason is of specific interest, since there is need for research on the progressing climate change, and heavy minerals represent good proxies for the evaluation of recent and past changes in the climate. The study of these fine particles provides information about potential regional or long distance transport paths, glacial / ice drift and current flows, freezing and melting events as well as depositional centers for the released sediments. Classic methods applied for provenance analyses are mapping of the presence / absence of diagnostic minerals, their grain size distribution, modal mineralogy and the analysis of variations in ratio of two or more heavy minerals. Electron microprobe has been established to discover changes in mineral chemistry of individual mineral phases, which can indicate fluctuations or differences in the provenance. All these methods bear the potential of high errors that lower the validity of the provenance analyses. These are for example the misclassification of mineral species due to undistinguishable optical properties or the limitations in the detection / variations of trace elements using the election microprobe. For this case study, marine sediments from the Arctic Ocean have been selected to test if LA-ICP-MS can be established as a key technique for precise and reliable provenance analyses. The Laptev

  8. Ultra-sensitive speciation analysis of mercury by CE-ICP-MS together with field-amplified sample stacking injection and dispersive solid-phase extraction.

    PubMed

    Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu

    2016-04-01

    A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) < 6% and a recovery of 92-108%. Ultra-high sensitivity, as well as much less sample and reagent consumption and low operating cost, make our method a valuable technique to the speciation analysis of ultra-trace mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. ICP MS selection of radiopure materials for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-01

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the 76Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10-3 counts/keV kg y) at the Qββ. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system

  10. A novel procedure for Rubidium separation and its isotope measurements on geological samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Ma, J.; Zhang, Z.; Wei, G.; Zhang, L.

    2017-12-01

    A method including a novel column Rb separation procedure and high-precision Rb isotope measurement in geological materials by using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in standard-sample-bracketing (SSB) mode has been developed. Sr-Spec resin was employed, in which the distribution coefficients for Rb, K, Ba and Sr are different in nitric acid, to sequentially separate them from the matrix. The dissolved samples were loaded on the column in 3 M HNO3, the main matrix such as Al, Ca, Fe, Mg, Mn and Na were removed by rinsing with 4.5 mL HNO3, Rb and K were then sequentially eluted by 3 M HNO3 in different volumes. After that, Ba was eluted by 8 M HNO3, and Sr was finally eluted by Milli-Q water. This enable us to collect the pure Rb, K, Ba and Sr one by one with recovery close to 100% for their isotopic compositions measurement on MC-ICP-MS. We here focus on Rb isotope measurement. The measurement using MC-ICP-MS yielded an internal precision for δ87Rb of < ± 0.03‰ (2SE), and the external precision was generally better than ± 0.06‰ (2SD) based on the long-term results of the Rb standard solutions NIST SRM 984. A series of geological rock standards, were analyzed using this method, and the results indicate significant Rb isotope differences in different geologic materials. This will provide a powerful tool to investigate Rb isotope fractionation during geological processes.Based on this method, Rb isotope compositions from a basaltic weathering profile were carried out. The data show the lighter Rb (85Rb) isotope is preferentially leached from the weathering profile and remains heavy Rb isotope (87Rb) in the weathered residues during the incipient weathering stage. From the moderate to advanced weathering stage, the significant variations of Rb isotope were observed and multiple factors, such as leaching, adsorption, desorption, and precipitation, should play important role in fractionating Rb isotope.

  11. Determination of (236)U and transuranium elements in depleted uranium ammunition by alpha-spectrometry and ICP-MS.

    PubMed

    Desideri, D; Meli, M A; Roselli, C; Testa, C; Boulyga, S F; Becker, J S

    2002-11-01

    It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement. The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.

  12. ICP-MS measurement of natural radioactivity at LNGS

    NASA Astrophysics Data System (ADS)

    Nisi, S.; Copia, L.; Dafinei, I.; di Vacri, M. L.

    2017-10-01

    Rare events search experiments, like those dedicated to the direct evidence of dark matter or neutrinoless double beta decay, are among the most exciting challenges of modern physics. The sensitivity of such experiments is driven by the background, which depends substantially on the radiopurity of the materials used for the experimental apparatus. Cutting edge measurement techniques are needed for a fast, sensitive and efficient screening of these materials and the certification of their production. Trace element measurements of high sensitivity and quick execution are mandatory also in other fields like tracing the geographical origin of food, temporal and geographical assignment of cultural heritage or monitoring environmental radioactivity. This work is an overview of the inorganic mass spectrometry facility available at Gran Sasso National Laboratory (LNGS) for radiopure material screening and is especially focused on its ICP-MS instrumentation. Analytical methods developed to achieve lowest detection limits in different types of matrix, like metals, polymers, crystals and composite materials, are also indicated. Detection limits of 10-18gg-1 for 226Ra, 10-14gg-1 for U and Th and 10-12gg-1 for K are attained through dedicated operation conditions of the instrumentation. Details are given on the results obtained for different experiments ongoing or under construction at LNGS.

  13. COMPLEMENTARY MOLECULAR AND ELEMENTAL DETECTION OF SPECIATED THIOARSENICALS USING ESI-MS IN COMBINATION WITH A XENON-BASED COLLISION-CELL ICP-MS WITH APPLICATION TO FORTIFIED NIST FREEZE-DRIED URINE

    EPA Science Inventory

    The simultaneous detection of arsenic and sulfur in thio-arsenicals was achieved using xenonbased collision cell ICP-MS in combination with HPLC. In an attempt to minimize the 16O16O+ interference at m/z 32, both sample introduction and collision cell experimental parameters were...

  14. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  15. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    PubMed

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A fast and feasible method for Br and I determination in whole egg powder and its fractions by ICP-MS.

    PubMed

    Toralles, Isis Gonçalves; Coelho, Gilberto Silva; Costa, Vanize Cadeira; Cruz, Sandra Meinen; Flores, Erico Marlon Moraes; Mesko, Marcia Foster

    2017-04-15

    A method for Br and I determination in whole egg powder and its fractions (egg white and yolk) was developed by combining microwave-induced combustion (MIC) and inductively coupled plasma mass spectrometry (ICP-MS). Using the MIC method, 350mg of whole egg powder and its fractions were efficiently digested using 50mmolL -1 NH 4 OH as an absorbing solution. The limits of detection for Br and I using the MIC method followed by ICP-MS determination were 0.039 and 0.015μgg -1 , respectively. Using the proposed method, agreements with the reference values between 97 and 104% for Br and I were obtained by analysis of reference material NIST 8435. Finally, it was possible to observe that Br concentration (4.59-5.29μgg -1 ) was higher than I (0.150-2.28μgg -1 ) for all the evaluated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Extraction techniques for arsenic species in rice flour and their speciation by HPLC-ICP-MS.

    PubMed

    Narukawa, Tomohiro; Suzuki, Toshihiro; Inagaki, Kazumi; Hioki, Akiharu

    2014-12-01

    The extraction of arsenic (As) species present in rice flour samples was investigated using different extracting solvents, and the concentration of each species was determined by HPLC-ICP-MS after heat-assisted extraction. The extraction efficiencies for total arsenic species and especially for arsenite [As(III)] and arsenate [As(V)] were investigated. As(III), As(V) and dimethylarsinic acid (DMAA) were found in the samples, and the concentration of DMAA did not vary with treatment conditions. However, the concentrations of extracted total arsenic and those of As(III) and As(V) depended on the extracting solvents. When an extracting solvent was highly acidic, the concentrations of extracted total arsenic were in good agreement with the total arsenic concentration determined by ICP-MS after microwave-assisted digestion, though a part of the As(V) was reduced to As(III) during the highly acidic extraction process. Extraction under neutral conditions increased the extracted As(V), but extracted total arsenic was decreased because a part of the As(III) could not be extracted. Optimum conditions for the extraction of As(III) and As(V) from rice flour samples are discussed to allow the accurate determinations of As(III), As(V) and DMAA in the rice flour samples. Heat block extraction techniques using 0.05 mol L(-1) HClO4 and silver-containing 0.15 mol L(-1) HNO3 were also developed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Rare earth elements profile in a cultivated and non-cultivated soil determined by laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Neves, Vinicius M; Heidrich, Graciela M; Hanzel, Flavia B; Muller, Edson I; Dressler, Valderi L

    2018-05-01

    Rare earth elements (REEs) have several applications but the effects on environment are not well known. Therefore, the aim of this work is to establish a method for direct solid sample analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) to evaluate the concentration and distribution of REEs in cultivated and non-cultivated soil. Samples were collected in two areas to 40 cm of depth. The LA-ICP-MS method is easy to be implemented and the sample treatment is very fast comprising only its drying, grounding and pressing as a pellet. The accuracy of the method was evaluated by using a certified reference material (BCR 667 - Estuarine Sediment, Institute for Reference Materials and Measurements (IRMM)) where good agreement with the certified values was obtained. Analyte recovery at two levels of concentration (2.5 and 15.0 μg g -1 ) was also performed and recoveries in the range of 85%-120% were achieved, values that are acceptable for LA-ICP-MS analysis. In general, the concentration of the REEs is higher in the cultivated soil and increased from the surface to deeper layers, which can be a consequence of fertilizer application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation - inductively coupled plasma mass spectrometry.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan

    2017-08-29

    In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80  < 8.5 μm, and various silicate rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid

  20. LC-ICP-MS analysis of arsenic compounds in dominant seaweeds from the Thermaikos Gulf (Northern Aegean Sea, Greece).

    PubMed

    Pell, Albert; Kokkinis, Giannis; Malea, Paraskevi; Pergantis, Spiros A; Rubio, Roser; López-Sánchez, José Fermín

    2013-11-01

    The content of total arsenic and arsenic compounds in the dominant seaweed species in the Thermaikos Gulf, Northern Aegean Sea was determined in samples collected in different seasons. Total arsenic was determined by acid digestion followed by ICP-MS. Arsenic speciation was analyzed by water extraction followed by LC-ICP-MS. Total arsenic concentrations in the seaweeds ranged from 1.39 to 55.0 mg kg(-1). Cystoseira species and Codium fragile showed the highest total As contents, while Ulva species (U. intestinalis, U. rigida,U. fasciata) had the lowest Arsenosugars, the most common arsenic species in seaweeds, were found in all samples, and glycerol-arsenosugar was the most common form; however, phosphate-arsenosugar and sulfate-arsenosugar were also present. Inorganic arsenic was measured in seven algae species and detected in another. Arsenate was the most abundant species in Cystoseira barbata (27.0 mg kg(-1)). Arsenobetaine was measured in only one sample. Methylated arsenic species were measured at very low concentrations. The information should contribute to further understanding the presence of arsenic compounds in dominant seaweeds from the Thermaikos Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Speciation analysis of inorganic antimony in soil using HPLC-ID-ICP-MS.

    PubMed

    Amereih, Sameer; Meisel, Thomas; Kahr, Elisabeth; Wegscheider, Wolfhard

    2005-12-01

    Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 microg g(-1), 0.3 microg g(-1) SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L(-1) citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0-500 mmol L(-1)), pH (1-6), and temperature (30-60 degrees C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L(-1) EDTA and 1 mmol L(-1) phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) (123)Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min(-1)) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L(-1) and 65 ng L(-1) for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L(-1) calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.

  2. Sequential extractions of selenium soils from Stewart Lake: total selenium and speciation measurements with ICP-MS detection.

    PubMed

    Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A

    2003-06-01

    Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.

  3. Reduction of iodate in iodated salt to iodide during cooking with iodine as measured by an improved HPLC/ICP-MS method.

    PubMed

    Liu, Liejun; Li, Xiuwei; Wang, Haiyan; Cao, Xiaoxiao; Ma, Wei

    2017-04-01

    Iodate is a strong oxidant, and some animal studies indicate that iodate intake may cause adverse effects. A key focus of the safety assessment of potassium iodate as a salt additive is determining whether iodate is safely reduced to iodide in food. To study the reduction of iodate in table salt to iodide and molecular iodine during cooking. Fifteen food samples cooked with and without iodated salt were prepared in duplicate. The iodine in the cooked food was extracted with deionized water. The iodine species in the extracts were determined by using an improved high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). The cooking temperature and the pH of the food were determined. The conversion rate of iodate in iodated salt to iodide and molecular iodine was 96.4%±14.7% during cooking, with 86.8%±14.5% of the iodate converted to iodide ions and 9.6% ±6.2% converted to molecular iodine to lose. The limit of detection, limit of quantification, relative standard deviation and recovery rate of the method HPLC/ICP-MS were 0.70 μg/L for I - (0.69 μg/L for IO 3 - ), 2.10 μg/L for I - (2.06 μg/L for IO 3 - ), 2.6% and 101.6%±2.6%, respectively. Almost all iodate added to food was converted into iodide and molecular iodine during cooking. The improved HPLC/ICP-MS was reliable in the determination of iodine species in food extracts. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan

    2018-05-01

    Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.

  5. Estimation of the formation rates of polyatomic species of heavy metals in plutonium analyses using a multicollector ICP-MS with a desolvating nebulizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitroshkov, Alexandre V.; Olsen, Khris B.; Thomas, Linda M.

    2015-01-01

    The analyses of IAEA and environmental samples for Plutonium isotopic content are conducted normally at very low concentrations of Pu–usually in the range of part per trillion level and even more often at the parts per quadrillion level. To analyze such low concentrations, the interferences in the analytical solution must be reduced as much as possible. Polyatomic interferences (PIs), formed by the heavy metals (HMs) from Hf to Bi are known to create the problems for Pu isotopic analyses, because even the relatively high resolution of a modern multicollector ICP-MS is not enough to separate Pu isotopes from this PIsmore » in most of the cases. Desolvating nebulizers (DSN) (e.g. APEX and AridusII) reduce significantly the formation of PIs compare to the use of wet plasma. The purpose of this work was to investigate the rate of formation of PIs, produced by HMs, when high resolution MC ICP-MS with desolvating nebulizer was used for Pu isotopic analyses and to estimate the influence of the metals present in the sample on the results of analyses. The NU Plasma HR Multicollector and AridusII desolvating nebulizer were used in this investigation. This investigation was done for all Pu isotopes normally analyzed by ICP-MS, including ²⁴⁴Pu, with the exception of ²³⁸Pu, which most of the time can’t be analyzed by ICP-MS, because of the overwhelming presence of ²³⁸U in the solutions. The PI formation rates were determined and reported for all 12 HMs from Hf to Bi. Selected IAEA samples were scanned for the presence of HMs and the influence of HMs on the results of Pu isotopic analyses was evaluated. It was found that the implemented separation procedure provides sufficient separation of HM from Pu, although the effect of PIs on the measurement of low level isotopes like ²⁴¹Pu and ²⁴²Pu in some cases can still be observed.« less

  6. ICP-MS as a novel detection system for quantitative element-tagged immunoassay of hidden peanut allergens in foods.

    PubMed

    Careri, Maria; Elviri, Lisa; Mangia, Alessandro; Mucchino, Claudio

    2007-03-01

    A novel ICP-MS-based ELISA immunoassay via element-tagged determination was devised for quantitative analysis of hidden allergens in food. The method was able to detect low amounts of peanuts (down to approximately 2 mg peanuts kg(-1) cereal-based matrix) by using a europium-tagged antibody. Selectivity was proved by the lack of detectable cross-reaction with a number of protein-rich raw materials.

  7. In vivo characterization of magnesium alloy biodegradation using electrochemical H2 monitoring, ICP-MS, and XPS.

    PubMed

    Zhao, Daoli; Wang, Tingting; Nahan, Keaton; Guo, Xuefei; Zhang, Zhanping; Dong, Zhongyun; Chen, Shuna; Chou, Da-Tren; Hong, Daeho; Kumta, Prashant N; Heineman, William R

    2017-03-01

    The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H 2 measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H 2 with an electrochemical H 2 sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H 2 transdermally above magnesium alloys implanted subcutaneously in mice. The correlation of H 2 levels and biodegradation rate measured by weight loss shows that this non-invasive method is fast, reliable and accurate. Analysis of the insoluble biodegradation products on the explanted alloys by XPS showed all of them to consist primarily of Mg(OH) 2 , MgO, MgCO 3 and Mg 3 (PO 4 ) 2 with ZJ41 also having ZnO. The accumulation of magnesium and zinc were measured in 9 different organs by ICP-MS. Histological and ICP-MS studies reveal that there is no significant accumulation of magnesium in these organs for all three alloys; however, zinc accumulation in intestine, kidney and lung for the faster biodegrading alloy ZJ41 was observed. Although zinc accumulates in these three organs, no toxicity response was observed in the histological study. ICP-MS also shows higher levels of magnesium and zinc in the skull than in the other organs. Biodegradable devices based on magnesium and its alloys are promising because they gradually dissolve and thereby

  8. Correcting sensitivity drift during long-term multi-element signal measurements by solid sampling-ETV-ICP-MS.

    PubMed

    Martin-Esteban, A; Slowikowski, B; Grobecker, K H

    2004-06-17

    Solid sampling-electrothermal vaporisation-inductively coupled plasma-mass spectrometry (SS-ETV-ICP-MS) is an attractive technique for the direct simultaneous determination of trace elements in solid samples and especially in long-term studies (i.e. assessment of the homogeneity of reference materials). However, during these studies a downward drift in the instrument sensitivity has been observed due likely to deposits on the sampling and skimmer cones and on the ion lens of the mass spectrometer. Accordingly, in this paper, several means of correcting and/or suppressing sensitivity drift are proposed and evaluated for the monitoring of Cd, Cu, Hg, Mn, Pb, Sb, Se, Sn, Tl, U and V in different reference materials of inorganic and organic (biological) origin. From that studies, the combination of the use of the argon dimer as internal standard together with a modification in the ETV-ICP connection tube seems to be the best mean of getting stable sensitivity during at least 60 consecutive ETV runs.

  9. Simultaneous Determination of 10 Ultratrace Elements in Infant Formula, Adult Nutritionals, and Milk Products by ICP/MS After Pressure Digestion: Single-Laboratory Validation.

    PubMed

    Dubascoux, Stephane; Nicolas, Marine; Rime, Celine Fragniere; Payot, Janique Richoz; Poitevin, Eric

    2015-01-01

    A single-laboratory validation (SLV) is presented for the simultaneous determination of 10 ultratrace elements (UTEs) including aluminum (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), molybdenum (Mo), lead (Pb), selenium (Se), and tin (Sn) in infant formulas, adult nutritionals, and milk based products by inductively coupled plasma (ICP)/MS after acidic pressure digestion. This robust and routine multielemental method is based on several official methods with modifications of sample preparation using either microwave digestion or high pressure ashing and of analytical conditions using ICP/MS with collision cell technology. This SLV fulfills AOAC method performance criteria in terms of linearity, specificity, sensitivity, precision, and accuracy and fully answers most international regulation limits for trace contaminants and/or recommended nutrient levels established for 10 UTEs in targeted matrixes.

  10. DETECTION AND QUANTIFICATION OF THIO-ARSENOSUGAR IN MARINE MOLLUSKS BY IC-ICP-MS WITH AN EMPHASIS ON THE INTERACTION OF ARSENOSUGARS WITH SULFIDE AS A FUNCTION OF PH

    EPA Science Inventory

    The sulfar analog of As(328)(2,3-dihydroxypropyl-5-deoxy-5-dimethylarsinoyl-ß-D-riboside), abbreviated (As(328-S), was detected and quantified in five species of marine shellfish using IC-ICP-MS with structural verification via IC-ESI-MS/MS. The CAD spectra produced from the par...

  11. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2018-01-15

    Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to <0.1 ‰ for a typical measurement period. The external precision is better than 0.2 ‰ (2SD) for δ 11 B measurements for solution samples containing as little as 0.8 ng total boron. For in situ microanalyses with LA-MC-ICP-MS, the external precision of 11 B/ 10 B from an in-house calcite standard was 1 ‰ (2SD) for individual spot analyses, and 0.3 ‰ for the mean of ≥10 replicate spot analyses. 10 13 ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.

  12. ICP MS selection of radiopure materials for the GERDA experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vacri, M. L., E-mail: divacrim@lngs.infn.it; Dipartimento di Scienze Fisiche e Chimiche, University of L’Aquila, via Vetoio, 67100 L’Aquila; Nisi, S., E-mail: nisi@lngs.infn.it

    2015-08-17

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the {sup 76}Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10{sup −3} counts/keV kg y) at the Q{sub ββ}. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designedmore » and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system.« less

  13. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for themore » fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.« less

  14. Laser ablation-inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections.

    PubMed

    Managh, Amy J; Hutchinson, Robert W; Riquelme, Paloma; Broichhausen, Christiane; Wege, Anja K; Ritter, Uwe; Ahrens, Norbert; Koehl, Gudrun E; Walter, Lisa; Florian, Christian; Schlitt, Hans J; Reid, Helen J; Geissler, Edward K; Sharp, Barry L; Hutchinson, James A

    2014-09-01

    Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology. Copyright © 2014 by The American Association of Immunologists, Inc.

  15. ARO - Terrestrial Research Program, Methodologies and Protocols for Characterization of Geomaterials

    DTIC Science & Technology

    2015-05-14

    of ice involves melting, digestion, and analysis using inductively coupled plasma – mass spectrometry (ICPMS). ICP-MS analysis established elemental...4] have distinct chemical compositions. Knowledge of the chemical composition of the mineral assemblage present in a rock is critical to...activation analysis (INAA), to inductively-coupled plasma analysis and mass spectrometry (ICP & ICP-MS), mass spectrometry (MS), and laser-ablation

  16. Strontium isotope measurement of basaltic glasses by laser ablation multiple collector inductively coupled plasma mass spectrometry based on a linear relationship between analytical bias and Rb/Sr ratios.

    PubMed

    Zhang, Le; Ren, Zhong-Yuan; Wu, Ya-Dong; Li, Nan

    2018-01-30

    In situ strontium (Sr) isotope analysis of geological samples by laser ablation multiple collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) provides useful information about magma mixing, crustal contamination and crystal residence time. Without chemical separation, during Sr isotope analysis with laser ablation, many kinds of interference ions (such as Rb + and Kr + ) are on the Sr isotope spectrum. Most previous in situ Sr isotope studies only focused on Sr-enriched minerals (e.g. plagioclase, calcite). Here we established a simple method for in situ Sr isotope analysis of basaltic glass with Rb/Sr ratio less than 0.14 by LA-MC-ICP-MS. Seven Faraday cups, on a Neptune Plus MC-ICP-MS instrument, were used to receive the signals on m/z 82, 83, 84, 85, 86, 87 and 88 simultaneously for the Sr isotope analysis of basaltic glass. The isobaric interference of 87 Rb was corrected by the peak stripping method. The instrumental mass fractionation of 87 Sr/ 86 Sr was corrected to 86 Sr/ 88 Sr = 0.1194 with an exponential law. Finally, the residual analytical biases of 87 Sr/ 86 Sr were corrected with a relationship between the deviation of 87 Sr/ 86 Sr from the reference values and the measured 87 Rb/ 86 Sr. The validity of the protocol present here was demonstrated by measuring the Sr isotopes of four basaltic glasses, a plagioclase crystal and a piece of modern coral. The measured 87 Sr/ 86 Sr ratios of all these samples agree within 100 ppm with the reference values. In addition, the Sr isotopes of olivine-hosted melt inclusions from the Emeishan large igneous province (LIP) were measured to show the application of our method to real geological samples. A simple but accurate approach for in situ Sr isotope measurement by LA-MC-ICP-MS has been established, which should greatly facilitate the wider application of in situ Sr isotope geochemistry, especially to volcanic rock studies. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Platinum concentration in silicone breast implant material and capsular tissue by ICP-MS.

    PubMed

    Maharaj, S V M

    2004-09-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine the concentration of platinum (Pt) in silicone breast implant gel (range, 0.26-48.90 microg g(-1) Pt; n=15), elastomer (range, 3.05-28.78 microg g(-1) Pt; n=7), double lumen (range, 5.79-125.27 microg g(-1) Pt; n=7), foam (range, 5.79-8.36 microg g(-1) Pt; n=2), and capsular tissue (range, 0.003-0.272 microg g(-1) Pt; n=15). The results show that very high levels of Pt are present in the encasing elastomer, double lumen, and foam envelope materials. Silicone breast implants can be a source of significant Pt exposure for individuals with these implants.

  18. Analysis of PBDEs in soil, dust, spiked lake water, and human serum samples by hollow fiber-liquid phase microextraction combined with GC-ICP-MS.

    PubMed

    Xiao, Qin; Hu, Bin; Duan, Jiankun; He, Man; Zu, Wanqing

    2007-10-01

    A novel method for the analysis of four polybrominated diphenyl ethers (PBDEs) in environmental and human serum samples based on hollow fiber-liquid phase microextraction (HF-LPME) followed by gas chromatography-inductively coupled plasma mass spectrometric (GC-ICP-MS) detection has been developed. The organic solvent in the porous hollow fiber was first dipped into the sample for extraction at a given time, and the retracted organic phase was introduced into the GC-ICP-MS for analysis. The addition of methanol has a strong effect on the HF-LPME extraction efficiency. Other significant parameters affecting the extraction efficiency of HF-LPME were also studied. HF-LPME was effective to isolate the analytes from the complex matrix. Under the optimized conditions, the detection limits of the proposed method varied from 15.2 to 40.5 ng/L. In general, the relative standard deviations (RSDs) were less than 10%. Good linearity was obtained with the correlation coefficients all better than 0.999. The proposed method is simple, quick, few microliters of organic solvent required, and is especially suitable for the analysis of the real sample with small amount available. The overall process of HF-LPME with GC-ICP-MS was applied successfully for the determination of polybrominated diphenyl ethers (PBDEs) in environmental and spiked human serum samples, and the results were satisfactory.

  19. Trace Element Determination and Cardioprotection of Terminalia pallida Fruit Ethanolic Extract in Isoproterenol Induced Myocardial Infarcted Rats by ICP-MS.

    PubMed

    Althaf Hussain, Shaik; Kareem, Mohammed Abdul; Rasool, Shaik Nayab; Al Omar, Suliman Yousef; Saleh, Alwasel; Al-Fwuaires, Manal Abdulrahman; Daddam, Jayasimha Rayalu; Devi, Kodidhela Lakshmi

    2018-01-01

    The trace elements and minerals in Terminalia pallida fruit ethanolic extract (TpFE) were determined by the instrument inductively coupled plasma-mass spectrometry (ICP-MS), and the cardioprotection of TpFE against isoproterenol (ISO)-administered rats was studied. Rats were pretreated with TpFE (100, 300, and 500 mg/kg bw) for 30 days, with concurrent administration of ISO (85 mg/kg bw) for two consecutive days. The levels of trace elements and minerals in TpFE were below the permitted limits of World Health Organization standards. ISO administration significantly increased the heart weight and cardiac marker enzymes in serum, xanthine oxidase, sodium, and calcium in the heart, whereas significantly decreased body weight, reduced glutathione, glutathione-S-transferase, superoxide dismutase, and potassium in the heart. Oral pretreatment of TpFE significantly prevented the ISO-induced alterations. This is the first report that revealed the determination of trace elements and mineral nutrients of TpFE by ICP-MS which plays a principal role in the herbal drug discovery for the treatment of cardiovascular diseases.

  20. High resolution ID-ICP-MS certification of an estuary water reference material (LGC 6016) and analysis of matrix induced polyatomic interferences.

    PubMed

    Evans, P; Fairman, B

    2001-10-01

    Reliable trace metal analysis of environmental samples is dependent upon the availability of high accuracy, matrix reference standards. Here, we present Cd, Cu, Ni, Pb and Zn isotope dilution determination for an estuary water certified reference material (LGC 6016). This work highlights the need for high-accuracy techniques in the development of trace element CRMs rather than conventional inter-laboratory trials. Certification of the estuary water LGC6016 was initially determined from a consensus mean from 14 laboratories but this was found to be unsatisfactory due to the large discrepancies in the reported concentrations. The material was re-analysed using isotope dilution ICP-MS techniques. Pb and Cd were determined using a conventional quadrupole ICP-MS (Elan 5000). Cu, Zn and Ni were determined using a magnetic sector ICP-MS (Finnigan Element), which allowed significant polyatomic interferences to be overcome. Using the magnetic sector instrument, precise mass calibration to within 0.02 amu permitted identification of the interferences. Most interferences derived from the sample matrix. For example, the high Na content causes interferences on 63Cu, due to the formation of 40Ar23Na and 23Na2 16O1H, which in a conventional quadrupole instrument would relate to an erroneous increase in signal intensity by up to 20%. For each analyte a combined uncertainty calculation was performed following the Eurachem/GTAC and ISO guideline. For each element a combined uncertainty of 2-3% was found, which represents a 10-fold improvement compared to certification by inter-laboratory comparison. Analysis of the combined uncertainty budget indicates that the majority of systematic uncertainty derives from the instrumental isotope ratio measurements.

  1. Determination of the MRI contrast agent Gd-DTPA by SEC-ICP-MS.

    PubMed

    Loreti, Valeria; Bettmer, Jörg

    2004-08-01

    The simultaneous determination of Gd(3+) and Gd-DTPA (DTPA: diethylenetriamino-pentaacetic acid), often used as contrast agent, is described. The proposed approach combines size-exclusion chromatography (SEC) and inductively coupled plasma-mass spectrometry (ICP-MS) for element-selective detection in order to determine also high-molecular Gd-complexes if present. This method was applied to the analysis of urine samples of a patient to whom Gd-DTPA was intravenously administered. The results showed that no conversion or adsorption of Gd-DTPA could be observed in any sample, even free Gd(3+) could not be detected. Urine excretion behaviour was monitored and it was proved that Gd-DTPA was almost completely (>99%) excreted by urination within one day. Traces of Gd-DTPA could be measured in hair samples, but extraction with tetramethylammonium hydroxide (TMAH) resulted in degradation of Gd-DTPA.

  2. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph; McIntosh, Kathryn Gallagher; Judge, Elizabeth

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers themore » potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.« less

  3. LA-ICP-MS Pb-U Dating of Young Zircons from the Kos-Nisyros Volcanic Centre, SE Aegean Arc (Greece)

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Von Quadt, A.; Peytcheva, I.; Bachmann, O.

    2014-12-01

    Zircon Pb-U dating has become a key technique for answering many important questions in geosciences. This paper describes a new LA-ICP-MS approach. We show, using previously dated samples of a large quaternary rhyolitic eruption in the Kos-Nisyros volcanic centre (the 161 ka Kos Plateau Tuff), that the precision of our LA-ICP-MS method is as good as via SHRIMP, while ID-TIMS measurements confirm the accuracy. Gradational age distribution over >140 ka of the Kos zircons and the near-absence of inherited cores indicate near-continuous crystallisation in a growing magma reservoir with little input from wall rocks. Previously undated silicic eruptions from Nisyros volcano (Lower Pumice, Nikia Flow, Upper Pumice), which are stratigraphically constrained to have happened after the Kos Plateau Tuff, are dated to be younger than respectively 124 ± 35 ka, 111 ± 42 ka and 70 ± 24 ka. Samples younger than 1 Ma were corrected for initial thorium disequilibrium using a new formula that also accounts for disequilibrium in 230Th decay. Guillong, M. et al., 2014, JAAS, 29, p. 963-967; doi: 10.1039/c4ja00009a.

  4. [Determination of trace Cs, Th and U in ten kinds of human autopsy tissues by ICP-MS].

    PubMed

    Wang, Jing-yu; Zhu, Hong-da; Ouyang, Li; Liu, Ya-qiong; Wang, Xiao-yan; Huang, Zhuo; Wang, Nai-fen; Liu, Hu-sheng

    2004-09-01

    This paper studied the trace elements Cs, Th and U in ten kinds of human autopsy tissues by ICP-MS. The instrumental operating conditions were optimized for the measurement of Cs, Th and U. Rhodium (Rh) was used as an internal standard element to compensate matrix effect. Detection limits for Th, U and Cs were 5.7-17.8 pg x mL(-1). The recoveries for spiking liver samples were 96%-107%, and their RSDs were 4.8%-8.9%. Reference materials of NIST SRM 8414 Bovine and NIST SRM 1486 Bone Meal were analyzed by the described method, and the analytical results agreed well with the reference values. Human autopsy tissues samples were digested by mixed acid (HNO3 + HClO4). The determination of Cs, Th and U in lung, liver, bone, heart, stomach, spleen, muscle, kidney, thyroid gland and intestinum tenue was performed by ICP-MS without separation and enrichment procedures. The obtained results indicated that this method is rapid, sensitive and accurate; the distribution of the three elements is different from one to another human organ sample; the main organ targets for Th and U are lungs and kidneys; and a coordinated variation of Cs, Th and U concentration in lungs was found in the samples collected from Hebei and Sichuan provinces.

  5. Determination of (187)Os in molybdenite by ICP-MS with neutron-induced (186)Os and (188)Os spikes.

    PubMed

    Qu, W; Du, A; Zhao, D

    2001-10-31

    The article describes a method for the determination of (187)Os in molybdenite by isotope dilution inductively coupled plasma-mass spectrometry (ID-ICP-MS) with neutron-induced (186)Os and (188)Os spike. The spike used in the present work was prepared in line with the principle by which artificial nuclides are produced in a nuclear reaction. The concentration and isotopic composition of osmium in the prepared spike were evaluated accurately with the isotope dilution method, using negative thermal ion mass spectrometry (N-TIMS). The advantage of this method is that using (186)Os and (188)Os double spikes can effectively compensate for the mass discrimination effects of ICP-MS. Thus, the common correction practice for mass bias in the isotope dilution method with a single spike is unnecessary. In addition, the method enables one to reduce the determined error arising from instrumental instability. The precision for the (187)Os/((186)Os+(188)Os) ratio was approximately 2% (2sigma, RSD), but in the case of (187)Os/(186)Os, (187)Os/(188)Os and (186)Os/(188)Os, precision ranged from 2.0 to 8% (2sigma, RSD). The results for (187)Os concentration in a molybdenite sample determined with this method showed good agreement with reference values.

  6. Selective hydride generation- cryotrapping- ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells

    PubMed Central

    Matoušek, Tomáš; Currier, Jenna M.; Trojánková, Nikola; Saunders, R. Jesse; Ishida, María C.; González-Horta, Carmen; Musil, Stanislav; Mester, Zoltán; Stýblo, Miroslav; Dědina, Jiří

    2013-01-01

    An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at −196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL−1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL−1 total As was performed. The concentrations of methylated As species in tens of pg mL−1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species. PMID:24014931

  7. New approach of a transient ICP-MS measurement method for samples with high salinity.

    PubMed

    Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-03-01

    In the near future it is necessary to establish a disposal for high level nuclear waste (HLW) in deep and stable geological formations. In Germany typical host rocks are salt or claystone. Suitable clay formations exist in the south and in the north of Germany. The geochemical conditions of these clay formations show a strong difference. In the northern ionic strengths of the pore water up to 5M are observed. The determination of parameters like K d values during sorption experiments of metal ions like uranium or europium as homologues for trivalent actinides onto clay stones are very important for long term safety analysis. The measurement of the low concentrated, not sorbed analytes commonly takes place by inductively coupled plasma mass spectrometry (ICP-MS). A direct measurement of high saline samples like seawater with more than 1% total dissolved salt content is not possible. Alternatives like sample clean up, preconcentration or strong dilution have more disadvantages than advantages for example more preparation steps or additional and expensive components. With a small modification of the ICP-MS sample introduction system and a home-made reprogramming of the autosampler a transient analysing method was developed which is suitable for measuring metal ions like europium and uranium in high saline sample matrices up to 5M (NaCl). Comparisons at low ionic strength between the default and the transient measurement show the latter performs similarly well to the default measurement. Additionally no time consuming sample clean-up or expensive online dilution or matrix removal systems are necessary and the analysation shows a high sensitivity due to the data processing based on the peak area. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials.

    PubMed

    Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D

    2000-10-01

    Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.

  9. Profiling extractable and leachable inorganic impurities in ophthalmic drug containers by ICP-MS.

    PubMed

    Solomon, Paige; Nelson, Jenny

    2018-03-01

    In this study, we investigated the elemental impurities present in the plastic material of ophthalmic eye drop bottles using inductively coupled plasma-mass spectrometry (ICP-MS). Metallic contaminations, especially localized within the small cavity of the eye, can significantly perturb the ocular metallome. The concern is two-fold: first certain elements, for example heavy metals, can be toxic to humans at even trace levels, and second, these contaminations can have adverse reactions with other medicines or enzymatic processes in the eye. The implication of redox-active metals in cataract formation is one such biological consequence. The analysis demonstrated the effect of aggressive storage and transportation conditions on elemental extractable and leachable contamination, and posits that release of these elemental impurities can disrupt metallome equilibrium in the ocular compartment, leading to toxicity and disease.

  10. [Analysis of Arsenic Compounds in Blood and Urine by HPLC-ICP-MS].

    PubMed

    Lin, L; Zhang, S J; Xu, W C; Luo, R X; Ma, D; Shen, M

    2018-02-01

    To establish an analysis method for the detection of 6 arsenic compounds [AsC, AsB, As(Ⅲ), DMA, MMA and As(V)] in blood and urine by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), and apply it to real cases. Triton was used to damage cells, and then EDTA·2Na·2H2O was used to complex arsenic compounds in cells, and sonication and protein deposition by acetonitrile were performed for sample pretreatment. With the mobile phase consisted of ammonium carbonate and ultrapure water, gradient elution was performed for obtaining the arsenic compounds in samples, which were analysed by ICP-MS with Hamilton PRP-X100 column. The limits of detection in blood were 1.66-10 ng/mL, while the lower limits of quantitation in blood ranged from 5 to 30 ng/mL. The limits of detection in urine were 0.5-10 ng/mL, while the lower limits of quantitation in urine were 5-30 ng/mL. The relative standard deviation of inter-day and intra-day precisions was less than 10%. This method had been successfully applied to 3 cases. This study has established an analysis method for detecting 6 common arsenic compounds in blood and urine, which can be used to detect the arsenic compounds in the blood and urine from arsenic poisoning cases as well as the patients under arsenic treatment. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  11. Minerals and Trace Elements in Milk, Milk Products, Infant Formula, and Adult/Pediatric Nutritional Formula, ICP-MS Method: Collaborative Study, AOAC Final Action 2015.06, ISO/DIS 21424, IDF 243.

    PubMed

    Pacquette, Lawrence H; Thompson, Joseph J; Malaviole, I; Zywicki, R; Woltjes, F; Ding, Y; Mittal, A; Ikeuchi, Y; Sadipiralla, B; Kimura, S; Veltman, H; Miura, A

    2018-03-01

    AOAC Final Action Official MethodSM 2015.06 "Minerals and Trace Elements in Milk, Milk Products, Infant Formula and Adult/Pediatric Nutritional Formula, ICP-MS Method" was collaboratively studied. Note that "milk, milk products" has now been added to the title of the Final Action method because whole milk and several dairy ingredients were successfully incorporated into the collaborative study for the purpose of developing an International Organization for Standardization/International Dairy Federation standard (ISO/DIS 21424; in progress). The method determines sodium, magnesium, phosphorus, potassium, calcium, iron, manganese, zinc, copper, chromium, molybdenum, and selenium by inductively coupled plasma (ICP)-MS after microwave digestion. Ten laboratories participated in the study, and data from five different model ICP-MS units were represented. Thirteen products, five placebo products, and six dairy samples were tested as blind duplicates in this study, along with a standard reference material, for a total 50 samples. The overall repeatability and reproducibility for all samples met Standard Method Performance Requirements put forth by the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals, with a few exceptions. Comparisons are made to ICP-atomic emission data from a collaborative study of AOAC Official Method 2011.14 carried out concurrently on these same samples.

  12. Analysis of twenty five impurities in uranium matrix by ICP-MS with iron measurement optimized by using reaction collision cell, cold plasma or medium resolution.

    PubMed

    Quemet, Alexandre; Brennetot, Rene; Chevalier, Emilie; Prian, Edwina; Laridon, Anne-Laure; Mariet, Clarisse; Fichet, Pascal; Laszak, Ivan; Goutelard, Florence

    2012-09-15

    An analytical procedure was developed to determine the concentration of 25 impurities (Li, Be, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ag, Cd, In, Sm, Eu, Gd, Dy, W, Pb, Bi and Th) in a uranium matrix using the quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). The dissolution of U(3)O(8) powder was made with a mixture of hydrochloric acid and nitric acid. Then, a selective separation of uranium using the UTEVA column was used before measurement by Q-ICP-MS. The procedure developed was verified using the Certified Reference Material "Morille". The analytical results agree well except for 5 elements where values are underestimated (Li, Be, In, Pb and Bi). Among the list of impurities, iron was particularly investigated because it is well known that this element possesses a polyatomic interference that increases the detection limit. A comparison between iron detection limits obtained with different methods was performed. Iron polyatomic interference was at least reduced, or at best entirely resolved in some cases, by using the cold plasma or the collision/reaction cell with several gases (He, NH(3) and CH(4)). High-resolution ICP-MS was used to compare the results obtained. A detection limit as low as 8 ng L(-1) was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Tissue gadolinium deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Sato, Tomohiro; Tamada, Tsutomu; Watanabe, Shigeru; Nishimura, Hirotake; Kanki, Akihiko; Noda, Yasufumi; Higaki, Atsushi; Yamamoto, Akira; Ito, Katsuyoshi

    2015-06-01

    This study was undertaken to quantify tissue gadolinium (Gd) deposition in hepatorenally impaired rats exposed to gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by means of inductively coupled plasma mass spectrometry (ICP-MS) and to compare differences in Gd distribution among major organs as possible triggers for nephrogenic systemic fibrosis. Five hepatorenally impaired rats (5/6-nephrectomized, with carbon-tetrachloride-induced liver fibrosis) were injected with Gd-EOB-DTPA. Histological assessment was conducted and Gd content of the skin, liver, kidneys, lungs, heart, spleen, diaphragm, and femoral muscle was measured by inductively coupled plasma mass spectrometry (ICP-MS) at 7 days after last injection. In addition, five renally impaired rats were injected with Gd-EOB-DTPA and the degree of tissue Gd deposition was compared with that in the hepatorenally impaired rats. ICP-MS analysis revealed significantly higher Gd deposition in the kidneys, spleen, and liver (p = 0.009-0.047) in the hepatorenally impaired group (42.6 ± 20.1, 17.2 ± 6.1, 8.4 ± 3.2 μg/g, respectively) than in the renally impaired group (17.2 ± 7.7, 5.4 ± 2.1, 2.8 ± 0.7 μg/g, respectively); no significant difference was found for other organs. In the hepatorenally impaired group, Gd was predominantly deposited in the kidneys, followed by the spleen, liver, lungs, skin, heart, diaphragm, and femoral muscle. Histopathological investigation revealed hepatic fibrosis in the hepatorenally impaired group. Compared with renally impaired rats, tissue Gd deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA was significantly increased in the kidneys, spleen, and liver, probably due to the impairment of the dual excretion pathways of the urinary and biliary systems.

  14. Automation of sample processing for ICP-MS determination of 90Sr radionuclide at ppq level for nuclear technology and environmental purposes.

    PubMed

    Kołacińska, Kamila; Chajduk, Ewelina; Dudek, Jakub; Samczyński, Zbigniew; Łokas, Edyta; Bojanowska-Czajka, Anna; Trojanowicz, Marek

    2017-07-01

    90 Sr is a widely determined radionuclide for environmental purposes, nuclear waste control, and can be also monitored in coolants in nuclear reactor plants. In the developed method, the ICP-MS detection was employed together with sample processing in sequential injection analysis (SIA) setup, equipped with a lab-on-valve with mechanized renewal of sorbent bed for solid-phase extraction. The optimized conditions of determination included preconcentration of 90 Sr on cation-exchange column and removal of different type of interferences using extraction Sr-resin. The limit of detection of the developed procedure depends essentially on the configuration of the employed ICP-MS spectrometer and on the available volume of the sample to be analyzed. For 1L initial sample volume, the method detection limit (MDL) value was evaluated as 2.9ppq (14.5BqL -1 ). The developed method was applied to analyze spiked river water samples, water reference materials, and also simulated and real samples of the nuclear reactor coolant. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Accurate determination of sulfur in gasoline and related fuel samples using isotope dilution ICP-MS with direct sample injection and microwave-assisted digestion.

    PubMed

    Heilmann, Jens; Boulyga, Sergei F; Heumann, Klaus G

    2004-09-01

    Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous 34S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of 32S/34S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 mircog g(-1)) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 microg g(-1) were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods.

  16. Combination of ICP-MS, capillary electrophoresis, and their hyphenation for probing Ru(III) metallodrug-DNA interactions.

    PubMed

    Foteeva, Lidia S; Matczuk, Magdalena; Pawlak, Katarzyna; Aleksenko, Svetlana S; Nosenko, Sergey V; Karandashev, Vasily K; Jarosz, Maciej; Timerbaev, Andrei R

    2017-03-01

    Determination of the DNA-binding reactivity and affinity is an important part of a successful program for the selection of metallodrug candidates. For such assaying, a range of complementary analytical techniques was proposed and tested here using one of few anticancer metal-based drugs that are currently in clinical trials, indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III), and a DNA oligonucleotide. A high reactivity of the Ru drug was confirmed in affinity capillary electrophoresis (CE) mode, where adduct formation takes place in situ (i.e., in the capillary filled with an oligonucleotide-containing electrolyte). To further characterize the binding kinetics, a drug-oligonucleotide mixture was incubated for a different period of time, followed by ultrafiltration separation into two different in molecular weight fractions (>3 and <3 kDa). The time-dependent distribution profiles of the Ru drug were then assessed by CE-inductively coupled plasma mass spectrometry (ICP-MS), revealing that at least two DNA adducts exist at equilibrium conditions. Using standalone ICP-MS, dominant equilibrium amount of the bound ruthenium was found to occur in a fraction of 5-10 kDa, which includes the oligonucleotide (ca. 6 kDa). Importantly, in all three assays, the drug was used for the first time in in-vitro studies, not in the intact form but as its active species released from the transferrin adduct at simulated cancer cytosolic conditions. This circumstance makes the established analytical platform promising to provide a detailed view on metallodrug targeting, including other possible biomolecules and ex vivo samples.

  17. Development, validation and application of an ICP-MS/MS method to quantify minerals and (ultra-)trace elements in human serum.

    PubMed

    Meyer, Sören; Markova, Mariya; Pohl, Gabriele; Marschall, Talke A; Pivovarova, Olga; Pfeiffer, Andreas F H; Schwerdtle, Tanja

    2018-09-01

    Multi-element determination in human samples is very challenging. Especially in human intervention studies sample volumes are often limited to a few microliters and due to the high number of samples a high-throughput is indispensable. Here, we present a state-of-the-art ICP-MS/MS-based method for the analysis of essential (trace) elements, namely Mg, Ca, Fe, Cu, Zn, Mo, Se and I, as well as food-relevant toxic elements such as As and Cd. The developed method was validated regarding linearity of the calibration curves, method LODs and LOQs, selectivity and trueness as well as precision. The established reliable method was applied to quantify the element serum concentrations of participants of a human intervention study (LeguAN). The participants received isocaloric diets, either rich in plant protein or in animal protein. While the serum concentrations of Mg and Mo increased in participants receiving the plant protein-based diet (above all legumes), the Se concentration in serum decreased. In contrast, the animal protein-based diet, rich in meat and dairy products, resulted in an increased Se concentration in serum. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Comparison of TIMS and MC-ICP-MS Analyses of Pb Isotopic Compositions on Prehistoric Mauna Loa Basalts: Implications for Plume Source Components

    NASA Astrophysics Data System (ADS)

    De Jong, J.; Weis, D.; Maerschalk, C.; Rhodes, J. M.

    2001-12-01

    Recent isotopic studies on Hawaiian lavas have shown the necessity of constraining fractionation for Pb isotopes. This isotopic system presents systematic variations reflecting the presence of different plume components in the source of Hawaiian basalts. We have analyzed a series of 23 tholeiitic Mauna Loa basalts ranging in age from 36,780 to 140 y for their Pb isotopic compositions by TIMS (Micromass Sector 54) and MC-ICP-MS (Nu Plasma) to directly compare results from the same, carefully leached, samples. These analyses indicate an internal precision better than 120 ppm for the MC-ICP-MS Pb ratios, while for the TIMS ratios, it is in the per mil range. This results in a more coherent dataset for the MC-ICP-MS analyses, with the range of 207Pb/204Pb variations decreasing by a factor of 3 and of 208Pb/204Pb ratios by a factor of 1.5. The co-variations between the Pb isotopic data and other geochemical parameters for the Hawaiian lavas are now much stronger and better defined. There are clearly two groups amongst the prehistoric Mauna Loa basalts: one group with higher 87Sr/86Sr (>0.7038) and low 206Pb/204Pb (<18.15) that covers the entire range of Nb/Y (0.31 to 0.51) observed in this volcano, and the other group with low 87Sr/86Sr (<0.7038) and higher 206Pb/204Pb with Nb/Y<0.4. The second group is only present in basalts younger than 3,000 y or older than 24,000 y. The high 87Sr/86Sr group was not sampled in the HSDP I drill core, which covers an age range of 100,000 y. This either reflects a sampling bias, as the upper flow units (<10,000 y) were not sampled for geochemistry, or variations in magma supply. Altogether, Mauna Loa lava flows that are younger than 20,000 y show much more isotopic variation than older flows and there is a nearly continuous transition away from the Kilauea component. This may indicate that the transition between the Mauna Loa and Mauna Kea trends is not as sharp as previously documented. This study shows the importance of reducing the

  19. Use of laser ablation-inductively coupled plasma-time of flight-mass spectrometry to identify the elemental composition of vanilla and determine the geographic origin by discriminant function analysis.

    PubMed

    Hondrogiannis, Ellen M; Ehrlinger, Erin; Poplaski, Alyssa; Lisle, Meredith

    2013-11-27

    A total of 11 elements found in 25 vanilla samples from Uganda, Madagascar, Indonesia, and Papua New Guinea were measured by laser ablation-inductively coupled plasma-time-of-flight-mass spectrometry (LA-ICP-TOF-MS) for the purpose of collecting data that could be used to discriminate among the origins. Pellets were prepared of the samples, and elemental concentrations were obtained on the basis of external calibration curves created using five National Institute of Standards and Technology (NIST) standards and one Chinese standard with (13)C internal standardization. These curves were validated using NIST 1573a (tomato leaves) as a check standard. Discriminant analysis was used to successfully classify the vanilla samples by their origin. Our method illustrates the feasibility of using LA-ICP-TOF-MS with an external calibration curve for high-throughput screening of spice screening analysis.

  20. Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS.

    PubMed

    Petrov, Panayot; Russell, Ben; Douglas, David N; Goenaga-Infante, Heidi

    2018-01-01

    Long-lived high abundance radionuclides are of increasing interest with regard to decommissioning of nuclear sites and longer term nuclear waste storage and disposal. In many cases, no routine technique is available for their measurement in nuclear waste and low-level (ng kg -1 ) environmental samples. Recent advances in ICP-MS technology offer attractive features for the selective and sensitive determination of a wide range of long-lived radionuclides. In this work, inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)-based methodology, suitable for accurate routine determinations of 93 Zr at very low (ng kg -1 ) levels in the presence of high levels (μg kg -1 ) of the isobaric interferents 93 Nb and 93 Mo (often present in nuclear waste samples), is reported for the first time. Additionally, a novel and systematic strategy for method development based on the use of non-radioactive isotopes is proposed. It relies on gas-phase chemical reactions for different molecular ion formation to achieve isobaric interference removal. Using cell gas mixtures of NH 3 /He/H 2 or H 2 /O 2 , and suitable mass shifts, the signal from the 93 Nb and 93 Mo isobaric interferences on 93 Zr were suppressed by up to 5 orders of magnitude. The achieved limit of detection for 93 Zr was 1.3 × 10 -5  Bq g -1 (equivalent to 0.14 ng kg -1 ). The sample analysis time is 2 min, which represents a significant improvement in terms of sample throughput, compared to liquid scintillation counting methods. The method described here can be used for routine measurements of 93 Zr at environmentally relevant levels. It can also be combined with radiometric techniques for use towards the standardisation of 93 Zr measurements. Graphical abstract Interference-free determination of 93 Zr in the presence of high concentrations of isobaric 93 Mo and 93 Nb by ICP-MS/MS.

  1. Gold nanoparticle labeling with tyramide signal amplification for highly sensitive detection of alpha fetoprotein in human serum by ICP-MS.

    PubMed

    Li, Xiaoting; Chen, Beibei; He, Man; Xiao, Guangyang; Hu, Bin

    2018-01-01

    In this work, we developed an immunoassay based on tyramide signal amplification (TSA) and gold nanoparticles (Au NPs) labeling for highly sensitive detection of alpha fetoprotein (AFP) by inductively coupled plasma mass spectrometry (ICP-MS). AFP was captured by anti-AFP1 coating on the 96-well plate and labeled by anti-AFP2-horseradish peroxidase (HRP), in which the HRP can catalyze the deposition of biotinylated tyramine on the nearby protein. Then the streptavidin (SA)-Au NPs was labeled on the deposited biotinylated tyramine as the intensive signal probe for ICP-MS measurement. Under the optimal experimental conditions, the limit of detection of the developed method for AFP was 1.85pg/mL and the linear range was 0.005-2ng/mL. The relative standard deviation for seven replicate detections of 0.01ng/mL AFP was 5.2%. The proposed method was successfully applied to the detection of AFP in human serum with good recoveries. This strategy is highly sensitive and easy to operate, and can be extended to the sensitive detection of other biomolecules in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Preparation of calibration materials for microanalysis of Ti minerals by direct fusion of synthetic and natural materials: experience with LA-ICP-MS analysis of some important minor and trace elements in ilmenite and rutile.

    PubMed

    Odegård, M; Mansfeld, J; Dundas, S H

    2001-08-01

    Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.

  3. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2007-01-01

    The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

  4. The impact of whole human blood on the kinetic inertness of platinum(iv) prodrugs - an HPLC-ICP-MS study.

    PubMed

    Theiner, Sarah; Grabarics, Márkó; Galvez, Luis; Varbanov, Hristo P; Sommerfeld, Nadine S; Galanski, Markus; Keppler, Bernhard K; Koellensperger, Gunda

    2018-04-17

    The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.

  5. Quantification issues of trace metal contaminants on silicon wafers by means of TOF-SIMS, ICP-MS, and TXRF

    NASA Astrophysics Data System (ADS)

    Rostam-Khani, P.; Hopstaken, M. J. P.; Vullings, P.; Noij, G.; O'Halloran, O.; Claassen, W.

    2004-06-01

    Measurement of surface metal contamination on silicon wafers is essential for yield enhancement in IC manufacturing. Vapor phase decomposition coupled with either inductively coupled plasma mass spectrometry (VPD-ICP-MS), or total reflection X-ray fluorescence (VPD-TXRF), TXRF and more recently time of flight secondary ion mass spectrometry (TOF-SIMS) are used to monitor surface metal contamination. These techniques complement each other in their respective strengths and weaknesses. For reliable and accurate quantification, so-called relative sensitivity factors (RSF) are required for TOF-SIMS analysis. For quantification purposes in VPD, the collection efficiency (CE) is important to ensure complete collection of contamination. A standard procedure has been developed that combines the determination of these RSFs as well as the collection efficiency using all the analytical techniques mentioned above. Therefore, sample wafers were intentionally contaminated and analyzed (by TOF-SIMS) directly after preparation. After VPD-ICP-MS, several scanned surfaces were analyzed again by TOF-SIMS. Comparing the intensities of the specific metals before and after the VPD-DC procedure on the scanned surface allows the determination of so-called removing efficiency (RE). In general, very good agreement was obtained comparing the four analytical techniques after updating the RSFs for TOF-SIMS. Progress has been achieved concerning the CE evaluation as well as determining the RSFs more precisely for TOF-SIMS.

  6. Use of TEVA resin for the determination of U isotopes in water samples by Q-ICP-MS.

    PubMed

    Tagami, K; Uchida, S

    2004-01-01

    In order to measure uranium isotopic mass ratio in natural water samples by Q-ICP-MS, an application of TEVA resin (Eichrom) was studied to separate and concentrate U. After being evaporated to dryness, the sample residue was dissolved in 6 M HCl, then, TEVA extraction was carried out. U extracted on the resin could be removed with 20 ml of 1 M HCl (U fraction) when Fe content was lower than 2 mg. U recovery in U fraction showed a negative correlation with Fe content in the samples.

  7. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. HPLC-ICP-MS speciation analysis of arsenic in urine of Japanese subjects without occupational exposure.

    PubMed

    Hata, Akihisa; Endo, Yoko; Nakajima, Yoshiaki; Ikebe, Maiko; Ogawa, Masanori; Fujitani, Noboru; Endo, Ginji

    2007-05-01

    The toxicity and carcinogenicity of arsenic depend on its species. Individuals living in Japan consume much seafood that contains high levels of organoarsenics. Speciation analysis of urinary arsenic is required to clarify the health risks of arsenic intake. There has been no report of urinary arsenic analysis in Japan using high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We performed speciation analysis of urinary arsenic for 210 Japanese male subjects without occupational exposure using HPLC-ICP-MS. The median values of urinary arsenics were as follows: sodium arsenite (AsIII), 3.5; sodium arsenate (AsV), 0.1; monomethylarsonic acid (MMA), 3.1; dimethylarsinic acid (DMA), 42.6; arsenobetaine (AsBe), 61.3; arsenocholine, trimethylarsine oxide, and unidentified arsenics (others), 5.2; and total arsenic (total As), 141.3 microgAs/l. The median creatinine-adjusted values were as follows: AsIII, 3.0; AsV, 0.1; MMA, 2.6; DMA, 35.9; AsBe, 52.1; others 3.5; and total As, 114.9 microgAs/g creatinine. Our findings indicate that DMA and AsBe levels in Japan are much higher than those found in Italian and American studies. It appears that the high levels of DMA and AsBe observed in Japan may be due in part to seafood intake. ACGIH and DFG set the BEI and BAT values for occupational arsenic exposure as 35 microgAs/l and 50 microgAs/l, respectively, using the sum of inorganic arsenic (iAs), MMA, and DMA. In the general Japanese population, the sums of these were above 50 microgAs/l in 115 (55%) samples. We therefore recommend excluding DMA concentration in monitoring of iAs exposure.

  9. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  10. Determination of Heavy Metals in Almonds and Mistletoe as a Parasite Growing on the Almond Tree Using ICP-OES or ICP-MS.

    PubMed

    Kamar, Veysi; Dağalp, Rukiye; Taştekin, Mustafa

    2017-12-28

    In this study, the elements of Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Pb, Ti, and Zn were determined in the leaves, fruits, and branches of mistletoe, (Viscum albüm L.), used as a medicinal plant, and in the leaves, branches and barks of almond tree which mistletoe grows on. The aim of the study is to investigate whether the mistletoe are more absorbent than the almond tree in terms of the heavy metal contents and the determination of the amount of the elements penetrated into the mistletoe from the almond tree. ICP-MS (inductively coupled plasma-mass spectrometry) was used for the analysis of As, Cd, Mo, and Pb, whereas ICP-OES (inductively coupled plasma optical emission spectrometry) was used for the other elements. The results obtained were statistically evaluated at 95% confidence level. Within the results obtained in this study, it was determined whether there is a significant difference between metal elements in almond tree and mistletoe, or not. As a result, it was observed that there were higher contents of B, Ba, K, Mg, and Zn in the mistletoe than in the almond tree. K was found much higher than other elements in the mistletoe. On the other hand, Al, As, Ca, Cd, Cr, Cu, Fe, Mo, Ni, Sr, Pb, and Ti contents were determined to be more in almond tree than mistletoe.

  11. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. Copyright 2010 John Wiley & Sons, Ltd.

  12. Quantification and visualization of glutathione S-transferase omega 1 in cells using inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence microscopy.

    PubMed

    Liang, Yong; Jiang, Xin; Tang, Nannan; Yang, Limin; Chen, Haifeng; Wang, Qiuquan

    2015-03-01

    We report a novel activity-based and Cu-free click chemistry (CC) mediated methodology for glutathione S-transferase omega 1 (GSTO1) quantification using species-unspecific isotope dilution inductively coupled plasma mass spectrometry (SUID ICP-MS), in which dibenzylcyclooctyne-modified 2-chloroacetamide (DBCO-ChAcA) was designed and synthesized, meanwhile, as a navigator towards GSTO1 for subsequent N3-DOTA-Eu-tagging via Cu-free CC. Using (153)Eu-SUID ICP-MS coupled with size exclusion chromatography (SEC), the LOD (3σ) of GSTO1 reached 6.9 fmol with an RSD of 2.4% at the 0.1 μM level (n = 5) considering the recovery of GSTO1 on the SEC was 96.5 ± 2.4%. The GSTO1 contents in the cells of human hepatocellular carcinoma C7721 and breast carcinoma MCF-7 as well as normal hepatic C7701 without or with cis-platin administration were quantified to be from 1.2 μg/10,000 cells (n = 3, RSD = 4.5%) corresponding to 1.2 × 10(-2) ng per cell to 4.76 μg/10,000 cells (n = 3, RSD = 2.9%) corresponding to 4.76 × 10(-2) ng per cell. For a comparative study, DBCO-ChAcA-fluor 488-based fluorescence microscopy could not alone visualize GSTO1 in the cells but could together with those from the small SH-containing molecules such as GSH and that from extra N3-fluor 488 in the cells. This activity-based CC-mediated tagging/labeling strategy provided an opportunity for ICP-MS-based targeted protein quantification, and is very much expected to find its applications in biological mechanism study and the subsequent drug design.

  13. Inner chromatogram projection (ICP) for resolution of GC-MS data with embedded chromatographic peaks.

    PubMed

    Wang, Zhi-Guo; Chen, Zeng-Ping; Gong, Fan; Wu, Hai-Long; Yu, Ru-Qin

    2002-05-01

    The chromatographic peak located inside another peak in the time direction is called an embedded or inner peak in contradistinction with the embedding peak, which is called an outer peak. The chemical components corresponding to inner and outer peaks are called inner and outer components, respectively. This special case of co-eluting chromatograms was investigated using chemometric approaches taking GC-MS as an example. A novel method, named inner chromatogram projection (ICP), for resolution of GC-MS data with embedded chromatographic peaks is derived. Orthogonal projection resolution is first utilized to obtain the chromatographic profile of the inner component. Projection of the two-way data matrix columnwise-normalized along the time direction to the normalized profile of the inner component found is subsequently performed to find the selective m/z points, if they exist, which represent the chromatogram of the outer component by itself. With the profiles obtained, the mass spectra can easily be found by means of a least-squares procedure. The results for both simulated data and real samples demonstrate that the proposed method is capable of achieving satisfactory resolution performance not affected by the shapes of chromatograms and the relative positions of the components involved.

  14. Differentiating the Bishop ash bed and related tephra layers by elemental-based similarity coefficients of volcanic glass shards using solution inductively coupled plasma-mass spectrometry (S-ICP-MS)

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.

    2007-01-01

    Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.

  15. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  16. The Influence of Non-spectral Matrix Effects on the Accuracy of Isotope Ratio Measurement by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Barling, J.; Shiel, A.; Weis, D.

    2006-12-01

    Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del

  17. Characterisation of mineralogical forms of barium and trace heavy metal impurities in commercial barytes by EPMA, XRD and ICP-MS.

    PubMed

    Ansari, T M; Marr, I L; Coats, A M

    2001-02-01

    This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.

  18. Comparison of ion chromatographic methods based on conductivity detection, post-column-reaction and on-line-coupling IC-ICP-MS for the determination of bromate.

    PubMed

    Schminke, G; Seubert, A

    2000-02-01

    An established method for the determination of the disinfection by-product bromate is ion chromatography (IC). This paper presents a comparison of three IC methods based on either conductivity detection (IC-CD), a post-column-reaction (IC-PCR-VIS) or the on-line-coupling with inductively coupled plasma mass spectrometry (IC-ICP-MS). Main characteristics of the methods such as method detection limits (MDL), time of analysis and sample pretreatment are compared and applicability for routine analysis is critically discussed. The most sensitive and rugged method is IC-ICP-MS, followed by IC-PCR-VIS. The photometric detection is subject to a minor interference in real world samples, presumably caused by carbonate. The lowest sensitivity is shown by the IC-CD method as slowest method compared, which, in addition, requires a sample pretreatment. The highest amount of information is delivered by IC-PCR-VIS, which allows the simultaneous determination of the seven standard anions and bromate.

  19. Magnetic sulfur-doped porous carbon for preconcentration of trace mercury in environmental water prior to ICP-MS detection.

    PubMed

    Peng, Chuyu; He, Man; Chen, Beibei; Huang, Lijin; Hu, Bin

    2017-11-20

    A novel magnetic sulfur-doped porous carbon (MSPC) was fabricated via a simple one-step carbonization of a mixture of sucrose, basic magnesium sulfate whiskers and Fe 3 O 4 @SiO 2 nanoparticles. Due to the high S content, the prepared MSPC possessed high adsorption capacity for Hg 2+ (343 mg g -1 ) with good selectivity. Based on this, a method coupling magnetic solid phase extraction (MSPE) with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of trace Hg 2+ in environmental water samples. Various parameters such as pH, desorption solvent and its concentration, desorption volume and time, sample volume, and adsorption time that affect the determination have been optimized. Under the optimal conditions, a high enrichment factor of 100-fold was obtained, the limit of detection (LOD) was found to be 0.52 pg mL -1 with a relative standard deviation (c = 10 pg mL -1 , n = 7) of 7.1%, and a good linearity was obtained within the concentration range of 2-5000 pg mL -1 for Hg 2+ . Besides, the proposed method has very fast adsorption/desorption kinetics, target Hg 2+ could be rapidly adsorbed on the prepared MSPC in 2 min and desorbed from the MSPC in 2 min with the assistance of a permanent magnet. Therefore, the proposed method of MSPE-ICP-MS exhibits good application potential in the determination of trace Hg 2+ in environmental water samples.

  20. Molecules and elements for quantitative bioanalysis: The allure of using electrospray, MALDI, and ICP mass spectrometry side-by-side.

    PubMed

    Linscheid, Michael W

    2018-03-30

    slightly adapted workflows, already in use for quantification in bioanalysis. Imaging mass spectrometry (MSI) with MALDI and laser ablation ICP-MS complemented the range of application in recent years. © 2018 Wiley Periodicals, Inc.

  1. Analysis of IAEA Environmental Samples for Plutonium and Uranium by ICP/MS in Support Of International Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.

    2008-05-01

    A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.

  2. A Modern Analog to the Depositional Age Problem: Zircon and Apatite Fission Track and U-Pb Age Distributions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Donelick, H. M.; Donelick, M. B.; Donelick, R. A.

    2012-12-01

    Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.

  3. Silicon Isotopic Measurements in Desolvated Samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Cardinal, D.; Alleman, L.; Ziegler, K.; de Jong, J.; Andre, L.

    2002-12-01

    Silicon, the most ubiquitous rock-forming element presents also a key role in biological processes. In particular, its biogeochemical cycle constitutes one of the most challenging issues in recent years due to its close relationship with the carbon cycle in marine environments (Tréguer et al., 1995; Ragueneau et al., 2000). The most recent silicon isotopic investigations on various natural samples have highlighted the great potential of this (palaeo)-proxy for oceanographers (De La Rocha et al., 1997, 1998). Better understanding the silicon isotope fractionation due to various biogeochemical processes can be achieved by facilitating its measurements through MC-ICPMS technique (De La Rocha et al., 2002; Alleman et al., 2002). In this regard we have developed an original method to analyze silicon isotopes under dry plasma conditions. We demonstrate that coupling a Nu Plasma MC-ICP-MS with a Cetac Aridus desolvator allows the rapid acquisition of natural silicon isotope abundances with high sensitivity and accuracy. To adequately correct for the mass fractionation occurring at the interface between the plasma source and the mass spectrometer line, we combine external normalization using Mg as a dopant with standard-sample bracketing using NBS-28 as the reference. With the desolvating nebulization system, the measurement of 28Si and 29Si isotopes is not hampered by significant interferences. δ29Si values are obtained with an accuracy and repeatability better than 0.1 \\permil. The accuracy has been successfully calibrated against the laser fluorination line technique (De La Rocha et al., 1996; Alleman et al., 2002). We could demonstrate that the isotopic fractionation that might occur in the plasma or the desolvator was adequately corrected by combining Mg isotopes and the sample-standard bracketing procedure. Moreover, the preservation of the Si isotopic signatures of the samples is validated by the different chemical sample treatments required by these two

  4. Hybridation of different chiral separation techniques with ICP-MS detection for the separation and determination of selenomethionine enantiomers: chiral speciation of selenized yeast.

    PubMed

    Méndez, S P; González, E B; Sanz-Medel, A

    2001-05-01

    Enantioseparation and determination of selenomethionine enantiomers in selenized yeast was investigated using chiral separation techniques based on different principles, coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for selenium-specific detection. High performance liquid chromatography (HPLC) on a beta-cyclodestrin (beta-CD) column, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC), gas chromatography (GC) on a Chirasil-L-Val column, and HPLC on a Chirobiotic T column have been investigated as the chiral separation techniques. For HPLC separation on the beta-CD column, and also for CD-MEKC, selenomethionine enantiomers were derivatized with NDA/CN(-). For chiral separation by GC, selenomethionine enantiomers were converted into their N-trifluoroacetyl (TFA)-O-alkyl esters. The developed hybridation methodologies are compared with respect to enantioselectivity, sensitivity and analysis time. The usefulness of the best-suited method [HPLC (Chirobiotic T)-ICP-MS] was demonstrated by its application to the successful chiral speciation of selenium and D-and L-selenomethionine content determination in selenized yeast. Copyright 2001 John Wiley & Sons, Ltd.

  5. Ruthenium in komatiitic chromite

    NASA Astrophysics Data System (ADS)

    Locmelis, Marek; Pearson, Norman J.; Barnes, Stephen J.; Fiorentini, Marco L.

    2011-07-01

    The distinction between Ru in solid solution and Ru-bearing inclusions is essential for the predictive modeling of platinum-group element (PGE) geochemistry in applications such as the lithogeochemical exploration for magmatic sulfide deposits in komatiites. This study investigates the role of chromite in the fractionation of Ru in ultramafic melts by analyzing chromite grains from sulfide-undersaturated komatiites and a komatiitic basalt from the Yilgarn Craton in Western Australia. In situ analysis using laser ablation ICP-MS yields uniform Ru concentrations in chromites both within-grain and on a sample scale, with concentrations between 220 and 540 ppb. All other platinum-group elements are below the detection limit of the laser ablation ICP-MS analysis. Carius tube digestion isotope dilution ICP-MS analysis of chromite concentrates confirms the accuracy of the in-situ method. Time resolved laser ablation ICP-MS analyses have identified the presence of sub-micron Ir-bearing inclusions in some chromite grains from the komatiitic basalt. However, Ru-bearing inclusions have not been recognized in the analyzed chromites and this combined with the in situ data suggests that Ru exists in solid solution in the crystal lattice of chromite. These results show that chromite can control the fractionation and concentration of Ru in ultramafic systems.

  6. Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS.

    PubMed

    Taboada-López, María Vanesa; Iglesias-López, Sara; Herbello-Hermelo, Paloma; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2018-08-14

    Applicability of single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) using dwell times equal to or shorter than 100 μs has been tested for assessing titanium dioxide nanoparticles (TiO 2 NPs) in bivalve mollusks. TiO 2 NPs isolation from fresh mollusk tissues was achieved by ultrasound assisted enzymatic hydrolysis procedure using a pancreatin/lipase mixture. Optimum extraction conditions imply ultrasonication (60% amplitude) for 10 min, and 7.5 mL of a solution containing 3.0 g L -1 of pancreatin and lipase (pH 7.4). The developed method was found to be repeatable (repeatability of 17% for the over-all procedure, TiO 2 NPs concentration of 5.33 × 10 7  ± 8.89 × 10 6 , n = 11), showing a limit of detection of 5.28 × 10 6 NPs g -1 , and a limit of detection in size of 24.4-30.4 nm, based on the 3σ criteria, and on the 3σ/5 σ criteria, respectively. The analytical recovery within the 90-99% range (use of TiO 2 NPs standards of 50 nm at 7 and 14 μg L -1 as Ti). Several bivalve mollusks (clams, cockles, mussels, razor clams, oysters and variegated scallops) were analyzed for total titanium (ICP-MS after microwave assisted acid digestion), and for TiO 2 NPs by the proposed method. TiO 2 NPs concentrations were within the 2.36 × 10 7 -1.25 × 10 8 NPs g -1 range, and the most frequent sizes were from 50 to 70 nm. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The potential of inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous determination of trace elements in whole blood, plasma and serum.

    PubMed

    Krachler, M; Irgolic, K J

    1999-11-01

    The advantages accruing to biochemical and clinical investigations from a method that allows the simultaneous quantification (RSD < or = 10%) of many elements in blood, plasma, and serum at concentrations equal to one-hundredth of the lower limits of the normal ranges are undeniable. The suitability of inductively coupled argon plasma low-resolution quadrupole mass spectrometry (ICP-MS), a simultaneous method with low detection limits, is evaluated for the quantification of inorganic constituents in whole blood, plasma, and serum with consideration of the dilution associated with the mineralization of the samples, of isobaric and polyatomic interferences and of normal ranges. Of the 3 bulk elements, the 3 major electrolytes, the 15 essential elements, the 8 toxic elements, the 4 therapeutic elements, and the 14 elements of potential interest (total of 47 elements) only 7 elements (Ca, Cu, K, Mg, Rb, Sr, Zn) can be simultaneously quantified under these rigorous conditions in serum and only 8 elements (additional element Pb) in whole blood. Quantification of elements in the Seronorm Standards "Whole Blood" and "Serum" showed, that this list of simultaneously determinable elements in these matrices is reasonable. Although this list is disappointingly short, the number of elements determinable simultaneously by ICP-MS is still larger than that by ICP-AES or GFAAS. Improved detectors, more efficient nebulizers, avoidance of interferences, better instrument design, and high-resolution mass spectrometers promise to increase the number of elements that can be determined simultaneously.

  8. Solid matrix transformation and tracer addition using molten ammonium bifluoride salt as a sample preparation method for laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E

    2017-09-08

    Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.

  9. Studies on the content of heavy metals in Aries River using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voica, Cezara, E-mail: Cezara.Voica@itim-cj.ro; Kovacs, Melinda, E-mail: Cezara.Voica@itim-cj.ro; Feher, Ioana, E-mail: Cezara.Voica@itim-cj.ro

    2013-11-13

    Among the industrial branches, the mining industry has always been an important source of environmental pollution, both aesthetically and chemically. Through this paper results of ICP-MS characterization of Aries River Basin are reported. Mining activities from this area has resulted in contamination of environment and its surrounding biota. This is clearly evidenced in analyzed water samples, especially from Baia de Aries site where increased amount of trace elements as Cr, Zn, As, Se, Cd, Pb and U were founded. Also in this site greater amount of rare earth elements was evidenced also. Through monitoring of Aries River from other non-miningmore » area it was observed that the quantitative content of heavy metals was below the maximum permissible levels which made us to conclude that the water table wasn't seriously affected (which possibly might be attributed to the cessation of mining activities in this area from a few years ago)« less

  10. 99Tc atom counting by quadrupole ICP-MS. Optimisation of the instrumental response

    NASA Astrophysics Data System (ADS)

    Más, José L.; Garcia-León, Manuel; Bolívar, Juan P.

    2002-05-01

    In this paper, an extensive work is done on the specific tune of a conventional ICP-MS for 99Tc atom counting. For this, two methods have been used and compared: the partial variable control method and the 5D Simplex method. Instrumental limits of detection of 0.2 and 0.8 ppt, respectively, were obtained. They are noticeably lower than that found with the automatic tune method of the spectrometer, 47 ppt, which shows the need of a specific tune when very low levels of 99Tc have to be determined. A study is presented on the mass interferences for 99Tc. Our experiments show that the formation of polyatomic atoms or refractory oxides as well as 98Mo hydrides seem to be irrelevant for 99Tc atom counting. The opposite occurs with the presence of isobaric interferences, i.e. 99Ru, and the effect of abundance sensitivity, or low-mass resolution, which can modify the response at m/ z=99 to a non-negligible extent.

  11. Investigating the adduct formation of organic mercury species with carbonic anhydrase and hemoglobin from human red blood cell hemolysate by means of LC/ESI-TOF-MS and LC/ICP-MS.

    PubMed

    Hogeback, Jens; Schwarzer, Miriam; Wehe, Christoph A; Sperling, Michael; Karst, Uwe

    2016-01-01

    The interaction of mercury species with human erythrocytes is studied to investigate possible high molecular binding partners for mercury species. Human blood hemolysate was spiked with methylmercury and investigated by means of liquid chromatography (LC) coupled to electrospray ionization time of flight mass spectrometry (ESI-ToF-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Beside adduct formation of mercury species with hemoglobin, the main compound of the erythrocytes, mercury binding to the enzyme carbonic anhydrase was revealed. Due to an enzymatic digest of the protein-mercury adduct, the binding site at the free thiol group of the protein was identified. These results indicate that carbonic anhydrase might play a role in mercury toxicity.

  12. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-01-01

    The trace elements Ag, As, Au, B, Ba, Be, Bi, Cd, Ce, Co, Cs, Cu, Ga, Hf, Hg, In, La, Mn, Mo, Ni, Pb, Pd, Rb, Rh, Ru, Sb, Se, Sn, Sr, Te, Th, Tl, U, V, W, Y and Zr were determined in 130 human blood samples from occupationally non-exposed volunteers living in the greater area of Bremen in northern Germany. The blood samples were collected in lithium heparin monovettes developed for trace metal determination and were analysed by inductively coupled plasma mass spectrometry (ICP-MS) with an octopole-based collision/reaction cell. For sample introduction into the ICP, the blood samples were diluted 1/10 (V/V) with a 0.1% Triton-X-100 and 0.5% (V/V) ammonia solution. The method validation of our developed routine method is described for all 37 elements and results about internal and external quality assurance are discussed. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews, including smoking habits, seafood consumption and the type of dental alloys in the teeth. Mean values, geometric mean values, ranges and selected percentiles of all elemental concentrations in human blood are presented, which helps toxicologists and clinical chemists planning research about exposition to metals and health effects caused by exposition to metals.

  13. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    NASA Astrophysics Data System (ADS)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.

    We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  14. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  15. ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2018-01-01

    Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:

  16. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS.

    PubMed

    Wang, Bo-Shian; You, Chen-Feng; Huang, Kuo-Fang; Wu, Shein-Fu; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Lin, Pei-Ying

    2010-09-15

    An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a 'micro-sublimation' technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the 'pseudo internal' normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the delta(11)B of the reference coral JCp-1 was 24.22+/-0.28 per thousand, corresponding to seawater pH based on the coral delta(11)B-pH function. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. APPLICATION OF SAMPLE PRE-OXIDATION OF ARSENITE IN HUMAN URINE PRIOR TO SPECIATON VIA ON-LINE PHOTO-OXIDATION WITH MEMBRANE HYDRIDE GENRATION AND ICP-MS DETECTION

    EPA Science Inventory

    A pre-oxidation procedure which converts arsenite (AS(III)) to arsenate (As(VVV)) was investigated in urinary arsenic speciation prior to on-line photo-oxidation hydride-generation with ICP-MS detection. This sample pre-oxidation method eliminates As(III) and As(V) preservation c...

  18. Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    PubMed Central

    Platzner, Thomas I.; Segal, Irina

    2007-01-01

    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment. PMID:17962922

  19. Investigating the influence of standard staining procedures on the copper distribution and concentration in Wilson's disease liver samples by laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2017-12-01

    The influence of rhodanine and haematoxylin and eosin (HE) staining on the copper distribution and concentration in liver needle biopsy samples originating from patients with Wilson's disease (WD), a rare autosomal recessive inherited disorder of the copper metabolism, is investigated. In contemporary diagnostic of WD, rhodanine staining is used for histopathology, since rhodanine and copper are forming a red to orange-red complex, which can be recognized in the liver tissue using a microscope. In this paper, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is applied for the analysis of eight different WD liver samples. Apart from a spatially resolved elemental detection as qualitative information, this LA-ICP-MS method offers also quantitative information by external calibration with matrix-matched gelatine standards. The sample set of this work included an unstained and a rhodanine stained section of each WD liver sample. While unstained sections of WD liver samples showed very distinct structures of the copper distribution with high copper concentrations, rhodanine stained sections revealed a blurred copper distribution with significant decreased concentrations in a range from 20 to more than 90%. This implies a copper removal from the liver tissue by complexation during the rhodanine staining. In contrast to this, a further HE stained sample of one WD liver sample did not show a significant decrease in the copper concentration and influence on the copper distribution in comparison to the unstained section. Therefore, HE staining can be combined with the analysis by means of LA-ICP-MS in two successive steps from one thin section of a biopsy specimen. This allows further information to be gained on the elemental distribution by LA-ICP-MS additional to results obtained by histological staining. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Fast and accurate determination of K, Ca, and Mg in human serum by sector field ICP-MS.

    PubMed

    Yu, Lee L; Davis, W Clay; Nuevo Ordonez, Yoana; Long, Stephen E

    2013-11-01

    Electrolytes in serum are important biomarkers for skeletal and cellular health. The levels of electrolytes are monitored by measuring the Ca, Mg, K, and Na in blood serum. Many reference methods have been developed for the determination of Ca, Mg, and K in clinical measurements; however, isotope dilution thermal ionization mass spectrometry (ID-TIMS) has traditionally been the primary reference method serving as an anchor for traceability and accuracy to these secondary reference methods. The sample matrix must be separated before ID-TIMS measurements, which is a slow and tedious process that hindered the adoption of the technique in routine clinical measurements. We have developed a fast and accurate method for the determination of Ca, Mg, and K in serum by taking advantage of the higher mass resolution capability of the modern sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Each serum sample was spiked with a mixture containing enriched (44)Ca, (26)Mg, and (41)K, and the (42)Ca(+):(44)Ca(+), (24)Mg(+):(26)Mg(+), and (39)K(+):(41)K(+) ratios were measured. The Ca and Mg ratios were measured in medium resolution mode (m/Δm ≈ 4 500), and the K ratio in high resolution mode (m/Δm ≈ 10 000). Residual (40)Ar(1)H(+) interference was still observed but the deleterious effects of the interference were minimized by measuring the sample at K > 100 ng g(-1). The interferences of Sr(++) at the two Ca isotopes were less than 0.25 % of the analyte signal, and they were corrected with the (88)Sr(+) intensity by using the Sr(++):Sr(+) ratio. The sample preparation involved only simple dilutions, and the measurement using this sample preparation approach is known as dilution-and-shoot (DNS). The DNS approach was validated with samples prepared via the traditional acid digestion approach followed by ID-SF-ICP-MS measurement. DNS and digested samples of SRM 956c were measured with ID-SF-ICP-MS for quality assurance, and the results (mean

  1. Determination of iodine and molybdenum in milk by quadrupole ICP-MS.

    PubMed

    Reid, Helen J; Bashammakh, Abdul A; Goodall, Phillip S; Landon, Mark R; O'Connor, Ciaran; Sharp, Barry L

    2008-03-15

    A reliable method for the determination of iodine and molybdenum in milk samples, using alkaline digestion with tetramethylammonium hydroxide and hydrogen peroxide, followed by quadrupole ICP-MS analysis, has been developed and tested using certified reference materials. The use of He+O2 (1.0 ml min(-1) and 0.6 ml min(-1)) in the collision-reaction cell of the mass spectrometer to remove (129)Xe+-- initially to enable the determination of low levels of 129I--also resulted in the quantitative conversion of Mo(+) to MoO2+ which enabled the molybdenum in the milk to be determined at similar mass to the iodine with the use of Sb as a common internal standard. In order to separate and pre-concentrate iodine at sub microg l(-1) concentrations, a novel method was developed using a cation-exchange column loaded with Pd2+ and Ca2+ ions to selectively retain iodide followed by elution with a small volume of ammonium thiosulfate. This method showed excellent results for aqueous iodide solutions, although the complex milk digest matrix made the method unsuitable for such samples. An investigation of the iodine species formed during oxidation and extraction of milk sample digests was carried out with a view to controlling the iodine chemistry.

  2. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samplesmore » and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.« less

  3. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level Mg and Ca.

    PubMed

    Wang, Bo-Shian; Lee, Chih-Ping; Ho, Tung-Yuan

    2014-10-01

    A fully automated high pressure pretreatment system with Nobias Chelate-PA1 resin (PA1) was developed for trace metal determination by ICP-MS in natural waters. By varying the concentrations of Mg and Ca to mimic the concentrations in the eluate obtained by PA1 or iminodiacetate type resins, the overall analytical performance of the system was assessed for the determination of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Cd, Ag, Pb and REE. Comparing with the low mM level Mg and Ca (both ranging from 1 to 4mM) eluted by iminodiacetate type resins, the eluate obtained by PA1 contains sub-μM level Mg and Ca, which remarkably decrease matrix effect in ICP-MS analysis and significantly improve the analytical performance. With recovery better than 90% for most the trace metals examined, the accuracy was further verified through the analysis of five natural water reference materials with salinity spanning from 0 to 35‰. We have successfully applied the pretreatment system to determine trace metals in the seawater samples collected in the Western Philippine Sea through Taiwan GEOTRACES cruise. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Destructive versus non-destructive methods for geochemical analyses of ceramic artifacts: comparison of portable XRF and ICP-MS data on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain

    NASA Astrophysics Data System (ADS)

    Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.

    2013-04-01

    The study of bi-phase (i.e. matrix and clasts) geochemical composition of ceramic artifacts is a very powerful tool in fingerprinting the raw materials used by ancient manufacturers (clay sources, tempering materials, coloring agents, etc.), as well as in understanding the physical parameters of the manufacturing techniques. Reliable datasets often require the deployment of destructive techniques that will irremediably damage the artifact. Recent advances in portable X-ray fluorescence instrumentation (pXRF) allow for quick measurements of a range of chemical elements that not too long ago were available only through complicated and often destructive means of analytical chemistry (instrumental neutron activation analysis - INAA, inductively coupled plasma mass spectrometry - ICP-MS, direct coupled plasma-optical emission spectroscopy - DCP-OES etc.). In this contribution we present a comparison of datasets acquired by means of pXRF, DCP-OES, and ICP-MS on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain. The samples chosen for this study are fine grained, with very well sorted mineral components, and lack any visible organic material fragments. The sample preparation for ICP-MS and DCP-OES analyses was carried out on powdered samples, by using LiBO2 flux fusion and Ge (for the DCP-OES) and In (for ICP-MS) were used as internal standards. The measurements were calibrated against certified reference materials ranging from shales to rhyolites (SGR-1, SDo-1, JA-2, and JR-1) and performed at Univerity of South Florida's Center for Geochemical Analyses. The analytical errors for major elements was smaller than 5 %, while for selected trace elements the error was usually smaller than 3 %. The same set of elements was measured on the same samples at University of South Florida's Anthropology Department using a pXRF device equipped with obsidian filter. Each sample was measured three times and the values were averaged. Two certified reference materials (NIST-612

  5. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo-Si-B coatings using laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cakara, Anja; Bonta, Maximilian; Riedl, Helmut; Mayrhofer, Paul H.; Limbeck, Andreas

    2016-06-01

    Nowadays, for the production of oxidation protection coatings in ultrahigh temperature environments, alloys of Mo-Si-B are employed. The properties of the material, mainly the oxidation resistance, are strongly influenced by the Si to B ratio; thus reliable analytical methods are needed to assure exact determination of the material composition for the respective applications. For analysis of such coatings, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been reported as a versatile method with no specific requirements on the nature of the sample. However, matrix effects represent the main limitation of laser-based solid sampling techniques and usually the use of matrix-matched standards for quantitative analysis is required. In this work, LA-ICP-MS analysis of samples with known composition and varying Mo, Si and B content was carried out. Between known analyte concentrations and derived LA-ICP-MS signal intensities no linear correlation could be found. In order to allow quantitative analysis independent of matrix effects, a multiple linear regression model was developed. Besides the three target analytes also the signals of possible argides (40Ar36Ar and 98Mo40Ar) as well as detected impurities of the Mo-Si-B coatings (108Pd) were considered. Applicability of the model to unknown samples was confirmed using external validation. Relative deviations from the values determined using conventional liquid analysis after sample digestion between 5 and 10% for the main components Mo and Si were observed.

  6. Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS

    NASA Astrophysics Data System (ADS)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2018-01-01

    TiO2 is ubiquitously present in a wide range of everyday items, both as an intentionally incorporated additive and naturally occurring constituent. It can be found in a wide range of consumer products, including personal care products, food contact materials, and textiles. Normal use of these products may lead to consumer and/or environmental exposure to TiO2, possibly in form of nanoparticles. The aim of this study is to perform a leaching test and apply state-of-the-art methods to investigate nano-TiO2 and total Ti release from five types of commercially available conventional textiles: table placemats, wet wipes, microfiber cloths, and two types of baby bodysuits, with Ti contents ranging from 2.63 to 1448 μg/g. Released particle analysis was performed using conventional and single particle inductively coupled plasma mass spectrometry (ICP-MS and spICP-MS), in conjunction with transmission electron microscopy (TEM), to measure total and particulate TiO2 release by mass and particle number, as well as size distribution. Less than 1% of the initial Ti content was released over 24 h of leaching, with the highest releases reaching 3.13 μg/g. The fraction of nano-TiO2 released varied among fabric types and represented 0-80% of total TiO2 release. Particle mode sizes were 50-75 nm, and TEM imaging revealed particles in sizes of 80-200 nm. This study highlights the importance of using a multi-method approach to obtain quantitative release data that is able to provide an indication regarding particle number, size distribution, and mass concentration, all of which can help in understanding the fate and exposure of nanoparticles.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, Travis

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios inmore » particulate samples.« less

  8. Monitoring of metallic contaminants in energy drinks using ICP-MS.

    PubMed

    Kilic, Serpil; Cengiz, Mehmet Fatih; Kilic, Murat

    2018-03-09

    In this study, an improved method was validated for the determination of some metallic contaminants (arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), copper (Cu), Mn, and antimony (Sb)) in energy drinks using inductive coupled plasma mass spectrometry (ICP-MS). The validation procedure was applied for the evaluation of linearity, repeatability, recovery, limit of detection, and quantification. In addition, to verify the trueness of the method, it was participated in an interlaboratory proficiency test for heavy metals in soft drink organized by the LGC (Laboratory of the Government Chemist) Standard. Validated method was used to monitor for the determination of metallic contaminants in commercial energy drink samples. Concentrations of As, Cr, Cd, Pb, Fe, Ni, Cu, Mn, and Sb in the samples were found in the ranges of 0.76-6.73, 13.25-100.96, 0.16-2.11, 9.33-28.96, 334.77-937.12, 35.98-303.97, 23.67-60.48, 5.45-489.93, and 0.01-0.42 μg L -1 , respectively. The results were compared with the provisional guideline or parametric values of the elements for drinking waters set by the WHO (World Health Organization) and EC (European Commission). As, Cd, Cu, and Sb did not exceed the WHO and EC provisional guideline or parametric values. However, the other elements (Cr, Pb, Fe, Ni, and Mn) were found to be higher than their relevant limits at various levels.

  9. Measurement of 240Pu/239Pu isotopic ratios in soils from the Marshall Islands using ICP-MS.

    PubMed

    Muramatsu, Y; Hamilton, T; Uchida, S; Tagami, K; Yoshida, S; Robison, W

    2001-10-20

    Nuclear weapons tests conducted by the United States in the Marshall Islands produced significant quantities of regional or tropospheric fallout contamination. Here we report on some preliminary inductively coupled plasma-mass spectrometry (ICP-MS) measurements of plutonium isolated from seven composite soil samples collected from Bikini, Enewetak and Rongelap Atolls in the northern Marshall Islands. These data show that 240Pu/239Pu isotopic signatures in surface soils from the Marshall Island vary significantly and could potentially be used to help quantify the range and extent of fallout deposition (and associated impacts) from specific weapons tests. 137Cs and 60Co were also determined on the same set of soil samples for comparative purposes.

  10. Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS.

    PubMed

    Vidmar, Janja; Loeschner, Katrin; Correia, Manuel; Larsen, Erik H; Manser, Pius; Wichser, Adrian; Boodhia, Kailen; Al-Ahmady, Zahraa S; Ruiz, Jaimé; Astruc, Didier; Buerki-Thurnherr, Tina

    2018-06-15

    With the extensive use of silver nanoparticles (AgNPs) in various consumer products their potential toxicity is of great concern especially for highly sensitive population groups such as pregnant women and even the developing fetus. To understand if AgNPs are taken up and cross the human placenta, we studied their translocation and accumulation in the human ex vivo placenta perfusion model by single particle ICP-MS (spICP-MS). The impact of different surface modifications on placental transfer was assessed by AgNPs with two different modifications: polyethylene glycol (AgPEG NPs) and sodium carboxylate (AgCOONa NPs). AgNPs and ionic Ag were detected in the fetal circulation in low but not negligible amounts. Slightly higher Ag translocation across the placental barrier for perfusion with AgPEG NPs and higher AgNP accumulation in placental tissue for perfusion with AgCOONa NPs were observed. Since these AgNPs are soluble in water, we tried to distinguish between the translocation of dissolved and particulate Ag. Perfusion with AgNO3 revealed the formation of Ag containing NPs in both circulations over time, of which the amount and their size in the fetal circulation were comparable to those from perfusion experiments with both AgNP types. Although we were not able to clarify whether intact AgNPs and/or Ag precipitates from dissolved Ag cross the placental barrier, our study highlights that uptake of Ag ions and/or dissolution of AgNPs in the tissue followed by re-precipitation in the fetal circulation needs to be considered as an important pathway in studies of AgNP translocation across biological barriers.

  11. A validated inductively coupled plasma mass spectrometry (ICP-MS) method for the quantification of total platinum content in plasma, plasma ultrafiltrate, urine and peritoneal fluid.

    PubMed

    Lemoine, Lieselotte; Thijssen, Elsy; Noben, Jean-Paul; Adriaensens, Peter; Carleer, Robert; Speeten, Kurt Van der

    2018-04-15

    Oxaliplatin is a platinum (Pt) 1 containing antineoplastic agent that is applied in current clinical practice for the treatment of colon and appendiceal neoplasms. A fully validated, highly sensitive, high throughput inductively coupled plasma mass spectrometry (ICP-MS) method is provided to quantify the total Pt content in plasma, plasma ultrafiltrate, urine and peritoneal fluid. In this ICP-MS approach, the only step of sample preparation is a 1000-fold dilution in 0.5% nitric acid, allowing the analysis of 17 samples per hour. Detection of Pt was achieved over a linear range of 0.01-100 ng/mL. The limit of quantification was 18.0 ng/mL Pt in plasma, 8.0 ng/mL in ultrafiltrate and 6.1 ng/mL in urine and peritoneal fluid. The ICP-MS method was further validated for inter-and intraday precision and accuracy (≤15%), recovery, robustness and stability. Short-term storage of the biofluids, for 14 days, can be performed at -4 °C, -24 °C and -80 °C. As to long-term stability, up to 5 months, storage at -80 °C is encouraged. Furthermore, a timeline assessing the total and unbound Pt fraction in plasma and ultrafiltrate over a period of 45 h is provided. Following an incubation period of 5 h at 37 °C, 19-21% of Pt was recovered in the ultrafiltrate, emphasizing the extensive and rapid binding of oxaliplatin-derived Pt to plasma proteins. The described method can easily be implemented in a routine setting for pharmacokinetic studies in patients treated with oxaliplatin-based hyperthermic intraperitoneal perioperative chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Speciation of inorganic tellurium from seawater by ICP-MS following magnetic SPE separation and preconcentration.

    PubMed

    Huang, Chaozhang; Hu, Bin

    2008-03-01

    A new method was developed for the speciation of inorganic tellurium species in seawater by inductively coupled plasma-MS (ICP-MS) following selective magnetic SPE (MSPE) separation. Within the pH range of 2-9, tellurite (Te(IV)) could be quantitatively adsorbed on gamma-mercaptopropyltrimethoxysilane (gamma-MPTMS) modified silica-coated magnetic nanoparticles (MNPs), while the tellurate (Te(VI)) was not retained and remained in solution. Without filtration or centrifugation, these tellurite-loaded MNPs could be separated easily from the aqueous solution by simply applying external magnetic field. The Te(IV) adsorbed on the MNPs could be recovered quantitatively using a solution containing 2 mol/L HCl and 0.03 mol/L K2Cr2O7. Te(VI) was reduced to Te(IV) by L-cysteine prior to the determination of total tellurium, and its assay was based on subtracting Te(IV) from total tellurium. The parameters affecting the separation were investigated systematically and the optimal separation conditions were established. Under the optimal conditions, the LOD obtained for Te(IV) was 0.079 ng/L, while the precision was 7.0% (C = 10 ng/L, n = 7). The proposed method was successfully applied to the speciation of inorganic tellurium in seawater.

  13. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) of live plant tissue with plume capture by continuous flow solvent probe.

    PubMed

    O'Brien, Jeremy T; Williams, Evan R; Holman, Hoi-Ying N

    2015-03-03

    A new experimental setup for spatially resolved ambient infrared laser ablation-mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is ∼50%. This transfer efficiency is significantly higher than values reported for similar techniques. Laser desorption does not induce fragmentation of biomolecules in droplets containing bradykinin, leucine enkephalin and myoglobin, but loss of the heme group from myoglobin occurs as a result of the denaturing solution used. An application of AIRLAB-MS to biological materials is demonstrated for tobacco leaves. Chemical components are identified from the spatially resolved mass spectra of the ablated plant material, including nicotine and uridine. The reproducibility of measurements made using AIRLAB-MS on plant material was demonstrated by the ablation of six closely spaced areas (within 2 × 2 mm) on a young tobacco leaf, and the results indicate a standard deviation of <10% in the uridine signal obtained for each area. The spatial distribution of nicotine was measured for selected leaf areas and variation in the relative nicotine levels (15-100%) was observed. Comparative analysis of the nicotine distribution was demonstrated for two tobacco plant varieties, a genetically modified plant and its corresponding wild-type, indicating generally higher nicotine levels in the mutant.

  14. Study on quantitative analysis of Ti, Al and V in clinical soft tissues after placing the dental implants by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sajnóg, Adam; Hanć, Anetta; Makuch, Krzysztof; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2016-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for in-situ quantitative analysis of oral mucosa of patients before and after implantation with titanium implants and a closing screw based on Ti6Al4V alloy. Two calibration strategies were applied, both were based on matrix matched solid standards with analytes addition. A novel approach was the application of powdered egg white proteins as a matrix material which have a similar composition to the examined tissue. In the another approach, certified reference material Bovine Muscle ERM-BB184 was used. The isotope 34S was found to be the most appropriate as an internal standard since it is homogenously distributed in the examined tissues and resulted in lower relative standard deviation values of signal of analytes of interest. Other isotopes (13C, 26Mg, 43Ca) were also evaluated as potential internal standards. The analytical performance parameters and microwave digestion of solid standards followed by solution nebulization ICP-MS analysis proved that both calibration methods are fit for their intended purpose. The LA-ICP-MS analysis on the surface of tissues after the implantation process revealed an elevated content of elements in comparison to the control group. Analytes are distributed inhomogeneously and display local maximal content of Ti up to ca. 900 μg g- 1, Al up to ca. 760 μg g- 1 and for V up to 160 μg g- 1.

  15. Reversed Phase Column HPLC-ICP-MS Conditions for Arsenic Speciation Analysis of Rice Flour.

    PubMed

    Narukawa, Tomohiro; Matsumoto, Eri; Nishimura, Tsutomu; Hioki, Akiharu

    2015-01-01

    New measurement conditions for arsenic speciation analysis of rice flour were developed using HPLC-ICP-MS equipped with a reversed phase ODS column. Eight arsenic species, namely, arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide (TMAO), tetramethylarsonium (TeMA), arsenobetaine (AsB) and arsenocholine (AsC), were separated and determined under the proposed conditions. In particular, As(III) and MMAA and DMAA and AsB were completely separated using a newly proposed eluent containing ammonium dihydrogen phosphate. Importantly, the sensitivity changes, in particular those of As(V) and As(III) caused by coexisting elements and by complex matrix composition, which had been problematical in previously reported methods, were eliminated. The new eluent can be applied to C8, C18 and C30 ODS columns with the same effectiveness and with excellent repeatability. The proposed analytical method was successfully applied to extracts of rice flour certified reference materials.

  16. Laser ablation in analytical chemistry - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less

  17. Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water

    NASA Astrophysics Data System (ADS)

    Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan

    2018-04-01

    In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.

  18. Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS.

    PubMed

    Lidén, Carola; Skare, Lizbet; Lind, Birger; Nise, Gun; Vahter, Marie

    2006-05-01

    There is a great need to accurately assess skin exposure to contact allergens. We have developed a technique for assessment of skin exposure to nickel, chromium and cobalt using acid wipe sampling by cellulose wipes with 1% nitric acid. Chemical analysis was performed by inductively coupled plasma mass spectrometry (ICP-MS). The recovery of nickel, chromium and cobalt from arms and palms was 93%. The analytical result is expressed in terms of mass per unit area (microg/cm(2)). The developed acid wipe sampling technique is suitable for determination of nickel, chromium and cobalt deposited on the skin. The technique may be used in workplace studies, in studies of individuals in the general population, in dermatitis patients, in identification of risk groups, as well as in developing preventive strategies and in follow-up after intervention.

  19. Simultaneous detection of MCF-7 and HepG2 cells in blood by ICP-MS with gold nanoparticles and quantum dots as elemental tags.

    PubMed

    Li, Xiaoting; Chen, Beibei; He, Man; Wang, Han; Xiao, Guangyang; Yang, Bin; Hu, Bin

    2017-04-15

    In this work, we demonstrate a novel method based on inductively coupled plasma mass spectrometry (ICP-MS) detection with gold nanoparticles (Au NPs) and quantum dots (QDs) labeling for the simultaneous counting of two circulating tumor cell lines (MCF-7 and HepG2 cells) in human blood. MCF-7 and HepG2 cells were captured by magnetic beads coupled with anti-EpCAM and then specifically labeled by CdSe QDs-anti-ASGPR and Au NPs-anti-MUC1, respectively, which were used as signal probes for ICP-MS measurement. Under the optimal experimental conditions, the limits of detection of 50 MCF-7, 89 HepG2 cells and the linear ranges of 200-40000 MCF-7, 300-30000 HepG2 cells were obtained, and the relative standard deviations for seven replicate detections of 800 MCF-7 and HepG2 cells were 4.6% and 5.7%, respectively. This method has the advantages of high sensitivity, low sample consumption, wide linear range and can be extended to the simultaneous detection of multiple CTC lines in human peripheral blood. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. RN12 and RN30 Epidote anlayses

    DOE Data Explorer

    Andrew Fowler

    2015-01-01

    Results for laser ablation measurement of reare earth elments and electron microprobe analysis of major elments in hydrothermal epidote. Laser ablation measurements were completed using an Agilent 7700 quadrupole ICP-MS coupled with 193nm Photon Instruments Excimer laser.

  1. Liquid chromatography coupled with inductively coupled plasma mass spectrometry in the pharmaceutical industry: selected examples.

    PubMed

    Marshall, Peter S; Leavens, Bill; Heudi, Olivier; Ramirez-Molina, Cesar

    2004-11-12

    Both LC and capillary LC (CapLC) have been successfully interfaced with inductively coupled plasma mass spectrometry (ICP-MS). Gradients of acetonitrile and aqueous based solvents have been employed to separate several compounds of pharmaceutical interest. This paper will describe four application areas in the pharmaceutical industry, and examples will be shown where CapLC, LC and gel electrophoresis via laser ablation have been coupled with ICP-MS. The four areas highlighted in this paper are: (1) the use of derivatisation reactions to "make the invisible visible". Methods involving derivatisations with copper and iron will be described that can be used for the analysis of amines and carboxylic acids by ICP-MS. (2) The profiling of metal ion content (in particular bromine) in biological samples such as human plasma, this study will focus on the metabolism of bromine-labelled peptides (e.g. substance P). (3) The analysis of materials derived from single, solid-phase beads used in combinatorial chemistry, and (4) also discussed will be our findings from investigations into the use of laser ablation ICP-MS on the determination of protein phosphorylation on electrophoresis gel blots.

  2. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues.

    PubMed

    Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M Laird

    2016-09-01

    Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85-115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze-thaw and for up to three months. © The Author(s) 2016.

  3. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues

    PubMed Central

    Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M. Laird

    2016-01-01

    Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85–115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze–thaw and for up to three months. PMID:27527103

  4. Precise Analysis of Gallium Isotopic Composition by MC-ICP-MS.

    PubMed

    Yuan, Wei; Chen, Jiu Bin; Birck, Jean-Louis; Yin, Zuo Ying; Yuan, Sheng Liu; Cai, Hong Ming; Wang, Zhong Wei; Huang, Qiang; Wang, Zhu Hong

    2016-10-04

    Though an isotope approach could be beneficial for better understanding the biogeochemical cycle of gallium (Ga), an analogue of the monoisotopic element aluminum (Al), the geochemistry of Ga isotopes has not been widely elaborated. We developed a two-step method for purifying Ga from geological (biological) samples for precise measurement of Ga isotope ratio using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Ga was thoroughly separated from other matrix elements using two chromatographic columns loaded with AG 1-X4 and Ln-spec resin, respectively. The separation method was carefully calibrated using both synthetic and natural samples and validated by assessing the extraction yield (99.8 ± 0.8%, 2SD, n = 23) and the reproducibility (2SD uncertainty better than 0.05‰, n = 116) of the measured isotopic ratio (expressed as δ 71 Ga). The validation of the whole protocol, together with instrumental analysis, was confirmed by the investigation of the matrix effect, the result of a standard addition experiment, and the comparison of Ga isotope measurement on two mass spectrometers-Nu Plasma II and Neptune Plus. Although the measurements using the sample-standard bracketing (SSB) correction method on both instruments resulted in identical δ 71 Ga values for reference materials, the modified empirical external normalization (MEEN) method gave relatively better precision compared to SSB on Neptune. Our preliminary results showed large variation of δ 71 Ga (up to 1.83‰) for 10 standards, with higher values in industrially produced materials, implying potential application of Ga isotopes.

  5. Examination of correlation between histidine and nickel absorption by Morus L., Robinia pseudoacacia L. and Populus nigra L. using HPLC-MS and ICP-MS.

    PubMed

    Ozen, Sukran Akkus; Yaman, Mehmet

    2016-08-02

    In this study, HPLC-MS and ICP-MS methods were used for the determination of histidine and nickel in Morus L., Robinia pseudoacacia L., and Populus nigra L. leaves taken from industrial areas including Gaziantep and Bursa cities. In the determination of histidine by HPLC-MS, all of the system parameters such as flow rate of mobile phase, fragmentor potential, injection volume and column temperature were optimized and found to be 0.2 mL min(-1), 70 V, 15 µL, and 20°C, respectively. Under the optimum conditions, histidine was extracted from plant sample by distilled water at 90°C for 30 min. Concentrations of histidine as mg kg(-1) were found to be between 2-9 for Morus L., 6-13 for Robinia pseudoacacia L., and 2-10 for Populus nigra L. Concentrations of nickel were in the ranges of 5-10 mg kg(-1) for Morus L., 3-10 mg kg(-1) for Robinia pseudoacacia L., and 0.6-4 mg kg(-1) for Populus nigra L. A significant linear correlation (r = 0.78) between histidine and Ni was observed for Populus nigra L., whereas insignificant linear correlation for Robinia pseudoacacia L. (r = 0.22) were seen. Limits of detection (LOD) and quantitation (LOQ) were found to be 0.025 mg Ni L(-1) and 0.075 mg Ni L(-1), respectively.

  6. Hyphenation of ultra performance liquid chromatography (UPLC) with inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of bromine containing preservatives.

    PubMed

    Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente; Sturup, Stefan; Nielsen, Camilla

    2006-02-24

    Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material, the resolution of the test substances was only slightly affected when the linear flow velocity was increased from 0.5 to 1.9 mm s(-1). However, the sensitivity of ICP-MS detection decreased when the linear flow velocity was increased from 0.5 to 1.9 mm s(-1). Analytical figures of merit were determined at an intermediate and at a high linear velocity. The precision was better than 2.2% R.S.D. and regression analysis showed that a linear response was achieved at both flow rates (R2 > 0.9993, n = 36). The analysis time was less than 4.5 min at a flow rate of 50 microL min(-1) and limits of detection and quantification were better than 3.3 and 11 microg BrL(-1), respectively. The analysis time was reduced to 2.7 min when the flow rate was increased to 90 microL min(-1) and limits of detection and quantification were better than 20 and 65 microg BrL(-1), respectively. The method was applied for quantitative analysis of bromine-containing preservatives in commercially available cosmetic products.

  7. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  8. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was

  9. Fusion Bead Procedure for Nuclear Forensics Employing Synthetic Enstatite to Dissolve Uraniferous and Other Challenging Materials Prior to Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Reading, David G; Croudace, Ian W; Warwick, Phillip E

    2017-06-06

    There is an increasing demand for rapid and effective analytical tools to support nuclear forensic investigations of seized or suspect materials. Some methods are simply adapted from other scientific disciplines and can effectively be used to rapidly prepare complex materials for subsequent analysis. A novel sample fusion method is developed, tested, and validated to produce homogeneous, flux-free glass beads of geochemical reference materials (GRMs), uranium ores, and uranium ore concentrates (UOC) prior to the analysis of 14 rare earth elements (REE) via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The novelty of the procedure is the production of glass beads using 9 parts high purity synthetic enstatite (MgSiO 3 ) as the glass former with 1 part of sample (sample mass ∼1.5 mg). The beads are rapidly prepared (∼10 min overall time) by fusing the blended mixture on an iridium strip resistance heater in an argon-purged chamber. Many elements can be measured in the glass bead, but the rare earth group in particular is a valuable series in nuclear forensic studies and is well-determined using LA-ICP-MS. The REE data obtained from the GRMs, presented as chondrite normalized patterns, are in very good agreement with consensus patterns. The UOCs have comparable patterns to solution ICP-MS methods and published data. The attractions of the current development are its conservation of sample, speed of preparation, and suitability for microbeam analysis, all of which are favorable for nuclear forensics practitioners and geochemists requiring REE patterns from scarce or valuable samples.

  10. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples,more » post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.« less

  11. Quantification of low molecular weight selenium metabolites in human plasma after treatment with selenite in pharmacological doses by LC-ICP-MS.

    PubMed

    Flouda, Konstantina; Dersch, Julie Maria; Gabel-Jensen, Charlotte; Stürup, Stefan; Misra, Sougat; Björnstedt, Mikael; Gammelgaard, Bente

    2016-03-01

    The paper presents an analytical method for quantification of low molecular weight (LMW) selenium compounds in human plasma based on liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS) and post column isotope dilution-based quantification. Prior to analysis, samples were ultrafiltrated using a cut-off value of 3000 Da. The method was validated in aqueous solution as well as plasma using standards of selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), selenite, and the selenosugar Se-methylseleno-N-acetylgalactosamine (SeGal) for linearity, precision, recoveries, and limits of detection and quantitation with satisfactory results. The method was applied for analysis of a set of plasma samples from cancer patients receiving selenite treatment in a clinical trial. Three LMW selenium compounds were observed. The main compounds, SeGal and selenite were tentatively identified by retention time matching with standards in different chromatographic systems, while the third minor compound was not identified. The identity of the selenosugar was verified by ESI-MS-MS product ion scanning, while selenite was identified indirectly as the glutathione (GSH) reaction product, GS-Se-SG.

  12. Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite.

    PubMed

    Ikehata, Kei; Hirata, Takafumi

    2013-01-01

    We evaluated the capabilities of an in situ method for measuring copper isotopes of cubanite using UV-fs-LA-MC-ICP-MS. A comparison of the UV-fs laser results with those obtained from the NIR-fs laser system shows that there is obviously an improvement in the precision (<0.10‰, 2SE) when using the UV-fs laser. In both wavelength modes, matrix-matched standards are required for reliable in situ copper isotope analysis of cubanite. This method was applied to determinations for copper isotopes of minute cubanite grains in a skarn ore. Copper isotopic ratios of cubanite grains near a weathered surface of the sample are lower than those of intact cubanite grains within the sample, suggesting that selective leaching of heavier copper isotope in primary minerals occurred during weathering.

  13. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    DOEpatents

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  14. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (~ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  15. Complementary molecular and elemental detection of speciated thioarsenicals using ESI-MS in combination with a xenon-based collision-cell ICP-MS with application to fortified NIST freeze-dried urine.

    PubMed

    Ellis, Jenny L; Conklin, Sean D; Gallawa, Christina M; Kubachka, Kevin M; Young, Andrea R; Creed, Patricia A; Caruso, Joseph A; Creed, John T

    2008-04-01

    The simultaneous detection of arsenic and sulfur in thioarsenicals was achieved using xenon-based collision-cell inductively coupled plasma (ICP) mass spectrometry (MS) in combination with high-performance liquid chromatography. In an attempt to minimize the (16)O(16)O(+) interference at m/z 32, both sample introduction and collision-cell experimental parameters were optimized. Low flow rates (0.25 mL/min) and a high methanol concentration (8%) in the mobile phase produced a fourfold decrease in the m/z 32 background. A plasma sampling depth change from 3 to 7 mm produced a twofold decrease in background at m/z 32, with a corresponding fourfold increase in the signal associated with a high ionization surrogate for sulfur. The quadrupole bias and the octopole bias were used as a kinetic energy discriminator between background and analyte ions, but a variety of tuning conditions produced similar (less than twofold change) detection limits for sulfur ((32)S). A 34-fold improvement in the (32)S detection limit was achieved using xenon instead of helium as a collision gas. The optimized xenon-based collision cell ICP mass spectrometer was then used with electrospray ionization MS to provide elemental and molecular-based information for the analysis of a fortified sample of NIST freeze-dried urine. The 3sigma detection limits, based on peak height for dimethylthioarsinic acid (DMTA) and trimethylarsine sulfide (TMAS), were 15 and 12 ng/g, respectively. Finally, the peak area reproducibilities (percentage relative standard deviation) of a 5-ppm fortified sample of NIST freeze dried urine for DMTA and TMAS were 7.4 and 5.4%, respectively.

  16. Biocompatible Polymer Nanoformulation To Improve the Release and Safety of a Drug Mimic Molecule Detectable via ICP-MS.

    PubMed

    Ferrari, Raffaele; Talamini, Laura; Violatto, Martina Bruna; Giangregorio, Paola; Sponchioni, Mattia; Morbidelli, Massimo; Salmona, Mario; Bigini, Paolo; Moscatelli, Davide

    2017-01-03

    Fluorescent poly(ε-caprolactone)-based nanoparticles (NPs) have been synthesized and successfully loaded with a titanium organometallic compound as a mimic of a water-insoluble drug. The nature of this nanovector enabled us to combine the quantification of the metal in tissues after systemic administration in healthy immunocompetent mice by inductively coupled plasma mass spectroscopy (ICP-MS) followed by the visualization of NPs in organ sections by confocal microscopy. This innovative method of nanodrug screening has enabled us to elucidate the crucial parameters of their kinetics. The organometallic compound is a good mimic of most anticancer drugs, and this approach is an interesting starting point to design the relevance of a broad range of nanoformulations in terms of safety and targeted delivery of the cargoes.

  17. Comprehensive Isotopic and Elemental Analysis of a Multi-Oxide Glass By Multicollector ICP-MS in Isotope Substitution Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    v, Mitroshkov; JV, Ryan

    2016-04-07

    Multicollector ICP-MS was used to comprehensively analyze different types of isotopically-modified glass created in order to investigate the processes of glass corrosion in the water. The analytical methods were developed for the analyses of synthesized, isotopically-modified solid glass and the release of glass constituents upon contact with deionized water. To validate the methods, results from an acid digestion sample of the Analytical Reference Glass (ARG) showed good agreement when compared to data from multiple prior analyses on the same glass [Smith-1]. In this paper, we present the results of this comprehensive analysis from the acid digestion of six types ofmore » isotopically-modified glass and the release of glass constituents into water corrosion after one year of aqueous corrosion.« less

  18. Operationally defined species characterization and bioaccessibility evaluation of cobalt, copper and selenium in Cape gooseberry (Physalis Peruviana L.) by SEC-ICP MS.

    PubMed

    Wojcieszek, Justyna; Ruzik, Lena

    2016-03-01

    Physalis peruviana could attract great interest because of its nutritional and industrial properties. It is an excellent source of vitamins, minerals, essential fatty acids and carotenoids. Physalis Peruviana is also known to have a positive impact on human health. Unfortunately, still little is known about trace elements present in Physalis Peruviana and their forms available for the human body. Thus, the aim of this study was to estimate bioaccessibility and characterization of species of cobalt, copper and selenium in Physalis Peruviana fruits. Total and extractable contents of elements were determined by mass spectrometer with inductively coupled plasma (ICP MS). In order to separate the different types of metal complexes Physalis peruviana fruits were treated with the following solvents: Tris-HCl (pH 7.4), sodium dodecyl sulfate (SDS) (pH 7.4) and ammonium acetate (pH 5.5). The best efficiency of extraction of: cobalt was obtained for ammonium acetate (56%) and Tris-HCl (60%); for copper was obtained for SDS (66%), for selenium the best extraction efficiency was obtained after extraction with SDS (48%). To obtain information about bioaccessibility of investigated elements, enzymatic extraction based on in vitro simulation of gastric (pepsin) and intestinal (pancreatin) digestion was performed. For copper and selenium the simulation of gastric digestion leads to the extraction yield above 90%, while both steps of digestion method were necessary to obtain satisfactory extraction yield in the case of cobalt. Size exclusion chromatography (SEC) coupled to on-line ICP MS detection was used to investigate collected metal species. The main fraction of metal compounds was found in the 17 kDa region. Cobalt and copper create complexes mostly with compounds extracted by means of ammonium acetate and SDS, respectively. Cobalt, copper and selenium were found to be highly bioaccessible from Physalis Peruviana. Investigation of available standards of cobalt and selenium

  19. Ion-pair chromatography coupled to inductively coupled plasma-mass spectrometry (IPC-ICP-MS) as a method for thiomolybdate speciation in natural waters.

    PubMed

    Lohmayer, Regina; Reithmaier, Gloria Maria Susanne; Bura-Nakić, Elvira; Planer-Friedrich, Britta

    2015-03-17

    Molybdenum precipitates preferentially under reducing conditions; therefore, its occurrence in sediment records is used as an indicator of paleoredox conditions. Although thiomolybdates (MoO4-xSx(2-) with x = 1-4) supposedly are necessary intermediates in the process of molybdenum precipitation under anoxic conditions, there is no information about their abundance in natural environments, because of a lack of element-specific methods with sufficiently low detection limits. Here, we optimized ion-pair chromatographic separation for coupling to an inductively coupled plasma-mass spectrometry detector (IPC-ICP-MS). 2-Propanol (10%-25% gradient) replaced the previously used acetonitrile (25%-75%) as the solvent, to reduce the carbon load into the plasma. In synthetic solutions, formation of thiomolybdates was found to occur spontaneously in the presence of excess sulfide and the degree of thiolation was highest at pH 7. Excess hydroxyl led to a transformation of thiomolybdates to molybdate. Under acidic to neutral conditions, precipitation of molybdenum and hydrolysis of tetrathiomolybdate were observed. Flash-freezing was found to be suitable to stabilize tetrathiomolybdate, with <4% transformation over more than two months. High ionic strengths matrices (>2 mM) negatively affected the detection of molybdate, which eluted mainly in the dead volume, but had no negative effect on higher thiolated molybdates. Detection limits were ∼10 nM. With the newly developed IPC-ICP-MS method, thiomolybdates were found to form spontaneously in euxinic marine waters after adding a molybdate spike and occur naturally in sulfidic geothermal waters.

  20. Development of an electrothermal vaporization ICP-MS method and assessment of its applicability to studies of the homogeneity of reference materials.

    PubMed

    Friese, K C; Grobecker, K H; Wätjen, U

    2001-07-01

    A method has been developed for measurement of the homogeneity of analyte distribution in powdered materials by use of electrothermal vaporization with inductively coupled plasma mass spectrometric (ETV-ICP-MS) detection. The method enabled the simultaneous determination of As, Cd, Cu, Fe, Mn, Pb, and Zn in milligram amounts of samples of biological origin. The optimized conditions comprised a high plasma power of 1,500 W, reduced aerosol transport flow, and heating ramps below 300 degrees C s(-1). A temperature ramp to 550 degrees C ensured effective pyrolysis of approximately 70% of the organic compounds without losses of analyte. An additional hold stage at 700 degrees C led to separation of most of the analyte signals from the evaporation of carbonaceous matrix compounds. The effect of time resolution of signal acquisition on the precision of the ETV measurements was investigated. An increase in the number of masses monitored up to 20 is possible with not more than 1% additional relative standard deviation of results caused by limited temporal resolution of the transient signals. Recording of signals from the nebulization of aqueous standards in each sample run enabled correction for drift of the sensitivity of the ETV-ICP-MS instrument. The applicability of the developed method to homogeneity studies was assessed by use of four certified reference materials. According to the best repeatability observed in these sample runs, the maximum contribution of the method to the standard deviation is approximately 5% to 6% for all the elements investigated.

  1. Discrimination of the Cigarettes Geographical Origin by DRC-ICP-MS Measurements of Pb Isotope Compositions

    NASA Astrophysics Data System (ADS)

    Guo, W.; Hu, S.; Jin, L.

    2014-12-01

    Trace Pb are taken up with the same isotopic ratios as is present in the source soil, and the isotopic composition of Pb could used to reflect these sources and provide powerful indicators of the geographic origin of agriculture products derived from vegetative matter. We developed a simple and high throughput method, which based on DRC-ICP-MS for determination of Pb isotope ratios for discriminating the geographic origin of cigarettes. After acid digestion procedure, the cigarette digested solutions were directly analyzed by ICP-QMS with a DRC pressurized by the non-reactive gas Ne. In the DRC, Ne molecules collision with Pb ions and improves Pb isotope ratios precision 3-fold, which may be due to the collisional dampling smoothes out the ion beam fluctuations. Under the optimum DRC rejection parameter Q (RPq = 0.45), the main matrix components (K, Na, Ca, Mg, Al, Fe etc.) originating from cigarettes were filtered out. Mass discrimination of 208Pb/206Pb ratio in Ne DRC mode increased 0.3% compared to the standard mode, the mass bias due to the in-cell Ne gas collision can be accurately corrected by NIST 981 Pb isotope standard. This method was verified by a tobacco reference material CTV-OTL-2. Results of 208Pb/206Pb and 207Pb/206Pb were 2.0848 ± 0.0028 (2δ) and 0.8452 ± 0.0011 (2δ) for CTA-VTL-2, which were agreed with the literature values (208Pb/206Pb = 2.0884 ± 0.0090 and 207Pb/206Pb = 0.8442 ± 0.0032). The precision of Pb isotope ratios (208Pb/206Pb and 207Pb/206Pb) for the cigarette samples are ranged from 0.01 to 0.08% (N = 5). It has sufficient precision to discriminate 91 different brand cigarettes originated from four different geographic regions (Shown in Fig).

  2. Preparation And Analysis Of Specimens Of Ablative Materials

    NASA Technical Reports Server (NTRS)

    Solomon, William C.

    1994-01-01

    Procedure for chemical analysis of specimens of silicone-based ablative thermal-insulation materials SLA-561 and MA25 involves acid digestion of specimens to prepare them for analysis by inductively-coupled-plasma/atomic-emission spectroscopy (ICP/AES). In comparison with atomic-absorption spectroscopy (AAS), ICP/AES is faster and more accurate than AAS. Results of analyses stored in data base, used to trace variations in concentrations of chemical elements in materials during long-term storage, and used in timely manner in investigations of failures. Acid-digestion portion of procedure applied to other thermal-insulation materials containing room-temperature-vulcanizing silicones and enables instrumental analysis of these materials.

  3. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    PubMed Central

    Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health. PMID:27766178

  4. Measurement of very low amounts of arsenic in soils and waters: is ICP-MS the indispensable analytical tool?

    NASA Astrophysics Data System (ADS)

    López-García, Ignacio; Marín-Hernández, Juan Jose; Perez-Sirvent, Carmen; Hernandez-Cordoba, Manuel

    2017-04-01

    The toxicity of arsenic and its wide distribution in the nature needs nowadays not to be emphasized, and the convenience of reliable analytical tools for arsenic determination at very low levels is clear. Leaving aside atomic fluorescence spectrometers specifically designed for this purpose, the task is currently carried out by using inductively coupled plasma mass spectrometry (ICP-MS), a powerful but expensive technique that is not available in all laboratories. However, as the recent literature clearly shows, a similar or even better analytical performance for the determination of several elements can be achieved by replacing the ICP-MS instrument by an AAS spectrometer (which is commonly present in any laboratory and involves low acquisition and maintenance costs) provided that a simple microextraction step is used to preconcentrate the sample. This communication reports the optimization and results obtained with a new analytical procedure based on this idea and focused to the determination of very low concentrations of arsenic in waters and extracts from soils and sediments. The procedure is based on a micro-solid phase extraction process for the separation and preconcentration of arsenic that uses magnetic particles covered with silver nanoparticles functionalized with the sodium salt of 2-mercaptoethane-sulphonate (MESNa). This composite is obtained in an easy way in the laboratory. After the sample is treated with a low amount (only a few milligrams) of the magnetic material, the solid phase is separated by means of a magnetic field, and then introduced into an electrothermal atomizer (ETAAS) for arsenic determination. The preconcentration factor is close to 200 with a detection limit below 0.1 µg L-1 arsenic. Speciation of As(III) and As(V) can be achieved by means of two extractions carried out at different acidity. The results for total arsenic are verified using certified reference materials. The authors are grateful to the Comunidad Autonóma de la

  5. Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICP-MS) and multivariate statistics.

    PubMed

    Taylor, Vivien F; Longerich, Henry P; Greenough, John D

    2003-02-12

    Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.

  6. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.

    PubMed

    Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J

    2015-04-08

    Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.

  7. The production of ultra-high purity single isotopes or tailored isotope mixtures by ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Farmer, Orville T.; Dion, Michael P.

    2015-01-01

    We report the development and testing of a simple collector arrangement for a commercial quadrupole ICP-MS that for the first time has been used to produce small quantities of highly enriched (>99.99%) single isotopes, with deposition rates >10 ng/hour. The collector assembly replaces the standard instrument detector allowing for implantation with simultaneous monitoring of the incident ion current. Even under zero bias implant conditions, low energy (<10 eV), ion collection efficiency was observed to be very high ~99%. 151Eu ion currents of 0.1-0.5 nA were collected on a simple, planar foil without resorting to any type of cup configuration. Recoverymore » of the enriched isotope from such foils is much simpler than from a more complex cup configuration. High rejection of adjacent mass isotopes was demonstrated by selectively implanting 167Er without any discernible co-implantation of 166Er and 168Er. The important analytical possibilities of the new approach to isotope ratio measurement, tracer purification and radiation measurements are discussed.« less

  8. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  9. Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2005-08-01

    The objectives of the present work were to study isotope ratios and the inventory of plutonium and uranium isotope compositions in sediments from Lake Obuchi, which is in the vicinity of several nuclear fuel facilities in Rokkasho, Japan. Pu and its isotopes were determined using sector-field ICP-MS and U and its isotopes were determined with ICP-QMS after separation and purification with a combination of ion-exchange and extraction chromatography. The observed (240)Pu/(239)Pu atom ratio (0.186 +/- 0.016) was similar to that of global fallout, indicating that the possible early tropospheric fallout Pu did not deliver Pu from the Pacific Proving Ground to areas above 40 degrees N. The previously reported higher Pu inventory in the deep water area of Lake Obuchi could be attributed to the lateral transportation of Pu deposited in the shallow area which resulted from the migration of deposited global fallout Pu from the land into the lake by river runoff and from the Pacific Ocean by tide movement and sea water scavenging, as well as from direct soil input by winds. The (235)U/(238)U atom ratios ranged from 0.00723 to 0.00732, indicating the natural origin of U in the sediments. The average (234)U/(238)U activity ratio of 1.11 in a sediment core indicated a significant sea water U contribution. No evidence was found for the release of U containing wastes from the nearby nuclear facilities. These results will serve as a reference baseline on the levels of Pu and U in the studied site so that any further contamination from the spent nuclear fuel reprocessing plants, the radioactive waste disposal and storage facilities, and the uranium enrichment plant can be identified, and the impact of future release can be rapidly assessed.

  10. Comparison of MP AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus).

    PubMed

    Karlsson, Stefan; Sjöberg, Viktor; Ogar, Anna

    2015-04-01

    The use of nitrogen as plasma gas for microwave plasma atomic emission spectroscopy (MP AES) is an interesting development in analytical science since the running cost can be significantly reduced in comparison to the inductively coupled argon plasma. Here, we evaluate the performance of the Agilent 4100 MP AES instrument for the analysis of principal metals (Ca, K, Mg, and Na), lithogenic metals (Al, Fe, and Mn) and selected trace metals (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn) in nitric acid plant digests. The digests were prepared by microwave-assisted dissolution of dry plant material from sunflower (Helianthus annuus) in concentrated nitric acid. Comparisons are made with analysis of the same solutions with ICP-MS (Agilent 7500cx) using the octopole reaction system (ORS) in the collision mode for As, Fe, and V. The limits of detection were usually in the low µg L(-1) range and all principal and lithogenic metals were successfully determined with the MP AES and provided almost identical results with the ICP-MS. The same applies for the selected trace metals except for As, Co and Mo where the concentrations were below the detection limit with the MP AES. For successful analysis we recommend that (i) only atom lines are used, (ii) ionization is minimized (e.g. addition of CsNO3) and (iii) the use of internal standards should be considered to resolve spectral interferences. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evaluating the capabilities of aerosol-to-liquid particle extraction system (ALPXS)/ICP-MS for monitoring trace metals in indoor air.

    PubMed

    Jayawardene, Innocent; Rasmussen, Pat E; Chenier, Marc; Gardner, H David

    2014-09-01

    This study investigates the application of the Aerosol-to-Liquid Particle Extraction System (ALPXS), which uses wet electrostatic precipitation to collect airborne particles, for multi-element indoor stationary monitoring. Optimum conditions are determined for capturing airborne particles for metal determination by inductively coupled plasma-mass spectrometry (ICP-MS), for measuring field blanks, and for calculating limits of detection (LOD) and quantification (LOQ). Due to the relatively high flow rate (300 L min(-1)), a sampling duration of 1 hr to 2 hr was adequate to capture airborne particle-bound metals under the investigated experimental conditions. The performance of the ALPXS during a building renovation demonstrated signal-to-noise ratios appropriate for sampling airborne particles in environments with elevated metal concentrations, such as workplace settings. The ALPXS shows promise as a research tool for providing useful information on short-term variations (transient signals) and for trapping particles into aqueous solutions where needed for subsequent characterization. As the ALPXS does not provide size-specific samples, and its efficiency at different flow rates has yet to be quantified, the ALPXS would not replace standard filter-based protocols accepted for regulatory applications (e.g., exposure measurements), but rather would provide additional information if used in conjunction with filter based methods. Implications: This study investigates the capability of the Aerosol-to-Liquid Particle Extraction System (ALPXS) for stationary sampling of airborne metals in indoor workplace environments, with subsequent analysis by ICP-MS. The high flow rate (300 L/min) permits a short sampling duration (< 2 hr). Results indicated that the ALPXS was capable of monitoring short-term changes in metal emissions during a renovation activity. This portable instrument may prove to be advantageous in occupational settings as a qualitative indicator of elevated

  12. Determination of Metal Levels in Shamma (Smokeless Tobacco) with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in Najran, Saudi Arabia

    PubMed

    Brima, Eid Ibrahim

    2016-10-01

    Objective: The use of Shamma (smokeless tobacco) by certain groups is giving rise to health problems, including cancer, in parts of Saudi Arabia. Our objective was to determine metals levels in Shamma using inductively coupled plasma mass spectrometry (ICP-MS). Methods: Thirty-three samples of Shamma (smokeless tobacco) were collected, comprising four types: brown Shamma (n = 14.0), red Shamma (n = 9.0), white Shamma (n = 4.0), and yellow Shamma (n = 6.0). All samples were collected randomly from Shamma users in the city of Najran. Levels of 11 elements (Al, As, Cd, Co, Cr, Cu, Li, Mn, Ni, Pb, and Zn) were determined by ICP-MS. Results: A mixed standard (20 ppb) of all elements was used for quality control, and average recoveries ranged from 74.7% to 112.2%. The highest average concentrations were found in the following order: Al (598.8–812.2 μg/g), Mn (51.0–80.6 μg/g), and Ni (23.2–53.3 μg/g) in all four Shamma types. The lowest concentrations were for As (0.7–1.0 μg/g) and Cd (0.0–0.06 μg/g). Conclusions: The colour of each Shamma type reflects additives mixed into the tobacco. Cr and Cu were showed significant differences (P < 0.05) among Shamma types. Moreover, Pb levels are higher in red and yellow Shamma, which could be due to use (PbCrO4) as yellow colouring agent and lead tetroxide, Pb3O4 as a red colouring agent. The findings from this study can be used to raise public awareness about the safety and health effects of Shamma, which is clearly a source of oral exposure to metals. Creative Commons Attribution License

  13. The micro-scale synthesis of (117)Sn-enriched tributyltin chloride and its characterization by GC-ICP-MS and NMR techniques.

    PubMed

    Peeters, Kelly; Iskra, Jernej; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2014-07-01

    Organotin compounds (OTCs) are among the most toxic substances ever introduced to the environment by man. They are common pollutants in marine ecosystems, but are also present in the terrestrial environment, accumulated mainly in sewage sludge and landfill leachates. In investigations of the degradation and methylation processes of OTC in environmental samples, the use of enriched isotopic tracers represents a powerful analytical tool. Sn-enriched OTC are also necessary in application of the isotope dilution mass spectrometry technique for their accurate quantification. Since Sn-enriched monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) are not commercially available as single species, "in house" synthesis of individual butyltin-enriched species is necessary. In the present work, the preparation of the most toxic butyltin, namely TBT, was performed via a simple synthetic path, starting with bromination of metallic Sn, followed by butylation with butyl lithium. The tetrabutyltin (TeBT) formed was transformed to tributyltin chloride (TBTCl) using concentrated hydrochloric acid (HCl). The purity of the synthesized TBT was verified by speciation analysis using the techniques of gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) and nuclear magnetic resonance (NMR). The results showed that TBT had a purity of more than 97%. The remaining 3% corresponded to DBT. TBT was quantified by reverse isotope dilution GC-ICP-MS. The synthesis yield was around 60%. The advantage of this procedure over those previously reported lies in its possibility to be applied on a micro-scale (starting with 10mg of metallic Sn). This feature is of crucial importance, since enriched metallic Sn is extremely expensive. The procedure is simple and repeatable, and was successfully applied for the preparation of (117)Sn-enriched TBTCl from (117)Sn-enriched metal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Top-down mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS.

    PubMed

    Kiss, András; Smith, Donald F; Reschke, Brent R; Powell, Matthew J; Heeren, Ron M A

    2014-05-01

    Laser ablation ESI (LAESI) is a recent development in MS imaging. It has been shown that lipids and small metabolites can be imaged in various samples such as plant material, tissue sections or bacterial colonies without any sample pretreatment. Further, LAESI has been shown to produce multiply charged protein ions from liquids or solid surfaces. This presents a means to address one of the biggest challenges in MS imaging; the identification of proteins directly from biological tissue surfaces. Such identification is hindered by the lack of multiply charged proteins in common MALDI ion sources and the difficulty of performing tandem MS on such large, singly charged ions. We present here top-down identification of intact proteins from tissue with a LAESI ion source combined with a hybrid ion-trap FT-ICR mass spectrometer. The performance of the system was first tested with a standard protein with electron capture dissociation and infrared multiphoton dissociation fragmentation to prove the viability of LAESI FT-ICR for top-down proteomics. Finally, the imaging of a tissue section was performed, where a number of intact proteins were measured and the hemoglobin α chain was identified directly from tissue using CID and infrared multiphoton dissociation fragmentation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. New Ca-Tims and La-Icp Analyses of GJ-1, Plesovice, and FC1 Reference Materials

    NASA Astrophysics Data System (ADS)

    Feldman, J. D.; Möller, A.; Walker, J. D.

    2014-12-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology relies on external reference standards to monitor and correct for different mass fractionation effects and instrument drift. Common zircon reference materials used within the community, including the KU Isotope Geochemistry Laboratory, are GJ-1 (207Pb/206Pb age: 608.53 +/- 0.37Ma; Jackson et al., 2004), Plesovice (337.13 +/- 0.37 Ma; Slama et al., 2008), and FC-1 (1099.0 +/-0.6 Ma; Paces and Miller, 1993). The age distribution of zircon reference material varies slightly from sample fraction to sample fraction, and the published results for GJ-1 are slightly discordant. As a result, using the published data for the distributed standard splits can lead to small systematic variations when comparing datasets from different labs, and more high precision data are needed to evaluate potential inhomogeneity of sample splits used in different laboratories. Here we characterize these reference materials with cathodoluminescence, LA-ICP-MS traverses across grains, and high precision CA-TIMS to better constrain the ages and assess zoning of these standards, and present the data for comparison with other laboratories. Reducing systematic error by dating our own reference material lends confidence to our analyses and allows for inter-laboratory age reproducibility of unknowns. Additionally, the reduction in propagated uncertainties (especially in GJ-1, for which both the red and yellow variety will be analyzed) will be used to improve long-term reproducibility, comparisons between samples of similar age, detrital populations and composite pluton zircons. Jackson, S.E., et al., 2004, Chemical Geology, v. 211, p. 47-69. Paces, J.B. & Miller, J.D., 1993, Journal of Geophysical Research, v. 80, p. 13997-14013. Slama, J., et al., 2008, Chemical Geology, v. 249. p. 1-35.

  17. Development and application of a method for Cr(III) determination in dairy products by HPLC-ICP-MS.

    PubMed

    Hernandez, Fanny; Jitaru, Petru; Cormant, Florence; Noël, Laurent; Guérin, Thierry

    2018-02-01

    This study describes the development of an analytical approach for the determination of Cr(III) in dairy products by microwave assisted extraction, complexation in situ by ethylenediaminetetraacetate (EDTA) and high performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). The extraction step was optimised by using an experimental design. A limit of quantification of 38µgkg -1 dry weight (d.w.) was obtained whereas the bias (%) measured ranged from 10 to 18%. The repeatability and intermediate precision varied between 1.2-5.0% and 7.5-13.5%, respectively. The method was applied to the analysis of several dairy samples beforehand characterized in terms of Cr(VI) and total chromium (Cr total ). Cr(III) concentrations ranged from <13 to 255µgkg -1 d.w. The results showed a good agreement between Cr(III) and Cr total concentration levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  19. Determination of trace level thorium and uranium in high purity gadolinium sulfate using ICP-MS with solid-phase chromatographic extraction resins

    NASA Astrophysics Data System (ADS)

    Ito, S.; Takaku, Y.; Ikeda, M.; Kishimoto, Y.

    2018-01-01

    The Super Kamiokand-Gadolinium (SK-Gd) project is the upgrade of the Super-Kamiokande (SK) detector in order to discover Supernova Relic Neutrinos (SRNs) by loading 0.2% of Gd2(SO4)3 into a 50 kton of the SK water tank. In order to continue solar neutrino measurement with low energy threshold at ˜3.5 MeV, main radioactive contamination, U and Th in Gd2(SO4)3, should be purified before loading. We developed solid-phase extraction technique to measure low concentration of U and Th in Gd2(SO4)3 by ICP-MS. The extraction technique and current status will be presented.

  20. Chip-based magnetic solid phase microextraction coupled with ICP-MS for the determination of Cd and Se in HepG2 cells incubated with CdSe quantum dots.

    PubMed

    Yu, Xiaoxiao; Chen, Beibei; He, Man; Wang, Han; Hu, Bin

    2018-03-01

    The quantification of trace Cd and Se in cells incubated with CdSe quantum dots (QDs) is critical to investigate the cytotoxicity of CdSe QDs. In this work, a miniaturized platform, namely chip-based magnetic solid phase microextraction (MSPME) packing with sulfhydryl group functionalized magnetic nanoparticles, was fabricated and combined with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace Cd and Se in cells. Under the optimized conditions, the limits of detection (LOD) of the developed chip-based MSPME-ICP-MS system are 2.2 and 21ngL -1 for Cd and Se, respectively. The proposed method is applied successfully to the analysis of total and released small molecular fraction of Cd and Se in Human hepatocellular carcinoma cells (HepG2 cells) incubated with CdSe QDs, and the recoveries for the spiked samples are in the range of 86.0-109%. This method shows great promise to analyze cell samples and the obtained results are instructive to explore the cytotoxicity mechanism of CdSe QDs in cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Measurement of strontium isotope ratio in nitric acid extract of peanut testa by ICP-Q-MS after removal of Rb by extraction with pure water.

    PubMed

    Zhu, Yanbei; Hioki, Akiharu; Chiba, Koichi

    2014-02-01

    The difference in the distributions of Sr and Rb in peanut seeds was utilized to develop a precise method for Sr isotope ratio measurement by inductively coupled plasma quadruple mass spectrometry (ICP-Q-MS). The testa instead of the whole peanut seed was selected as the sample because apparent enrichment of Sr in comparison to Rb was found in the testa. Furthermore, Rb in the testa was removed by pure water extraction with the aid of sonication to remove the isobaric interference in Sr isotope ratio measurement. The testa taken from one peanut seed was treated as one sample for the analysis. After optimization of the operating conditions, pure water (10 mL for each sample) extraction in 30 min with sonication was able to remove over 95% of Rb in the testa, while after the Rb removal Sr could be completely extracted using 10 mL of 0.3 mol L(-1) HNO3 for each sample. The integration time in ICP-Q-MS measurement was optimized to achieve a lower measurement uncertainty in a shorter time; the results showed that 1s was required and enough for the precise measurement of Sr isotope ratios giving a relative standard uncertainty (n=10) of ca. 0.1%. The present method was applied to peanut seeds grown in Japan, China, USA, India, and South Africa. © 2013 Published by Elsevier B.V.

  2. Enantioselective determination of the organochlorine pesticide bromocyclen in spiked fish tissue using solid-phase microextraction coupled to gas chromatography with ECD and ICP-MS detection.

    PubMed

    Fidalgo-Used, Natalia; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2008-05-15

    A method for enantioselective determination of bromocyclen enantiomers in fish tissue has been developed. The enantiomers were resolved by capillary gas chromatography (GC) using a commercial chiral column (CP-Chirasil-Dex CB) and a temperature program from 50 degrees C (held for 1 min), raised to 140 degrees C at 40 degrees C min(-1) and then raised at 0.2 degrees C min(-1) to 155 degrees C. This enantioselective gas chromatographic separation was combined with a clean-up/enrichment procedure based on solid-phase microextraction (SPME). Under SPME optimized conditions, precision, linearity range and detection limits of the developed SPME-enantioselective GC procedure were evaluated and compared using two different detection systems: a classical electron-capture detection (ECD) and an element specific detection using inductively coupled plasma mass spectrometry (ICP-MS). The SPME-GC-ECD method exhibited an excellent sensitivity, with detection limits of 0.2 ng L(-1) for each enantiomer of bromocyclen. Although ICP-MS offered poorer detection limits (7 ng L(-1) as Br, equivalent to 36 ng L(-1) of each enantiomer) than conventional ECD detector, it proved to be clearly superior in terms of selectivity. The relative potential and performance of the two compared methods for real-life analysis has been illustrated by the determination of enantiomers of bromocyclen in spiked tissue extracts of trout.

  3. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS).

    PubMed

    Weigel, Stefan; Peters, Ruud; Loeschner, Katrin; Grombe, Ringo; Linsinger, Thomas P J

    2017-08-01

    Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) promises fast and selective determination of nanoparticle size and number concentrations. While several studies on practical applications have been published, data on formal, especially interlaboratory validation of sp-ICP-MS, is sparse. An international interlaboratory study was organized to determine repeatability and reproducibility of the determination of the median particle size and particle number concentration of Ag nanoparticles (AgNPs) in chicken meat. Ten laboratories from the European Union, the USA, and Canada determined particle size and particle number concentration of two chicken meat homogenates spiked with polyvinylpyrrolidone (PVP)-stabilized AgNPs. For the determination of the median particle diameter, repeatability standard deviations of 2 and 5% were determined, and reproducibility standard deviations were 15 and 25%, respectively. The equivalent median diameter itself was approximately 60% larger than the diameter of the particles in the spiking solution. Determination of the particle number concentration was significantly less precise, with repeatability standard deviations of 7 and 18% and reproducibility standard deviations of 70 and 90%.

  4. ICP-MS analysis of lanthanide-doped nanoparticles: A quantitative and multiplexing approach to investigate biodistribution, blood clearance, and targeting

    NASA Astrophysics Data System (ADS)

    Crayton, Samuel

    The rapidly progressing field of nanotechnology promises to revolutionize healthcare in the 21st century, with applications in the prevention, diagnosis, and treatment of a wide range of diseases. However, before nanoparticulate agents can be brought into clinical use, they must first be developed, optimized, and evaluated in animal models. In the typical pre-clinical paradigm, almost all of the optimization is done at the in vitro level, with only a few select agents reaching the level of animal studies. Since only one experimental nanoparticle formulation can be investigated in a single animal, and in vivo experiments have relatively higher complexity, cost, and time requirements, it is not feasible to evaluate a very large number of agents at the in vivo stage. A major drawback of this approach, however, is that in vitro assays do not always accurately predict how a nanoparticle will perform in animal studies. Therefore, a method that allows many agents to be evaluated in a single animal subject would allow for much more efficient and predictive optimization of nanoparticles. We have found that by incorporating lanthanide tracer metals into nanoparticle formulations, we are successfully able to use inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively determine a nanoparticle's blood clearance kinetics, biodistribution, and tumor delivery. This approach was applied to evaluate both passive and active tumor targeting, as well as metabolically directed targeting of nanoparticles to low pH tumor microenvironments. Importantly, we found that these in vivo measurements could be made for many nanoparticle formulations simultaneously, in single animals, due to the high-order multiplexing capability of mass spectrometry. This approach allowed for efficient and reproducible comparison of performance between different nanoparticle formulations, by eliminating the effects of subject-to-subject variability. In the future, we envision that this "higher

  5. Determination of (87)Sr/(86)Sr and δ(88/86)Sr ratios in plant materials using MC-ICP-MS.

    PubMed

    Liu, Hou-Chun; Chung, Chuan-Hsiung; You, Chen-Feng; Chiang, Yi-Hsuan

    2016-01-01

    A protocol for highly accurate and precise determination of Sr isotope ratios in plant materials, (87)Sr/(86)Sr and δ (88/86)Sr, by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is presented in this study. An Eichrom Sr resin was used for matrix separation and an improved Zr empirical external normalization coupled with standard-sample bracketing method (Zr EEN-SSB) was applied to mass bias correction during Sr isotope MC-ICP-MS measurements. Potential influences of matrix elements, and polyatomic and isobaric interferences on the Sr isotopic determination were further evaluated using NIST SRM 987 Sr isotopic standard spiked with various amount of Ca, Mg, and Rb contents. Concentrations of Ca and Mg lower than 30 ng g(-1) or Rb < 2 ng g(-1) in 150 ng g(-1) Sr analyte were estimated to have only a minor effect on Sr isotope ratios determination. On the other hand, intensity differences between sample and standards (IntSample/IntStandards) represented a large δ (88/86)Sr deviation of <0.9 or >1.3, reflecting the significance of intensity bias attributed to different mass bias behavior. An apple leaf material, NIST SRM 1515, was adopted as the plant material for overall evaluation of sample digestion, matrix separation, and potential spectral interferences on the measurements of Sr isotope ratios. Our results suggest that the partially remaining organic compounds in the incomplete digestion would have a significant bias on the extraction chromatography procedure, resulting in sizable uncertainty in δ (88/86)Sr ratios. Thus, complete digestion of the organic-enriched materials is of great importance for efficiency assurance in matrix separation. Extraction chromatography works well for the total digested samples, where Ca, Mg, and Rb were efficiently removed. The obtained average (87)Sr/(86)Sr and δ (88/86)Sr values for the NIST SRM 1515 apple leaves are 0.71398 ± 0.00004 and 0.23 ± 0.03‰ (2SD, n = 10

  6. An Evaluation of Unit and ½ Mass Correction Approaches as a Means of Minimizing the False Positives Produced by M+2 species in US EPA Method 200.8 using ICP-MS

    EPA Science Inventory

    Rare earth elements (REE) and certain alkaline earths can produce M+2 interferences in ICP-MS because they have sufficiently low second ionization energies. Four REEs (150Sm, 150Nd, 156Gd and 156Dy) produce false positives on 75As and 78Se and 132Ba can produce a false positive ...

  7. Using Cluster Analysis and ICP-MS to Identify Groups of Ecstasy Tablets in Sao Paulo State, Brazil.

    PubMed

    Maione, Camila; de Oliveira Souza, Vanessa Cristina; Togni, Loraine Rezende; da Costa, José Luiz; Campiglia, Andres Dobal; Barbosa, Fernando; Barbosa, Rommel Melgaço

    2017-11-01

    The variations found in the elemental composition in ecstasy samples result in spectral profiles with useful information for data analysis, and cluster analysis of these profiles can help uncover different categories of the drug. We provide a cluster analysis of ecstasy tablets based on their elemental composition. Twenty-five elements were determined by ICP-MS in tablets apprehended by Sao Paulo's State Police, Brazil. We employ the K-means clustering algorithm along with C4.5 decision tree to help us interpret the clustering results. We found a better number of two clusters within the data, which can refer to the approximated number of sources of the drug which supply the cities of seizures. The C4.5 model was capable of differentiating the ecstasy samples from the two clusters with high prediction accuracy using the leave-one-out cross-validation. The model used only Nd, Ni, and Pb concentration values in the classification of the samples. © 2017 American Academy of Forensic Sciences.

  8. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    PubMed Central

    Jabłońska-Czapla, Magdalena

    2015-01-01

    Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962

  9. Determination of 241Am in Urine Using Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS)

    PubMed Central

    Xiao, Ge; Saunders, David; Jones, Robert L.; Caldwell, Kathleen L.

    2016-01-01

    Quantification of 241Am in urine at low levels is important for assessment of individuals’ or populations’ accidental, environmental, or terrorism-related internal contamination, but no convenient, precise method has been established to rapidly determine these low levels. Here we report a new analytical method to measure 241Am as developed and validated at the Centers for Disease Control and Prevention (CDC) by means of the selective retention of Am from urine directly on DGA resin, followed by SF-ICP-MS detection. The method provides rapid results with a Limit of Detection (LOD) of 0.22 pg/L (0.028 Bq/L), which is lower than 1/3 of the C/P CDG for 241Am at 5 days post-exposure. The results obtained by this method closely agree with CDC values as measured by Liquid Scintillation Counting, and with National Institute of Standards Technology (NIST) Certified Reference Materials (CRM) target values. PMID:27375308

  10. Determination of 241Am in Urine Using Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS).

    PubMed

    Xiao, Ge; Saunders, David; Jones, Robert L; Caldwell, Kathleen L

    2016-07-01

    Quantification of 241 Am in urine at low levels is important for assessment of individuals' or populations' accidental, environmental, or terrorism-related internal contamination, but no convenient, precise method has been established to rapidly determine these low levels. Here we report a new analytical method to measure 241 Am as developed and validated at the Centers for Disease Control and Prevention (CDC) by means of the selective retention of Am from urine directly on DGA resin, followed by SF-ICP-MS detection. The method provides rapid results with a Limit of Detection (LOD) of 0.22 pg/L (0.028 Bq/L), which is lower than 1/3 of the C/P CDG for 241 Am at 5 days post-exposure. The results obtained by this method closely agree with CDC values as measured by Liquid Scintillation Counting, and with National Institute of Standards Technology (NIST) Certified Reference Materials (CRM) target values.

  11. Improved analytical techniques of sulfur isotopic composition in nanomole quantities by MC-ICP-MS.

    PubMed

    Yu, Tsai-Luen; Wang, Bo-Shian; Shen, Chuan-Chou; Wang, Pei-Ling; Yang, Tsanyao Frank; Burr, George S; Chen, Yue-Gau

    2017-10-02

    We propose an improved method for precise sulfur isotopic measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in conjunction with a membrane desolvation nebulization system. The problems of sulfur loss through the membrane desolvation apparatus are carefully quantified and resolved. The method overcomes low intrinsic sulfur transmission through the instrument, which was initially 1% when operating at a desolvation temperature of 160 °C. Sulfur loss through the membrane desolvation apparatus was resolved by doping with sodium. A Na/S ratio of 2 mol mol -1 produced sulfur transmissions with 98% recovery. Samples of 3 nmol (100 ng) sulfur achieved an external precision of ±0.18‰ (2 SD) for δ 34 S and ±0.10‰ (2 SD) for Δ 33 S (uppercase delta expresses the extent of mass-independent isotopic fractionation). Measurements made on certified reference materials and in-house standards demonstrate analytical accuracy and reproducibility. We applied the method to examine microbial-induced sulfur transformation in marine sediment pore waters from the sulfate-methane transition zone. The technique is quite versatile, and can be applied to a range of materials, including natural waters and minerals. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U-Pb LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.

    2018-04-01

    In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.

  13. Capillary electrophoresis-electrospray mass spectrometry and HR-ICP-MS for the detection and quantification of 10B-boronophenylalanine (10B-BPA) used in boron neutron capture therapy.

    PubMed

    Pitois, Aurélien; de las Heras, Laura Aldave; Zampolli, Antonella; Menichetti, Luca; Carlos, Ramon; Lazzerini, Guido; Cionini, Luca; Salvatori, Pietro Alberto; Betti, Maria

    2006-02-01

    Boron neutron capture therapy (BNCT) is a bimodal radiotherapeutic treatment based on the irradiation of neoplastic tissues with neutrons after the tissues have selectively accumulated molecules loaded with nuclides with large neutron capture cross-sections (such boron-10). Boron-10 carriers have been tested to a limited extent, and clinical trials have been conducted on sulfhydryl borane (10B-BSH) and boronophenylalanine (10B-BPA). However, precise and accurate measurements of boron-10 concentrations (0.1-100 microg/g) in specimens and samples of limited size (microg scale) are needed in order to be able to biologically characterise new compounds in predictive tissue dosimetry, toxicology and pharmacology studies as well as in clinical investigations. A new approach based on fast separation and detection of 10B-BPA performed by coupling capillary electrophoresis to electrospray mass spectrometry is reported. This method allows the quantitative analysis and characterisation of 10B-BPA in a short time with a high separation efficiency. Detection limits of 3 microM for 10B-BPA and 30 ng/mL for 10B were obtained with CE-ESI-MS. A quantification limit of 10 microM for 10B-BPA (100 ng/mL for 10B) was attained. The total boron-10 concentration was determined by high-resolution inductively coupled mass spectrometry in order to validate the method. Boron-10 isotope measurements were carried out by HR-ICP-MS at medium resolution (R=4000) due to the presence of an isobaric interference at mass 10. Good agreement was obtained between the values from CE-ESI-MS and those from HR-ICP-MS. The method has been successfully used to determine the 10B-BPA in two lines of cultured cells.

  14. Association between ICP pulse waveform morphology and ICP B waves.

    PubMed

    Kasprowicz, Magdalena; Bergsneider, Marvin; Czosnyka, Marek; Hu, Xiao

    2012-01-01

    The study aimed to investigate changes in the shape of ICP pulses associated with different patterns of the ICP slow waves (0.5-2.0 cycles/min) during ICP overnight monitoring in hydrocephalus. Four patterns of ICP slow waves were characterized in 44 overnight ICP recordings (no waves - NW, slow symmetrical waves - SW, slow asymmetrical waves - AS, slow waves with plateau phase - PW). The morphological clustering and analysis of ICP pulse (MOCAIP) algorithm was utilized to calculate a set of metrics describing ICP pulse morphology based on the location of three sub-peaks in an ICP pulse: systolic peak (P(1)), tidal peak (P(2)) and dicrotic peak (P(3)). Step-wise discriminant analysis was applied to select the most characteristic morphological features to distinguish between different ICP slow waves. Based on relative changes in variability of amplitudes of P(2) and P(3) we were able to distinguish between the combined groups NW + SW and AS + PW (p < 0.000001). The AS pattern can be differentiated from PW based on respective changes in the mean curvature of P(2) and P(3) (p < 0.000001); however, none of the MOCAIP feature separates between NW and SW. The investigation of ICP pulse morphology associated with different ICP B waves may provide additional information for analysing recordings of overnight ICP.

  15. Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion microscopy (SIMS)

    NASA Astrophysics Data System (ADS)

    Mangabeira, Pedro Antonio; Gavrilov, Konstantin L.; Almeida, Alex-Alan Furtado de; Oliveira, Arno Heeren; Severo, Maria Isabel; Rosa, Tiago Santana; Silva, Delmira da Costa; Labejof, Lise; Escaig, Françoise; Levi-Setti, Riccardo; Mielke, Marcelo Schramm; Loustalot, Florence Grenier; Galle, Pierre

    2006-03-01

    High-resolution imaging secondary ion mass spectrometry (HRI-SIMS) in combination with inductively coupled plasma mass spectrometry (ICP-MS) were utilised to determine specific sites of chromium concentration in tomato plant tissues (roots, stems and leaves). The tissues were obtained from plants grown for 2 months in hydroponic conditions with Cr added in a form chromium salt (CrCl 3·6H 2O) to concentrations of 25 and 50 mg/L. The chemical fixation procedure used permit to localize only insoluble or strongly bound Cr components in tomato plant tissue. In this work no quantitative SIMS analysis was made. HRI-SIMS analysis revealed that the transport of chromium is restricted to the vascular system of roots, stems and leaves. No Cr was detected in epidermis, palisade parenchyma and spongy parenchyma cells of the leaves. The SIMS-300 spectra obtained from the tissues confirm the HRI-SIMS observations. The roots, and especially walls of xylem vessels, were determined as the principal site of chromium accumulation in tomato plants.

  16. [Study on arsenic speciation changes in crude and processed traditional Chinese medicines by HPLC-ICP-MS].

    PubMed

    Jin, Peng-fei; Wu, Xue-jun; Zou, Ding; Kuang, Yong-mei; Hu, Xin; Jiang, Wen-qing; Sun, Chun-hua

    2011-03-01

    A HPLC-ICP-MS method for simultaneous determination of As(III), As(V), MMA and DMA in traditional Chinese medicines (TCMs) was established, and the contents of As(III), As(V), MMA and DMA in a TCM with high total arsenic content (Cordyceps) and 5 crude and processed TCMs (Radix Astragali, Radix et Rhizoma Rhei, Radix Scutellariae, Radix Polygoni Multiflori and Radix Rehmanniae) were determined and analyzed. The method validation indicated that the correlative coefficients (r) for all speciations were bigger than 0.9984; the limits of quantitation (LOQ) were from 0.8 to 1.0 microg x L(-1); the reproducibility and stability were satisfactory with all RSDs less than 10%; the spiked recoveries ranged from 82.40% to 119.5%. The results of samples analysis showed that the inorganic arsenic (As(III) and As(V)) was the dominating speciation in the tested TCMs; MMA and DMA were not found in all plant resourced TCMs, but MMA was found in Cordyceps; all the tested TCMs indicated a content increasing of inorganic arsenic after processing.

  17. Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion.

    PubMed

    Lo Dico, Gianluigi Maria; Galvano, Fabio; Dugo, Giacomo; D'ascenzi, Carlo; Macaluso, Andrea; Vella, Antonio; Giangrosso, Giuseppe; Cammilleri, Gaetano; Ferrantelli, Vincenzo

    2018-04-15

    The Commission Regulation (EC) Regulation N. 488/2014, established the concentration limits for cadmium in specific products based on cocoa and chocolate products as from January 2019. Based on this information there is a need to determine ultratrace levels of elements that might be presents in cocoa and chocolate products. In this work, the concentrations of Arsenic, Antimony, Cadmium, Chromium, Lead, Selenium and Vanadium were evaluated in cocoa powder and chocolate by the validation of an ICP-MS method. Good selectivity/specificity, recovery, repeatability and within-laboratory reproducibility, LOD, LOQ, range of linearity, standard measurement uncertainty parameters for method validation were achieved, in accordance with Commission Regulation. The cocoa powder revealed the maximum metal concentrations of 0.303 ± 0.035 mg/kg for cadmium, 1.228 ± 0.146 mg/kg for lead and 0.094 ± 0.013 mg/kg for arsenic. A significant difference was found between cocoa powder and chocolate samples (p < .05). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    PubMed

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS.

    PubMed

    Miravet, R; López-Sánchez, J F; Rubio, R; Smichowski, P; Polla, G

    2007-03-01

    Although there is concern about the presence of toxic elements and their species in environmental matrices, for example water, sediment, and soil, speciation analysis of volcanic ash has received little attention. Antimony, in particular, an emerging element of environmental concern, has been less studied than other potentially toxic trace elements. In this context, a study was undertaken to assess the presence of inorganic Sb species in ash emitted from the Copahue volcano (Argentina). Antimony species were extracted from size-classified volcanic ash (<36 microm, 35-45 microm, 45-150 microm, and 150-300 microm) by use of 1 mol L(-1) citrate buffer at pH 5. Antimony(III) and (V) in the extracts were separated and quantified by high-performance liquid chromatography combined on-line with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Antimony species concentrations (microg g(-1)) in the four fractions varied from 0.14 to 0.67 for Sb(III) and from 0.02 to 0.03 for Sb(V). The results reveal, for the first time, the occurrence of both inorganic Sb species in the extractable portion of volcanic ash. Sb(III) was always the predominant species.

  20. Novel separation method for highly sensitive speciation of cancerostatic platinum compounds by HPLC-ICP-MS.

    PubMed

    Hann, S; Stefánka, Zs; Lenz, K; Stingeder, G

    2005-01-01

    A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method is presented for analysis of cisplatin, monoaquacisplatin, diaquacisplatin, carboplatin, and oxaliplatin in biological and environmental samples. Chromatographic separation was achieved on pentafluorophenylpropyl-functionalized silica gel. For cisplatin, carboplatin, and oxaliplatin limits of detection of 0.09, 0.10, and 0.15 microg L(-1), respectively, were calculated at m/z 194, using aqueous standard solutions. (3 microL injection volume). The method was utilized for model experiments studying the stability of carboplatin and oxaliplatin at different chloride concentrations simulating wastewater and surface water conditions. It was found that a high fraction of carboplatin is stable in ultrapure water and in solutions containing 1.5 mol L(-1) Cl-, whereas oxaliplatin degradation was increased by increasing the chloride concentration. In order to support the assessment of oxaliplatin eco-toxicology, the method was tested for speciation of patient urine. The urine sample contained more than 17 different reaction products, which demonstrates the extensive biotransformation of the compound. In a second step of the study the method was successfully evaluated for monitoring cancerostatic platinum compounds in hospital waste water.