Sample records for ablation plasma plume

  1. Periodic Phenomena In Laser-Ablation Plasma Plumes: A Self-Organization Scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurlui, S.; Sanduloviciu, M.; Mihesan, C.

    2006-01-15

    Experimental evidence of the appearance of a proper periodic dynamics in a plasma plume created by pulsed laser ablation is considered as a hint for the presence of a self-organization scenario that explains similar phenomena observed in plasma diodes.

  2. The role of laser wavelength on plasma generation and expansion of ablation plumes in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein, A. E.; Department of Physics, McGill University, Montreal, Quebec H3A 0G4; Diwakar, P. K.

    2013-04-14

    We investigated the role of excitation laser wavelength on plasma generation and the expansion and confinement of ablation plumes at early times (0-500 ns) in the presence of atmospheric pressure. Fundamental, second, and fourth harmonic radiation from Nd:YAG laser was focused on Al target to produce plasma. Shadowgraphy, fast photography, and optical emission spectroscopy were employed to analyze the plasma plumes, and white light interferometry was used to characterize the laser ablation craters. Our results indicated that excitation wavelength plays a crucial role in laser-target and laser-plasma coupling, which in turn affects plasma plume morphology and radiation emission. Fast photographymore » and shadowgraphy images showed that plasmas generated by 1064 nm are more cylindrical compared to plasmas generated by shorter wavelengths, indicating the role of inverse bremsstrahlung absorption at longer laser wavelength excitation. Electron density estimates using Stark broadening showed higher densities for shorter wavelength laser generated plasmas, demonstrating the significance of absorption caused by photoionization. Crater depth analysis showed that ablated mass is significantly higher for UV wavelengths compared to IR laser radiation. In this experimental study, the use of multiple diagnostic tools provided a comprehensive picture of the differing roles of laser absorption mechanisms during ablation.« less

  3. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Huaming; Yang, Bo; Mao, Xianglei

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  4. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE PAGES

    Hou, Huaming; Yang, Bo; Mao, Xianglei; ...

    2018-05-10

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  5. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady, E-mail: gennady@purdue.edu

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained frommore » the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.« less

  6. Characterization of ultrafast laser-ablation plasma plumes at various Ar ambient pressures

    DOE PAGES

    Diwakar, P. K.; Harilal, S. S.; Phillips, M. C.; ...

    2015-07-30

    Expansion dynamics and internal plume structures of fs laser ablated brass plasma in Ar at various pressure levels ranging from vacuum to atmospheric were studied using multitude of diagnostic tools including time resolved and time integrated 2-dimensional imaging, optical time of flight measurements and visible emission spectroscopy. Temporal evolution of excited Cu and Zn species in the plume were imaged using band pass interference filters and compared its hydrodynamic expansion features with spectrally integrated images of the plume. 2D imaging coupled with monochromatic line selection showed several interesting features at various pressure levels which include velocity differences among the plumemore » species, emission intensity distribution, plasma temperature, electron density etc. Plume confinement, enhanced signal intensity, and dual peak structures in time-of-flight profiles were observed at intermediate pressure range of ~10 Torr. Optimum signal to background ratio was also observed in this pressure range. As a result, possible mechanisms for observed changes in plume shape, optical emission intensity and dual peak structures in time-of-flight profiles were discussed.« less

  7. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeates, P.; Kennedy, E. T.; School of Physical Sciences, Dublin City University

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profilesmore » of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.« less

  8. Plume splitting and oscillatory behavior in transient plasmas generated by high-fluence laser ablation in vacuum

    NASA Astrophysics Data System (ADS)

    Focsa, C.; Gurlui, S.; Nica, P.; Agop, M.; Ziskind, M.

    2017-12-01

    We present a short overview of studies performed in our research groups over the last decade on the characterization of transient plasma plumes generated by laser ablation in various temporal regimes, from nanosecond to femtosecond. New results are also presented along with this overview, both being placed in the context of similar studies performed by other investigators. Optical (fast gate intensified CCD camera imaging and space- and time-resolved emission spectroscopy) and electrical (mainly Langmuir probe) methods have been applied to experimentally explore the dynamics of the plasma plume and its constituents. Peculiar effects as plume splitting and sharpening or oscillations onset have been evidenced in vacuum at high laser fluence. New theoretical approaches have been developed to account for the experimental observations.

  9. Time-of-flight spectroscopy characterization of the plasma plume from a laser-ablated potassium titanyl phosphate crystal

    NASA Astrophysics Data System (ADS)

    Ying, Minju; Wang, XiaoXiao; Cheng, Wei; Liao, Bin; Zhang, Xu

    2015-06-01

    Optical emission spectra of the plasma produced by 1.06-μm Nd:YAG laser irradiation of a potassium titanyl phosphate (KTP) crystal were recorded and analyzed in a time- and spatially resolved manner. The composition and evolution of the plasma plume were studied in low vacuum conditions. Emission lines associated with Ti(I), Ti(II) and K(I) were identified in the plasma. The delay times of emission peaks for the ablated species were investigated as a function of the observation distance from the target surface, and the velocities of these species were derived accordingly. Two emission peaks corresponding to a fast and a slow component of ablated Ti(I) were observed by optical time-of-flight spectroscopy. The origins of the two peaks and a possible mechanism for the laser ablation are discussed.

  10. Time resolved optical diagnostics of ZnO plasma plumes in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shyam L.; Singh, Ravi Pratap; Thareja, Raj K.

    2013-10-15

    We report dynamical evolution of laser ablated ZnO plasma plumes using interferometry and shadowgraphy; 2-D fast imaging and optical emission spectroscopy in air ambient at atmospheric pressure. Recorded interferograms using Nomarski interferometer and shadowgram images at various time delays show the presence of electrons and neutrals in the ablated plumes. The inference drawn from sign change of fringe shifts is consistent with two dimensional images of the plume and optical emission spectra at varying time delays with respect to ablating pulse. Zinc oxide plasma plumes are created by focusing 1.06 μm radiation on to ZnO target in air and 532more » nm is used as probe beam.« less

  11. Morphological changes in ultrafast laser ablation plumes with varying spot size

    DOE PAGES

    Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; ...

    2015-06-04

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less

  12. Morphological changes in ultrafast laser ablation plumes with varying spot size.

    PubMed

    Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C

    2015-06-15

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.

  13. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  14. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  15. Laser ablated copper plasmas in liquid and gas ambient

    NASA Astrophysics Data System (ADS)

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-01

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (ne) determined using Stark broadening of the Cu I (3d104d1 2D3/2-3d104p1 2P3/2 at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (Te) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ˜590 nm.

  16. Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    NASA Astrophysics Data System (ADS)

    Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.

  17. Condensation of ablation plumes in the irradiation of metals by high-intensity nanosecond laser pulses at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozadaev, K V

    2016-01-31

    The Anisimov–Luk'yanchuk model is adapted for describing the condensation of vapour-plasma plumes produced in the irradiation of metal targets by high-intensity (10{sup 8} – 10{sup 10} W cm{sup -2}) nanosecond (10 – 100 ns) pulses at atmospheric pressure. The resultant data suggest that the initial stages of the development of metal ablation plumes correspond with a high degree of accuracy to the Zel'dovich–Raizer theory of dynamic condensation; however, at the stage of the ablation plume decay, the liquid-droplet phase is formed primarily by coalescence of 'nuclei'. (interaction of laser radiation with matter. laser plasma)

  18. Experimental studies of laser-ablated zirconium carbide plasma plumes: Fuel corrosion diagnostic development

    NASA Astrophysics Data System (ADS)

    Wantuck, P. J.; Butt, D. P.; Sappey, A. D.

    Understanding the corrosion behavior of nuclear fuel materials, such as refractory carbides, in a high temperature hydrogen environment is critical for several proposed nuclear thermal propulsion (NTP) concepts. Monitoring the fuel corrosion products is important not only for understanding corrosion characteristics, but to assess the performance of an actual, operating nuclear propulsion system as well. In this paper, we describe an experimental study initiated to develop, test, and subsequently utilize non-intrusive, laser-based diagnostics to characterize the gaseous product species which are expected to evolve during the exposure of representative fuel samples to hydrogen. Laser ablation is used to produce high temperature, vapor plumes from solid solution, uranium-free, zirconium carbide (ZrC) forms for probing by other laser diagnostic methods, predominantly laser-induced fluorescence (LIF). We discuss the laser ablation technique, results of plume emission measurements, as well as the use of planar LIF to image both the ZrC plumes and actual NTP fuel corrosion constituents.

  19. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlOmore » is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.« less

  20. Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Miloshevsky, G. V.; Diwakar, P. K.

    2012-08-15

    We investigated spatio-temporal evolution of ns laser ablation plumes at atmospheric pressure, a favored condition for laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass-spectrometry. The 1064 nm, 6 ns pulses from a Nd:YAG laser were focused on to an Al target and the generated plasma was allowed to expand in 1 atm Ar. The hydrodynamic expansion features were studied using focused shadowgraphy and gated 2 ns self-emission visible imaging. Shadowgram images showed material ejection and generation of shock fronts. A secondary shock is observed behind the primary shock during the time window of 100-500 ns with instabilities near themore » laser cone angle. By comparing the self-emission images obtained using fast photography, it is concluded that the secondary shocks observed in the shadowgraphy were generated by fast moving target material. The plume front estimates using fast photography exhibited reasonable agreement with data obtained from shadowgraphy at early times {<=}400 ns. However, at later times, fast photography images showed plume confinement while the shadowgraphic images showed propagation of the plume front even at greater times. The structure and dynamics of the plume obtained from optical diagnostic tools were compared to numerical simulations. We have shown that the main features of plume expansion in ambient Ar observed in the experiments can be reproduced using a continuum hydrodynamics model which provided valuable insight into the expansion dynamics and shock structure of the plasma plume.« less

  1. Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Li, Xingwen; Wei, Wenfu

    2013-11-15

    Plume splitting in low-pressure ambient air was understood in view of ion distribution dynamics from the laser ablated Al plasma (1064 nm 0.57 J/mm{sup 2}) by combining fast photography and spatially resolved spectroscopy. In the beginning, the spectral lines were mainly from the Al III ion. Then, the Bragg peak in stopping power of the ambient gas to Al III could be the dominant reason for the enhanced emission from the fast moving part, and the recombination of Al III to Al I-II ions near the target surface was response to the radiations from the slow moving/stationary part. As themore » ambient gas pressure increased, stopping distances of the Al III decreased, and radiation from the air ions became pronounced. The laser shadowgraph image at 1100 Pa indicated that the shock wave front located between the fast moving and slow moving parts. Electron densities of the fast moving plasma, which peaked at the plasma front, were on the order of 10{sup 16} cm{sup −3}, and the electron temperatures were 2–3 eV.« less

  2. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  3. Evaluation of pressure in a plasma produced by laser ablation of steel

    NASA Astrophysics Data System (ADS)

    Hermann, Jörg; Axente, Emanuel; Craciun, Valentin; Taleb, Aya; Pelascini, Frédéric

    2018-05-01

    We investigated the time evolution of pressure in the plume generated by laser ablation with ultraviolet nanosecond laser pulses in a near-atmospheric argon atmosphere. These conditions were previously identified to produce a plasma of properties that facilitate accurate spectroscopic diagnostics. Using steel as sample material, the present investigations benefit from the large number of reliable spectroscopic data available for iron. Recording time-resolved emission spectra with an echelle spectrometer, we were able to perform accurate measurements of electron density and temperature over a time interval from 200 ns to 12 μs. Assuming local thermodynamic equilibrium, we computed the plasma composition within the ablated vapor material and the corresponding kinetic pressure. The time evolution of plume pressure is shown to reach a minimum value below the pressure of the background gas. This indicates that the process of vapor-gas interdiffusion has a negligible influence on the plume expansion dynamics in the considered timescale. Moreover, the results promote the plasma pressure as a control parameter in calibration-free laser-induced breakdown spectroscopy.

  4. Global Modeling of Uranium Molecular Species Formation Using Laser-Ablated Plasmas

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Finko, Mikhail; Azer, Magdi; Armstrong, Mike; Crowhurst, Jonathan; Radousky, Harry; Rose, Timothy; Stavrou, Elissaios; Weisz, David; Zaug, Joseph

    2016-10-01

    Uranium is chemically fractionated from other refractory elements in post-detonation nuclear debris but the mechanism is poorly understood. Fractionation alters the chemistry of the nuclear debris so that it no longer reflects the chemistry of the source weapon. The conditions of a condensing fireball can be simulated by a low-temperature plasma formed by vaporizing a uranium sample via laser heating. We have developed a global plasma kinetic model in order to model the chemical evolution of U/UOx species within an ablated plasma plume. The model allows to track the time evolution of the density and energy of an uranium plasma plume moving through an oxygen atmosphere of given fugacity, as well as other relevant quantities such as average electron and gas temperature. Comparison of model predictions with absorption spectroscopy of uranium-ablated plasmas provide preliminary insights on the key chemical species and evolution pathways involved during the fractionation process. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16-1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Comparison of plume dynamics for laser ablated metals: Al and Ti

    NASA Astrophysics Data System (ADS)

    Bauer, William; Perram, Glen P.; Haugan, Timothy

    2018-03-01

    Emissive plumes from pulsed laser ablation of bulk Ti and Al from KrF laser irradiation at laser fluence up to 3.5 J/cm2 and argon background pressures of 0-1 Torr have been observed using gated intensified charged-coupled device imagery. Mass loss for Ti increases from 0.1 to 0.8 μg/pulse as pulse energy increase from 174 to 282 mJ/pulse (35-170 photons/atom) and decreases by ˜30% as pressure increases from vacuum to 1 Torr. Early plume energies are described by the free expansion velocities of 1.57 ± 0.02 and of 1.81 ± 0.07 cm/μs for Ti and Al, respectively, and up to 90% of the incoming laser energy can be attributed to the Al shock front in the mid-field. The ablation thresholds of 90 ± 27 mJ (1.12 ± 0.34 J/cm2) for Ti and 126 ± 13 mJ (1.58 ± 0.16 J/cm2) for Al also represent 30%-70% of the incident laser energy. The decrease in mass loss at higher pressures is attributed to plasma shielding of the target surface.

  6. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-08-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5-6 J/cm2) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis.

  7. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, S.; Horioka, K.; Okamura, M.

    Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less

  8. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field

    DOE PAGES

    Ikeda, S.; Horioka, K.; Okamura, M.

    2017-10-10

    Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less

  9. Spectroscopic measurements of plasma plume induced during the laser deposition of the hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jedyński, M.; Szymański, Z.; Mróz, W.; Prokopiuk, A.; Jelinek, M.; Kocourek, T.

    2004-03-01

    Plasma plume induced by ArF exeimer laser ablation of a Ca10(PO4)6(OH)2 hydroxyapatite target during deposition process has been studied in different ambient conditions, i.e. in air or water vapour. ArF laser operated at the wavelength of 193 nm with the pulse energy of 300 mJ and 20 ns pulse duration. Spectroscopic measurements of the emission spectra of plasma plume have been made with the use of a fast gate, lens coupled micro-channel plate (MCP) image intensifier placed between a spectrograph and a 1254 silicon intensified target (SIT) detector connected to an optical multichannel analyser. The electron densities of 1022 ÷ 1023m-3 have been determined from the Stark broadening of Ca I lines as a function of the distance from the target. The expansion of the plasma plume has been studied using the time of flight method. The time-dependent radiation of the 422.673 nm Ca I and 393.366 nm Ca II lines has been, registered with the use of a monochromator and photomultiplier at various distances from the target. Velocities between 104 ÷ 103 m/s have been found. The velocity in air is several times higher than in the case with water vapour. The plasma plume dynamics is also different in both cases. In the presence of water vapour the spliting of the plasma plume appears.

  10. Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.

    2005-01-01

    Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.

  11. Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Oba, Masaki; Miyabe, Masabumi; Akaoka, Katsuaki; Wakaida, Ikuo

    2016-02-01

    We used laser-induced fluorescence imaging with a varying beam focal point to observe ablation plumes from metal and oxide samples of gadolinium. The plumes expand vertically when the focal point is far from the sample surface. In contrast, the plume becomes hemispherical when the focal point is on the sample surface. In addition, the internal plume structure and the composition of the ablated atomic and ionic particles also vary significantly. The fluorescence intensity of a plume from a metal sample is greater than that from an oxide sample, which suggests that the number of monatomic species produced in each plume differs. For both the metal and oxide samples, the most intense fluorescence from atomic (ionic) species is observed with the beam focal point at 3-4 mm (2 mm) from the sample surface.

  12. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  13. Investigation of plume dynamics during picosecond laser ablation of H13 steel using high-speed digital holography

    NASA Astrophysics Data System (ADS)

    Pangovski, Krste; Otanocha, Omonigho B.; Zhong, Shan; Sparkes, Martin; Liu, Zhu; O'Neill, William; Li, Lin

    2017-02-01

    Ablation of H13 tool steel using pulse packets with repetition rates of 400 and 1000 kHz and pulse energies of 75 and 44 μ {J}, respectively, is investigated. A drop in ablation efficiency (defined here as the depth per pulse or μ {m}{/}μ {J}) is shown to occur when using pulse energies of E_{{pulse}} > 44 μ {J}, accompanied by a marked difference in crater morphology. A pulsed digital holographic system is applied to image the resulting plumes, showing a persistent plume in both cases. Holographic data are used to calculate the plume absorption and subsequently the fraction of pulse energy arriving at the surface after traversing the plume for different pulse arrival times. A significant proportion of the pulse energy is shown to be absorbed in the plume for E_{{pulse}} > 44 μ {J} for pulse arrival times corresponding to {>}1 MHz pulse repetition rate, shifting the interaction to a vapour-dominated ablation regime, an energetically costlier ablation mechanism.

  14. Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas.

    PubMed

    Hou, Huaming; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E

    2017-07-18

    Recently, laser ablated molecular isotopic spectrometry (LAMIS) has expanded its capability to explore molecules formation mechanism in laser-induced plasma in addition to isotope analysis. LAMIS is a powerful tool for tracking the origination of atoms that is involved in formation of investigated molecules by labeling atoms with their isotopic substitution. The evolutionary formation pathways of organic molecules, especially of C 2 dimers and CN radicals, were frequently reported. However, very little is known about the formation pathways for metallic radicals and heterodimers in laser ablated plasma. This research focuses on elucidating the formation pathways of AlO radicals in femtosecond laser ablated plasma from 18 O-labeled Al 2 O 3 pellet. Plasmas expanding with strong forward bias in the direction normal to the sample surface were generated in the wake of a weakly ionized channel created by a femtosecond laser. The formation mechanism of AlO and influence of air were investigated with multiple plasma diagnostic methods such as monochromatic fast gating imaging, spatiotemporal resolved optical emission spectroscopy, and LAMIS. An advanced LAMIS fitting procedure was used to deduce the spatiotemporal distributions of Al 18 O and Al 16 O number densities and also their ratios. We found that the Al 16 O/Al 18 O number density ratio is higher for plasma portion closer to the sample surface, which suggests that chemical reactions between the plasma plume and ambient air are more intense at the tail of the plasma. The results also reveals that direct association of free Al and O atoms is the main mechanism for the formation of AlO at the early stage of the plasma. To the contrast, chemical reactions between plasma materials and ambient oxygen molecules and the isotope exchange effect are the dominant mechanisms of the formation of AlO and evolution of Al 16 O/Al 18 O number density ratio at the late stage of the plasma.

  15. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    PubMed

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  16. Influence of the ablation plume on the removal process during ArF-excimer laser photoablation

    NASA Astrophysics Data System (ADS)

    Doerbecker, Christina; Lubatschowski, Holger; Lohmann, Stefan; Ruff, Christine; Kermani, Omid; Ertmer, Wolfgang

    1996-01-01

    Correction of myopia with the ArF-excimer laser (PRK) sometimes leads to a so called 'central island' formation on the anterior corneal surface. The attenuation of the laser beam by the ablation plume might be one reason for this phenomenon. The attenuation properties of the ablation plume were investigated by a probe beam parallel to the surface of the tissue probe. By varying the laser parameters (fluence, repetition rate, spot size) and the target tissue (cornea, PMMA) the attenuation of the probe beam was measured time and spatial resolved. As a result of this study, a significant influence of the removal process due to scattering and absorption within the ablation plume can be assumed as a function of repetition rate, spot size and air flow on the tissue surface.

  17. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  18. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  19. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE PAGES

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole; ...

    2017-06-19

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  20. Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes

    NASA Technical Reports Server (NTRS)

    Scott, C. D.; Greendyke, R. B.; Creel, J. R.; Payne, B. T.

    2005-01-01

    Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such-as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT. Fig. 1 shows a basic schematic of the laser-ablation oven at NASA-JSC. Construction of the facility is simple in concept. Two concentric quartz tubes of 1.5 mm thickness form the inner and outer tubes with inside diameters of 2.2 and 5.08 cm respectively. At one end of the inner tube are located two 60 Hz pulsed lasers operating at 1064 nm and 532 nm wavelength with beam diameters of 5 mm aligned coaxially with the longitudinal axis of the inner quartz tube. For standard nanotube production runs, a 10 ns 532 nm pulse is followed 50 ns later by a 10 ns 1064 nm pulse. Each pulse is of 300 mJ energy. A target of carbon graphite with approximately 1% nickel and cobalt catalysts is located at the other end of the inner quartz tube. In the ordinary processing of SWNT, a base flow of 100 sccm of argon is maintained from the laser location and exits past the carbon target at a pressure of 66.7 kPa. These conditions yield a baseline mass flow through the chamber of 2.723x10(exp -6)kg/s of argon. The whole

  1. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  2. Modeling and Simulation of Ablation-Controlled Plasmas

    NASA Astrophysics Data System (ADS)

    Kundrapu, Madhusudhan N.

    Ablation and plasma formation in high energy laser target interactions and arc discharges are studied numerically. Each of the two processes is modeled separately due to the type of energy source and the resulting flow eld. Ablation of the target material and plasma formation are coupled to obtain evaporation rate, temperature distribution, velocity eld, and species concentration self-consistently. Laser ablation is studied in the perspective of directed energy applications, where beam size varies from few centimeters to tens of centimeters with energies extending up to 10 kW/cm2. Because of this high energy deposition, the evaporated material expands to supersonic speeds into the free space. Due to the large spot sizes and associated supersonic flow, one dimensional Euler equations are considered to be sufficient for modeling the plume. Instead, more emphasis was given to evaporation model, by introducing Knudsen layer kinetics at the plume target interface, and plasma shielding. The evaporation rate is validated with results from the experiments and simulations are carried out to nd the in fluence of laser beam frequency on evaporation rates. The evaporation model used in this work is found to be more accurate than the widely used model based on sonic speed assumption. The optimum beam wavelength for Al surfaces is found to be 850 nm. Attenuation of telemetry data by plasma is a concern for the testing of directed energy systems. Electrostatic approach for the mitigation of communication attenuation is analyzed to obtain the fluency limits up to which the approach can be implemented. It is found from sheath calculations that uninterrupted telemetry can be achieved through Al plasma for fluences below 4 J/cm2 at a background pressure of 1 atm, using a maximum bias voltage of 10 kV . Arc discharge ablation is modeled for the synthesis of nanoparticles. The electric arc generated between the electrodes, placed inside a Helium chamber, evaporates the catalyst

  3. Femtosecond ablation applied to deep-drilling of hard metals

    NASA Astrophysics Data System (ADS)

    Bruneau, Sebastien; Hermann, Joerg; Dumitru, Gabriel; Sentis, Marc L.

    2004-09-01

    Mechanisms responsible for the limitation of the aspect ratio obtained by deep drilling of hard metals are investigated in the present work. Cemented carbide targets have been irradiated with laser pulses of 100 fs duration and 100 μJ maximum energy delivered by a Ti:sapphire laser system. The experiments are carried out in different gas environments (vacuum, air, helium up to atmospheric pressure) with incident laser fluences ranging from 1 to 20 Jcm-2. During deep drilling, the laser-induced ablation plume is characterized by means of in-situ plasma diagnostics. Fast imaging is used to observe the expansion behavior of the plasma plume whereas time- and space-resolved emission spectroscopy is employed to analyze the plasma composition. After irradiation, the laser-produced craters were examined by optical microscopy. A correlation between the ablation plume characteristics and the morphological changes of the mciro-holes is established. The results indicate that nanoclusters, that present a significant part of the ablated material, are responsbile for the alteration of the crater shape in the high laser fluence regime.

  4. Laser beam-plasma plume interaction during laser welding

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  5. Effects of Plume Hydrodynamics and Oxidation on the Composition of a Condensing Laser-Induced Plasma

    DOE PAGES

    Weisz, David G.; Crowhurst, Jonathan C.; Finko, Mikhail S.; ...

    2018-02-01

    High-temperature chemistry in laser ablation plumes leads to vapor-phase speciation, which can induce chemical fractionation during condensation. In this work, using emission spectroscopy acquired after ablation of a SrZrO 3 target, we have experimentally observed the formation of multiple molecular species (ZrO and SrO) as a function of time as the laser ablation plume evolves. Although the stable oxides SrO and ZrO 2 are both refractory, we observed emission from the ZrO intermediate at earlier times than SrO. We deduced the time-scale of oxygen entrainment into the laser ablation plume using an 18O 2 environment by observing the in-growth ofmore » Zr 18O in the emission spectra relative to Zr 16O, which was formed by reaction of Zr with 16O from the target itself. Using temporally resolved plume-imaging, we determined that ZrO formed more readily at early times, volumetrically in the plume, while SrO formed later in time, around the periphery. Lastly, using a simple temperature-dependent reaction model, we have illustrated that the formation sequence of these oxides subsequent to ablation is predictable to first order.« less

  6. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    NASA Technical Reports Server (NTRS)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  7. Long-lived plasmaspheric drainage plumes: Where does the plasma come from?

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Welling, Daniel T.; Thomsen, Michelle F.; Denton, Michael H.

    2014-08-01

    Long-lived (weeks) plasmaspheric drainage plumes are explored. The long-lived plumes occur during long-lived high-speed-stream-driven storms. Spacecraft in geosynchronous orbit see the plumes as dense plasmaspheric plasma advecting sunward toward the dayside magnetopause. The older plumes have the same densities and local time widths as younger plumes, and like younger plumes they are lumpy in density and they reside in a spatial gap in the electron plasma sheet (in sort of a drainage corridor). Magnetospheric-convection simulations indicate that drainage from a filled outer plasmasphere can only supply a plume for 1.5-2 days. The question arises for long-lived plumes (and for any plume older than about 2 days): Where is the plasma coming from? Three candidate sources appear promising: (1) substorm disruption of the nightside plasmasphere which may transport plasmaspheric plasma outward onto open drift orbits, (2) radial transport of plasmaspheric plasma in velocity-shear-driven instabilities near the duskside plasmapause, and (3) an anomalously high upflux of cold ionospheric protons from the tongue of ionization in the dayside ionosphere, which may directly supply ionospheric plasma into the plume. In the first two cases the plume is drainage of plasma from the magnetosphere; in the third case it is not. Where the plasma in long-lived plumes is coming from is a quandary: to fix this dilemma, further work and probably full-scale simulations are needed.

  8. Experimental Investigation of Molecular Species Formation in Metal Plasmas During Laser Ablation

    NASA Astrophysics Data System (ADS)

    Radousky, H.; Crowhurst, J.; Rose, T.; Armstrong, M.; Stavrou, E.; Zaug, J.; Weisz, D.; Azer, M.; Finko, M.; Curreli, D.

    2016-10-01

    Atomic and molecular spectra on metal plasmas generated by laser ablation have been measured using single, nominally 6-7 ns pulses at 1064 nm, and with energies less than 50 mJ. The primary goal for these studies is to constrain the physical and chemical mechanisms that control the distribution of radionuclides in fallout after a nuclear detonation. In this work, laser emission spectroscopy was used to obtain in situdata for vapor phase molecular species as they form in a controlled oxygen atmosphere for a variety of metals such as Fe, Al, as well as preliminary results for U. In particular, the ablation plumes created from these metals have been imaged with a resolution of 10 ns, and it is possible to observe the expansion of the plume out to 0.5 us. These data serve as one set of inputs for a semi-empirical model to describe the chemical fractionation of uranium during fallout formation. Prepared by LLNL under Contract DE-AC52-07NA27344. This project was sponsored by the Department of the Defense, Defense Threat Reduction Agency, under Grant Number HDTRA1-16-1-0020.

  9. Third harmonic generation in air ambient and laser ablated carbon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ravi Pratap, E-mail: ravips@iitk.ac.in; Gupta, Shyam L.; Thareja, Raj K.

    2015-12-15

    We report the third harmonic generation of a nanosecond laser pulse (1.06 μm) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablatedmore » plume play a vital role in the observed third harmonic signals.« less

  10. Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis

    NASA Astrophysics Data System (ADS)

    Sanz, M.; López-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M.

    2011-12-01

    Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25-50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.

  11. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.

    2016-11-01

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential explored mechanisms for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES results yield congested spectra from which the U I 356.18 nm transition is prominent andmore » serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.« less

  12. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.

    2016-10-02

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential mechanisms explored for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plas-ma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES yields congested spectra from which the U I 356.18 nm transition is prominent and servesmore » as the basis for signal tracking. LA-OES signal and per-sistence vary negligibly between the test gases (air and N 2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. In conclusion, investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.« less

  13. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro

    2018-03-01

    We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.

  14. Plume dynamics from UV pulsed ablation of Al and Ti

    NASA Astrophysics Data System (ADS)

    Bauer, William; Perram, Glen; Haugan, Timothy

    2016-12-01

    Pulsed laser ablation of Al and Ti with a < 3.3 J/cm2 KrF laser and Ar background pressure of up to 1 Torr was performed to study the ablated plume. Mass loss experiments revealed the number of ablated atoms per pulse increases by 30% for Ti and 20% for Al as pressure decreases from 1 Torr to vacuum. Optical emission imaging performed using a gated ICCD revealed a strong dependence of shock front parameters, defined by the Sedov-Taylor blast and classical drag models, on background pressure. Spatially resolved optical emission spectroscopy from Al I, Al II, Ti I, and Ti II revealed ion temperatures of 104 K that decreased away from the target surface along the surface normal and neutral temperatures of 103 K independent of target distance. Comparison between kinetic energy in the shock and internal excitation energy reveals that nearly 100% of the energy is partitioned into shock front kinetic energy and 1% into internal excitation.

  15. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  16. Waves generated in the plasma plume of helicon magnetic nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of themore » plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.« less

  17. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.

    2017-09-01

    A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.

  18. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  19. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  20. Fields in laser-ablated plasmas generalized to degenerate electrons and to Fermi energy in nuclei with change to quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.; Osman, Frederick; Hammerling, Peter X.

    2004-09-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets, contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension of plasmas and to the internal dynamic electric fields in all inhomogeneous plasmas. The surface causes stabilization by short length surface waves smoothing the expanding plasma plume. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature, resulted in the surface tension of metals in agreement with measurements. Taking then the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well known nuclear density, and in the Debye length equal to Hofstadter's decay of the nuclear surface. Increasing the nuclear density by a factor of 6 leads to the change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark-gluon plasma. Expansion of this higher density at the big band or in a supernova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range limited to about uranium.

  1. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Xinpei; Jiang Zhonghe; Xiong Qing

    2008-02-25

    In this letter, a room temperature atmospheric pressure plasma jet device is reported. The high voltage electrode of the device is covered by a quartz tube with one end closed. The device, which is driven by a kilohertz ac power supply, is capable of generating a plasma plume up to 11 cm long in the surrounding room air. The rotational and vibrational temperatures of the plasma plume are 300 and 2300 K, respectively. A simple electrical model shows that, when the plasma plume is contacted with a human, the voltage drop on the human is less than 66 V formore » applied voltage of 5 kV (rms)« less

  2. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  3. Laser ablation in an ambient gas: Modelling and experiment

    NASA Astrophysics Data System (ADS)

    Moscicki, Tomasz; Hoffman, Jacek; Szymanski, Zygmunt

    2018-02-01

    The laser ablation of graphite in ambient argon is studied both experimentally and theoretically in conditions corresponding to the initial conditions of carbon nanotube synthesis by the laser vaporization method. The results of the experiment show that the maximum plasma temperature of 24 000 K is reached 25 ns after the beginning of the laser pulse and decreases to about 4000-4500 K after 10 μs. The maximum electron density of 8 × 1025 m-3 is reached 15 ns from the beginning of the laser pulse. The hydrodynamic model applied shows comparable plasma temperatures and electron densities. The model also replicates well a shock wave and plume confinement—intrinsic features of supersonic flow of the ablated plume in an ambient gas. The results show that the theoretical model can be used to simulate nanosecond laser ablation in an ambient gas from the beginning of the process up to several microseconds.

  4. A tandem mirror plasma source for a hybrid plume plasma propulsion concept

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

    1985-01-01

    This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

  5. Kinetic electron model for plasma thruster plumes

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  6. Monitoring of KrF excimer laser ablation for burn scars: a comparative study of transient reflection measurement and time-resolved photography of ablation plume

    NASA Astrophysics Data System (ADS)

    Nakajima, Akio; Arai, Tsunenori; Kikuchi, Makoto; Iwaya, Akimi; Arai, Katsuyuki; Inazaki, Satoshi; Takaoka, Takatsugu; Kato, Masayoshi

    1995-05-01

    A simple laser ablation monitoring during burn scar removal by KrF laser irradiation was studied to control laser fluence in real-time. Because, to obtain suitable surface for auto skin-graft, the laser fluence should be precisely controlled at each laser shot. We employed simple probe transmission method which could detect ejected material/phenomena from irradiated surface. The time-course of measured probe intensity contained a couple of attenuated peaks, which might corresponded to a shock wave front and debris plume. The delay time from laser irradiation to the debris plume peak appearance varied with the ablation fluence. The delay time of 1 J/cm2 (near ablation threshold) case prolonged 25% from 8 J/cm2 (far above threshold) case. Therefore, we think the delay time measurement by means of the simple probe transmission method may be available to attain the laser fluence control for nonuniform burn scar removal. The time-resolved photography and probe reflection method were also studied to understand the measured time-course of the transmitted probe intensity.

  7. Characteristics of chiral plasma plumes generated in the absence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Nie, LanLan; Liu, FengWu; Zhou, XinCai; Lu, XinPei; Xian, YuBin

    2018-05-01

    A chiral plasma plume has recently been generated inside a dielectric tube without the use of an external magnetic field. In this paper, we seek to further study the key properties of such a chiral plume to improve our understanding of how this interesting structure is generated and controlled. The chiral plume is generated by externally mounting a stainless steel helical coil or a ring onto the dielectric tube. By changing the pitch of the helical coil, the pitch of the plasma plume can be controlled, with the shape of the plume following the shape of the helical coil. The addition of the helical coil significantly expands the range of parameters under which the chiral plasma plume appears. When the frequency of the applied voltage increases, additional stable discharge channels appear between the adjacent helices. The addition of two helical coils results in the formation of two chiral plasma plumes, which follow the shape of the helical coils. When a metal ring is placed on the outside of the tube, there is no chiral plasma plume between the high voltage electrode and the ring; however, a chiral plasma plume appears on the right side of the ring if the distance between the ring and the high voltage electrode is small. These findings suggest that the chiral plasma can be effectively modulated and guided using an externally mounted helical coil, which acts as the floating/actual ground to reduce the impedance of the discharge and as such contributes to the emergence of the chiral plasma plume behavior.

  8. Imaging spectroscopy of polymer ablation plasmas for laser propulsion applications

    NASA Astrophysics Data System (ADS)

    Jiao, Long; Truscott, Benjamin S.; Liu, Hao; Ashfold, Michael N. R.; Ma, Honghao

    2017-01-01

    A number of polymers have been proposed for use as propellants in space launch and thruster applications based on laser ablation, although few prior studies have either evaluated their performance at background pressures representative of the upper atmosphere or investigated interactions with ambient gases other than air. Here, we use spatially and temporally resolved optical emission spectroscopy to compare three polymers, poly(ethylene), poly(oxymethylene), and glycidyl azide polymer, ablated using a 532 nm, nanosecond pulsed laser under Ar and O2 at pressures below 1 Torr. Emission lines from neutrally and positively charged atoms are observed in each case, along with the recombination radiation at the interaction front between the plasma plume and the background gas. C2 radicals arise either as a direct fragmentation product or by a three-body recombination of C atoms, depending on the structure of the polymer backbone, and exhibit a rotational temperature of ≈5000 K. The Sedov-Taylor point blast model is used to infer the energy release relative to the incident laser energy, which for all polymers is greater in the presence of O2, as to be expected based on their negative oxygen balance. Under Ar, plume confinement is seen to enhance the self-reactivity of the ejecta from poly(oxymethylene) and glycidyl azide polymer, with maximum exothermicity close to 0.5 Torr. However, little advantage of the latter, widely considered one of the most promising energetic polymers, is apparent under the present conditions over the former, a common engineering plastic.

  9. Experimental measurement of ablation effects in plasma armature railguns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.V.; Parsons, W.M.

    1986-01-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  10. Experimental measurement of ablation effects in plasma armature railguns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.V.; Parsons, W.M.

    1986-11-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  11. Stationary Plasma Thruster Plume Characteristics

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Manzella, David H.

    1994-01-01

    Stationary Plasma Thrusters (SPT's) are being investigated for application to a variety of near-term missions. This paper presents the results of a preliminary study of the thruster plume characteristics which are needed to assess spacecraft integration requirements. Langmuir probes, planar probes, Faraday cups, and a retarding potential analyzer were used to measure plume properties. For the design operating voltage of 300 V the centerline electron density was found to decrease from approximately 1.8 x 10 exp 17 cubic meters at a distance of 0.3 m to 1.8 X 10 exp 14 cubic meters at a distance of 4 m from the thruster. The electron temperature over the same region was between 1.7 and 3.5 eV. Ion current density measurements showed that the plume was sharply peaked, dropping by a factor of 2.6 within 22 degrees of centerline. The ion energy 4 m from the thruster and 15 degrees off-centerline was approximately 270 V. The thruster cathode flow rate and facility pressure were found to strongly affect the plume properties. In addition to the plume measurements, the data from the various probe types were used to assess the impact of probe design criteria

  12. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    NASA Astrophysics Data System (ADS)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  13. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  14. Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes

    NASA Astrophysics Data System (ADS)

    Hartig, K. C.; Brumfield, B. E.; Phillips, M. C.; Harilal, S. S.

    2017-09-01

    Oxygen present in the ambient gas medium may affect both laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) emission through a reduction of emission intensity and persistence. In this study, an evaluation is made on the role of oxygen in the ambient environment under atmospheric pressure conditions in LIBS and laser ablation (LA)-LIF emission. To generate plasmas, 1064 nm, 10 ns pulses were focused on an aluminum alloy sample. LIF was performed by frequency scanning a CW laser over the 396.15 nm (3s24s 2S1/2 → 3s23p 2P°3/2) Al I transition. Time-resolved emission and fluorescence signals were recorded to evaluate the variation in emission intensity caused by the presence of oxygen. The oxygen partial pressure (po) in the atmospheric pressure environment using N2 as the makeup gas was varied from 0 to 400 Torr O2. 2D-fluorescence spectroscopy images were obtained for various oxygen concentrations for simultaneous evaluation of the emission and excitation spectral features. Results showed that the presence of oxygen in the ambient environment reduces the persistence of the LIBS and LIF emission through an oxidation process that depletes the density of atomic species within the resulting laser-produced plasma (LPP) plume.

  15. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  16. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  17. Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Anmin; Jiang Yuanfei; Liu Hang

    2012-07-15

    The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.

  18. Plasma Plume Characterization of the HERMeS during a 1722-hr Wear Test Campaign

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Williams, George J.; Peterson, Peter Y.; Kamhawi, Hani; Gilland, James H.; Herman, Daniel A.

    2017-01-01

    A 1722-hour wear test campaign of NASAs 12.5 kilowatt Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.

  19. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, F. R.; Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Yao, X.; Griffin, D.

    1988-01-01

    A concept in electrodeless plasma propulsion, which is also capable of delivering a variable Isp, is presented. The concept involves a three-stage system of plasma injection, heating, and subsequent ejection through a magnetic nozzle. The nozzle produces the hybrid plume by the coaxial injection of hypersonic neutral gas. The gas layer, thus formed, protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The physics of this concept is evaluated numerically through full spatial and temporal simulations; these explore the operating characteristics of such a device over a wide region of parameter space. An experimental facility to study the plasma dynamics in the hybrid plume was built. The device consists of a tandem mirror operating in an asymmetric mode. A later upgrade of this system will incorporate a cold plasma injector at one end of the machine. Initial experiments involve the full characterization of the operating envelope, as well as extensive measurements of plasma properties at the exhaust. The results of the numerical simulations are described.

  20. Rail gun performance and plasma characteristics due to wall ablation

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1986-01-01

    The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.

  1. Analysis of plasma-mediated ablation in aqueous tissue

    NASA Astrophysics Data System (ADS)

    Jiao, Jian; Guo, Zhixiong

    2012-06-01

    Plasma-mediated ablation using ultrafast lasers in transparent media such as aqueous tissues is studied. It is postulated that a critical seed free electron density exists due to the multiphoton ionization in order to trigger the avalanche ionization which causes ablation and during the avalanche ionization process the contribution of laser-induced photon ionization is negligible. Based on this assumption, the ablation process can be treated as two separate processes - the multiphoton and avalanche ionizations - at different time stages; so that an analytical solution to the evolution of plasma formation is obtained for the first time. The analysis is applied to plasma-mediated ablation in corneal epithelium and validated via comparison with experimental data available in the literature. The critical seed free-electron density and the time to initiate the avalanche ionization for sub-picosecond laser pulses are analyzed. It is found that the critical seed free-electron density decreases as the pulse width increases, obeying a tp-5.65 rule. This model is further extended to the estimation of crater size in the ablation of tissue-mimic polydimethylsiloxane (PDMS). The results match well with the available experimental measurements.

  2. Near field interaction of microwave signals with a bounded plasma plume

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Hallock, Gary A.; Kim, Hyeongdong; Birkner, Bjorn

    1991-01-01

    The objective was to study the effect of the arcjet thruster plume on the performance of an onboard satellite reflector antenna. A project summary is presented along with sections on plasma and electromagnetic modeling. The plasma modeling section includes the following topics: wave propagation; plasma analysis; plume electron density model; and the proposed experimental program. The section on electromagnetic modeling includes new developments in ray modeling and the validation of three dimensional ray results.

  3. Plasma Plume Characterization of the HERMeS During a 1722-hr Wear Test Campaign

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Williams, George J.; Peterson, Peter Y.; Kamhawi, Hani; Gilland, James H.; Herman, Daniel A.

    2017-01-01

    A 1722-hr wear test campaign of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.

  4. An ablative pulsed plasma thruster with a segmented anode

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ren, Junxue; Tang, Haibin; Ling, William Yeong Liang; York, Thomas M.

    2018-01-01

    An ablative pulsed plasma thruster (APPT) design with a ‘segmented anode’ is proposed in this paper. We aim to examine the effect that this asymmetric electrode configuration (a normal cathode and a segmented anode) has on the performance of an APPT. The magnetic field of the discharge arc, plasma density in the exit plume, impulse bit, and thrust efficiency were studied using a magnetic probe, Langmuir probe, thrust stand, and mass bit measurements, respectively. When compared with conventional symmetric parallel electrodes, the segmented anode APPT shows an improvement in the impulse bit of up to 28%. The thrust efficiency is also improved by 49% (from 5.3% to 7.9% for conventional and segmented designs, respectively). Long-exposure broadband emission images of the discharge morphology show that compared with a normal anode, a segmented anode results in clear differences in the luminous discharge morphology and better collimation of the plasma. The magnetic probe data indicate that the segmented anode APPT exhibits a higher current density in the discharge arc. Furthermore, Langmuir probe data collected from the central exit plane show that the peak electron density is 75% higher than with conventional parallel electrodes. These results are believed to be fundamental to the physical mechanisms behind the increased impulse bit of an APPT with a segmented electrode.

  5. EM Modelling of RF Propagation Through Plasma Plumes

    NASA Astrophysics Data System (ADS)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  6. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  7. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    NASA Astrophysics Data System (ADS)

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.; Crowhurst, Jonathan C.; Rose, Timothy P.; Koroglu, Batikan; Radousky, Harry B.; Armstrong, Michael R.

    2017-12-01

    In this work, we present a newly constructed U x O y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. The global model is used to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.

  8. Improving Hall Thruster Plume Simulation through Refined Characterization of Near-field Plasma Properties

    NASA Astrophysics Data System (ADS)

    Huismann, Tyler D.

    Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous

  9. Numerical and experimental investigation of plasma plume deflection with MHD flow control

    NASA Astrophysics Data System (ADS)

    Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN

    2018-04-01

    This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.

  10. Plume and Discharge Plasma Measurements of an NSTAR-type Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Soulas, George C.; Patterson, Michael J.

    2000-01-01

    The success of the NASA Deep Space 1 spacecraft has demonstrated that ion propulsion is a viable option for deep space science missions. More aggressive missions such as Comet Nuclear Sample Return and Europa lander will require higher power, higher propellant throughput and longer thruster lifetime than the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) engine. Presented here are thruster plume and discharge plasma measurements of an NSTAR-type thruster operated from 0.5 kW to 5 kW. From Faraday plume sweeps, beam divergence was determined. From Langmuir probe plume measurements on centerline, low energy ion production on axis due to charge-exchange and direct ionization was assessed. Additionally, plume plasma potential measurements made on axis were used to determine the upper energy limits at which ions created on centerline could be radially accelerated. Wall probes flush-mounted to the thruster discharge chamber anode were used to assess plasma conditions. Langmuir probe measurements at the wall indicated significant differences in the electron temperature in the cylindrical and conical sections of the discharge chamber.

  11. Plume and Discharge Plasma Measurements of an NSTAR-type Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E; Soulas, George C.; Patterson, Michael J.

    2000-01-01

    The success of the NASA Deep Space I spacecraft has demonstrated that ion propulsion is a viable option for deep space science missions. More aggressive missions such as Comet Nuclear Sample Return and Europa lander will require higher power, higher propellant throughput and longer thruster lifetime than the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) engine. Presented here are thruster plume and discharge plasma measurements of an NSTAR-type thruster operated from 0.5 kW to 5 kW. From Faraday plume sweeps, beam divergence was determined. From Langmuir probe plume measurements on centerline, low energy ion production on axis due to charge-exchange and direct ionization was assessed. Additionally, plume plasma potential measurements made on axis were used to determine the upper energy limits at which ions created on centerline could be radially accelerated. Wall probes flush-mounted to the thruster discharge chamber anode were used to assess plasma conditions. Langmuir probe measurements at the wall indicated significant differences in the electron temperature in the cylindrical and conical sections of the discharge chamber.

  12. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-05-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  13. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-06-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  14. Effects of Cr2O3 Activating Flux on the Plasma Plume in Pulsed Laser Welding

    NASA Astrophysics Data System (ADS)

    Yi, Luo; Yunfei, Du; Xiaojian, Xie; Rui, Wan; Liang, Zhu; Jingtao, Han

    2016-11-01

    The effects of Cr2O3 activating flux on pulsed YAG laser welding of stainless steel and, particularly, on the behavior of the plasma plume in the welding process were investigated. According to the acoustic emission (AE) signals detected in the welding process, the possible mechanism for the improvement in penetration depth was discussed. The results indicated that the AE signals detected in the welding process reflected the behavior of the plasma plume as pulsed laser energy affecting the molten pool. The root-mean-square (RMS) waveform, AE count, and power spectrum of AE signals were three effective means to characterize the behavior of the plasma plume, which indicated the characteristics of energy released by the plasma plume. The activating flux affected by the laser beam helped to increase the duration and intensity of energy released by the plasma plume, which improved the recoil force and thermal effect transferred from the plasma plume to the molten pool. These results were the main mechanism for Cr2O3 activating flux addition improving the penetration depth in pulsed YAG laser welding.

  15. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  16. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.

    Here, in this work, we present a newly constructed U xO y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. Finally, the global model is usedmore » to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.« less

  17. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    DOE PAGES

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.; ...

    2017-10-12

    Here, in this work, we present a newly constructed U xO y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. Finally, the global model is usedmore » to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.« less

  18. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  19. High-speed photography of plasma during excimer laser-tissue interaction.

    PubMed

    Murray, Andrea K; Dickinson, Mark R

    2004-08-07

    During high fluence laser-tissue interaction, ablation of tissue occurs, debris is removed from the ablation site and is then ejected at high velocity. This debris may be observed as a combination of luminous plasma and non-luminous plume, both of which have the potential to shield the ablation site. This study examined the role of ablation debris in shielding the tissue and determined its effects on the ablation rate over a range of laser pulse energies, pulse repetition rates and pulse numbers for dentine; the velocity differences between hard and soft tissues were also examined. High-speed photography was carried out at up to 1 x 10(8) frames per second. A maximum velocity of 2.58 +/- 0.52 x 10(4) m s(-1) was recorded for dentine debris within the first 10 ns following ejection. The maximum duration of tissue shielding due to a single pulse, determined by attenuation of a probe beam, was found to be approximately 7 ms, approximately 80 micros of which was due to luminous plasma and the remainder due to the non-luminous plume.

  20. Time-dependent spectroscopy of plasma plume under laser welding conditions

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Szymanski, Zygmunt

    2004-07-01

    Momentary emission spectra of iron and argon lines were measured in a plasma plume induced during welding with a continuous wave CO2 laser. Time-dependent spectra were registered using a fast gate, lens coupled microchannel plate image intensifier placed between a spectrograph and a 1254 silicon intensified target detector connected to an optical multichannel analyser. The results, together with the analysis of the colour images from a fast camera, show that in the case when argon is the shielding gas, two plasmas exist: the argon plasma and the iron plasma. It has been found that during strong bursts the plasma plume over the keyhole consists mainly of metal vapour, not being diluted by the shielding gas. No apparent mixing of the metal vapour and the shielding gas has been observed. The space-averaged electron densities determined from the Stark broadening of the 7503.87, 7514.65 Å Ar I lines amounts to (0.75-1.05) × 1023 m-3 depending on the distance from the surface. Assuming that argon is not mixed with the metal vapour and is in local thermodynamic equilibrium these electron densities correspond to the temperatures of 12-13 kK. At the peaks of strong vapour bursts the space-averaged electron densities determined from the Stark broadening of the 5383.37 Å Fe I line are (0.6-1) × 1023 m-3. Numerical simulations showed that the maximum densities in the plasma centre are considerably higher and amount to ~1.8 × 1023 m-3 and ~2.45 × 1023 m-3 in the case of the argon and metal plasma, respectively. Consequently the absorption of the laser beam in the plasma plume amounts to ~5% of the beam power in the case of argon and 10% in the case of metal plasma.

  1. Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.

    2017-01-01

    With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.

  2. The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.

    2016-01-01

    Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conductedmore » by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.« less

  3. Plasma Observations During the Mars Atmospheric Plume Event of March-April 2012

    NASA Technical Reports Server (NTRS)

    Andrews, D. J.; Barabash, S.; Edberg, N. J. T.; Gurnett, D. A.; Hall, B. E. S.; Holmstrom, M.; Lester, M.; Morgan, D. D.; Opgenoorth, H. J.; Ramstad, R.; hide

    2016-01-01

    We present initial analysis and conclusions from plasma observations made during the reported Mars Dust plume event of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude plume over the Martian dawn terminator [Sanchez-Lavega7 et al., Nature, 2015, doi:10.1038nature14162], the origin of which remains to be explained. We report on in-situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the surface region, but at the opposing terminator. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that a similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.

  4. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    PubMed

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  5. A linear-field plasma jet for generating a brush-shaped laminar plume at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuechen; Jia, Pengying, E-mail: plasmalab@126.com; Key Laboratory of Photo-Electronics Information Materials of Hebei Province, Baoding 071002

    2016-06-15

    A linear-field plasma jet composed of line-to-plate electrodes is used to generate a large-scale brush-shaped plasma plume with flowing argon used as working gas. Through electrical measurement and fast photography, it is found that the plasma plume bridges the two electrodes for the discharge in the positive voltage half-cycle, which behaves like fast moving plasma bullets directed from the anode to the cathode. Compared with the positive discharge, the negative discharge only develops inside the nozzle and propagates much slower. Results also indicate that the gas temperature of the plume is close to room temperature, which is promising for biomedicalmore » application.« less

  6. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Huifeng; Yuan Hong; Tang Zhiping

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times whichmore » show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.« less

  7. Thruster Plume Plasma Diagnostics: A Ground Chamber Experiment for a 2-Kilowatt Arcjet

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.; Hillard, G. Barry; Chornak, Michael T.

    2005-01-01

    Although detailed near field (0 to 3 cm) information regarding the exhaust plume of a two kilowatt arc jet is available (refs. 1 to 6), there is virtually little or no information (outside of theoretical extrapolations) available concerning the far field (2.6 to 6.1 m). Furthermore real information about the plasma at distances between (3 to 6 m) is of critical importance to high technology satellite companies in understanding the effect of arc jet plume exhausts on space based power systems. It is therefore of utmost importance that one understands the exact nature of the interaction between the arc jet plume, the spacecraft power system and the surrounding electrical plasma environment. A good first step in understanding the nature of the interactions lies in making the needed plume parameter measurements in the far field. All diagnostic measurements are performed inside a large vacuum system (12 m diameter by 18 m high) with a full scale arc jet and solar array panel in the required flight configuration geometry. Thus, necessary information regarding the plume plasma parameters in the far field is obtained. Measurements of the floating potential, the plasma potential, the electron temperature, number density, density distribution, debye length, and plasma frequency are obtained at various locations about the array (at vertical distances from the arc jet nozzle: 2.6, 2.7, 2.8, 3.2, 3.6, 4.0, 4.9, 5.0, 5.4, 5.75, and 6.14 m). Plasma diagnostic parameters are measured for both the floating and grounded configurations of the arc jet anode and array. Spectroscopic optical measurements are then acquired in close proximity to the nozzle, and contamination measurements are made in the vicinity of the array utilizing a mass spectrometer and two Quartz Crystal Microbalances (QCM's).

  8. Low- and high-order harmonic generation in the extended plasmas produced by laser ablation of zinc and manganese targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Physical Department, Voronezh State University, Voronezh 394006; Baba, M.

    The systematic studies of the harmonic generation of ultrashort laser pulses in the 5-mm-long Zn and Mn plasmas (i.e., application of nanosecond, picosecond, and femtosecond pulses for ablation, comparison of harmonic generation from atomic, ionic, and cluster-contained species of plasma, variation of plasma length, two-color pump of plasmas, etc.) are presented. The conversion efficiency of the 11th–19th harmonics generated in the Zn plasma was ∼5 × 10{sup −5}. The role of the ionic resonances of Zn near the 9th and 10th harmonics on the enhancement of harmonics is discussed. The enhancement of harmonics was also analyzed using the two-color pump of extendedmore » plasmas, which showed similar intensities of the odd and even harmonics along the whole range of generation. The harmonics up to the 107th order were demonstrated in the case of manganese plasma. The comparison of harmonic generation in the 5-mm-long and commonly used short (≤0.5 mm) plasma plumes showed the advanced properties of extended media.« less

  9. [Research on cells ablation characters by laser plasma].

    PubMed

    Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen

    2012-08-01

    The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction.

  10. Numerical studies of wall–plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lei; School of Astronautics, Beihang University, Beijing 100191; Zeng, Guangshang

    2016-07-15

    Wall–plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall–plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall–plasma interaction results based on this modified model were found to be more realistic than for the unmodifiedmore » model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.« less

  11. Evidence of Plume on Europa from Galileo Magnetic and Plasma Density Signatures

    NASA Astrophysics Data System (ADS)

    Jia, X.; Kivelson, M.; Khurana, K. K.; Kurth, W. S.

    2017-12-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean [Khurana et al., 1998; Kivelson et al., 2000]. Water plumes rising 200 kilometers above the disk of the solid body in some Hubble Space Telescope images have been identified through emission spectra of hydrogen and oxygen [Roth et al., 2016] and through absorption in the far ultraviolet of sunlight reflected off of Jupiter [Sparks et al., 2016, 2017]. Plume activity appears to be intermittent, although Sparks et al. [2017] identified a plume at a location where one had been detected in an earlier study. While the detections appear to be valid within statistical uncertainty, they are all close to the limit of detection, making it desirable to find other evidence of the presence of localized vapor above Europa's surface. In this presentation, we examine magnetometer and electromagnetic wave data acquired by the Galileo spacecraft on a close encounter with Europa on December 16, 1997. We identify distinct features in the data that have the characteristics expected if the spacecraft went through magnetic flux tubes that pass around a plume, close to the location proposed for one of the plumes observed by Sparks et al. [2016]. 3D magnetohydrodynamic simulations have been conducted to model the interaction of plume with Europa's plasma and magnetic environment. Our simulations confirm that the magnetic and plasma signatures identified in the Galileo data are consistent with perturbations associated with a localized plume source.

  12. Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor

    NASA Astrophysics Data System (ADS)

    Hirooka, Y.; Sato, H.; Ishihara, K.; Yabuuchi, T.; Tanaka, K. A.

    2014-02-01

    Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 108-10 W cm-2 at 10 Hz, each 6 ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation.

  13. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Chang-Diaz, F. R.

    1988-01-01

    This paper discusses a novel concept in electrodeless plasma propulsion, in which the materials problems are ameliorated by an electrodeless magnetic confinement scheme borrowed from the tandem mirror approach to controlled thermonuclear fusion. The concept also features a two-stage magnetic nozzle with an annular hypersonic coaxial gas injector near the throat. The nozzle produces hybrid plume by the coaxial injection of hypersonic neutral gas, and the gas layer thus formed protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The tandem mirror plasma propulsion facility is capable of delivering a variable I(sp). The results of numerical simulation of this concept are presented together with those from an experimental tandem-mirror plasma propulsion device.

  14. Langmuir probe measurements and mass spectrometry of plasma plumes generated by laser ablation of La0.4Ca0.6MnO3

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Lunney, James G.; Lippert, Thomas; Ojeda-G-P, Alejandro; Stender, Dieter; Schneider, Christof W.; Wokaun, Alexander

    2014-08-01

    The plasma formed in vacuum by UV nanosecond laser ablation of La0.4Ca0.6MnO3 in the fluence range of 0.8 to 1.9 J cm-2 using both Langmuir probe analysis and energy-resolved mass spectrometry has been studied. Mass spectrometry shows that the main positive ion species are Ca+, Mn+, La+, and LaO+. The Ca+ and Mn+ energy distributions are quite broad and lie in the 0-100 eV region, with the average energies increasing with laser fluence. In contrast, the La+ and LaO+ distributions are strongly peaked around 10 eV. The net time-of-arrival signal derived from the measured positive ion energy distributions is broadly consistent with the positive ion signal measured by the Langmuir probe. We also detected a significant number of O- ions with energies in the range of 0 to 10 eV. The Langmuir probe was also used to measure the temporal variation of the electron density and temperature at 6 cm from the ablation target. In the period when O- ions are found at this position, the plasma conditions are consistent with those required for significant negative oxygen ion formation, as revealed by studies on radio frequency excited oxygen plasma.

  15. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskii, V. N.; Uspenskiy, S. A.

    2015-03-01

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study.

  16. Local Neutral Density and Plasma Parameter Measurements in a Hollow Cathode Plume

    NASA Technical Reports Server (NTRS)

    Jameson, Kristina K.; Goebel, Dan M.; MiKellides, Joannis; Watkins, Ron M.

    2006-01-01

    In order to understand the cathode and keeper wear observed during the Extended Life Test (ELT) of the DS1 flight spare NSTAR thruster and provide benchmarking data for a 2D cathode/cathode-plume model, a basic understanding of the plasma and neutral gas parameters in the cathode orifice and keeper region of the cathode plume must be obtained. The JPL cathode facility is instrumented with an array of Langmuir probe diagnostics along with an optical diagnostic to measure line intensity of xenon neutrals. In order to make direct comparisons with the present model, a flat plate anode arrangement was installed for these tests. Neutral density is deduced from the scanning probe data of the plasma parameters and the measured xenon line intensity in the optical regime. The Langmuir probes are scanned both axially, out to 7.0 cm downstream of the keeper, and radially to obtain 2D profile of the plasma parameters. The optical fiber is housed in a collimating stainless steel tube, and is scanned to view across the cathode plume along cuts in front of the keeper with a resolution of 1.5 mm. The radial intensities are unfolded using the Abel inversion technique that produces radial profiles of local neutral density. In this paper, detailed measurements of the plasma parameters and the local neutral densities will be presented in the cathode/keeper plume region for a 1.5 cm diameter NEXIS cathode at 25A of discharge current at several different strengths of applied magnetic field.

  17. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    NASA Astrophysics Data System (ADS)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E.; Levashov, Pavel R.

    2017-02-01

    We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  18. Plasma observations during the Mars atmospheric "plume" event of March-April 2012.

    PubMed

    Andrews, D J; Barabash, S; Edberg, N J T; Gurnett, D A; Hall, B E S; Holmström, M; Lester, M; Morgan, D D; Opgenoorth, H J; Ramstad, R; Sanchez-Cano, B; Way, M; Witasse, O

    2016-04-01

    We present initial analysis and conclusions from plasma observations made during the reported "Mars plume event" of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator [Sanchez-Lavega et al., Nature, 2015, doi:10.1038/nature14162], the cause of which remains to be explained. The estimated brightness of the plume exceeds that expected for auroral emissions, and its projected altitude greatly exceeds that at which clouds are expected to form. We report on in-situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the same surface region, but at the opposing terminator. Measurements in the ionosphere at the corresponding location frequently show a disturbed structure, though this is not atypical for such regions with intense crustal magnetic fields. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part to the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that the only similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.

  19. Spectroscopic investigations of beam-plasma interactions in an ion plume

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Peng, X.; Celenza, J. A.; Keefer, D.

    1993-01-01

    We report the results of spectroscopic investigations of beam-plasma interactions in the plume from a 3 cm ion source operated on argon. Ion-electron, ion-neutral, and electron-neutral scattering are identified by studying the dependence of neutral and ion emission intensities on chamber pressure and mass flow rate, and by analyzing the emission lineshapes at a non-orthogonal angle to the plume axis. Through the Doppler shift, we are able to separate contributions from fast beam ions and fast charge-exchange neutrals on the one hand, and of slow neutrals and slow ions on the other. We discuss the application of this new technique to the characterization of beam plasma interactions in the downstream region of ion thruster engines, and its potential for identifying the processes which lead to grid erosion.

  20. Modification of modulated plasma plumes for the quasi-phase-matching of high-order harmonics in different spectral ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, Saitama 350-0495; Boltaev, G. S.

    We demonstrate the technique allowing the fine tuning of the distance between the laser-produced plasma plumes on the surfaces of different materials, as well as the variation of the sizes of these plumes. The modification of plasma formations is based on the tilting of the multi-slit mask placed between the heating laser beam and target surface, as well as the positioning of this mask in the telescope placed on the path of heating radiation. The modulated plasma plumes with the sizes of single plume ranging between 0.1 and 1 mm were produced on the manganese and silver targets. Modification of themore » geometrical parameters of plasma plumes proved to be useful for the fine tuning of the quasi-phase-matched high-order harmonics generated in such structures during propagation of the ultrashort laser pulses. We show the enhancement of some groups of harmonics along the plateau range and the tuning of maximally enhanced harmonic by variable modulation of the plasma.« less

  1. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  2. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  3. The search for active Europa plumes in Galileo plasma particle detector data: the E12 flyby

    NASA Astrophysics Data System (ADS)

    Huybrighs, H.; Roussos, E.; Krupp, N.; Fraenz, M.; Futaana, Y.; Barabash, S. V.; Glassmeier, K. H.

    2017-12-01

    Hubble Space Telescope observations of Europa's auroral emissions and transits in front of Jupiter suggest that recurring water vapour plumes originating from Europa's surface might exist. If conclusively proven, the discovery of these plumes would be significant, because Europa's potentially habitable ocean could be studied remotely by taking in-situ samples of these plumes from a flyby mission. The first opportunity to collect in-situ evidence of the plumes will not arise before the early 2030's when ESA's JUICE mission or NASA's Europa Clipper are set to arrive. However, it may be possible that NASA's Galileo mission has already encountered the plumes when it was active in the Jupiter system from 1995 to 2003. It has been suggested that the high plasma densities and anomalous magnetic fields measured during one of the Galileo flybys of Europa (flyby E12) could be connected to plume activity. In the context of the search for Europa plume signatures in Galileo particle data we present an overview of the in-situ plasma particle data obtained by the Galileo spacecraft during the E12 flyby. Focus is in particular on the data obtained with the plasma particle instruments PLS (low energy ions and electrons) and EPD (high energy ions and electrons). We search for signs of an extended exosphere/ionosphere that could be consistent with ongoing plume activity. The PLS data obtained during the E12 flyby show an extended interaction region between Europa and the plasma from Jupiter's magnetosphere, hinting at the existence of an extended ionosphere and exosphere. Furthermore we show how the EPD data are analyzed and modelled in order to evaluate whether a series of energetic ion depletions can be attributed to losses on the moon's surface or its neutral exosphere.

  4. Space-dependent characterization of laser-induced plasma plume during fiber laser welding

    NASA Astrophysics Data System (ADS)

    Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo

    2016-12-01

    The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.

  5. Long-lived plasmaspheric plumes: What is the source of the plasma?

    NASA Astrophysics Data System (ADS)

    Denton, M.; Borovsky, J.; Thomsen, M. F.; Welling, D. T.

    2015-12-01

    Magnetospheric Plasma Analyzer (MPA) instruments on-board Los Alamos National Laboratory (LANL) satellites regularly measures cold ions in the plasmasphere, and in plasmaspheric plumes. Following periods of calm geomagnetic conditions, the plasmasphere fills to ion number densities in excess of 100 cm-3 - these ions corotate with the Earth. During enhanced convection the outer plasmasphere is eroded - these ions are convected to the dayside magnetopause. LANL/MPA instruments regularly measure plumes which last for many days. On occasion, plumes can last more than two weeks. Such observations raise questions as to the production mechanisms that can continually supply high-number-density material to geosynchronous orbit, and onwards to the magnetopause. We will discuss the plume observations by LANL/MPA, improvements in theoretical modeling of the refilling process, and the need for in-situ observations (from TEC, satellites, etc.) required to address this problem.

  6. Toward a comprehensive UV laser ablation modeling of multicomponent materials—A non-equilibrium investigation on titanium carbide

    NASA Astrophysics Data System (ADS)

    Ait Oumeziane, Amina; Parisse, Jean-Denis

    2018-05-01

    Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.

  7. Influence of the distance between target surface and focal point on the expansion dynamics of a laser-induced silicon plasma with spatial confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Chen, Anmin; Wang, Xiaowei; Wang, Ying; Sui, Laizhi; Ke, Da; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing

    2018-05-01

    Expansion dynamics of a laser-induced plasma plume, with spatial confinement, for various distances between the target surface and focal point were studied by the fast photography technique. A silicon wafer was ablated to induce the plasma with a Nd:YAG laser in an atmospheric environment. The expansion dynamics of the plasma plume depended on the distance between the target surface and focal point. In addition, spatially confined time-resolved images showed the different structures of the plasma plumes at different distances between the target surface and focal point. By analyzing the plume images, the optimal distance for emission enhancement was found to be approximately 6 mm away from the geometrical focus using a 10 cm focal length lens. This optimized distance resulted in the strongest compression ratio of the plasma plume by the reflected shock wave. Furthermore, the duration of the interaction between the reflected shock wave and the plasma plume was also prolonged.

  8. Pulsed laser ablation of complex oxides: The role of congruent ablation and preferential scattering for the film stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicklein, S.; Koehl, A.; Dittmann, R.

    2012-09-24

    By combining structural and chemical thin film analysis with detailed plume diagnostics and modeling of the laser plume dynamics, we are able to elucidate the different physical mechanisms determining the stoichiometry of the complex oxides model material SrTiO{sub 3} during pulsed laser deposition. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O{sub 2} background gas. On the one hand, a progressive preferential ablation of the Ti species with increasing laser fluence leads to a regime ofmore » Ti-rich thin film growth at larger fluences. On the other hand, in the low laser fluence regime, a more effective scattering of the lighter Ti plume species results in Sr rich films.« less

  9. Plasma ignition thresholds in UV laser ablation plumes

    NASA Astrophysics Data System (ADS)

    Clarke, P.; Dyer, P. E.; Key, P. H.; Snelling, H. V.

    Ultraviolet (UV) laser thresholds for plasma ignition on solid targets predicted from electron-neutral collisional heating are generally much higher than those observed experimentally. This inconsistency was reconciled by Rosen, et al. [2], who showed that excited-state photoionization played a key role in long-pulse UV laser breakdown. Here we develop a related model but with emphasis on pulses of 10 ns duration. Experimental results are also reported for titanium, copper, silicon, and ferulic acid targets in vacuum, irradiated with combinations of the XeF, KrF, and ArF lasers for comparison with predictions.

  10. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Brumfield, Brian E.; LaHaye, Nicole L.

    2018-04-20

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  11. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE PAGES

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...

    2018-04-20

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Lastly, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  12. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Lastly, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  13. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE PAGES

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...

    2018-06-01

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  14. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  15. Investigation on the Characteristics of Pellet Ablation in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Sato, K. N.; Sakakita, H.; Fujita, H.

    2003-06-01

    Characteristics of a cloud ablated from an ice pellet has been investigated in detail in the JIPP T-IIU tokamak plasma by utilizing a new scheme of pellet injection system, "the injection-angle controllable system". A long "helical tail" of ablation light has been observed using CCD cameras and a high speed framing photograph in the case of on-axis and off-axis injection with the injection angle smaller than a certain value. The direction of the helical tail is found to be independent to that of the total magnetic field lines of the torus. From the experiments with the combination of two toroildal filed directions and two plasma current directions, it is considered that the tail seems to rotate, in most cases, to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from the situation of charge exchange equilibrium of hydrogen ions and neutrals at extremely high density regime in the cloud. The relation of ablation behavior with plasma potential and rotation has also been studied. Potential measurements of pellet-injected plasmas using heavy ion beam probe (HIBP) method were carried out for the first time. In the case of an injection angle to be anti-parallel to the electron diamagnetic direction in the poloidal plane, the result shows that the direction of potential change is negative, and consequently the potential after the injection should be negative because it has been measured to be negative in usual ohmic plasmas without pellet injection. Thus, the direction of the "tail" structure seems to be consistent to that of the plasma potential measured, if it is considered that tail structure may be caused by the effect of the plasma potential and the rotation.

  16. Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for the modeling of the keyhole geometry

    NASA Astrophysics Data System (ADS)

    Tenner, F.; Brock, C.; Klämpfl, F.; Schmidt, M.

    2015-01-01

    The process of laser metal welding is widely used in industry. Nevertheless, there is still a lack of complete process understanding and control. For analyzing the process we used two high-speed cameras. Therefore, we could image the plasma plume (which is directly accessible by a camera) and the keyhole (where most of the process instabilities occur) during laser welding isochronously. Applying different image processing steps we were able to find a correlation between those two process characteristics. Additionally we imaged the plasma plume from two directions and were able to calculate a volume with respect to the vaporized material the plasma plume carries. Due to these correlations we are able to conclude the keyhole stability from imaging the plasma plume and vice versa. We used the found correlation between the keyhole behavior and the plasma plume to explain the effect of changing laser power and feed rate on the keyhole geometry. Furthermore, we tried to outline the phenomena which have the biggest effect on the keyhole geometry during changes of feed rate and laser power.

  17. A novel method for fabrication of size-controlled metallic nanoparticles by laser ablation

    NASA Astrophysics Data System (ADS)

    Choudhury, Kaushik; Singh, R. K.; Ranjan, Mukesh; Kumar, Ajai; Srivastava, Atul

    2017-12-01

    Time resolved experimental investigation of laser produced plasma-induced shockwaves has been carried out in the presence of confining walls placed along the lateral directions using a Mach Zehnder interferometer in air ambient. Copper was used as target material. The primary and the reflected shock waves and their effects on the evolution of medium density and the plasma density have been studied. The reflected shock wave has been seen to be affecting the shape and density of the plasma plume in the confined geometry. The same experiments were performed with water and isopropyl alcohol as the ambient liquids and the produced nanoparticles were characterised for size and size distribution. Significant differences in the size and size distribution are seen in case of the nanoparticles produced from the ablation of the targets with and without confining boundary. The observed trend has been attributed to the presence of confining boundary and the way it affects the thermalisation time of the plasma plume. The experiments also show the effect of medium density on the mean size of the copper nanoparticles produced.

  18. Electrostatic measurement of plasma plume characteristics in pulsed laser evaporated carbon

    NASA Astrophysics Data System (ADS)

    Mayo, R. M.; Newman, J. W.; Sharma, A.; Yamagata, Y.; Narayan, J.

    1999-09-01

    A triple Langmuir probe measurement has been implemented to investigate plasma plume character in low fluence (˜3.0 J/cm2) pulsed laser evaporation (PLE) discharges and has been found to be an extremely valuable tool. Absolute plasma plume density estimates are found to reside in the range 1.0×1013-2.0×1014cm-3 for vacuum pulses. A simple heavy particle streaming model for vacuum pulses allows estimates of the plume ionization fraction of ˜10%. This is consistent with typical deposition inventory suggesting that high kinetic energy ions may play an important role in diamond-like carbon (DLC) film deposition. Electron temperature inferred from the electrostatic probe is found to consistently reside in the range 0.5-3.0 eV, and appears to be uninfluenced by operating conditions and large variations in Ar and N2 fill gas pressure. Consistent with strong plume ion and neutral particle coupling to the background fill, constancy of Te suggests expulsion of background gas by the energetic plume. The leading edge ion plume speed is measured via temporal displacement of spatially separated probe signals on consecutive PLE pulses. Flow speeds as high as 5.0×104m/s are observed, corresponding to ˜156 eV in C+. The ion flow speed is found to be a strongly decreasing function of fill pressure from an average high of ˜126 eV in vacuum to ˜0.24 eV at 600 mTorr N2. Raman scattering spectroscopy indicates DLC film quality also degrades with fill pressure suggesting the importance of high ion kinetic energy in producing good quality films, consistent with earlier work demonstrating the importance of energetic particles. Optical emission indicates an increase in C2 molecular light intensity with fill gas pressure implying a reduced, if any, role of these species in DLC production. Ion current signal anomalies are often seen during high pressure pulses. It is suggested that this may indicate the formation of high mass carbon clusters during plume evolution in the presence of

  19. [Voice acoustic study of plasma radiofrequency ablation for the treatment of laryngeal premalignant lesions].

    PubMed

    Zang, Y Z; Wan, B L; Jia, X D; Wang, G K

    2016-11-01

    Objective: To study the voice function effect of low temperature plasma radiofrequency ablation in the treatment of patients with laryngeal premalignant lesions. Method: Fifty cases of laryngeal premalignant lesions were treated with low temperature plasma radiofrequency ablation. All of the patients were examined by electronic laryngoscopy and acoustic analysis(F0,Jitter,Shimmer,NNE,HNR) in 2 weeks,1 month,3 months after surgery. Voice acoustic results were compared with a control group of 50 normal adults for the further analysis. Result: Fifty patients with laryngeal premalignant lesions were treated by low temperature plasma radiofrequency ablation.The result showed that 47 patients(94%)were successfully decannulated without serious complications, such as dyspnea, aphonia and anterior glottic stenosis. Acoustic analysis showed that F0,Jitter,Shimmer and NNE were significantly different from normal 2 weeks after surgery( P <0.01).Voice function recovered weakly 1 month after operation( P <0.05).There were no significant differences in the vocal parameters between plasma radiofrequency ablation group and control group 3 months after surgery( P >0.05). Conclusion: Radiofrequency coblation was a safe,minimally invasive and effective surgical method and can be widely used to treat laryngeal premalignant lesions.. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  20. Fully kinetic simulations of collisionless, mesothermal plasma emission: Macroscopic plume structure and microscopic electron characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Wang, Joseph

    2017-03-01

    This paper presents a fully kinetic particle particle-in-cell simulation study on the emission of a collisionless plasma plume consisting of cold beam ions and thermal electrons. Results are presented for both the two-dimensional macroscopic plume structure and the microscopic electron kinetic characteristics. We find that the macroscopic plume structure exhibits several distinctive regions, including an undisturbed core region, an electron cooling expansion region, and an electron isothermal expansion region. The properties of each region are determined by microscopic electron kinetic characteristics. The division between the undisturbed region and the cooling expansion region approximately matches the Mach line generated at the edge of the emission surface, and that between the cooling expansion region and the isothermal expansion region approximately matches the potential well established in the beam. The interactions between electrons and the potential well lead to a new, near-equilibrium state different from the initial distribution for the electrons in the isothermal expansion region. The electron kinetic characteristics in the plume are also very anisotropic. As the electron expansion process is mostly non-equilibrium and anisotropic, the commonly used assumption that the electrons in a collisionless, mesothermal plasma plume may be treated as a single equilibrium fluid in general is not valid.

  1. Steady and oscillatory plasma properties in the near-field plume of a hollow cathode

    NASA Astrophysics Data System (ADS)

    Zun, ZHANG; Kan, XIE; Jiting, OUYANG; Ning, GUO; Yu, QIN; Qimeng, XIA; Song, BAI; Xianming, WU; Zengjie, GU

    2018-02-01

    Hollow cathodes serve as electron sources in Hall thrusters, ion thrusters and other electric propulsion systems. One of the vital problems in their application is the cathode erosion. However, the basic erosion mechanism and the source of high-energy ions cause of erosion are not fully understood. In this paper, both potential measurements and simulation analyses were performed to explain the formation of high-energy ions. A high-speed camera, a single Langmuir probe and a floating emissive probe were used to determine the steady and oscillatory plasma properties in the near-field plume of a hollow cathode. The temporal structure, electron temperature, electron density, and both static and oscillation of plasma potentials of the plume have been obtained by the diagnostics mentioned above. The experimental results show that there exists a potential hill (about 30 V) and also severe potential oscillations in the near-plume region. Moreover, a simple 2D particle-in-cell model was used to analyze the energy transition between the potential hill and/or its oscillations and the ions. The simulation results show that the energy of ions gained from the static potential background is about 20 eV, but it could reach to 60 eV when the plasma oscillates.

  2. Plasma-mediated ablation for the management of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Puchalski, Robert; Shah, Udayan K.

    2000-05-01

    Plasma-mediated ablation (PMA) removes tissue by developing an electrically induced plasma layer between the instrument and target tissue. Charged particles within the plasma field then accelerate toward the tissue, breaking the molecular bonds within the top layer of tissue. Thermal damage to collateral tissue is minimal, resulting in the moniker, 'cold' ablation, for this method. Recently, instrumentation has been developed to permit application for soft tissue resection in Otolaryngology. Presentation of the theory, as well as the benefits and disadvantages associated with CoblationTM technology will be followed by examples of its use. A brief videotape will demonstrate the application of PMA for UPPP, tonsillectomy and nasal turbinate reduction. Preliminary experience from our institution, including eighteen children treated with tonsillectomy and followed for at least one month post-operatively, has provided an initial cohort for comparing the risks and benefits of the approach. The advantage of CoblationTM technology identified thus far, that of less thermal damage, is balanced against a decreased level of hemostasis (compared to MES) and an increased cost.

  3. Laser plasma interaction at an early stage of laser ablation

    NASA Astrophysics Data System (ADS)

    Lu, Y. F.; Hong, M. H.; Low, T. S.

    1999-03-01

    Laser scattering and its interaction with plasma during KrF excimer laser ablation of silicon are investigated by ultrafast phototube detection. There are two peaks in an optical signal with the first peak attributed to laser scattering and the second one to plasma generation. For laser fluence above 5.8 J/cm2, the second peak rises earlier to overlap with the first one. The optical signal is fitted by a pulse distribution for the scattered laser light and a drifted Maxwell-Boltzmann distribution with a center-of-mass velocity for the plasma. Peak amplitude and its arrival time, full width at half maximum (FWHM), starting time, and termination time of the profiles are studied for different laser fluences and detection angles. Laser pulse is scattered from both the substrate and the plasma with the latter part as a dominant factor during the laser ablation. Peak amplitude of the scattered laser signal increases but its FWHM decreases with the laser fluence. Angular distribution of the peak amplitude can be fitted with cosn θ(n=4) while the detection angle has no obvious influence on the FWHM. In addition, FWHM and peak amplitude of plasma signal increase with the laser fluence. However, starting time and peak arrival time of plasma signal reduce with the laser fluence. The time interval between plasma starting and scattered laser pulse termination is proposed as a quantitative parameter to characterize laser plasma interaction. Threshold fluence for the interaction is estimated to be 3.5 J/cm2. For laser fluence above 12.6 J/cm2, the plasma and scattered laser pulse distributions tend to saturate.

  4. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  5. Numerical-experimental analysis of a carbon-phenolic composite via plasma jet ablation test

    NASA Astrophysics Data System (ADS)

    Guilherme Silva Pesci, Pedro; Araújo Machado, Humberto; Silva, Homero de Paula e.; Cley Paterniani Rita, Cristian; Petraconi Filho, Gilberto; Cocchieri Botelho, Edson

    2018-06-01

    Materials used in space vehicles components are subjected to thermally aggressive environments when exposed to atmospheric reentry. In order to protect the payload and the vehicle itself, ablative composites are employed as TPS (Thermal Protection System). The development of TPS materials generally go through phases of obtaining, atmospheric reentry tests and comparison with a mathematical model. The state of the art presents some reentry tests in a subsonic or supersonic arc-jet facility, and a complex type of mathematical model, which normally requires large computational cost. This work presents a reliable method for estimate the performance of ablative composites, combining empirical and experimental data. Tests of composite materials used in thermal protection systems through exposure to a plasma jet are performed, where the heat fluxes emulate those present in atmospheric reentry of space vehicles components. The carbon/phenolic material samples have been performed in the hypersonic plasma tunnel of Plasma and Process Laboratory, available in Aeronautics Institute of Technology (ITA), by a plasma torch with a 50 kW DC power source. The plasma tunnel parameters were optimized to reproduce the conditions close to the critical re-entry point of the space vehicles payloads developed by the Aeronautics and Space Institute (IAE). The specimens in study were developed and manufactured in Brazil. Mass loss and specific mass loss rates of the samples and the back surface temperatures, as a function of the exposure time to the thermal flow, were determined. A computational simulation based in a two-front ablation model was performed, in order to compare the tests and the simulation results. The results allowed to estimate the ablative behavior of the tested material and to validate the theoretical model used in the computational simulation for its use in geometries close to the thermal protection systems used in the Brazilian space and suborbital vehicles.

  6. Comparison of pulsating DC and DC power air-water plasma jet: A method to decrease plume temperature and increase ROS

    NASA Astrophysics Data System (ADS)

    Liu, K.; Hu, H.; Lei, J.; Hu, Y.; Zheng, Z.

    2016-12-01

    Most air-water plasma jets are rich in hydroxyl radicals (•OH), but the plasma has higher temperatures, compared to that of pure gas, especially when using air as working gas. In this paper, pulsating direct current (PDC) power was used to excite the air-water plasma jet to reduce plume temperature. In addition to the temperature, other differences between PDC and DC plasma jets are not yet clear. Thus, comparative studies of those plasmas are performed to evaluate characteristics, such as breakdown voltage, temperature, and reactive oxygen species. The results show that the plume temperature of PDC plasma is roughly 5-10 °C lower than that of DC plasma in the same conditions. The •OH content of PDC is lower than that of DC plasma, whereas the O content of PDC plasma is higher. The addition of water leads in an increase in the plume temperature and in the production of •OH with two types of power supplies. The production of O inversely shows a declining tendency with higher water ratio. The most important finding is that the PDC plasma with 100% water ratio achieves lower temperature and more abundant production of •OH and O, compared with DC plasma with 0% water ratio.

  7. Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: Two-dimensional mapping of the ambient and plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Kaushik; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-04-15

    An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have beenmore » obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.« less

  8. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  9. Design, Fabrication, and Testing of Emissive Probes to Determine the Plasma Potential of the Plumes of Various Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Chen, Erinna M.

    2005-01-01

    A significant problem in the use of electric thrusters in spacecraft is the formation of low-energy ions in the thruster plume. Low-energy ions are formed in the plume via random collisions between high-velocity ions ejected from the thruster and slow-moving neutral atoms of propellant effusing from the engine. The sputtering of spacecraft materials due to interactions with low-energy ions may result in erosion or contamination of the spacecraft. The trajectory of these ions is determined primarily by the plasma potential of the plume. Thus, accurate characterization of the plasma potential is essential to predicting low-energy ion contamination. Emissive probes were utilized to determine the plasma potential. When the ion and electron currents to the probe are balanced, the potential of such probes float to the plasma potential. Two emissive probes were fabricated; one utilizing a DC power supply, another utilizing a rectified AC power source. Labview programs were written to coordinate and automate probe motion in the thruster plume. Employing handshaking interaction, these motion programs were synchronized to various data acquisition programs to ensure precision and accuracy of the measurements. Comparing these experimental values to values from theoretical models will allow for a more accurate prediction of low-energy ion interaction.

  10. Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.

    The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the

  11. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.

  12. Modeling of plasma distortions by laser-induced ablation spectroscopy (LIAS) and implications for the interpretation of LIAS measurements

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.

    2015-09-01

    For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.

  13. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.

    2017-07-05

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  14. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, R. D.; Krasheninnikov, S. I.

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  15. Ion dynamics of a laser produced aluminium plasma at different ambient pressures

    NASA Astrophysics Data System (ADS)

    Sankar, Pranitha; Shashikala, H. D.; Philip, Reji

    2018-01-01

    Plasma is generated by pulsed laser ablation of an Aluminium target using 1064 nm, 7 ns Nd:YAG laser pulses. The spatial and temporal evolution of the whole plasma plume, as well as that of the ionic (Al2+) component present in the plume, are investigated using spectrally resolved time-gated imaging. The influence of ambient gas pressure on the expansion dynamics of Al2+ is studied in particular. In vacuum (10-5 Torr, 10-2 Torr) the whole plume expands adiabatically and diffuses into the ambient. For higher pressures in the range of 1-10 Torr plume expansion is in accordance with the shock wave model, while at 760 Torr the expansion follows the drag model. On the other hand, the expansion dynamics of the Al2+ component, measured by introducing a band pass optical filter in the detection system, fits to the shock wave model for the entire pressure range of 10-2 Torr to 760 Torr. The expansion velocities of the whole plume and the Al2+ component have been measured in vacuum. These dynamics studies are of potential importance for applications such as laser-driven plasma accelerators, ion acceleration, pulsed laser deposition, micromachining, laser-assisted mass spectrometry, ion implantation, and light source generation.

  16. Plume Characterization of a One-Millipound Solid Teflon Pulsed Plasma Thruster, Phase 2

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; Harstad, K. G.; Pless, L. C.; Jones, R. M.

    1979-01-01

    Measurements of the pulsed plasma thruster (PPT) plume upstream mass flux were made in the Molecular Sink (MOLSINK) vacuum facility in order to minimize the plume-tank wall reflected mass flux. Using specially designed collimators on 4 rows of Quartz Crystal Microbalanced (QCMs) mounted on a support extending radially away from the plume axis, measurements were made of the mass flux originating in a thin slice of the PPT primary plume at an arbitrary dip angle with respect to the thruster axis. The measured and analytically corrected mass flux from particles reflected from the MOLSINK walls was substracted from the collimated QCM measurements to improve their accuracy. These data were then analytically summed over dip angle to estimate the total plume backflow upstream of the thruster nozzle. The results indicate that the PPT backflow is of order 10 to the minus 10th power g/square cm/pulse in the region from 38 to 86 cm from the PPT axis in the nozzle exit plane. This flux drops with the square of the radial distance from the PPT axis and is comparable to the backflow of an 8 cm ion thruster, which has performance characteristics similar to those of the PPT.

  17. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  18. Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Ake, C.; Camacho, R.; Moreno, L.

    2012-08-15

    Thin films of ZnO doped with manganese were deposited by double-beam, combinatorial pulsed laser deposition. The laser-induced plasmas were studied by means of fast photography and using a Langmuir probe, whereas the films were analyzed by x-ray-diffraction and energy-dispersive x-ray spectroscopy. The effect of the relative delay between plasma plumes on the characteristics of the films was analyzed. It was found that using this parameter, it is possible to control the dopant content keeping the oriented wurtzite structure of the films. The minimum content of Mn was found for plume delays between 0 and 10 {mu}s as the interaction betweenmore » plasmas scatters the dopant species away from the substrate, thus reducing the incorporation of Mn into the films. Results suggest that for delays shorter than {approx}100 {mu}s, the expansion of the second plume through the region behind the first plume affects the composition of the film.« less

  19. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface

    NASA Astrophysics Data System (ADS)

    García-Rubio, F.; Sanz, J.

    2017-07-01

    The understanding of energy and magnetic flux losses in a magnetized plasma medium confined by a cold wall is of great interest in the success of magnetized liner inertial fusion (MagLIF). In a MagLIF scheme, the fuel is magnetized and subsonically compressed by a cylindrical liner. Magnetic flux conservation is degraded by the presence of gradient-driven transport processes such as thermoelectric effects (Nernst) and magnetic field diffusion. In previous publications [Velikovich et al., Phys. Plasmas 22, 042702 (2015)], the evolution of a hot magnetized plasma in contact with a cold solid wall (liner) was studied using the classical collisional Braginskii's plasma transport equations in one dimension. The Nernst term degraded the magnetic flux conservation, while both thermal energy and magnetic flux losses were reduced with the electron Hall parameter ωeτe with a power-law asymptotic scaling (ωeτe)-1/2. In the analysis made in the present paper, we consider a similar situation, but with the liner being treated differently. Instead of a cold solid wall acting as a heat sink, we model the liner as a cold dense plasma with low thermal conduction (that could represent the cryogenic fuel layer added on the inner surface of the liner in a high-gain MagLIF configuration). Mass ablation comes into play, which adds notably differences to the previous analysis. The direction of the plasma motion is inverted, but the Nernst term still convects the magnetic field towards the liner. Magnetization suppresses the Nernst velocity and improves the magnetic flux conservation. Thermal energy in the hot plasma is lost in heating the ablated material. When the electron Hall parameter is large, mass ablation scales as (ωeτe)-3/10, while both the energy and magnetic flux losses are reduced with a power-law asymptotic scaling (ωeτe)-7/10.

  20. Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects

    NASA Astrophysics Data System (ADS)

    Cichocki, Filippo; Domínguez-Vázquez, Adrián; Merino, Mario; Ahedo, Eduardo

    2017-12-01

    This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the latter non-neutral regions, the electron density and electric potential are obtained by solving the coupled electron momentum balance and Poisson equations. Boundary conditions for both the electric current and potential are finally obtained with a plasma sheath sub-code and an equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume-spacecraft interaction scenario, and the physics and capabilities of the model are finally discussed.

  1. Mass Spectrometric Imaging Using Laser Ablation and Solvent Capture by Aspiration (LASCA)

    NASA Astrophysics Data System (ADS)

    Brauer, Jonathan I.; Beech, Iwona B.; Sunner, Jan

    2015-09-01

    A novel interface for ambient, laser ablation-based mass spectrometric imaging (MSI) referred to as laser ablation and solvent capture by aspiration (LASCA) is presented and its performance demonstrated using selected, unaltered biological materials. LASCA employs a pulsed 2.94 μm laser beam for specimen ablation. Ablated materials in the laser plumes are collected on a hanging solvent droplet with electric field-enhanced trapping, followed by aspiration of droplets and remaining plume material in the form of a coarse aerosol into a collection capillary. The gas and liquid phases are subsequently separated in a 10 μL-volume separatory funnel, and the solution is analyzed with electrospray ionization in a high mass resolution Q-ToF mass spectrometer. The LASCA system separates the sampling and ionization steps in MSI and combines high efficiencies of laser plume sampling and of electrospray ionization (ESI) with high mass resolution MS. Up to 2000 different compounds are detected from a single ablation spot (pixel). Using the LASCA platform, rapid (6 s per pixel), high sensitivity, high mass-resolution ambient imaging of "as-received" biological material is achieved routinely and reproducibly.

  2. Low pressure laser ablation coupled to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fliegel, Daniel; Günther, Detlef

    2006-07-01

    The particle size distribution in laser ablation inductively coupled plasma mass spectrometry is known to be a critical parameter for complete vaporization of particles. Any strategy to reduce the particle size distribution of laser generated aerosols has the potential to increase the ion signal intensity and to reduce fractionation effects. Due to the fact that vapor generation, nucleation, condensation, and agglomeration take place within an extremely short period of time, ablation under atmospheric pressure might not allow influencing these processes while under reduced pressure condition the cooling of the aerosol and therefore the condensation is expected to be slower. In this study, a low pressure laser ablation cell for the generation of laser aerosols was coupled to an ICP-MS. In contrast to the previously developed trapped ablation mode, the newly designed cell allows the adjustment of the pressure in the ablation cell between 20 and 1400 mbar prior to the ablation. Ablation experiments carried out using this configuration showed a dependence of the aerosol properties (size distribution and particle structure) on the ablation cell pressure. The intensity ratio U/Th measured as a figure of merit for complete vaporization within the ICP indicated a change in the aerosol structure at approximately 500 mbar toward smaller particle size. A significant difference between low pressure and at ambient pressure ablated aerosol was observed. The intensity ratios (U/Th) of the ablated sample moves closer to the bulk composition at lower pressures at the expense of sensitivity. Therefore the decrease in the ICP-MS signal intensity in the low pressure cell can be attributed to vapor deposition within the ablation cell walls. Moreover, scanning electron microscope images of aerosols collected on filters after the low pressure ablation cell suggest the possibility of a slower cooling velocity of the aerosol, which was observed in the condensed material on the surface of

  3. Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes

    NASA Astrophysics Data System (ADS)

    Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron

    2016-10-01

    The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.

  4. Collective behavior of silver plasma during pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Dildar, I. M.; Rehman, S.; Khaleeq-ur-Rahman, M.; Bhatti, K. A.; Shuaib, A.

    2015-07-01

    The present work reports an electrical investigation of silver plasma using a self-fabricated Langmuir probe in air and under a low vacuum (~10-3 torr). A silver target was irradiated with a Q-switched Nd:YAG laser with the wavelength 1.064 µm, energy 10 mJ, pulse duration 9-14 ns and power 1.1 MW. The collective behavior of a silver plasma plume is studied using a Langmuir probe as an electrical diagnostic technique. By applying different positive and negative voltages to the probe, the respective signals are collected on a four channels digital storage oscilloscope having a frequency of 500 MHz. An I-V curve helps to measure electron temperature and electron density directly and plasma frequency, response time, Debye length and number of particles in ‘Debye’s sphere’ indirectly using the theory of Langmuir probe and mathematical formulas. The floating potential is measured as negative for laser induced silver plasma in air and vacuum, following the theory of plasma.

  5. Investigating the Response and Expansion of Plasma Plumes in a Mesosonic Plasma Using the Situational Awareness Sensor Suite for the ISS (SASSI)

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Hoegy, W. R.; Krause, L. Habash; Minow, J. I.; Coffey, V. N.

    2014-01-01

    To study the complex interactions between the space environment surrounding the International Space Station (ISS) and the ISS space vehicle, we are exploring a specialized suite of plasma sensors, manipulated by the Space Station Remote Manipulator System (SSRMS) to probe the near-ISS mesosonic plasma ionosphere moving past the ISS. It is proposed that SASSI consists of the NASA Marshall Space Flight Center's (MSFC's) Thermal Ion Capped Hemispherical Spectrometer (TICHS), Thermal Electron Capped Hemispherical Spectrometer (TECHS), Charge Analyzer Responsive to Local Oscillations (CARLO), the Collimated PhotoElectron Gun (CPEG), and the University of Michigan Advanced Langmuir Probe (ALP). There are multiple expected applications for SASSI. Here, we will discuss the study of fundamental plasma physics questions associated with how an emitted plasma plume (such as from the ISS Plasma Contactor Unit (PCU)) responds and expands in a mesosonic magnetoplasma as well as emit and collect current. The ISS PCU Xe plasma plume drifts through the ionosphere and across the Earth's magnetic field, resulting in complex dynamics. This is of practical and theoretical interest pertaining to contamination concerns (e.g. energetic ion scattering) and the ability to collect and emit current between the spacecraft and the ambient plasma ionosphere. This impacts, for example, predictions of electrodynamic tether current performance using plasma contactors as well as decisions about placing high-energy electric propulsion thrusters on ISS. We will discuss the required measurements and connection to proposed instruments for this study.

  6. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  7. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  8. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C; Eklund, Peter C; Smith, Michael W; Jordan, Kevin C; Shinn, Michelle

    2012-11-27

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  9. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  10. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2010-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of side pumped, preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  11. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  12. Physical Simulation of a Prolonged Plasma-Plume Exposure of a Space Debris Object

    NASA Astrophysics Data System (ADS)

    Shuvalov, V. A.; Gorev, N. B.; Tokmak, N. A.; Kochubei, G. S.

    2018-05-01

    A methodology has been developed for the physical (laboratory) simulation of the prolonged exposure of a space debris object to high-energy ions of a plasma plume for removing the object into low-Earth orbit with its subsequent burning in the Earth's atmosphere. The methodology is based on the equivalence criteria of two modes of exposure (in the Earth's ionosphere and in the setup) and the procedure for accelerated resource tests in terms of the sputtering of the space debris material and its deceleration by a plasma jet in the Earth's ionosphere.

  13. Plasma-mediated radiofrequency ablation followed by percutaneous cementoplasty under fluoro-CT guidance: a case report

    PubMed Central

    Laganà, Domenico; Ianniello, Andrea; Fontana, Federico; Mangini, Monica; Mocciardini, Lucia; Spanò, Emanuela; Piacentino, Filippo; Cuffari, Salvatore; Fugazzola, Carlo

    2009-01-01

    We report a case of a 81-year-old Caucasian man with colorectal carcinoma, treated by surgery in 1998, referred for palliative treatment of a refractory painful caused by osteolytic metastases of 2.5 cm in back-upper ilium spine. Plasma-mediated radiofrequency ablation was performed under conscious sedation, using Fluoroscopic Computer Tomography guidance. After completing the ablation phase of the procedure, a mixture of bone cement and Biotrace sterile barium sulfate was injected into the ablated cavity. Patient was evaluated by using the Brief Pain Inventory and considering pain interference with daily living at day 1 and 3 and week 1, 2, 3, 4 by means of a telephone interview. A post-procedure Computer Tomography scan was performed to examine the distribution of cement deposition few minutes after the procedure. The plasma mediated RFA and cementoplasty were well tolerated by the patient who did not develop any complication. PMID:19918385

  14. Plasma-mediated radiofrequency ablation followed by percutaneous cementoplasty under fluoro-CT guidance: a case report.

    PubMed

    Carrafiello, Gianpaolo; Laganà, Domenico; Ianniello, Andrea; Fontana, Federico; Mangini, Monica; Mocciardini, Lucia; Spanò, Emanuela; Piacentino, Filippo; Cuffari, Salvatore; Fugazzola, Carlo

    2009-08-17

    We report a case of a 81-year-old Caucasian man with colorectal carcinoma, treated by surgery in 1998, referred for palliative treatment of a refractory painful caused by osteolytic metastases of 2.5 cm in back-upper ilium spine. Plasma-mediated radiofrequency ablation was performed under conscious sedation, using Fluoroscopic Computer Tomography guidance. After completing the ablation phase of the procedure, a mixture of bone cement and Biotrace sterile barium sulfate was injected into the ablated cavity.Patient was evaluated by using the Brief Pain Inventory and considering pain interference with daily living at day 1 and 3 and week 1, 2, 3, 4 by means of a telephone interview. A post-procedure Computer Tomography scan was performed to examine the distribution of cement deposition few minutes after the procedure. The plasma mediated RFA and cementoplasty were well tolerated by the patient who did not develop any complication.

  15. Computational Modeling of Ablation on an Irradiated Target

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Thangam, Siva

    2017-11-01

    Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  16. Molybdenum electron impact width parameter measurement by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sternberg, E. M. A.; Rodrigues, N. A. S.; Amorim, J.

    2016-01-01

    In this work, we suggest a method for electron impact width parameter calculation based on Stark broadening of emission lines of a laser-ablated plasma plume. First, electron density and temperature must be evaluated by means of the Saha-Boltzmann plot method for neutral and ionized species of the plasma. The method was applied for laser-ablated molybdenum plasma plume. For molybdenum plasma electron temperature, which varies around 10,000 K, and electron density, which reaches values around 1018 cm-3, and considering that total measured line broadening was due experimental and Stark broadening mainly, electron impact width parameter of molybdenum emission lines was determined as (0.01 ± 0.02) nm. Intending to validate the presented method, it was analyzed the laser-ablated aluminum plasma plume and the obtained results were in agreement with the predicted on the literature.

  17. Advanced properties of extended plasmas for efficient high-order harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A.; Physics Department, Voronezh State University, Voronezh 394006; Suzuki, M.

    We demonstrate the advanced properties of extended plasma plumes (5 mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (∼0.3–0.5 mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasmamore » jets.« less

  18. Filamentation due to the Weibel instability in two counterstreaming laser ablated plasmas

    DOE PAGES

    Dong, Quan -Li; Yuan, Dawei; Gao, Lan; ...

    2016-05-01

    Weibel-type filamentation instability was observed in the interaction of two counter streaming laser ablated plasma flows, which were supersonic, collisionless, and closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with 1ns-pulsed laser beams of total energy of 1.7 kJ in two laser spots. Finally, with characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.

  19. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.

  20. Experimental and Numerical Examination of a Hall Thruster Plume (Preprint)

    DTIC Science & Technology

    2007-07-31

    Hall thruster has been characterized through measurements from various plasma electrostatic probes. Ion current flux, plasma potential, plasma density, and electron temperatures were measured from the near-field plume to 60 cm downstream of the exit plane. These experimentally derived measurements were compared to numerical simulations run with the plasma plume code DRACO. A major goal of this study was to determine the fidelity of the DRACO numerical simulation. The effect of background pressure on the thruster plume was also examined using ion current flux measurements

  1. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    NASA Astrophysics Data System (ADS)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  2. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  3. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  4. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    NASA Astrophysics Data System (ADS)

    Finko, Mikhail; Curreli, Davide; Azer, Magdi; Weisz, David; Crowhurst, Jonathan; Rose, Timothy; Koroglu, Batikan; Radousky, Harry; Zaug, Joseph; Armstrong, Mike

    2017-10-01

    An important problem within the field of nuclear forensics is fractionation: the formation of post-detonation nuclear debris whose composition does not reflect that of the source weapon. We are investigating uranium fractionation in rapidly cooling plasma using a combined experimental and modeling approach. In particular, we use laser ablation of uranium metal samples to produce a low-temperature plasma with physical conditions similar to a condensing nuclear fireball. Here we present a first plasma-chemistry model of uranium molecular species formation during the early stage of laser ablated plasma evolution in atmospheric oxygen. The system is simulated using a global kinetic model with rate coefficients calculated according to literature data and the application of reaction rate theory. The model allows for a detailed analysis of the evolution of key uranium molecular species and represents the first step in producing a uranium fireball model that is kinetically validated against spatially and temporally resolved spectroscopy measurements. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16- 1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

  5. Europa Scene: Plume, Galileo, Magnetic Field (Artist's Concept)

    NASA Image and Video Library

    2018-05-14

    Artist's illustration of Jupiter and Europa (in the foreground) with the Galileo spacecraft after its pass through a plume erupting from Europa's surface. A new computer simulation gives us an idea of how the magnetic field interacted with a plume. The magnetic field lines (depicted in blue) show how the plume interacts with the ambient flow of Jovian plasma. The red colors on the lines show more dense areas of plasma. https://photojournal.jpl.nasa.gov/catalog/PIA21922

  6. Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H. Wk.; Kang, S. K.; Won, I. H.

    Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powersmore » yielded opposite results from those for low-frequency plasmas (∼kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.« less

  7. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    NASA Astrophysics Data System (ADS)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  8. Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2017-09-01

    Various carbon-based nanoparticles ablated at the conditions suitable for efficient harmonic generation during propagation of ultrashort pulses through the laser-produced plasmas were studied. The transmission electron microscopy of ablated debris and the time-of-flight mass-spectroscopy studies of plasmas are presented. The conditions of laser ablation of the carbon-contained nanoparticles (fullerenes, graphene, carbon nanotubes, carbon nanofibers, and diamond nanoparticles) were varied to define the impeding processes restricting the harmonic yield from such laser-produced plasmas. These studies show that the enhancement of harmonics during ablation of nanoparticle targets was related with the appearance of small carbon clusters at the moment of propagation of the ultrashort laser pulses though such plasmas.

  9. Non-equilibrium modeling of UV laser induced plasma on a copper target in the presence of Cu{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ait Oumeziane, Amina, E-mail: a.aitoumeziane@gmail.com; Liani, Bachir; Parisse, Jean-Denis

    2016-03-15

    This work is a contribution to the understanding of UV laser ablation of a copper sample in the presence of Cu{sup 2+} species as well as electronic non-equilibrium in the laser induced plasma. This particular study extends a previous paper and develops a 1D hydrodynamic model to describe the behavior of the laser induced plume, including the thermal non-equilibrium between electrons and heavy particles. Incorporating the formation of doubly charged ions (Cu{sup 2+}) in such an approach has not been considered previously. We evaluate the effect of the presence of doubly ionized species on the characteristics of the plume, i.e.,more » temperature, pressure, and expansion velocity, and on the material itself by evaluating the ablation depth and plasma shielding effects. This study evaluates the effects of the doubly charged species using a non-equilibrium hydrodynamic approach which comprises a contribution to the understanding of the governing processes of the interaction of ultraviolet nanosecond laser pulses with metals and the parameter optimization depending on the intended application.« less

  10. Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions

    NASA Astrophysics Data System (ADS)

    Cheung, N. H.; Ng, C. W.; Ho, W. F.; Yeung, E. S.

    1998-05-01

    Spectrochemical analysis of liquids and suspensions using laser-induced plasma emissions was investigated. Nd:YAG pulsed-laser (532-nm) ablation of aqueous samples produced plasmas that were hot (few eV) and extensively ionized, with electron density in the 10 18 cm -3 range. Analyte line signals were initially masked by intense plasma continuum emissions, and would only emerge briefly above the background when the plume temperature dropped below 1 eV during the course of its very rapid cooling. In contrast, 193-nm laser ablation at similar fluence generated plasmas of much lower (<1 eV) temperature but comparable electron density. The plasma continuum emissions were relatively weak and the signal-to-background ratio was a thousand times better. This `cold' plasma was ideal for sampling trace amounts of biologically important elements such as sodium and potassium. By ablating hydrodynamically focused jets in a sheath-flow, and with acoustic normalization for improved precision, the single-shot detection limits of sodium and potassium were 8 and 50 fg, respectively. Using the sheath-flow arrangement, the amounts of sodium and potassium inside single human red blood cells were simultaneously determined for the first time. The intracellular contents for a given blood donor were found to vary significantly, with only very weak correlation between the amounts of sodium and potassium in individual cells.

  11. Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Bi, Melody; Ruiz, Antonio M.; Gornushkin, Igor; Smith, Ben W.; Winefordner, James D.

    2000-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for profiling patterned thin metal layers on a polymer/silicon substrate. The parameters of the laser and ICP-MS operating conditions have been studied and optimized for this purpose. A new laser ablation chamber was designed and built to achieve the best spatial resolution. The results of the profiling by LA-ICP-MS were compared to those obtained from a laser ablation optical emission spectrometry (LA-OES) instrument, which measured the emission of the plasma at the sample surface, and thus, eliminated the time delay caused by the sample transport into the ICP-MS system. Emission spectra gave better spatial resolution than mass spectra. However, LA-ICP-MS provided much better sensitivity and was able to profile thin metal layers (on the order of a few nanometers) on the silicon surface. A lateral spatial resolution of 45 μm was achieved.

  12. Postoperative recurrence and fertility after endometrioma ablation using plasma energy: retrospective assessment of a 3-year experience.

    PubMed

    Roman, Horace; Auber, Mathieu; Bourdel, Nicolas; Martin, Cécile; Marpeau, Loïc; Puscasiu, Lucian

    2013-01-01

    To assess recurrence and pregnancy rates in women with ovarian endometrioma treated via ablation using plasma energy. Retrospective non-comparative pilot study including 55 patients treated during 28 months, with prospective recording of data (Canadian Task Force classification II-2). Tertiary referral center. Fifty-five consecutive women with pelvic endometriosis in whom ovarian endometriomas were managed solely via ablation using plasma energy. The minimum follow-up was 1 year. Endometrioma ablation using plasma energy. Information was obtained from the database of the North-West Inter Regional Female Cohort for Patients with Endometriosis, based on self-questionnaires completed before surgery, surgical and histologic data, and systematic recording of recurrences, pregnancy, and symptoms. Recurrences were assessed using pelvic ultrasound examination. Mean (SD) follow-up was 20.6 (7.2) months (range, 12-39 months). In 75% of patients, deep infiltrating endometriosis was treated, and 40% had colorectal involvement. Preoperative infertility was recorded in 42% of patients. The rate of postoperative recurrence was 10.9% for the entire series. Of 33 women who wished to conceive, 67% became pregnant, spontaneously in 59%. Time from surgery to the first pregnancy was 7.6 (4.3) months. After discontinuation of postoperative hormone therapy, the probability of not conceiving at 12 months was 0.36 (95% confidence interval, 0.19-0.53), and at 24 months was 0.27 (95% confidence interval, 0.12-0.44). Recurrence and pregnancy rates are encouraging in that they seem comparable to the best reported results after endometrioma cystectomy. Plasma energy may have an important role in the management of ovarian endometrioma in women seeking to conceive. Patients most in need of surgical procedures that can spare ovarian parenchyma, such as those with bilateral endometriomas or a history of ovarian surgery, may particularly benefit from ablation using plasma energy. Copyright © 2013

  13. Study of the phosphine plasma decomposition and its formation by ablation of red phosphorus in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Bruno, G.; Losurdo, M.; Capezzuto, P.

    1995-03-01

    Mass spectrometry and optical emission spectroscopy have been used to study the chemistry of PH(sub 3) plasma decomposition as well as its formation by ablation of red phosphorus in hydrogen plasma. It has been shown that PH(sub 3) decomposition easily equilibrates at low levels of PH(sub 3) depletion (15%-30%), this depending mainly on the rf power. The ablation of red phosphorus in H(sub 2) plasma produces phosphine in significant amount, depending mainly on the total pressure but also on the rf power. It has also been found that H(sup *) and PH(sup *) emitting species originate not only by the dissociative excitation of H(sub 2) and PH(sub 3), respectively, but also by the direct excitation of the same species in the ground state. Considerations are developed on how to derive the H-atom and PH radical densities by actinometry, under specific experimental conditions. Besides, the linear dependence of PH(sub 3) formation rate, r(sub PH(3)), on H-atom density, (left bracket) H (right bracket), leads to the definition of the kinetic equation r(sub PH(3)) = k (left bracket) H (right bracket), and to the hypothesis that the formation of PH radical on the surface or its desorption is the dominant mechanism for PH(sub 3) production.

  14. Modeling a Hall Thruster from Anode to Plume Far Field

    DTIC Science & Technology

    2005-01-01

    Hall thruster simulation capability that begins with propellant injection at the thruster anode, and ends in the plume far field. The development of a comprehensive simulation capability is critical for a number of reasons. The main motivation stems from the need to directly couple simulation of the plasma discharge processes inside the thruster and the transport of the plasma to the plume far field. The simulation strategy will employ two existing codes, one for the Hall thruster device and one for the plume. The coupling will take place in the plume

  15. Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser

    NASA Astrophysics Data System (ADS)

    Burdt, Russell A.; Yuspeh, Sam; Sequoia, Kevin L.; Tao, Yezheng; Tillack, Mark S.; Najmabadi, Farrokh

    2009-08-01

    The ablation depth in planar Sn targets irradiated with a pulsed 1064 nm laser was investigated over laser intensities from 3×1011 to 2×1012 W/cm2. The ablation depth was measured by irradiating a thin layer of Sn evaporated onto a Si wafer, and looking for signatures of Si ions in the expanding plasma with spectroscopic and particle diagnostics. It was found that ablation depth scales with laser intensity to the (5/9)th power, which is consistent with analytical models of steady-state laser ablation, as well as empirical formulae from previous studies of mass ablation rate in overlapping parameter space. In addition, the scaling of mass ablation rate with atomic number of the target as given by empirical formulae in previous studies using targets such as C and Al, are shown to remain valid for the higher atomic number of the target (Z =50) used in these experiments.

  16. Monitoring the formation of inorganic fullerene-like MoS2 nanostructures by laser ablation in liquid environments

    NASA Astrophysics Data System (ADS)

    Compagnini, Giuseppe; Sinatra, Marco G.; Messina, Gabriele C.; Patanè, Giacomo; Scalese, Silvia; Puglisi, Orazio

    2012-05-01

    Laser ablation of solid targets in liquid media is emerging as a simple, clean and reproducible way to generate a large number of intriguing nanometric structures with peculiar properties. In this work we present some results on the formation of MoS2 fullerene-like nanoparticles (10-15 nm diameter) obtained by the ablation of crystalline targets in water. Such a top-down approach can be considered greener than standard sulphidization reactions and represents an intriguing single step procedure. The generation of the MoS2 nanostructures is in competition with that of oxide clusters and strongly depends on the oxidative environment created by the plasma plume. The size, shape and crystalline phase of the obtained nanoparticles are studied by microscopy while X-Ray Photoelectron Spectroscopy is used to investigate the chemical state of produced nanostructures and to propose mechanisms for their growth.

  17. Eiffel Tower Plume

    NASA Image and Video Library

    2015-08-19

    This still image from an animation from NASA GSFC Solar Dynamics Observatory shows a single plume of plasma, many times taller than the diameter of Earth, spewing streams of particles for over two days Aug. 17-19, 2015 before breaking apart. At times, its shape resembled the Eiffel Tower. Other lesser plumes and streams of particles can be seen dancing above the solar surface as well. The action was observed in a wavelength of extreme ultraviolet light. http://photojournal.jpl.nasa.gov/catalog/PIA19875

  18. Applications of Nanoparticle-Containing Plasmas for High-Order Harmonic Generation of Laser Radiation

    NASA Astrophysics Data System (ADS)

    Ganeev, Rashid A.

    The use of nanoparticles for efficient conversion of the wavelength of ultrashort laser toward the deep UV spectral range through harmonic generation is an attractive application of cluster-containing plasmas. Note that earlier observations of HHG in nanoparticles were limited by using the exotic gas clusters formed during fast cooling of atomic flow from the gas jets 1-4. One can assume the difficulties in definition of the structure of such clusters and the ratio between nanoparticles and atoms/ions in the gas flow. The characterization of gas phase cluster production was currently improved using the sophisticated techniques (e.g., a control of nanoparticle mass and spatial distribution, see the review 5). In the meantime, the plasma nanoparticle HHG has demonstrated some advantages over gas cluster HHG 6. The application of commercially available nanopowders allowed for precisely defining the sizes and structure of these clusters in the plume. The laser ablation technique made possible the predictable manipulation of plasma characteristics, which led to the creation of laser plumes containing mainly nanoparticles with known spatial structure. The latter allows the application of such plumes in nonlinear optics, X-ray emission of clusters, deposition of nanoparticles with fixed parameters on the substrates for semiconductor industry, production of nanostructured and nanocomposite films, etc.

  19. Optical emission spectroscopic study of plasma plumes generated by IR CO2 pulsed laser on carbon targets

    NASA Astrophysics Data System (ADS)

    Camacho, J. J.; Díaz, L.; Santos, M.; Reyman, D.; Poyato, J. M. L.

    2008-05-01

    Optical emission spectroscopy studies, in the spectral range ultraviolet-visible-near infrared (UV-Vis-NIR), were performed to investigate thermal and dynamical properties of a plume produced by laser ablation of a graphite target. Ablation is carried out using a high-power IR CO2 pulsed laser at λ = 9.621 µm, power density ranging from 0.22 to 5.36 GW cm-2 and air pressures around 4 Pa. The strong emission observed in the plasma region is mainly due to electronic relaxation of excited C, ionic fragments C+, C2+ and C3+ and molecular features of C2(d 3Πg-a 3Πu Swan band system). The medium-weak emission is mainly due to excited atomic N, H, O, ionic fragment C4+ and molecular features of C2( E\\,^1\\Sigma _g^+\\--A\\,^{1}\\Pi _u ; Freymark system), C2( D\\,^1\\Sigma _u^+\\--X\\,^1\\Sigma _g^+ ; Mulliken system), CN(D 2Π-A 2Π), C2(e 3Πg-a 3Πu Fox-Herzberg system), C2(C 1Πg-A 1Πu Deslandres-d'Azambuja system), OH(A 2Σ+-X 2Π), CH(C 2Σ+-X 2Π), NH(A 3Π-X 3Σ-), CN(B 2Σ+-X 2Σ+ violet system), CH(B 2Σ+-X 2Π), CH(A 2Δ-X 2Π), C2( A\\,^{1}\\Pi_u\\--X\\,^{1}\\Sigma ^{+}_g ; Phillips system) and CN(A 2Π-X 2Σ+ red system). An excitation temperature Texc = 23 000 ± 1900 K and electron densities in the range (0.6-5.6) × 1016 cm-3 were estimated by means of C+ ionic lines. The characteristics of the spectral emission intensities from different species have been investigated as functions of the ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 and CN electronically excited species under various laser irradiance conditions are made.

  20. Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells

    PubMed Central

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atomospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy. PMID:24040051

  1. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less

  2. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya

    2015-05-07

    We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less

  3. Discharge reliability in ablative pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwen; Sun, Guorui; Yuan, Shiyue; Huang, Tiankun; Liu, Xiangyang; Xie, Kan; Wang, Ningfei

    2017-08-01

    Discharge reliability is typically neglected in low-ignition-cycle ablative pulsed plasma thrusters (APPTs). In this study, the discharge reliability of an APPT is assessed analytically and experimentally. The goals of this study are to better understand the ignition characteristics and to assess the accuracy of the analytical method. For each of six sets of operating conditions, 500 tests of a parallel-plate APPT with a coaxial semiconductor spark plug are conducted. The discharge voltage and current are measured with a high-voltage probe and a Rogowski coil, respectively, to determine whether the discharge is successful. Generally, the discharge success rate increases as the discharge voltage increases, and it decreases as the electrode gap and the number of ignitions increases. The theoretical analysis and the experimental results are reasonably consistent. This approach provides a reference for designing APPTs and improving their stability.

  4. Study of Mn laser ablation in methane atmosphere

    NASA Astrophysics Data System (ADS)

    Krstulović, N.; Labazan, I.; Milošević, S.

    2006-02-01

    Laser ablation of Mn target in vacuum and in the presence of CH4 was studied under 308 nm laser irradiation. Time-resolved emission using gated detection and scanning monochromator and absorption using the cavity ring-down spectroscopy were used to study vaporized plume. In the CH4 atmosphere we observed transitions identified as C2 and MnH bands, while these spectral features were not detected in emission spectra. This is a clear evidence of importance in combining both spectroscopic techniques in laser vaporized plume study.

  5. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Wei, Wenfu; Li, Xingwen

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag modelmore » was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.« less

  6. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    NASA Astrophysics Data System (ADS)

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-01

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  7. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  8. Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, R.

    1997-09-01

    In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. {bold 9}, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B {bold 29}, 186 (1982); Y. Kato {ital et al.}, Phys. Rev. Lett. {bold 53}, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasmamore » atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities. {copyright} {ital 1997 American Institute of Physics.}« less

  9. Oxide or carbide nanoparticles synthesized by laser ablation of a bulk Hf target in liquids and their structural, optical, and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semaltianos, N. G., E-mail: nsemaltianos@yahoo.com; Friedt, J.-M.; Blondeau-Patissier, V.

    2016-05-28

    Laser ablation of a bulk Hf target in deionized (DI) water, ethanol, or toluene was carried out for the production of nanoparticles' colloidal solutions. Due to the interaction of the ablation plasma plume species with the species which are produced by the liquid decomposition at the plume-liquid interface, hafnia (HfO{sub 2}) nanoparticles are synthesized in DI water, hafnium carbide (HfC) nanoparticles in toluene, and a mixture of these in ethanol. The hafnia nanoparticles are in the monoclinic low temperature phase and in the tetragonal and fcc high temperature phases. Their size distribution follows log-normal function with a median diameter inmore » the range of 4.3–5.3 nm. Nanoparticles synthesized in DI water have band gaps of 5.6 and 5.4 eV, in ethanol 5.72 and 5.65 eV (using low and high pulse energy), and in toluene 3 eV. The values for the relative permittivity in the range of 7.74–8.90 were measured for hafnia nanoparticles' thin films deposited on substrates by drop-casting (self-assembled layers) in parallel plate capacitor structures.« less

  10. Infrared laser ablation of polymeric nanocomposites: A study of surface structure and plume formation

    NASA Astrophysics Data System (ADS)

    Bartolucci, S. F.; Miller, M. J.; Warrender, J. M.

    2016-12-01

    The behavior of carbon nanotube composites subjected to laser pulse heating with a 1070 nm variable pulse duration laser has been studied. Previous work has shown that carbon nanotube composites form a protective network on the surface of a composite, which reduces heat input to the underlying polymer and slows mass loss. In this work, we have studied the interaction between the incident laser and the plume formed above the composite. We have correlated these interactions with features observed in the time-resolved mass loss data and confirmed them with observations using high-speed video of the laser irradiations. Beam interactions were studied as a function of laser irradiance and nanotube content. It is shown that beam-plume interactions occur for the carbon nanotube composites and that the interactions occur at shorter pulse durations for increased nanotube content and laser irradiance. When we eliminate beam-plume interaction through alteration of the sample orientation relative to the incident beam, we are able to elucidate the individual contributions of the carbon nanotube surface network and the plume to the observed decrease in mass loss after laser irradiation. We examine the plume content using microscopy and Raman spectroscopy and show that greater beam absorption occurs when there is a higher graphitic content in the plume.

  11. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plumemore » charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.« less

  12. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  13. Self-mixing interferometry as a diagnostics tool for plasma characteristics in laser microdrilling

    NASA Astrophysics Data System (ADS)

    Colombo, Paolo; Demir, Ali Gökhan; Norgia, Michele; Previtali, Barbara

    2017-05-01

    In this work, self-mixing interferometry (SMI) was used to monitor the optical path difference induced by the ablation plasma and plume. The paper develops the analytical relationships to explain the fringe appearance in the SMI during laser microdrilling. The monitoring principle was tested under a large experimental campaign of laser microdrilling on TiAlN ceramic coating with a low-ns green fibre laser. Key process parameters namely pulse energy, number and repetition rate were varied. The effect of side gas on the SMI signal characteristic was analysed. Laser induced breakdown spectroscopy (LIBS) was used to identify the plasma temperature and electron number density. The SMI signals were correlated to the plume size and its evolution as a function of process parameters, as well as electron number density estimated by spectroscopy. In addition to proving the validity of the proposed new method, the results show insights to the micromachining of the ceramic material with low ns pulses.

  14. Performance of an ablator for Space Shuttle inorbit repair in an arc-plasma airstream

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.; Cuellar, M.; Flowers, O.

    1983-01-01

    An ablator patch material performed well in an arc plasma environment simulating nominal Earth entry conditions for the Space Shuttle. Ablation tests using vacuum molded cones provided data to optimize the formulation of a two part polymer system for application under space conditions. The blunt cones were made using a Teflon mold and a state of the art caulking gun. Char stability of formulations with various amounts of catalyst and diluent were investigated. The char was found to be unstable in formulations with low amounts of catalyst and high amounts of diluent. The best polymer system determined by these tests was evaluated using a half tile patch in a multiple High Temperature Reusable surface Insulation tile model. It was demonstrated that this ablator could be applied in a space environment using a state of the art caulking gun, would maintain the outer mold line of the thermal protection system during entry, and would keep the bond line temperature at the aluminum tile interface below the design limit.

  15. Laser ablation of single-crystalline silicon by radiation of pulsed frequency-selective fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.

    2015-07-01

    We have studied the process of destruction of the surface of a single-crystalline silicon wafer scanned by the beam of a pulsed ytterbium-doped fiber laser radiation with a wavelength of λ = 1062 nm. It is established that the laser ablation can proceed without melting of silicon and the formation of a plasma plume. Under certain parameters of the process (radiation power, beam scan velocity, and beam overlap density), pronounced oxidation of silicon microparticles with the formation of a characteristic loose layer of fine powdered silicon dioxide has been observed for the first time. The range of lasing and beam scanning regimes in which the growth of SiO2 layer takes place is determined.

  16. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effectmore » in the co-current magnetic field configuration.« less

  17. Plasma plume diagnostics of low power stationary plasma thruster (SPT-20M8) with collisional radiative model

    NASA Astrophysics Data System (ADS)

    Uttamsing Rajput, Rajendrasing; Alona, Khaustova; Loyan, Andriy V.

    2017-03-01

    Electric propulsion offers higher specific impulse compared to the chemical propulsion systems. It reduces the overall propellant mass and enables high operational lifetimes. Scientific Technological Center of Space Power and Energy (STC SPE), KhAI is involved in designing, manufacturing and testing of stationary plasma thrusters (SPT). Efforts are made to perform plasma diagnostics with corona and collisional radiative models (C-R model), as expected corona model falls short below 4 eV because of the heavy particle collisions elimination, whereas the C-R model's applicability is confirmed. Several tests are performed to analyze the electron temperature at various operational parameters of thruster like discharge voltage and mass flow rate. SPT-20M8 far and near-field plumes diagnostics are performed. Feasibility of C-R model by comparing its result to optical emission spectroscopy (OES) to investigate the electron temperature is validated with the probe measurements within the 10% of discrepancy.

  18. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    NASA Astrophysics Data System (ADS)

    Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.

    1996-09-01

    Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.

  19. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Shin, Yung C.

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse.more » The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.« less

  20. Debye sheath mechanism at laser plasma interaction and generalization to nuclear forces and quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Osman, Frederick; Ghahramani, Nader; Hora, Heinrich

    2005-10-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation, and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension in plasmas, and led to the internal dynamic electric fields in all inhomogeneous plasmas. The surface tension causes stabilization by short length surface wave smoothing the expanding plasma plume and to stabilization against the Rayleigh Taylor instability. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature resulted in the first quantum theory of surface tension of metals in agreement with measurements. Taking the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well-known nuclear density, and the Debye lengths equal to the Hofstadter decay of the nuclear surface. Increasing the nuclear density by a factor of 10 leads to a change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark gluon plasma. Expansion of this higher density at the big bang or in super-nova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range, however with the limit to about uranium. A relation for the magic numbers leads to a quark structure of nuclear shells that can be understood as a duality property of nuclei with respect to nucleons and quarks

  1. Laser ablation with applied magnetic field for electric propulsion

    NASA Astrophysics Data System (ADS)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  2. Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Marrese, Colleen M.; Blandino, John J.

    2000-01-01

    Twenty-four witness plates were positioned on perpendicular arrays near a breadboard Pulsed Plasma Thruster (PPT) to collect plume constituents for analysis. Over one million shots were fired during the experiment at 43 J using fluorocarbon polymer propellant. The asymmetry of the film deposition on the witness plates was investigated with mass and thickness measurements and correlated with off-axis thrust vector measurements. The composition of the films was determined. The transmittance and reflectance of the films were measured and the absorption coefficients were calculated in the wavelength range from 350 to 1200 mn. These data were applied to calculate the loss in signal intensity through the films, which will impact the visibility of spaceborne interferometer systems positioned by these thrusters.

  3. Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.

    PubMed

    Hutson, M Shane; Ivanov, Borislav; Jayasinghe, Aroshan; Adunas, Gilma; Xiao, Yaowu; Guo, Mingsheng; Kozub, John

    2009-06-08

    Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-microm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes--an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.

  4. Composition of the excimer laser-induced plume produced during LASIK refractive surgery

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom

    2003-07-01

    Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness

  5. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  6. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    NASA Astrophysics Data System (ADS)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  7. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma.

    PubMed

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  8. Ion energy distributions and densities in the plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Sakai, Shotaro; Cravens, Thomas E.; Omidi, Nojan; Perry, Mark E.; Waite, J. Hunter

    2016-10-01

    Enceladus has a dynamic plume that is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation, charge exchange, and electron impact and extends throughout the inner magnetosphere of Saturn. The charge exchange collisions alter the plasma composition. Ice grains (dust) escape from the vicinity of Enceladus and form the E ring, including a portion that is negatively charged by the local plasma. The inner magnetosphere within 10 RS (Saturn radii) contains a complex mixture of plasma, neutral gas, and dust that links back to Enceladus. In this paper we investigate the energy distributions, ion species and densities of water group ions in the plume of Enceladus using test particle and Monte Carlo methods that include collisional processes such as charge exchange and ion-neutral chemical reactions. Ion observations from the Cassini Ion and Neutral Mass Spectrometer (INMS) for E07 are presented for the first time. We use the modeling results to interpret observations made by the Cassini Plasma Spectrometer (CAPS) and the INMS. The low energy ions, as observed by CAPS, appear to be affected by a vertical electric field (EZ=-10 μV/m) in the plume. The EZ field may be associated with the charged dust and/or the pressure gradient of plasma. The model results, along with the results of earlier models, show that H3O+ ions created by chemistry are predominant in the plume, which agrees with INMS and CAPS data, but the INMS count rate in the plume for the model is several times greater than the data, which we do not fully understand. This composition and the total ion count found in the plume agree with INMS and CAPS data. On the other hand, the Cassini Langmuir Probe measured a maximum plume ion density more than 30,000 cm-3, which is far larger than the maximum ion density from our model, 900 cm-3. The model results also demonstrate that most of the ions in the plume are from the external magnetospheric flow and are not generated by local

  9. Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Montaser, A.; Smith, B.L.; Dorrzapf, A.F.

    1989-01-01

    Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration. ?? 1989.

  10. Prognostic Impact of Indocyanine Green Plasma Disappearance Rate in Hepatocellular Carcinoma Patients after Radiofrequency Ablation: A Prognostic Nomogram Study

    PubMed Central

    Azumi, Motoi; Suda, Takeshi; Terai, Shuji; Akazawa, Kouhei

    2017-01-01

    Objective Radiofrequency ablation has been used widely for the local ablation of hepatocellular carcinoma, particularly in its early stages. The study aim was to identify significant prognostic factors and develop a predictive nomogram for patients with hepatocellular carcinoma who have undergone radiofrequency ablation. We also developed the formula to predict the probability of 3- and 5-year overall survival based on clinical variables. Methods We retrospectively studied 96 consecutive patients with hepatocellular carcinoma who had undergone radiofrequency ablation as a first-line treatment. Independent and significant factors affecting the overall survival were selected using a Cox proportional hazards model, and a prognostic nomogram was developed based on these factors. The predictive accuracy of the nomogram was determined by Harrell's concordance index and compared with the Cancer of the Liver Italian Program score and Japan Integrated Staging score. Results A multivariate analysis revealed that age, indocyanine green plasma disappearance rate, and log(des-gamma-carboxy prothrombin) level were independent and significant factors influencing the overall survival. The nomogram was based on these three factors. The mean concordance index of the nomogram was 0.74±0.08, which was significantly better than that of conventional staging systems using the Cancer of the Liver Italian Program score (0.54±0.03) and Japan Integrated Staging score (0.59±0.07). Conclusion This study suggested that the indocyanine green plasma disappearance rate and age at radiofrequency ablation (RFA) and des-gamma-carboxy-prothrombin (DCP) are good predictors of the prognosis in hepatocellular carcinoma patients after radiofrequency ablation. We successfully developed a nomogram using obtainable variables before treatment. PMID:28458303

  11. Prognostic Impact of Indocyanine Green Plasma Disappearance Rate in Hepatocellular Carcinoma Patients after Radiofrequency Ablation: A Prognostic Nomogram Study.

    PubMed

    Azumi, Motoi; Suda, Takeshi; Terai, Shuji; Akazawa, Kouhei

    2017-01-01

    Objective Radiofrequency ablation has been used widely for the local ablation of hepatocellular carcinoma, particularly in its early stages. The study aim was to identify significant prognostic factors and develop a predictive nomogram for patients with hepatocellular carcinoma who have undergone radiofrequency ablation. We also developed the formula to predict the probability of 3- and 5-year overall survival based on clinical variables. Methods We retrospectively studied 96 consecutive patients with hepatocellular carcinoma who had undergone radiofrequency ablation as a first-line treatment. Independent and significant factors affecting the overall survival were selected using a Cox proportional hazards model, and a prognostic nomogram was developed based on these factors. The predictive accuracy of the nomogram was determined by Harrell's concordance index and compared with the Cancer of the Liver Italian Program score and Japan Integrated Staging score. Results A multivariate analysis revealed that age, indocyanine green plasma disappearance rate, and log (des-gamma-carboxy prothrombin) level were independent and significant factors influencing the overall survival. The nomogram was based on these three factors. The mean concordance index of the nomogram was 0.74±0.08, which was significantly better than that of conventional staging systems using the Cancer of the Liver Italian Program score (0.54±0.03) and Japan Integrated Staging score (0.59±0.07). Conclusion This study suggested that the indocyanine green plasma disappearance rate and age at radiofrequency ablation (RFA) and des-gamma-carboxy-prothrombin (DCP) are good predictors of the prognosis in hepatocellular carcinoma patients after radiofrequency ablation. We successfully developed a nomogram using obtainable variables before treatment.

  12. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.

    PubMed

    Ogura, Makoto; Sato, Shunichi; Ishihara, Miya; Kawauchi, Satoko; Arai, Tunenori; Matsui, Takemi; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2002-01-01

    We investigated the mechanism and characteristics of porcine myocardium tissue ablation in vitro with nanosecond 1,064- and 532-nm pulsed lasers at laser intensities up to approximately 5.0 GW/cm(2). Particular attention was paid to study the influence of the laser-induced plasma on the ablation characteristics. The applicability of these two lasers to transmyocardial laser revascularization (TMLR) was discussed. Porcine myocardium tissue samples were irradiated with 1,064- and 532-nm, Q-switched Nd:YAG laser pulses, and the ablation depths were measured. The temporal profiles of the laser-induced optical emissions were measured with a biplanar phototube. For the ablated tissue samples, histological analysis was performed with an optical microscope and a polarization microscope. The ablation efficiency at 1,064 nm was higher than that at 532 nm. The ablation threshold at 1,064 nm (approximately 0.8 GW/cm(2)) was lower than that at 532 nm (approximately 1.6 GW/cm(2)), in spite of the lower absorption coefficient being expected at 1,064 nm. For the 1,064-nm laser-ablated tissues, thermal damage was very limited, while damage presumably caused by the mechanical effect was observed in most of the cases. For the 1,064-nm laser ablation, the ablation threshold was equal to the threshold of the laser-induced optical emission (approximately 0.8 GW/cm(2)), while for the 532-nm laser ablation, the optical emission threshold ( approximately 2.4 GW/cm(2)) was higher than the ablation threshold. We considered that for the 1,064-nm laser ablation, the tissue removal was achieved through a photodisruption process at laser intensities of > approximately 0.8 GW/cm(2). At laser intensities of > 3.0 GW/cm(2), however, the ablation efficiency decreased; this can be attributed to the absorption of incoming laser pulses by the plasma. For the 532-nm laser ablation, the tissue removal was achieved through a photothermal process at laser intensities of > approximately 1.6 GW/cm(2). At

  13. Analysis of plume emissions after papovavirus irradiation with the carbon dioxide laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellina, J.H.; Stjernholm, R.L.; Kurpel, J.E.

    1982-05-01

    This study was undertaken to evaluate potential inhalation hazards to operating room personnel after irradiation of tumors with the carbon dioxide laser. Cellular debris was analyzed for viability using labeled nucleotides and labeled glucose. In this way the plume was investigated for the presence of material with oncogenic potential. Most surgeons who have ablated venereal warts or certain tumors with the carbon dioxide laser have worried about possible hazards of inhaling the vapor that is produced as a result of their work. We utilized three methods to determine whether viable particles exist in the laser plume. Fortunately, it is mostmore » comforting that the metabolic studies, DNA and RNA studies and cytologic studies seem to indicate that the plume is biologically inactive.« less

  14. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    NASA Astrophysics Data System (ADS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  15. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinefuchi, K.; Funaki, I.; Shimada, T.

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model.more » The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.« less

  16. Double-pulse femtosecond laser peening of aluminum alloy AA5038: Effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness

    NASA Astrophysics Data System (ADS)

    Ageev, E. I.; Bychenkov, V. Yu.; Ionin, A. A.; Kudryashov, S. I.; Petrov, A. A.; Samokhvalov, A. A.; Veiko, V. P.

    2016-11-01

    Double-pulse ablative femtosecond laser peening of the AA5038 aluminum alloy surface in the phase explosion regime results in its enhanced microhardness, which monotonously decreases till the initial value versus inter-pulse delay, increasing on a sub-nanosecond timescale. Optical emission spectroscopy of the double-pulse ablative plume reveals the same trend in the yield of the corresponding atomic and ion emission versus inter-pulse delay, enlightening the interaction of the second femtosecond laser pump pulse with the surface and the resulting plume.

  17. A feasibility study and mission analysis for the Hybrid Plume Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Sullivan, Daniel J.; Micci, Michael M.

    1990-01-01

    The Hybrid Plume Plasma Rocket (HPPR) is a high power electric propulsion concept which is being developed at the MIT Plasma Fusion Center. This paper presents a theoretical overview of the concept as well as the results and conclusions of an independent study which has been conducted to identify and categorize those technologies which require significant development before the HPPR can be considered a viable electric propulsion device. It has been determined that the technologies which require the most development are high power radio-frequency and microwave generation for space applications and the associated power processing units, low mass superconducting magnets, a reliable, long duration, multi-megawatt space nuclear power source, and long term storage of liquid hydrogen propellant. In addition to this, a mission analysis of a one-way transfer from low earth orbit (LEO) to Mars indicates that a constant acceleration thrust profile, which can be obtained using the HPPR, results in faster trip times and greater payload capacities than those afforded by more conventional constant thrust profiles.

  18. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  19. Generation of nanoclusters by ultrafast laser ablation of Al: Molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miloshevsky, Alexander; Phillips, Mark C.; Harilal, Sivanandan S.

    The laser ablation of materials induced by an ultrashort femtosecond pulse is a complex phenomenon, which depends on both the material properties and the properties of the laser pulse. The unique capability of a combination of molecular dynamics (MD) and Momentum Scaling Model (MSM) methods is developed and applied to a large atomic system for studying the process of ultrafast laser-material interactions, behavior of matter in a highly non-equilibrium state, material disintegration, and formation of nanoparticles (NPs). Laser pulses with several fluences in the range from 500 J/m2 to 5000 J/m2 interacting with a large system of aluminum atoms aremore » simulated. The response of Al material to the laser energy deposition is investigated within the finite-size laser spot. It is found that the shape of the plasma plume is dynamically changing during an expansion process. At several tens of picoseconds it can be characterized as a long hollow ellipsoid surrounded by atomized and nano-clustered particles. The time evolution of NP clusters in the plume is investigated. The collisions between the single Al atoms and generated NPs and fragmentation of large NPs determine the fractions of different-size NP clusters in the plume. The MD-MSM simulations show that laser fluence greatly affects the size distribution of NPs, their polar angles, magnitude and direction vectors of NP velocities. These results and predictions are supported by the experimental data and previous MD simulations.« less

  20. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation

    NASA Astrophysics Data System (ADS)

    Geohegan, David B.; Puretzky, Alex A.; Duscher, Gerd; Pennycook, Stephen J.

    1998-06-01

    The dynamics of nanoparticle formation, transport, and deposition by pulsed laser ablation of c-Si into 1-10 Torr He and Ar gases are revealed by imaging laser-induced photoluminescence and Rayleigh-scattered light from gas-suspended 1-10 nm SiOx particles. Two sets of dynamic phenomena are presented for times up to 15 s after KrF-laser ablation. Ablation of Si into heavier Ar results in a uniform, stationary plume of nanoparticles, while Si ablation into lighter He results in a turbulent ring of particles which propagates forward at 10 m/s. Nanoparticles unambiguously formed in the gas phase were collected on transmission electron microscope grids for Z-contrast imaging and electron energy loss spectroscopy analysis. The effects of gas flow on nanoparticle formation, photoluminescence, and collection are described.

  1. Unsteady motion of laser ablation plume by vortex induced by the expansion of curved shock wave

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Mori, K.

    2017-02-01

    There are a number of industrial applications of laser ablation in a gas atmosphere. When an intense pulsed laser beam is irradiated on a solid surface in the gas atmosphere, the surface material is ablated and expands into the atmosphere. At the same time, a spherical shock wave is launched by the ablation jet to induce the unsteady flow around the target surface. The ablated materials, luminously working as tracer, exhibit strange unsteady motions depending on the experimental conditions. By using a high-speed video camera (HPV-X2), unsteady motion ablated materials are visualized at the frame rate more than 106 fps, and qualitatively characterized.

  2. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    PubMed

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-07

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors.

  3. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.

    2016-05-01

    The first measurement of the electron temperature (Te) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local Te via the collisional-radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation Te is evaluated at the measured dot trajectory. The peak Te, measured to be 4.2 keV ± 0.2 keV, is ˜0.5 keV hotter than the simulation prediction.

  4. Can the Plasmaspheric Plume Significantly Contribute to Magnetosheath Densities?

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Goldstein, Jerry; Sibeck, David

    2010-01-01

    Intervals of strong magnetospheric convection electric fields can result in the removal of large portions of the outer plasmasphere and its transport to the vicinity of the magnetopause. Of growing interest is the disposition of that plasma and its possible influence on the processes operating in the regions contributed to by this dense thermal plasma of ionospheric origin. Plasmaspheric plasma may recirculate within the outer magnetosphere through the flanks to become part of the plasmasheet, be entrained on reconnected magnetic field lines drawn anti-sunward over the polar cap, or be lost into the magnetosheath flow and into the solar wind. Of interest here is whether it is reasonable to anticipate that the plume material is sufficient to contribute substantially to magnetosheath densities at the magnetopause where it could influence reconnection between the interplanetary and terrestrial magnetic fields. We present the results of model simulations of plasmaspheric plume and magnetosheath plasmas in the context of several storm-time event periods. Plume and magnetosheath densities are compared as a function of location and storm phase. The short answer is, "yes", but not always and not at all locations. The full answer will be presented.

  5. An electrothermal plasma model considering polyethylene and copper ablation based on ignition experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangbo; Li, Xingwen; Hang, Yuhua; Yang, Weihong

    2018-06-01

    In order to study the characteristics of electrothermal plasma interaction with energetic materials, especially the ignition ability, a novel model considering polyethylene and copper ablation is developed, and an ignition experiment system is set up. The parameters of the plasma and the surface conditions of the energetic materials are measured in the testing. The results show the measured first peak pressure to be ~2.2 MPa, the second peak pressure to be ~3.9 MPa, and the visible flame velocity to be ~2000 m s‑1. Circular pits of the order of microns and nanometers in size are observed on the surface of the energetic materials. Further, the parameters of the plasma, including static pressure, total pressure, density, temperature, velocity, copper concentration and PE concentration, are calculated and analyzed by the established model, under discharge currents of 9 kA. The simulation is similar to those of experimental results. A shock wave is observed in the experiment and is presented in the calculations; it plays an important role in the performance of the plasma in the nozzle region, where the parameters of the plasma variation trends are very complex. With the aim of obtaining the overall performance of the plasma, the coupling characteristics of multiple parameters must be taken into account, in accordance with the developed electrothermal plasma model.

  6. Subduction disfigured mantle plumes: Plumes that are not plumes?

    NASA Astrophysics Data System (ADS)

    Druken, K. A.; Stegman, D. R.; Kincaid, C. R.; Griffiths, R. W.

    2012-12-01

    "Hotspot" volcanism is generally attributed to upwelling of anomalously warm mantle plumes, the intra-plate Hawaiian island chain and its simple age progression serving as an archetypal example. However, interactions of such plumes with plate margins, and in particular with subduction zones, is likely to have been a common occurrence and leads to more complicated geological records. Here we present results from a series of complementary, three-dimensional numerical and laboratory experiments that examine the dynamic interaction between negatively buoyant subducting slabs and positively buoyant mantle plumes. Slab-driven flow is shown to significantly influence the evolution and morphology of nearby plumes, which leads to a range of deformation regimes of the plume head and conduit. The success or failure of an ascending plume head to reach the lithosphere depends on the combination of plume buoyancy and position within the subduction system, where the mantle flow owing to downdip and rollback components of slab motion entrain plume material both vertically and laterally. Plumes rising within the sub-slab region tend to be suppressed by the surrounding flow field, while wedge-side plumes experience a slight enhancement before ultimately being entrained by subduction. Hotspot motion is more complex than that expected at intraplate settings and is primarily controlled by position alone. Regimes include severely deflected conduits as well as retrograde (corkscrew) motion from rollback-driven flow, often with weak and variable age-progression. The interaction styles and surface manifestations of plumes can be predicted from these models, and the results have important implications for potential hotspot evolution near convergent margins.

  7. Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-11-01

    In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter

  8. Why the SL9 Plumes Were All About the Same Height

    NASA Technical Reports Server (NTRS)

    Zahnle, K.; MacLow, M.-M.; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    Several of the SL9 ejecta plumes were observed by the HST to reach approximately the same height, about 3000 km above the jovian cloud tops. The duration of the infrared events, which were produced by the plume falling back on the atmosphere, measures time aloft and hence provides a second, more sensitive measure of plume height; the light curves indicate that the largest impacts produced modestly higher plumes. Evidently these plumes were launched with about the same vertical velocity, roughly 10-13 kilometers per second. As the impactors themselves were not all the same, nor the impacts equally luminous, nor the plumes equally opaque, the similar plume heights has been seen as a puzzle needing explanation. A second, closely related matter that needs to addressed quantitatively is the popular contention that a big plume requires a big impact. This view is misleading at best, yet plume heights can be used to constrain impact parameters. Dimensional analysis indicates that plume height goes as z alpha v (sup 2) (sub ej) alpha E/pH (sup 2), where v (sub ej) is the ejection velocity, E the explosion energy, and p and H the ambient pressure and scale height at termination. Using a semi-analytic model for the deceleration, disintegration, and destruction of intruding bodies by an ever-vigilant atmosphere, we find that the ratio E/pH(sup 2) is roughly constant for fragments with diameters of order 100 m to 1000 m. Constancy of v(sub ej) is in part due to the greater role of radiative ablation on the flight of smaller objects. We conclude that similar plume heights is a direct consequence of smaller impactors exploding at higher altitudes, in such a way that the different explosions were geometrically similar.

  9. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  10. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    PubMed Central

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2015-01-01

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation. PMID:26640294

  11. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    NASA Technical Reports Server (NTRS)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HP Hall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  12. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    NASA Technical Reports Server (NTRS)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HPHall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  13. SAMI3 Simulations of the Persistent May 1994 Plasmasphere Plume

    NASA Astrophysics Data System (ADS)

    Krall, J.; Huba, J.; Borovsky, J.

    2017-12-01

    We use the Naval Research Laboratory SAMI3 ionosphere/plasmasphere model[1] to explore the physics of a long-lived plasmasphere plume. A plasmasphere plume is a storm feature that extends the cold plasma that is normally trapped by the geomagnetic field (the plasmasphere) outward towards the bow shock. In the case of the May 1994 storm, the storm and the plume continued for 12 days. For the model storm, we imposed a Kp-driven Volland/Stern-Maynard/Chen potential [2-4]. Results are compared to measurements of the cold ion density from the 1989-046 spacecraft in geosynchronous orbit [5]. We find that many details of the observed plume are reproduced by SAMI3, but only if a background magnetosphere density is included as a boundary condition. We also find that high-speed, field aligned plasma flows contribute significantly to the observed plume density. [1] Huba, J. and J. Krall (2013), Modeling the plasmasphere with SAMI3, Geophys. Res. Lett., 40, 6-10, doi:10.1029/2012GL054300 [2] Volland, H. (1973), A semiempirical model of large-scale magnetospheric electric fields, Journal of Geophysical Research, 78, 171-180, doi:10.1029/JA078i001p00171 [3] Stern, D.P. (1975), The motion of a proton in the equatorial magnetosphere, Journal of Geophysical Research, 80, 595-599, doi:10.1029/JA080i004p00595 [4] Maynard, N.C., and A.J. Chen (1975), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, Journal of Geophysical Research, 80, 1009-1013, doi:10.1029/JA080i007p01009 [5] Borovsky, J.E., D.T. Welling, M.F. Thomsen, and M.H. Denton (2014), Long-lived plasmaspheric drainage plumes: Where does the plasma come from?, Journal of Geophysical Research: Space Physics, 119, 6496-6520, doi:10.1002/2014JA020228 Research supported by NRL base funds.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Diwakar, P. K.; Polek, M. P.

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less

  15. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA 300M Hall Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; KamHawi, Hani

    2012-01-01

    In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA 300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 DT,m downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 DT,m from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the nearfield, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was small, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA 300 M.

  16. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.

    The first measurement of the electron temperature (T{sub e}) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local T{sub e} via the collisional–radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dotmore » location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation T{sub e} is evaluated at the measured dot trajectory. The peak T{sub e}, measured to be 4.2 keV ± 0.2 keV, is ∼0.5 keV hotter than the simulation prediction.« less

  17. A preliminary characterization of applied-field MPD thruster plumes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn

    1991-01-01

    Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied field magnetohydrodynamic thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 times 10 (exp 18) to 8 times 10 (exp 18) m(exp -3) and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.

  18. Ablation Behavior of Plasma-Sprayed La1-xSrxTiO3+δ Coating Irradiated by High-Intensity Continuous Laser.

    PubMed

    Zhu, Jinpeng; Ma, Zhuang; Gao, Yinjun; Gao, Lihong; Pervak, Vladimir; Wang, Lijun; Wei, Chenghua; Wang, Fuchi

    2017-10-11

    Laser protection for optical components, particularly those in high-power laser systems, has been a major concern. La 1-x Sr x TiO 3+δ with its good optical and thermal properties can be potentially applied as a high-temperature optical protective coating or high-reflectivity material for optical components. However, the high-power laser ablation behavior of plasma-sprayed La 1-x Sr x TiO 3+δ (x = 0.1) coatings has rarely been investigated. Thus, in this study, laser irradiation experiments were performed to study the effect of high-intensity continuous laser on the ablation behavior of the La 1-x Sr x TiO 3+δ coating. The results show that the La 1-x Sr x TiO 3+δ coating undergoes three ablation stages during laser irradiation: coating oxidation, formation and growth of new structures (columnar and dendritic crystals), and mechanical failure. A finite-element simulation was also conducted to explore the mechanism of the ablation damage to the La 1-x Sr x TiO 3+δ coating and provided a good understanding of the ablation behavior. The apparent ablation characteristics are attributed to the different temperature gradients determined by the reflectivity and thermal diffusivity of the La 1-x Sr x TiO 3+δ coating material, which are critical factors for improving the antilaser ablation property. Now, the stainless steel substrate deposited by it can effectively work as a protective shield layer against ablation by laser irradiation.

  19. Standoff analysis of laser-produced plasmas using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    We report the use of laser-induced fluorescence (LIF) of laser ablation plumes for standoff applications. The standoff analysis of Al species, as major and minor species in samples, is performed in a nanosecond laser-produced plasma created at a distance ~10 m. The LIF analysis is performed by resonantly exciting an Al transition at 394.4 nm using a continuous wave (cw) tunable laser and by collecting the direct-line fluorescence signal at 396.15 nm. The spectral resolution of LIF is obtained by scanning the cw tunable LIF laser across the selected Al transition. Our results highlight that LIF provides enhanced signal intensity,more » emission persistence, and spectral resolution when compared to thermally-excited emission, and these are crucial considerations for using laser-produced plasma for standoff isotopic analysis.« less

  20. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.

  1. Doping He droplets by laser ablation with a pulsed supersonic jet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzy, R.; Singer, M.; Izadnia, S.

    Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions).more » In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.« less

  2. Eiffel Tower Plume

    NASA Image and Video Library

    2015-08-31

    A single plume of plasma, many times taller than the diameter of Earth, rose up from the Sun, twisted and spun around, all the while spewing streams of particles for over two days (Aug. 17-19, 2015) before breaking apart. At times, its shape resembled the Eiffel Tower. Other lesser plumes and streams of particles can be seen dancing above the solar surface as well. The action was observed in a wavelength of extreme ultraviolet light. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Considerations on data acquisition in laser ablation-inductively coupled plasma-mass spectrometry with low-dispersion interfaces

    NASA Astrophysics Data System (ADS)

    Van Malderen, Stijn J. M.; van Elteren, Johannes T.; Šelih, Vid S.; Vanhaecke, Frank

    2018-02-01

    This work describes the aliasing effects induced by undersampling the high-frequency signal patterns generated by a laser ablation-inductively coupled plasma-mass spectrometer equipped with a low-dispersion ablation cell and sequential mass analyzer. By characterizing the width of the signal peak generated from a single shot on the sample, critical experimental parameters, such as the laser repetition rate and detector cycle timings for the individual nuclides can be matched so as to avoid these imaging artifacts (spectral skew) induced by an insufficient sampling rate. By increasing the laser repetition rate by a factor 2-3, masses at the end of the mass scan can be sampled at higher sensitivity. Furthermore, the dwell times can be redistributed over the nuclides of interest based on the signal-to-noise ratio to increase the image contrast.

  4. Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavin, Nicholas R., E-mail: nicholas.glavin.1@us.af.mil, E-mail: andrey.voevodin@us.af.mil; School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Muratore, Christopher

    2015-04-28

    Physical vapor deposition (PVD) has recently been investigated as a viable, alternative growth technique for two-dimensional materials with multiple benefits over other vapor deposition synthesis methods. The high kinetic energies and chemical reactivities of the condensing species formed from PVD processes can facilitate growth over large areas and at reduced substrate temperatures. In this study, chemistry, kinetic energies, time of flight data, and spatial distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated. Time resolved spectroscopy and wavelength specific imaging were used to identifymore » and track atomic neutral and ionized species including B{sup +}, B*, N{sup +}, N*, and molecular species including N{sub 2}*, N{sub 2}{sup +}, and BN. Formation and decay of these species formed both from ablation of the target and from interactions with the background gas were investigated and provided insights into fundamental growth mechanisms of continuous, amorphous boron nitride thin films. The correlation of the plasma diagnostic results with film chemical composition and thickness uniformity studies helped to identify that a predominant mechanism for BN film formation is condensation surface recombination of boron ions and neutral atomic nitrogen species. These species arrive nearly simultaneously to the substrate location, and BN formation occurs microseconds before arrival of majority of N{sup +} ions generated by plume collisions with background molecular nitrogen. The energetic nature and extended dwelling time of incident N{sup +} ions at the substrate location was found to negatively impact resulting BN film stoichiometry and thickness. Growth of stoichiometric films was optimized at enriched concentrations of ionized boron and neutral atomic nitrogen in plasma near the condensation surface, providing few nanometer thick films with 1:1 BN stoichiometry and

  5. Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Bellei, Claudio; Ross, J. Steven; Salmonson, Jay

    2015-02-01

    Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014), 10.1063/1.4874330]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured.

  6. Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions.

    PubMed

    Amendt, Peter; Bellei, Claudio; Ross, J Steven; Salmonson, Jay

    2015-02-01

    Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured.

  7. Experimental and computational study of the effect of 1 atm background gas on nanoparticle generation in femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.

    2018-03-01

    Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.

  8. Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei

    2018-07-01

    The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe2. Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe2, causing the generation of nucleation and growth of the MoSe2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe2 IFNPs. The results show that MoSe2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.

  9. Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids.

    PubMed

    Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei

    2018-07-20

    The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe 2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe 2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe 2 . Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe 2 , causing the generation of nucleation and growth of the MoSe 2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe 2 IFNPs. The results show that MoSe 2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.

  10. Experimental Simulation of Meteorite Ablation during Earth Entry using a Plasma Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Loehle, Stefan; Zander, Fabian; Hermann, Tobias; Eberhart, Martin; Meindl, Arne; Oefele, Rainer; Vaubaillon, Jeremie; Colas, Francois; Vernazza, Pierre; Drouard, Alexis; Gattacceca, Jerome

    2017-03-01

    Three different types of rocks were tested in a high enthalpy air plasma flow. Two terrestrial rocks, basalt and argillite, and an ordinary chondrite, with a 10 mm diameter cylindrical shape were tested in order to observe decomposition, potential fragmentation, and spectral signature. The goal was to simulate meteoroid ablation to interpret meteor observation and compare these observations with ground based measurements. The test flow with a local mass-specific enthalpy of 70 MJ kg-1 results in a surface heat flux at the meteorite fragment surface of approximately 16 MW m-2. The stagnation pressure is 24 hPa, which corresponds to a flight condition in the upper atmosphere around 80 km assuming an entry velocity of 10 km s-1. Five different diagnostic methods were applied simultaneously to characterize the meteorite fragmentation and destruction in the ground test: short exposure photography, regular video, high-speed imaging with 10 kHz frame rate, thermography, and Echelle emission spectroscopy. This is the first time that comprehensive testing of various meteorite fragments under the same flow condition was conducted. The data sets indeed show typical meteorite ablation behavior. The cylindrically shaped fragments melt and evaporate within about 4 s. The spectral data allow the identification of the material from the spectra which is of particular importance for future spectroscopic meteor observations. For the tested ordinary chondrite sample a comparison to an observed meteor spectra shows good agreement. The present data show that this testing methodology reproduces the ablation phenomena of meteoritic material alongside the corresponding spectral signatures.

  11. The growth and decay of equatorial backscatter plumes

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  12. Modeling a Hall Thruster from Anode to Plume Far Field

    DTIC Science & Technology

    2008-12-31

    Two dimensional ax symmetric simulations of xenon plasma plume flow fields from a D55 Anode layer Hall thruster is performed. A hybrid particle-fluid...method is used for the Simulations. The magnetic field surrounding the Hall thruster exit is included in the Calculation. The plasma properties

  13. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  14. Stationary Plasma Thruster Plume Emissions

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1994-01-01

    The emission spectrum from a xenon plasma produced by a Stationary Plasma Thruster provided by the Ballistic Missile Defense Organization (BMDO) was measured. Approximately 270 individual Xe I, Xe II, and XE III transitions were identified. A total of 250 mW of radiated optical emission was estimated from measurements taken at the thruster exit plane. There was no evidence of erosion products in the emission signature. Ingestion and ionization of background gas at elevated background pressure was detected. The distribution of excited states could be described by temperatures ranging from fractions of 1 eV to 4 eV with a high degree of uncertainty due to the nonequilibrium nature of this plasma. The plasma was over 95 percent ionized at the thruster exit plane. Between 10 and 20 percent of the ions were doubly charged. Two modes of operation were identified. The intensity of plasma emission increased by a factor of two during operation in an oscillatory mode. The transfer between the two modes of operation was likely related to unidentified phenomena occurring on a time scale of minutes.

  15. Space Shuttle Plume and Plume Impingement Study

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1977-01-01

    The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.

  16. Numerical Simulation of Laser Ablative Shock Waves From Aluminum in Presence of Helium Gas At Different Ambient Pressures

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Durvasula, P. S. L. Kameswari; S, Sai Shiva; Acrhem, University Of Hyderabad Team

    2017-06-01

    A two dimensional comparative study of Laser Ablative Shock Wave into the Aluminum target in the presence of Helium gas at different ambient pressures over a range of 690 - 105 Pa performed using FLASH hydrodynamic codes will be presented. The irradiation of Aluminum target (thickness 2 mm and radius 3 mm) with a 7 ns laser pulse of energy 175 mJ, spot size of 150 µm on the target surface at a wavelength of 532 nm at normal incidence is simulated. Helium gas enclosed in a chamber of height 3 mm and width 3 mm. The electron-ion inverse bremsstrahlung absorption coefficient is considered in the laser energy deposition process. The simulation was performed over a duration of 1 μs. It was observed that an ablative shock is launched into the Helium gas for the pressures of 0.5 atm and above. However, for pressure less than the 0.5 atm the plasma expanded into the He gas upto 12ns and after which due to pressure equilibration with the surroundings and plume splitting shock wave is launched in to Al. Authors acknowledge funding from DRDO, India.

  17. Segmented electrode hall thruster with reduced plume

    DOEpatents

    Fisch, Nathaniel J.; Raitses, Yevgeny

    2004-08-17

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.

  18. A Review of Laser Ablation Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser thatmore » is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.« less

  19. Power-law scaling of plasma pressure on laser-ablated tin microdroplets

    NASA Astrophysics Data System (ADS)

    Kurilovich, Dmitry; Basko, Mikhail M.; Kim, Dmitrii A.; Torretti, Francesco; Schupp, Ruben; Visschers, Jim C.; Scheers, Joris; Hoekstra, Ronnie; Ubachs, Wim; Versolato, Oscar O.

    2018-01-01

    The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in a dense laser-produced plasma. We present the measurements of the propulsion velocity over three decades in the driving Nd:YAG laser pulse energy and observe a near-perfect power law dependence. Simulations performed with the RALEF-2D radiation-hydrodynamic code are shown to be in good agreement with the power law above a specific threshold energy. The simulations highlight the importance of radiative losses which significantly modify the power of the pressure scaling. Having found a good agreement between the experiment and the simulations, we investigate the analytic origins of the obtained power law and conclude that none of the available analytic theories is directly applicable for explaining our power exponent.

  20. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  1. Wire ablation dynamics model and its application to imploding wire arrays of different geometries.

    PubMed

    Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.

  2. Galileo observations of volcanic plumes on Io

    USGS Publications Warehouse

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  3. Artificial meteor ablation studies - Iron oxides.

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.

    1972-01-01

    Artificial meteor ablation was performed on natural minerals composed predominantly of magnetite and hematite by using an arc-heated plasma stream of air. Analysis indicates that most of the ablated debris was composed of two or more minerals. Wustite, a metastable mineral, was found to occur as a common product. The 'magnetite' sample, which was 80% magnetite, 14% hematite, 4% apatite, and 2% quartz, yielded ablated products consisting of more than 12 different minerals. Magnetite occurred in 91% of the specimens examined, hematite in 16%, and wustite in 30%. The 'hematite' sample, which was 96% hematite and 3% quartz, yielded ablated products consisting of more than 13 different minerals. Hematite occurred in 47% of the specimens examined, magnetite in 60%, and wustite in 28%. The more volatile elements (Si, P, and Cl) were depleted by about 50%. This study has shown that artificially created ablation products from iron oxides exhibit unique properties that can be used for identification.

  4. RELATIVE ABUNDANCE MEASUREMENTS IN PLUMES AND INTERPLUMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guennou, C.; Hahn, M.; Savin, D. W., E-mail: cguennou@iac.es

    2015-07-10

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) <10 eV are enhanced relative to their photospheric abundances. This coronal-to-photospheric abundance ratio, commonly called the FIP bias, is typically 1 for elements with a high-FIP (>10 eV). We have used Extreme Ultraviolet Imaging Spectrometer observations made on 2007 March 13 and 14 over a ≈24 hr period tomore » characterize abundance variations in plumes and interplumes. To assess their elemental composition, we used a differential emission measure analysis, which accounts for the thermal structure of the observed plasma. We used lines from ions of iron, silicon, and sulfur. From these we estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These results may help to identify whether plumes or interplumes contribute to the fast solar wind observed in situ and may also provide constraints on the formation and heating mechanisms of plumes.« less

  5. Effect of mass and density of ambient gas on the interaction of laser-blow-off plasma plumes propagating in close proximity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Bhupesh; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-04-15

    The effects of mass and pressure of ambient gas on the propagation dynamics of two laser-blow-off plasma plumes created in close proximity are investigated. A time gated fast imaging technique is used for recording the images of the laterally colliding plumes under different experimental conditions. Pressure is varied from 0.1 to 3 mbar in three ambient, i.e., helium, neon, and argon. Emphasis is given on the nature of shock-shock interaction under different ambient conditions. It has been observed that the shock-velocity, shape, strength, and their interactions are strongly dependent on the mass and density of the ambient gases. The rolemore » of the interacting shocks and their subsequent reflections on the formation and geometrical shape of the interaction region in different ambient conditions is briefly described.« less

  6. Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki

    2017-02-01

    In the past several decades, the use of electric propulsion in spacecraft has experienced tremendous growth. With the increasing adoption of small satellites in the kilogram range, suitable propulsion systems will be necessary in the near future. Pulsed plasma thrusters (PPTs) were the first form of electric propulsion to be deployed in orbit, and are highly suitable for small satellites due to their inherent simplicity. However, their lifetime is limited by disadvantages such as carbon deposition leading to thruster failure, and complicated feeding systems required due to the conventional use of solid propellants (usually polytetrafluoroethylene (PTFE)). A promising alternative to solid propellants has recently emerged in the form of non-volatile liquids that are stable in vacuum. This study presents a broad comparison of the non-volatile liquid perfluoropolyether (PFPE) and solid PTFE as propellants on a PPT with a common design base. We show that liquid PFPE can be successfully used as a propellant, and exhibits similar plasma discharge properties to conventional solid PTFE, but with a mass bit that is an order of magnitude higher for an identical ablation area. We also demonstrate that the liquid PFPE propellant has exceptional resistance to carbon deposition, completely negating one of the major causes of thruster failure, while solid PTFE exhibited considerable carbon build-up. Energy dispersive X-ray spectroscopy was used to examine the elemental compositions of the surface deposition on the electrodes and the ablation area of the propellant (or PFPE encapsulator). The results show that based on its physical characteristics and behavior, non-volatile liquid PFPE is an extremely promising propellant for use in PPTs, with an extensive scope available for future research and development.

  7. Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Farrokhi, H.; Gruzdev, V.; Zheng, H. Y.; Rawat, R. S.; Zhou, W.

    2016-06-01

    A constant magnetic field can significantly improve the quality and speed of ablation by nanosecond laser pulses. These improvements are usually attributed to the confinement of laser-produced plasma by the magnetic field and specific propagation effects in the magnetized plasma. Here we report a strong influence of constant axial magnetic field on the ablation of silicon by 20-ns laser pulses at wavelength 355 nm, which results in an increase of ablation depth by a factor of 1.3 to 69 depending on laser parameters and magnitude of the magnetic field. The traditional plasma effects do not explain this result, and magneto-absorption of silicon is proposed as one of the major mechanisms of the significant enhancement of ablation.

  8. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  9. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  10. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  11. Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Ciuk, Tymoteusz; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Van Put, Steven; Van Steenberge, Geert; Baert, Kitty; Terryn, Herman; Thienpont, Hugo; Vermeulen, Nathalie

    2016-05-01

    We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm.

  12. Correlation of plume dynamics and oxygen pressure with VO2 stoichiometry during pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lafane, S.; Kerdja, T.; Abdelli-Messaci, S.; Khereddine, Y.; Kechouane, M.; Nemraoui, O.

    2013-07-01

    Vanadium dioxide thin films have been deposited on Corning glass substrates by a KrF laser ablation of V2O5 target at the laser fluence of 2 J cm-2. The substrate temperature and the target-substrate distance were set to 500 ∘C and 4 cm, respectively. X-ray diffraction analysis showed that pure VO2 is only obtained at an oxygen pressure range of 4×10-3-2×10-2 mbar. A higher optical switching contrast was obtained for the VO2 films deposited at 4×10-3-10-2 mbar. The films properties were correlated to the plume-oxygen gas interaction monitored by fast imaging of the plume.

  13. Development of a fluid model for DC arc plasma torches and its integration with downstream models of atmospheric plasma spray particle plumes

    NASA Astrophysics Data System (ADS)

    Cannamela, Michael J., III

    The plasma spray process uses plasma flames to melt micron sized particles of e.g. ceramic and propel the droplets to impinge upon and freeze to the target workpiece, forming a functional coating. Variations in the process arise from many sources, and because sensing of the process is imperfect one is motivated to pursue a modeling approach. This dissertation models the major elements of the process; the torch that produces the plasma flame, the jet of hot plasma issuing from the torch, and the plume of particles conveyed and heated by the jet. The plasma in the torch is modeled by a one-fluid magnetohydrodynamic (MHD) approach and it is found that the MHD equations can accurately predict the power dissipated in the bulk of the plasma, while special treatment is required in regions near the electrodes. Treatment of the cathode region is eased since it can be de-coupled from the bulk flow. Treatment of the anode region aims to extract the correct amount of power from the plasma. With MHD in the bulk and these special conditions at the electrode boundaries, the net power into the plasma can be matched with experiment. For one simulation of an SG-100 torch operating at 500A, the measured net power was 7.0kW while the computed net power was 7.1kW. Using outlet information from the torch, the impact of plasma arc oscillations on the free jet and on the in-flight particle states is predicted. The model of the plasma jet is validated against the existing LAVA code, and is able to predict the fraction of entrained air in the jet to within 20% of the experimental value. The variations in particle states due to the arc fluctuations are found to be similar in size to variations due to changes in particle injection velocity, and so cannot be neglected when considering particle state distributions. The end result of this work is to make available a complete chain of models for the plasma spray process, from torch input conditions to in-flight particle state.

  14. Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Fay, Catharine C.

    2012-01-01

    Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.

  15. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  16. Plasma plume effects on the conductivity of amorphous-LaAlO{sub 3}/SrTiO{sub 3} interfaces grown by pulsed laser deposition in O{sub 2} and Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sambri, A.; Amoruso, S.; Bruzzese, R.

    2012-06-04

    Amorphous-LaAlO{sub 3}/SrTiO{sub 3} interfaces exhibit metallic conductivity similar to those found for the extensively studied crystalline-LaAlO{sub 3}/SrTiO{sub 3} interfaces. Here, we investigate the conductivity of the amorphous-LaAlO{sub 3}/SrTiO{sub 3} interfaces grown in different pressures of O{sub 2} and Ar background gases. During the deposition, the LaAlO{sub 3} ablation plume is also studied, in situ, by fast photography and space-resolved optical emission spectroscopy. An interesting correlation between interfacial conductivity and kinetic energy of the Al atoms in the plume is observed: to assure conducting interfaces of amorphous-LaAlO{sub 3}/SrTiO{sub 3}, the kinetic energy of Al should be higher than 1 eV. Ourmore » findings add further insights on mechanisms leading to interfacial conductivity in SrTiO{sub 3}-based oxide heterostructures.« less

  17. Reflectivity and laser ablation of ZrB2/Cu ultra high temperature ceramic

    NASA Astrophysics Data System (ADS)

    Yan, Zhenyu; Ma, Zhuang; Zhu, Shizhen; Liu, Ling; Xu, Qiang

    2013-05-01

    Ultra high temperature ceramics (UHTCs) were thought to be candidates for laser protective materials due to their high melting point, thermal shock and ablation resistance. The ablation behaviors of UHTCs like ZrB2 and its composite had been intensely investigated by the means of arc, plasma, oxyacetylene ablation. However, the ablation behavior under laser irradiation was still unknown by now. In this paper, the dense bulk composites of ZrB2/Cu were successfully sintered by spark plasma sintering (SPS) at 1650 degree C for 3min. The reflectivity of the composites measured by spectrophotometry achieved 60% in near infrared range and it decreased with the increasing wavelength of incident light. High intensity laser ablation was carried out on the ZrB2/Cu surface. The phase composition and microstructure changes before and after laser irradiation were characterized by X-ray diffraction and SEM respectively. The results revealed that the oxidation and melting were the main mechanisms during the ablation processing.

  18. Demonstration and Analysis of Materials Processing by Ablation Plasma Ion Implantation (APII)

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Jones, M. C.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.

    2001-10-01

    Experiments have demonstrated laser-ablated Fe ion implantation into Si substrates. Baseline laser deposited films (0 kV) showed an amorphous Fe-Si film overlying the Si substrate with a top layer of nanocrystalline Fe. APII films exhibited an additional Fe ion-induced damage layer, extending 7.6 nm below the Si surface. The overlying Fe-Si layer and Fe top layer were amorphized by fast ions. Results were confirmed by XPS vs Ar ion etching time for depth profile of the deposited films. XPS showed primarily Fe (top layer), transitioning to roughly equal Fe/Si , then mostly Si with lower Fe (implanted region). These data clearly prove Fe ion implantation into Si, verifying the feasibility of APII as an ion acceleration and implantation process [1]. SRIM simulations predict about 20 percent deeper Fe ion penetration than data, due to:(a) Subsequent ions must pass through the Fe film deposited by earlier ions, and (b) the bias voltage has a slow rise and fall time. Theoretical research has developed the scaling laws for APII [2]. Recently, a model has successfully explained the shortening of the decay time in the high voltage pulse with the laser ablation plasma. This reduces the theoretical RC time constant, which agrees with the experimental data. * Research supported by National Science Foundation Grant CTS-9907106 [1] Appl. Phys. Lett. 78, 3785 (2001) [2] Appl. Phys. Lett. 78, 706 (2001)),

  19. Characteristic properties of laser ablation of translucent targets

    NASA Astrophysics Data System (ADS)

    Platonov, V. V.; Kochurin, E. A.; Osipov, V. V.; Lisenkov, V. V.; Zubarev, N. M.

    2018-07-01

    This study reveals the characteristic features of the laser ablation of the solid Nd:Y2O3 targets, such as the dynamics of the laser plume, the crater depth, and the weight and size distribution of liquid melt droplets. The ablation was initiated by the ytterbium fiber laser radiation pulses with constant energy (0.67 J) and with different power densities. The dependence on the power density of such parameters as the injection time of drops, mass distribution of drops, crater depth, and productivity of synthesis of nonopowder was revealed. To explain the formation of deep craters a model was proposed, stating that the formation of liquid droplets is a consequence of the Kelvin–Helmholtz instability’s appearing and developing on the border between the liquid melt on the crater’s wall and the vapor flow from the crater. The increment of this instability and its characteristic size was determined.

  20. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS

    NASA Astrophysics Data System (ADS)

    Eggins, S. M.; Kinsley, L. P. J.; Shelley, J. M. G.

    1998-05-01

    We have used an ArF excimer laser coupled to a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) for the measurement of a range of elements during excavation of a deepening ablation pit in a synthetic glass (NIST 612). Analyte behaviour shows progressive volatile element enrichment at shallow hole depths, with a change to refractory element enrichment as the ablation pit deepens further. Examination of ablation pit morphology and the surface condensate deposited around the ablation site reveals the importance of sequential condensation of refractory, then volatile phases from the cooling plasma plume after the end of the laser pulse. We interpret the observed element fractionation behaviour to reflect a change in ablation processes from photothermal dominated to plasma dominated mechanisms. The development of the surface deposit is greatly reduced by ablating in an ambient atmosphere of He instead of Ar and is accompanied by a two- to four-fold increase in ICP-MS sensitivity.

  1. Design and utilization of a top hat analyzer for Hall thruster plume diagnostics

    NASA Astrophysics Data System (ADS)

    Victor, Allen Leoraj

    Electric propulsion offers new capabilities for ambitious space missions of the future. However, coating, uneven heating, and the charging of spacecraft components have impeded the integration of Hall thrusters for space missions and encouraged plume diagnostics of the thruster plasma environment. Plume diagnostics are also important for the inference of thruster performance through plume properties downstream of the engine. While the top hat analyzer has been available for low-density space plasma diagnostics for over twenty years, the use of this instrument for plasma thruster plume diagnostics has been nonexistent. This thesis describes the development of a new diagnostics tool, the Top Hat Electric Propulsion Plume Analyzer (TOPAZ), which provides unprecedented insight into the physical mechanisms that govern the performance of Hall thrusters. Novel measurements conducted by TOPAZ on the BHT-600 Hall thruster cluster yielded interesting and undocumented phenomena in the far-field plume. SIMION, a commercial ion optics program, was used to design TOPAZ and estimate the energy and angular resolutions as well as the instrument's sensitivity and plate-voltage relationships. TOPAZ was experimentally characterized through an ion beam facility operating on air, xenon, and krypton gases. Measurements on the BHT-600 cluster indicated lower-energy ions emanated from positions closer to the cathode while higher-energy ions were measured from along the discharge channel centerlines. Low-energy ions were also measured from behind the cathodes only during cluster operation. Charge-exchange and ionization outside the primary acceleration region are believed to be the cause of the variance in the energy distributions. Cross pollination of the cathode plume with the opposite thruster is argued to create low-energy ions which emanate from behind the cathode. Time-of-flight measurements through TOPAZ allowed for charge-state and species fraction discriminations as functions of

  2. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, S.; Wang, Z.; Huang, Q.

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generatedmore » by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.« less

  3. Studies and comparison of currently utilized models for ablation in Electrothermal-chemical guns

    NASA Astrophysics Data System (ADS)

    Jia, Shenli; Li, Rui; Li, Xingwen

    2009-10-01

    Wall ablation is a key process taking place in the capillary plasma generator in Electrothermal-Chemical (ETC) guns, whose characteristic directly decides the generator's performance. In the present article, this ablation process is theoretically studied. Currently widely used mathematical models designed to describe such process are analyzed and compared, including a recently developed kinetic model which takes into account the unsteady state in plasma-wall transition region by dividing it into two sub-layers, a Knudsen layer and a collision dominated non-equilibrium Hydrodynamic layer, a model based on Langmuir Law, as well as a simplified model widely used in arc-wall interaction process in circuit breakers, which assumes a proportional factor and an ablation enthalpy obtained empirically. Bulk plasma state and parameters are assumed to be consistent while analyzing and comparing each model, in order to take into consideration only the difference caused by model itself. Finally ablation rate is calculated in each method respectively and differences are discussed.

  4. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-06

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min.

  5. Exhaust Plume Measurements of the VASIMR VX-200

    NASA Astrophysics Data System (ADS)

    Longmier, Benjamin; Bering, Edgar, III; Squire, Jared; Glover, Tim; Chang-Diaz, Franklin; Brukardt, Michael

    2008-11-01

    Recent progress is discussed in the development of an advanced RF electric propulsion concept: the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) VX-200 engine, a 200 kW flight-technology prototype. Results from high power Helicon only and Helicon with ICRH experiments are performed on the VX-200 using argon plasma. Recent measurements of axial plasma density and potential profiles, magnetic field-line shaping, charge exchange, and force measurements taken in the plume of the VX-200 exhaust are made within a new 125 cubic meter cryo-pumped vacuum chamber and are presented in the context of RF plasma thruster physics.

  6. Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man

    2018-05-01

    Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L 4-6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak power at about 100 Hz. Quantification of quasi-linear bounce-averaged electron scattering rates by hiss in the plume demonstrates that the waves are efficient to pitch angle scatter 10-100 keV electrons at rates up to 10-4 s-1 near the loss cone but become gradually insignificant to scatter the higher energy electron population. The resultant timescales of electron loss due to hiss in the nightside plume vary largely with electron kinetic energy over 3 orders of magnitude, that is, from several hours for tens of keV electrons to a few days for hundreds of keV electrons to well above 100 days for >1 MeV electrons. Changing slightly with L-shell and the multiquartile profile of hiss spectral intensity, these electron loss timescales suggest that hiss emissions in the nightside plume act as a viable candidate for the fast loss of the ≲100 keV electrons and the slow decay of higher energy electrons.

  7. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavisse, L.; Jouvard, J.-M.; Girault, M.

    2012-04-16

    Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

  8. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    NASA Astrophysics Data System (ADS)

    Walaszek, Damian; Senn, Marianne; Wichser, Adrian; Faller, Markus; Wagner, Barbara; Bulska, Ewa; Ulrich, Andrea

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail.

  9. Measurement of plasma gentamicin concentrations postchemical ciliary body ablation in dogs with chronic glaucoma.

    PubMed

    Rankin, Amy J; Lanuza, Rick; KuKanich, Butch; Crumley, William C; Pucket, Jonathan D; Allbaugh, Rachel A; Meekins, Jessica M

    2016-01-01

    To investigate the absorption of gentamicin into the plasma after an intravitreal injection in dogs and to report the success rate of this procedure in lowering the intraocular pressure. Twenty-four client-owned dogs with chronic, end-stage glaucoma. Dogs received a unilateral (22) or bilateral (2) intravitreal injection of 25-40 mg of gentamicin (mean ± SD dose 2.57 ± 1.65 mg/kg and range 0.61-7.50 mg/kg) and 1 mg of dexamethasone per eye. Blood samples were collected at various time points following the intravitreal injection. Plasma concentrations of gentamicin were determined by liquid chromatography and mass spectrometry. The total plasma concentration of gentamicin ranged from 0.21 to 9.71 μg/mL (mean ± SD 2.15 ± 2.03). The mean gentamicin CMAX was 2.29 μg/mL at 2.54 h with a terminal half-life of 9.8 h. The success rate of the chemical ablation procedure was 86.4% (19/22 eyes) in dogs that had at least 1 month of follow-up. Intravitreal injection of gentamicin in eyes with chronic glaucoma resulted in detectable plasma levels in dogs and was successful in lowering the intraocular pressure in 86.4% of the eyes after the first procedure. © 2015 American College of Veterinary Ophthalmologists.

  10. Pulsed laser ablation of IC packages for device failure analyses

    NASA Astrophysics Data System (ADS)

    Hong, Ming Hui; Mai, ZhiHong; Chen, G. X.; Thiam, Thomas; Song, Wen D.; Lu, Yongfeng; Soh, Chye E.; Chong, Tow Chong

    2002-06-01

    Pulsed laser ablation of mold compounds for IC packaging in air and with steam assistance is investigated. It is applied to decap IC packages and expose computer CPU dies for the device failure analyses. Compared with chemical decapping, the laser ablation has advantages of being fast speed, non- contact and dry processing. Laser ablation with the steam assistance results in higher ablation rate and wider ablated crater with much smoother surface morphology. It implies that the steam assisted laser ablation can achieve a faster and better quality laser processing. Audible acoustic wave and plasma optical signal diagnostics are also carried out to have a better understanding of the mechanisms behind. Light wavelength and laser fluence applied in the decapping are two important parameters. The 532 nm Nd:YAG laser decapping at a low laser fluence can achieve a large decapping area with a fine ablation profile. IC packages decapped by the laser ablation show good quality for the device failure analyses.

  11. Laser ablation in analytical chemistry - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less

  12. Spatial variations in the dust-to-gas ratio of Enceladus' plume

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Dhingra, D.; Nicholson, P. D.; Hansen, C. J.; Portyankina, G.; Ye, S.; Dong, Y.

    2018-05-01

    On day 138 of 2010, the plume of dust and gas emerging from Enceladus' South Polar Terrain passed between the Sun and the Cassini spacecraft. This solar occultation enabled Cassini's Ultraviolet Imaging Spectrograph (UVIS) and the Visual and Infrared Mapping Spectrometer (VIMS) to obtain simultaneous measurements of the plume's gas and dust components along the same lines of sight. The UVIS measurements of the plume's gas content are described in Hansen et al. (2011, GRL 38:11202) , while this paper describes the VIMS data and the information they provide about the plume's particle content. Together, the VIMS and UVIS measurements reveal that the plume material above Baghdad and Damascus sulci has a dust-to-gas mass ratio that is roughly an order of magnitude higher than the material above Alexandria and Cairo sulci. Similar trends in the plume's dust-to-gas ratio are also found in data obtained when Cassini flew through the plume in 2009, during which time the Ion and Neutral Mass Spectrometer (INMS), Radio and Plasma Wave Science instrument (RPWS) and Cosmic Dust Analyzer (CDA) instruments made in-situ measurements of the plume's gas and dust densities (Dong et al. 2015 JGR 120:915-937). These and other previously-published systematic differences in the material erupting from different fissures likely reflect variations in subsurface conditions across Encealdus' South Polar Terrain.

  13. Plume radiation

    NASA Astrophysics Data System (ADS)

    Dirscherl, R.

    1993-06-01

    The electromagnetic radiation originating from the exhaust plume of tactical missile motors is of outstanding importance for military system designers. Both missile- and countermeasure engineer rely on the knowledge of plume radiation properties, be it for guidance/interference control or for passive detection of adversary missiles. To allow access to plume radiation properties, they are characterized with respect to the radiation producing mechanisms like afterburning, its chemical constituents, and reactions as well as particle radiation. A classification of plume spectral emissivity regions is given due to the constraints imposed by available sensor technology and atmospheric propagation windows. Additionally assessment methods are presented that allow a common and general grouping of rocket motor properties into various categories. These methods describe state of the art experimental evaluation techniques as well as calculation codes that are most commonly used by developers of NATO countries. Dominant aspects influencing plume radiation are discussed and a standardized test technique is proposed for the assessment of plume radiation properties that include prediction procedures. These recommendations on terminology and assessment methods should be common to all employers of plume radiation. Special emphasis is put on the omnipresent need for self-protection by the passive detection of plume radiation in the ultraviolet (UV) and infrared (IR) spectral band.

  14. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  15. Experimental studies and simulations of hydrogen pellet ablation in the stellarator TJ-II

    NASA Astrophysics Data System (ADS)

    Panadero, N.; McCarthy, K. J.; Koechl, F.; Baldzuhn, J.; Velasco, J. L.; Combs, S. K.; de la Cal, E.; García, R.; Hernández Sánchez, J.; Silvagni, D.; Turkin, Y.; TJ-II Team; W7-X Team

    2018-02-01

    Plasma core fuelling is a key issue for the development of steady-state scenarios in large magnetically-confined fusion devices, in particular for helical-type machines. At present, cryogenic pellet injection is the most promising technique for efficient fuelling. Here, pellet ablation and fuelling efficiency experiments, using a compact pellet injector, are carried out in electron cyclotron resonance and neutral beam injection heated plasmas of the stellarator TJ-II. Ablation profiles are reconstructed from light emissions collected by silicon photodiodes and a fast-frame camera system, under the assumptions that such emissions are loosely related to the ablation rate and that pellet radial acceleration is negligible. In addition, pellet particle deposition and fuelling efficiency are determined using density profiles provided by a Thomson scattering system. Furthermore, experimental results are compared with ablation and deposition profiles provided by the HPI2 pellet code, which is adapted here for the stellarators Wendelstein 7-X (W7-X) and TJ-II. Finally, the HPI2 code is used to simulate ablation and deposition profiles for pellets of different sizes and velocities injected into relevant W7-X plasma scenarios, while estimating the plasmoid drift and the fuelling efficiency of injections made from two W7-X ports.

  16. Laser Plasma Microthruster Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Phipps, Claude R.

    2003-05-01

    The micro laser plasma thruster (μLPT) is a sub-kilogram thruster that is capable of meeting the Air Force requirements for the Attitude Control System on a 100-kg class small satellite. The μLPT uses one or more 4W diode lasers to ablate a solid fuel, producing a jet of hot gas or plasma which creates thrust with a high thrust/power ratio. A pre-prototype continuous thrust experiment has been constructed and tested. The continuous thrust experiment uses a 505 mm long continuous loop fuel tape, which consists of a black laser-absorbing fuel material on a transparent plastic substrate. When the laser is operated continuously, the exhaust plume and thrust vector are steered in the direction of the tape motion. Thrust steering can be avoided by pulsing the laser. A torsion pendulum thrust stand has been constructed and calibrated. Many fuel materials and substrates have been tested. Best performance from a non-energetic fuel material was obtained with black polyvinyl chloride (PVC), which produced an average of 70 μN thrust and coupling coefficient (Cm) of 190 μN/W. A proprietary energetic material was also tested, in which the laser initiates a non-propagating detonation. This material produced 500 μN of thrust.

  17. Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine

    2005-04-01

    Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.

  18. Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Polek, Mathew; Hassanein, Ahmed

    2016-11-01

    Dynamics of metal ions during laser-produced plasmas was studied. A 1064 nm, Nd: YAG laser pulse was used to ablate pure Al, Fe, Co, Mo, and Sn samples. Ion flux and velocity were measured using Faraday cup ion collector. Time-of-flight measurements showed decreasing ion flux and ion velocity with increasing atomic weight, and heavy metal ion flux profile exhibited multiple peaks that was not observed in lighter metals. Slow peak was found to follow shifted Maxwell Boltzmann distribution, while the fast peak was found to follow Gaussian distribution. Ion flux angular distribution that was carried out on Mo and Al using fixed laser intensity 2.5 × 1010 W/cm2 revealed that the slow ion flux peaks at small angles, that is, close to normal to the target ˜0° independent of target's atomic weight, and fast ion flux for Mo peaks at large angles ˜40° measured from the target normal, while it completely absents for Al. This difference in spatial and temporal distribution reveals that the emission mechanism of the fast and slow ions is different. From the slow ion flux angular distribution, the measured plume expansion ratio (plume forward peaking) was 1.90 and 2.10 for Al and Mo, respectively. Moreover, the effect of incident laser intensity on the ion flux emission as well as the emitted ion velocity were investigated using laser intensities varying from 2.5 × 1010 W/cm2 to 1.0 × 1011 W/cm2. Linear increase of fast ion flux and velocity, and quadratic increase of slow ion flux and velocity were observed. For further understanding of plume dynamics, laser optical emission spectroscopy was used to characterize Sn plasma by measuring the temporal and spatial evolution of plasma electron density Ne and electron temperature Te. At 3.5 mm away from the target, plasma density showed slow decrease with time, however electron temperature was observed to decrease dramatically. The maximum plasma density and temperature occurred at 0.5 mm away from target and were measured to

  19. Plasma Properties in the Plume of a Hall Thruster Cluster

    DTIC Science & Technology

    2003-06-04

    The Hall thruster cluster is an attractive propulsion approach for spacecraft requiring very high-power electric propulsion systems. This article...probes in the plume of a low-power, four-engine Hall thruster cluster. Simple analytical formulas are introduced that allow these quantities to be

  20. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  1. Confinement effect of cylindrical-separatrix-type magnetic field on the plume of magnetic focusing type Hall thruster

    NASA Astrophysics Data System (ADS)

    Yu, Daren; Meng, Tianhang; Ning, Zhongxi; Liu, Hui

    2017-04-01

    A magnetic focusing type Hall thruster was designed with a cylindrical magnetic seperatrix. During the process of a hollow cathode crossing the separatrix, the variance of plume parameter distribution was monitored. Results show that the ion flux on the large spatial angle is significantly lower when the hollow cathode is located in the inner magnetic field. This convergence effect is preserved even in a distant area. A mechanism was proposed for plume divergence from the perspective of cathode-to-plume potential difference, through which the confinement effect of cylindrical-separatrix-type magnetic field on thruster plume was confirmed and proposed as a means of plume protection for plasma propulsion devices.

  2. Cassini Radio Occultation by Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Kliore, A.; Armstrong, J.; Flasar, F.; French, R.; Marouf, E.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Aguilar, R.; Rochblatt, D.

    2006-12-01

    A fortuitous Cassini radio occultation by Enceladus plume occurs on September 15, 2006. The occultation track (the spacecraft trajectory in the plane of the sky as viewed from the Earth) has been designed to pass behind the plume (to pass above the south polar region of Enceladus) in a roughly symmetrical geometry centered on a minimum altitude above the surface of about 20 km. The minimum altitude was selected primarily to ensure probing much of the plume with good confidence given the uncertainty in the spacecraft trajectory. Three nearly-pure sinusoidal signals of 0.94, 3.6, and 13 cm-wavelength (Ka-, X-, and S-band, respectively) are simultaneously transmitted from Cassini and are monitored at two 34-m Earth receiving stations of the Deep Space Network (DSN) in Madrid, Spain (DSS-55 and DSS-65). The occultation of the visible plume is extremely fast, lasting less than about two minutes. The actual observation time extends over a much longer time interval, however, to provide a good reference baseline for potential detection of signal perturbations introduced by the tenuous neutral and ionized plume environment. Given the likely very small fraction of optical depth due to neutral particles of sizes larger than about 1 mm, detectable changes in signal intensity is perhaps unlikely. Detection of plume plasma along the radio path as perturbations in the signals frequency/phase is more likely and the magnitude will depend on the electron columnar density probed. The occultation time occurs not far from solar conjunction time (Sun-Earth-probe angle of about 33 degrees), causing phase scintillations due to the solar wind to be the primary limiting noise source. We estimate a delectability limit of about 1 to 3E16 electrons per square meter columnar density assuming about 100 seconds integration time. Potential measurement of the profile of electron columnar density along the occultation track is an exciting prospect at this time.

  3. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  4. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  5. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.

    2014-04-01

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  6. Integration and Test Flight Validation Plans for the Pulsed Plasma Thruster Experiment on EO- 1

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Benson, Scott; Sanneman, Paul; Hoskins, Andy; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 uN-s) at low average power (less than 1 to 100 W). Teflon fuel is ablated and slightly ionized by means of a capacitative discharge. The discharge also generates electromagnetic fields that accelerate the plasma by means of the Lorentz Force. EO-1 has a single PPT that can produce thrust in either the positive or negative pitch direction. The flight validation has been designed to demonstrate of the ability of the PPT to provide precision pointing accuracy, response and stability, and confirmation of benign plume and EMI effects. This paper will document the success of the flight validation.

  7. Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation.

    PubMed

    Yuan, Jiandong; Liang, Liang; Jiang, Lelun; Liu, Xin

    2018-04-01

    The degree of laser pulse overlapping in a laser scanning path has a significant impact on the ablation regime in the laser machining of a micro-texture. In this Letter, a nanosecond pulsed laser is used to prepare the micro-scaled groove on WC-8Co cermet under different scanning speeds. It is observed that as the scanning speed increases, the ablated trace morphology in the first scanning pass transits from a succession of intermittent deep dimples to the consecutive overlapped shallow pits. The test result also indicates that ablated trace morphology with respect to the low scanning speed stems from a plume shielding effect. Moreover, the ablation regime considering the shielding effect in micro-groove formation process is clarified. The critical scanning speed that can circumvent the shielding effect is also summarized with respect to different laser powers.

  8. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Gaoxue; Li, Yongjun; Santosh, M.; Yang, Baokai; Yan, Jing; Zhang, Bing; Tong, Lili

    2012-10-01

    The West Junggar domain in NW China is a distinct tectonic unit of the Central Asian Orogenic Belt (CAOB). It is composed of Paleozoic ophiolitic mélanges, arcs and accretionary complexes. The Sartuohai ophiolitic mélange in the eastern West Junggar forms the northeastern part of the Darbut ophiolitic mélange, which contains serpentinized harzburgite, pyroxenite, dunite, cumulate, pillow lava, abyssal radiolarian chert and podiform chromite, overlain by the Early Carboniferous volcano-sedimentary rocks. In this paper we report new geochronological and geochemical data from basaltic and gabbroic blocks embedded within the Sartuohai ophiolitic mélange, to assess the possible presence of a Devonian mantle plume in the West Junggar, and evaluate the petrogenesis and implications for understanding of the Paleozoic continental accretion of CAOB. Zircon U-Pb analyses from the alkali basalt and gabbro by laser ablation inductively coupled plasma mass spectrometry yielded weighted mean ages of 375 ± 2 Ma and 368 ± 11 Ma. Geochemically, the Sartuohai ophiolitic mélange includes at least two distinct magmatic units: (1) a Late Devonian fragmented ophiolite, which were produced by ca. 2-10% spinel lherzolite partial melting in arc-related setting, and (2) contemporary alkali lavas, which were derived from 5% to 10% garnet + minor spinel lherzolite partial melting in an oceanic plateau or a seamount. Based on detailed zircon U-Pb dating and geochemical data for basalts and gabbros from the Sartuohai ophiolitic mélange, in combination with previous work, indicate a complex evolution by subduction-accretion processes from the Devonian to the Carboniferous. Furthermore, the alkali basalts from the Sartuohai ophiolitic mélange might be correlated to a Devonian mantle plume-related magmatism within the Junggar Ocean. If the plume model as proposed here is correct, it would suggest that mantle plume activity significantly contributed to the crustal growth in the CAOB.

  9. Electrical model of cold atmospheric plasma gun

    NASA Astrophysics Data System (ADS)

    Slutsker, Ya. Z.; Semenov, V. E.; Krasik, Ya. E.; Ryzhkov, M. A.; Felsteiner, J.; Binenbaum, Y.; Gil, Z.; Shtrichman, R.; Cohen, J. T.

    2017-10-01

    We present an analytical model of cold atmospheric plasma formed by a dielectric barrier discharge (DBD), which is based on the lumped and distributed elements of an equivalent electric circuit of this plasma. This model is applicable for a wide range of frequencies and amplitudes of the applied voltage pulses, no matter whether or not the generated plasma plume interacts with a target. The model allows quantitative estimation of the plasma plume length and the energy delivered to the plasma. Also, the results of this model can be used for the design of DBD guns which efficiently generate cold atmospheric plasma. A comparison of the results of the model with those obtained in experiments shows a fairly good agreement.

  10. The Geospace Plume: Multi-scale Magnetosphere-Ionosphere Dynamics During the 17 March 2015 Great Storm

    NASA Astrophysics Data System (ADS)

    Erickson, P. J.; Foster, J. C.; Walsh, B.; Wygant, J. R.; Zhang, S.

    2015-12-01

    A number of studies over the past three decades have developed an increased understanding of the important redistribution of cold plasma from the ionosphere and inner magnetosphere to other elements of the near-Earth geospace system including the cusp, magnetopause, polar cap, and magnetotail. This redistribution process, especially prevalent during strong geomagnetic storm forcing, has been observed using a wide range of techniques encompassing ground-based and space-based imaging, modeling, and in-situ data. The large diversity of characteristics and location of these separate measurements and models has been reflected in a similarly large variety of nomenclature describing various aspects of the process, e.g. the plasmaspheric surge and drainage plume, storm enhanced density, sub-auroral polarization stream mass flow, and others. To emphasize the interconnections among these magnetosphere and ionosphere observations, we introduce the geospace plume as a unifying concept that recognizes cold plasma redistribution as a global coupling phenomenon, linking mid and sub-auroral ionospheric regions with high latitude cusp heavy ion outflow to the magnetopause and into the magnetotail. Cold redistributed plasma of ionospheric origin has many influences on reconnection, wave-particle interactions, and space weather effects. We will illustrate the continuity, morphology, and consequences of the geospace plume using observations from the March 2015 great geomagnetic storm. This interval has excellent coverage of the spatial extent and dynamics of the plume in the ionosphere (IS radar and GPS TEC mapping), plasmasphere boundary layer (Millstone Hill ISR, Van Allen Probes), and the magnetopause (THEMIS). Quantification of associated mass flows during the formation and evolution of plume structures is also possible at multiple space and time locations.

  11. Ion Engine Plume Interaction Calculations for Prototypical Prometheus 1

    NASA Technical Reports Server (NTRS)

    Mandell, Myron J.; Kuharski, Robert A.; Gardner, Barbara M.; Katz, Ira; Randolph, Tom; Dougherty, Ryan; Ferguson, Dale C.

    2005-01-01

    Prometheus 1 is a conceptual mission to demonstrate the use of atomic energy for distant space missions. The hypothetical spacecraft design considered in this paper calls for multiple ion thrusters, each with considerably higher beam energy and beam current than have previously flown in space. The engineering challenges posed by such powerful thrusters relate not only to the thrusters themselves, but also to designing the spacecraft to avoid potentially deleterious effects of the thruster plumes. Accommodation of these thrusters requires good prediction of the highest angle portions of the main beam, as well as knowledge of clastically scattered and charge exchange ions, predictions for grid erosion and contamination of surfaces by eroded grid material, and effects of the plasma plume on radio transmissions. Nonlinear interactions of multiple thrusters are also of concern. In this paper we describe two- and three-dimensional calculations for plume structure and effects of conceptual Prometheus 1 ion engines. Many of the techniques used have been validated by application to ground test data for the NSTAR and NEXT ion engines. Predictions for plume structure and possible sputtering and contamination effects will be presented.

  12. Femtosecond laser lithotripsy: feasibility and ablation mechanism.

    PubMed

    Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E

    2010-01-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  13. Quiescent Prominence Dynamics Observed with the Hinode Solar Optical Telescope. I. Turbulent Upflow Plumes

    NASA Astrophysics Data System (ADS)

    Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal; Shine, Richard; Tarbell, Theodore; Title, Alan; Lites, Bruce W.; Okamoto, Takenori J.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Magara, Tetsuya; Suematsu, Yoshinori; Shimizu, Toshifumi

    2010-06-01

    Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) "arches" or "bubbles" that "inflate" from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate vertically from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex "roll-up" of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) "optical flow" code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s-1, which is supersonic for a ~10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s-1. Typical lifetimes range from 300 to 1000 s (~5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km2 s-1 reaching maximum projected areas from 2 to 15 Mm2. Maximum contrast of the dark flows relative to the bright prominence plasma in SOT images

  14. QUIESCENT PROMINENCE DYNAMICS OBSERVED WITH THE HINODE SOLAR OPTICAL TELESCOPE. I. TURBULENT UPFLOW PLUMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal

    2010-06-20

    Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) 'arches' or 'bubbles' that 'inflate' from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate verticallymore » from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex 'roll-up' of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) 'optical flow' code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s{sup -1}, which is supersonic for a {approx}10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s{sup -1}. Typical lifetimes range from 300 to 1000 s ({approx}5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km{sup 2} s{sup -1} reaching maximum projected areas from 2 to 15 Mm{sup 2}. Maximum contrast of the dark flows

  15. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    PubMed

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  16. High pressure generation by hot electrons driven ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Piriz, S. A.; Tahir, N. A.

    2013-11-15

    A previous model [Piriz et al. Phys. Plasmas 19, 122705 (2012)] for the ablation driven by the hot electrons generated in collisionless laser-plasma interactions in the framework of shock ignition is revisited. The impact of recent results indicating that for a laser wavelength λ = 0.35 μm the hot electron temperature θ{sub H} would be independent of the laser intensity I, on the resulting ablation pressure is considered. In comparison with the case when the scaling law θ{sub H}∼(Iλ{sup 2}){sup 1/3} is assumed, the generation of the high pressures needed for driving the ignitor shock may be more demanding. Intensitiesmore » above 10{sup 17} W/cm{sup 2} would be required for θ{sub H}=25−30 keV.« less

  17. Analysis of ablation debris from natural and artificial iron meteorites

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Davis, A. S.

    1977-01-01

    Artificial ablation studies were performed on iron and nickel-iron samples using an arc-heated plasma of ionized air. Experiment conditions simulated a meteoroid traveling about 12 km/sec at an altitude of 70 km. The artificially produced fusion crusts and ablation debris show features very similar to natural fusion crusts of the iron meteorites Boguslavka, Norfork, and N'Kandhla and to magnetic spherules recovered from Mn nodules. X-ray diffraction, electron microprobe, optical, and scanning electron microscope analyses reveal that important mineralogical, elemental, and textural changes occur during ablation. Some metal is melted and ablated. The outer margin of the melted rind is oxidized and recrystallizes as a discontinuous crust of magnetite and wustite. Adjacent to the oxidized metallic ablation zone is an unoxidized metallic ablation zone in which structures such as Widmannstatten bands are obliterated as the metal is transformed to unequilibrated alpha 2 nickel-iron. Volatile elements are vaporized and less volatile elements undergo fractionation.

  18. Spectroscopic studies of the exhaust plume of a quasi-steady MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.

    1972-01-01

    Spectroscopic and photographic investigations are reported that reveal a complex azimuthal species structure in the exhaust plume of a quasi-steady argon MPD accelerator. Over a wide range of operating conditions the injected argon remains collimated in discrete jets which are azimuthally in line with the six propellant injector orifices. The regions between these argon jets, including the central core of the exhaust flow, are occupied by impurities such as carbon, hydrogen and oxygen ablated from the Plexiglas back plate of the arc chamber. The features of this plume structure are found to be dependent on the arc current and mass flow rate. It is found that nearly half the observed velocity is attained in an acceleration region well downstream of the region of significant electromagnetic interaction. Recombination calculations show that the ionization energy is essentially frozen.

  19. Diurnal and Seasonal Statistical Characteristics of Well-formed Plasma Depletion and Enhancement Plumes under Quiet Solar Conditions

    NASA Astrophysics Data System (ADS)

    Haaser, R. A.

    2011-12-01

    The Ion Velocity Meter (IVM), a part of the Coupled Ion Neutral Dynamics Investigation (CINDI) aboard the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite, is used to measure in situ ion densities and drifts at altitudes between 400 and 550 km during the nighttime hours from 2100 to 300 local time. A new approach to detecting and classifying well-formed ionospheric plasma depletion and enhancement plumes (bubbles and blobs) of scale sizes between 50 and 500 km is used to develop geophysical statistics for the summer, winter and equinox seasons of the quiet solar conditions during 2009 and 2010. Some diurnal and seasonal geomagnetic distribution characteristics confirm previous work on irregularities and scintillations, while others reveal new behaviors that require additional observations and modeling to promote full understanding.

  20. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  1. Treatment of Streptococcus mutans bacteria by a plasma needle

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhui; Huang, Jun; Liu, Xiaodi; Peng, Lei; Guo, Lihong; Lv, Guohua; Chen, Wei; Feng, Kecheng; Yang, Si-ze

    2009-03-01

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O2 does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.

  2. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  3. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  4. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru; Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distancemore » between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.« less

  5. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    PubMed Central

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  6. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-04-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.

  7. Magnetic-particles-composed wire structures produced by pulsed laser deposition in a magnetic field

    NASA Astrophysics Data System (ADS)

    Nikov, Ru; Dikovska, A.; Nedyalkov, N.; Atanasov, P.

    2018-03-01

    We demonstrate the possibility to fabricate wire structures composed by arranged magnetic particles using pulsed laser deposition (PLD) in the presence of a magnetic field. Ablation of Ni and Co targets was performed in air by nanosecond laser pulses delivered by a Nd:YAG laser system oscillating at 355 nm. Due to the high density of the ambient, particles and clusters were formed by condensation in the plasma plume close to the target. The strong deceleration of the ablated material under these conditions further benefited the efficiency of applying a magnetic field to the plume. We also studied the effect of the target-to-substrate distance and the ambient pressure on the morphology of the deposited structures.

  8. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  9. Mucosal ablation in Barrett's esophagus.

    PubMed

    Walker, S J; Selvasekar, C R; Birbeck, N

    2002-01-01

    Barrett's esophagus is a prevalent, premalignant condition affecting the gastroesophageal junction and distal esophagus. Ablation plus antireflux therapy has recently been advocated to prevent the development of adenocarcinoma or to treat those unfit or unwilling to undergo esophagectomy. The present article, based on a search of Medline/ISI databases and cross-referencing of relevant articles, reviews the literature on this subject. A number of techniques have been used to remove the affected mucosa, including laser, electrocoagulation, argon plasma coagulation and photodynamic therapy but, as yet, none has been shown to be superior. Depending on the method used, ablation results in complete removal of Barrett's esophagus in approximately one third of patients and a partial response in nearly two-thirds. The resultant squamous mucosa is apparently 'normal' but may regress. To promote and maintain regeneration, antireflux therapy must be sufficient to reduce repetitive injury to the esophageal mucosa. Whether ablation reduces the cancer risk or delays its occurrence is unknown, though recent data suggests benefit. Complications are infrequent and usually mild. Regular follow-up endoscopy and deep biopsies continue to be necessary. Careful data from much larger populations with long-term follow-up is required before ablation reaches the stage of broad clinical application.

  10. Influence of electric field on the behavior of Si nanoparticles generated by laser ablation

    NASA Astrophysics Data System (ADS)

    Muramoto, Junichi; Sakamoto, Ippei; Nakata, Yoshiki; Okada, Tatsuo; Maeda, Mitsuo

    1999-08-01

    The influence of an electric field on particle behavior was investigated to control the transport of Si nanoparticles in a laser ablation plume by an ultraviolet Rayleigh scattering (UV-RS) technique. The majority of the nanoparticles, which could be observed by the UV-RS technique, were transported to the negatively biased electrode, indicating that they were positively charged. The deposition efficiency of nanoparticles onto a substrate was also improved by applying an electric field.

  11. The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient

    NASA Astrophysics Data System (ADS)

    Basso, L.; Gorrini, F.; Bazzanella, N.; Cazzanelli, M.; Dorigoni, C.; Bifone, A.; Miotello, A.

    2018-01-01

    Nanodiamonds have attracted considerable interest for their potential applications in quantum computation, sensing, and bioimaging. However, synthesis of nanodiamonds typically requires high pressures and temperatures, and is still a challenge. Here, we demonstrate production of nanodiamonds by pulsed laser ablation of graphite and diamond-like carbon in water. Importantly, this technique enables production of nanocrystalline diamonds at room temperature and standard pressure conditions. Moreover, we propose a method for the purification of nanodiamonds from graphitic and amorphous carbon phases that do not require strong acids and harsh chemical conditions. Finally, we present a thermodynamic model that describes the formation of nanodiamonds during pulsed laser ablation. We show that synthesis of the crystalline phase is driven by a graphite-liquid-diamond transition process that occurs at the extreme thermodynamic conditions reached inside the ablation plume.

  12. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  13. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE PAGES

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; ...

    2016-05-25

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  14. Experimental validation of a phenomenological model of the plasma contacting process

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.; Monheiser, Jeff M.

    1988-01-01

    A preliminary model of the plasma coupling process is presented which describes the phenomena observed in ground-based experiments using a hollow cathode plasma contactor to collect electrons from a dilute ambient plasma under conditions where magnetic field effects can be neglected. The locations of the double-sheath region boundaries are estimated and correlated with experimental results. Ion production mechanisms in the plasma plume caused by discharge electrons from the contactor cathode and by electrons streaming into the plasma plume through the double-sheath from the ambient plasma are also discussed.

  15. A plasma microlens for ultrashort high power lasers

    NASA Astrophysics Data System (ADS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  16. Is surgical plume developing during routine LEEPs contaminated with high-risk HPV? A pilot series of experiments.

    PubMed

    Neumann, Kay; Cavalar, Markus; Rody, Achim; Friemert, Luisa; Beyer, Daniel A

    2018-02-01

    Growing evidence shows a causal role of high-risk humane papillomavirus (HPV) infections in the development of head and neck cancer. A recent case report shows two patients suffering from tonsillar cancer without any risk factors apart from their work as gynecologists doing laser ablations and loop electrosurgical excision procedures (LEEP). The aim of the present investigation is to evaluate whether surgical plume resulting from routine LEEPs of HSIL of the cervix uteri might be contaminated with the DNA of high-risk HPV. The prospective pilot study is done at the Department of Gynecology and Obstetrics of the University of Lübeck, Germany. The primary outcome was defined as HPV subtype in resected cone and in surgical plume resulting from LEEPs of HSIL of the cervix uteri. Plume resulting from LEEPs was analyzed using a Whatman FTA Elute Indicating Card which was placed in the tube of an exhaust suction device used to remove the resulting aerosols. For detection of HPV and analysis of its subtype, the novel EUROArray HPV test was performed. Resected cones of LEEPs were evaluated separately for HPV subtypes. Four samples of surgical plume resulting from routine LEEPs indicated contamination with high-risk HPV and showed the same HPV subtype as identified in the resected cones. Surgical plume resulting from routine LEEPs for HSIL of the cervix uteri has the risk of contamination with high-risk HPV. Further investigations of infectiousness of surgical plume are necessary for evaluation of potential hazards to involved healthcare professionals.

  17. Controls on Plume Spacing and Plume Population in 3-D High Rayleigh Number Thermal Convection

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2004-12-01

    Dynamics of mantle plumes are important for understanding intra-plate volcanism and heat transfer in the mantle. Using 3D numerical models and scaling analyses, we investigated the controls of convective vigor or Ra on the dynamics of thermal plumes in isoviscous and basal heating thermal convection. We examined Ra-dependence of plume population, plume spacing, plume vertical velocity, and plume radius. We found that plume population does not increase with Ra monotonically. At relatively small Ra (<106), plume population is insensitive to Ra. For 3x106plume population scales as Ra0.31 and plume spacing ˜ Ra-0.16 ˜ δ 1/2, where δ is the thermal boundary layer thickness. However, for larger Ra ( ˜ 108) plume population and plume spacing become insensitive to Ra again. This indicates that the box depth poses a limit on plume spacing and plume population. We demonstrated from both scaling analyses and numerical experiments that the scaling exponents for plume population, n, heat flux, β , and average velocity on the bottom boundary, v, satisfy n = 4β - 2v. Our scaling analyses also suggest that vertical velocity in upwelling plumes Vup ˜ Ra2(1-n+β /2)/3 and that plume radius Rup ˜ Ra2(β -1-n/2)/3, differing from the scalings for the bottom boundary velocity and boundary layer thickness.

  18. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    NASA Astrophysics Data System (ADS)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  19. Treatment of Streptococcus mutans bacteria by a plasma needle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xianhui; School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022; Fujian Key Lab of Plasma and Magnetic Resonance, Department of Aeronautics School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005

    2009-03-15

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O{submore » 2} does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.« less

  20. An Inversion Method for Reconstructing Hall Thruster Plume Parameters from the Line Integrated Measurements (Postprint)

    DTIC Science & Technology

    2007-07-01

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements... Hall thruster is a high specific impulse electric thruster that produces a highly ionized plasma inside an annular chamber through the use of high

  1. Investigation of the Arcjet near Field Plume Using Electrostatic Probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plume of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in.) and 15 cm (5.9 in.) and radial distances extending to 10 cm (3.9 in.) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in.) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  2. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Betti, R.; Sanz, J.

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  3. Thermal ablation of an aluminium film upon absorption of a femtosecond laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezhanov, S G; Kanavin, A P; Uryupin, S A

    We have found the time dependence of the ablation depth of aluminium irradiated by a femtosecond laser pulse. It is shown to what extent an increase in the radiation energy flux density leads to an increase in the quasi-stationary value of the ablation depth. By reducing the aluminium film thickness down to one hundred nanometres and less, the ablation depth significantly increases. At the same time, the quasi-stationary value of the ablation depth of a thin film is obtained due to the removal of heat from the focal spot region. (interaction of laser radiation with matter. laser plasma)

  4. Atmospheric pressure plasma-assisted femtosecond laser engraving of aluminium

    NASA Astrophysics Data System (ADS)

    Gerhard, Christoph; Gimpel, Thomas; Tasche, Daniel; Koch née Hoffmeister, Jennifer; Brückner, Stephan; Flachenecker, Günter; Wieneke, Stephan; Schade, Wolfgang; Viöl, Wolfgang

    2018-05-01

    In this contribution, we report on the impact of direct dielectric barrier discharge argon plasma at atmospheric pressure on femtosecond laser engraving of aluminium. It is shown that the assisting plasma strongly affects the surface geometry and formation of spikes of both laser-engraved single lines and patterns of adjacent lines with an appropriate overlap. Further, it was observed that the overall ablation depth is significantly increased in case of large-scale patterning whereas no notable differences in ablation depth are found for single lines. Several possible mechanisms and underlying effects of this behaviour are suggested. The increase in ablation depth is supposed to be due to a plasma-induced removal of debris particles from the cutting point via charging and oxidation as supported by EDX analysis of the re-solidified debris. Furthermore, the impact of a higher degree of surface wrinkling as well as direct interactions of plasma species with the aluminium surface on the ablation process are discussed.

  5. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    PubMed Central

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  6. Detecting frontal ablation processes from direct observations of submarine terminus morphology

    NASA Astrophysics Data System (ADS)

    Fried, M.; Carroll, D.; Catania, G. A.; Sutherland, D. A.; Stearns, L. A.; Bartholomaus, T. C.; Shroyer, E.; Nash, J. D.

    2017-12-01

    Tidewater glacier termini couple glacier and ocean systems. Subglacial discharge emerging from the terminus produces buoyant plumes that modulate submarine melting, calving, fjord circulation and, in turn, changes in ice dynamics from back-stress perturbations. However, the absence of critical observational data at the ice-ocean interface limits plume and, by extension, melt models from incorporating realistic submarine terminus face morphologies and assessing their impact on terminus behavior at tidewater glaciers. Here we present a comprehensive inventory and characterization of submarine terminus face shapes from a side-looking, multibeam echo sounding campaign across Kangerdlugssuaq Sermerssua glacier, central-west Greenland. We combine these observations with in-situ measurements of ocean stratification and remotely sensed subglacial discharge, terminus positions, ice velocity, and ice surface datasets to infer the spectrum of processes sculpting the submarine terminus face. Subglacial discharge outlet locations are confirmed through observations of sediment plumes, localized melt-driven undercutting of the terminus face, and bathymetry of the adjacent seafloor. From our analysis, we differentiate terminus morphologies resulting from submarine melt and calving and assess the contribution of each process to the net frontal ablation budget. Finally, we constrain a plume model using direct observations of the submarine terminus face and conduit geometry. Plume model simulations demonstrate that the majority of discharge outlets are fed by small discharge fluxes, suggestive of a distributed subglacial hydrologic system. Outlets with the largest, concentrated discharge fluxes are morphologically unique and strongly control seasonal terminus position. At these locations, we show that the spatiotemporal pattern of terminus retreat is well correlated with time periods when local melt rate exceeds ice velocity.

  7. Ground-based plasma contractor characterization

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Aadland, Randall S.

    1987-01-01

    Presented are recent NASA Lewis Research Center (LeRC) plasma contractor experimental results, as well as a description of the plasma contractor test facility. The operation of a 24 cm diameter plasma source with hollow cathode was investigated in the lighted-mode regime of electron current collection from 0.1 to 7.0 A. These results are compared to those obtained with a 12 cm plasma source. Full two-dimensional plasma potential profiles were constructed from emissive probe traces of the contractor plume. The experimentally measured dimensions of the plume sheaths were then compared to those theoretically predicted using a model of a spherical double sheath. Results are consistent for currents up to approximately 1.0 A. For currents above 1.0 A, substantial deviations from theory occur. These deviations are due to sheath asphericity, and possibly volume ionization in the double-sheath region.

  8. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  9. Control of the plume induced during high-power fiber laser welding with a transverse arc

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Zou, Jianglin; Xiao, Rongshi; Li, Fei

    2015-04-01

    In this letter, the addition of the transverse arc into high-power fiber welding is proposed. The effects of the transverse arc on the laser-induced plume, the morphology of the weld, and the stability of the welding process are investigated. The experimental results indicate that, by introducing the transverse arc, the slender plume disappears, the temperature of the plasma plume increases then decreases with the rise in height, the weld width is reduced by around 42%, and the weld depth and the melting area are enhanced by about 28 and 12%, respectively. Moreover, the stability of the welding process is improved remarkably. As concluded from further analysis, the Mie scattering of the incident laser, induced by the particles in the plume, is responsible for the adverse effects induced by the plume. With the addition of the transverse arc, the particles in the plume are gasified and, thus, do not impact the energy transmission of the fiber laser. Consequently, the adverse effects induced by the plume can be significantly suppressed while the laser energy utilization efficiency and the stability of the welding process are improved.

  10. Propagation of ion acoustic wave energy in the plume of a high-current LaB6 hollow cathode

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin A.; Dodson, Christoper; Goebel, Dan M.; Wirz, Richard

    2017-08-01

    A frequency-averaged quasilinear model is derived and experimentally validated for the evolution of ion acoustic turbulence (IAT) along the centerline of a 100-A class, LaB6 hollow cathode. Probe-based diagnostics and a laser induced fluorescence system are employed to measure the properties of both the turbulence and the background plasma parameters as they vary spatially in the cathode plume. It is shown that for the three discharge currents investigated, 100 A, 130 A, and 160 A, the spatial growth of the total energy density of the IAT in the near field of the cathode plume is exponential and agrees quantitatively with the predicted growth rates from the quasilinear formulation. However, in the downstream region of the cathode plume, the growth of IAT energy saturates at a level that is commensurate with the Sagdeev limit. The experimental validation of the quasilinear model for IAT growth and its limitations are discussed in the context of numerical efforts to describe self-consistently the plasma processes in the hollow cathode plume.

  11. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  12. Analysis of atmospheric pollutant metals by laser ablation inductively coupled plasma mass spectrometry with a radial line-scan dried-droplet approach

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoxing; Qian, Yuan; Guo, Yanchuan; Wei, Nannan; Li, Yulan; Yao, Jian; Wang, Guanghua; Ma, Jifei; Liu, Wei

    2017-12-01

    A novel method has been improved for analyzing atmospheric pollutant metals (Be, Mn, Fe, Co, Ni, Cu, Zn, Se, Sr, Cd, and Pb) by laser ablation inductively coupled plasma mass spectrometry. In this method, solid standards are prepared by depositing droplets of aqueous standard solutions on the surface of a membrane filter, which is the same type as used for collecting atmospheric pollutant metals. Laser parameters were optimized, and ablation behaviors of the filter discs were studied. The mode of radial line scans across the filter disc was a representative ablation strategy and can avoid error from the inhomogeneous filter standards and marginal effect of the filter disc. Pt, as the internal standard, greatly improved the correlation coefficient of the calibration curve. The developed method provides low detection limits, from 0.01 ng m- 3 for Be and Co to 1.92 ng m- 3 for Fe. It was successfully applied for the determination of atmospheric pollutant metals collected in Lhasa, China. The analytical results showed good agreement with those obtained by conventional liquid analysis. In contrast to the conventional acid digestion procedure, the novel method not only greatly reduces sample preparation and shortens the analysis time but also provides a possible means for studying the spatial distribution of atmospheric filter samples.

  13. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  14. Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster

    NASA Astrophysics Data System (ADS)

    Giono, G.; Gudmundsson, J. T.; Ivchenko, N.; Mazouffre, S.; Dannenmayer, K.; Loubère, D.; Popelier, L.; Merino, M.; Olentšenko, G.

    2018-01-01

    We present measurements of the electron density, the effective electron temperature, the plasma potential, and the electron energy probability function (EEPF) in the plume of a 1.5 kW-class SPT-100 Hall thruster, derived from cylindrical Langmuir probe measurements. The measurements were taken on the plume axis at distances between 550 and 1550 mm from the thruster exit plane, and at different angles from the plume axis at 550 mm for three operating points of the thruster, characterized by different discharge voltages and mass flow rates. The bulk of the electron population can be approximated as a Maxwellian distribution, but the measured distributions were seen to decline faster at higher energy. The measured EEPFs were best modelled with a general EEPF with an exponent α between 1.2 and 1.5, and their axial and angular characteristics were studied for the different operating points of the thruster. As a result, the exponent α from the fitted distribution was seen to be almost constant as a function of the axial distance along the plume, as well as across the angles. However, the exponent α was seen to be affected by the mass flow rate, suggesting a possible relationship with the collision rate, especially close to the thruster exit. The ratio of the specific heats, the γ factor, between the measured plasma parameters was found to be lower than the adiabatic value of 5/3 for each of the thruster settings, indicating the existence of non-trivial kinetic heat fluxes in the near collisionless plume. These results are intended to be used as input and/or testing properties for plume expansion models in further work.

  15. Ion Voltage Diagnostics in the Far-Field Plume of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Haas, James M.; Gallimore, Alec D.

    2003-01-01

    The effects of the magnetic field and discharge voltage on the far-field plume of the NASA 173Mv2 laboratory-model Hall thruster were investigated. A cylindrical Langmuir probe was used to measure the plasma potential and a retarding potential analyzer was employed to measure the ion voltage distribution. The plasma potential was affected by relatively small changes in the external magnetic field, which suggested a means to control the plasma surrounding the thruster. As the discharge voltage increased, the ion voltage distribution showed that the acceleration efficiency increased and the dispersion efficiency decreased. This implied that the ionization zone was growing axially and moving closer to the anode, which could have affected thruster efficiency and lifetime due to higher wall losses. However, wall losses may have been reduced by improved focusing efficiency since the total efficiency increased and the plume divergence decreased with discharge voltage.

  16. A cost-utility analysis of ablative therapy for Barrett’s esophagus

    PubMed Central

    Inadomi, John M.; Somsouk, Ma; Madanick, Ryan D.; Thomas, Jennifer P.; Shaheen, Nicholas J.

    2009-01-01

    Background & Aims Recommendations for patients with Barrett’s esophagus (BE) include endoscopic surveillance with esophagectomy for early-stage cancer, although new technologies to ablate dysplasia and metaplasia are available. This study compares the cost-utility of ablation with that of endoscopic surveillance strategies. Methods A decision analysis model was created to examine a population of patients with BE (mean age 50), with separate analyses for patients with no dysplasia, low-grade dysplasia (LGD), or high-grade dysplasia (HGD). Strategies compared were: no endoscopic surveillance; endoscopic surveillance with ablation for incident dysplasia; immediate ablation followed by endoscopic surveillance in all patients or limited to patients in whom metaplasia persisted, and esophagectomy. Ablation modalities modeled included radiofrequency, argon plasma coagulation, multipolar electrocoagulation and photodynamic therapy. Results Endoscopic ablation for patients with HGD could increase life expectancy by 3 quality-adjusted years at an incremental cost of < $6,000, compared with no intervention. Patients with LGD or no dysplasia can also be optimally managed with ablation, but continued surveillance after eradication of metaplasia is expensive. If ablation permanently eradicates at least 28% of LGD or 40% of non-dysplastic metaplasias, ablation would be preferred to surveillance. Conclusions Endoscopic ablation could be the preferred strategy for managing patients with BE with HGD. Ablation might also be preferred in subjects with LGD or no dysplasia, but the cost-effectiveness depends on the long-term effectiveness of ablation and whether surveillance endoscopy can be discontinued following successful ablation. As further post-ablation data become available, the optimal management strategy will be clarified. PMID:19272389

  17. Observations of subauroral ionospheric dynamics during SED plume passage at Millstone Hill

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Erickson, P. J.; Coster, A. J.

    2017-12-01

    Storm enhanced density (SED) is a characteristic ionospheric storm time structure, with a significant plasma density enhancement in a narrow zone. SED structures often (but not always) span the continental US with a base in the US northeast at the afternoon and dusk sector, extending westward or northwest into the high latitude dayside cusp region. It is a typical and repeatable space weather phenomenon occurring during the main phase of magnetic storms with intensity ranging from active to disturbed levels. Observations of stormtime ionospheric density enhancement at subauroral latitudes have a long history, and were termed the 'dusk effect' until relatively recently, when dense networks of GNSS receivers have allowed us to view this structure with much finer spatial and temporal resolution. The formation of a SED plume is a topic under intensive community investigation, but in general it is believed that stormtime ionospheric dynamics and processes within the coupling magnetosphere-ionosphere-thermosphere system are responsible. For instance, poleward and sunward plasma drifts at the edge of the expanded dusk sector high-latitude convection can be important. Subauroral polarization stream (SAPS) are often observed at the poleward edge of the SED plume where ionospheric conductivity is low. SAPS is a huge westward ion flow that can convect ionospheric plasma from the afternoon or evening sector where solar photoionization production is waning, creating low density or density troughs. Stormtime penetration electric fields also exist, creating enhanced low and mid latitude upward ion drifts that move ionospheric plasma upward from the low altitude region where they are produced. This provides another important ionization source to contribute to maintaining the SED plume. This paper will provide analysis of the relative strength of these factors by using joint datasets of current geospace storm events obtained with the Millstone Hill incoherent scatter radar, GNSS

  18. Trace element analysis of synthetic mono- and poly-crystalline CaF 2 by ultraviolet laser ablation inductively coupled plasma mass spectrometry at 266 and 193 nm

    NASA Astrophysics Data System (ADS)

    Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.

    2002-06-01

    The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.

  19. Emission intensity modulation of radio-frequency helium glow-discharge emission source by laser ablation.

    PubMed

    Matsuta, Hideyuki; Naeem, Tariq M; Wagatsuma, Kazuaki

    2003-06-01

    A novel emission excitation source comprising a high repetition rate diode-pumped Q-switched Nd:YAG laser and a Grimm-style glow-discharge lamp is described. Laser-ablated atoms are introduced into the He glow discharge plasma, which then give emission signals. By using phase-sensitive detection with a lock-in amplifier, the emission signal modulated by the pulsed laser can be detected selectively. It is possible to estimate only the emission intensity of sample atoms ablated by laser irradiation with little interference from the other species in the plasma.

  20. An evaluation of modeled plume injection height with satellite-derived observed plume height

    Treesearch

    Sean M. Raffuse; Kenneth J. Craig; Narasimhan K. Larkin; Tara T. Strand; Dana Coe Sullivan; Neil J.M. Wheeler; Robert Solomon

    2012-01-01

    Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (...

  1. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  2. Kinetics of ion and prompt electron emission from laser-produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, N.; Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics and Optical Engineering, Dalian University of Technology, Dalian; Harilal, S. S.

    2013-07-15

    We investigated ion emission dynamics of laser-produced plasma from several elements, comprised of metals and non-metals (C, Al, Si, Cu, Mo, Ta, W), under vacuum conditions using a Faraday cup. The estimated ion flux for various targets studied showed a decreasing tendency with increasing atomic mass. For metals, the ion flux is found to be a function of sublimation energy. A comparison of temporal ion profiles of various materials showed only high-Z elements exhibited multiple structures in the ion time of flight profile indicated by the observation of higher peak kinetic energies, which were absent for low-Z element targets. Themore » slower ions were seen regardless of the atomic number of target material propagated with a kinetic energy of 1–5 keV, while the fast ions observed in high-Z materials possessed significantly higher energies. A systematic study of plasma properties employing fast photography, time, and space resolved optical emission spectroscopy, and electron analysis showed that there existed different mechanisms for generating ions in laser ablation plumes. The origin of high kinetic energy ions is related to prompt electron emission from high-Z targets.« less

  3. Estimation of Al2O3 critical temperature using a Langmuir probe in laser ablation

    NASA Astrophysics Data System (ADS)

    Yahiaoui, K.; Abdelli-Messaci, S.; Messaoud Aberkane, S.; Kellou, A.

    2016-11-01

    Pulsed laser deposition (PLD) has demonstrated its capacity in thin films growing under the moderate laser intensity. But when the laser intensity increases, the presence of droplets on the thin film limits the PLD efficiency such that the process needs an optimization study. In this way, an experimental study has been conducted in order to correlate between the appearance of those droplets and the laser fluence. The comprehension of the physical mechanism during ablation and the control of the deposition parameters allowed to get a safe process. Our experiment consists in measuring the amount of ejected matter from polycrystalline alumina target as a function of the laser fluence when irradiated by a KrF laser. According to laser fluence, several kinds of ablation regimes have been identified. Below a threshold value found as 12 J/cm2, the mechanism of ablation was assigned to normal evaporation, desorption and nonthermal processes. While above this threshold value, the mechanism of ablation was assigned to phase explosion phenomenon which is responsible of droplets formation when the surface temperature approaches the critical temperature T tc. A negative charge collector was used to collect the positive ions in the plume. Their times of flight (TOF) signal were used to estimate the appropriate T tc for alumina target. Ions yield, current as well as kinetic energy were deduced from the TOF signal. Their evolutions show the occurrence of an optical breakdown in the vapor plume which is well correlated with the onset of the phase explosion phenomenon. At 10 J/cm2, the ions velocities collected by the probe have been compared to those obtained from optical emission spectroscopy diagnostic and were discussed. To prove the occurrence of phase explosion by the appearance of droplets, several thin films were elaborated on Si (100) substrate at different laser fluence into vacuum. They have been characterized by scanning electron microscope. The results were well

  4. HYDRA: Macroscopic 3D Approach of Light Weight Ablator

    NASA Astrophysics Data System (ADS)

    Pinaud, G.; Barcena, J.; Bouilly, J.-M.; Leroy, V.; Fischer, Wpp.; Massuti, T.

    2014-06-01

    The HYDRA project is an European funded program that aims at developing novel solution in term of TPS associated to a demonstration of Technology Readiness Level (TRL) 4. We describe modelling activities (radiation/ablation) compared to plasma test.

  5. Combining Laser Ablation/Liquid Phase Collection Surface Sampling and High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of thismore » coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC/ESI-MS analysis revealed successful laser ablation, capture and, with HPLC, the separation of the two compounds. The ablated circular area was about 70 m in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.« less

  6. Investigation of power-plant plume photochemistry using a reactive plume model

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, H. S.; Song, C. H.

    2016-12-01

    Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.

  7. [Mechanism of ablation with nanosecond pulsed electric field].

    PubMed

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  8. Advanced Hybrid Modeling of Hall Thruster Plumes

    DTIC Science & Technology

    2010-06-16

    Hall thruster operated in the Large Vacuum Test Facility at the University of Michigan. The approach utilizes the direct simulation Monte Carlo method and the Particle-in-Cell method to simulate the collision and plasma dynamics of xenon neutrals and ions. The electrons are modeled as a fluid using conservation equations. A second code is employed to model discharge chamber behavior to provide improved input conditions at the thruster exit for the plume simulation. Simulation accuracy is assessed using experimental data previously

  9. Ablative overlays for Space Shuttle leading edge ascent heat protection

    NASA Technical Reports Server (NTRS)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  10. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; le Roux, Petrus J; Grimes, Vaughan; Lee-Thorp, Julia A; de Ruiter, Darryl J; Richards, Michael P

    2008-10-01

    Strontium isotope ratios (87Sr/86Sr) in tooth enamel provide a means to investigate migration and landscape use in humans and other animals. Established methods for measuring (87)Sr/(86)Sr in teeth use bulk sampling (5-20 mg) and labor-intensive elemental purification procedures before analysis by either thermal ionization mass spectrometry (TIMS) or multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Another method for measuring 87Sr/86Sr is laser ablation MC-ICP-MS, but concerns have been expressed about its accuracy for measuring tooth enamel. In this study we test the precision and accuracy of the technique by analyzing 30 modern rodent teeth from the Sterkfontein Valley, South Africa by laser ablation MC-ICP-MS and solution MC-ICP-MS. The results show a mean difference in 87Sr/86Sr measured by laser ablation and by solution of 0.0003 +/- 0.0002. This degree of precision is well within the margin necessary for investigating the potential geographic origins of humans or animals in many areas of the world. Because laser ablation is faster, less expensive, and less destructive than bulk sampling solution methods, it opens the possibility for conducting 87Sr/86Sr analyses of intra-tooth samples and small and/or rare specimens such as micromammal and fossil teeth.

  11. Experimental Characterization of Plasma Detachment from Magnetic Nozzles

    NASA Astrophysics Data System (ADS)

    Olsen, Christopher Scott

    Magnetic nozzles, like Laval nozzles, are observed in several natural systems and have application in areas such as electric propulsion and plasma processing. Plasma flowing through these nozzles is inherently tied to the field lines and must separate for momentum redirection or particle transport to occur. Plasma detachment and associated mechanisms from a magnetic nozzle are investigated. Experimental results are presented from the plume of the VASIMRRTM VX-200 device flowing along an axisymmetric magnetic nozzle and operated at two ion energies to explore momentum dependent detachment. The argon plume expanded into a 150m3 vacuum chamber where the background pressure was low enough that charge-exchange mean-free-paths were longer than experiment scale lengths. This magnetic nozzle system is demonstrated to hydrodynamically scale up to astrophysical plasmas, particularly the solar chromosphere, implying general relevance to many systems. Plasma parameters were mapped over a large spatial range using measurements from multiple plasma diagnostics. The data show that the plume does not follow the magnetic field lines. A mapped integration of the ion flux shows the plume may be divided into three regions where 1) the plume briefly follows the magnetic flux, 2) diverges quadratically before 3) expanding with linear trajectories. Transitioning from region 1→2, the ion flux departs from the magnetic flux suggesting ion detachment. An instability forms in region 2 driving an oscillating electric field that causes ions to expand before enhancing electron cross-field transport through anomalous resistivity. Transitioning from region 2→3 the electric field dissipates, the trajectories linearize, and the plume effectively detaches. A delineation of sub-to-super Alfvenic flow aligns well with the inflection points of the linearization without a change in magnetic topology. The detachment process is best described as a two part process: First, ions detach by a breakdown of

  12. Oxidation of laser-induced plasma species in different background conditions

    NASA Astrophysics Data System (ADS)

    Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-08-01

    The evolution of Lu and LuO species in a laser ablation plasma from different targets has been investigated by simultaneously performing mass spectrometry and plasma imaging. Ablation was achieved with a 248 nm KrF laser from a Lu, a Lu2O5 and a LuMnO3 target under different background gas conditions. Mass spectrometry measurements show very similar intensities and ratios for the respective species for all three targets under the same ablation conditions. This indicates only a small influence of the target on the final Lu and LuO contents in the plasma, with the major influence coming from collisions with the background gas. Furthermore, spatially, timely and spectrally resolved plasma imaging was utilized to clearly identify the shockwave at the plasma front as the main region for Lu oxidation. A strong decrease of Lu intensities together with a directly correlated increase of LuO was observed toward the outer regions of the plasma.

  13. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  14. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  15. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong

    2016-10-18

    Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.

  16. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations and numerical simulations

    NASA Technical Reports Server (NTRS)

    Darouzet, Fabien; DeKeyser, Johan; Decreau, Pierrette; Gallagher, Dennis; Pierrard, Viviane; Lemaire, Joseph; Dandouras, Iannis; Matsui, Hiroshi; Dunlop, Malcolm; Andre, Mats

    2005-01-01

    Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles can be derived from the plasma frequency and/or from the spacecraft potential (note that the electron spectrometer is usually not operating inside the plasmasphere); ion velocity is also measured onboard these satellites (but ion density is not reliable because of instrumental limitations). The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 minutes; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations for 3 plume events and compare CLUSTER in-situ data (panel A) with global images of the plasmasphere obtained from IMAGE (panel B), and with numerical simulations for the formation of plumes based on a model that includes the interchange instability mechanism (panel C). In particular, we study the geometry and the orientation of plasmaspheric plumes by using a four-point analysis method, the spatial gradient. We also compare several aspects of their motion as determined by different methods: (i) inner and outer plume boundary velocity calculated from time delays of this boundary observed by the wave experiment WHISPER on the four spacecraft, (ii) ion velocity derived from the ion spectrometer CIS onboard CLUSTER, (iii) drift velocity measured by the electron drift instrument ED1 onboard CLUSTER and (iv) global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  17. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation.

    PubMed

    Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish

    2017-01-01

    Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

  18. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam

    NASA Astrophysics Data System (ADS)

    Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.

    2017-03-01

    The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.

  19. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for themore » fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.« less

  20. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (< 0.4 cm). This result is explained by the formation of an electron-attracting (positive) anode sheath leading to increased power losses on small anodes as compared to larger anodes [1]. The suggested mechanism for the positive anode sheath formation is plasma convergence. The increased ablation rate due to this positive sheath could imply a greater yield of carbon nanotube production. [1] A. J. Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  1. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial.

    PubMed

    Faghihi, Gita; Keyvan, Shima; Asilian, Ali; Nouraei, Saeid; Behfar, Shadi; Nilforoushzadeh, Mohamad Ali

    2016-01-01

    Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15) or 4 months after the second (P = 0.23). In addition, adverse effects (erythema and edema) on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects and also resulted in more severe side effects and longer downtime.

  2. Dual-Wavelength Interferometry and Light Emission Study for Experimental Support of Dual-Wire Ablation Experiments

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew; Caplinger, James; Sotnikov, Vladimir; Sarkisov, Gennady; Leland, John

    2017-10-01

    In the Plasma Physics and Sensors Laboratory, located at Wright Patterson Air Force Base, we utilize a pulsed power source to create plasma through a wire ablation process of metallic wires. With a parallel arrangement of wires the azimuthal magnetic fields generated around each wire, along with the Ohmic current dissipation and heating occurring upon wire evaporation, launch strong radial outflows of magnetized plasmas towards the centralized stagnation region. It is in this region that we investigate two phases of the wire ablation process. Observations in the first phase are collsionless and mostly comprised of light ions ejected from the initial corona. The second phase is observed when the wire core is ablated and heavy ions dominate collisions in the stagnation region. In this presentation we will show how dual-wavelength interferometric techniques can provide information about electron and atomic densities from experiments. Additionally, we expect white-light emission to provide a qualitative confirmation of the instabilities observed from our experiments. The material is based upon work supported by the Air Force Office of Scientific Research under Award Number 16RYCOR289.

  3. Elucidation of Metallic Plume and Spatter Characteristics Based on SVM During High-Power Disk Laser Welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; Liu, Guiqian

    2015-01-01

    During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality.

  4. Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Niasse, N.

    A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by amore » dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al.[Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZT{sub e} of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.« less

  5. Plasmaspheric Plumes Observed by the CLUSTER and IMAGE Spacecraft

    NASA Technical Reports Server (NTRS)

    Fung, S. F.; Benson, R. F.; Garcia, L. N.; Adrian, M. L.; Sandel, B.; Goldstein, M. L.

    2008-01-01

    Global IMAGE/EUV observations have revealed complex changes in plasmaspheric structures as the plasmasphere responds to geomagnetic activity while remaining under varying degrees of influence by co-rotation, depending on the radial distance. The complex plasmaspheric dynamics, with different scales of variability, is clearly far from being well understood. There is now renewed interest in the plasmasphere due to its apparent connections with the development of the ring current and radiation belt, and loss of ionospheric plasmas. Early in the mission, the Cluster spacecraft only crossed the plasmapause (L - 4) occasionally and made measurements of the outer plasmasphere and plasmaspheric drainage plumes. The study by Darrouzet et al. [2006] provided detailed analyses of in situ Cluster observations and IMAGE EUV observations of three plasmaspheric plumes detected in April-June, 2002. Within the next couple of years, Cluster orbit will change, causing perigee to migrate to lower altitudes, and thus providing excellent opportunities to obtain more detailed measurements of the plasmasphere. In this paper, we report our analyses of the earlier Cluster-IMAGE events by incorporating the different perspectives provided by the IMAGE Radio Plasma Imager (RPI) observations. We will discuss our new understanding of the structure and dynamics of the Cluster-IMAGE events.

  6. Pulsed Plasma Thruster Contamination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Arrington, Lynn A.; Pencil, Eric J.; Carter, Justin; Heminger, Jason; Gatsonis, Nicolas

    1996-01-01

    Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region.

  7. In Vivo Arthroscopic Temperatures: A Comparison Between 2 Types of Radiofrequency Ablation Systems in Arthroscopic Anterior Cruciate Ligament Reconstruction-A Randomized Controlled Trial.

    PubMed

    Matthews, Brent; Wilkinson, Matthew; McEwen, Peter; Hazratwala, Kaushik; Doma, Kenji; Manoharan, Varaguna; Bahho, Zaid; McEwen, Shannon

    2017-01-01

    To compare a plasma ablation device with a standard ablation device in anterior cruciate ligament (ACL) reconstruction to determine which system is superior in terms of intra-articular heat generation and diathermy efficiency. This was a prospective, randomized controlled trial. The inclusion criteria were adult patients undergoing primary ACL reconstruction. Patients were randomized preoperatively to the standard ablation group or the plasma ablation group. A thermometer was inserted into the inferior suprapatellar pouch, and the temperature, time, and duration of radiofrequency ablation were measured continually. No significant differences were found between the standard ablation system and the plasma ablation system for maximum temperature (29.77°C and 29.34°C, respectively; P = .95), mean temperature (26.16°C and 26.99°C, respectively; P = .44), minimum temperature (22.66°C and 23.94°C, respectively; P = .54), and baseline temperature (26.80°C and 27.93°C, respectively; P = .35). Similarly, no significant differences were found for operative time (82.90 minutes and 80.50 minutes, respectively; P = .72) and mean diathermy activation times (2.6 minutes for both systems; P = .90). The between-system coefficient of variation for the measured parameters ranged from 0.12% to 3.69%. No intra-articular readings above the temperature likely to damage chondrocytes were recorded. The mean irrigation fluid temperature had a significant correlation with the maximum temperature reached during the procedure (Spearman rank correlation, r = 0.87; P < .01). No difference in temperature was observed between the standard ablation and plasma ablation probes during ACL reconstruction. Temperatures did not exceed critical temperatures associated with chondrocyte death. Level I, randomized controlled trial. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Interaction of cw CO2 laser radiation with plasma near-metallic substrate surface

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Astapchik, S. A.; Zabelin, Alexandre M.; Golubev, Vladimir S.; Golubev, V. S.; Grezev, A. N.; Filatov, Igor V.; Chubrik, N. I.; Shimanovich, V. D.

    2000-07-01

    Optical and spectroscopic methods were used in studying near-surface plasma that is formed under the effect CW CO2 laser of (2- 5)x106W/cm2 power density upon stainless steel in He and Ar shielding gases. The variation of plume spatial structure with time has been studied, the outflow of gas-vapor jets from the interaction area has been characterized. The spectra of plasma plume pulsations have been obtained for the frequency range Δf = 0-1 MHz. The temperature and electron concentration of plasma plume have been found under radiation effect upon the target of stainless steel. Consideration has been given to the most probable mechanisms of CW laser radiation-metal non-stationary interaction.

  9. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  10. Low altitude plume impingement handbook

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

  11. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    NASA Astrophysics Data System (ADS)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  12. Thin films deposited by femtosecond pulsed laser ablation of tungsten carbide

    NASA Astrophysics Data System (ADS)

    De Bonis, A.; Teghil, R.; Santagata, A.; Galasso, A.; Rau, J. V.

    2012-09-01

    Ultra-short Pulsed Laser Deposition has been applied to the production of thin films from a tungsten carbide target. The gaseous phase obtained by the laser ablation shows a very weak primary plume, in contrast with a very strong secondary one. The deposited films, investigated by Scanning Electron Microscopy, Atomic Force Microscopy, X-Ray Photoelectron Spectroscopy and X-Ray Diffraction, present a mixture of WC and other phases with lower carbon content. All films are amorphous, independently from the substrate temperature. The characteristics of the deposits have been explained in terms of thermal evaporation and cooling rate of molten particles ejected from the target.

  13. Thermal imaging of afterburning plumes

    NASA Astrophysics Data System (ADS)

    Ajdari, E.; Gutmark, E.; Parr, T. P.; Wilson, K. J.; Schadow, K. C.

    1989-01-01

    Afterburning and nonafterburning exhaust plumes were studied experimentally for underexpanded sonic and supersonic conical circular nozzles. The plume structure was visualized using thermal imaging camera and regular photography. IR emission by the plume is mainly dependent on the presence of afterburning. Temperature and reducing power of the exhaust gases, in addition to the nozzle configuration, determine the structure of the plume core, the location where the afterburning is initiated, its size and intensity. Comparison between single shot and average thermal images of the plume show that afterburning is a highly turbulent combustion process.

  14. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.

    PubMed

    Dannenmayer, K; Mazouffre, S

    2012-12-01

    A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster.

  15. Influence of electron dynamics on the enhancement of double-pulse femtosecond laser-induced breakdown spectroscopy of fused silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Mengmeng; Liu, Lei; Yang, Fan; Lu, Yongfeng

    2018-03-01

    Femtosecond laser pulse train induced breakdown of fused silica was studied by investigating its plasma emission and the ablated crater morphology. It was demonstrated that the electron dynamics in the ablated fused silica play a dominant role in the emission intensity of induced plasma and the volume of material removal, corresponding to the evolution of free-electron, self-trapped excitons, and the phase change of the fused silica left over by the first pulse. For a fluence of 11 J/cm2, the maximum plasma intensity of double-pulse irradiation at an interpulse delay of 120 ps was about 35 times stronger than that of a single-pulse, while the ablated crater was reduced by 27% in volume. The ionization of slow plume component generated by the first pulse was found to be the main reason for the extremely high intensity enhancement for an interpulse delay of over 10 ps. The results serve as a route to simultaneously increase the spatial resolution and plasma intensity in laser-induced breakdown spectroscopy of dielectrics.

  16. Coastal river plumes: Collisions and coalescence

    USGS Publications Warehouse

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas < 10,000 km2), such as found along most active geologic coastal margins, were much more likely to have river plumes that collide and interact than coastal settings with large rivers (watershed areas > 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and

  17. A randomised controlled trial of ablation of Barrett's oesophagus with multipolar electrocoagulation versus argon plasma coagulation in combination with acid suppression: long term results

    PubMed Central

    Sharma, P; Wani, S; Weston, A P; Bansal, A; Hall, M; Mathur, S; Prasad, A; Sampliner, R E

    2006-01-01

    Background Many modalities have been used to ablate Barrett's oesophagus (BO). However, long term results and comparative effectiveness are unknown. Aims Our aim was to compare the long term efficacy of achieving complete reversal (endoscopic and histological) between multipolar electrocoagulation (MPEC) and argon plasma coagulation (APC) in BO patients and assess factors influencing successful ablation. Methods Patients with BO, 2–6 cm long, underwent 24 hour pH testing on proton pump inhibitor (PPI) therapy. Patients were then randomised by BO length to undergo ablation with MPEC or APC every 4–8 weeks until endoscopic reversal or maximal of six treatment sessions. Results Thirty five BO patients have been followed for at least two years following endoscopic ablation, 16 treated with MPEC and 19 with APC. There was complete reversal of BO in 24 patients (69%); 75% with MPEC and 63% with APC (p = 0.49). There was no difference in the number of sessions required in the two groups. There was no difference in age, pH results, BO length, PPI dose, or hiatal hernia size between patients with and without complete reversal. One patient developed an oesophageal stricture but there were no major complications such as bleeding or perforation. Conclusions In BO patients treated with MPEC or APC in combination with acid suppression, at long term follow up, complete reversal of BO can be maintained in approximately 70% of patients, irrespective of the technique. There are no predictors associated with achieving complete reversal of BO. Continued surveillance is still indicated in the post ablative setting. As yet, these techniques are not ready for clinical application (other than for high grade dysplasia or early oesophageal adenocarcinoma) and cannot be offered outside the research arena. PMID:16905695

  18. Interaction of argon and helium plasma jets and jets arrays with account for gravity

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Naidis, George V.; Panov, Vladislav A.; Wang, Ruixue; Zhao, Yong; Shao, Tao

    2018-06-01

    In this paper, we discuss results from an experimental and computational study of the properties of a single jet and two-tube jet arrays operating in argon and helium. The jets are positioned horizontally. It was shown in experiments that the helium plasma plume bends upward and the plumes in the two-tubes jet array tend to divert due to the jet-jet interaction. To investigate these potential interactions, a computational study was performed of one- and two-tube argon and helium jet arrays having variable spacing. The effects of buoyancy forces on the jet-to-jet interaction of the plasma plumes are also investigated. Velocities of ionization waves inside and outside the tubes are estimated and compared for the argon and helium ionization waves. We show that in helium jet-jet interactions primarily depend on the spacing between the tubes and on the buoyancy forces. The helium plumes tend to merge into one single stream before dissipating, while the argon plasma plumes are less sensitive to the spacing of the jet tubes.

  19. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    USGS Publications Warehouse

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  20. Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River

    NASA Astrophysics Data System (ADS)

    Zamon, Jeannette E.; Phillips, Elizabeth M.; Guy, Troy J.

    2014-09-01

    Freshwater discharge from large rivers into the coastal ocean creates tidally-driven frontal systems known to enhance mixing, primary production, and secondary production. Many authors suggest that tidal plume fronts increase energy flow to fish-eating predators by attracting planktivorous fishes to feed on plankton aggregated by the fronts. However, few studies of plume fronts directly examine piscivorous predator response to plume fronts. Our work examined densities of piscivorous seabirds relative to the plume region and plume fronts of the Columbia River, USA. Common murres (Uria aalge) and sooty shearwaters (Puffinus griseus) composed 83% of all birds detected on mesoscale surveys of the Washington and Oregon coasts (June 2003-2006), and 91.3% of all birds detected on fine scale surveys of the plume region less than 40 km from the river mouth (May 2003 and 2006). Mesoscale comparisons showed consistently more predators in the central plume area compared to the surrounding marine area (murres: 10.1-21.5 vs. 3.4-8.2 birds km-2; shearwaters: 24.2-75.1 vs. 11.8-25.9 birds km-2). Fine scale comparisons showed that murre density in 2003 and shearwater density in both 2003 and 2006 were significantly elevated in the tidal plume region composed of the most recently discharged river water. Murres tended to be more abundant on the north face of the plume. In May 2003, more murres and shearwaters were found within 3 km of the front on any given transect, although maximum bird density was not necessarily found in the same location as the front itself. Predator density on a given transect was not correlated with frontal strength in either year. The high bird densities we observed associated with the tidal plume demonstrate that the turbid Columbia River plume does not necessarily provide fish with refuge from visual predators. Bird predation in the plume region may therefore impact early marine survival of Pacific salmon (Oncorhynchus spp.), which must migrate through the

  1. Swirling plumes and spinning tops

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2017-11-01

    Motivated by potential effects of the Earth's rotation on the dynamics of the oil plume resulting from the Deepwater Horizon disaster in 2010, we conducted laboratory experiments on saltwater and bubble axisymmetric point plumes in a homogeneous rotating environment. The effect of rotation is conventionally characterized by a Rossby number, based on the source buoyancy flux, the rotation rate of the system and the total water depth and which ranged from 0.02 to 1.3 in our experiments. In the range of parameters studied, we report a striking new physical instability in the plume dynamics near the source. After approximately one rotation period, the plume axis tilts away laterally from the centreline and the plume starts to precess in the anticyclonic direction. We find that the mean precession frequency of the plume scales linearly with the rotation rate of the environment. Surprisingly, the precession frequency is found to be independent of the diameter of the plume nozzle, the source buoyancy flux, the water depth and the geometry of the domain. In this talk, we present our experimental results and develop simple theoretical toy models to explain the observed plume behaviour.

  2. Characteristics of a Direct Current-driven plasma jet operated in open air

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Di, Cong; Jia, Pengying; Bao, Wenting

    2013-09-01

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  3. Ridge jumps associated with plume-ridge interaction: Mantle plume-lithosphere interaction and hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2007-12-01

    Interaction of mantle plumes and young lithosphere near mid-ocean ridges can lead to changes in spreading geometry by shifts of the ridge-axis toward the plume as seen at various hotspots, notably Iceland and the Galapagos. Previous work has shown that, with a sufficient magma flux, heating of the lithosphere by magmatism can significantly weaken the plate and, in some cases, could cause ridge jumps. Upwelling hot asthenosphere can also weaken the plate through thermal and mechanical thinning of the lithosphere. Using the finite element code CITCOM, we solve the equations of continuity, momentum and energy to examine deformation in near-ridge lithosphere associated with relatively hot upwelling asthenosphere and seafloor spreading. The mantle and lithosphere obey a non-Newtonian viscous rheology with plastic failure in the cold part of the lithosphere simulated by imposing an effective yield stress. Temperatures of the lithospheric thermal boundary region are initially given a square-root of age thermal profile while a hot patch is placed at the bottom to initiate a mantle-plume like upwelling. The effect of upwelling asthenosphere on ridge jumps is evaluated by varying three parameters: the plume excess temperature, the spreading rate and the distance of the plume from the ridge axis. Preliminary results show plume related thinning and weakening of the lithosphere over a wide area (100's of km's) with the rate of thinning increasing with the excess temperature of the plume. Initially, thinning occurs as the plume approaches the lithosphere and asthenospheric material is forced out of the way. As the plume material comes into contact with the lithosphere, thinning occurs through heating and mechanical removal of the thermal boundary layer. Thinning of the lithosphere is one of the primary factors in achieving a ridge jump. Another is large tensile stresses which can facilitate the initiation of rifting at this weakened location. Model stresses induced by the

  4. Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing

    NASA Astrophysics Data System (ADS)

    Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren

    2017-03-01

    The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.

  5. Relation Between Pressure Balance Structures and Polar Plumes from Ulysses High Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Suess, Steven T.; Sakurai, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to discontinuities. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.

  6. African Equatorial and Subtropical Ozone Plumes: Recurrences Timescales of the Brown Cloud Trans-African Plumes and Other Plumes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  7. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    DTIC Science & Technology

    2014-06-01

    Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of

  8. Investigation of the arcjet plume near field using electrostatic probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plum of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in) and 15 cm (5.9 in) and radial distances extending to 10 cm (3.9 in) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  9. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  10. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  11. Modeling an anode layer Hall thruster and its plume

    NASA Astrophysics Data System (ADS)

    Choi, Yongjun

    This thesis consists of two parts: a study of the D55 Hall thruster channel using a hydrodynamic model; and particle simulations of plasma plume flow from the D55 Hall thruster. The first part of this thesis investigates the xenon plasma properties within the D55 thruster channel using a hydrodynamic model. The discharge voltage (V) and current (I) characteristic of the D55 Hall thruster are studied. The hydrodynamic model fails to accurately predict the V-I characteristics. This analysis shows that the model needs to be improved. Also, the hydrodynamic model is used to simulate the plasma flow within the D55 Hall thruster. This analysis is performed to investigate the plasma properties of the channel exit. It is found that the hydrodynamic model is very sensitive to initial conditions, and fails to simulate the complete domain of the D55 Hall thruster. However, the model successfully calculates the channel domain of the D55 Hall thruster. The results show that, at the thruster exit, the plasma density has a maximum value while the ion velocity has a minimum at the channel center. Also, the results show that the flow angle varies almost linearly across the exit plane and increases from the center to the walls. Finally, the hydrodynamic model results are used to estimate the plasma properties at the thruster nozzle exit. The second part of the thesis presents two dimensional axisymmetric simulations of xenon plasma plume flow fields from the D55 anode layer Hall thruster. A hybrid particle-fluid method is used for the simulations. The magnetic field near the Hall thruster exit is included in the calculation. The plasma properties obtained from the hydrodynamic model are used to determine boundary conditions for the simulations. In these simulations, the Boltzmann model and a detailed fluid model are used to compute the electron properties, the direct simulation Monte Carlo method models the collisions of heavy particles, and the Particle-In-Cell method models the

  12. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  13. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  14. Experimental investigation of the dynamics of pellet ablation on the Texas Experimental Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durst, R.D.

    1988-01-01

    Rapid fluctuations in the ablation of hydrogen pellets in the Texas Experimental Tokamak were studied using fast photographic techniques. It is proposed that the fluctuations are a type of relaxation oscillation driven by the motion of the particle across the magnetic field. This is shown to be consistent with a time-dependent model of plasma shielding due to Kaufmann et al. A technique to include this effect in calculations of pellet ablation is discussed. Spatially resolved measurements of the temperature and density in the pellet-ablation cloud were obtained by line-to-continuum ratios and Stark broadening, respectively. Typical parameters in the pellet-ablation cloudmore » are 5-6 eV and 1.0-1.5 {times} 10{sup 17} cm{sup {minus}3}. The flow along the magnetic field is found to be isobaric. The heating of the expanding ablatant is strongly asymmetric, being stronger on the side facing the electron-drift direction. This may be due to suprathermal electrons.« less

  15. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle

  16. Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.

    2014-10-01

    Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  17. Laser ablation and column formation in silicon under oxygen-rich atmospheres

    NASA Astrophysics Data System (ADS)

    Pedraza, A. J.; Fowlkes, J. D.; Lowndes, D. H.

    2000-11-01

    The microstructure formed at the surface of silicon by cumulative pulsed-laser irradiation in oxygen-rich atmospheres consists of an array of microcolumns surrounded by microcanyons and microholes. Formation of SiOx at the exposed surface of silicon is most likely responsible for the occurrence of etching/ablation that causes the continuous deepening of canyons and holes. The growth mechanism of columns that is supported by the experimental evidence presented here is a process in which the columns are fed at their tips by the silicon-rich ablation plasma produced during pulsed-laser irradiation.

  18. Shielding effects in the laser-generated copper plasma under reduced pressures of He atmosphere

    NASA Astrophysics Data System (ADS)

    Burger, M.; Pantić, D.; Nikolić, Z.; Djeniže, S.

    2016-02-01

    Irradiation of samples was performed with 6 ns, 1064 nm Nd:YAG laser. For an applied irradiance range (108-1010 W/cm2), the ablation process exhibits non-linear dependance. Ablated mass of the sample was directly determined using 100 ng resolution mass comparator after ablation under various pressures of helium. The ablation rates were dictated by plasma formation mechanisms as well as ambient conditions. However, the surrounding atmosphere did not significantly affect the value of threshold irradiance of about 2 ×109 W /cm2 for the onset of ablation mechanism change. This value is additionally verified via spectroscopic information from Cu I lines in the range from 0.4 to 1 μs after the laser pulse. Behaviour of spectral lines was monitored with respect to the laser pulse energy. Plasma diagnostics of axial electron density and excitation temperature distributions was performed under He pressure of 200 Torr. An influence of the possible shielding mechanisms responsible for the plasma absorption is discussed.

  19. Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.

    PubMed

    Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C

    2018-05-30

    High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.

  20. Laser ablation under different electron heat conduction models in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  1. Extreme ultraviolet interferometry of warm dense matter in laser plasmas.

    PubMed

    Gartside, L M R; Tallents, G J; Rossall, A K; Wagenaars, E; Whittaker, D S; Kozlová, M; Nejdl, J; Sawicka, M; Polan, J; Kalal, M; Rus, B

    2010-11-15

    We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).

  2. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  3. Atmospheric pressure arc discharge with ablating graphite anode

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  4. Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  5. Spectroscopy Measurements on Ablation Testing in High Enthalpy Plasma Flows

    DTIC Science & Technology

    2010-11-01

    sample as well as the recession rate. Further, the chemical composition of the free- stream and the surrounding gas layer in front of the sample...of the samples due to ablation (mass loss & surface recession ), different temperature measurements (surface & inside) and spectroscopic results...25 5 MEASUREMENT RESULTS AND DISCUSSIONS ................................................................ 26 5.1 MASS LOSS AND RECESSION

  6. Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Laroussi, M.; Kong, M. G.; Morfill, G.; Stolz, W.

    2012-05-01

    Foreword R. Satava and R. J. Barker; Part I. Introduction to Non-equilibrium Plasma, Cell Biology, and Contamination: 1. Introduction M. Laroussi; 2. Fundamentals of non-equilibrium plasmas M. Kushner and M. Kong; 3. Non-equilibrium plasma sources M. Laroussi and M. Kong; 4. Basic cell biology L. Greene and G. Shama; 5. Contamination G. Shama and B. Ahlfeld; Part II. Plasma Biology and Plasma Medicine: 6. Common healthcare challenges G. Isbary and W. Stolz; 7. Plasma decontamination of surfaces M. Kong and M. Laroussi; 8. Plasma decontamination of gases and liquids A. Fridman; 9. Plasma-cell interaction: prokaryotes M. Laroussi and M. Kong; 10. Plasma-cell interaction: eukaryotes G. Isbary, G. Morfill and W. Stolz; 11. Plasma based wound healing G. Isbary, G. Morfill and W. Stolz; 12. Plasma ablation, surgery, and dental applications K. Stalder, J. Woloszko, S. Kalghatgi, G. McCombs, M. Darby and M. Laroussi; Index.

  7. Studying the non-thermal plasma jet characteristics and application on bacterial decontamination

    NASA Astrophysics Data System (ADS)

    Al-rawaf, Ali F.; Fuliful, Fadhil Khaddam; Khalaf, Mohammed K.; Oudah, Husham. K.

    2018-04-01

    Non-thermal atmospheric-pressure plasma jet represents an excellent approach for the decontamination of bacteria. In this paper, we want to improve and characterize a non-thermal plasma jet to employ it in processes of sterilization. The electrical characteristics was studied to describe the discharge of the plasma jet and the development of plasma plume has been characterized as a function of helium flow rate. Optical emission spectroscopy was employed to detect the active species inside the plasma plume. The inactivation efficiency of non-thermal plasma jet was evaluated against Staphylococcus aureus bacteria by measuring the diameter of inhibition zone and the number of surviving cells. The results presented that the plasma plume temperature was lower than 34° C at a flow rate of 4 slm, which will not cause damage to living tissues. The diameter of inhibition zone is directly extended with increased exposure time. We confirmed that the inactivation mechanism was unaffected by UV irradiation. In addition, we concluded that the major reasons for the inactivation process of bacteria is because of the action of the reactive oxygen and nitrogen species which formed from ambient air, while the charged particles played a minor role in the inactivation process.

  8. Relation between Pressure Balance Structures and Polar Plumes from Ulysses High Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi

    2002-01-01

    Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to magnetic discontinuities in PBSs. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.

  9. Laser-produced plasmas in medicine

    NASA Astrophysics Data System (ADS)

    Gitomer, S. J.; Jones, R. D.

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. Those areas of laser medicine are examined in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. Examples are examined for the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  10. Laser-produced plasmas in medicine

    NASA Astrophysics Data System (ADS)

    Gitomer, Steven J.; Jones, Roger D.

    1990-06-01

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g. lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g. kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g. laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  11. Very low pressure high power impulse triggered magnetron sputtering

    DOEpatents

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  12. Acceleration and focusing of plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Martin Elias

    The acceleration of flowing plasmas is a fundamental problem that is useful in a wide variety of technological applications. We consider the problem from the perspective of plasma propulsion. Gridded ion thrusters and Hall thrusters are the most commonly used devices to create flowing plasma for space propulsion, but both suffer from fundamental limitations. Gridded ion sources create good quality beams in terms of energy spread and spatial divergence, but the Child-Langmuir law in the non-neutral acceleration region limits the maximum achievable current density. Hall thrusters avoid this limitation by accelerating ions in quasi-neutral plasma but, as a result, producemore » plumes with high spatial divergence and large energy spread. In addition the more complicated magnetized plasma in the Hall Thruster produces oscillations that can reduce the efficiency of the thruster by increasing electron transport to the anode. We present investigations of three techniques to address the fundamental limitations on the performance of each thruster. First, we propose a method to increase the time-averaged current density (and thus thrust density) produced by a gridded ion source above the Child-Langmuir limit by introducing time-varying boundary conditions. Next, we use an electrostatic plasma lens to focus the Hall thruster plume, and finally we develop a technique to suppress a prominent oscillation that degrades the performance of Hall thrusters. The technique to loosen the constraints on current density from gridded ion thrusters actually applies much more broadly to any space charge limited flow. We investigate the technique with a numerical simulation and by proving a theoretical upper bound. While we ultimately conclude that the approach is not suitable for space propulsion, our results proved useful in another area, providing a benchmark for research into the spontaneously time-dependent current that arises in microdiodes. Next, we experimentally demonstrate a novel

  13. Physics and medical applications of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2013-09-01

    Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.

  14. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  15. Plume characteristics of MPD thrusters: A preliminary examination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1989-01-01

    A diagnostics facility for MPD thruster plume measurements was built and is currently undergoing testing. The facility includes electrostatic probes for electron temperature and density measurements, Hall probes for magnetic field and current distribution mapping, and an imaging system to establish the global distribution of plasma species. Preliminary results for MPD thrusters operated at power levels between 30 and 60 kW with solenoidal applied magnetic fields show that the electron density decreases exponentially from 1x10(2) to 2x10(18)/cu m over the first 30 cm of the expansion, while the electron temperature distribution is relatively uniform, decreasing from approximately 2.5 eV to 1.5 eV over the same distance. The radiant intensity of the ArII 4879 A line emission also decays exponentially. Current distribution measurements indicate that a significant fraction of the discharge current is blown into the plume region, and that its distribution depends on the magnitudes of both the discharge current and the applied magnetic field.

  16. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    PubMed

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  17. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be

  18. A Numerical Study of the Non-Ideal Behavior, Parameters, and Novel Applications of an Electrothermal Plasma Source

    NASA Astrophysics Data System (ADS)

    Winfrey, A. Leigh

    Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An

  19. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  20. Deposition of high quality YBa2Cu3O(7-delta) thin films over large areas by pulsed laser ablation with substrate scanning

    NASA Technical Reports Server (NTRS)

    Davis, M. F.; Wosik, J.; Forster, K.; Deshmukh, S. C.; Rampersad, H. R.

    1991-01-01

    The paper describes thin films deposited in a system where substrates are scanned over areas up to 3.5 x 3.5 cm through the stationary plume of an ablated material defined by an aperture. These YBCO films are deposited on LaAlO3 and SrTiO3 substrates with the thickness of 90 and 160 nm. Attention is focused on the main features of the deposition system: line focusing of the laser beam on the target; an aperture defining the area of the plume; computerized stepper motor-driven X-Y stage translating the heated sampler holder behind the plume-defining aperture in programmed patterns; and substrate mounting block with uniform heating at high temperatures over large areas. It is noted that the high degree of uniformity of the properties in each film batch illustrates that the technique of pulsed laser deposition can be applied to produce large YBCO films of high quality.

  1. Mapping of plume deposits and surface composition on Enceladus

    NASA Astrophysics Data System (ADS)

    Nordheim, T. A.; Scipioni, F.; Cruikshank, D. P.; Clark, R. N.,; Hand, K. P.

    2017-01-01

    A major result of the Cassini mission was the discovery that the small mid-sized moon Enceladus is presently geological active[Dougherty et al., 2006; Porco et al., 2006; Spencer et al., 2006; Hansen et al., 2008]. This activity results in plumes of water vapor and ice emanating from a series of fractures ("Tiger Stripes") at the moon's South Pole. Some fraction of plume material escapes the moon's gravity and populates the E-ring as well as ultimately providing a source of fresh plasma in the Saturnian magnetosphere [Pontius and Hill, 2006; Kempf et al., 2010]. However, a significant portion of plume material is redeposited on Enceladus and thus provides a source of surface contaminants. By studying the near-infrared spectral signatures of these contaminants we may put new constraints on the composition of the plumes and, ultimately, their source, which is currently believed to be Enceladus's global sub-surface ocean [Iess et al., 2014]. Here we present preliminary results from our analysis of observations from the Visual and Infrared Mapping Spectrometer (VIMS) [Brown et al., 2005] onboard Cassini and mapping of plume deposits across the surface of Enceladus. We have investigated the global variation of the water ice Fresnel peak at 3.1 μm, which may be used as an indicator of ice crystallinity [Hansen & McCord, 2004; Jaumann et al., 2008; Newman et al., 2008]. We have also investigated the slope of the 1.11-2.25 μm spectral region, which serves as an indicator of water ice grain size for small grains (< 100 μm) as well as the presence of contaminants [e.g. Filacchione et al., 2010]. Finally, we have identified and mapped an absorption feature centered at 3.25 μm that may be related to organic contaminants, represented by the band depth of the fundamental C-H stretch [e.g. Cruikshank et al., 2014; Scipioni et al., 2014].

  2. Ablative and transport fractionation of trace elements during laser sampling of glass and copper

    NASA Astrophysics Data System (ADS)

    Outridge, P. M.; Doherty, W.; Gregoire, D. C.

    1997-12-01

    The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 10 4W cm -2 than at 0.62 × 10 4W cm -2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000° C exhibiting overall concentration increases of 20-1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50-100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.

  3. Formation of Plasma Around a Small Meteoroid: Simulation and Theory

    NASA Astrophysics Data System (ADS)

    Sugar, G.; Oppenheim, M. M.; Dimant, Y. S.; Close, S.

    2018-05-01

    High-power large-aperture radars detect meteors by reflecting radio waves off dense plasma that surrounds a hypersonic meteoroid as it ablates in the Earth's atmosphere. If the plasma density profile around the meteoroid is known, the plasma's radar cross section can be used to estimate meteoroid properties such as mass, density, and composition. This paper presents head echo plasma density distributions obtained via two numerical simulations of a small ablating meteoroid and compares the results to an analytical solution found in Dimant and Oppenheim (2017a, https://doi.org/10.1002/2017JA023960, 2017b, https://doi.org/10.1002/2017JA023963). The first simulation allows ablated meteoroid particles to experience only a single collision to match an assumption in the analytical solution, while the second is a more realistic simulation by allowing multiple collisions. The simulation and analytical results exhibit similar plasma density distributions. At distances much less than λT, the average distance an ablated particle travels from the meteoroid before a collision with an atmospheric particle, the plasma density falls off as 1/R, where R is the distance from the meteoroid center. At distances substantially greater than λT, the plasma density profile has an angular dependence, falling off as 1/R2 directly behind the meteoroid, 1/R3 in a plane perpendicular to the meteoroid's path that contains the meteoroid center, and exp[-1.5(R/λT2/3)]/R in front of the meteoroid. When used for calculating meteoroid masses, this new plasma density model can give masses that are orders of magnitude different than masses calculated from a spherically symmetric Gaussian distribution, which has been used to calculate masses in the past.

  4. Chromospheric and Coronal Structure of Polar Plumes. 1; Magnetic Structure and Radiative Energy Balance

    NASA Technical Reports Server (NTRS)

    Allen, Maxwell J.; Oluseyi, Hakeem M.; Walker, Arthur B. C.; Hoover, Richard B.; Barbee, Troy W., Jr.

    1997-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully launched from White Sands Missile Range, New Mexico, on May 13, 1991 at 19:05 UT. The telescope systems onboard the MSSTA obtained several full disk solar images in narrow bandpasses centered around strong soft X-ray, EUV, and FUV emission lines. Each telescope was designed to be sensitive to the coronal plasmas at a particular temperature, for seven temperatures ranging from 20,000 K to 4,000,000 K. We report here on the images obtained during the initial flight of the MSSTA, and on the chromospheric and coronal structure of polar plumes observed over both poles of the Sun. We have also co-aligned the MSSTA images with Kitt Peak magnetograms taken on the same day. We are able to positively identify the magnetic structures underlying the polar plumes we analyze as unipolar. We discuss the plume observations and present a radiative energy balance model derived from them.

  5. Simulation of Pellet Ablation

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  6. Experimental Investigation of the Electrothermal Instability on Planar Foil Ablation Experiments

    NASA Astrophysics Data System (ADS)

    Steiner, Adam; Patel, Sonal; Yager-Elorriaga, David; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.

    2014-10-01

    The electrothermal instability (ETI) is an important early-time physical effect on pulsed power foil ablation experiments due to its ability to seed the destructive magneto-Rayleigh-Taylor (MRT) instability. ETI occurs whenever electrical resistivity has temperature dependence; when resistivity increases with temperature, as with solid metal liners or foils, ETI forms striation structures perpendicular to current flow. These striations provide an initial perturbation for the MRT instability, which is the dominant late-time instability in planar foil ablations. The MAIZE linear transformer driver was used to drive current pulses of approximately 600 kA into 400 nm-thick aluminum foils in order to study ETI in planar geometry. Shadowgraph images of the aluminum plasmas were taken for multiple shots at various times within approximately 50 ns of current start. Fourier analysis extracted the approximate wavelengths of the instability structures on the plasma-vacuum interface. Surface metrology of pre-shot foils was performed to provide a comparison between surface roughness features and resulting plasma structure. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant # DGE 1256260.

  7. Mantle plumes and continental tectonics.

    PubMed

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  8. Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying

    2011-06-01

    Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.

  9. Dynamics and Deposits of Coignimbrite Plumes

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto

    2014-05-01

    Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the

  10. Numerical Simulations of Europa Hydrothermal Plumes

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Lenferink, E.

    2009-12-01

    The liquid water interiors of Europa and other icy moons of the outer solar system are likely to be driven by geothermal heating from the sea floor, leading to the development of buoyant hydrothermal plumes. These plumes potentially control icy surface geomorphology, and are of interest to astrobiologists. We have performed a series of simulations of these plumes using the MITGCM. We assume in this experiment that Europa's ocean is deep (of order 100 km) and unstratified, and that plume buoyancy is controlled by temperature, not composition. A series of experiments was performed to explore a limited region of parameter space, with ocean depth H ranging from 50 to 100 km deep, source heat flux Q between 1 and 10 GW, and values of the Coriolis parameter f between 30% and 90% of the Europa average value. As predicted by earlier work, the plumes in our simulations form narrow cylindrical chimneys (a few km across) under the influence of the Coriolis effect. These plumes broaden over time until they become baroclinically unstable, breaking up into cone-shaped eddies when they become 20-35 km in diameter; the shed eddies are of a similar size. Large-scale currents in the region of the plume range between 1.5 and 5 cm/s; temperature anomalies in the plume far from the seafloor are tiny, varying between 30 and 160 microkelvin. Variations in plume size, shape, speed, and temperature are in excellent agreement with previous laboratory tank experiments, and in rough agreement with theoretical predictions. Plume dynamics and geometry are controlled by a "natural Rossby number" which depends strongly on depth H and Coriolis parameter f, but only weakly on source heat flux Q. However, some specific theoretical predictions are not borne out by these simulations. The time elapsed between startup of the source and the beginning of eddy-shedding is much less variable than predicted; also, the plume temperature varies with ocean depth H when our theory says it should not. Both of

  11. Laser-produced plasmas in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitomer, S.J.; Jones, R.D.

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photodynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper the authors examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation), and in cardiology andmore » vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented, along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.« less

  12. Laser-produced plasmas in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitomer, S.J.; Jones, R.D.

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascularmore » surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included. 63 refs.« less

  13. Inter-plume aerodynamics for gasoline spray collapse

    DOE PAGES

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; ...

    2017-11-10

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  14. Inter-plume aerodynamics for gasoline spray collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  15. Plasma fuelling with cryogenic pellets in the stellarator TJ-II

    NASA Astrophysics Data System (ADS)

    McCarthy, K. J.; Panadero, N.; Velasco, J. L.; Combs, S. K.; Caughman, J. B. O.; Fontdecaba, J. M.; Foust, C.; García, R.; Hernández Sánchez, J.; Navarro, M.; Pastor, I.; Soleto, A.; the TJ-II Team

    2017-05-01

    Cryogenic pellet injection is a widely used technique for delivering fuel to the core of magnetically confined plasmas. Indeed, such systems are currently functioning on many tokamak, reversed field pinch and stellarator devices. A pipe-gun-type pellet injector is now operated on the TJ-II, a low-magnetic shear stellarator of the heliac type. Cryogenic hydrogen pellets, containing between 3  ×  1018 and 4  ×  1019 atoms, are injected at velocities between 800 and 1200 m s-1 from its low-field side into plasmas created and/or maintained in this device by electron cyclotron resonance and/or neutral beam injection heating. In this paper, the first systematic study of pellet ablation, particle deposition and fuelling efficiency is presented for TJ-II. From this, light-emission profiles from ablating pellets are found to be in reasonable agreement with simulated pellet ablation profiles (created using a neutral gas shielding-based code) for both heating scenarios. In addition, radial offsets between recorded light-emission profiles and particle deposition profiles provide evidence for rapid outward drifting of ablated material that leads to pellet particle loss from the plasma. Finally, fuelling efficiencies are documented for a range of target plasma densities (~4  ×  1018-  ~2  ×  1019 m-3). These range from ~20%-  ~85% and are determined to be sensitive to pellet penetration depth. Additional observations, such as enhanced core ablation, are discussed and planned future work is outlined.

  16. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    NASA Astrophysics Data System (ADS)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  17. Modeling and observations of ULF waves trapped in a plasmaspheric density plume

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Zhang, S.; Foster, J. C.; Shi, Q.; Zong, Q. G.; Rankin, R.

    2017-12-01

    In order for ULF waves to effectively energise radiation belt electrons by drift-resonance, wave power must be significant in regions within the magnetosphere where the ULF wave phase propagation and electron drift directions are roughly aligned. For waves launched along the dayside magnetopause, such a region would be located in the afternoon - dusk sector of the inner magnetosphere. During periods of storm activity and enhanced convection, the plasma density in this region is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed, and alters the propagation of ULF waves launched from the magnetopause. It can therefore be expected that the accessibility of ULF wave power for radiation belt energisation is sensitively dependent on the recent history of magnetospheric convection, and the stage of development of the PDP. This is investigated using a 3D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (Volland - Stern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic-field day/night asymmetry, and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance (FLR) location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside. This may explain satellite observations of the appearance of ULF wave activity within localized density enhancements associated with a PDP. Such an example, made by THEMIS following a

  18. Temporal and spatial profiles of emission intensities in atmospheric pressure helium plasma jet driven by microsecond pulse: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Zhang, Cheng; Yan, Ping

    2015-09-28

    A needle-circular electrode structure helium plasma jet driven by microsecond pulsed power is studied. Spatially resolved emission results show that the emission intensity of He(3{sup 3}S{sub 1}) line decreases monotonically along the axial direction, while those of N{sub 2}(C{sup 3}Π{sub u}), N{sub 2}{sup +}(B{sup 2}∑{sup +}{sub u}), and O(3p{sup 5}P) reach their maxima at 3 cm, 2.6 cm, and 1.4 cm, respectively. The plasma plume of the four species shows different characteristics: The N{sub 2} emission plume travels at a fast speed along the entire plasma jet; the N{sub 2}{sup +} emission plume is composed of a bright head and relatively weak tailmore » and travels a shorter distance than the N{sub 2} emission plume; the He emission plume travels at a slower speed for only a very short distance; propagation of the O emission plume is not observed. Results of calculation of radiation fluxes emitted by positive streamers propagating along helium plasma jets are presented. It is shown, in agreement with the results of the present experiment and with other available experimental data, that the intensities of radiation of N{sub 2}(C{sup 3}Π{sub u}) molecules and He(3{sup 3}S{sub 1}) atoms vary with time (along the plasma jet) quite differently. The factors resulting in this difference are discussed.« less

  19. Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.

    We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling alsomore » allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.« less

  20. Mantle plumes in the vicinity of subduction zones

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.

    2016-11-01

    We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.

  1. Cluster formation in laser-induced ablation and evaporation of solids observed by laser ionization time-of-flight mass spectrometry and scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tench, R. J.; Balooch, M.; Bernardez, L.; Allen, Mike J.; Siekhaus, W. J.; Olander, D. R.; Wang, W.

    1990-04-01

    Laser ionization time-of-flight mass analysis (LIMA) used pulses (5ns) of a frequency-quadrupled Nd-YAG laser (266 nm) focused onto spots of 4 to 100 microns diameter to ablate material, and a reflectron time of flight tube to mass-analyze the plume. The observed mass spectra for Si, Pt, SiC, and UO 2 varied in the distribution of ablation products among atoms, molecules and clusters, depending on laser power density and target material. Cleaved surfaces of highly oriented pyrolytic graphite (HOPG) positioned at room temperature either 10 cm away from materials ablated at 10(exp -5) Torr by 1 to 3 excimer laser (308 nm) pulses of 20 ns duration or 1 m away from materials vaporized at 10(exp -8) Torr by 10 Nd-Glass laser pulses of 1 ms duration were analyzed by Scanning Tunneling Microscopy (STM) in air with angstrom resolution. Clusters up to 30 A in diameter were observed.

  2. MISR Aoba Volcano Plume

    Atmospheric Science Data Center

    2018-06-07

    ... in ongoing eruptions using parallax. View the MISR Active Aerosol Plume-Height (AAP) Project paper to see peak altitude and settling ... R. Kahn/NASA GSFC Access Project Paper: MISR Active Aerosol Plume-Height (AAP) Project Access and Order MISR Data and ...

  3. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  4. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  5. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown

    PubMed Central

    Mirza, Inam; Bulgakova, Nadezhda M.; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš

    2016-01-01

    In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses. PMID:27991543

  6. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown

    NASA Astrophysics Data System (ADS)

    Mirza, Inam; Bulgakova, Nadezhda M.; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš

    2016-12-01

    In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.

  7. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown.

    PubMed

    Mirza, Inam; Bulgakova, Nadezhda M; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš

    2016-12-19

    In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.

  8. Plume Detection and Plume Top Height Estimation using SLSTR

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2017-04-01

    We present preliminary results on ash and desert dust plume detection and plume top height estimates based on satellite data from the Sea and Land Surface Temperature Radiometer (SLSTR) aboard Sentinel-3, launched in 2016. The methods are based on the previously developed AATSR Correlation Method (ACM) height estimation algorithm, which utilized the data of the preceding similar instrument, Advanced Along Track Scanning Radiometer (AATSR). The height estimate is based on the stereo-viewing capability of SLSTR, which allows to determine the parallax between the satellite's 55° backward and nadir views, and thus the corresponding height. The ash plume detection is based on the brightness temperature difference between between thermal infrared (TIR) channels centered at 11 and 12 μm, which show characteristic signals for both desert dust and ash plumes. The SLSTR instrument provides a unique combination of dual-view capability and a wavelength range from visible to thermal infrared, rendering it an ideal instrument for this work. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with other volcanic ash and desert dust retrieval methods and dispersion models. The current work is being carried out as part of the H2020 project EUNADICS-AV ("European Natural Disaster Coordination and Information System for Aviation"), which started in October 2016.

  9. Comparison of jet plume shape predictions and plume influence on sonic boom signature

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.; Melson, N. Duane

    1992-01-01

    An Euler shock-fitting marching code yields good agreement with semiempirically determined plume shapes, although the agreement decreases somewhat with increasing nozzle angle and the attendant increase in the nonisentropic nature of the flow. Some calculations for the low boom configuration with a simple engine indicated that, for flight at altitudes above 60,000 feet, the plume effect is dominant. This negates the advantages of a low boom design. At lower altitudes, plume effects are significant, but of the order that can be incorporated into the low boom design process.

  10. Fast surface temperature measurement of Teflon propellant-in-pulsed ablative discharges using HgCdTe photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G.

    2006-10-01

    High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon™ as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to ˜200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.

  11. Hall Thruster Plume Measurements On-Board the Russian Express Satellites

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jankovsky, Robert; Elliott, Frederick; Mikellides, Ioannis; Jongeward, Gary; Allen, Doug

    2001-01-01

    The operation of North-South and East-West station-keeping Hall thruster propulsion systems on-board two Russian Express-A geosynchronous communication satellites were investigated through a collaborative effort with the manufacturer of the spacecraft. Over 435 firings of 16 different thrusters with a cumulative run time of over 550 hr were reported with no thruster failures. Momentum transfer due to plume impingement was evaluated based on reductions in the effective thrust of the SPT-100 thrusters and induced disturbance torques determined based on attitude control system data and range data. Hall thruster plasma plume effects on the transmission of C-band and Ku-band communication signals were shown to be negligible. On-orbit ion current density measurements were made and subsequently compared to predictions and ground test data. Ion energy, total pressure, and electric field strength measurements were also measured on-orbit. The effect of Hall thruster operation on solar array performance over several months was investigated. A subset of these data is presented.

  12. Enceladus Plume Movie

    NASA Image and Video Library

    2005-12-06

    Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. The sensational discovery of active eruptions on a third outer solar system body (Io and Triton are the others) is surely one of the great highlights of the Cassini mission. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). Images taken in January 2005 appeared to show the plume emanating from the fractured south polar region of Enceladus, but the visible plume was only slightly brighter than the background noise in the image, because the lighting geometry was not suitable to reveal the true details of the feature. This potential sighting, in addition to the detection of the icy particles in the plume by other Cassini instruments, prompted imaging scientists to target Enceladus again with exposures designed to confirm the validity of the earlier plume sighting. The new views show individual jets, or plume sources, that contribute to the plume with much greater visibility than the earlier images. The full plume towers over the 505-kilometer-wide (314-mile) moon and is at least as tall as the moon's diameter. The four 10-second exposures were taken over the course of about 36 minutes at approximately 12 minute intervals. Enceladus rotates about 7.5 degrees in longitude over the course of the frames, and most of the observed changes in the appearances of the jets is likely attributable to changes in the viewing geometry. However, some of the changes may be due to actual variation in the flow from the jets on a time scale of tens of minutes. Additionally, the shift of the sources seen here should provide information about their location in front of and behind the visible limb (edge) of Enceladus. These images were obtained using the Cassini spacecraft narrow-angle camera at

  13. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  14. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosionmore » stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.« less

  15. Assessment of analytical techniques for predicting solid propellant exhaust plumes and plume impingement environments

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

    1977-01-01

    An analysis of experimental nozzle, exhaust plume, and exhaust plume impingement data is presented. The data were obtained for subscale solid propellant motors with propellant Al loadings of 2, 10 and 15% exhausting to simulated altitudes of 50,000, 100,000 and 112,000 ft. Analytical predictions were made using a fully coupled two-phase method of characteristics numerical solution and a technique for defining thermal and pressure environments experienced by bodies immersed in two-phase exhaust plumes.

  16. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  17. Theoretical and experimental analysis of the impact on ablation depth of microchannel milling using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Lei, Chen; Pan, Zhang; Jianxiong, Chen; Tu, Yiliu

    2018-04-01

    The plasma brightness cannot be used as a direct indicator of ablation depth detection by femtosecond laser was experimentally demonstrated, which led to the difficulty of depth measurement in the maching process. The tests of microchannel milling on the silicon wafer were carried out in the micromachining center in order to obtain the influences of parameters on the ablation depth. The test results showed that the defocusing distance had no significant impact on ablation depth in LAV effective range. Meanwhile, the reason of this was explained in this paper based on the theoretical analysis and simulation calculation. Then it was proven that the ablation depth mainly depends on laser fluence, step distance and scanning velocity. Finally, a research was further carried out to study the laser parameters which relate with the microchannel ablation depth inside the quartz glass for more efficiency and less cost in processing by femtosecond laser.

  18. Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiyuan; Gao, Hua; Gao, Lu; Xing, Jie

    2014-11-01

    Acoustic waves generated in nanosecond pulsed-laser ablation of a solid target in both air and water-confined environments were measured experimentally. It was found that the amplitude of the acoustic wave tended to decrease with an increase in water thickness. The waves were analyzed by means of fast Fourier transform. It was shown that there are several frequency components in the acoustic waves with the dominant frequency shifting from high frequency to low frequency as the thickness of the water layer increases. Furthermore, strong acoustic pressure led to enhancement of the coupling of the laser energy to the target in laser plasma propulsion.

  19. Solution-based calibration strategy for laser ablation-inductively coupled plasma-mass spectrometry using desolvating nebulizer system

    NASA Astrophysics Data System (ADS)

    Zhang, Guoxia; Li, Qing; Zhu, Yan; Wang, Zheng

    2018-07-01

    An additional quantification strategy using a desolvating nebulizer system (DNS) for solution-based calibration was developed. For quantitative analysis, laser ablation (LA) and DNS-generated aerosols were coupled using a "Y" connector and introduced into the inductively coupled plasma (ICP). These aerosols were also observed by scanning electron microscopy following collection on a silicon chip. Internal standards (108Ag, 64Cu, 89Y) were used to correct for the different aerosol transport efficiencies between the DNS and LA. The correlation coefficients of the calibration curves for all elements ranged from 0.9986 to 0.9999. Standard reference materials (NIST 610-616 and GBW08407-08411) were used to demonstrate the accuracy and precision of the method. The results were in good agreement with certified values, and the relative standard deviation (RSD) of most elements was <3%. The limits of detection (LODs) for 50Cr, 55Mn, 59Co, 60Ni, 66Zn, 89Y, 110Cd, 139La, 140Ce, 146Nd, 147Sm, 157Gd, 163Dy, 166Er, and 208Pb were 23, 3, 3, 19, 31, 4, 12, 0.4, 0.9, 0.1, 0.2, 2, 0.3, 0.4, and 21 ng/g, respectively, which were significantly better than those obtained by other methods. Further, this approach was applied for the analysis of multiple elements in biological tissues, and the results were in good agreement with those obtained using solution-based inductively coupled plasma-mass spectrometry (ICP-MS).

  20. MISR Observations of Etna Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-01-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.