Sample records for ablation zone size

  1. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

    PubMed

    Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L

    2009-09-01

    To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.

  2. Hepatic Microwave Ablation Zone Size: Correlation with Total Energy, Net Energy, and Manufacturer-Provided Chart Predictions.

    PubMed

    Shyn, Paul B; Bird, Jeffery R; Koch, R Marie; Tatli, Servet; Levesque, Vincent M; Catalano, Paul J; Silverman, Stuart G

    2016-09-01

    To determine whether total energy (TE) reaching the microwave (MW) applicator or net energy (NE) exiting the applicator (after correcting for reflectivity) correlates better with hepatic MW ablation zone dimensions than manufacturer-provided chart predictions. Single-applicator, nonoverlapping ablations of 93 liver tumors (0.7-5.9 cm) were performed in 52 adult patients. TE and NE were recorded for each ablation. Long axis diameter (LAD), short axis diameter (SAD), and volume (V) of each ablation zone were measured on magnetic resonance imaging or computed tomography after the procedure and retrospectively compared with TE; NE; and manufacturer-provided chart predictions of LAD, SAD, and V using correlation and regression analyses. For treated tumors, mean (± SD) TE and NE were 49.8 kJ (± 22.7) and 36.4 kJ (± 19.4). Mean LAD, SAD, and V were 5.8 cm (± 1.3), 3.7 cm (± 0.8), and 44.1 cm(3) (± 25.4). Correlation coefficients (95% confidence interval) with LAD, SAD, and V were 0.46 (0.28, 0.61), 0.52 (0.36, 0.66), and 0.52 (0.36, 0.66) for TE; 0.42 (0.24, 0.58), 0.55 (0.39, 0.68), and 0.53 (0.36, 0.66) for NE; and 0.51 (0.34, 0.65), 0.63 (0.49, 0.74), and 0.60 (0.45, 0.73) for chart predictions. Using regression analysis and controlling for TE, SAD was 0.34 cm larger in patients with cirrhosis than in patients without cirrhosis. Correcting for reflectivity did not substantially improve correlation of energy values with MW ablation zone size parameters and did not outperform manufacturer-provided chart predictions. Correlations were moderate and variable using all methods. The results suggest a disproportionate influence of tissue factors on MW ablation results. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  3. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  4. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    PubMed

    Wu, Po-Hung; Brace, Chris L

    2016-08-21

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  5. Multiple-electrode radiofrequency ablation: simultaneous production of separate zones of coagulation in an in vivo porcine liver model.

    PubMed

    Laeseke, Paul F; Sampson, Lisa A; Haemmerich, Dieter; Brace, Chris L; Fine, Jason P; Frey, Tina M; Winter, Thomas C; Lee, Fred T

    2005-12-01

    was able to simultaneously create as many as three separate ablation zones of equivalent size compared with single-electrode controls. This system would allow physicians to simultaneously treat multiple tumors, substantially reducing procedure time and anesthesia risk.

  6. Efficacy and Safety of Radiofrequency Ablation for Focal Hepatic Lesions Adjacent to Gallbladder: Reconfiguration of the Ablation Zone through Probe Relocation and Ablation Time Reduction.

    PubMed

    Choi, In Young; Kim, Pyo Nyun; Lee, Sung Gu; Won, Hyung Jin; Shin, Yong Moon

    2017-10-01

    To evaluate the safety and efficacy of radiofrequency (RF) ablation for treatment of focal hepatic lesions adjacent to the gallbladder with electrode relocation and ablation time reduction. Thirty-nine patients who underwent RF ablation for focal hepatic lesions adjacent to the gallbladder (≤ 10 mm) were evaluated retrospectively from January 2011 to December 2014 (30 men and 9 women; age range, 51-85 y; mean age, 65 y). Of 36 patients with hepatocellular carcinoma, 3 had a second treatment for recurrence (mean tumor size, 15 mm ± 6). Patients were divided into 2 subgroups based on lesion distance from the gallbladder: nonabutting (> 5 mm; n = 19) and abutting (≤ 5 mm; n = 20). Electrodes were inserted parallel to the gallbladder through the center of a tumor in the nonabutting group and through the center of the expected ablation zone between a 5-mm safety zone on the liver side and the gallbladder in the abutting group. Ablation time was decreased in proportion to the transverse diameter of the expected ablation zone. Technical success and technical effectiveness rates were 89.7% and 97.4%, respectively, with no significant differences between groups (P = 1.00). Local tumor progression was observed in 3 patients (1 in the nonabutting group and 2 in the abutting group; P = 1.00). There were no major complications. The gallbladder was thickened in 10 patients, with no significant difference between groups (P = .72). Biloma occurred in 1 patient in the nonabutting group. RF ablation with electrode relocation and reduction of ablation time can be a safe and effective treatment for focal hepatic lesions adjacent to the gallbladder. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  7. Noninvasive microwave ablation zone radii estimation using x-ray CT image analysis.

    PubMed

    Weiss, Noam; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Azhari, Haim

    2016-08-01

    The aims of this study were to noninvasively and automatically estimate both the radius of the ablated liver tissue and the radius encircling the treated zone, which also defines where the tissue is definitely untreated during a microwave (MW) thermal ablation procedure. Fourteen ex vivo bovine fresh liver specimens were ablated at 40 W using a 14 G microwave antenna, for durations of 3, 6, 8, and 10 min. The tissues were scanned every 5 s during the ablation using an x-ray CT scanner. In order to estimate the radius of the ablation zone, the acquired images were transformed into a polar presentation by displaying the Hounsfield units (HU) as a function of angle and radius. From this polar presentation, the average HU radial profile was analyzed at each time point and the ablation zone radius was estimated. In addition, textural analysis was applied to the original CT images. The proposed algorithm identified high entropy regions and estimated the treated zone radius per time. The estimated ablated zone radii as a function of treatment durations were compared, by means of correlation coefficient and root mean square error (RMSE) to gross pathology measurements taken immediately post-treatment from similarly ablated tissue. Both the estimated ablation radii and the treated zone radii demonstrated strong correlation with the measured gross pathology values (R(2) ≥ 0.89 and R(2) ≥ 0.86, respectively). The automated ablation radii estimation had an average discrepancy of less than 1 mm (RMSE = 0.65 mm) from the gross pathology measured values, while the treated zone radii showed a slight overestimation of approximately 1.5 mm (RMSE = 1.6 mm). Noninvasive monitoring of MW ablation using x-ray CT and image analysis is feasible. Automatic estimations of the ablation zone radius and the radius encompassing the treated zone that highly correlate with actual ablation measured values can be obtained. This technique can therefore potentially be used to obtain real time

  8. 2D shear-wave ultrasound elastography (SWE) evaluation of ablation zone following radiofrequency ablation of liver lesions: is it more accurate?

    PubMed Central

    Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H

    2016-01-01

    Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p < 0.001, and 0.856, p = 0.002, respectively) with those by gross pathological specimen, whereas both conventional ultrasound and SE underestimated the volume of the whole ablation zone. The SWV values of the central necrotic zone, lateral necrotic zone, transitional zone and unablated liver parenchyma were 7.54–8.03 m s−1, 5.13–5.28 m s−1, 3.31–3.53 m s−1 and 2.11–2.21 m s−1, respectively (p < 0.001 for all the comparisons). The SWV value for each ablation zone did not change significantly at different observation times within an hour after RFA

  9. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  10. Percutaneous Radiofrequency Ablation with Multiple Electrodes for Medium-Sized Hepatocellular Carcinomas

    PubMed Central

    Lee, Jung; Yoon, Jung-Hwan; Lee, Jae Young; Kim, Se Hyung; Lee, Jeong Eun; Han, Joon Koo; Choi, Byung Ihn

    2012-01-01

    Objective To prospectively evaluate the safety and short-term therapeutic efficacy of switching monopolar radiofrequency ablation (RFA) with multiple electrodes to treat medium-sized (3.1-5.0 cm), hepatocellular carcinomas (HCC). Materials and Methods In this prospective study, 30 patients with single medium-sized HCCs (mean, 3.5 cm; range, 3.1-4.4 cm) were enrolled. The patients were treated under ultrasonographic guidance by percutaneous switching monopolar RFA with a multichannel RF generator and two or three internally cooled electrodes. Contrast-enhanced CT scans were obtained immediately after RFA, and the diameters and volume of the ablation zones were then measured. Follow-up CT scans were performed at the first month after ablation and every three months thereafter. Technical effectiveness, local progression and remote recurrence of HCCs were determined. Results There were no major immediate or periprocedural complications. However, there was one bile duct stricture during the follow-up period. Technical effectiveness was achieved in 29 of 30 patients (97%). The total ablation time of the procedures was 25.4 ± 8.9 minutes. The mean ablation volume was 73.8 ± 56.4 cm3 and the minimum diameter was 4.1 ± 7.3 cm. During the follow-up period (mean, 12.5 months), local tumor progression occurred in three of 29 patients (10%) with technical effectiveness, while new HCCs were detected in six of 29 patients (21%). Conclusion Switching monopolar RFA with multiple electrodes in order to achieve a sufficient ablation volume is safe and efficient. This method also showed relatively successful therapeutic effectiveness on short-term follow up for the treatment of medium-sized HCCs. PMID:22247634

  11. Pleural Puncture that Excludes the Ablation Zone Decreases the Risk of Pneumothorax after Percutaneous Microwave Ablation in Porcine Lung

    PubMed Central

    Lee, Kyungmouk Steve; Takaki, Haruyuki; Yarmohammadi, Hooman; Srimathveeravalli, Govindarajan; Luchins, Kerith; Monette, Sébastien; Nair, Sreejit; Kishore, Sirish; Erinjeri, Joseph P.

    2017-01-01

    Purpose To test the hypothesis that the geometry of probe placement with respect to the pleural puncture site affects the risk of pneumothorax after microwave (MW) ablation in the lung. Materials and Methods Computed tomography–guided MW ablation of the lung was performed in 8 swine under general anesthesia and mechanical ventilation. The orientation of the 17-gauge probe was either perpendicular (90°) or parallel (< 30°) with respect to the pleural puncture site, and the ablation power was 30 W or 65 W for 5 minutes. After MW ablation, swine were euthanized, and histopathologic changes were assessed. Frequency and factors affecting pneumothorax were evaluated by multivariate analysis. Results Among 62 lung MW ablations, 13 (21%) pneumothoraces occurred. No statistically significant difference was noted in the rate of pneumothorax between the perpendicular and the parallel orientations of the probe (31% vs 14%; odds ratio [OR], 2.8; P = .11). The pneumothorax rate was equal for 65-W and 30-W ablation powers (21% and 21%; OR, 1.0; P = .94). Under multivariate analysis, 2 factors were independent positive predictors of pneumothorax: ablation zone inclusive of pleural insertion point (OR, 7.7; P = .02) and time since intubation (hours) (OR, 2.7; P = .02). Conclusions Geometries where the pleural puncture site excluded the ablation zone decreased pneumothorax in swine undergoing MW ablation in the lung. Treatment planning to ensure that the pleural puncture site excludes the subsequent ablation zone may reduce the rate of pneumothorax in patients undergoing MW ablation in the lung. PMID:25753501

  12. Computed Tomography Assessment of Ablation Zone Enhancement in Patients With Early-Stage Lung Cancer After Stereotactic Ablative Radiotherapy.

    PubMed

    Moore, William; Chaya, Yair; Chaudhry, Ammar; Depasquale, Britney; Glass, Samantha; Lee, Susan; Shin, James; Mikhail, George; Bhattacharji, Priya; Kim, Bong; Bilfinger, Thomas

    2015-01-01

    Stereotactic ablative radiotherapy (SABR) offers a curative treatment for lung cancer in patients who are marginal surgical candidates. However, unlike traditional surgery the lung cancer remains in place after treatment. Thus, imaging follow-up for evaluation of recurrence is of paramount importance. In this retrospective designed Institutional Review Board-approved study, follow-up contrast-enhanced computed tomography (CT) exams were performed on sixty one patients to evaluate enhancement pattern in the ablation zone at 1, 3, 6, and 12 months after SABR. Eleven patients had recurrence within the ablation zone after SABR. The postcontrast enhancement in the recurrence group showed a washin and washout phenomenon, whereas the radiation-induced lung injury group showed continuous enhancement suggesting an inflammatory process. The textural feature of the ablation zone of enhancement and perfusion as demonstrated in computed tomography nodule enhancement may allow early differentiation of recurrence from radiation-induced lung injury in patients' status after SABR or primary lung cancer.

  13. Factors affecting tumor ablation during high intensity focused ultrasound treatment.

    PubMed

    Hassanuddin, Aizan; Choi, Jun-Ho; Seo, Dong-Wan; Ryu, Choong Heon; Kim, Su-Hui; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan

    2014-07-01

    High intensity focused ultrasound (HIFU) utilizes a targeted extracorporeal focused ultrasound beam to ablate neoplastic pancreatic tissue. We used an in vitro model to examine the effects of bone, metallic stents, plastic stents, metal plates, and cyst-like lesions on HIFU treatment. HIFU was delivered to the phantom models implanted with foreign bodies, and the location, shape, and size of the ablated zones were evaluated. Bone and metallic plates reflected the ultrasound beam, shifting the ablation zone from the focal zone to the prefocal area. In the phantoms containing metal stent, plastic stent, and cyst, most of the ablative energy was reflected to the prefocal area by the surface, with the remainder penetrating through the phantom. The area of the ablated margins was significantly larger in size and volume than the intended focal ablation zone. During HIFU therapy, artificial or anatomical barriers could affect the direction of the ultrasound beams, shifting the ablation zone from the focal area to a prefocal site with a larger than expected ablation zone. These factors should be considered prior to HIFU treatment for pancreatic tumors because they could limit ablation success, in addition to causing complications.

  14. Chronological changes of radiofrequency ablation zone in rabbit liver: an in vivo correlation between gross pathology and histopathology

    PubMed Central

    Song, Kyoung D; Rhim, Hyunchul; Kang, Tae Wook; Cha, Dong Ik; Yang, Jehoon

    2017-01-01

    Objective: To examine the gross pathology and histopathology of ablation zones created from radiofrequency (RF) ablation and to correlate their chronological changes. Methods: A total of 48 in vivo ablation zones (16 rabbit livers) were obtained immediately after and also 30 min, 1 h and 2 h after RF ablation and were subjected to haematoxylin and eosin (H&E) staining, nicotinamide adenine dinucleotide (NADH) diaphorase staining, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. Chronological changes in gross pathology and histopathology were evaluated and correlated with each other. Results: Peripheral red zones on gross pathology correlated with peripheral zones on H&E staining, lightly stained peripheral zones on NADH staining and peripheral positive zones on TUNEL staining. Central white zones on gross pathology correlated with combined central and border zones on H&E staining, central negative zones on NADH staining and combined central-positive and middle-negative zones on TUNEL staining. Boundary visibility between central white and peripheral red zones on gross pathology was significantly higher at 1 and 2 h than immediately after RF ablation. As time increased after RF ablation, visibility of the border zone on H&E staining and the grade of positively stained hepatocytes in the peripheral zone on TUNEL staining increased. Conclusion: Chronological changes in gross pathology of RF ablation zones correlated well with histopathology. The boundary between the central white and peripheral red zones tended to become clear at 1 h after RF ablation. Advances in knowledge: (1) RF ablation zones show chronological changes on gross pathology and histopathology. (2) Gross pathology and histopathology correlate well with each other. PMID:28139942

  15. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna--experimental and clinical studies.

    PubMed

    Kuang, Ming; Lu, Ming D; Xie, Xiao Y; Xu, Hui X; Mo, Li Q; Liu, Guang J; Xu, Zuo F; Zheng, Yan L; Liang, Jin Y

    2007-03-01

    To prospectively investigate whether the ablation zone induced with microwaves could be increased by delivering greater energy with a cooled-shaft antenna. All studies were animal care and ethics committee approved. Written informed consent was obtained from all patients. Microwave ablation was performed by using a cooled-shaft antenna in 48 ex vivo and 12 in vivo experiments with porcine livers. The coagulation diameters achieved in different microwave ablation parameter groups (60-90 W for 5-25 minutes) were compared. Ninety patients (78 men, 12 women; mean age, 53 years; age range, 20-82 years) with 133 0.8-8.0-cm (mean, 2.7 cm +/- 1.5 [standard deviation]) primary or metastatic liver cancers were treated with the same microwave ablation technique. Complete ablation (CA) and local tumor progression (LTP) rates were determined. Generalized estimating equations were used to compare differences in tumor size, ablation zone diameter, and CA and LTP rates between different patient subgroups. In the ex vivo livers, in vivo livers, and liver cancers, one application of microwave energy with 80 W for 25 minutes produced mean coagulation diameters of 5.6 x 7.4 cm, 3.5 x 5.9 cm, and 3.6 x 5.0 cm, respectively. Skin burn was not observed. CA rates in small (ablation zones in ex vivo and in vivo livers and in liver cancers. Effective local tumor control was achieved during one microwave ablation session. (c) RSNA, 2007.

  16. Non-coaxial-based microwave ablation antennas for creating symmetric and asymmetric coagulation zones

    NASA Astrophysics Data System (ADS)

    Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader

    2018-06-01

    We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.

  17. A dual-slot microwave antenna for more spherical ablation zones: ex vivo and in vivo validation.

    PubMed

    Chiang, Jason; Hynes, Kieran A; Bedoya, Mariajose; Brace, Christopher L

    2013-08-01

    To compare the performance of a microwave antenna design with two annular slots to that of a monopole antenna design in creating a more spherical ablation zone. Animal care and use committee approval was obtained before in vivo experiments were performed. Microwave ablation zones were created by using dual-slot and monopole control antennas for 2, 5, and 10 minutes at 50 and 100 W in ex vivo bovine livers. Dual-slot and monopole antennas were then used to create ablation zones at 100 W for 5 minutes in in vivo porcine livers, which also underwent intraprocedural imaging. Ablation diameter, length, and aspect ratio (diameter ÷ length) were measured at gross pathologic examination and compared at each combination of power and time by using the paired Student t test. A P value less than .05 was considered to indicate a significant difference. Aspect ratios closer to 1 reflected a more spherical ablation zone. The dual-slot antenna created ablation zones with a higher aspect ratio at 50 W for 2 minutes (0.75 vs 0.53, P = .003) and 5 minutes (0.82 vs 0.63, P = .053) than did the monopole antenna in ex vivo liver tissue, although the difference was only significant at 2 minutes. At 100 W, the dual-slot antenna had a significantly higher aspect ratio at 2 minutes (0.52 vs 0.42, P = .002). In vivo studies showed significantly higher aspect ratios at 100 W for 5 minutes (0.63 vs 0.53, respectively, P = .029). Intraprocedural imaging confirmed this characterization, showing higher rates of ablation zone growth and heating primarily at the early stages of the ablation procedure when the dual-slot antenna was used. The dual-slot microwave antenna created a more spherical ablation zone than did the monopole antenna both in vivo and ex vivo liver tissue. Greater control over power delivery can potentially extend the advantages of the dual-slot antenna design to higher power and longer treatment times.

  18. Interactive Volumetry Of Liver Ablation Zones.

    PubMed

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-20

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  19. Interactive Volumetry Of Liver Ablation Zones

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  20. The Influence of the Aspheric Profiles for Transition Zone on Optical Performance of Human Eye After Conventional Ablation

    NASA Astrophysics Data System (ADS)

    Fang, L.

    2014-12-01

    The analysis in the impact of transition zone on the optical performance of human eye after laser refractive surgery is important for improving visual correction technology. By designing the ablation profiles of aspheric transition zone and creating the ablation profile for conventional refractive surgery in optical zone, the influence of aspheric transition zone on residual aberrations was studied. The results indicated that the ablation profiles of transition zone had a significant influence on the residual wavefront aberrations. For a hyperopia correction, the profile #9 shows a larger induced coma and spherical aberration when the translation of the centre of pupil remains constant. However, for a myopia astigmatism correction, the induced coma and spherical aberration in profile #1 shows relatively larger RMS values than those in other profiles. Therefore, the residual higher order aberrations may be decreased by optimizing ablation profiles of transition zone, but they cannot be eliminated. In order to achieve the best visual performance, the design of ablation pattern of transition zone played a crucial role.

  1. Creation of short microwave ablation zones: in vivo characterization of single and paired modified triaxial antennas.

    PubMed

    Lubner, Meghan G; Ziemlewicz, Tim J; Hinshaw, J Louis; Lee, Fred T; Sampson, Lisa A; Brace, Christopher L

    2014-10-01

    To characterize modified triaxial microwave antennas configured to produce short ablation zones. Fifty single-antenna and 27 paired-antenna hepatic ablations were performed in domestic swine (N = 11) with 17-gauge gas-cooled modified triaxial antennas powered at 65 W from a 2.45-GHz generator. Single-antenna ablations were performed at 2 (n = 16), 5 (n = 21), and 10 (n = 13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n = 7 and n = 8, respectively) and 10 minutes (n = 7 and n = 5, respectively). Mean transverse width, length, and aspect ratio of sectioned ablation zones were measured and compared. For single antennas, mean ablation zone lengths were 2.9 cm ± 0.45, 3.5 cm ± 0.55, and 4.2 cm ± 0.40 at 2, 5, and 10 minutes, respectively. Mean widths were 1.8 cm ± 0.3, 2.0 cm ± 0.32, and 2.5 cm ± 0.25 at 2, 5, and 10 minutes, respectively. For paired antennas, mean length at 5 minutes with 1-cm and 2-cm spacing and 10 minutes with 1-cm and 2-cm spacing was 4.2 cm ± 0.9, 4.9 cm ± 1.0, 4.8 cm ± 0.5, and 4.8 cm ± 1.3, respectively. Mean width was 3.1 cm ± 1.0, 4.4 cm ± 0.7, 3.8 cm ± 0.4, and 4.5 cm ± 0.7, respectively. Paired-antenna ablations were more spherical (aspect ratios, 0.72-0.79 for 5-10 min) than single-antenna ablations (aspect ratios, 0.57-0.59). For paired-antenna ablations, 1-cm spacing appeared optimal, with improved circularity and decreased clefting compared with 2-cm spacing (circularity, 0.85 at 1 cm, 0.78 at 2 cm). Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension than single antenna ablations, with 1-cm spacing optimal for confluence of the ablation zone. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  2. Interactive Volumetry Of Liver Ablation Zones

    PubMed Central

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow. PMID:26482818

  3. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  4. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  5. Creation of short microwave ablation zones: In Vivo Characterization of single and paired Modified Triaxial Antennas Laboratory Investigation

    PubMed Central

    Lubner, Meghan G.; Ziemlewicz, Tim J; Hinshaw, J. Louis; Lee, Fred T.; Sampson, Lisa J.; Brace, Chris L.

    2014-01-01

    Purpose To characterize modified triaxial microwave antennas configured to produce short ablation zones. Materials and Methods 50 single- and 27 paired-antenna hepatic ablations were performed in domestic swine (n=11) with 17-gauge, gas-cooled modified triaxial antennas powered at 65W from a 2.45 GHz generator. Single-antenna ablations were performed at 2 (n=16), 5 (n=21), and 10 (n=13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n=7, n=8) and 10 minutes (n=7, n=5). Mean transverse width, length and aspect ratio of sectioned ablation zones were measured and compared. Results For single antennas, mean ablation zone length was 2.9±0.45, 3.5±0.55 and 4.2±0.40 cm at 2, 5, and 10 minutes respectively. Mean width was 1.8±0.3, 2.0±0.32, 2.5±0.25 cm at 2, 5, and 10 minutes. For paired antennas, mean length at 5 min 1 and 2 cm and 10 min 1 and 2 cm spacing was 4.2±0.9, 4.4±0.9, 4.8±0.5 and 4.3±0.9 cm respectively. Mean width was 3.1±1.0, 4.0±0.8 and 3.8±0.4, 4.2±0.6 cm respectively. Paired-antenna ablations were more spherical (aspect ratios 0.72-0.79 for 5-10 min) than single-antenna ablations (0.57-0.59). For paired-antenna ablations, 1 cm spacing appeared optimal, with improved circularity and decreased clefting compared to 2 cm spacing (circ 1 cm 0.85, 2 cm 0.78). Conclusion Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension compared to single antenna ablations, with 1 cm spacing optimal for confluence of the ablation zone. PMID:25156644

  6. Superselective Particle Embolization Enhances Efficacy of Radiofrequency Ablation: Effects of Particle Size and Sequence of Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de; Braunschweig, Till, E-mail: tbraunschweig@ukaachen.de

    2013-06-15

    Purpose. To evaluate the effects of particle size and course of action of superselective bland transcatheter arterial embolization (TAE) on the efficacy of radiofrequency ablation (RFA). Methods. Twenty pigs were divided into five groups: group 1a, 40-{mu}m bland TAE before RFA; group 1b, 40-{mu}m bland TAE after RFA; group 2a, 250-{mu}m bland TAE before RFA; group 2b, 250-{mu}m bland TAE after RFA and group 3, RFA alone. A total of 40 treatments were performed with a combined CT and angiography system. The sizes of the treated zones were measured from contrast-enhanced CTs on days 1 and 28. Animals were humanelymore » killed, and the treated zones were examined pathologically. Results. There were no complications during procedures and follow-up. The short-axis diameter of the ablation zone in group 1a (mean {+-} standard deviation, 3.19 {+-} 0.39 cm) was significantly larger than in group 1b (2.44 {+-} 0.52 cm; P = 0.021), group 2a (2.51 {+-} 0.32 cm; P = 0.048), group 2b (2.19 {+-} 0.44 cm; P = 0.02), and group 3 (1.91 {+-} 0.55 cm; P < 0.001). The greatest volume of ablation was achieved by performing embolization with 40-{mu}m particles before RFA (group 1a; 20.97 {+-} 9.65 cm{sup 3}). At histology, 40-{mu}m microspheres were observed to occlude smaller and more distal arteries than 250-{mu}m microspheres. Conclusion. Bland TAE is more effective before RFA than postablation embolization. The use of very small 40-{mu}m microspheres enhances the efficacy of RFA more than the use of larger particles.« less

  7. CT thermometry for cone-beam CT guided ablation

    NASA Astrophysics Data System (ADS)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  8. Tracker-assisted versus manual ablation zone centration in laser in situ keratomileusis for myopia and astigmatism.

    PubMed

    Pineros, Oscar E

    2002-01-01

    Eye tracker systems have been developed concomitantly with small scanning beams to theoretically reduce ablation zone decentration and for accurate registration of all the laser pulses on the cornea. The purpose of the study was to compare the tracker-assisted with the manual centration method. Twenty-five patients (48 eyes) with myopia and/or astigmatism had laser in situ keratomileusis (LASIK) between August 1998 and February 1999 with the Technolas 117C laser. Twenty patients (38 eyes, 80%) were available for follow-up at 3 months after surgery. Eyes were assigned randomly to one of two ablation zone centration methods: Group 1: Tracker-assisted (20 eyes), Group 2: Manual (18 eyes). Mean distance between the ablation zone center and the pupillary center in the tracker-assisted centration group was 0.55 +/- 0.30 mm (range, 0.10 to 1.4 mm), and in the manual centration group, 0.43 +/- 0.23 mm (range, 0.10 to 1.0 mm) (P = .177). There was no statistically significant difference in postoperative contrast sensitivity, glare, and Topographical Corneal Surface Regularity Index (SRI) between the two groups. We obtained good results with both centration methods. We did not find superiority of the tracker-assisted over manual regarding ablation zone centration, vision quality, or regularity of the ablation.

  9. The impact of frequency on the performance of microwave ablation.

    PubMed

    Sawicki, James F; Shea, Jacob D; Behdad, Nader; Hagness, Susan C

    2017-02-01

    The use of higher frequencies in percutaneous microwave ablation (MWA) may offer compelling interstitial antenna design advantages over the 915 MHz and 2.45 GHz frequencies typically employed in current systems. To evaluate the impact of higher frequencies on ablation performance, we conducted a comprehensive computational and experimental study of microwave absorption and tissue heating as a function of frequency. We performed electromagnetic and thermal simulations of MWA in ex vivo and in vivo porcine muscle at discrete frequencies in the 1.9-26 GHz range. Ex vivo ablation experiments were performed in the 1.9-18 GHz range. We tracked the size of the ablation zone across frequency for constant input power and ablation duration. Further, we conducted simulations to investigate antenna feed line heating as a function of frequency, input power, and cable diameter. As the frequency was increased from 1.9 to 26 GHz the resulting ablation zone dimensions decreased in the longitudinal direction while remaining relatively constant in the radial direction; thus at higher frequencies the overall ablation zone was more spherical. However, cable heating at higher frequencies became more problematic for smaller diameter cables at constant input power. Comparably sized ablation zones are achievable well above 1.9 GHz, despite increasingly localised power absorption. Specific absorption rate alone does not accurately predict ablation performance, particularly at higher frequencies where thermal diffusion plays an important role. Cable heating due to ohmic losses at higher frequencies may be controlled through judicious choices of input power and cable diameter.

  10. Yield of Routine Image-Guided Biopsy of Renal Mass Thermal Ablation Zones: 11-Year Experience.

    PubMed

    Wasnik, Ashish P; Higgins, Ellen J; Fox, Giovanna A; Caoili, Elaine M; Davenport, Matthew S

    2018-06-19

    To determine the yield of routine image-guided core biopsy of renal cell carcinoma (RCC) thermal ablation zones. Institutional review board approval was obtained for this Health Insurance Portability and Accountability Act-compliant quality improvement effort. Routine core biopsy of RCC ablation zones was performed 2 months postablation from July 2003 to December 2014. Routine nicotinamide adenine dinucleotide staining was performed by specialized genitourinary pathologists to assess cell viability. The original purpose of performing routine postablation biopsy was to verify, in addition to imaging, whether the mass was completely treated. Imaging was stratified as negative, indeterminate, or positive for viable malignancy. Histology was stratified as negative, indeterminate, positive, or nondiagnostic for viable malignancy. Histology results were compared to prebiopsy imaging findings. Routine ablation zone biopsy was performed after 50% (146/292) of index ablations (24 cryoablations, 122 radiofrequency ablations), and postablation imaging was performed more often with multiphasic computed tomography than magnetic resonance imaging (100 vs 46, p < 0.0001). When imaging was negative (n = 117), biopsy added no additional information (92% [n = 108] negative, 0.9% [n = 1] indeterminate, 7% [n = 8] nondiagnostic). When imaging was indeterminate (n = 19), 11% (n = 2) of biopsies had viable RCC and 89% (n = 17) were negative. When imaging was positive, biopsy detected viable neoplasm in only 10% (1/10) of cases; 80% (8/10) were negative and 10% (1/10) were nondiagnostic. Routine biopsy of renal ablation zones to validate postablation imaging results was not value-added and therefore was discontinued at the study institution. Copyright © 2018. Published by Elsevier Inc.

  11. Imaging Features of Radiofrequency Ablation with Heat-Deployed Liposomal Doxorubicin in Hepatic Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Cheng William, E-mail: williamhongcheng@gmail.com; Chow, Lucy, E-mail: lucychow282@gmail.com; Turkbey, Evrim B., E-mail: evrimbengi@yahoo.com

    2016-03-15

    IntroductionThe imaging features of unresectable hepatic malignancies in patients who underwent radiofrequency ablation (RFA) in combination with lyso-thermosensitive liposomal doxorubicin (LTLD) were determined.Materials and MethodsA phase I dose escalation study combining RFA with LTLD was performed with peri- and post- procedural CT and MRI. Imaging features were analyzed and measured in terms of ablative zone size and surrounding penumbra size. The dynamic imaging appearance was described qualitatively immediately following the procedure and at 1-month follow-up. The control group receiving liver RFA without LTLD was compared to the study group in terms of imaging features and post-ablative zone size dynamics atmore » follow-up.ResultsPost-treatment scans of hepatic lesions treated with RFA and LTLD have distinctive imaging characteristics when compared to those treated with RFA alone. The addition of LTLD resulted in a regular or smooth enhancing rim on T1W MRI which often correlated with increased attenuation on CT. The LTLD-treated ablation zones were stable or enlarged at follow-up four weeks later in 69 % of study subjects as opposed to conventional RFA where the ablation zone underwent involution compared to imaging acquired immediately after the procedure.ConclusionThe imaging features following RFA with LTLD were different from those after standard RFA and can mimic residual or recurrent tumor. Knowledge of the subtle findings between the two groups can help avoid misinterpretation and proper identification of treatment failure in this setting. Increased size of the LTLD-treated ablation zone after RFA suggests the ongoing drug-induced biological effects.« less

  12. Mathematical study of the effects of different intrahepatic cooling on thermal ablation zones.

    PubMed

    Peng, Tingying; O'Neill, David; Payne, Stephen

    2011-01-01

    Thermal ablation of a tumour in the liver with Radio Frequency energy can be accomplished by using a probe inserted into the tissue under the guidance of medical imaging. The extent of ablation can be significantly affected by heat loss due to the high blood perfusion in the liver, especially when the tumour is located close to large vessels. A mathematical model is thus presented here to investigate the heat sinking effects of large vessels, combining a 3D two-equation coupled bio-heat model and a 1D model of convective heat transport across the blood vessel surface. The model simulation is able to recover the experimentally observed different intrahepatic cooling on thermal ablation zones: hepatic veins showed a focal indentation whereas portal veins showed broad flattening of the ablation zones. Moreover, this study also illustrates that this shape derivation can largely be attributed to the temperature variations between the microvascular branches of portal vein as compared with hepatic vein. In contrast, different amount of surface heat convection on the vessel wall between these two types of veins, however, has a minor effect.

  13. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography

    PubMed Central

    DeWall, Ryan J.; Varghese, Tomy; Brace, Chris L.

    2012-01-01

    Purpose: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological–pathological correlations using multiple observers. Methods: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. Results: Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. Conclusions: Statistically significant radiological–pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically. PMID:23127063

  14. How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off.

    PubMed

    Irastorza, Ramiro M; Trujillo, Macarena; Berjano, Enrique

    2017-11-01

    All the numerical models developed for radiofrequency ablation so far have ignored the possible effect of the cooling phase (just after radiofrequency power is switched off) on the dimensions of the coagulation zone. Our objective was thus to quantify the differences in the minor radius of the coagulation zone computed by including and ignoring the cooling phase. We built models of RF tumor ablation with 2 needle-like electrodes: a dry electrode (5 mm long and 17G in diameter) with a constant temperature protocol (70°C) and a cooled electrode (30 mm long and 17G in diameter) with a protocol of impedance control. We observed that the computed coagulation zone dimensions were always underestimated when the cooling phase was ignored. The mean values of the differences computed along the electrode axis were always lower than 0.15 mm for the dry electrode and 1.5 mm for the cooled electrode, which implied a value lower than 5% of the minor radius of the coagulation zone (which was 3 mm for the dry electrode and 30 mm for the cooled electrode). The underestimation was found to be dependent on the tissue characteristics: being more marked for higher values of specific heat and blood perfusion and less marked for higher values of thermal conductivity. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Controlled reshaping of the front surface of the cornea through its full-area ablation outside of the optical zone with a Gaussian ArF excimer laser beam

    NASA Astrophysics Data System (ADS)

    Semchishen, A. V.; Semchishen, V. A.

    2014-01-01

    We studied in vitro the response of the topography of the cornea to its full-area laser ablation (the laser beam spot diameter is commensurable with the size of the interface) outside of the central zone with an excimer laser having a Gaussian fluence distribution across the beam. Subject to investigation were the topographically controlled surface changes of the anterior cornea in 60 porcine eyes with a 5 ± 1.25-diopter artificially induced astigmatism, the changes being caused by laser ablation of the stromal collagen in two 3.5-mm-dia. circular areas along the weaker astigmatism axis. Experimental relationships are presented between the actual astigmatism correction and the expected correction for the intact optical zones 1, 2, 3, and 4 mm in diameter. The data for each zone were approximated by the least-squares method with the function d = a + bx. The coefficient b is given with the root-mean-square error. The statistical processing of the data yielded the following results: d = (0.14 ± 0.037)x for the 1-mm-dia. optical zone, (1.10 ± 0.036)x for the 2-mm-dia. optical zone, (1.04 ± 0.020)x for the 3-mm-dia. optical zone, and (0.55 ± 0.04)x for the 4-mm-dia. optical zone. Full astigmatism correction was achieved with ablation effected outside of the 3-mm-dia. optical zone. The surface changes of the cornea are shown to be due not only to the removal of the corneal tissue, but also to the biomechanical topographic response of the cornea to its strain caused by the formation of a dense pseudomembrane in the ablation area.

  16. Tissue healing response following hyperthermic vapor ablation in the porcine longissimus muscle

    NASA Astrophysics Data System (ADS)

    Grantham, John T.; Grisez, Brian T.; Famoso, Justin; Hoey, Michael; Dixon, Chris; Coad, James E.

    2015-03-01

    As the use of hyperthermic ablation technologies has increased, so too has the need to understand their effects on tissue and their healing responses. This study was designed to characterize tissue injury and healing following hyperthermic vapor ablation in the in vivo porcine longissimus muscle model. The individual ablations were performed using the NxThera Vapor Delivery System (NxThera Inc., Minneapolis, MN). To assess the vapor ablation's evolution, the swine were euthanized post-treatment on Day 0, Day 3, Day 7, Day 14, Day 28, Day 45 and Day 90. Triphenyltetrazolium chloride viability staining (TTC staining) was used to macroscopically assess the extent of each vapor ablation within the tissue. The ablation associated healing responses were then histologically evaluated for acute inflammation, chronic inflammation, foreign body reaction and fibrosis. Two zones of tissue injury were initially identified in the ablations: 1) a central zone of complete coagulative necrosis and 2) an outer "transition zone" of viable and non-viable cells. The ablations initially increased in size from Day 0 to Day 7 and then progressively decreased in size though Day 45. The initial Day 3 healing changes originated in the transition zone with minimal acute and chronic inflammation. As time progressed, granulation tissue began to form by Day 7 and peaked around Day 14. Collagen formation, deposition and remodeling began in the adjacent healthy tissue by Day 28, replaced the ablation site by Day 45 and reorganized by Day 90. In conclusion, this vapor ablation technology provided a non-desiccating form of hyperthermic ablation that resulted in coagulative necrosis without a central thermally/heat-fixed tissue component, followed a classical wound healing pathway, and healed with minimal associated inflammation.

  17. Pulsed Tm:YAG laser ablation of knee joint tissues

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  18. Morphological changes in ultrafast laser ablation plumes with varying spot size

    DOE PAGES

    Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; ...

    2015-06-04

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less

  19. Morphological changes in ultrafast laser ablation plumes with varying spot size.

    PubMed

    Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C

    2015-06-15

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.

  20. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2005-01-01

    A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.

  1. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2006-01-01

    A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.

  2. Radiofrequency ablation combined with transcatheter arterial embolisation in rabbit liver: investigation of the ablation zone according to the time interval between the two therapies.

    PubMed

    Lee, I J; Kim, Y I; Kim, K W; Kim, D H; Ryoo, I; Lee, M W; Chung, J W

    2012-11-01

    This study was designed to evaluate the extent of the radiofrequency ablation zone in relation to the time interval between transcatheter arterial embolisation (TAE) and radiofrequency ablation (RFA) and, ultimately, to determine the optimal strategy of combining these two therapies for hepatocellular carcinoma. 15 rabbits were evenly divided into three groups: Group A was treated with RFA alone; Group B was treated with TAE immediately followed by RFA; and Group C was treated with TAE followed by RFA 5 days later. All animals underwent perfusion CT (PCT) scans immediately after RFA. Serum liver transaminases were measured to evaluate acute liver damage. Animals were euthanised for pathological analysis of ablated tissues 10 days after RFA. Non-parametric analyses were conducted to compare PCT indices, the RFA zone and liver transaminase levels among the three experimental groups. Group B showed a significantly larger ablation zone than the other two groups. Arterial liver perfusion and hepatic perfusion index represented well the perfusion decrease after TAE on PCT. Although Group B showed the most elevated liver transaminase levels at 1 day post RFA, the enzymes decreased to levels that were not different from the other groups at 10 days post-RFA. When combined TAE and RFA therapy is considered, TAE should be followed by RFA as quickly as possible, as it can be performed safely without serious hepatic deterioration, despite the short interval between the two procedures.

  3. Radiofrequency ablation of liver metastases-software-assisted evaluation of the ablation zone in MDCT: tumor-free follow-up versus local recurrent disease.

    PubMed

    Keil, Sebastian; Bruners, Philipp; Schiffl, Katharina; Sedlmair, Martin; Mühlenbruch, Georg; Günther, Rolf W; Das, Marco; Mahnken, Andreas H

    2010-04-01

    The purpose of this study was to investigate differences in change of size and CT value between local recurrences and tumor-free areas after CT-guided radiofrequency ablation (RFA) of hepatic metastases during follow-up by means of dedicated software for automatic evaluation of hepatic lesions. Thirty-two patients with 54 liver metastases from breast or colorectal cancer underwent triphasic contrast-enhanced multidetector-row computed tomography (MDCT) to evaluate hepatic metastatic spread and localization before CT-guided RFA and for follow-up after intervention. Sixteen of these patients (65.1 + or - 10.3 years) with 30 metastases stayed tumor-free (group 1), while the other group (n = 16 with 24 metastases; 62.0 + or - 13.8 years) suffered from local recurrent disease (group 2). Applying an automated software tool (SyngoCT Oncology; Siemens Healthcare, Forchheim, Germany), size parameters (volume, RECIST, WHO) and attenuation were measured within the lesions before, 1 day after, and 28 days after RFA treatment. The natural logarithm (ln) of the quotient of the volume 1 day versus 28 days after RFA treament was computed: lnQ1//28/0(volume). Analogously, ln ratios of RECIST, WHO, and attenuation were computed and statistically evaluated by repeated-measures ANOVA. One lesion in group 2 was excluded from further evaluation due to automated missegmentation. Statistically significant differences between the two groups were observed with respect to initial volume, RECIST, and WHO (p < 0.05). Furthermore, ln ratios corresponding to volume, RECIST, and WHO differed significantly between the two groups. Attenuation evaluations showed no significant differences, but there was a trend toward attenuation assessment for the parameter lnQ28/0(attenuation) (p = 0.0527), showing higher values for group 1 (-0.4 + or - 0.3) compared to group 2 (-0.2 + or - 0.2). In conclusion, hepatic metastases and their zone of coagulation necrosis after RFA differed significantly between tumor

  4. The prediction of radiofrequency ablation zone volume using vascular indices of 3-dimensional volumetric colour Doppler ultrasound in an in vitro blood-perfused bovine liver model

    PubMed Central

    Lanctot, Anthony C; McCarter, Martin D; Roberts, Katherine M; Glueck, Deborah H; Dodd, Gerald D

    2017-01-01

    Objective: To determine the most reliable predictor of radiofrequency (RF) ablation zone volume among three-dimensional (3D) volumetric colour Doppler vascular indices in an in vitro blood-perfused bovine liver model. Methods: 3D colour Doppler volume data of the local hepatic parenchyma were acquired from 37 areas of 13 bovine livers connected to an in vitro oxygenated blood perfusion system. Doppler vascular indices of vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were obtained from the volume data using 3D volume analysis software. 37 RF ablations were performed at the same locations where the ultrasound data were obtained from. The relationship of these vascular indices and the ablation zone volumes measured from gross specimens were analyzed using a general linear mixed model fit with random effect for liver and backward stepwise regression analysis. Results: FI was significantly associated with ablation zone volumes measured on gross specimens (p = 0.0047), but explained little of the variance (Rβ2 = 0.21). Ablation zone volume decreased by 0.23 cm3 (95% confidence interval: −0.38, −0.08) for every 1 increase in FI. Neither VI nor VFI was significantly associated with ablation zone volumes (p > 0.05). Conclusion: Although FI was associated with ablation zone volumes, it could not sufficiently explain their variability, limiting its clinical applicability. VI, FI and VFI are not clinically useful in the prediction of RF ablation zone volume in the liver. Advances in knowledge: Despite a significant association of FI with ablation zone volumes, VI, FI and VFI cannot be used for their prediction. Different Doppler vascular indices need to be investigated for clinical use. PMID:27925468

  5. Planning Irreversible Electroporation in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmer, Thomas, E-mail: thomas.wimmer@medunigraz.at; Srimathveeravalli, Govindarajan; Gutta, Narendra

    PurposeNumerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model.MethodsThe ablation size and shape for six different IRE parameter sets (70–90 pulses, 2,000–2,700 V, 70–100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathologymore » was analyzed from postablation day 1.ResultsAblation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery.ConclusionBoth numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.« less

  6. Microwave Tissue Ablation: Biophysics, Technology and Applications

    PubMed Central

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  7. Conformal needle-based ultrasound ablation using EM-tracked conebeam CT image guidance

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Banovac, Filip; Diederich, Chris J.; Cheng, Patrick; Wilson, Emmanuel; Cleary, Kevin R.

    2011-03-01

    Numerous studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of renal and hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to accurately place the ablator device into the target. Irregularly shaped target volumes typically require multiple insertions and several sequential thermal ablation procedures. This study demonstrated feasibility of spatially tracked image-guided conformal ultrasound (US) ablation for percutaneous directional ablation of diseased tissue. Tissue was prepared by suturing the liver within a pig belly and 1mm BBs placed to serve as needle targets. The image guided system used integrated electromagnetic tracking and cone-beam CT (CBCT) with conformable needlebased high-intensity US ablation in the interventional suite. Tomographic images from cone beam CT were transferred electronically to the image-guided tracking system (IGSTK). Paired-point registration was used to register the target specimen to CT images and enable navigation. Path planning is done by selecting the target BB on the GUI of the realtime tracking system and determining skin entry location until an optimal path is selected. Power was applied to create the desired ablation extent within 7-10 minutes at a thermal dose (>300eqm43). The system was successfully used to place the US ablator in planned target locations within ex-vivo kidney and liver through percutaneous access. Targeting accuracy was 3-4 mm. Sectioned specimens demonstrated uniform ablation within the planned target zone. Subsequent experiments were conducted for multiple ablator positions based upon treatment planning simulations. Ablation zones in

  8. Bipolar radiofrequency ablation with 2 × 2 electrodes as a building block for matrix radiofrequency ablation: Ex vivo liver experiments and finite element method modelling.

    PubMed

    Mulier, Stefaan; Jiang, Yansheng; Jamart, Jacques; Wang, Chong; Feng, Yuanbo; Marchal, Guy; Michel, Luc; Ni, Yicheng

    2015-01-01

    Size and geometry of the ablation zone obtained by currently available radiofrequency (RF) electrodes is highly variable. Reliability might be improved by matrix radiofrequency ablation (MRFA), in which the whole tumour volume is contained within a cage of x × y parallel electrodes. The aim of this study was to optimise the smallest building block for matrix radiofrequency ablation: a recently developed bipolar 2 × 2 electrode system. In ex vivo bovine liver, the parameters of the experimental set-up were changed one by one. In a second step, a finite element method (FEM) modelling of the experiment was performed to better understand the experimental findings. The optimal power to obtain complete ablation in the shortest time was 50-60 W. Performing an ablation until impedance rise was superior to ablation for a fixed duration. Increasing electrode diameter improved completeness of ablation due to lower temperature along the electrodes. A chessboard pattern of electrode polarity was inferior to a row pattern due to an electric field void in between the electrodes. Variability of ablation size was limited. The FEM correctly simulated and explained the findings in ex vivo liver. These experiments and FEM modelling allowed a better insight in the factors influencing the ablation zone in a bipolar 2 × 2 electrode RF system. With optimal parameters, complete ablation was obtained quickly and with limited variability. This knowledge will be useful to build a larger system with x × y electrodes for MRFA.

  9. MR thermometry analysis of sonication accuracy and safety margin of volumetric MR imaging-guided high-intensity focused ultrasound ablation of symptomatic uterine fibroids.

    PubMed

    Kim, Young-sun; Trillaud, Hervé; Rhim, Hyunchul; Lim, Hyo K; Mali, Willem; Voogt, Marianne; Barkhausen, Jörg; Eckey, Thomas; Köhler, Max O; Keserci, Bilgin; Mougenot, Charles; Sokka, Shunmugavelu D; Soini, Jouko; Nieminen, Heikki J

    2012-11-01

    To evaluate the accuracy of the size and location of the ablation zone produced by volumetric magnetic resonance (MR) imaging-guided high-intensity focused ultrasound ablation of uterine fibroids on the basis of MR thermometric analysis and to assess the effects of a feedback control technique. This prospective study was approved by the institutional review board, and written informed consent was obtained. Thirty-three women with 38 uterine fibroids were treated with an MR imaging-guided high-intensity focused ultrasound system capable of volumetric feedback ablation. Size (diameter times length) and location (three-dimensional displacements) of each ablation zone induced by 527 sonications (with [n=471] and without [n=56] feedback) were analyzed according to the thermal dose obtained with MR thermometry. Prospectively defined acceptance ranges of targeting accuracy were ±5 mm in left-right (LR) and craniocaudal (CC) directions and ±12 mm in anteroposterior (AP) direction. Effects of feedback control in 8- and 12-mm treatment cells were evaluated by using a mixed model with repeated observations within patients. Overall mean sizes of ablation zones produced by 4-, 8-, 12-, and 16-mm treatment cells (with and without feedback) were 4.6 mm±1.4 (standard deviation)×4.4 mm±4.8 (n=13), 8.9 mm±1.9×20.2 mm±6.5 (n=248), 13.0 mm±1.2×29.1 mm±5.6 (n=234), and 18.1 mm±1.4×38.2 mm±7.6 (n=32), respectively. Targeting accuracy values (displacements in absolute values) were 0.9 mm±0.7, 1.2 mm±0.9, and 2.8 mm±2.2 in LR, CC, and AP directions, respectively. Of 527 sonications, 99.8% (526 of 527) were within acceptance ranges. Feedback control had no statistically significant effect on targeting accuracy or ablation zone size. However, variations in ablation zone size were smaller in the feedback control group. Sonication accuracy of volumetric MR imaging-guided high-intensity focused ultrasound ablation of uterine fibroids appears clinically acceptable and may be

  10. Real-time monitoring of radiofrequency ablation and postablation assessment: accuracy of contrast-enhanced US in experimental rat liver model.

    PubMed

    Wu, Hanping; Wilkins, Luke R; Ziats, Nicholas P; Haaga, John R; Exner, Agata A

    2014-01-01

    points. The temporary transition zone in NADH staining is partially damaged and should transition to nonviability 2 days after ablation. These results demonstrate that contrast-enhanced US can help delineate the maximum area of cell damage (to within 5% of the maximum) as early as 2 hours after ablation. Contrast-enhanced US may be a simple and accurate tool for monitoring the effects of RF ablation and quantifying the size of thermal damage after treatment. © RSNA, 2013.

  11. Laparoscopic microwave thermosphere ablation of malignant liver tumors: an initial clinical evaluation.

    PubMed

    Berber, Eren

    2016-02-01

    Microwave ablation (MWA) has been recently recognized as a technology to overcome the limitations of radiofrequency ablation. The aim of the current study was to evaluate the safety and efficacy of a new 2.45-GHz thermosphere MWA system in the treatment of malignant liver tumors. This was a prospective IRB-approved study of 18 patients with malignant liver tumors treated with MWA within a 3-month time period. Tumor sizes and response to MWA were obtained from triphasic liver CT scans done before and after MWA. The ablation zones were assessed for complete tumor response and spherical geometry. There were a total of 18 patients with an average of three tumors measuring 1.4 cm (range 0.2-4). Ablations were performed laparoscopically in all, but three patients who underwent combined liver resection. A single ablation was created in 72% and overlapping ablations in 28% of lesions. Total ablation time per patient was 15.6 ± 1.9 min. There was no morbidity or mortality. At 2-week CT scans, there was 100% tumor destruction, with no residual lesions. Roundness indices A, B and transverse were 1.1, 0.9 and 0.9, respectively, confirming the spherical nature of ablation zones. To the best of our knowledge, this is the first report of a new thermosphere MWA technology in the laparoscopic treatment of malignant liver tumors. The results demonstrate the safety of the technology, with satisfactory spherical ablation zones seen on post-procedural CT scans.

  12. Sphere-enhanced microwave ablation (sMWA) versus bland microwave ablation (bMWA): technical parameters, specific CT 3D rendering and histopathology.

    PubMed

    Gockner, T L; Zelzer, S; Mokry, T; Gnutzmann, D; Bellemann, N; Mogler, C; Beierfuß, A; Köllensperger, E; Germann, G; Radeleff, B A; Stampfl, U; Kauczor, H U; Pereira, P L; Sommer, C M

    2015-04-01

    This study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA). In six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output, ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL). Resulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm(3) for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm(3) for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features. Specific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.

  13. Real-time Monitoring of Radiofrequency Ablation and Postablation Assessment: Accuracy of Contrast-enhanced US in Experimental Rat Liver Model

    PubMed Central

    Wu, Hanping; Wilkins, Luke R.; Ziats, Nicholas P.; Haaga, John R.

    2014-01-01

    fluorescence images was noted at all time points. Conclusion The temporary transition zone in NADH staining is partially damaged and should transition to nonviability 2 days after ablation. These results demonstrate that contrast-enhanced US can help delineate the maximum area of cell damage (to within 5% of the maximum) as early as 2 hours after ablation. Contrast-enhanced US may be a simple and accurate tool for monitoring the effects of RF ablation and quantifying the size of thermal damage after treatment. © RSNA, 2013 Online supplemental material is available for this article. PMID:23912621

  14. Evaluation of the energy transfer in the char zone during ablation. Part 2: In-depth response of ablative composites, volume 1. Ph.D. Thesis, 1975. Final Report

    NASA Technical Reports Server (NTRS)

    Pike, R. W.; Delvalle, E. G.

    1974-01-01

    The decomposition of ablative composites is described along with the transport phenomena of pyrolysis gases which result from the decomposition of these plastics as they flow through the porous char of char-forming ablators. The pyrolysis products are those formed by the thermal degradation of nylon-phenolic resin and silicone elastomer composites. Emphasis is placed on the nature and extent of chemical reactions of the pyrolysis products and the char, along with the energy absorbed by the combined pyrolysis and char zone. Chemical reactions with thermodynamically consistent kinetic data are determined in order to develop a realistic analysis for predicting the thermal performance of ablative heat shields.

  15. Image-Guided Spinal Ablation: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr

    2016-09-15

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of themore » ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.« less

  16. Considerations for theoretical modeling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control

    PubMed Central

    Prakash, Punit; Diederich, Chris J.

    2012-01-01

    Purpose To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared impact several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. Methods A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity.. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. Results Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation < 2.5%). Accounting for dynamic acoustic attenuation appeared to play a critical role in estimating ablation zone size, as models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t43 ≥ 240min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54 °C for short (< 5 min) duration ablations and 50 °C for long (15 min) ablations may serve as surrogates for determination of the outer treatment boundary. Conclusions Accounting for dynamic changes in acoustic attenuation/absorption appeared to play a critical role in predicted extents of ablation zones. For typical 5—15 min ablations

  17. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model.

    PubMed

    Brace, Christopher L; Laeseke, Paul F; Sampson, Lisa A; Frey, Tina M; van der Weide, Daniel W; Lee, Fred T

    2007-07-01

    To prospectively investigate the ability of a single generator to power multiple small-diameter antennas and create large zones of ablation in an in vivo swine liver model. Thirteen female domestic swine (mean weight, 70 kg) were used for the study as approved by the animal care and use committee. A single generator was used to simultaneously power three triaxial antennas at 55 W per antenna for 10 minutes in three groups: a control group where antennas were spaced to eliminate ablation zone overlap (n=6; 18 individual zones of ablation) and experimental groups where antennas were spaced 2.5 cm (n=7) or 3.0 cm (n=5) apart. Animals were euthanized after ablation, and ablation zones were sectioned and measured. A mixed linear model was used to test for differences in size and circularity among groups. Mean (+/-standard deviation) cross-sectional areas of multiple-antenna zones of ablation at 2.5- and 3.0-cm spacing (26.6 cm(2) +/- 9.7 and 32.2 cm(2) +/- 8.1, respectively) were significantly larger than individual ablation zones created with single antennas (6.76 cm(2) +/- 2.8, P<.001) and were 31% (2.5-cm spacing group: multiple antenna mean area, 26.6 cm(2); 3 x single antenna mean area, 20.28 cm(2)) to 59% (3.0-cm spacing group: multiple antenna mean area, 32.2 cm(2); 3 x single antenna mean area, 20.28 cm(2)) larger than 3 times the mean area of the single-antenna zones. Zones of ablation were found to be very circular, and vessels as large as 1.1 cm were completely coagulated with multiple antennas. A single generator may effectively deliver microwave power to multiple antennas. Large volumes of tissue may be ablated and large vessels coagulated with multiple-antenna ablation in the same time as single-antenna ablation. (c) RSNA, 2007.

  18. Microwave liver ablation: influence of hepatic vein size on heat-sink effect in a porcine model.

    PubMed

    Yu, Nam C; Raman, Steven S; Kim, Young Jun; Lassman, Charles; Chang, Xinlian; Lu, David S K

    2008-07-01

    To determine influence of hepatic vein size on perfusion-mediated attenuation in adjacent microwave thermal ablation. With approval of the institutional animal research committee, seven Yorkshire pigs underwent percutaneous (n = 2) or open (n = 5) microwave liver ablation under general anesthesia. In each, multiple ultrasound-guided, nonoverlapping thermal lesions were created within 1 cm of hepatic veins in a 5-10-minute ablation at 45 W. After euthanasia, the liver was harvested and sectioned at 0.5-cm intervals and the degree of perivascular coagulation attenuation was graded on histopathologic analysis. Correlation between venous size (small, < or =3 mm; medium, 3-6 mm; and large, >6 mm) and attenuation grade was performed with use of the Spearman rank test. In 63 of 103 sections (61%)--29 of 37 (78%) small, 27 of 48 (56%) medium, and seven of 18 (39%) large veins--the thermal injury extended to the vein wall around the entire circumference of the coagulation front without distortion of the ablation margin. In 40 of 103 sections (38.9%), varying degrees of concave distortion of perivenous ablation margins were noted, with significant correlation between vein size and heat-sink extent (P < .01). However, thermal injury extended to the vascular wall in all sections without complete circumferential sparing of liver tissue. Around two thrombosed veins, thermal lesions encased the vessels, producing paradoxically convex ablation margins. Although the heat-sink effect was significantly dependent on hepatic vein size, the majority of pathologic sections exhibited no or minimal effect. Further study is required to assess clinical implications.

  19. Sphere-Enhanced Microwave Ablation (sMWA) Versus Bland Microwave Ablation (bMWA): Technical Parameters, Specific CT 3D Rendering and Histopathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gockner, T. L., E-mail: theresa.gockner@med.uni-heidelberg.de; Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de; Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de

    PurposeThis study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA).MethodsIn six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output,more » ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL).ResultsResulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm{sup 3} for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm{sup 3} for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features.ConclusionsSpecific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.« less

  20. Bimodal electric tissue ablation (BETA) - in-vivo evaluation of the effect of applying direct current before and during radiofrequency ablation of porcine liver.

    PubMed

    Cockburn, J F; Maddern, G J; Wemyss-Holden, S A

    2007-03-01

    To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Omega or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p<0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone.

  1. Incidence and Outcomes of Optical Zone Enlargement and Recentration After Previous Myopic LASIK by Topography-Guided Custom Ablation.

    PubMed

    Reinstein, Dan Z; Archer, Timothy J; Carp, Glenn I; Stuart, Alastair J; Rowe, Elizabeth L; Nesbit, Andrew; Moore, Tara

    2018-02-01

    To report the incidence, visual and refractive outcomes, optical zone enlargement, and recentration using topography-guided CRS-Master TOSCA II software with the MEL 80 excimer laser (Carl Zeiss Meditec AG, Jena, Germany) after primary myopic laser refractive surgery. Retrospective analysis of 73 eyes (40 patients) with complaints of night vision disturbances due to either a decentration or small optical zone following a primary myopic laser refractive surgery procedure using the MEL 80 laser. Multiple ATLAS topography scans were imported into the CRS-Master software for topography-guided ablation planning. The topography-guided re-treatment procedure was performed as either a LASIK flap lift, a new LASIK flap, a side cut only, or photorefractive keratectomy. Axial curvature maps were analyzed using a fixed grid and set of concentric circles superimposed to measure the topographic optical zone diameter and centration. Follow-up was 12 months. The incidence of use in the population of myopic treatments during the study period was 0.79% (73 of 9,249). The optical zone diameter was increased by 11% from a mean of 5.65 to 6.32 mm, with a maximum change of 2 mm in one case. Topographic decentration was reduced by 64% from a mean of 0.58 to 0.21 mm. There was a 44% reduction in spherical aberration, 53% reduction in coma, and 39% reduction in total higher order aberrations. A subjective improvement in night vision symptoms was reported by 93%. Regarding efficacy, 82% of eyes reached 20/20 and 100% reached 20/32 (preoperative CDVA was 20/20 or better in 90%). Regarding safety, no eyes lost two lines of CDVA and 27% gained one line. Regarding predictability, 71% of re-treatments were within ±0.50 diopters. Topography-guided ablation was effective in enlarging the optical zone, recentering the optical zone, and reducing higher order aberrations. Topography-guided custom ablation appears to be an effective method for re-treatment procedures of symptomatic patients after

  2. A probabilistic sizing tool and Monte Carlo analysis for entry vehicle ablative thermal protection systems

    NASA Astrophysics Data System (ADS)

    Mazzaracchio, Antonio; Marchetti, Mario

    2010-03-01

    Implicit ablation and thermal response software was developed to analyse and size charring ablative thermal protection systems for entry vehicles. A statistical monitor integrated into the tool, which uses the Monte Carlo technique, allows a simulation to run over stochastic series. This performs an uncertainty and sensitivity analysis, which estimates the probability of maintaining the temperature of the underlying material within specified requirements. This approach and the associated software are primarily helpful during the preliminary design phases of spacecraft thermal protection systems. They are proposed as an alternative to traditional approaches, such as the Root-Sum-Square method. The developed tool was verified by comparing the results with those from previous work on thermal protection system probabilistic sizing methodologies, which are based on an industry standard high-fidelity ablation and thermal response program. New case studies were analysed to establish thickness margins on sizing heat shields that are currently proposed for vehicles using rigid aeroshells for future aerocapture missions at Neptune, and identifying the major sources of uncertainty in the material response.

  3. In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Planche, Olivier, E-mail: oli.hrp@gmail.com; Teriitehau, Christophe; Boudabous, Sana

    2013-02-15

    To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularitymore » of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.« less

  4. Hepatic radiofrequency ablation: in vivo and ex vivo comparisons of 15-gauge (G) and 17-G internally cooled electrodes

    PubMed Central

    Song, K D; Park, H J; Cha, D I; Kang, T W; Lee, J; Moon, J Y; Rhim, H

    2015-01-01

    Objective: To compare the performance of the 15-G internally cooled electrode with that of the conventional 17-G internally cooled electrode. Methods: A total of 40 (20 for each electrode) and 20 ablation zones (10 for each electrode) were made in extracted bovine livers and in in vivo porcine livers, respectively. Technical parameters, three dimensions [long-axis diameter (Dl), vertical-axis diameter (Dv) and short-axis diameter (Ds)], volume and the circularity (Ds/Dl) of the ablation zone were compared. Results: The total delivered energy was higher in the 15-G group than in the 17-G group in both ex vivo and in vivo studies (8.78 ± 1.06 vs 7.70 ± 0.98 kcal, p = 0.033; 11.20 ± 1.13 vs 8.49 ± 0.35 kcal, p = 0.001, respectively). The three dimensions of the ablation zone had a tendency to be larger in the 15-G group than in the 17-G group in both studies. The ablation volume was larger in the 15-G group than in the 17-G group in both ex vivo and in vivo studies (29.61 ± 7.10 vs 23.86 ± 3.82 cm3, p = 0.015; 10.26 ± 2.28 vs 7.79 ± 1.68 cm3, p = 0.028, respectively). The circularity of ablation zone was not significantly different in both the studies. Conclusion: The size of ablation zone was larger in the 15-G internally cooled electrode than in the 17-G electrode in both ex vivo and in vivo studies. Advances in knowledge: Radiofrequency ablation of hepatic tumours using 15-G electrode is useful to create larger ablation zones. PMID:25882688

  5. Quantification of the effect of electrical and thermal parameters on radiofrequency ablation for concentric tumour model of different sizes.

    PubMed

    Jamil, Muhammad; Ng, E Y K

    2015-07-01

    Radiofrequency ablation (RFA) has been increasingly used in treating cancer for multitude of situations in various tissue types. To perform the therapy safely and reliably, the effect of critical parameters needs to be known beforehand. Temperature plays an important role in the outcome of the therapy and any uncertainties in temperature assessment can be lethal. This study presents the RFA case of fixed tip temperature where we've analysed the effect of electrical conductivity, thermal conductivity and blood perfusion rate of the tumour and surrounding normal tissue on the radiofrequency ablation. Ablation volume was chosen as the characteristic to be optimised and temperature control was achieved via PID controller. The effect of all 6 parameters each having 3 levels was quantified with minimum number of experiments harnessing the fractional factorial characteristic of Taguchi's orthogonal arrays. It was observed that as the blood perfusion increases the ablation volume decreases. Increasing electrical conductivity of the tumour results in increase of ablation volume whereas increase in normal tissue conductivity tends to decrease the ablation volume and vice versa. Likewise, increasing thermal conductivity of the tumour results in enhanced ablation volume whereas an increase in thermal conductivity of the surrounding normal tissue has a debilitating effect on the ablation volume and vice versa. With increase in the size of the tumour (i.e., 2-3cm) the effect of each parameter is not linear. The parameter effect varies with change in size of the tumour that is manifested by the different gradient observed in ablation volume. Most important is the relative insensitivity of ablation volume to blood perfusion rate for smaller tumour size (2cm) that is also in accordance with the previous results presented in literature. These findings will provide initial insight for safe, reliable and improved treatment planning perceptively. Copyright © 2015 Elsevier Ltd. All

  6. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems

    PubMed Central

    Harari, Colin M.; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T.; Lubner, Meghan G.; Hinshaw, J. Louis; Ziemlewicz, Timothy

    2016-01-01

    Purpose To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. Materials and Methods All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. Results On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. Conclusion The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015 PMID:26133361

  7. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems.

    PubMed

    Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L

    2016-01-01

    To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.

  8. Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.

    PubMed

    Hutson, M Shane; Ivanov, Borislav; Jayasinghe, Aroshan; Adunas, Gilma; Xiao, Yaowu; Guo, Mingsheng; Kozub, John

    2009-06-08

    Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-microm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes--an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.

  9. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong

    2018-02-01

    We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.

  10. Real-time ultrasound imaging of irreversible electroporation in a porcine liver model adequately characterizes the zone of cellular necrosis.

    PubMed

    Schmidt, Carl R; Shires, Peter; Mootoo, Mary

    2012-02-01

      Irreversible electroporation (IRE) is a largely non-thermal method for the ablation of solid tumours. The ability of ultrasound (US) to measure the size of the IRE ablation zone was studied in a porcine liver model.   Three normal pig livers were treated in vivo with a total of 22 ablations using IRE. Ultrasound was used within minutes after ablation and just prior to liver harvest at either 6 h or 24 h after the procedure. The area of cellular necrosis was measured after staining with nitroblue tetrazolium and the percentage of cell death determined by histomorphometry.   Visible changes in the hepatic parenchyma were apparent by US after all 22 ablations using IRE. The mean maximum diameter of the ablation zone measured by US during the procedure was 20.1 ± 2.7 mm. This compared with a mean cellular necrosis zone maximum diameter of 20.3 ± 2.9 mm as measured histologically. The mean percentage of dead cells within the ablation zone was 77% at 6 h and 98% at 24 h after ablation.   Ultrasound is a useful modality for measuring the ablation zone within minutes of applying IRE to normal liver tissue. The area of parenchymal change measured by US correlates with the area of cellular necrosis. © 2011 International Hepato-Pancreato-Biliary Association.

  11. Bimodal electric tissue ablation (BETA): a study on ablation size when the anode is placed on the peritoneum and the liver.

    PubMed

    Tiong, Leong U; Finnie, John W; Field, John B; Maddern, Guy J

    2012-07-01

    In bimodal electric tissue ablation (BETA), the cathode of the DC circuit is attached to the radiofrequency (RF) electrode to increase the surrounding tissue hydration. This will delay tissue desiccation and allowing the ablation process to continue for a longer period of time before "roll-off" occurs, resulting in larger ablations compared with standard radiofrequency ablation (RFA). Previous research showed that attaching the anode to the skin using electrosurgical grounding pads would reduce the efficacy of BETA because of the high electrical resistivity of the skin. This study investigated the ablation size produced when the anode was attached to the peritoneum (BETA-peritoneum) and the liver (BETA-liver) respectively. The anode of the DC circuit in BETA was attached to the peritoneum and the liver in a pig model using ECG dots. In BETA, 9 V of DC was provided for 10 min, after which the radiofrequency generator were switched on and both electrical circuits allowed to run concurrently until "roll-off." The size of ablations produced was compared to when the anode attached to the skin (BETA-skin) and standard RFA, respectively. The sites of anode placement were examined for local tissue injury. The transverse diameters in BETA-peritoneum and BETA-liver were significantly larger compared with BETA-skin and standard RFA, respectively (P < 0.001). The axial diameter in the BETA-peritoneum and BETA-liver groups were also larger compared with the BETA-skin and RFA groups, although the differences did not reach statistical significance (P = 0.09). Hematoxylin and eosin (H and E) examination of the peritoneum and the liver where the anode was attached showed coagulation necrosis involving the superficial epithelium and the liver capsule, respectively. BETA can be used to treat larger liver tumors more effectively and may reduce the tumor recurrence rates compared with standard RFA. The efficacy of BETA depends on ensuring good electrical conductivity between the

  12. MRI features after radiofrequency ablation of osteoid osteoma with cooled probes and impedance-control energy delivery.

    PubMed

    Cantwell, Colin P; Kerr, Jennifer; O'Byrne, John; Eustace, Stephen

    2006-05-01

    The purposes of our study were to determine the temporal changes in MR signal in bone after radiofrequency ablation of osteoid osteoma and the size of the zone of marrow signal change produced by the radiofrequency technique and to compare the size of the zone with published data for radiofrequency ablation with manual-control protocols. Radiofrequency ablation was performed in 10 patients with a clinical and radiologic diagnosis of osteoid osteoma. A cooled radiofrequency probe was inserted in the nidus. Twelve minutes of radiofrequency energy was applied from a 200-W radiofrequency generator in an impedance-control setting. MRI with multiplanar turbo spin-echo T1-weighted and STIR sequences was performed at 1, 7, and 28 days after the procedure in seven patients. The three remaining patients had follow-up imaging at 28 days only. The images were reviewed by two radiologists who categorized the imaging features and measured the marrow zone of signal alteration when visible. The size of the zone of marrow signal change produced by the radiofrequency technique was compared with published data for radiofrequency ablation with manual-control protocols. A 1-mm band of homogeneous altered marrow signal distributed symmetrically parallel to the entire probe tract was seen earliest, at 1 day, in the femoral neck lesion treated with the 2-cm probe. The band was low signal on the T1 sequence and high signal on the STIR sequence, and the diameter of the zone was 27 mm. By 7 days, five of the seven treated bones showed a band of marrow signal alteration. By 28 days, all 10 treated bones had a band of marrow signal alteration. The interband distance at 90 degrees to the probe measured on STIR images at 28 days was a mean of 20.9 mm (confidence interval, 16.1-25.7 mm [p < 0.05]; range +/- measurement error, 10.5-35 +/- 1.64 mm) with a 1-cm probe and 30.5 mm (measurement error, +/- 0.78 mm) on T1 images without contrast material when a 2-cm exposed-tip probe was used. Higher

  13. Radiofrequency thermal ablation in canine femur: evaluation of coagulation necrosis reproducibility and MRI-histopathologic correlation.

    PubMed

    Lee, Jeong Min; Choi, Seong Hong; Park, Hee Seon; Lee, Min Woo; Han, Chang Jin; Choi, Joon-il; Choi, Ja-Young; Hong, Sung Hwan; Han, Joon Koo; Choi, Byung Ihn

    2005-09-01

    Our purposes were to determine whether a single application of radiofrequency energy to normal bone can create coagulation necrosis reproducibly and to assess the accuracy of MRI at revealing the extent of radiofrequency-induced thermal bone injury. Using a 200-W generator and a 17-gauge cooled-tip electrode, a total of 11 radiofrequency ablations were performed under fluoroscopic guidance in the distal femurs of seven dogs. Radiofrequency was applied in standard monopolar mode at 100 W for 10 min. During radiofrequency ablation, the changes in impedance and currents were recorded. MRI, including unenhanced T1- and T2-weighted images and contrast-enhanced fat-suppressed T1-weighted images, was performed to evaluate ablation regions. Six dogs were killed on day 4 after MRI and one dog on day 7. In all animals, radiofrequency ablation created a well-defined coagulation necrosis and no significant complications were noted. The mean long-axis diameter and the mean short-axis diameter of the coagulation zones produced were 45.9 +/- 5.5 mm and 17.7 +/- 2.7 mm, respectively. At gross examination, thermal ablation regions appeared as a central, light-brown area with a dark-brown peripheral hemorrhagic zone, which was surrounded by a pale-yellow rim. On MRI, the ablated areas showed multilayered zones with signal intensities that differed from normal marrow on unenhanced images and a perfusion defect on contrast-enhanced T1-weighted images. The maximum difference between lesion sizes on MR images, established by measuring macroscopic coagulation necrosis, was 3 mm. The correlation between the diameter of coagulation necrosis and lesion size at MRI was strong, with correlation coefficients ranging from 0.89 for unenhanced T1-weighted images and 0.97 for unenhanced T2-weighted images to 0.98 for contrast-enhanced T1-weighted images (p < 0.05). Radiofrequency ablation created well-defined coagulation necrosis in a reproducible manner, and MRI accurately determined the extent

  14. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Westphal, Saskia, E-mail: swestphal@ukaachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MWmore » ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.« less

  15. Local ablative treatments for hepatocellular carcinoma: An updated review

    PubMed Central

    Facciorusso, Antonio; Serviddio, Gaetano; Muscatiello, Nicola

    2016-01-01

    Ablative treatments currently represent the first-line option for the treatment of early stage unresectable hepatocellular carcinoma (HCC). Furthermore, they are effective as bridging/downstaging therapies before orthotopic liver transplantation. Contraindications based on size, number, and location of nodules are quite variable in literature and strictly dependent on local expertise. Among ablative therapies, radiofrequency ablation (RFA) has gained a pivotal role due to its efficacy, with a reported 5-year survival rate of 40%-70%, and safety. Although survival outcomes are similar to percutaneous ethanol injection, the lower local recurrence rate stands for a wider application of RFA in hepato-oncology. Moreover, RFA seems to be even more cost-effective than liver resection for very early HCC (single nodule ≤ 2 cm) and in the presence of two or three nodules ≤ 3 cm. There is increasing evidence that combining RFA to transarterial chemoembolization may increase the therapeutic benefit in larger HCCs without increasing the major complication rate, but more robust prospective data is still needed to validate these pivotal findings. Among other thermal treatments, microwave ablation (MWA) uses high frequency electromagnetic energy to induce tissue death via coagulation necrosis. In comparison to RFA, MWA has several theoretical advantages such as a broader zone of active heating, higher temperatures within the targeted area in a shorter treatment time and the lack of heat-sink effect. The safety concerns raised on the risks of this procedure, due to the broader and less predictable necrosis areas, have been recently overcome. However, whether MWA ability to generate a larger ablation zone will translate into a survival gain remains unknown. Other treatments, such as high-intensity focused ultrasound ablation, laser ablation, and cryoablation, are less investigated but showed promising results in early HCC patients and could be a valuable therapeutic option in

  16. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.

    PubMed

    Takaki, Yasuhiro; Nakaoka, Mitsuki

    2016-08-08

    Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.

  17. Intraoperative microwave ablation of pulmonary malignancies with tumor permittivity feedback control: ablation and resection study in 10 consecutive patients.

    PubMed

    Wolf, Farrah J; Aswad, Bassam; Ng, Thomas; Dupuy, Damian E

    2012-01-01

    To determine histologic changes induced by microwave ablation (MWA) in patients with pulmonary malignancy by using an ablation system with tumor permittivity feedback control, enabling real-time modulation of energy power and frequency. Institutional review board approval and patient informed consent were obtained for this prospective HIPAA-complaint ablation and resection study. Between March 2009 and January 2010, 10 patients (four women, six men; mean age, 71 years; age range, 52-82 years) underwent intraoperative MWA of pulmonary malignancies. Power (10-32 W) and frequency (908-928 MHz) were continuously adjusted by the generator to maintain a temperature of 110°-120°C at the 14-gauge antenna tip for one 10-minute application. After testing for an air leak, tumors were resected surgically. Gross inspection, slicing, and hematoxylin-eosin (10 specimens) and nicotinamide adenine dinucleotide (six specimens) staining were performed. Tumors included adenocarcinomas (n = 5), squamous cell carcinomas (n = 3), and metastases from endometrial (n = 1) and colorectal (n = 1) primary carcinomas. Mean maximum tumor diameter was 2.4 cm (range, 0.9-5.0 cm), and mean maximum volume was 8.6 cm(3) (range, 0.5-52.7 cm(3)). One air leak was detected. Five of 10 specimens were grossly measurable, revealing a mean maximum ablation zone diameter of 4.8 cm (range, 3.0-6.5 cm) and a mean maximum ablation zone volume of 15.1 cm(3) (range, 7.3-25.1 cm(3)). At hematoxylin-eosin staining, coagulation necrosis was observed in all ablation zones, extended into the normal lung in nine of 10 specimens, and up to blood vessel walls without evidence of vessel (>4 mm) thrombosis. Nicotinamide adenine dinucleotide staining enabled confirmation of no viability within ablation zones extending into normal lung in five of six specimens. MWA with tumor permittivity feedback control results in cytotoxic intratumoral temperatures and extension of ablation zones into aerated peritumoral pulmonary

  18. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation.

    PubMed

    Ringe, Kristina I; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn's multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15 mm distance to the antenna (p<0.05). At a flow rate of 700 ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15 mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15 mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels.

  19. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation

    PubMed Central

    Ringe, Kristina I.; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    Purpose To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. Materials and Methods 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn’s multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Results Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15mm distance to the antenna (p<0.05). At a flow rate of 700ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Conclusion Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels. PMID:26222431

  20. Protection of skin with subcutaneous administration of 5% dextrose in water during superficial radiofrequency ablation in a rabbit model.

    PubMed

    Guo, Hui; Liu, Xia-Lei; Wang, Yu-Ling; Li, Jing-Yi; Lu, Wu-Zhu; Xian, Jian-Zhong; Zhang, Bai-Meng; Li, Jian

    2014-06-01

    This study was to evaluate the efficacy of subcutaneous administration of 5% dextrose in water (D5W), to prevent skin injury during radiofrequency (RF) ablation. Twenty-four rabbits were divided into three groups: a pre-injection group, a perfusion group, and a control group. Ablative zones were created in the superficial part of the thigh muscle for 6 min. A needle was placed subcutaneously for injection of D5W, and a thermal sensor was positioned nearby for real-time temperature monitoring. The sizes of the ablative zones were measured by contrast-enhanced ultrasonography, and severity of the observed skin injury were scored semi-quantitatively and compared. The highest temperature, the duration of the temperature above 50 °C, and the rise time of the post-procedure temperature were all highest in the control group (p < 0.001), while these values were lower in the perfusion group than those in the pre-injection group (p < 0.001). Post-procedure skin injury was most severe in the control group (p < 0.001). On post-procedure day 1, no significant difference was found between the skin injury of the pre-injection group and the perfusion group (p = 0.091), while the skin injury of the perfusion group was less severe than that of the pre-injection group on post-procedure day 14 (p = 0.004). No significant difference was found in the sizes of the ablative zones among the groups (p = 0.720). Subcutaneous perfusion with D5W is effective in protecting the skin against burns during RF ablation without compromising the effect of ablation.

  1. Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling.

    PubMed

    Clasen, Stephan; Schmidt, Diethard; Boss, Andreas; Dietz, Klaus; Kröber, Stefan M; Claussen, Claus D; Pereira, Philippe L

    2006-03-01

    To evaluate the size and geometry of thermally induced coagulation by using multipolar radiofrequency (RF) ablation and to determine a mathematic model to predict coagulation volume. Multipolar RF ablations (n = 80) were performed in ex vivo bovine livers by using three internally cooled bipolar applicators with two electrodes on the same shaft. Applicators were placed in a triangular array (spacing, 2-5 cm) and were activated in multipolar mode (power output, 75-225 W). The size and geometry of the coagulation zone, together with ablation time, were assessed. Mathematic functions were fitted, and the goodness of fit was assessed by using r(2). Coagulation volume, short-axis diameter, and ablation time were dependent on power output and applicator distance. The maximum zone of coagulation (volume, 324 cm(3); short-axis diameter, 8.4 cm; ablation time, 193 min) was induced with a power output of 75 W at an applicator distance of 5 cm. Coagulation volume and ablation time decreased as power output increased. Power outputs of 100-125 W at applicator distances of 2-4 cm led to a reasonable compromise between coagulation volume and ablation time. At 2 cm (100 W), coagulation volume, short-axis diameter, and ablation time were 66 cm(3), 4.5 cm, and 19 min, respectively; at 3 cm (100 W), 90 cm(3), 5.2 cm, and 22 min, respectively; at 4 cm (100 W), 132 cm(3), 6.1 cm, and 27 min, respectively; at 2 cm (125 W), 56 cm(3), 4.2 cm, and 9 min, respectively; at 3 cm (125 W), 73 cm(3), 4.9 cm, and 12 min, respectively; and at 4 cm (125 W), 103 cm(3), 5.5 cm, and 16 min, respectively. At applicator distances of 4 cm (>125 W) and 5 cm (>100 W), the zones of coagulation were not confluent. Coagulation volume (r(2) = 0.80) and RF ablation time (r(2) = 0.93) were determined by using the mathematic model. Multipolar RF ablation with three bipolar applicators may produce large volumes of confluent coagulation ex vivo. A compromise is necessary between prolonged RF ablations at lower

  2. The in vivo performance of a novel thermal accelerant agent used for augmentation of microwave energy delivery within biologic tissues during image-guided thermal ablation: a porcine study.

    PubMed

    Park, William Keun Chan; Maxwell, Aaron Wilhelm Palmer; Frank, Victoria Elizabeth; Primmer, Michael Patrick; Paul, Jarod Brian; Collins, Scott Andrew; Lombardo, Kara Anne; Lu, Shaolei; Borjeson, Tiffany Marie; Baird, Grayson Luderman; Dupuy, Damian Edward

    2018-02-01

    To investigate the effects of a novel caesium-based thermal accelerant (TA) agent on ablation zone volumes following in vivo microwave ablation of porcine liver and skeletal muscle, and to correlate the effects of TA with target organ perfusion. This prospective study was performed following institutional animal care and use committee approval. Microwave ablation was performed in liver and resting skeletal muscle in eight Sus scrofa domesticus swine following administration of TA at concentrations of 0 mg/mL (control), 100 mg/mL and 250 mg/mL. Treated tissues were explanted and stained with triphenyltetrazolium chloride (TTC) for quantification of ablation zone volumes, which were compared between TA and control conditions. Hematoxylin and eosin (H&E) staining was also performed for histologic analysis. General mixed modelling with a log-normal distribution was used for all quantitative comparisons (p = 0.05). A total of 28 ablations were performed in the liver and 18 in the skeletal muscle. The use of TA significantly increased ablation zone volumes in a dose-dependent manner in both the porcine muscle and liver (p < 0.01). Both the absolute mean ablation zone volume and percentage increase in ablation zone volume were greater in the resting skeletal muscle than in the liver. In one swine, a qualitative mitigation of heat sink effects was observed by TTC and H&E staining. Non-lethal polymorphic ventricular tachycardia was identified in one swine, treated with intravenous amiodarone. The use of a novel TA agent significantly increased mean ablation zone volumes following microwave ablation using a porcine model. The relationship between TA administration and ablation size was dose-dependent and inversely proportional to the degree of target organ perfusion, and a qualitative reduction in heat-sink effects was observed.

  3. Evaluation of Movement Restriction Zone Sizes in Controlling Classical Swine Fever Outbreaks

    PubMed Central

    Yadav, Shankar; Olynk Widmar, Nicole; Lay, Donald C.; Croney, Candace; Weng, Hsin-Yi

    2017-01-01

    The objective of this study was to compare the impacts of movement restriction zone sizes of 3, 5, 9, and 11 km with that of 7 km (the recommended zone size in the United States) in controlling a classical swine fever (CSF) outbreak. In addition to zone size, different compliance assumptions and outbreak types (single site and multiple site) were incorporated in the study. Three assumptions of compliance level were simulated: baseline, baseline ± 10%, and baseline ± 15%. The compliance level was held constant across all zone sizes in the baseline simulation. In the baseline ± 10% and baseline ± 15% simulations, the compliance level was increased for 3 and 5 km and decreased for 9 and 11 km from the baseline by the indicated percentages. The compliance level remained constant in all simulations for the 7-km zone size. Four single-site (i.e., with one index premises at the onset of outbreak) and four multiple-site (i.e., with more than one index premises at the onset of outbreak) CSF outbreak scenarios in Indiana were simulated incorporating various zone sizes and compliance assumptions using a stochastic between-premises disease spread model to estimate epidemic duration, percentage of infected, and preemptively culled swine premises. Furthermore, a risk assessment model that incorporated the results from the disease spread model was developed to estimate the number of swine premises under movement restrictions that would experience animal welfare outcomes of overcrowding or feed interruption during a CSF outbreak in Indiana. Compared with the 7-km zone size, the 3-km zone size resulted in a longer median epidemic duration, larger percentages of infected premises, and preemptively culled premises (P’s < 0.001) across all compliance assumptions and outbreak types. With the assumption of a higher compliance level, the 5-km zone size significantly (P < 0.001) reduced the epidemic duration and percentage of swine premises that would

  4. Assessment of liver ablation using cone beam computed tomography.

    PubMed

    Abdel-Rehim, Mohamed; Ronot, Maxime; Sibert, Annie; Vilgrain, Valérie

    2015-01-14

    To investigate the feasibility and accuracy of cone beam computed tomography (CBCT) in assessing the ablation zone after liver tumor ablation. Twenty-three patients (17 men and 6 women, range: 45-85 years old, mean age 65 years) with malignant liver tumors underwent ultrasound-guided percutaneous tumor ablation [radiofrequency (n = 14), microwave (n = 9)] followed by intravenous contrast-enhanced CBCT. Baseline multidetector computed tomography (MDCT) and peri-procedural CBCT images were compared. CBCT image quality was assessed as poor, good, or excellent. Image fusion was performed to assess tumor coverage, and quality of fusion was rated as bad, good, or excellent. Ablation zone volumes on peri-procedural CBCT and post-procedural MDCT were compared using the non-parametric paired Wilcoxon t-test. Rate of primary ablation effectiveness was 100%. There were no complications related to ablation. Local tumor recurrence and new liver tumors were found 3 mo after initial treatment in one patient (4%). The ablation zone was identified in 21/23 (91.3%) patients on CBCT. The fusion of baseline MDCT and peri-procedural CBCT images was feasible in all patients and showed satisfactory tumor coverage (at least 5-mm margin). CBCT image quality was poor, good, and excellent in 2 (9%), 8 (35%), and 13 (56%), patients respectively. Registration quality between peri-procedural CBCT and post-procedural MDCT images was good to excellent in 17/23 (74%) patients. The median ablation volume on peri-procedural CBCT and post-procedural MDCT was 30 cm(3) (range: 4-95 cm(3)) and 30 cm(3) (range: 4-124 cm(3)), respectively (P-value > 0.2). There was a good correlation (r = 0.79) between the volumes of the two techniques. Contrast-enhanced CBCT after tumor ablation of the liver allows early assessment of the ablation zone.

  5. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation

  6. Does artificial ascites induce the heat-sink phenomenon during percutaneous radiofrequency ablation of the hepatic subcapsular area?: an in vivo experimental study using a rabbit model.

    PubMed

    Kim, Young Sun; Rhim, Hyunchul; Choi, Dongil; Lim, Hyo K

    2009-01-01

    To evaluate the effect of the heat-sink phenomenon induced by artificial ascites on the size of the ablation zone during percutaneous radiofrequency (RF) ablation of the hepatic subcapsular area in an in vivo rabbit model. A total of 21 percutaneous rabbit liver RF ablations were performed with and without artificial ascites (5% dextrose aqueous solution). The rabbits were divided into three groups: a) control group (C, n = 7); b) room temperature ascites group (R, n = 7); and c) warmed ascites group (W, n = 7). The tip of a 1 cm, internally cooled electrode was placed on the subcapsular region of the hepatic dome via ultrasound guidance, and ablation was continued for 6 min. Changes in temperature of the ascites were monitored during the ablation. The size of the ablation zones of the excised livers and immediate complications rates were compared statistically between the groups (Mann-Whitney U test, Kruskal-Wallis test, linear-by-linear association, p = 0.05). One rabbit from the "W" group expired during the procedure. In all groups, the ascites temperatures approached their respective body temperatures as the ablations continued; however, a significant difference in ascites temperature was found between groups "W" and "R" throughout the procedures (39.2+/-0.4 degrees C in group W and 33.4+/-4.3 degrees C in group R at 6 min, p = 0.003). No significant difference was found between the size of the ablation zones (782.4+/-237.3 mL in group C, 1,172.0+/-468.9 mL in group R, and 1,030.6+/-665.1 mL in group W, p = 0.170) for the excised liver specimens. Diaphragmatic injury was identified in three of seven cases (42.9%) upon visual inspection of group "C" rabbits (p = 0.030). Artificial ascites are not likely to cause a significant heat-sink phenomenon in the percutaneous RF ablation of the hepatic subcapsular region.

  7. Limits on great earthquake size at subduction zones

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2012-12-01

    Subduction zones are where the world's greatest earthquakes occur due to the large fault area available to slip. Yet some subduction zones are thought to be immune from these massive events, where quake size is limited by some physical processes or properties. Accordingly, the size of the 2011 Tohoku-oki Mw 9.0 earthquake caught some in the earthquake research community by surprise. The expectations of these massive quakes have been driven in the past by reliance on our short, incomplete history of earthquakes and causal relationships derived from it. The logic applied is that if a great earthquake has not happened in the past, that we know of, one cannot happen in the future. Using the ~100-year global earthquake seismological history, and in some cases extended with geologic observations, relationships between maximum earthquake sizes and other properties of subduction zones are suggested, leading to the notion that some subduction zones, like the Japan Trench, would never produce a magnitude ~9 event. Empirical correlations of earthquake behavior with other subduction parameters can give false positive results when the data are incomplete or incorrect, of small numbers and numerous attributes are examined. Given multi-century return times of the greatest earthquakes, ignorance of those return times and our relatively limited temporal observation span (in most places), I suggest that we cannot yet rule out great earthquakes at any subduction zones. Alternatively, using the length of a subduction zone that is available for slip as the predominant factor in determining maximum earthquake size, we cannot rule out that any subduction zone of a few hundred kilometers or more in length may be capable of producing a magnitude 9 or larger earthquake. Based on this method, the expected maximum size for the Japan Trench was 9.0 (McCaffrey, Geology, p. 263, 2008). The same approach indicates that a M > 9 off Java, with twice the population density as Honshu and much lower

  8. RFA-cut: Semi-automatic segmentation of radiofrequency ablation zones with and without needles via optimal s-t-cuts.

    PubMed

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Chen, Xiaojun; Hann, Alexander; Boechat, Pedro; Yu, Wei; Freisleben, Bernd; Alhonnoro, Tuomas; Pollari, Mika; Moche, Michael; Schmalstieg, Dieter

    2015-01-01

    In this contribution, we present a semi-automatic segmentation algorithm for radiofrequency ablation (RFA) zones via optimal s-t-cuts. Our interactive graph-based approach builds upon a polyhedron to construct the graph and was specifically designed for computed tomography (CT) acquisitions from patients that had RFA treatments of Hepatocellular Carcinomas (HCC). For evaluation, we used twelve post-interventional CT datasets from the clinical routine and as evaluation metric we utilized the Dice Similarity Coefficient (DSC), which is commonly accepted for judging computer aided medical segmentation tasks. Compared with pure manual slice-by-slice expert segmentations from interventional radiologists, we were able to achieve a DSC of about eighty percent, which is sufficient for our clinical needs. Moreover, our approach was able to handle images containing (DSC=75.9%) and not containing (78.1%) the RFA needles still in place. Additionally, we found no statistically significant difference (p<;0.423) between the segmentation results of the subgroups for a Mann-Whitney test. Finally, to the best of our knowledge, this is the first time a segmentation approach for CT scans including the RFA needles is reported and we show why another state-of-the-art segmentation method fails for these cases. Intraoperative scans including an RFA probe are very critical in the clinical practice and need a very careful segmentation and inspection to avoid under-treatment, which may result in tumor recurrence (up to 40%). If the decision can be made during the intervention, an additional ablation can be performed without removing the entire needle. This decreases the patient stress and associated risks and costs of a separate intervention at a later date. Ultimately, the segmented ablation zone containing the RFA needle can be used for a precise ablation simulation as the real needle position is known.

  9. Economic Effects of Increased Control Zone Sizes in Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Datta, Koushik

    1998-01-01

    A methodology for estimating the economic effects of different control zone sizes used in conflict resolutions between aircraft is presented in this paper. The methodology is based on estimating the difference in flight times of aircraft with and without the control zone, and converting the difference into a direct operating cost. Using this methodology the effects of increased lateral and vertical control zone sizes are evaluated.

  10. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  11. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  12. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    PubMed

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  13. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses

    PubMed Central

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols. PMID:28253331

  14. Method for evaluation of predictive models of microwave ablation via post-procedural clinical imaging

    NASA Astrophysics Data System (ADS)

    Collins, Jarrod A.; Brown, Daniel; Kingham, T. Peter; Jarnagin, William R.; Miga, Michael I.; Clements, Logan W.

    2015-03-01

    Development of a clinically accurate predictive model of microwave ablation (MWA) procedures would represent a significant advancement and facilitate an implementation of patient-specific treatment planning to achieve optimal probe placement and ablation outcomes. While studies have been performed to evaluate predictive models of MWA, the ability to quantify the performance of predictive models via clinical data has been limited to comparing geometric measurements of the predicted and actual ablation zones. The accuracy of placement, as determined by the degree of spatial overlap between ablation zones, has not been achieved. In order to overcome this limitation, a method of evaluation is proposed where the actual location of the MWA antenna is tracked and recorded during the procedure via a surgical navigation system. Predictive models of the MWA are then computed using the known position of the antenna within the preoperative image space. Two different predictive MWA models were used for the preliminary evaluation of the proposed method: (1) a geometric model based on the labeling associated with the ablation antenna and (2) a 3-D finite element method based computational model of MWA using COMSOL. Given the follow-up tomographic images that are acquired at approximately 30 days after the procedure, a 3-D surface model of the necrotic zone was generated to represent the true ablation zone. A quantification of the overlap between the predicted ablation zones and the true ablation zone was performed after a rigid registration was computed between the pre- and post-procedural tomograms. While both model show significant overlap with the true ablation zone, these preliminary results suggest a slightly higher degree of overlap with the geometric model.

  15. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew G.; Smith, Laurence C.; Rennermalm, Asa K.; Miège, Clément; Pitcher, Lincoln H.; Ryan, Jonathan C.; Yang, Kang; Cooley, Sarah W.

    2018-03-01

    We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43-0.91 g cm-3, μ = 0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (< 0.5 m), even lower density (0.33-0.56 g cm-3, μ = 0.45 g cm-3) unsaturated weathering crust. Ice density data from 10 shallow (0.9-1.1 m) ice cores along an 800 m transect suggest an average 14-18 cm of specific meltwater storage within this low-density ice. Water saturation of this ice is confirmed through measurable water levels (1-29 cm above hole bottoms, μ = 10 cm) in 84 % of cryoconite holes and rapid refilling of 83 % of 1 m drilled holes sampled along the transect. These findings are consistent with descriptions of shallow, depth-limited aquifers on the weathered surface of glaciers worldwide and confirm the potential for substantial transient meltwater storage within porous low-density ice on the Greenland ice sheet ablation zone surface. A conservative estimate for the ˜ 63 km2 supraglacial catchment yields 0.009-0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.

  16. Bipolar radiofrequency ablation of spinal tumors: predictability, safety and outcome.

    PubMed

    Gazis, Angelos N; Beuing, Oliver; Franke, Jörg; Jöllenbeck, Boris; Skalej, Martin

    2014-04-01

    Bone metastases are often the cause of tumor-associated pain and reduction of quality of life. For patients that cannot be treated by surgery, a local minimally invasive therapy such as radiofrequency ablation can be a useful option. In cases in which tumorous masses are adjacent to vulnerable structures, the monopolar radiofrequency can cause severe neuronal damage because of the unpredictability of current flow. The aim of this study is to show that the bipolar radiofrequency ablation provides an opportunity to safely treat such spinal lesions because of precise predictability of the emerging ablation zone. Prospective cohort study of 36 patients undergoing treatment at a single institution. Thirty-six patients in advanced tumor stage with primary or secondary tumor involvement of spine undergoing radiofrequency ablation. Prediction of emerging ablation zone. Clinical outcome of treated patients. X-ray-controlled treatment of 39 lesions by bipolar radiofrequency ablation. Magnetic resonance imaging was performed pre- and postinterventionally. Patients were observed clinically during their postinterventional stay. The extent of the ablation zones was predictable to the millimeter because it did not cross the peri-interventional planned dorsal and ventral boundaries in any case. No complications were observed. Ablation of tumorous masses adjacent to vulnerable structures is feasible and predictable by using the bipolar radiofrequency ablation. Damage of neuronal structures can be avoided through precise prediction of the ablation area. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Optimization of direct current-enhanced radiofrequency ablation: an ex vivo study.

    PubMed

    Tanaka, Toshihiro; Isfort, Peter; Bruners, Philipp; Penzkofer, Tobias; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H

    2010-10-01

    The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, and mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 +/- 3.9 vs. 26.5 +/- 4.0 ml), but ablation duration was significantly decreased (296 +/- 85 s vs. 423 +/- 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.

  18. Optimization of Direct Current-Enhanced Radiofrequency Ablation: An Ex Vivo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Isfort, Peter; Bruners, Philipp

    2010-10-15

    The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, andmore » mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 {+-} 3.9 vs. 26.5 {+-} 4.0 ml), but ablation duration was significantly decreased (296 {+-} 85 s vs. 423 {+-} 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.« less

  19. Characteristics of laparoscopic microwave ablation with renal tissue: Experimental in vivo study using a porcine model.

    PubMed

    Hong, Baoan; Du, Xin; Zhao, Yuan; Chen, Guowei; Zhang, Xiaodong; Zhang, Ning; Yang, Yong

    2015-01-01

    A model of in vivo porcine kidneys is used to clarify the characteristics of laparoscopic microwave ablation (MWA) of renal tissue. Six pigs were utilised for the experiment using 18G water circulating-cooling microwave needles. The operating frequency was 2450 MHz, and the independent variables were power (50-60 W) and time (300-600 s). The kidneys were dissociated laparoscopically and ablated with a single or double needle at different power/time combinations and depths of puncture. Changes in the kidneys were carefully observed. Specimens of the ablated lesions were stained with haematoxylin-eosin (H&E) to evaluate the pathological features. Thirty-four thermoablations were applied. The effective ablation shape was similar to a chestnut. The ablated lesions could be divided into three zones: carbonization zone, coagulation zone, and inflammatory reaction zone. The ablation zone enlarged with increasing power and time. When combined with two needles, the maximum diameter of the ablated lesions significantly increased. Pathological results indicated that renal tissues of the carbonisation zone were thoroughly necrotic. Coagulative necrosis was observed in the coagulation zone. No 'skipped' areas were noted in any ablation zone. The structure of the inflammatory reaction zone was integrated, and interstitial small blood vessels were highly expanded and congested with infiltrated inflammatory cells. MWA achieved excellent effects in this porcine model. It can be safely and effectively used in renal tissue. For patients with poor physical condition or small renal masses (<4 cm), we can refer to these data and select the appropriate combinations to obtain satisfactory therapeutic efficacy.

  20. Optical aberrations induced by subclinical decentrations of the ablation pattern

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo

    2000-06-01

    Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations after PRK are mainly determined by the decentration of the ablation zone during laser refractive surgery. However, future laser systems should use efficient eye-tracking systems and aspherical ablation profiles to overcome this problem.

  1. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes

    NASA Astrophysics Data System (ADS)

    Mosquera, Samuel Arba; Verma, Shwetabh

    2015-07-01

    The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r2=0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r2=0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.

  2. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  3. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.

    PubMed

    Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang

    2013-07-01

    Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.

  4. Robotically Assisted Sonic Therapy as a Noninvasive Nonthermal Ablation Modality: Proof of Concept in a Porcine Liver Model.

    PubMed

    Smolock, Amanda R; Cristescu, Mircea M; Vlaisavljevich, Eli; Gendron-Fitzpatrick, Annette; Green, Chelsey; Cannata, Jonathan; Ziemlewicz, Timothy J; Lee, Fred T

    2018-05-01

    Purpose To determine the feasibility of creating a clinically relevant hepatic ablation (ie, an ablation zone capable of treating a 2-cm liver tumor) by using robotically assisted sonic therapy (RAST), a noninvasive and nonthermal focused ultrasound therapy based on histotripsy. Materials and Methods This study was approved by the institutional animal use and care committee. Ten female pigs were treated with RAST in a single session with a prescribed 3-cm spherical treatment region and immediately underwent abdominal magnetic resonance (MR) imaging. Three pigs (acute group) were sacrificed immediately following MR imaging. Seven pigs (chronic group) were survived for approximately 4 weeks and were reimaged with MR imaging immediately before sacrifice. Animals underwent necropsy and harvesting of the liver for histologic evaluation of the ablation zone. RAST ablations were performed with a 700-kHz therapy transducer. Student t tests were performed to compare prescribed versus achieved ablation diameter, difference of sphericity from 1, and change in ablation zone volume from acute to chronic imaging. Results Ablation zones had a sphericity index of 0.99 ± 0.01 (standard deviation) (P < .001 vs sphericity index of 1). Anteroposterior and transverse dimensions were not significantly different from prescribed (3.4 ± 0.7; P = .08 and 3.2 ± 0.8; P = .29, respectively). The craniocaudal dimension was significantly larger than prescribed (3.8 ± 1.1; P = .04), likely because of respiratory motion. The central ablation zone demonstrated complete cell destruction and a zone of partial necrosis. A fibrous capsule surrounded the ablation zone by 4 weeks. On 4-week follow-up images, ablation zone volumes decreased by 64% (P < .001). Conclusion RAST is capable of producing clinically relevant ablation zones in a noninvasive manner in a porcine model. © RSNA, 2018.

  5. A prospective development study of software-guided radio-frequency ablation of primary and secondary liver tumors: Clinical intervention modelling, planning and proof for ablation cancer treatment (ClinicIMPPACT).

    PubMed

    Reinhardt, Martin; Brandmaier, Philipp; Seider, Daniel; Kolesnik, Marina; Jenniskens, Sjoerd; Sequeiros, Roberto Blanco; Eibisberger, Martin; Voglreiter, Philip; Flanagan, Ronan; Mariappan, Panchatcharam; Busse, Harald; Moche, Michael

    2017-12-01

    Radio-frequency ablation (RFA) is a promising minimal-invasive treatment option for early liver cancer, however monitoring or predicting the size of the resulting tissue necrosis during the RFA-procedure is a challenging task, potentially resulting in a significant rate of under- or over treatments. Currently there is no reliable lesion size prediction method commercially available. ClinicIMPPACT is designed as multicenter-, prospective-, non-randomized clinical trial to evaluate the accuracy and efficiency of innovative planning and simulation software. 60 patients with early liver cancer will be included at four European clinical institutions and treated with the same RFA system. The preinterventional imaging datasets will be used for computational planning of the RFA treatment. All ablations will be simulated simultaneously to the actual RFA procedure, using the software environment developed in this project. The primary outcome measure is the comparison of the simulated ablation zones with the true lesions shown in follow-up imaging after one month, to assess accuracy of the lesion prediction. This unique multicenter clinical trial aims at the clinical integration of a dedicated software solution to accurately predict lesion size and shape after radiofrequency ablation of liver tumors. Accelerated and optimized workflow integration, and real-time intraoperative image processing, as well as inclusion of patient specific information, e.g. organ perfusion and registration of the real RFA needle position might make the introduced software a powerful tool for interventional radiologists to optimize patient outcomes.

  6. High power microwave ablation of normal swine lung: impact of duration of energy delivery on adverse event and heat sink effects.

    PubMed

    Kodama, Hiroshi; Ueshima, Eisuke; Gao, Song; Monette, Sebastien; Paluch, Lee-Ronn; Howk, Kreg; Erinjeri, Joseph P; Solomon, Stephen B; Srimathveeravalli, Govindarajan

    2018-04-18

    The purpose of this study is to assess the impact of duration of energy delivery on adverse events (AEs) and heat sink effects during high power microwave ablation (MWA) of normal swine lung. High power (100 W) MWA was performed with short (2 min, 18 ablations) or long (10 min, nine ablations) duration of energy delivery in unilateral lung of swine (n = 10). CT imaging was done prior to sacrifice at 2 or 28 d post-treatment, with additional imaging at 7 and 14 d for the latter cohort. Ablation zones were assessed with CT imaging and histopathology analysis. Differences in AEs and ablation characteristics between groups were compared with Fisher's exact test and Student's t-test, respectively. There were no significant differences in formation of air-filled needle tract, cavitation, and pneumonia (p > 0.5) between the treatment groups. Intra-procedural pneumothorax requiring chest tube placement occurred in three animals. Substantial (>20%, p = 0.01) intra-procedural ablation zone distortion was observed in both groups. The presence of large airways or blood vessels did not result in heat sink effect within the ablation zones and was not indicative of reduced ablation size. Increased energy delivery yielded larger (8.9 ± 3.1 cm 3 vs. 3.4 ± 1.7 cm 3 , p < 0.001) spherical ablations (sphericity: 0.70 ± 0.10 vs. 0.56 ± 0.13, p = 0.01). High power MWA of normal lung with longer duration of energy delivery can create larger spherical ablations, without significant differences in post-procedure AEs when compared with shorter energy delivery time.

  7. Focusing geometry-induced size tailoring of silver nanoparticles obtained by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Stasic, Jelena; Joksic, Gordana; Zivkovic, Ljiljana; Mihailescu, Ion N.; Ghica, Corneliu; Kuncser, Andrei; Trtica, Milan

    2014-10-01

    Silver nanoparticles were obtained by picosecond laser ablation in water at 1064 nm, using focusing geometry to design the particles’ size. The position of the target surface with respect to the focal point strongly influences the NPs’ size: above and in the focus it is up to 20 nm and below focus ≤ 150 nm. Generated particles have a spherical shape. The solutions were further employed on human cells and the tests showed a deteriorating effect on DNA.

  8. Selective Vulnerability of Cortical Border Zone to Microembolic Infarct.

    PubMed

    Bergui, Mauro; Castagno, Davide; D'Agata, Federico; Cicerale, Alessandro; Anselmino, Matteo; Maria Ferrio, Federica; Giustetto, Carla; Halimi, Franck; Scaglione, Marco; Gaita, Fiorenzo

    2015-07-01

    Endovascular procedures, including atrial fibrillation transcatheter ablation, may cause microembolization of brain arteries. Microemboli often cause small sized and clinically silent cerebral ischemias (SCI). These lesions are clearly visible on early postoperative magnetic resonance diffusion-weighted images. We analyzed SCI distribution in a population of patients submitted to atrial fibrillation transcatheter ablation. Seventy-eight of 927 consecutive patients submitted to atrial fibrillation transcatheter ablation were found positive for acute SCI on a postoperative magnetic resonance. SCI were identified and marked, and their coordinates were transformed from native space into the International Consortium for Brain Mapping/Montreal Neurological Institute space. We then computed the voxel-wise probability distribution map of the SCI using the activation likelihood estimation approach. SCI were more commonly found in the cortex. In supratentorial regions, SCI selectively involved cortical border zone between anterior, middle, and posterior cerebral arteries; in infratentorial regions, distal territory of posteroinferior cerebellar artery. Possible explanations include selective embolization, linked to the vascular anatomy of pial arteries supplying those territories, reduced clearance of emboli in a relatively hypoperfused zone, or a combination of both. This particular distribution of lesions has been reported in both animal models and in patients with microemboli of different sources. A selective vulnerability of cortical border zone to microemboli occurring during atrial fibrillation transcatheter ablation was observed. We hypothesize that such selectivity may apply to microemboli of different sources. © 2015 American Heart Association, Inc.

  9. Picosecond laser ablation of polyamide electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Götze, Marco; Krimig, Olaf; Kürbitz, Tobias; Henning, Sven; Heilmann, Andreas; Hillrichs, Georg

    2017-02-01

    Electrospun nanofibers mats have a great potential in tissue engineering and regenerative medicine. Their high porosity and enormous volume to surface ratio stimulate the growth and adhesion of mammalian cells and serve as a stable support structure. These suitable properties can be further optimized by structuring of the nanofibers. Ultrashort pulsed lasers can be used for modifying of the electrospun nanofibers without significant heat exposure. It seems also possible to generate very fine cuts from the fiber mats. In this study, polyamide electrospun nanofibers samples were processed with picosecond UV-laser irradiation (λ = 355 nm, τ = 15 ps). The samples were processed in dry, wet and immersed condition. To optimize cutting and structuring of nanofiber tissue flakes, the influence of different laser parameters on line widths, edge quality, heat-affected zone (HAZ) and the contamination of the fibers by ablated particles (debris) were examined. One additional aim was the minimization of the flake size. It was possible to generate nanofiber flakes in the sub-millimeter range. The quality of the nanofiber flakes could be improved by ablation near the ablation threshold of the material. For cutting under wet conditions shrinking of the flakes has to be taken into account.

  10. No-Touch Radiofrequency Ablation: A Comparison of Switching Bipolar and Switching Monopolar Ablation in Ex Vivo Bovine Liver

    PubMed Central

    Chang, Won; Lee, Sang Min; Han, Joon Koo

    2017-01-01

    Objective To evaluate the feasibility, efficiency, and safety of no-touch switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) using ex vivo bovine livers. Materials and Methods A pork loin cube was inserted as a tumor mimicker in the bovine liver block; RFA was performed using the no-touch technique in the SM (group A1; 10 minutes, n = 10, group A2; 15 minutes, n = 10) and SB (group B; 10 minutes, n = 10) modes. The groups were compared based on the creation of confluent necrosis with sufficient safety margins, the dimensions, and distance between the electrode and ablation zone margin (DEM). To evaluate safety, small bowel loops were placed above the liver surface and 30 additional ablations were performed in the same groups. Results Confluent necroses with sufficient safety margins were created in all specimens. SM RFA created significantly larger volumes of ablation compared to SB RFA (all p < 0.001). The DEM of group B was significantly lower than those of groups A1 and A2 (all p < 0.001). Although thermal injury to the small bowel was noted in 90%, 100%, and 30% of the cases in groups A1, A2, and B, respectively, full depth injury was noted only in 60% of group A2 cases. Conclusion The no-touch RFA technique is feasible in both the SB and SM modes; however, SB RFA appears to be more advantageous compared to SM RFA in the creation of an ablation zone while avoiding the unnecessary creation of an adjacent parenchymal ablation zone or adjacent small bowel injuries. PMID:28246508

  11. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    PubMed

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters.

  12. Real-Time MRI-Guided Cardiac Cryo-Ablation: A Feasibility Study.

    PubMed

    Kholmovski, Eugene G; Coulombe, Nicolas; Silvernagel, Joshua; Angel, Nathan; Parker, Dennis; Macleod, Rob; Marrouche, Nassir; Ranjan, Ravi

    2016-05-01

    MRI-based ablation provides an attractive capability of seeing ablation-related tissue changes in real time. Here we describe a real-time MRI-based cardiac cryo-ablation system. Studies were performed in canine model (n = 4) using MR-compatible cryo-ablation devices built for animal use: focal cryo-catheter with 8 mm tip and 28 mm diameter cryo-balloon. The main steps of MRI-guided cardiac cryo-ablation procedure (real-time navigation, confirmation of tip-tissue contact, confirmation of vessel occlusion, real-time monitoring of a freeze zone formation, and intra-procedural assessment of lesions) were validated in a 3 Tesla clinical MRI scanner. The MRI compatible cryo-devices were advanced to the right atrium (RA) and right ventricle (RV) and their position was confirmed by real-time MRI. Specifically, contact between catheter tip and myocardium and occlusion of superior vena cava (SVC) by the balloon was visually validated. Focal cryo-lesions were created in the RV septum. Circumferential ablation of SVC-RA junction with no gaps was achieved using the cryo-balloon. Real-time visualization of freeze zone formation was achieved in all studies when lesions were successfully created. The ablations and presence of collateral damage were confirmed by T1-weighted and late gadolinium enhancement MRI and gross pathological examination. This study confirms the feasibility of a MRI-based cryo-ablation system in performing cardiac ablation procedures. The system allows real-time catheter navigation, confirmation of catheter tip-tissue contact, validation of vessel occlusion by cryo-balloon, real-time monitoring of a freeze zone formation, and intra-procedural assessment of ablations including collateral damage. © 2016 Wiley Periodicals, Inc.

  13. MR-guided microwave ablation in hepatic tumours: initial results in clinical routine.

    PubMed

    Hoffmann, Rüdiger; Rempp, Hansjörg; Keßler, David-Emanuel; Weiß, Jakob; Pereira, Philippe L; Nikolaou, Konstantin; Clasen, Stephan

    2017-04-01

    Evaluation of the technical success, patient safety and technical effectiveness of magnetic resonance (MR)-guided microwave ablation of hepatic malignancies. Institutional review board approval and informed patient consent were obtained. Fifteen patients (59.8 years ± 9.5) with 18 hepatic malignancies (7 hepatocellular carcinomas, 11 metastases) underwent MR-guided microwave ablation using a 1.5-T MR system. Mean tumour size was 15.4 mm ± 7.7 (7-37 mm). Technical success and ablation zone diameters were assessed by post-ablative MR imaging. Technique effectiveness was assessed after 1 month. Complications were classified according to the Common Terminology Criteria for Adverse Events (CTCAE). Mean follow-up was 5.8 months ± 2.6 (1-10 months). Technical success and technique effectiveness were achieved in all lesions. Lesions were treated using 2.5 ± 1.2 applicator positions. Mean energy and ablation duration per tumour were 37.6 kJ ± 21.7 (9-87 kJ) and 24.7 min ± 11.1 (7-49 min), respectively. Coagulation zone short- and long-axis diameters were 31.5 mm ± 10.5 (16-65 mm) and 52.7 mm ± 15.4 (27-94 mm), respectively. Two CTCAE-2-complications occurred (pneumothorax, pleural effusion). Seven patients developed new tumour manifestations in the untreated liver. Local tumour progression was not observed. Microwave ablation is feasible under near real-time MR guidance and provides effective treatment of hepatic malignancies in one session. • Planning, applicator placement and therapy monitoring are possible without using contrast enhancement • Energy transmission from the generator to the scanner room is safely possible • MR-guided microwave ablation provides effective treatment of hepatic malignancies in one session • Therapy monitoring is possible without applicator retraction from the ablation site.

  14. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 1. Hydrology Model

    NASA Technical Reports Server (NTRS)

    Colgan, William; Rajaram, Harihar; Anderson, Robert; Steffen. Konrad; Phillips, Thomas; Zwally, H. Jay; Abdalati, Waleed

    2012-01-01

    We apply a novel one-dimensional glacier hydrology model that calculates hydraulic head to the tidewater-terminating Sermeq Avannarleq flowline of the Greenland ice sheet. Within a plausible parameter space, the model achieves a quasi-steady-state annual cycle in which hydraulic head oscillates close to flotation throughout the ablation zone. Flotation is briefly achieved during the summer melt season along a approx.17 km stretch of the approx.50 km of flowline within the ablation zone. Beneath the majority of the flowline, subglacial conduit storage closes (i.e. obtains minimum radius) during the winter and opens (i.e. obtains maximum radius) during the summer. Along certain stretches of the flowline, the model predicts that subglacial conduit storage remains open throughout the year. A calculated mean glacier water residence time of approx.2.2 years implies that significant amounts of water are stored in the glacier throughout the year. We interpret this residence time as being indicative of the timescale over which the glacier hydrologic system is capable of adjusting to external surface meltwater forcings. Based on in situ ice velocity observations, we suggest that the summer speed-up event generally corresponds to conditions of increasing hydraulic head during inefficient subglacial drainage. Conversely, the slowdown during fall generally corresponds to conditions of decreasing hydraulic head during efficient subglacial drainage.

  15. Analysis of ablation debris from natural and artificial iron meteorites

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Davis, A. S.

    1977-01-01

    Artificial ablation studies were performed on iron and nickel-iron samples using an arc-heated plasma of ionized air. Experiment conditions simulated a meteoroid traveling about 12 km/sec at an altitude of 70 km. The artificially produced fusion crusts and ablation debris show features very similar to natural fusion crusts of the iron meteorites Boguslavka, Norfork, and N'Kandhla and to magnetic spherules recovered from Mn nodules. X-ray diffraction, electron microprobe, optical, and scanning electron microscope analyses reveal that important mineralogical, elemental, and textural changes occur during ablation. Some metal is melted and ablated. The outer margin of the melted rind is oxidized and recrystallizes as a discontinuous crust of magnetite and wustite. Adjacent to the oxidized metallic ablation zone is an unoxidized metallic ablation zone in which structures such as Widmannstatten bands are obliterated as the metal is transformed to unequilibrated alpha 2 nickel-iron. Volatile elements are vaporized and less volatile elements undergo fractionation.

  16. Pathological effects of lung radiofrequency ablation that contribute to pneumothorax, using a porcine model.

    PubMed

    Izaaryene, Jean; Cohen, Frederic; Souteyrand, Philippe; Rolland, Pierre-Henri; Vidal, Vincent; Bartoli, Jean-Michel; Secq, Veronique; Gaubert, Jean-Yves

    2017-11-01

    The incidence of pneumothorax is 7 times higher after lung radiofrequency ablation (RFA) than after lung biopsy. The reasons for such a difference have never been objectified. The histopathologic changes in lung tissue are well-studied and established for RF in the ablation zone. However, it has not been previously described what the nature of thermal injury might be along the shaft of the RF electrode as it traverses through normal lung tissue to reach the ablation zone. The purpose of this study was to determine the changes occurring around the RF needle along the pathway between the ablated zone and the pleura. In 3 anaesthetised and ventilated swine, 6 RFA procedures (right and left lungs) were performed using a 14-gauge unipolar multi-tined retractable 3 cm radiofrequency LeVeen probe with a coaxial introducer positioned under CT fluoroscopic guidance. In compliance with literature guidelines, we implemented a gradually increasing thermo-ablation protocol using a RF generator. Helical CT images were acquired pre- and post-RFA procedure to detect and evaluate pneumothorax. Four percutaneous 19-gauge lung biopsies were also performed on the fourth swine under CT guidance. Swine were sacrificed for lung ex vivo examinations, scanning electron microscopy (SEM) and pathological analysis. Three severe (over 50 ml) pneumothorax were detected after RFA. In each one of them, pathological examination revealed a fistulous tract between ablation zone and pleura. No fistulous tract was observed after biopsies. In the 3 cases of severe pneumothorax, the tract was wide open and clearly visible on post procedure CT images and SEM examinations. The RFA tract differed from the needle biopsy tract. The histological changes that are usually found in the ablated zone were observed in the RFA tract's wall and were related to thermal lesions. These modifications caused the creation of a coagulated pulmonary parenchyma rim between the thermo-ablation zone and the pleural space

  17. Comparative study on laser tissue ablation between PV and HPS lasers

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Jebens, David; Mitchell, Gerald; Koullick, Ed

    2008-02-01

    Laser therapy for obstructive benign prostatic hyperplasia (BPH) has gained broad adoption due to effective tissue removal, immediate hemostasis, and minor complications. The aim of this study is to quantitatively compare ablation characteristics of PV (Photoselective Vaporization) and the newly introduced HPS (High Performance System) 532 nm lasers. Bovine prostatic tissues were ablated in vitro, using a custom-made scanning system. Laser-induced volume produced by two lasers was quantified as a function of applied power, fiber working distance (WD), and treatment speed. Given the same power of 80 W and speed of 4 mm/s, HPS created up to 50 % higher tissue ablation volume than PV did. PV induced a rapid decrease of ablation volume when WD increased from 0.5 mm to 3 mm while HPS yielded almost constant tissue removal up to 3 mm for both 80 W and 120 W. As the treatment speed increased, both lasers reached saturation in tissue ablation volume. Lastly, both PV and HPS lasers exhibited approximately 1 mm thick heat affected zone (HAZ) in this study although HPS created twice deeper ablation channels with a depth of up to 4 mm. Due to a smaller beam size and a higher output power, HPS maximized tissue ablation rate with minimal thermal effects to the adjacent tissue. Furthermore, more collimated beam characteristics provides more spatial flexibility and may even help to decrease the rate of fiber degradation associated with thermal damage from debris reattachment to the tip.

  18. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dong; Brace, Christopher L., E-mail: clbrace@wisc.edu

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. Themore » spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.« less

  19. Theoretical comparison of two interstitial ultrasound applicators designed to induce cylindrical zones of tissue ablation.

    PubMed

    Lafon, C; Chavrier, F; Prat, F; Chapelon, J Y; Cathignol, D

    1999-05-01

    Although interstitial techniques are invasive, they are still the first-line therapeutic modalities for certain types of tumour. They are mainly relevant to tumours that are either inoperable or located so deep that access is complicated. Of the various types of radiation that can be delivered by the interstitial route, ultrasound is the most suitable for deep heating. The study compares the efficacy of two types of applicator with respect to their ability to induce cylindrical zones of coagulation necrosis. The transducer of the first applicator is tubular, whereas the second is plane and can rotate around its axis. Both have an external diameter of 4 mm, are fitted with surface cooling systems and operate at 10.7 MHz and 14 W.cm-2. Comparison involves mathematical modelling of ablated tissue in the targeted area by resolving the bioheat transfer equation (BHTE) using an algorithm based on finite differences. The BHTE gives a temperature value from which the thermal dose can be determined. It is shown that tissue ablation by tubular transducers is slow, and, in consequence, perfusion disturbs the heating pattern: in vivo, irradiation with a tubular transducer lasting 1081 s would be required to ablate a tissue mass with a radius of 8 mm. The corresponding period using a rotating plane transducer with 20 firing angles is only 618 s. The mean exposure time of each shot lasts 31 +/- 7 s. Therefore perfusion would have much less impact in the case of therapy administered using a plane transducer than that using a tubular one.

  20. Effect of the Size of the Left Atrium on Sustained Sinus Rhythm in Patients Undergoing Mitral Valve Surgery and Concomitant Bipolar Radiofrequency Ablation for Atrial Fibrillation.

    PubMed

    Avdagić, Harun; Sijerčić Avdagić, Selma; Pirić Avdagić, Melika; Antonič, Miha

    2017-12-01

    Atrial fibrillation is associated with systemic embolization and complications due to anticoagulant therapy. Radiofrequency ablation has been established as an effective and safe method for the treatment of atrial fibrillation. The aim of this study was to evaluate the effect of the size of the left atrium on the outcome of surgical radiofrequency ablation. Forty patients scheduled for elective mitral valve surgery and radiofrequency ablation were enrolled in the study. Group 1 consisted of patients with a left atrium diameter ≤5 cm and group 2 of patients with left atrium diameter >5 cm. The primary endpoint of the study was stable sinus rhythm 6 months postoperatively. At 6 months postoperatively, sinus rhythm was present in significantly more group 1 patients as compared with group 2 patients, i.e. 15 (75%) vs. 8 (40%), p=0.025. Multivariate analysis proved the size of the left atrium to be an independent predictor of the radiofrequency ablation outcome. Accordingly, the size of the left atrium was demonstrated to be an important predictor of the outcome of radiofrequency ablation for atrial fibrillation. A lower cut-off value of surgical reduction of the atria than previously reported should be considered in order to improve the radiofrequency ablation outcome.

  1. Modeling and Validation of Microwave Ablations with Internal Vaporization

    PubMed Central

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L.

    2014-01-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this work, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10 and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intra-procedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard Index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard Index of 0.27, 0.49, 0.61, 0.67 and 0.69 at 1, 2, 3, 4, and 5 minutes. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally. PMID:25330481

  2. The characterization of neural tissue ablation rate and corresponding heat affected zone of a 2 micron Tm3+ doped fiber laser(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marques, Andrew J.; Jivraj, Jamil; Reyes, Robnier; Ramjist, Joel; Gu, Xijia J.; Yang, Victor X. D.

    2017-02-01

    Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.

  3. Radiofrequency ablation of hepatocellular carcinoma: Mono or multipolar?

    PubMed

    Cartier, Victoire; Boursier, Jérôme; Lebigot, Jérôme; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Aubé, Christophe

    2016-03-01

    Thermo-ablation by radiofrequency is recognized as a curative treatment for early-stage hepatocellular carcinoma. However, local recurrence may occur because of incomplete peripheral tumor destruction. Multipolar radiofrequency has been developed to increase the size of the maximal ablation zone. We aimed to compare the efficacy of monopolar and multipolar radiofrequency for the treatment of hepatocellular carcinoma and determine factors predicting failure. A total of 171 consecutive patients with 214 hepatocellular carcinomas were retrospectively included. One hundred fifty-eight tumors were treated with an expandable monopolar electrode and 56 with a multipolar technique using several linear bipolar electrodes. Imaging studies at 6 weeks after treatment, then every 3 months, assessed local effectiveness. Radiofrequency failure was defined as persistent residual tumor after two sessions (primary radiofrequency failure) or local tumor recurrence during follow-up. This study received institutional review board approval (number 2014/77). Imaging showed complete tumor ablation in 207 of 214 lesions after the first session of radiofrequency. After a second session, only two cases of residual viable tumor were observed. During follow-up, there were 46 local tumor recurrences. Thus, radiofrequency failure occurred in 48/214 (22.4%) cases. By multivariate analysis, technique (P < 0.001) and tumor size (P = 0.023) were independent predictors of radiofrequency failure. Failure rate was lower with the multipolar technique for tumors < 25 mm (P = 0.023) and for tumors between 25 and 45 mm (P = 0.082). There was no difference for tumors ≥ 45 mm (P = 0.552). Compared to monopolar radiofrequency, multipolar radiofrequency improves tumor ablation with a subsequent lower rate of local tumor recurrence. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  4. A novel method for fabrication of size-controlled metallic nanoparticles by laser ablation

    NASA Astrophysics Data System (ADS)

    Choudhury, Kaushik; Singh, R. K.; Ranjan, Mukesh; Kumar, Ajai; Srivastava, Atul

    2017-12-01

    Time resolved experimental investigation of laser produced plasma-induced shockwaves has been carried out in the presence of confining walls placed along the lateral directions using a Mach Zehnder interferometer in air ambient. Copper was used as target material. The primary and the reflected shock waves and their effects on the evolution of medium density and the plasma density have been studied. The reflected shock wave has been seen to be affecting the shape and density of the plasma plume in the confined geometry. The same experiments were performed with water and isopropyl alcohol as the ambient liquids and the produced nanoparticles were characterised for size and size distribution. Significant differences in the size and size distribution are seen in case of the nanoparticles produced from the ablation of the targets with and without confining boundary. The observed trend has been attributed to the presence of confining boundary and the way it affects the thermalisation time of the plasma plume. The experiments also show the effect of medium density on the mean size of the copper nanoparticles produced.

  5. Designing multifocal corneal models to correct presbyopia by laser ablation

    NASA Astrophysics Data System (ADS)

    Alarcón, Aixa; Anera, Rosario G.; Del Barco, Luis Jiménez; Jiménez, José R.

    2012-01-01

    Two multifocal corneal models and an aspheric model designed to correct presbyopia by corneal photoablation were evaluated. The design of each model was optimized to achieve the best visual quality possible for both near and distance vision. In addition, we evaluated the effect of myosis and pupil decentration on visual quality. The corrected model with the central zone for near vision provides better results since it requires less ablated corneal surface area, permits higher addition values, presents stabler visual quality with pupil-size variations and lower high-order aberrations.

  6. Evolution of the ablation region after magnetic resonance-guided high-intensity focused ultrasound ablation in a Vx2 tumor model.

    PubMed

    Wijlemans, Joost W; Deckers, Roel; van den Bosch, Maurice A A J; Seinstra, Beatrijs A; van Stralen, Marijn; van Diest, Paul J; Moonen, Chrit T W; Bartels, Lambertus W

    2013-06-01

    Volumetric magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) is a completely noninvasive image-guided thermal ablation technique. Recently, there has been growing interest in the use of MR-HIFU for noninvasive ablation of malignant tumors. Of particular interest for noninvasive ablation of malignant tumors is reliable treatment monitoring and evaluation of response. At this point, there is limited evidence on the evolution of the ablation region after MR-HIFU treatment. The purpose of the present study was to comprehensively characterize the evolution of the ablation region after volumetric MR-HIFU ablation in a Vx2 tumor model using MR imaging, MR temperature data, and histological data. Vx2 tumors in the hind limb muscle of New Zealand White rabbits (n = 30) were ablated using a clinical MR-HIFU system. Twenty-four animals were available for analyses. Magnetic resonance imaging was performed before and immediately after ablation; MR temperature mapping was performed during the ablation. The animals were distributed over 7 groups with different follow-up lengths. Depending on the group, animals were reimaged and then killed on day 0, 1, 3, 7, 14, 21, or 28 after ablation. For all time points, the size of nonperfused areas (NPAs) on contrast-enhanced T1-weighted (CE-T1-w) images was compared with lethal thermal dose areas (ie, the tissue area that received a thermal dose of 240 equivalent minutes or greater [EM] at 43°C) and with the necrotic tissue areas on histology sections. The NPA on CE-T1-w imaging showed an increase in median size from 266 ± 148 to 392 ± 178 mm(2) during the first day and to 343 ± 170 mm(2) on day 3, followed by a gradual decrease to 113 ± 103 mm(2) on day 28. Immediately after ablation, the NPA was 1.6 ± 1.4 times larger than the area that received a thermal dose of 240 EM or greater in all animals. The median size of the necrotic area on histology was 1.7 ± 0.4 times larger than the NPA immediately after

  7. Femtosecond laser-induced size reduction and emission quantum yield enhancement of colloidal silicon nanocrystals: Effect of laser ablation time.

    PubMed

    Zhang, Yingxiong; Wu, Wenshun; Hao, Huilian; Shen, Wenzhong

    2018-06-19

    Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm with increasing LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra, we attribute room temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% with prolonging LAT from 30 to 120 min. © 2018 IOP Publishing Ltd.

  8. Local recurrence after laparoscopic radiofrequency ablation of malignant liver tumors: Results of a contemporary series.

    PubMed

    Takahashi, Hideo; Akyuz, Muhammet; Aksoy, Erol; Karabulut, Koray; Berber, Eren

    2017-06-01

    The aims of this study were to determine the incidence of Local recurrence (LR) in patients at long-term follow-up after laparoscopic RFA (LRFA) and also to determine the risk factors for LR from a contemporary series. Patients undergoing LRFA between 2005 and 2014 by a single surgeon were reviewed. Demographic and perioperative data were analyzed from a prospective database. LRFA was performed on 316 patients with 901 lesions. Median follow-up was 25 months, with 76% of whom completed at least one year of follow-up. The LR rate was 18.4%. The LR in patients followed for less than 12 months was 13.8%, 20.3% for 12 months, and 19.7% for 18 months (P = 0.02). One-fourth of the LRs developed after the 1st year. Morbidity was 8.9% and mortality 0.3%. Tumor type, size, ablation margin, and surgeon experience affected LR, with tumor type, size, and ablation margin being independent. This study shows that 14% of malignant liver tumors will develop LR within a year after LRFA. Additional 4% of the lesions will demonstrate recurrence within 1 cm of the ablation zone, mostly as part of a multifocal recurrence. Ablation margin is the only parameter that the surgeon can manipulate to decrease LR. © 2017 Wiley Periodicals, Inc.

  9. The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels

    NASA Astrophysics Data System (ADS)

    Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.

    2015-09-01

    The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.

  10. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  11. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  12. Active contour configuration model for estimating the posterior ablative margin in image fusion of real-time ultrasound and 3D ultrasound or magnetic resonance images for radiofrequency ablation: an experimental study.

    PubMed

    Lee, Junkyo; Lee, Min Woo; Choi, Dongil; Cha, Dong Ik; Lee, Sunyoung; Kang, Tae Wook; Yang, Jehoon; Jo, Jaemoon; Bang, Won-Chul; Kim, Jongsik; Shin, Dongkuk

    2017-12-21

    The purpose of this study was to evaluate the accuracy of an active contour model for estimating the posterior ablative margin in images obtained by the fusion of real-time ultrasonography (US) and 3-dimensional (3D) US or magnetic resonance (MR) images of an experimental tumor model for radiofrequency ablation. Chickpeas (n=12) and bovine rump meat (n=12) were used as an experimental tumor model. Grayscale 3D US and T1-weighted MR images were pre-acquired for use as reference datasets. US and MR/3D US fusion was performed for one group (n=4), and US and 3D US fusion only (n=8) was performed for the other group. Half of the models in each group were completely ablated, while the other half were incompletely ablated. Hyperechoic ablation areas were extracted using an active contour model from real-time US images, and the posterior margin of the ablation zone was estimated from the anterior margin. After the experiments, the ablated pieces of bovine rump meat were cut along the electrode path and the cut planes were photographed. The US images with the estimated posterior margin were compared with the photographs and post-ablation MR images. The extracted contours of the ablation zones from 12 US fusion videos and post-ablation MR images were also matched. In the four models fused under real-time US with MR/3D US, compression from the transducer and the insertion of an electrode resulted in misregistration between the real-time US and MR images, making the estimation of the ablation zones less accurate than was achieved through fusion between real-time US and 3D US. Eight of the 12 post-ablation 3D US images were graded as good when compared with the sectioned specimens, and 10 of the 12 were graded as good in a comparison with nicotinamide adenine dinucleotide staining and histopathologic results. Estimating the posterior ablative margin using an active contour model is a feasible way of predicting the ablation area, and US/3D US fusion was more accurate than US

  13. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    PubMed

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.

  14. Preclinical Assessment of a 980-nm Diode Laser Ablation System in a Large Animal Tumor Model

    PubMed Central

    Ahrar, Kamran; Gowda, Ashok; Javadi, Sanaz; Borne, Agatha; Fox, Matthew; McNichols, Roger; Ahrar, Judy U.; Stephens, Clifton; Stafford, R. Jason

    2010-01-01

    Purpose To characterize the performance of a 980-nm diode laser ablation system in an in vivo tumor model. Materials and Methods This study was approved by the Institutional Animal Care and Use Committee. The ablation system consisted of a 15-W, 980-nm diode laser, flexible diffusing tipped fiber optic, and 17-gauge internally cooled catheter. Ten immunosuppressed dogs were inoculated subcutaneously with canine transmissible venereal tumor fragments in eight dorsal locations. Laser ablations were performed at 79 sites where inoculations were successful (99%) using powers of 10 W, 12.5 W, and 15 W, with exposure times between 60 and 180 seconds. In 20 cases, multiple overlapping ablations were performed. After the dogs were euthanized, the tumors were harvested, sectioned along the applicator track, measured and photographed. Measurements of ablation zone were performed on gross specimen. Histopathology and viability staining was performed using hematoxylin and eosin (H&E) and nicotinamide adenine dinucleotide hydrogen (NADH) staining. Results Gross pathology confirmed well-circumscribed ablation zone with sharp boundaries between thermally ablated tumor in the center surrounded by viable tumor tissue. When a single applicator was used, the greatest ablation diameters ranged from 12 mm at the lowest dose (10 W, 60 sec) to 26 mm at the highest dose (15 W, 180 sec). Multiple applicators created ablation zones of up to 42 mm in greatest diameter (with the lasers operating at 15 W for 120 sec). Conclusions The new 980-nm diode laser and internally cooled applicator effectively creates large ellipsoid thermal ablations in less than 3 minutes. PMID:20346883

  15. Percutaneous Microwave Ablation of Renal Angiomyolipomas.

    PubMed

    Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T

    2016-03-01

    To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  16. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    PubMed Central

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  17. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  18. Miniaturization of Microwave Ablation Antennas

    NASA Astrophysics Data System (ADS)

    Luyen, Hung

    Microwave ablation (MWA) is a promising minimally invasive technique for the treatment of various types of cancers as well as non-oncological diseases. In MWA, an interstitial antenna is typically used to deliver microwave energy to the diseased tissue and heat it up to lethal temperature levels that induce cell death. The desired characteristics of the interstitial antenna include a narrow diameter to minimize invasiveness of the treatment, a low input reflection coefficient at the operating frequency, and a localized heating zone. Most interstitial MWA antennas are fed by coaxial cables and designed for operation at either 915 MHz or 2.45 GHz. Coax-fed MWA antennas are commonly equipped with coaxial baluns to achieve localized heating. However, the conventional implementation of coaxial baluns increases the overall diameters of the antennas and therefore make them more invasive. It is highly desirable to develop less invasive antennas with shorter active lengths and smaller diameters for MWA applications. In this work, we demonstrate the feasibility of using higher frequency microwaves for tissue ablation and present several techniques for decreasing diameters of MWA antennas. First, we investigated MWA at higher frequencies by conducting numerical and experimental studies to compare ablation performance at 10 GHz and 1.9 GHz. Simulation and ex vivo ablation experiment results demonstrate comparable ablation zone dimensions achieved at these two frequencies. Operating at higher frequencies enables interstitial antennas with shorter active lengths. This can be combined with smaller-diameter antenna designs to create less invasive applicators or allow integration of multiple radiating elements on a single applicator to have better control and customization of the heating patterns. Additionally, we present three different coax-fed antenna designs and a non-coaxial-based balanced antenna that have smaller-diameter configurations than conventional coax-fed balun

  19. Impact of monsoonal rainfall on specific mass balance in ablation zone of Chhota Shigri Glacier in 2008, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Ramanathan, A.; Linda, A.; Wagnon, P.; Arnod, Y.; Jose, P. G.; Chevallier, P.

    2009-04-01

    The Mass Balance of the Chhota Shigri glacier (32.2°N, 77.5°E; 15.7 km2, 4050 to 6263m a.m.s.l., 9 km long) located in Lahaul and Spiti valley, Himachal Pradesh, India has been monitored from 2002 to 2008 using glaciological method. In 2008, an additional field survey during 3- 10th August was undertaken to understand the impact of monsoonal rainfall on specific mass balance at various points on the ablation zone of this glacier that is alternatively influenced by the Indian monsoon and the mid-latitude westerlies. Specific Annual Mass Balance is negative (0.93 mweq), Equilibrium Line Altitude (ELA) is 5120m and Accumulation Area Ratio (AAR) is 38% in the 2007-08 hydrological year. In 2008 data obtained from nearest Weather station at Keylong show that the monsoon hit the Spiti valley in the middle of June (15 days earlier than normal date ) .The results reveal that 70% of total specific mass balance occurred by the first week of August indicating that most of the melting occurred in the first half of ablation season, dominated by monsoonal rainfall. The rainfall may accelerate ablation rate by supplying ( heat ) energy even it is very low and exposing bare dirty ice thereby decreasing albedo. In part A of the glacier, the mean vertical gradient of ablation up to August 08 is 0.67 m w.e. 100 m-1 between 4350 and 4850 m a.s.l., (area free of debris) and for part B, it is 0.41 m w.e. 100 m-1 between 4600m a.s.l. and 5000m a.s.l. From August 08 up to 1st week of October, mean vertical gradient of the ablation for part A is 0.54m w.e. 100 m-1 and it is 0.61 m w.e. 100 m-1 in part B for the same altitude ranges. Below 4350m a.s.l. the whole glacier is covered by debris and the melting rate is significantly reduced. Overall, ablation rate is influenced by rainfall, incoming solar radiation and debris cover.

  20. Flow-dependent vascular heat transfer during microwave thermal ablation.

    PubMed

    Chiang, Jason; Hynes, Kieran; Brace, Christopher L

    2012-01-01

    Microwave tumor ablation is an attractive option for thermal ablation because of its inherent benefits over radiofrequency ablation (RFA) in the treatment of solid tumors such as hepatocellular carcinoma (HCC). Microwave energy heats tissue to higher temperatures and at a faster rate than RFA, creating larger, more homogenous ablation zones. In this study, we investigate microwave heating near large vasculature using coupled fluid-flow and thermal analysis. Low-flow conditions are predicted to be more likely to cause cytotoxic heating and, therefore, vessel thrombosis and endothelial damage of downstream tissues. Such conditions may be more prevalent in patient with severe cirrhosis or compromised blood flow. High-flow conditions create the more familiar heat-sink effect that can protect perivascular tissues from the intended thermal damage. These results may help guide placement and use of microwave ablation technologies in future studies.

  1. Protective and Heat Retention Effects of Thermo-sensitive Basement Membrane Extract (Matrigel) in Hepatic Radiofrequency Ablation in an Experimental Animal Study.

    PubMed

    Fu, Jing-Jing; Wang, Song; Yang, Wei; Gong, Wei; Jiang, An-Na; Yan, Kun; Chen, Min-Hua

    2017-07-01

    To evaluate the protective effect of using thermo-sensitive basement membrane extract (Matrigel) for hydrodissection to minimize thermal injury to nearby structures and to evaluate its heat sink effect on the ablation zone in radiofrequency ablation (RFA) of the liver. First, the viscosity profile and heat sink effect of Matrigel were assessed during RFA in vitro and ex vivo. Fresh pig liver tissue was used, and the temperature changes in Matrigel and in 5% dextrose in water (D5W) during RFA were recorded. Then, the size of the ablation zone in the peripheral liver after RFA was measured. Second, in an in vivo study, 45 Sprague-Dawley rats were divided into three groups of 15 rats each (Matrigel, D5W and control). In the experimental groups, artificial ascites with 10 ml of Matrigel or D5W were injected using ultrasound guidance prior to RFA. The frequency of thermal injury to the nearby organs was compared among the three groups, with assessments of several locations: near the diaphragm, the abdominal wall and the gastrointestinal (GI) tract. Finally, the biological degradation of Matrigel by ultrasound was evaluated over 60 days. First, Matrigel produced a greater heat retention (less heat sink) effect than D5W during ex vivo ablation (63 ± 9 vs. 26 ± 6 °C at 1 min on the surface of the liver, P < 0.001). Hepatic ablation zone volume did not differ between the two groups. Second, thermal injury to the nearby structures was found in 14 of 15 cases (93.3%) in the control group, 8 of 15 cases (53.3%) in the D5W group, and 1 of 15 cases (6.7%) in the Matrigel group. Significant differences in the thermal injury rates for nearby structures were detected among the three groups (P < 0.001). The most significant difference in the thermal injury rate was found in locations near the GI tract (P = 0.003). Finally, Matrigel that was injected in vivo was gradually degraded during the following 60 days. Using thermo-sensitive Matrigel as a hydrodissection

  2. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model.

    PubMed

    Amabile, Claudio; Farina, Laura; Lopresto, Vanni; Pinto, Rosanna; Cassarino, Simone; Tosoratti, Nevio; Goldberg, S Nahum; Cavagnaro, Marta

    2017-02-01

    The aim of this study was to develop a predictive model of the shrinkage of liver tissues in microwave ablation. Thirty-seven cuboid specimens of ex vivo bovine liver of size ranging from 2 cm to 8 cm were heated exploiting different techniques: 1) using a microwave oven (2.45 GHz) operated at 420 W, 500 W and 700 W for 8 to 20 min, achieving complete carbonisation of the specimens, 2) using a radiofrequency ablation apparatus (450 kHz) operated at 70 W for a time ranging from 6 to 7.5 min obtaining white coagulation of the specimens, and 3) using a microwave (2.45 GHz) ablation apparatus operated at 60 W for 10 min. Measurements of specimen dimensions, carbonised and coagulated regions were performed using a ruler with an accuracy of 1 mm. Based on the results of the first two experiments a predictive model for the contraction of liver tissue from microwave ablation was constructed and compared to the result of the third experiment. For carbonised tissue, a linear contraction of 31 ± 6% was obtained independently of the heating source, power and operation time. Radiofrequency experiments determined that the average percentage linear contraction of white coagulated tissue was 12 ± 5%. The average accuracy of our model was determined to be 3 mm (5%). The proposed model allows the prediction of the shrinkage of liver tissues upon microwave ablation given the extension of the carbonised and coagulated zones. This may be useful in helping to predict whether sufficient tissue volume is ablated in clinical practice.

  3. Analysis on ultrashort-pulse laser ablation for nanoscale film of ceramics

    NASA Astrophysics Data System (ADS)

    Ho, C. Y.; Tsai, Y. H.; Chiou, Y. J.

    2017-06-01

    This paper uses the dual-phase-lag model to study the ablation characteristics of femtosecond laser processing for nanometer-sized ceramic films. In ultrafast process and ultrasmall size where the two lags occur, a dual-phase-lag can be applied to analyse the ablation characteristics of femtosecond laser processing for materials. In this work, the ablation rates of nanometer-sized lead zirconate titanate (PZT) ceramics are investigated using a dual-phase-lag and the model is solved by Laplace transform method. The results obtained from this work are validated by the available experimental data. The effects of material thermal properties on the ablation characteristics of femtosecond laser processing for ceramics are also discussed.

  4. Rib fractures after percutaneous radiofrequency and microwave ablation of lung tumors: incidence and relevance.

    PubMed

    Alexander, Erica S; Hankins, Carol A; Machan, Jason T; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    To retrospectively identify the incidence and probable risk factors for rib fractures after percutaneous radiofrequency ablation (RFA) and microwave ablation (MWA) of neoplasms in the lung and to identify complications related to these fractures. Institutional review board approval was obtained for this HIPAA-compliant retrospective study. Study population was 163 patients treated with MWA and/or RFA for 195 lung neoplasms between February 2004 and April 2010. Follow-up computed tomographic images of at least 3 months were retrospectively reviewed by board-certified radiologists to determine the presence of rib fractures. Generalized estimating equations were performed to assess the effect that patient demographics, tumor characteristics, treatment parameters, and ablation zone characteristics had on development of rib fractures. Kaplan-Meier curve was used to estimate patients' probability of rib fracture after ablation as a function of time. Clinical parameters (ie, pain in ribs or chest, organ damage caused by fractured rib) were evaluated for patients with confirmed fracture. Rib fractures in proximity to the ablation zone were found in 13.5% (22 of 163) of patients. Estimated probability of fracture was 9% at 1 year and 22% at 3 years. Women were more likely than were men to develop fracture after ablation (P = .041). Patients with tumors closer to the chest wall were more likely to develop fracture (P = .0009), as were patients with ablation zones that involved visceral pleura (P = .039). No patients with rib fractures that were apparently induced by RFA and MWA had organ injury or damage related to fracture, and 9.1% (2 of 22) of patients reported mild pain. Rib fractures were present in 13.5% of patients after percutaneous RFA and MWA of lung neoplasms. Patients who had ablations performed close to the chest wall should be monitored for rib fractures.

  5. Low pressure laser ablation coupled to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fliegel, Daniel; Günther, Detlef

    2006-07-01

    The particle size distribution in laser ablation inductively coupled plasma mass spectrometry is known to be a critical parameter for complete vaporization of particles. Any strategy to reduce the particle size distribution of laser generated aerosols has the potential to increase the ion signal intensity and to reduce fractionation effects. Due to the fact that vapor generation, nucleation, condensation, and agglomeration take place within an extremely short period of time, ablation under atmospheric pressure might not allow influencing these processes while under reduced pressure condition the cooling of the aerosol and therefore the condensation is expected to be slower. In this study, a low pressure laser ablation cell for the generation of laser aerosols was coupled to an ICP-MS. In contrast to the previously developed trapped ablation mode, the newly designed cell allows the adjustment of the pressure in the ablation cell between 20 and 1400 mbar prior to the ablation. Ablation experiments carried out using this configuration showed a dependence of the aerosol properties (size distribution and particle structure) on the ablation cell pressure. The intensity ratio U/Th measured as a figure of merit for complete vaporization within the ICP indicated a change in the aerosol structure at approximately 500 mbar toward smaller particle size. A significant difference between low pressure and at ambient pressure ablated aerosol was observed. The intensity ratios (U/Th) of the ablated sample moves closer to the bulk composition at lower pressures at the expense of sensitivity. Therefore the decrease in the ICP-MS signal intensity in the low pressure cell can be attributed to vapor deposition within the ablation cell walls. Moreover, scanning electron microscope images of aerosols collected on filters after the low pressure ablation cell suggest the possibility of a slower cooling velocity of the aerosol, which was observed in the condensed material on the surface of

  6. Treatment of acne scarring using a dual-spot-size ablative fractionated carbon dioxide laser: review of the literature.

    PubMed

    Tierney, Emily P

    2011-07-01

    Fractional photothermolysis has been reported in the literature to improve pigmentary and textural changes associated with acne scarring. To review the literature for the treatment of acne scarring using nonablative fractional laser (NAFL) and ablative fractional laser (AFL) resurfacing. Review of the Medline literature evaluating NAFL and AFL for acne scarring. NAFL and AFL are safe and effective treatments for acne scarring. It is likely that the controlled, limited dermal heating of fractional resurfacing initiates a cascade of events in which normalization of the collagenesis-collagenolysis cycle occurs. We present the results of a patient treated using a novel dual-spot-size AFL device. Three months after the final treatment, the patient reported 75% improvement in acne scarring and 63% overall improvement in photoaging. Fractionated resurfacing for the treatment of acne scarring is associated with lesser risks of side effects of prolonged erythema and risks of delayed-onset dyspigmentation and scarring which complicate traditional ablative laser resurfacing approaches. We present herein preliminary data suggesting that a dual-spot-size AFL device presents novel advantages of improving texture and pigmentation in acne scarring and photoaging. © 2011 by the American Society for Dermatologic Surgery, Inc.

  7. [Radiofrequency ablation of hepatocellular carcinoma].

    PubMed

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  8. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    PubMed Central

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-01-01

    Abstract. Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43  μm), pulse energy (up to 3  mJ/pulse), and spot diameter (100 to 600  μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09  μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (∼100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1  mJ). When the beam is softly focused (∼300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  9. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial.

    PubMed

    Vietti Violi, Naïk; Duran, Rafael; Guiu, Boris; Cercueil, Jean-Pierre; Aubé, Christophe; Digklia, Antonia; Pache, Isabelle; Deltenre, Pierre; Knebel, Jean-François; Denys, Alban

    2018-05-01

    Radiofrequency ablation is the recommended treatment for patients with hepatocellular carcinoma who have lesions smaller than 3 cm and are therefore not candidates for surgery. Microwave ablation is a more recent technique with certain theoretical advantages that have not yet been confirmed clinically. We aimed to compare the efficacy of both techniques in the treatment of hepatocellular carcinoma lesions of 4 cm or smaller. We did a randomised controlled, single-blinded phase 2 trial at four tertiary university centres in France and Switzerland. Patients with chronic liver disease and hepatocellular carcinoma with up to three lesions of 4 cm or smaller who were not eligible for surgery were randomised to receive microwave ablation (experimental group) or radiofrequency ablation (control group). Randomisation was centralised and done by use of a fixed block method (block size 4). Patients were randomly assigned by a co-investigator by use of the sealed opaque envelope method and were masked to the treatment; physicians were not masked to treatment, since the devices used were different. The primary outcome was the proportion of lesions with local tumour progression at 2 years of follow-up. Local tumour progression was defined as the appearance of a new nodule with features typical of hepatocellular carcinoma in the edge of the ablation zone. All analyses were done in the per-protocol population. The study is completed, but patients will continue to be followed up for 5 years. This study is registered with ClinicalTrials.gov, number NCT02859753. Between Nov 15, 2011, and Feb 27, 2015, 152 patients were randomly assigned: 76 patients to receive microwave ablation and 76 patients to receive radiofrequency ablation. For the per-protocol analysis, five patients were excluded from the microwave ablation group as were three patients from the radiofrequency ablation group. Median follow-up was 26 months (IQR 18-29) in the microwave ablation group and 25 months (18-34) in

  10. Laparoscopic microwave thermosphere ablation of malignant liver tumors: An analysis of 53 cases.

    PubMed

    Zaidi, Nisar; Okoh, Alexis; Yigitbas, Hakan; Yazici, Pinar; Ali, Noaman; Berber, Eren

    2016-02-01

    Microwave thermosphere ablation (MTA) is a new technology that is designed to create spherical zones of ablation using a single antenna. The aim of this study is to assess the results of MTA in a large series of patients. This was a prospective study assessing the use of MTA in patients with malignant liver tumors. The procedures were done mostly laparoscopically and ablation zones created were assessed for completeness of tumor response, spherical geometry and recurrence on tri-phasic CT scans done on follow-up. There were a total of 53 patients with an average of 3 tumors measuring 1.5 cm. Ablations were performed laparoscopically in all but eight patients. Morbidity was 11.3% (n = 6), and mortality zero. On postoperative scans, there was 99.3% tumor destruction. Roundness indices A, B, and transverse were 1.1, 1.0, and 0.9, respectively. At a median follow-up of 4.5 months, incomplete ablation was seen in 1 of 149 lesions treated (0.7%) and local tumor recurrence in 1 lesion (0.7%). The results of this series confirm the safety and feasibility of MTA technology. The 99.3% rate of complete tumor ablation and low rate of local recurrence at short-term follow up are promising. © 2015 Wiley Periodicals, Inc.

  11. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  12. Focal Hydrothermal Ablation: Preliminary Investigation of a New Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sumit, E-mail: sumit.roy@online.no

    2013-08-01

    PurposeTo determine whether focal tissue ablation is possible with interstitial instillation of steam.MethodsFresh swine livers were used. Through a 20 gauge needle, steam was instilled every 5 s, 3 (n = 5), 6 (n = 5), 9 (n = 5), or 12 (n = 5 + 5) times in a liver lobe. The ablated zones were sectioned parallel (n = 20) or perpendicular (n = 5) to the needle track. The longitudinal long and short axis diameters, or transverse long and short axis diameters of areas with discoloration on macroscopic examination, were measured. The experiment was repeated in vivo onmore » a pig. Steam instillation was performed once every 5 s for 5 min in the liver (n = 3) and in muscle (n = 4), and temperature changes at three neighboring sites were monitored. Long and short axis diameters of the discolored areas were measured.ResultsA well-defined area of discoloration was invariably present at the site of steam instillation. The median longitudinal long axis diameter were 2.0, 2.5, 2.5, and 3.5 cm for 3, 6, 9, and 12 steam instillations in vitro, while median short axis diameters were 1.0, 1.5, 1.5, and 1.5 cm, respectively. Six attempts at ablation in vivo could be successfully completed. The long axis diameters of the ablated zones in the liver were 7.0 and 8.0 cm, while in muscle it ranged from 5.5 to 7.0 cm.ConclusionInstillation of steam in the liver in vitro and in vivo, and in muscle in vivo rapidly leads to circumscribed zones of coagulation necrosis.« less

  13. Effects of Perfusion on Radiofrequency Ablation in Swine Kidneys1

    PubMed Central

    Chang, Isaac; Mikityansky, Igor; Wray-Cahen, Diane; Pritchard, William F.; Karanian, John W.; Wood, Bradford J.

    2008-01-01

    PURPOSE: To evaluate the effect of vascular occlusion on the size of radiofrequency (RF) ablation lesions and to evaluate embolization as an occlusion method. MATERIALS AND METHODS: The kidneys of six swine were surgically exposed. Fifteen RF ablation lesions were created in nine kidneys by using a 2-cm-tip single-needle ablation probe in varying conditions: Seven lesions were created with normal blood flow and eight were created with blood flow obstructed by means of vascular clamping (n = 5) or renal artery embolization (n = 3). The temperature, applied voltage, current, and impedance were recorded during RF ablation. Tissue-cooling curves acquired for 2 minutes immediately after the ablation were compared by using regression analysis. Lesions were bisected, and their maximum diameters were measured and compared by using analysis of variance. RESULTS: The mean diameter of ablation lesions created when blood flow was obstructed was 60% greater than that of lesions created when blood flow was normal (1.38 cm ± 0.05 [standard error of mean] vs 0.86 cm ± 0.07, P < .001). The two methods of flow obstruction yielded lesions of similar mean sizes: 1.40 cm ± 0.06 with vascular clamping and 1.33 cm ± 0.07 with embolization. The temperature at the probe tip when lesions were ablated with normal blood flow decreased more rapidly than did the temperature when lesions were ablated after flow obstruction (P < .001), but no significant differences in tissue-cooling curves between the two flow obstruction methods were observed. CONCLUSION: Obstruction of renal blood flow before and during RF ablation resulted in larger thermal lesions with potentially less variation in size compared with the lesions created with normal nonobstructed blood flow. Selective arterial embolization of the kidney vessels may be a useful adjunct to RF ablation of kidney tumors. PMID:15128994

  14. CT-based investigation of the contraction of ex vivo tissue undergoing microwave thermal ablation

    NASA Astrophysics Data System (ADS)

    Lopresto, Vanni; Strigari, Lidia; Farina, Laura; Minosse, Silvia; Pinto, Rosanna; D'Alessio, Daniela; Cassano, Bartolomeo; Cavagnaro, Marta

    2018-03-01

    Treatment planning in microwave thermal ablation (MTA) requires the capability to predict and estimate the shape and dimension of the thermally coagulated zone obtainable following a clinical protocol. The ultimate result relies on the knowledge of the performance of the ablation device, as well as of the temperature-dependent structural modifications that the tissue undergoes during the treatment, because of the very high temperatures reached (up to 100 °C or higher). In this respect, tissue shrinkage plays an important role, since the dimension of the ablated tissue evaluated at the end of the MTA procedure (e.g. by way of CT imaging) could underestimate the actual treated tissue, leading to inaccurate assessment of the treatment outcome. In this study, CT imaging was used for real-time monitoring of tissue contraction during MTA experiments carried out in ex vivo bovine liver. Fiducial lead markers were positioned into the tissue in a 3D spatial grid around the MTA applicator. The spatial and temporal evolution of tissue contraction was imaged during the experiments, and analysed in terms of displacements of clusters of fiducial markers. The results obtained indicated that contraction is highly heterogeneous in the zone of ablation, depending both on the heating and on interactions with nearby tissue. In particular, tissue shrinkage appeared asymmetric with respect to the direction of insertion of the microwave applicator in the central area of carbonised tissue (about 30% and 19% along the radial and longitudinal directions, respectively), and isotropic in the region of coagulated (but not carbonised) tissue (about 11%). The total ablated volume was reduced by approximately 43% with respect to its pre-ablation value. Finally, temperature measurements displayed a correlation between temperature increment and temporal evolution of tissue contraction in the zone of ablation.

  15. Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Ksenofontova, N. S.; Bashkatov, A. N.; Terentyuk, G. S.; Tuchin, V. V.

    2017-06-01

    We present the results of a comparative analysis of optical immersion clearing of skin in laboratory animals in vivo with and without preliminary ablation of epidermis. Laser ablation is implemented using a setup based on a pulsed erbium laser (λ = 2940 nm). The size of the damaged region amounted to 6 × 6 mm, the depth being smaller than 50 μm. As an optical clearing agent (OCA), use is made of polyethylene glycol (PEG-300). Based on optical coherence tomography, we use the single scattering model to estimate the scattering coefficient in the process of optical clearing in 2 regions at depths of 50-170 μm and 150-400 μm. The results show that skin surface ablation leads to the local oedema of the affected region that increases the scattering coefficient. However, the intense evaporation of water from the ablation zone facilitates the optical clearing at the expense of tissue dehydration, particularly in the upper layers. The assessment of the optical clearing efficiency shows that the efficiency exceeding 30% can be achieved at a depth from 50 to 170 μm in 120 min after ablation, as well as after the same ablation with subsequent application of PEG-300, which increases the efficiency of the immersion method by almost 1.8 times. At a depth from 150 to 400 μm, dehydration of upper layers cannot completely compensate for an increase in light scattering by dermis after epidermis ablation. The additional effect of OCA enhances the optical clearing of skin at the expense of improving the refractive index matching between dermis components, but the maximal efficiency of optical clearing in 120 min does not exceed 6%.

  16. Radiofrequency Ablation Followed by Percutaneous Ethanol Ablation Leading to Long-Term Remission of Hyperparathyroidism

    PubMed Central

    Menon, Arun S.; Nazar, P. K.; Moorthy, Srikanth; Kumar, Harish; Nair, Vasantha; Pavithran, Praveen Valiyaparambil; Bhavani, Nisha; Menon, Vadayath Usha; Abraham, Nithya; Jayakumar, R. Vasukutty

    2017-01-01

    A 30-year-old male with cerebral palsy and motor impairment presented with right femur fracture. He had gradually worsening mobility and contractures of all extremities for the preceding 5 years. Evaluation showed multiple vertebral and femoral fractures, severe osteoporosis, a large parathyroid adenoma, and parathormone (PTH) exceeding 2500 pg/mL. Because of poor general health and high anesthetic risk, parathyroidectomy was deemed impractical. Ultrasound-guided radiofrequency ablation (RFA) helped achieve 50% size reduction and PTH levels with better control of hypercalcemia. Later, as calcium and PTH remained elevated, percutaneous ethanol ablation was performed with resultant normalization of PTH and substantial symptomatic improvement. Two years later, he still remains normocalcaemic with normal PTH levels. We propose that RFA and percutaneous ethanol ablation be considered as effective short-term options for surgically difficult cases, which could even help achieve long-term remission. Although not previously reported, our case illustrates that both RFA and percutaneous ethanol ablation could be safely performed successively achieving long-term remission. PMID:29264521

  17. Radiofrequency ablation of bone with cooled probes and impedance control energy delivery in a pig model: MR imaging features.

    PubMed

    Cantwell, Colin P; Flavin, Robert; Deane, Richard; Sheehan, Katherine; Dervan, Peter; O'Byrne, John; Eustace, Stephen

    2007-08-01

    To determine the coronal marrow ablation length and detect cortical thinning after radiofrequency ablation (RFA) of bone in a pig model. Twelve pigs underwent RFA with a 1- or 2-cm single internally cooled electrode placed at the mid-diaphyseal point of their long bones at 1, 7, or 28 days before euthanasia. Twelve minutes of impedance control radiofrequency energy was delivered at maximum output from a 200-W generator. Pigs were imaged with axial and coronal turbo spin-echo (SE) T1- and T2-weighted frequency-selective fat suppression sequences by using spectral presaturation with inversion recovery (SPIR). A radiologist blinded to the timing of the treatment and the results of other imaging sequences measured the coronal ablation zone length and cortical thickness. The pigs were euthanized, and the ablated bone underwent histologic examination. At SPIR imaging, the zone of marrow ablation was defined as an area of low signal intensity surrounded by a high-signal-intensity band. At T1-weighted imaging, the zone of marrow ablation was defined as a heterogeneously isointense area surrounded by a low-signal-intensity band. The mean (+/-standard deviation) coronal marrow ablation zone measurement with SPIR imaging at 28 days was 47 mm +/- 9 (range, 34-73 mm) for the 1-cm electrode and 51 mm +/- 7 (range, 33-67 mm) for the 2-cm electrode. Two humeral fractures occurred at 21 and 28 days after therapy. Thinning of the cortex adjacent to the electrode insertion site was identified in the humeral group only. The change in the marrow signal intensity with impedance-controlled RFA is larger than that reported for temperature-controlled protocols. RFA leads to bone weakening.

  18. Pilot study of radiofrequency ablation therapy without surgical excision for T1 breast cancer: evaluation with MRI and vacuum-assisted core needle biopsy and safety management.

    PubMed

    Yamamoto, Naohito; Fujimoto, Hiroshi; Nakamura, Rikiya; Arai, Manabu; Yoshii, Atsushi; Kaji, Sachiko; Itami, Makiko

    2011-01-01

    There is increasing demand for minimally invasive treatments for small breast cancer mainly because of the desire for better cosmetic results. Although radiofrequency ablation (RFA) is an attractive approach as a local control method for small breast cancer, the problems of histological effectiveness and safety management remain. A total of 29 patients including one patient with bilateral breast cancer were enrolled in this study. The mean tumor size of 30 breasts was 12.8 mm (range 5-19 mm). Under general anesthesia, RFA was performed with a Cool-tip RF system (Valleylab, Boulder, CO, USA) after sentinel lymph node biopsy. Postoperative evaluation with magnetic resonance imaging (MRI) and vacuum-assisted core needle biopsy was done 3-4 weeks after RFA before radiotherapy. Ablated tumors were evaluated with hematoxylin-eosin (H&E) and nicotinamide adenine dinucleotide (NADH)-diaphorase staining. If needed, adjuvant chemo and/or endocrine therapy was performed. All patients except one completed one session of RFA. The mean temperature near the center of the tumors was 89.6°C (range 78-100°C). Postoperative MRI showed the ablated zone clearly in all patients. MRI revealed no hypervascularity of the tumors in the ablated zone. Evaluation with H&E staining of the tumors showed remarkable degenerative changes in only three patients. NADH-diaphorase staining showed no viable tumor tissue in 24 patients out of 26 examined. Three patients received small diameter grade 3 skin burns, two on the outside of the thigh from the grounding pad and one on the breast skin. One patient had a breast lesion like a chronic granulomatous mastitis resulting from overreaction of the ablated zone. RFA therapy appeared relevant and applicable for patients with small breast cancer. Because small skin burns were observed as adverse events, close attention should be paid in the course of the RFA procedure.

  19. The first clinical application of planning software for laparoscopic microwave thermosphere ablation of malignant liver tumours.

    PubMed

    Berber, Eren

    2015-07-01

    Liver tumour ablation is an operator-dependent procedure. The determination of the optimum needle trajectory and correct ablation parameters could be challenging. The aim of this study was to report the utility of a new, procedure planning software for microwave ablation (MWA) of liver tumours. This was a feasibility study in a pilot group of five patients with nine metastatic liver tumours who underwent laparoscopic MWA. Pre-operatively, parameters predicting the desired ablation zones were calculated for each tumour. Intra-operatively, this planning strategy was followed for both antenna placement and energy application. Post-operative 2-week computed tomography (CT) scans were performed to evaluate complete tumour destruction. The patients had an average of two tumours (range 1-4), measuring 1.9 ± 0.4 cm (range 0.9-4.4 cm). The ablation time was 7.1 ± 1.3 min (range 2.5-10 min) at 100W. There were no complications or mortality. The patients were discharged home on post-operative day (POD) 1. At 2-week CT scans, there were no residual tumours, with a complete ablation demonstrated in all lesions. This study describes and validates pre-treatment planning software for MWA of liver tumours. This software was found useful to determine precisely the ablation parameters and needle placement to create a predicted zone of ablation. © 2015 International Hepato-Pancreato-Biliary Association.

  20. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue.

    PubMed

    Andreano, A; Huang, Yu; Meloni, M Franca; Lee, Fred T; Brace, Christopher

    2010-06-01

    To compare ablation zones created with equal amounts of 2.45 GHz microwave and 480 kHz radiofrequency (RF) energy in ex vivo liver and lung. A total of 38 ablations were performed in ex vivo liver and lung for 10 min each. Nineteen RF ablations (nine liver, ten lung) were performed with a 480 kHz system (200 W max, impedance-based pulsing) and cooled electrode while measuring the average RF power applied. Nineteen microwave ablations (nine liver, ten lung) were then created using a cooled triaxial antenna to deliver 2.45 GHz at the same power level as in RF experiments. Ablation zones were then sectioned and measured for minimum, maximum and mean diameters, and circularity. Measurements were compared using t-tests, with P < 0.05 indicating statistical significance. Mean diameters of microwave ablations were greater than RF ablations in both liver and lung (4.4 +/- 0.3 vs 3.3 +/- 0.2 cm in liver; 2.45 +/- 0.3 vs 1.6 +/- 0.5 cm in lungs; P < 0.0005 all comparisons). There was no significant difference in the mean power applied during microwave or RF ablations in either organ (54.44 +/- 1.71 W vs 56.4 +/- 6.7 W in liver, P > 0.05; 40 +/- 0.95 W vs 44.9 +/- 7.1 W in lung, P > 0.05). Using a single cooled applicator, microwave energy at 2.45 GHz produces larger ablations than an equivalent amount of 480 kHz RF energy in normal liver and lung. This was more apparent in lung, likely due to the high baseline impedance which limits RF, but not microwave power delivery.

  1. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver.

    PubMed

    Appelbaum, Liat; Sosna, Jacob; Pearson, Robert; Perez, Sarah; Nissenbaum, Yizhak; Mertyna, Pawel; Libson, Eugene; Goldberg, S Nahum

    2010-02-01

    To prospectively optimize multistep algorithms for largest available multitined radiofrequency (RF) electrode system in ex vivo and in vivo tissues, to determine best energy parameters to achieve large predictable target sizes of coagulation, and to compare these algorithms with manufacturer's recommended algorithms. Institutional animal care and use committee approval was obtained for the in vivo portion of this study. Ablation (n = 473) was performed in ex vivo bovine liver; final tine extension was 5-7 cm. Variables in stepped-deployment RF algorithm were interrogated and included initial current ramping to 105 degrees C (1 degrees C/0.5-5.0 sec), the number of sequential tine extensions (2-7 cm), and duration of application (4-12 minutes) for final two to three tine extensions. Optimal parameters to achieve 5-7 cm of coagulation were compared with recommended algorithms. Optimal settings for 5- and 6-cm final tine extensions were confirmed in in vivo perfused bovine liver (n = 14). Multivariate analysis of variance and/or paired t tests were used. Mean RF ablation zones of 5.1 cm +/- 0.2 (standard deviation), 6.3 cm +/- 0.4, and 7 cm +/- 0.3 were achieved with 5-, 6-, and 7-cm final tine extensions in a mean of 19.5 min +/- 0.5, 27.9 min +/- 6, and 37.1 min +/- 2.3, respectively, at optimal settings. With these algorithms, size of ablation at 6- and 7-cm tine extension significantly increased from mean of 5.4 cm +/- 0.4 and 6.1 cm +/- 0.6 (manufacturer's algorithms) (P <.05, both comparisons); two recommended tine extensions were eliminated. In vivo confirmation produced mean diameter in specified time: 5.5 cm +/- 0.4 in 18.5 min +/- 0.5 (5-cm extensions) and 5.7 cm +/- 0.2 in 21.2 min +/- 0.6 (6-cm extensions). Large zones of coagulation of 5-7 cm can be created with optimized RF algorithms that help reduce number of tine extensions compared with manufacturer's recommendations. Such algorithms are likely to facilitate the utility of these devices for RF

  2. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  3. Local recurrence after microwave thermosphere ablation of malignant liver tumors: results of a surgical series.

    PubMed

    Takahashi, Hideo; Kahramangil, Bora; Berber, Eren

    2018-04-01

    Microwave thermosphere ablation is a new treatment modality that creates spherical ablation zones using a single antenna. This study aims to analyze local recurrence associated with this new treatment modality in patients with malignant liver tumors. This is a prospective clinical study of patients who underwent microwave thermosphere ablation of malignant liver tumors between September 2014 and March 2017. Clinical, operative, and oncologic parameters were analyzed using Kaplan-Meier survival and Cox proportional hazards model. One hundred patients underwent 301 ablations. Ablations were performed laparoscopically in 87 and open in 13 patients. Pathology included neuroendocrine liver metastasis (n = 115), colorectal liver metastasis (n = 100), hepatocellular cancer (n = 21), and other tumor types (n = 65). Ninety-day morbidity was 7% with one not procedure-related mortality. Median follow-up was 16 months with 65% of patients completing at least 12 months of follow-up. The rate of local tumor recurrence rate per lesion was 6.6% (20/301). Local tumor, new hepatic, and extrahepatic recurrences were detected in 15%, 40%, and 40% of patients, respectively. Local recurrence rate per pathology was 12% for both colorectal liver metastasis (12/100) and other metastatic tumors (8/65). No local recurrence was observed to date in the neuroendocrine liver metastasis and in the limited number of patients with hepatocellular cancers. Tumor size >3 cm and tumor type were independent predictors of local recurrence. This is the first study to analyze local recurrence after microwave thermosphere ablation of malignant liver tumors. Short-term local tumor control rate compares favorably with that reported for radiofrequency and other microwave technologies in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Thermal distribution of microwave antenna for atrial fibrillation catheter ablation.

    PubMed

    Zhang, Huijuan; Nan, Qun; Liu, Youjun

    2013-09-01

    The aim of this study is to investigate the effects of ablation parameters on thermal distribution during microwave atrial fibrillation catheter ablation, such as ablation time, ablation power, blood condition and antenna placement, and give proper ablative parameters to realise transmural ablation. In this paper, simplified 3D antenna-myocardium-blood finite element method models were built to simulate the endocardial ablation operation. Thermal distribution was obtained based on the coupled electromagnetic-thermal analysis. Under different antenna placement conditions and different microwave power inputs within 60 s, the lesion dimensions (maximum depth, maximum width) of the ablation zones were analysed. The ablation width and depth increased with the ablation time. The increase rate significantly slowed down after 10 s. The maximum temperature was located in 1 mm under the antenna tip when perpendicular to the endocardium, while 1.5 mm away from the antenna axis and 26 mm along the antenna (with antenna length about 30 mm) in the myocardium when parallel to the endocardium. The maximum temperature in the ablated area decreased and the effective ablation area (with the temperature raised to 50°C) shifted deeper into the myocardium due to the blood cooling. The research validated that the microwave antenna can provide continuous long and linear lesions for the treatment of atrial fibrillation. The dimensions of the created lesion widths were all larger than those of the depths. It is easy for the microwave antenna to produce transmural lesions for an atrial wall thickness of 2-6 mm by adjusting the applied power and ablation time.

  5. Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study.

    PubMed

    Berjano, Enrique J; Burdío, Fernando; Navarro, Ana C; Burdío, José M; Güemes, Antonio; Aldana, Oscar; Ros, Paloma; Sousa, Ramón; Lozano, Ricardo; Tejero, Eloy; de Gregorio, Miguel A

    2006-10-01

    Current systems for radiofrequency ablation of liver tumors are unable to consistently treat tumors larger than 3 cm in diameter with a single electrode in a single application. One of the strategies for enlarging coagulation zone dimensions is to infuse saline solutions into the tissue through the active electrodes. Nevertheless, the uncontrolled and undirected diffusion of boiling saline into the tissue has been associated with irregular coagulation zones and severe complications, mainly due to reflux of saline along the electrode path. In order to improve the perfusion bipolar ablation method, we hypothesized that the creation of small monopolar coagulation zones adjacent to the bipolar electrodes and previous to the saline infusion would create preferential paths for the saline to concentrate on the targeted coagulation zone. Firstly, we conducted ex vivo experiments in order to characterize the monopolar coagulation zones. We observed that they are practically impermeable to the infused saline. On the basis of this finding, we built theoretical models and conducted computer simulations to assess the feasibility of our hypothesis. Temperature distributions during bipolar ablations with and without previous monopolar coagulation zones were obtained. The results showed that in the case of monopolar coagulation zones the temperature of the tissue took longer to reach 100 degrees C. Since this temperature value is related to rise of impedance, and the time necessary for this process is directly related to the volume of the coagulation zone, our results suggest that monopolar sealing would allow larger coagulation zones to be created. Future experimental studies should confirm this benefit.

  6. The Maximum standardized uptake value is more reliable than size measurement in early follow-up to evaluate potential pulmonary malignancies following radiofrequency ablation.

    PubMed

    Alafate, Aierken; Shinya, Takayoshi; Okumura, Yoshihiro; Sato, Shuhei; Hiraki, Takao; Ishii, Hiroaki; Gobara, Hideo; Kato, Katsuya; Fujiwara, Toshiyoshi; Miyoshi, Shinichiro; Kaji, Mitsumasa; Kanazawa, Susumu

    2013-01-01

    We retrospectively evaluated the accumulation of fluorodeoxy glucose (FDG) in pulmonary malignancies without local recurrence during 2-year follow-up on positron emission tomography (PET)/computed tomography (CT) after radiofrequency ablation (RFA). Thirty tumors in 25 patients were studied (10 non-small cell lung cancers;20 pulmonary metastatic tumors). PET/CT was performed before RFA, 3 months after RFA, and 6 months after RFA. We assessed the FDG accumulation with the maximum standardized uptake value (SUVmax) compared with the diameters of the lesions. The SUVmax had a decreasing tendency in the first 6 months and, at 6 months post-ablation, FDG accumulation was less affected by inflammatory changes than at 3 months post-RFA. The diameter of the ablated lesion exceeded that of the initial tumor at 3 months post-RFA and shrank to pre-ablation dimensions by 6 months post-RFA. SUVmax was more reliable than the size measurements by CT in the first 6 months after RFA, and PET/CT at 6 months post-RFA may be more appropriate for the assessment of FDG accumulation than that at 3 months post-RFA.

  7. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  8. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    PubMed

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p < 0.0001) from a mean of 203 (±80) mL/min/100 mL before RFA to 8.1 (±3.1) mL/min/100 mL after RFA with low intra-observer variability ( r ≥ 0.99, p < 0.0001). There was an excellent correlation ( r = 0.95) between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  9. The first clinical application of planning software for laparoscopic microwave thermosphere ablation of malignant liver tumours

    PubMed Central

    Berber, Eren

    2015-01-01

    Background Liver tumour ablation is an operator-dependent procedure. The determination of the optimum needle trajectory and correct ablation parameters could be challenging. The aim of this study was to report the utility of a new, procedure planning software for microwave ablation (MWA) of liver tumours. Methods This was a feasibility study in a pilot group of five patients with nine metastatic liver tumours who underwent laparoscopic MWA. Pre-operatively, parameters predicting the desired ablation zones were calculated for each tumour. Intra-operatively, this planning strategy was followed for both antenna placement and energy application. Post-operative 2-week computed tomography (CT) scans were performed to evaluate complete tumour destruction. Results The patients had an average of two tumours (range 1–4), measuring 1.9 ± 0.4 cm (range 0.9–4.4 cm). The ablation time was 7.1 ± 1.3 min (range 2.5–10 min) at 100W. There were no complications or mortality. The patients were discharged home on post-operative day (POD) 1. At 2-week CT scans, there were no residual tumours, with a complete ablation demonstrated in all lesions. Conclusions This study describes and validates pre-treatment planning software for MWA of liver tumours. This software was found useful to determine precisely the ablation parameters and needle placement to create a predicted zone of ablation. PMID:25980481

  10. Radiofrequency ablation of liver tumors (I): biological background.

    PubMed

    Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius

    2010-01-01

    Majority of patients suffering from liver tumors are not candidates for surgery. Currently, minimal invasive techniques have become available for local destruction of hepatic tumors. Radiofrequency ablation is based on biological response to tissue hyperthermia. The aim of this article is to review available biological data on tissue destruction mechanisms. Experimental evidence shows that tissue injury following thermal ablation occurs in two distinct phases. The initial phase is direct injury, which is determined by energy applied, tumor biology, and tumor microenvironment. The temperature varies along the ablation zone and this is reflected by different morphological changes in affected tissues. The local hyperthermia alters metabolism, exacerbates tissue hypoxia, and increases thermosensitivity. The second phase - indirect injury - is observed after the cessation of heat stimulus. This phase represents a balance of several promoting and inhibiting mechanisms, such as induction of apoptosis, heat shock proteins, Kupffer cell activation, stimulation of the immune response, release of cytokines, and ischemia-reperfusion injury. A deeper understanding of the underlying mechanisms may possibly lead to refinements in radiofrequency ablation technology, resulting in advanced local tumor control and prolonged overall survival.

  11. Evaluation of a Thermoprotective Gel for Hydrodissection During Percutaneous Microwave Ablation: In Vivo Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Anna J., E-mail: ajmoreland@gmail.com; Lubner, Meghan G., E-mail: mlubner@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org

    2015-06-15

    PurposeTo evaluate whether thermoreversible poloxamer 407 15.4 % in water (P407) can protect non-target tissues adjacent to microwave (MW) ablation zones in a porcine model.Materials and MethodsMW ablation antennas were placed percutaneously into peripheral liver, spleen, or kidney (target tissues) under US and CT guidance in five swine such that the expected ablation zones would extend into adjacent diaphragm, body wall, or bowel (non-target tissues). For experimental ablations, P407 (a hydrogel that transitions from liquid at room temperature to semi-solid at body temperature) was injected into the potential space between target and non-target tissues, and the presence of a gel barriermore » was verified on CT. No barrier was used for controls. MW ablation was performed at 65 W for 5 min. Thermal damage to target and non-target tissues was evaluated at dissection.ResultsAntennas were placed 7 ± 3 mm from the organ surface for both control and gel-protected ablations (p = 0.95). The volume of gel deployed was 49 ± 27 mL, resulting in a barrier thickness of 0.8 ± 0.5 cm. Ablations extended into non-target tissues in 12/14 control ablations (mean surface area = 3.8 cm{sup 2}) but only 4/14 gel-protected ablations (mean surface area = 0.2 cm{sup 2}; p = 0.0005). The gel barrier remained stable at the injection site throughout power delivery.ConclusionWhen used as a hydrodissection material, P407 protected non-targeted tissues and was successfully maintained at the injection site for the duration of power application. Continued investigations to aid clinical translation appear warranted.« less

  12. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  13. Modeling topology formation during laser ablation

    NASA Astrophysics Data System (ADS)

    Hodapp, T. W.; Fleming, P. R.

    1998-07-01

    Micromachining high aspect-ratio structures can be accomplished through ablation of surfaces with high-powered lasers. Industrial manufacturers now use these methods to form complex and regular surfaces at the 10-1000 μm feature size range. Despite its increasingly wide acceptance on the manufacturing floor, the underlying photochemistry of the ablation mechanism, and hence the dynamics of the machining process, is still a question of considerable debate. We have constructed a computer model to investigate and predict the topological formation of ablated structures. Qualitative as well as quantitative agreement with excimer-laser machined polyimide substrates has been demonstrated. This model provides insights into the drilling process for high-aspect-ratio holes.

  14. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    NASA Astrophysics Data System (ADS)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  15. Effect of a poloxamer 407-based thermosensitive gel on minimization of thermal injury to diaphragm during microwave ablation of the liver.

    PubMed

    Zhang, Li-Li; Xia, Gui-Min; Liu, Yu-Jiang; Dou, Rui; Eisenbrey, John; Liu, Ji-Bin; Wang, Xiao-Wei; Qian, Lin-Xue

    2017-03-28

    To assess the insulating effect of a poloxamer 407 (P407)-based gel during microwave ablation of liver adjacent to the diaphragm. We prepared serial dilutions of P407, and 22.5% (w/w) concentration was identified as suitable for ablation procedures. Subsequently, microwave ablations were performed on the livers of 24 rabbits (gel, saline, control groups, n = 8 in each). The P407 solution and 0.9% normal saline were injected into the potential space between the diaphragm and liver in experimental groups. No barriers were applied to the controls. After microwave ablations, the frequency, size and degree of thermal injury were compared histologically among the three groups. Subsequently, another 8 rabbits were injected with the P407 solution and microwave ablation was performed. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine (Cr) in serum were tested at 1 d before microwave ablation and 3 and 7 d after operation. In vivo ablation thermal injury to the adjacent diaphragm was evaluated in the control, saline and 22.5% P407 gel groups ( P = 0.001-0.040). However, there was no significant difference in the volume of ablation zone among the three groups ( P > 0.05). Moreover, there were no statistical differences among the preoperative and postoperative gel groups according to the levels of ALT, AST, BUN and Cr in serum (all P > 0.05). Twenty-two point five percent P407 gel could be a more effective choice during microwave ablation of hepatic tumors adjacent to the diaphragm. Further studies for clinical translation are warranted.

  16. Experimentally reducing clutch size reveals a fixed upper limit to egg size in snakes, evidence from the king ratsnake, Elaphe carinata.

    PubMed

    Ji, Xiang; Du, Wei-Guo; Li, Hong; Lin, Long-Hui

    2006-08-01

    Snakes are free of the pelvic girdle's constraint on maximum offspring size, and therefore present an opportunity to investigate the upper limit to offspring size without the limit imposed by the pelvic girdle dimension. We used the king ratsnake (Elaphe carinata) as a model animal to examine whether follicle ablation may result in enlargement of egg size in snakes and, if so, whether there is a fixed upper limit to egg size. Females with small sized yolking follicles were assigned to three manipulated, one sham-manipulated and one control treatments in mid-May, and two, four or six yolking follicles in the manipulated females were then ablated. Females undergoing follicle ablation produced fewer, but larger as well as more elongated, eggs than control females primarily by increasing egg length. This finding suggests that follicle ablation may result in enlargement of egg size in E. carinata. Mean values for egg width remained almost unchanged across the five treatments, suggesting that egg width is more likely to be shaped by the morphological feature of the oviduct. Clutch mass dropped dramatically in four- and six-follicle ablated females. The function describing the relationship between size and number of eggs reveals that egg size increases with decreasing clutch size at an ever-decreasing rate, with the tangent slope of the function for the six-follicle ablation treatment being -0.04. According to the function describing instantaneous variation in tangent slope, the maximum value of tangent slope should converge towards zero. This result provides evidence that there is a fixed upper limit to egg size in E. carinata.

  17. Theoretical analyses of the refractive implications of transepithelial PRK ablations.

    PubMed

    Arba Mosquera, Samuel; Awwad, Shady T

    2013-07-01

    To analyse the refractive implications of single-step, transepithelial photorefractive keratectomy (TransPRK) ablations. A simulation for quantifying the refractive implications of TransPRK ablations has been developed. The simulation includes a simple modelling of corneal epithelial profiles, epithelial ablation profiles as well as refractive ablation profiles, and allows the analytical quantification of the refractive implications of TransPRK in terms of wasted tissue, achieved optical zone (OZ) and induced refractive error. Wasted tissue occurs whenever the actual corneal epithelial profile is thinner than the applied epithelial ablation profile, achieved OZ is reduced whenever the actual corneal epithelial profile is thicker than the applied epithelial ablation profile and additional refractive errors are induced whenever the actual difference centre-to-periphery in the corneal epithelial profile deviates from the difference in the applied epithelial ablation profile. The refractive implications of TransPRK ablations can be quantified using simple theoretical simulations. These implications can be wasted tissue (∼14 µm, if the corneal epithelial profile is thinner than the ablated one), reduced OZ (if the corneal epithelial profile is thicker than ablated one, very severe for low corrections) and additional refractive errors (∼0.66 D, if the centre-to-periphery progression of the corneal epithelial profile deviates from the progression of the ablated one). When TransPRK profiles are applied to normal, not previously treated, non-pathologic corneas, no specific refractive implications associated to the transepithelial profile can be anticipated; TransPRK would provide refractive outcomes equal to those of standard PRK. Adjustments for the planned OZ and, in the event of retreatments, for the target sphere can be easily derived.

  18. [Ablative treatments in localized renal cancer: literature review for 2014].

    PubMed

    Chodez, M; Fiard, G; Arnoux, V; Descotes, J-L; Long, J-A

    2015-07-01

    To focus on indications and results of ablative treatments (cyoablation, radiofrequency) for small renal masses, a bibliographic research was conducted in MedLine database using terms of "ablative treatment", "cryotherapy", "radiofrequency", "kidney cancer", "renal cell carcinoma". Sixty-four articles were selected. Carcinologic outcomes seem to be better with cryoablation than with radiofrequency. Available results have to be balanced according to surgical approach, teams' experience and duration of follow-up. Tumour's size and central localization are the main factors of failure. The size of 3cm is the most generally validated. Hospital stay and complications seem to be better with ablative therapies than with surgical approach, especially with percutaneous approach. The renal function preservation appears to be better with ablative therapies. It could be an interesting alternative to partial nephrectomy for small masses, in particular for fragile patients or in particular indications (multifocal tumors, in case of solitary kidney or transplanted kidney). The indications in elderly people must be proposed with care after the comorbidities have been evaluated. Indications of ablative treatment for small renal masses improve, but the gold standard treatment remains partial nephrectomy and indications must be individually discussed. Other ablative treatments are under-development, needing further studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Characterization of tissue response to radiofrequency ablation using 3D model-based analysis of interventional MR images

    NASA Astrophysics Data System (ADS)

    Weinberg, Brent D.; Lazebnik, Roee S.; Breen, Michael S.; Lewin, Jonathan S.; Wilson, David L.

    2003-05-01

    Using magnetic resonance imaging (MRI), real-time guidance is feasible for radiofrequency (RF) current ablation of pathologic tissue. Lesions have a characteristic two-zone appearance: an inner core (Zone I) surrounded by a hyper-intense rim (Zone II). A better understanding of both the immediate (hyper-acute) and delayed (sub-acute) physiological response of the target tissue will aid development of minimally invasive tumor treatment strategies. We performed in vivo RF ablations in a rabbit thigh model and characterized the tissue response to treatment through contrast enhanced (CE) T1 and T2 weighted MR images at two time points. We measured zonal grayscale changes as well as zone volume changes using a 3D computationally fitted globally deformable parametric model. Comparison over time demonstrated an increase in the volume of both the inner necrotic core (mean 56.5% increase) and outer rim (mean 16.8% increase) of the lesion. Additionally, T2 images of the lesion exhibited contrast greater than or equal to CE T1 (mean 35% improvement). This work establishes a foundation for the clinical use of T2 MR images coupled with a geometric model of the ablation for noninvasive lesion monitoring and characterization.

  20. Artificial ascites and pneumoperitoneum to facilitate thermal ablation of liver tumors: a pictorial essay.

    PubMed

    Bhagavatula, Sharath K; Chick, Jeffrey F B; Chauhan, Nikunj R; Shyn, Paul B

    2017-02-01

    Image-guided percutaneous thermal ablation is increasingly utilized in the treatment of hepatic malignancies. Peripherally located hepatic tumors can be difficult to access or located adjacent to critical structures that can be injured. As a result, ablation of peripheral tumors may be avoided or may be performed too cautiously, leading to inadequate ablation coverage. In these cases, separating the tumor from adjacent critical structures can increase the efficacy and safety of procedures. Artificial ascites and artificial pneumoperitoneum are techniques that utilize fluid and gas, respectively, to insulate critical structures from the thermal ablation zone. Induction of artificial ascites and artificial pneumoperitoneum can enable complete ablation of otherwise inaccessible hepatic tumors, improve tumor visualization, minimize unintended thermal injury to surrounding organs, and reduce post-procedural pain. This pictorial essay illustrates and discusses the proper technique and clinical considerations for successful artificial ascites and pneumoperitoneum creation to facilitate safe peripheral hepatic tumor ablation.

  1. Thermo-sensitive hydrogel for preventing bowel injury in percutaneous renal radiofrequency ablation.

    PubMed

    Wang, Xin; Zhao, Xiaozhi; Lin, Tingsheng; Guo, Hongqian

    2016-10-01

    cm vs 0.1 ± 0.0 cm, P < .01), (1.8 ± 0.4 cm vs 0.5 ± 0.1 cm, P < .01), respectively]. The gel and control groups did not differ in size of the ablation zones (0.80 ± 0.2 cm vs 0.75 ± 0.3 cm, P > .05). Thermal injury in adjacent bowel was more serious in the control than gel group (P < .01). As for the follow-up, rabbits with gel instillation showed good condition and gel was absorbed gradually within 5 days. Those rabbits with no bowel displacement by gel got significantly lower survival rate and high complication rate (P < .01). Hydrogel-dissection by means of thermo-sensitive hydrogel instillation is valuable for protecting the bowel adjacent to ablation area against thermal injury during PRFA.

  2. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    PubMed

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  3. Comprehensive studies of ultrashort laser pulse ablation of tin target at terawatt power

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-01-01

    The fundamental properties of ultrashort laser interactions with metals using up to terawatt power were comprehensively studied, i.e., specifically mass ablation, nanoparticle formation, and ion dynamics using multitude of diagnostic techniques. Results of this study can be useful in many fields of research including spectroscopy, micromachining, thin film fabrication, particle acceleration, physics of warm dense matter, and equation-of-state determination. A Ti:Sapphire femtosecond laser system (110 mJ maximum energy, 40 fs, 800 nm, P-polarized, single pulse mode) was used, which delivered up to 3 terawatt laser power to ablate 1 mm tin film in vacuum. The experimental analysis includes the effect of the incident laser fluence on the ablated mass, size of the ablated area, and depth of ablation using white light profilometer. Atomic force microscope was used to measure the emitted particles size distribution at different laser fluence. Faraday cup (FC) detector was used to analyze the emitted ions flux by measuring the velocity, and the total charge of the emitted ions. The study shows that the size of emitted particles follows log-normal distribution with peak shifts depending on incident laser fluence. The size of the ablated particles ranges from 20 to 80 nm. The nanoparticles deposited on the wafer tend to aggregate and to be denser as the incident laser fluence increases as shown by AFM images. Laser ablation depth was found to increase logarithmically with laser fluence then leveling off at laser fluence > 400 J/cm2. The total ablated mass tends to increase logarithmically with laser fluence up to 60 J/cm2 while, increases gradually at higher fluence due to the increase in the ablated area. The measured ion emitted flux shows a linear dependence on laser fluence with two distinct regimes. Strong dependence on laser fluence was observed at fluences < 350 J/cm2. Also, a slight enhancement in ion velocity was observed with increasing laser fluence up to 350 J

  4. Treatment planning for prostate focal laser ablation in the face of needle placement uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cepek, Jeremy, E-mail: jcepek@robarts.ca; Fenster, Aaron; Lindner, Uri

    2014-01-15

    Purpose: To study the effect of needle placement uncertainty on the expected probability of achieving complete focal target destruction in focal laser ablation (FLA) of prostate cancer. Methods: Using a simplified model of prostate cancer focal target, and focal laser ablation region shapes, Monte Carlo simulations of needle placement error were performed to estimate the probability of completely ablating a region of target tissue. Results: Graphs of the probability of complete focal target ablation are presented over clinically relevant ranges of focal target sizes and shapes, ablation region sizes, and levels of needle placement uncertainty. In addition, a table ismore » provided for estimating the maximum target size that is treatable. The results predict that targets whose length is at least 5 mm smaller than the diameter of each ablation region can be confidently ablated using, at most, four laser fibers if the standard deviation in each component of needle placement error is less than 3 mm. However, targets larger than this (i.e., near to or exceeding the diameter of each ablation region) require more careful planning. This process is facilitated by using the table provided. Conclusions: The probability of completely ablating a focal target using FLA is sensitive to the level of needle placement uncertainty, especially as the target length approaches and becomes greater than the diameter of ablated tissue that each individual laser fiber can achieve. The results of this work can be used to help determine individual patient eligibility for prostate FLA, to guide the planning of prostate FLA, and to quantify the clinical benefit of using advanced systems for accurate needle delivery for this treatment modality.« less

  5. Likelihood of Incomplete Kidney Tumor Ablation with Radio Frequency Energy: Degree of Enhancement Matters.

    PubMed

    Lay, Aaron H; Stewart, Jeremy; Canvasser, Noah E; Cadeddu, Jeffrey A; Gahan, Jeffrey C

    2016-07-01

    Larger size and clear cell histopathology are associated with worse outcomes for malignant renal tumors treated with radio frequency ablation. We hypothesize that greater tumor enhancement may be a risk factor for radio frequency ablation failure due to increased vascularity. A retrospective review of patients who underwent radio frequency ablation for renal tumors with contrast enhanced imaging available was performed. The change in Hounsfield units (HU) of the tumor from the noncontrast phase to the contrast enhanced arterial phase was calculated. Radio frequency ablation failure rates for biopsy confirmed malignant tumors were compared using the chi-squared test. Multivariate logistic analysis was performed to assess predictive variables for radio frequency ablation failure. Disease-free survival was calculated using Kaplan-Meier analysis. A total of 99 patients with biopsy confirmed malignant renal tumors and contrast enhanced imaging were identified. The incomplete ablation rate was significantly lower for tumors with enhancement less than 60 vs 60 HU or greater (0.0% vs 14.6%, p=0.005). On multivariate logistic regression analysis tumor enhancement 60 HU or greater (OR 1.14, p=0.008) remained a significant predictor of incomplete initial ablation. The 5-year disease-free survival for size less than 3 cm was 100% vs 69.2% for size 3 cm or greater (p <0.01), while 5-year disease-free survival for HU change less than 60 was 100% vs 92.4% for HU change 60 or greater (p=0.24). Biopsy confirmed malignant renal tumors, which exhibit a change in enhancement of 60 HU or greater, experience a higher rate of incomplete initial tumor ablation than tumors with enhancement less than 60 HU. Size 3 cm or greater portends worse 5-year disease-free survival after radio frequency ablation. The degree of enhancement should be considered when counseling patients before radio frequency ablation. Copyright © 2016 American Urological Association Education and Research, Inc

  6. Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain.

    PubMed

    Rossmeisl, John H; Garcia, Paulo A; Roberston, John L; Ellis, Thomas L; Davalos, Rafael V

    2013-01-01

    This study describes the neuropathologic features of normal canine brain ablated with non-thermal irreversible electroporation (N-TIRE). The parietal cerebral cortices of four dogs were treated with N-TIRE using a dose-escalation protocol with an additional dog receiving sham treatment. Animals were allowed to recover following N-TIRE ablation and the effects of treatment were monitored with clinical and magnetic resonance imaging examinations. Brains were subjected to histopathologic and ultrastructural assessment along with Bcl-2, caspase-3, and caspase-9 immunohistochemical staining following sacrifice 72 h post-treatment. Adverse clinical effects of N-TIRE were only observed in the dog treated at the upper energy tier. MRI and neuropathologic examinations indicated that N-TIRE ablation resulted in focal regions of severe cytoarchitectural and blood-brain-barrier disruption. Lesion size correlated to the intensity of the applied electrical field. N-TIRE-induced lesions were characterized by parenchymal necrosis and hemorrhage; however, large blood vessels were preserved. A transition zone containing parenchymal edema, perivascular inflammatory cuffs, and reactive gliosis was interspersed between the necrotic focus and normal neuropil. Apoptotic labeling indices were not different between the N-TIRE-treated and control brains. This study identified N-TIRE pulse parameters that can be used to safely create circumscribed foci of brain necrosis while selectively preserving major vascular structures.

  7. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice.

    PubMed

    Ma, Xiaojun; Lin, Yuezhen; Lin, Ligen; Qin, Guijun; Pereira, Fred A; Haymond, Morey W; Butte, Nancy F; Sun, Yuxiang

    2012-08-01

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes. However, since some of ghrelin's effects are independent of GHS-R, we have utilized genetic approaches to determine whether ghrelin's effect on insulin secretion is mediated through GHS-R and whether GHS-R antagonism indeed inhibits insulin secretion. We investigated the effects of GHS-R on glucose homeostasis in Ghsr-ablated ob/ob mice (Ghsr(-/-):ob/ob). Ghsr ablation did not rescue the hyperphagia, obesity, or insulin resistance of ob/ob mice. Surprisingly, Ghsr ablation worsened the hyperglycemia, decreased insulin, and impaired glucose tolerance. Consistently, Ghsr ablation in ob/ob mice upregulated negative β-cell regulators (such as UCP-2, SREBP-1c, ChREBP, and MIF-1) and downregulated positive β-cell regulators (such as HIF-1α, FGF-21, and PDX-1) in whole pancreas; this suggests that Ghsr ablation impairs pancreatic β-cell function in leptin deficiency. Of note, Ghsr ablation in ob/ob mice did not affect the islet size; the average islet size of Ghsr(-/-):ob/ob mice is similar to that of ob/ob mice. In summary, because Ghsr ablation in leptin deficiency impairs insulin secretion and worsens hyperglycemia, this suggests that GHS-R antagonists may actually aggravate diabetes under certain conditions. The paradoxical effects of ghrelin ablation and Ghsr ablation in ob/ob mice highlight the complexity of the ghrelin-signaling pathway.

  8. Effect of laser energy on the SPR and size of silver nanoparticles synthesized by pulsed laser ablation in distilled water

    NASA Astrophysics Data System (ADS)

    Baruah, Prahlad K.; Sharma, Ashwini K.; Khare, Alika

    2018-04-01

    The effect of incident laser energy on the surface plasmon resonance (SPR) and size of silver nanoparticles synthesized via pulsed laser ablation of silver immersed in distilled water is reported in this paper. The broadening in the plasmonic bandwidth of the synthesized nanoparticles with the increase in the laser energy incident onto the silver target indicates the reduction in size of the nanoparticles. This is confirmed by the transmission electron microscope (TEM) images which show a decrease in the average particle size of the nanoparticles from approximately 15 to 10 nm with the increase in incident laser energy from 30 to 70 mJ, respectively. The structural features as revealed by the selected area electron diffraction and ultra-high resolution TEM studies confirmed the formation of both silver as well as silver oxide nanoparticles.

  9. Monitoring of tissue ablation using time series of ultrasound RF data.

    PubMed

    Imani, Farhad; Wu, Mark Z; Lasso, Andras; Burdette, Everett C; Daoud, Mohammad; Fitchinger, Gabor; Abolmaesumi, Purang; Mousavi, Parvin

    2011-01-01

    This paper is the first report on the monitoring of tissue ablation using ultrasound RF echo time series. We calcuate frequency and time domain features of time series of RF echoes from stationary tissue and transducer, and correlate them with ablated and non-ablated tissue properties. We combine these features in a nonlinear classification framework and demonstrate up to 99% classification accuracy in distinguishing ablated and non-ablated regions of tissue, in areas as small as 12mm2 in size. We also demonstrate significant improvement of ablated tissue classification using RF time series compared to the conventional approach of using single RF scan lines. The results of this study suggest RF echo time series as a promising approach for monitoring ablation, and capturing the changes in the tissue microstructure as a result of heat-induced necrosis.

  10. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation.

    PubMed

    Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish

    2017-01-01

    Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

  11. In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions.

    PubMed

    Puett, Connor; Phillips, Linsey C; Sheeran, Paul S; Dayton, Paul A

    2013-01-01

    Phase-shift nanoemulsions (PSNEs) provide cavitation sites when the perfluorocarbon (PFC) nanodroplets (ND) are vaporized to microbubbles by acoustic energy. Their presence lowers the power required to ablate tissue by high-intensity focused ultrasound (HIFU), potentially making it a safer option for a broader range of treatment sites. However, spatial control over the ablation region can be problematic when cavitation is used to enhance heating. This study explored relationships between vaporization, ablation, and the PSNE concentration in vitro to optimize the acoustic intensity and insonation time required for spatially controlled ablation enhancement using a PSNE that included a volatile PFC component. HIFU (continuous wave at 1 MHz; insonation times of 5, 10, 15, and 20 s; cool-down times of 2, 4, and 6 s; peak negative pressures of 2, 3, and 4 MPa) was applied to albumin-acrylamide gels containing PFC agents (1:1 mix of volatile decafluorobutane and more stable dodecafluoropentane at 10(5) to 10(8) PFC ND per milliliter) or agent-free controls. Vaporization fields (microbubble clouds) were imaged by conventional ultrasound, and ablation lesions were measured directly by calipers. Controlled ablation was defined as the production of 'cigar'-shaped lesions corresponding with the acoustic focal zone. This control was considered to be lost when ablation occurred in prefocal vaporization fields having a predominantly 'tadpole' or oblong shape. Changes in the vaporization field shape and location occurred on a continuum with increasing PSNE concentration and acoustic intensity. Working with the maximum concentration-intensity combinations resulting in controlled ablation demonstrated a dose-responsive relationship between insonation time and volumes of both the vaporization fields (approximately 20 to 240 mm(3)) and the ablation lesions (1 to 135 mm(3)) within them. HIFU ablation was enhanced by this PSNE and could be achieved using intensities ≤650 W/cm(2

  12. Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light

    DOEpatents

    Menoni, Carmen S [Fort Collins, CO; Rocca, Jorge J [Fort Collins, CO; Vaschenko, Georgiy [San Diego, CA; Bloom, Scott [Encinitas, CA; Anderson, Erik H [El Cerrito, CA; Chao, Weilun [El Cerrito, CA; Hemberg, Oscar [Stockholm, SE

    2011-04-26

    Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

  13. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  14. Left Atrial Anatomy in Patients Undergoing Ablation for Atrial Fibrillation.

    PubMed

    Krum, David; Hare, John; Gilbert, Carol; Choudhuri, Indrajit; Mori, Naoyo; Sra, Jasbir

    2013-01-01

    Background: Left atrial anatomy is highly variable, asymmetric, irregular and three-dimensionally unique. This variability can affect the outcome of atrial ablation. A catalog of anatomic varieties may aid patient selection and ablation approach and provide better tools for left atrial ablation. Methods: We analyzed computed tomography scans from 514 patients undergoing left atrial ablation. Images were processed on Advantage Windows with CardEP™ software (GE Healthcare, Waukesha, WI). Measurements of pulmonary vein (PV) ostial size along the long and short axes were made using double oblique cuts, and area of the ostia was calculated. Results: Patients with 2 left (LPV) and 2 right PVs (RPV) (62.6%), 2 LPVs and 3 RPVs (17.3%) and 1 LPV and 2 RPVs (14.2%) made up the three most common variants. In the 2-LPV/2-RPV anatomy, the ostial size and area of the RPVs were larger than their corresponding LPVs (p<0.001), and the ostial size and area of the superior PVs were larger than their corresponding inferior PVs (p<0.001). In the 2-LPV/3-RPV anatomy, the total area of the RPVs was larger than the total area of the LPVs (p<0.001). In the 1-LPV/2-RPV anatomy, the ostial size of the left common PV was larger than either right PV (p<0.007). However, the total area of the RPVs was larger than the area of the left common PV (p<0.002). The left common PV was also larger than any of the left veins in any of the other anatomies. The total PV area between the three most common anatomies was not significantly different. Conclusions: More than 37% of patients have a left atrial anatomy other than 2 left and 2 right PVs. This data may help in designing approaches for left atrial ablation, tailoring the procedure to individual patients and improving ablation tools.

  15. Femtosecond laser lithotripsy: feasibility and ablation mechanism.

    PubMed

    Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E

    2010-01-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  16. Real-time rotational ICE imaging of the relationship of the ablation catheter tip and the esophagus during atrial fibrillation ablation.

    PubMed

    Helms, Adam; West, J Jason; Patel, Amit; Mounsey, J Paul; DiMarco, John P; Mangrum, J Michael; Ferguson, John D

    2009-02-01

    Atrioesophageal fistula is a rare complication of atrial fibrillation (AF) ablation that should be avoided. We investigated whether rotational intracardiac echocardiography (ICE) can help to minimize ablation close to the esophagus. We studied 41 patients referred for catheter ablation of refractory AF. A rotational ICE catheter was inserted into the (LA) to determine the location of the esophagus. The esophagus was identified to be either adjacent to the pulmonary vein (PV) ostium or to a cuff 2 cm outside the ostium. Circumferential ablation was performed at the PV ostium, with the exact ablation location determined by ICE. The relationship of the catheter tip to the esophagus was imaged during energy delivery, allowing interruption when respiration moved the tip closer to the esophagus. Out of 41 patients, the esophagus was seen near left-sided PVs in 32 and near right-sided PVs in three patients. The median distance from LA endocardium to esophagus was 2.2 mm (range, 1.4-6 mm). In 21 of 35 patients with a closely related esophagus, ablation over the esophagus was avoided by ablating either lateral or medial to the esophagus. In 14 patients, the esophagus could not be avoided, and risk was minimized by limiting lesion size. Significant movement (>10 mm) of the esophagus during the procedure occurred in 3/41 cases. Rotational ICE can accurately determine the distance of ablation sites from the esophagus. Real-time imaging of the relationship of the ablation catheter tip to the esophagus may reduce the incidence of esophageal injury.

  17. Automated planning of ablation targets in atrial fibrillation treatment

    NASA Astrophysics Data System (ADS)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  18. NASA’s Spitzer Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around a Single Star

    NASA Image and Video Library

    2017-02-22

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the Spitzer Space Telescope of seven Earth-sized planets around a tiny, nearby, ultra-cool dwarf star. Three of these planets are in the habitable zone, the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone, and the first time so many Earth-sized planets have been found around the same star. The finding of this planetary system, called TRAPPIST-1, is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds

  19. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  20. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  1. Are the stratospheric dust particles meteor ablation debris or interplanetary dust?

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Kyte, F. T.

    1978-01-01

    Natural and laboratory created fusion crusts and debris from artificial meteor samples were used to develop criteria for recognizing meteor ablation debris in a collection of 5 to 50 micron particles from the stratosphere. These laboratory studies indicate that meteor ablation debris from nickel-iron meteoroids produce spherules containing taenite, wuestite, magnetite, and hematite. These same studies also indicate that ablation debris from chondritic meteoroids produce spheres and fragmentary debris. The spheres may be either silicate rich, containing zoned olivine, magnetite, and glass, or sulfide rich, containing iron oxides (e.g., magnetite, wuestite) and iron sulfides (e.g., pyrrhotite, pentlandite). The fragmentary debris may be either fine-grained aggregates of olivine, magnetite, pyroxene, and occasionally pyrrhotite (derived from the meteorite matrix) or individual olivine and pyroxene grains (derived from meteorite inclusions).

  2. Automatic alignment of pre- and post-interventional liver CT images for assessment of radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Rieder, Christian; Wirtz, Stefan; Strehlow, Jan; Zidowitz, Stephan; Bruners, Philipp; Isfort, Peter; Mahnken, Andreas H.; Peitgen, Heinz-Otto

    2012-02-01

    Image-guided radiofrequency ablation (RFA) is becoming a standard procedure for minimally invasive tumor treatment in clinical practice. To verify the treatment success of the therapy, reliable post-interventional assessment of the ablation zone (coagulation) is essential. Typically, pre- and post-interventional CT images have to be aligned to compare the shape, size, and position of tumor and coagulation zone. In this work, we present an automatic workflow for masking liver tissue, enabling a rigid registration algorithm to perform at least as accurate as experienced medical experts. To minimize the effect of global liver deformations, the registration is computed in a local region of interest around the pre-interventional lesion and post-interventional coagulation necrosis. A registration mask excluding lesions and neighboring organs is calculated to prevent the registration algorithm from matching both lesion shapes instead of the surrounding liver anatomy. As an initial registration step, the centers of gravity from both lesions are aligned automatically. The subsequent rigid registration method is based on the Local Cross Correlation (LCC) similarity measure and Newton-type optimization. To assess the accuracy of our method, 41 RFA cases are registered and compared with the manually aligned cases from four medical experts. Furthermore, the registration results are compared with ground truth transformations based on averaged anatomical landmark pairs. In the evaluation, we show that our method allows to automatic alignment of the data sets with equal accuracy as medical experts, but requiring significancy less time consumption and variability.

  3. Percutaneous radiofrequency ablation for hepatic tumors abutting the diaphragm: clinical assessment of the heat-sink effect of artificial ascites.

    PubMed

    Nam, Sang Yu; Rhim, Hyunchul; Kang, Tae Wook; Lee, Min Woo; Kim, Young-Sun; Choi, Dongil; Lee, Won Jae; Park, Yulri; Chang, Ilsoo; Lim, Hyo K

    2010-02-01

    This study was designed to assess whether artificial ascites has a heat-sink effect on the ablation zone for percutaneous radiofrequency ablation (RFA) of hepatic tumors abutting the diaphragm. We retrospectively assessed 28 patients who underwent percutaneous RFA for the treatment of a single nodular hepatic tumor that abutted the diaphragm from July 2000 to December 2006. All patients underwent ultrasound-guided RFA using internally cooled electrodes. A single ablation for 12 minutes was applied using 3-cm active-tip electrodes. We divided patients into two groups on the basis of whether artificial ascites was introduced before RFA: Group A consisted of patients who received artificial ascites with a mean of 760 mL of a 5% dextrose in water solution (n = 15) and group B consisted of patients who did not receive artificial ascites (n = 13). The volume of the ablation zone was measured on CT images obtained immediately after the ablation procedure, and imaging findings were compared for both groups using the Student's t test. We also compared the local tumor progression rate between both groups using the chi-square test (mean follow-up, 37.4 months). There was no significant difference between the two patient groups with regard to age, sex, Child-Pugh class, or tumor location (p > 0.05). The tumors were significantly smaller in group A patients (mean +/- SD, 1.6 +/- 0.5 cm) than in group B patients (2.1 +/- 0.7 cm) (p = 0.019). The mean volume of the RFA zone was 31.6 +/- 11.9 cm(3) in group A patients and 30.9 +/- 11.0 cm(3) in group B patients. There was no significant difference between the groups in the ablation volume (p = 0.871). Local tumor progression was noted in four patients (26.7%) in group A and in three patients (23.1%) in group B. There was no significant difference in the local tumor progression rate between the two groups (p = 0.83). Artificial ascites did not show a heat-sink effect on the volume of the ablation zone after percutaneous RFA for the

  4. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  5. Surgical Ablation of Atrial Fibrillation Using Energy Sources.

    PubMed

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery.

  6. Kepler Mission: Detecting Earth-sized Planets in Habitable Zones

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Kepler Mission, which is presently in Phase A, is being proposed for launch in 5 years for a 4-year mission to determine the frequency of Earth-sized or larger planets in habitable zones in our galaxy. Kepler will be placed in an Earth-trailing orbit to provide stable physical environments for the sensitive scientific instruments. The satellite is equipped with a photometric system with the precision of 10E-5, which should be sufficient for detecting the transits of Earth-sized or larger planets in front of dwarf stars similar to the Sun. Approximately 100,000 or more sun-like stars brighter than the 14th apparently magnitude will be monitored continuously for 4 years in a preselected region of the sky, which is about 100 square degrees in size. In addition, Kepler will have a participating scientist program that will enable research in intrinsic variable stars, interacting binaries including cataclysmic stars and X-ray binaries, and a large number of solar analogs in our galaxy. Several ten thousand additional stars may be investigated in the guest observer program open to the whole world.

  7. Microembolism and catheter ablation I: a comparison of irrigated radiofrequency and multielectrode-phased radiofrequency catheter ablation of pulmonary vein ostia.

    PubMed

    Haines, David E; Stewart, Mark T; Dahlberg, Sarah; Barka, Noah D; Condie, Cathy; Fiedler, Gary R; Kirchhof, Nicole A; Halimi, Franck; Deneke, Thomas

    2013-02-01

    Cerebral diffusion-weighted MRI lesions have been observed after catheter ablation of atrial fibrillation. We hypothesized that conditions predisposing to microembolization could be identified using a porcine model of pulmonary vein ablation and an extracorporeal circulation loop. Ablations of the pulmonary veins were performed in 18 swine with echo monitoring. The femoral artery and vein were cannulated and an extracorporeal circulation loop with 2 ultrasonic bubble detectors and a 73-μm filter were placed in series. Microemboli and microbubbles were compared between ablation with an irrigated radiofrequency system (Biosense-Webster) and a phased radiofrequency multielectrode system (pulmonary vein ablation catheter [PVAC], Medtronic, Inc, Carlsbad, CA) in unipolar and 3 blended unipolar/bipolar modes. Animal pathology was examined. The size and number of microbubbles observed during ablation ranged from 30 to 180 μm and 0 to 3253 bubbles per ablation. Microbubble volumes with PVAC (29.1 nL) were greater than with irrigated radiofrequency (0.4 nL; P=0.045), and greatest with type II or III microbubbles on transesophageal echocardiography. Ablation with the PVAC showed fewest microbubbles in the unipolar mode (P=0.012 versus bipolar). The most occurred during bipolar energy delivery with overlap of proximal and distal electrodes (median microbubble volume, 1744 nL; interquartile range, 737-4082 nL; maximum, 19 516 nL). No cerebral MRI lesions were seen, but 2 animals had renal embolization. Left atrial ablation with irrigated radiofrequency and PVAC catheters in swine is associated with microbubble and microembolus production. Avoiding overlap of electrodes 1 and 10 on PVAC should reduce the microembolic burden associated with this procedure.

  8. Evaluation of movement restriction zone sizes in controlling classical swine fever outbreaks

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare the movement restriction zone sizes of 3-km, 5-km, 9-km, and 11-km with that of 7-km in controlling a classical swine fever (CSF) outbreak. Three assumptions of compliance level were considered: baseline, baseline ±10%, and baseline ±15%. The compliance lev...

  9. Chemical analyses of micrometre-sized solids by a miniature laser ablation/ionisation mass spectrometer (LMS)

    NASA Astrophysics Data System (ADS)

    Tulej, Marek; Wiesendanger, Reto; Neuland, Maike; Meyer, Stefan; Wurz, Peter; Neubeck, Anna; Ivarsson, Magnus; Riedo, Valentine; Moreno-Garcia, Pavel; Riedo, Andreas; Knopp, Gregor

    2017-04-01

    Investigation of elemental and isotope compositions of planetary solids with high spatial resolution are of considerable interest to current space research. Planetary materials are typically highly heterogenous and such studies can deliver detailed chemical information of individual sample components with the sizes down to a few micrometres. The results of such investigations can yield mineralogical surface context including mineralogy of individual grains or the elemental composition of of other objects embedded in the sample surface such as micro-sized fossils. The identification of bio-relevant material can follow by the detection of bio-relevant elements and their isotope fractionation effects [1, 2]. For chemical analysis of heterogenous solid surfaces we have combined a miniature laser ablation mass spectrometer (LMS) (mass resolution (m/Dm) 400-600; dynamic range 105-108) with in situ microscope-camera system (spatial resolution ˜2um, depth 10 um). The microscope helps to find the micrometre-sized solids across the surface sample for the direct mass spectrometric analysis by the LMS instrument. The LMS instrument combines an fs-laser ion source and a miniature reflectron-type time-of-flight mass spectrometer. The mass spectrometric analysis of the selected on the sample surface objects followed after ablation, atomisation and ionisation of the sample by a focussed laser radiation (775 nm, 180 fs, 1 kHz; the spot size of ˜20 um) [4, 5, 6]. Mass spectra of almost all elements (isotopes) present in the investigated location are measured instantaneously. A number of heterogenous rock samples containing micrometre-sized fossils and mineralogical grains were investigated with high selectivity and sensitivity. Chemical analyses of filamentous structures observed in carbonate veins (in harzburgite) and amygdales in pillow basalt lava can be well characterised chemically yielding elemental and isotope composition of these objects [7, 8]. The investigation can be

  10. Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil-Villalba, A.; Xie, C.; Salut, R.

    We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.

  11. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  12. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  13. Simulation of eye-tracker latency, spot size, and ablation pulse depth on the correction of higher order wavefront aberrations with scanning spot laser systems.

    PubMed

    Bueeler, Michael; Mrochen, Michael

    2005-01-01

    The aim of this theoretical work was to investigate the robustness of scanning spot laser treatments with different laser spot diameters and peak ablation depths in case of incomplete compensation of eye movements due to eye-tracker latency. Scanning spot corrections of 3rd to 5th Zernike order wavefront errors were numerically simulated. Measured eye-movement data were used to calculate the positioning error of each laser shot assuming eye-tracker latencies of 0, 5, 30, and 100 ms, and for the case of no eye tracking. The single spot ablation depth ranged from 0.25 to 1.0 microm and the spot diameter from 250 to 1000 microm. The quality of the ablation was rated by the postoperative surface variance and the Strehl intensity ratio, which was calculated after a low-pass filter was applied to simulate epithelial surface smoothing. Treatments performed with nearly ideal eye tracking (latency approximately 0) provide the best results with a small laser spot (0.25 mm) and a small ablation depth (250 microm). However, combinations of a large spot diameter (1000 microm) and a small ablation depth per pulse (0.25 microm) yield the better results for latencies above a certain threshold to be determined specifically. Treatments performed with tracker latencies in the order of 100 ms yield similar results as treatments done completely without eye-movement compensation. CONCWSIONS: Reduction of spot diameter was shown to make the correction more susceptible to eye movement induced error. A smaller spot size is only beneficial when eye movement is neutralized with a tracking system with a latency <5 ms.

  14. Field experiments to assess the effect of lithology and grain size on the ablation of debris covered glaciers

    NASA Astrophysics Data System (ADS)

    Juen, M.; Mayer, C.; Lambrecht, A.; Wirbel, A.; Kueppers, U.

    2012-04-01

    Currently many glaciers all over the world show negative mass balances. Because of the retreating ice masses, there is an increase of deglaciated slopes. In combination with increased melting of permafrost these areas can become unstable and account for an additional supply of weathered bedrock and sediments onto the glacier surface. Furthermore increasing ablation rates advance the melting out and accumulation of englacial till on the glacier surface. The experiment was performed during summer season 2010 at the middle tongue of Vernagtferner, a temperate glacier in the Oetztal Alps, Austria. The experimental setup was designed in a way to monitor the parameters which are most crucial for controlling sub-debris ice melt with regards to lithology, grain size and moisture content. Ten test plots were established with different debris grain sizes and debris thicknesses consisting of sieved natural material. The local metamorphic mica schist and volcanic debris were used for the experiment. Ablation was measured at stakes. Bare ice melt was observed continuously with a sonic ranger. Three automatic weather stations were installed to record meteorological data. To obtain information concerning the internal temperature distribution of the debris cover, thermistors were installed at various depths. For each individual plot thermal conductivity and thermal diffusivity have been estimated. The observations during the season revealed a clear dependence of the sub-debris ice melt on the layer thickness and the grain size. For the fine sand fraction the moisture content plays an important role, as these test fields were always water saturated. Highly porous volcanic material protects the ice much more effectively from melting than similar layer thicknesses of the local mica schist. Also the albedo plays an important role, where melt rates under dark debris are about 1.75 times higher than underneath brighter material. The analysis of thermal diffusivities indicates that lower

  15. Ultrafast dynamics of hard tissue ablation using fs-lasers.

    PubMed

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Huber, Heinz P; Sroka, Ronald

    2018-05-29

    Several studies on hard tissue laser ablation demonstrated that ultrafast lasers enable precise material removal without thermal side effects. Although the principle ablation mechanisms have been thoroughly investigated, there are still open questions regarding the influence of material properties on transient dynamics. In this investigation, we applied pump-probe microscopy to record ablation dynamics of biomaterials with different tensile strengths (dentin, chicken bone, gallstone, kidney stones) at delay times between 1 ps and 10 μs. Transient reflectivity changes, pressure and shock wave velocities, and elastic constants were determined. The result revealed that absorption and excitation show the typical well-known transient behaviour of dielectric materials. We observed for all samples a photomechanical laser ablation process, where ultrafast expansion of the excited volume generates pressure waves leading to fragmentation around the excited region. Additionally, we identified tensile-strength-related differences in the size of ablated craters and ejected particles. The elastic constants derived were in agreement with literature values. In conclusion, pressure-wave-assisted material removal seems to be a general mechanism for hard tissue ablation with ultrafast lasers. This photomechanical process increases ablation efficiency and removes heated material, thus ultrafast laser ablation is of interest for clinical application where heating of the tissue must be avoided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. 915MHz microwave ablation with high output power in in vivo porcine spleens.

    PubMed

    Gao, Yongyan; Wang, Yang; Duan, Yaqi; Li, Chunling; Sun, Yuanyuan; Zhang, Dakun; Lu, Tong; Liang, Ping

    2010-07-01

    The purpose of this study was to evaluate the efficacy of 915 MHz microwave (MW) ablation with high output power in in vivo porcine spleens. MW ablations were performed in 9 porcine spleens with an internally cooled 915 MHz antenna. Thermocouples were placed at 5, 10, 15, 20 mm away from the antenna to measure temperatures in real-time during MW emission. The energy was applied for 10 min at high output power of 60 W, 70 W or 80 W. Gross specimens were sectioned and measured to determine ablation size. Representative areas were examined by light microscopy and electron microscopy. Coagulation sizes and temperatures were compared among the three power groups. Hematoxylin-eosin staining showed irreversible necrosis in the splenic coagulation area after MW ablation. As the power was increased, long-axis diameter enlarged significantly (p<.05). Short-axis diameter also tended to increase, but there were no statistical difference (p>.05). The coagulation size of long-axis and short-axis diameter with 80 W in vivo spleen ablation was 6.43+/-0.52 and 4.95+/-0.30 cm, respectively. With the increase of output power, maximum temperatures at 5, 10, 15, 20 mm from the antenna were increased accordingly (p<.05). The maximum temperature with 80 W at 5 and 20 mm from the antenna reached 146.17+/-6.65 and 72.38+/-4.23 degrees C respectively. With internally cooled antenna and high output power, 915 MHz MW ablation in the spleen could produce irreversible tissue necrosis of clinical significance. MW ablation may be used as a promising minimally invasive method for the treatment of splenic diseases. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Advances in local ablation of malignant liver lesions

    PubMed Central

    Eisele, Robert M

    2016-01-01

    Local ablation of liver tumors matured during the recent years and is now proven to be an effective tool in the treatment of malignant liver lesions. Advances focus on the improvement of local tumor control by technical innovations, individual selection of imaging modalities, more accurate needle placement and the free choice of access to the liver. Considering data found in the current literature for conventional local ablative treatment strategies, virtually no single technology is able to demonstrate an unequivocal superiority. Hints at better performance of microwave compared to radiofrequency ablation regarding local tumor control, duration of the procedure and potentially achievable larger size of ablation areas favour the comparably more recent treatment modality; image fusion enables more patients to undergo ultrasound guided local ablation; magnetic resonance guidance may improve primary success rates in selected patients; navigation and robotics accelerate the needle placement and reduces deviation of needle positions; laparoscopic thermoablation results in larger ablation areas and therefore hypothetically better local tumor control under acceptable complication rates, but seems to be limited to patients with no, mild or moderate adhesions following earlier surgical procedures. Apart from that, most techniques appear technically feasible, albeit demanding. Which technology will in the long run become accepted, is subject to future work. PMID:27099433

  18. Monitoring of thermal dose during ablation therapy using quantum dot-mediated fluorescence thermometry.

    PubMed

    Bensalah, Karim; Tuncel, Altug; Hanson, Willard; Stern, Joshua; Han, Bumsoo; Cadeddu, Jeffrey

    2010-12-01

    The objective of this study was to demonstrate the feasibility of quantum dot (QD)-mediated fluorescence thermometry to monitor thermal dose in an in-vitro thermal ablation zone generated by laser-heated gold nanoshells (LGNS). Hyperthermic cell death of human prostate cancer cell line (PC-3) was determined after various heating settings and correlated to the thermal conditions using an Arrhenius model prior to LGNS ablation. PC-3 cells with gold nanoshells (GNS) and QDs were exposed to a near-infrared laser and QD excitation light. When the cells were heated by GNS, local temperature was measured using the temperature-dependent fluorescence intensity of QDs. Using the predetermined Arrhenius model, the thermal dose (i.e., cell death of PC-3 cells) by LGNS was estimated with local temperatures measured with QD-mediated thermometry. The estimated thermal dose was confirmed with calcein-acetoxy-methylester viability assay. For PC-3 cell line, the activation energy and frequency factor of the Arrhenius model were 86.78 kcal/mol and 6.35 × 10(55) Hz, respectively. During LGNS ablation of PC-3 cells, QD-mediated temperature measurement showed that the temperature of the laser spot increased rapidly to ∼58 °C ± 4 °C. The estimated thermal dose showed that cell death reached to ∼90% in 120 seconds. The death cell zone observed after staining corresponded to a peak area of the temperature profile generated after analysis of the QD fluorescence intensity. This study shows that the QD fluorescence thermometry can accurately monitor the PC-3 cell death by LGNS ablation. This approach holds promises for a better monitoring of thermal ablation procedures in clinical practice.

  19. Ablative and transport fractionation of trace elements during laser sampling of glass and copper

    NASA Astrophysics Data System (ADS)

    Outridge, P. M.; Doherty, W.; Gregoire, D. C.

    1997-12-01

    The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 10 4W cm -2 than at 0.62 × 10 4W cm -2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000° C exhibiting overall concentration increases of 20-1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50-100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.

  20. Kepler-186f, the First Earth-size Planet in the Habitable Zone Artist Concept

    NASA Image and Video Library

    2014-04-17

    This artist concept depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone, a range of distance from a star where liquid water might pool on the planet surface.

  1. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  2. Thermal fixation of swine liver tissue after magnetic resonance-guided high-intensity focused ultrasound ablation.

    PubMed

    Courivaud, Frédéric; Kazaryan, Airazat M; Lund, Alice; Orszagh, Vivian C; Svindland, Aud; Marangos, Irina Pavlik; Halvorsen, Per Steinar; Jebsen, Peter; Fosse, Erik; Hol, Per Kristian; Edwin, Bjørn

    2014-07-01

    The aim of this study was to investigate experimental conditions for efficient and controlled in vivo liver tissue ablation by magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) in a swine model, with the ultimate goal of improving clinical treatment outcome. Histological changes were examined both acutely (four animals) and 1 wk after treatment (five animals). Effects of acoustic power and multiple sonication cycles were investigated. There was good correlation between target size and observed ablation size by thermal dose calculation, post-procedural MR imaging and histopathology, when temperature at the focal point was kept below 90°C. Structural histopathology investigations revealed tissue thermal fixation in ablated regions. In the presence of cavitation, mechanical tissue destruction occurred, resulting in an ablation larger than the target. Complete extra-corporeal MR-guided HIFU ablation in the liver is feasible using high acoustic power. Nearby large vessels were preserved, which makes MR-guided HIFU promising for the ablation of liver tumors adjacent to large veins. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Noninvasive Assessment of Tissue Heating During Cardiac Radiofrequency Ablation Using MRI Thermography

    PubMed Central

    Kolandaivelu, Aravindan; Zviman, Menekhem M.; Castro, Valeria; Lardo, Albert C.; Berger, Ronald D.; Halperin, Henry R.

    2010-01-01

    Background Failure to achieve properly localized, permanent tissue destruction is a common cause of arrhythmia recurrence after cardiac ablation. Current methods of assessing lesion size and location during cardiac radiofrequency ablation are unreliable or not suited for repeated assessment during the procedure. MRI thermography could be used to delineate permanent ablation lesions because tissue heating above 50°C is the cause of permanent tissue destruction during radiofrequency ablation. However, image artifacts caused by cardiac motion, the ablation electrode, and radiofrequency ablation currently pose a challenge to MRI thermography in the heart. In the current study, we sought to demonstrate the feasibility of MRI thermography during cardiac ablation. Methods and Results An MRI-compatible electrophysiology catheter and filtered radiofrequency ablation system was used to perform ablation in the left ventricle of 6 mongrel dogs in a 1.5-T MRI system. Fast gradient-echo imaging was performed before and during radiofrequency ablation, and thermography images were derived from the preheating and postheating images. Lesion extent by thermography was within 20% of the gross pathology lesion. Conclusions MR thermography appears to be a promising technique for monitoring lesion formation and may allow for more accurate placement and titration of ablation, possibly reducing arrhythmia recurrences. PMID:20657028

  4. Analysis of plasma-mediated ablation in aqueous tissue

    NASA Astrophysics Data System (ADS)

    Jiao, Jian; Guo, Zhixiong

    2012-06-01

    Plasma-mediated ablation using ultrafast lasers in transparent media such as aqueous tissues is studied. It is postulated that a critical seed free electron density exists due to the multiphoton ionization in order to trigger the avalanche ionization which causes ablation and during the avalanche ionization process the contribution of laser-induced photon ionization is negligible. Based on this assumption, the ablation process can be treated as two separate processes - the multiphoton and avalanche ionizations - at different time stages; so that an analytical solution to the evolution of plasma formation is obtained for the first time. The analysis is applied to plasma-mediated ablation in corneal epithelium and validated via comparison with experimental data available in the literature. The critical seed free-electron density and the time to initiate the avalanche ionization for sub-picosecond laser pulses are analyzed. It is found that the critical seed free-electron density decreases as the pulse width increases, obeying a tp-5.65 rule. This model is further extended to the estimation of crater size in the ablation of tissue-mimic polydimethylsiloxane (PDMS). The results match well with the available experimental measurements.

  5. Numerical design of RF ablation applicator for hepatic cancer treatment

    NASA Astrophysics Data System (ADS)

    Rakhmadi, Aditya; Basari

    2017-02-01

    Currently, cancer has become one of health problems that is difficult to be overcomed. This disease is not only difficult to be cured, but also to be detected and may cause death. For this reason, RF ablation treatment method is proposed to cure cancer. RF ablation therapy is a method in which an applicator is inserted into the body to kill cancer cells by heating the cells. The cancer cells are exposed to the temperature more than 60°C in short duration (few second to few minutes) so thus cell destruction occurs locally. For the sake of the successful treatment, a minimally invasive method is selected in order for perfect local temperature distribution in cancer cells can be achieved. In this paper, a coax-fed dipole-type applicator with interstitial irradiation technique is proposed aimed at RF ablation into hepatic cells. Numerical simulation is performed to obtain a suitable geometric dimension at operating frequency around 2.45 GHz, in order to localize the ablation area. The proposed applicator is inserted into a simple phantom representing an adult human body model in which normal and cancerous liver cells. The simulated results show that the proposed applicator is able to operate at center frequency of 2.355 GHz with blood droplet-type ablation zone and the temperature around the cancer cell by 60°C can be achieved.

  6. ANALYSIS OF FACTORS AFFECTING OUTCOME OF ULTRASOUND-GUIDED RADIOFREQUENCY HEAT ABLATION FOR TREATMENT OF PRIMARY HYPERPARATHYROIDISM IN DOGS.

    PubMed

    Bucy, Daniel; Pollard, Rachel; Nelson, Richard

    2017-01-01

    Radiofrequency (RF) parathyroid ablation is a noninvasive treatment for hyperparathyroidism in dogs. There are no published data assessing factors associated with RF parathyroid ablation success or failure in order to guide patient selection and improve outcome. The purpose of this retrospective analytical study was to determine whether imaging findings, biochemical data, or concurrent diseases were associated with RF heat ablation treatment failure. For inclusion in the study, dogs must have had a clinical diagnosis of primary hyperparathyroidism, undergone cervical ultrasound and RF ablation of abnormal parathyroid tissue, and must have had at least 3 months of follow-up information available following the date of ultrasound-guided parathyroid ablation. Dogs were grouped based on those with recurrent or persistent hypercalcemia and those without recurrent or persistent hypercalcemia following therapy. Parathyroid nodule size, thyroid lobe size, nodule location, and presence of concurrent disease were recorded. Recurrence of hypercalcemia occurred in 9/32 dogs that had ablation of abnormal parathyroid tissue (28%) and one patient had persistent hypercalcemia (3%) following parathyroid ablation. Nodule width (P = 0.036), height (P = 0.028), and largest cross-sectional area (P = 0.023) were larger in dogs that had recurrent or persistent hypercalcemia following ablation. Hypothyroidism was more common in dogs with recurrent disease (P = 0.044). Radiofrequency ablation was successful in 22/32 (69%) dogs. Larger parathyroid nodule size and/or concurrent hypothyroidism were associated with treatment failure in dogs that underwent ultrasound-guided RF parathyroid nodule ablation. © 2016 American College of Veterinary Radiology.

  7. Higher contact force during radiofrequency ablation leads to a much larger increase in edema as compared to chronic lesion size.

    PubMed

    Thomas, Samuel; Silvernagel, Josh; Angel, Nathan; Kholmovski, Eugene; Ghafoori, Elyar; Hu, Nan; Ashton, John; Dosdall, Derek J; MacLeod, Rob; Ranjan, Ravi

    2018-05-18

    Reversible edema is a part of any radiofrequency ablation but its relationship with contact force is unknown. The goal of this study was to characterize through histology and MRI, acute and chronic ablation lesions and reversible edema with contact force. In a canine model (n = 14), chronic ventricular lesions were created with a 3.5-mm tip ThermoCool SmartTouch (Biosense Webster) catheter at 25 W or 40 W for 30 seconds. Repeat ablation was performed after 3 months to create a second set of lesions (acute). Each ablation procedure was followed by in vivo T2-weighted MRI for edema and late-gadolinium enhancement (LGE) MRI for lesion characterization. For chronic lesions, the mean scar volumes at 25 W and 40 W were 77.8 ± 34.5 mm 3 (n = 24) and 139.1 ± 69.7 mm 3 (n = 12), respectively. The volume of chronic lesions increased (25 W: P < 0.001, 40 W: P < 0.001) with greater contact force. For acute lesions, the mean volumes of the lesion were 286.0 ± 129.8 mm 3 (n = 19) and 422.1 ± 113.1 mm 3 (n = 16) for 25 W and 40 W, respectively (P < 0.001 compared to chronic scar). On T2-weighted MRI, the acute edema volume was on average 5.6-8.7 times higher than the acute lesion volume and increased with contact force (25 W: P = 0.001, 40 W: P = 0.011). With increasing contact force, there is a marginal increase in lesion size but accompanied with a significantly larger edema. The reversible edema that is much larger than the chronic lesion volume may explain some of the chronic procedure failures. © 2018 Wiley Periodicals, Inc.

  8. Thermochemical Ablation Analysis of the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Sixel, William

    2015-01-01

    The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas

  9. Automated microwave ablation therapy planning with single and multiple entry points

    NASA Astrophysics Data System (ADS)

    Liu, Sheena X.; Dalal, Sandeep; Kruecker, Jochen

    2012-02-01

    Microwave ablation (MWA) has become a recommended treatment modality for interventional cancer treatment. Compared with radiofrequency ablation (RFA), MWA provides more rapid and larger-volume tissue heating. It allows simultaneous ablation from different entry points and allows users to change the ablation size by controlling the power/time parameters. Ablation planning systems have been proposed in the past, mainly addressing the needs for RFA procedures. Thus a planning system addressing MWA-specific parameters and workflows is highly desirable to help physicians achieve better microwave ablation results. In this paper, we design and implement an automated MWA planning system that provides precise probe locations for complete coverage of tumor and margin. We model the thermal ablation lesion as an ellipsoidal object with three known radii varying with the duration of the ablation and the power supplied to the probe. The search for the best ablation coverage can be seen as an iterative optimization problem. The ablation centers are steered toward the location which minimizes both un-ablated tumor tissue and the collateral damage caused to the healthy tissue. We assess the performance of our algorithm using simulated lesions with known "ground truth" optimal coverage. The Mean Localization Error (MLE) between the computed ablation center in 3D and the ground truth ablation center achieves 1.75mm (Standard deviation of the mean (STD): 0.69mm). The Mean Radial Error (MRE) which is estimated by comparing the computed ablation radii with the ground truth radii reaches 0.64mm (STD: 0.43mm). These preliminary results demonstrate the accuracy and robustness of the described planning algorithm.

  10. High-intensity focused ultrasound ablation of myocardium in vivo and instantaneous biological response.

    PubMed

    Zheng, Minjuan; Shentu, Weihui; Chen, Dingzhang; Sahn, David J; Zhou, Xiaodong

    2014-10-01

    This study aimed to evaluate the instantaneous biological response of canine myocardium in vivo to high-intensity focused ultrasound (HIFU) ablation, and thereby determine the feasibility of this method. Left ventricle myocardium HIFU ablation was performed on six dogs at four levels of HIFU energy (acoustic intensity was 3000 W/cm2 ; ablation durations were 1.2, 2.4, 3.6, and 4.8 sec, respectively). Gross lesion volumes were confirmed and assessed by tetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and electron microscopy. Global cardiac function and focal wall motion were evaluated by echocardiography. Blood enzymes and cardiac troponin T (CTnT) were tested after ablation. HIFU ablation was repeated on another set of six fresh canine hearts in vitro at the same four energy levels. Focal maximum temperatures were detected both in vivo and in vitro. Different sizes of ablation via HIFU can be created in beating hearts using controlled energy emission. Focal maximum temperatures varied from 62 ± 4.8 °C to 81 ± 12.9 °C. The lesion sizes were significantly smaller in vivo than in vitro, as verified by TTC and HE staining. Focal wall motion immediately decreased after ablation (P < 0.05), although the ejection fraction (EF) and E/A ratio were unchanged (P > 0.05). Enzymes and CTnT immediately increased. HIFU can be used for the controllable ablation of myocardial tissue, with instantly increased serum markers, decreased regional wall motion, and unaffected left ventricular global function. © 2014, Wiley Periodicals, Inc.

  11. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  12. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    PubMed

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  13. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Jorgensen, David J.; Titus, Michael S.; Pollock, Tresa M.

    2015-10-01

    The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm2 and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm2. Two sizes of nanoparticles consisting of Al, NiAl, Ni3Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1-30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm2 pulse, one hundred 1.7 J/cm2 pulses, or one thousand 250 mJ/cm2 pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  14. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  15. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE PAGES

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; ...

    2016-05-25

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  16. Evaluation of a Novel Thermal Accelerant for Augmentation of Microwave Energy during Image-guided Tumor Ablation.

    PubMed

    Park, William Keun Chan; Maxwell, Aaron Wilhelm Palmer; Frank, Victoria Elizabeth; Primmer, Michael Patrick; Collins, Scott Andrew; Baird, Grayson Luderman; Dupuy, Damian Edward

    2017-01-01

    The primary challenge in thermal ablation of liver tumors (e.g. hepatocellular carcinoma and hepatic colorectal cancer) is the relatively high recurrence rate (~30%) for which incomplete ablation at the periphery of the tumor is the most common reason. In an attempt to overcome this, we have developed a novel thermal accelerant (TA) agent capable of augmenting microwave energy from a distance normally unattainable by a single microwave ablation antenna. This cesium-based block co-polymer compound transforms from a liquid to a gel at body temperature and is intrinsically visible by computed tomography. Using an agarose phantom model, herein we demonstrate that both the rate and magnitude of temperature increase during microwave ablation were significantly greater in the presence of TA when compared with controls. These results suggest robust augmentation of microwave energy, and may translate into larger ablation zone volumes within biologic tissues. Further work using in vivo techniques is necessary to confirm these findings.

  17. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  18. Distributed modeling of ablation (1996–2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Matthew J.; Fountain, Andrew G.; Liston, Glen E.

    Here, the McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth, which is acutely sensitive to the availability of water coming from glacial runoff. We modeled the spatial variability in ablation and assessed climate sensitivity of the glacier ablation zones using 16 years of meteorological and surface mass-balance observations collected in Taylor Valley. Sublimation was the primary form of mass loss over much of the ablation zones, except for near the termini where melt, primarily below the surface, dominated. Microclimates in ~10 m scale topographic basins generated melt rates up to ten times higher than overmore » smooth glacier surfaces. In contrast, the vertical terminal cliffs on the glaciers can have higher or lower melt rates than the horizontal surfaces due to differences in incoming solar radiation. The model systematically underpredicted ablation for the final 5 years studied, possibly due to an increase of windblown sediment. Surface mass-balance sensitivity to temperature was ~–0.02 m w.e. K –1, which is among the smallest magnitudes observed globally. We also identified a high sensitivity to ice albedo, with a decrease of 0.02 having similar effects as a 1 K increase in temperature, and a complex sensitivity to wind speed.« less

  19. Distributed modeling of ablation (1996–2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica

    DOE PAGES

    Hoffman, Matthew J.; Fountain, Andrew G.; Liston, Glen E.

    2016-02-24

    Here, the McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth, which is acutely sensitive to the availability of water coming from glacial runoff. We modeled the spatial variability in ablation and assessed climate sensitivity of the glacier ablation zones using 16 years of meteorological and surface mass-balance observations collected in Taylor Valley. Sublimation was the primary form of mass loss over much of the ablation zones, except for near the termini where melt, primarily below the surface, dominated. Microclimates in ~10 m scale topographic basins generated melt rates up to ten times higher than overmore » smooth glacier surfaces. In contrast, the vertical terminal cliffs on the glaciers can have higher or lower melt rates than the horizontal surfaces due to differences in incoming solar radiation. The model systematically underpredicted ablation for the final 5 years studied, possibly due to an increase of windblown sediment. Surface mass-balance sensitivity to temperature was ~–0.02 m w.e. K –1, which is among the smallest magnitudes observed globally. We also identified a high sensitivity to ice albedo, with a decrease of 0.02 having similar effects as a 1 K increase in temperature, and a complex sensitivity to wind speed.« less

  20. Three potential mechanisms for failure of high intensity focused ultrasound ablation in cardiac tissue.

    PubMed

    Laughner, Jacob I; Sulkin, Matthew S; Wu, Ziqi; Deng, Cheri X; Efimov, Igor R

    2012-04-01

    High intensity focused ultrasound (HIFU) has been introduced for treatment of cardiac arrhythmias because it offers the ability to create rapid tissue modification in confined volumes without directly contacting the myocardium. In spite of the benefits of HIFU, a number of limitations have been reported, which hindered its clinical adoption. In this study, we used a multimodal approach to evaluate thermal and nonthermal effects of HIFU in cardiac ablation. We designed a computer controlled system capable of simultaneous fluorescence mapping and HIFU ablation. Using this system, linear lesions were created in isolated rabbit atria (n=6), and point lesions were created in the ventricles of whole-heart (n=6) preparations by applying HIFU at clinical doses (4-16 W). Additionally, we evaluate the gap size in ablation lines necessary for conduction in atrial preparations (n=4). The voltage sensitive dye di-4-ANEPPS was used to assess functional damage produced by HIFU. Optical coherence tomography and general histology were used to evaluate lesion extent. Conduction block was achieved in 1 (17%) of 6 atrial preparations with a single ablation line. Following 10 minutes of rest, 0 (0%) of 6 atrial preparations demonstrated sustained conduction block from a single ablation line. Tissue displacement of 1 to 3 mm was observed during HIFU application due to acoustic radiation force along the lesion line. Additionally, excessive acoustic pressure and high temperature from HIFU generated cavitation, causing macroscopic tissue damage. A minimum gap size of 1.5 mm was found to conduct electric activity. This study identified 3 potential mechanisms responsible for the failure of HIFU ablation in cardiac tissues. Both acoustic radiation force and acoustic cavitation, in conjunction with inconsistent thermal deposition, can increase the risk of lesion discontinuity and result in gap sizes that promote ablation failure.

  1. Doppler signals observed during high temperature thermal ablation are the result of boiling.

    PubMed

    Nahirnyak, Volodymyr M; Moros, Eduardo G; Novák, Petr; Suzanne Klimberg, V; Shafirstein, Gal

    2010-01-01

    To elucidate the causation mechanism of Spectral Doppler ultrasound signals (DUS) observed during high temperature thermal ablation and evaluate their potential for image-guidance. Sixteen ex vivo ablations were performed in fresh turkey breast muscle, eight with radiofrequency ablation (RFA) devices, and eight with a conductive interstitial thermal therapy (CITT) device. Temperature changes in the ablation zone were measured with thermocouples located at 1 to 10 mm away from the ablation probes. Concomitantly, DUS were recorded using a standard diagnostic ultrasound scanner. Retrospectively, sustained observations of DUS were correlated with measured temperatures. Sustained DUS was arbitrarily defined as the Doppler signals lasting more than 10 s as observed in the diagnostic ultrasound videos captured from the scanner. For RFA experiments, minimum average temperature (T1 +/- SD) at which sustained DUS were observed was 97.2 +/- 7.3 degrees C, while the maximum average temperature (T2 +/- SD) at which DUS were not seen was 74.3 +/- 9.1 degrees C. For CITT ablation, T1 and T2 were 95.7 +/- 5.9 degrees C and 91.6 +/- 7.2 degrees C, respectively. It was also observed, especially during CITT ablation, that temperatures remained relatively constant during Doppler activity. The value of T1 was near the standard boiling point of water (99.61 degrees C) while T2 was below it. Together, T1 and T2 support the conclusion that DUS during high temperature thermal ablation are the result of boiling (phase change). This conclusion is also supported by the nearly constant temperature histories maintained at locations from which DUS emanated.

  2. Evaluation of Satellite Remote Sensing Albedo Retrievals over the Ablation Area of the Southwestern Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Moustafa, Samiah E.; Rennermalm, Asa K.; Roman, Miguel O.; Wang, Zhuosen; Schaaf, Crystal B.; Smith, Laurence C.; Koenig, Lora S.; Erb, Angela

    2017-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS) albedo products have been validated over spatially uniform, snow-covered areas of the Greenland ice sheet (GrIS) using the so-called single 'point-to-pixel' method. This study expands on this methodology by applying a 'multiple-point-to-pixel' method and examination of spatial autocorrelation (here using semivariogram analysis) by using in situ observations, high-resolution World- View-2 (WV-2) surface reflectances, and MODIS Collection V006 daily blue-sky albedo over a spatially heterogeneous surfaces in the lower ablation zone in southwest Greenland. Our results using 232 ground-based samples within two MODIS pixels, one being more spatial heterogeneous than the other, show little difference in accuracy among narrow and broad band albedos (except for Band 2). Within the more homogenous pixel area, in situ and MODIS albedos were very close (error varied from -4% to +7%) and within the range of ASD standard errors. The semivariogram analysis revealed that the minimum observational footprint needed for a spatially representative sample is 30 m. In contrast, over the more spatially heterogeneous surface pixel, a minimum footprint size was not quantifiable due to spatial autocorrelation, and far exceeds the effective resolution of the MODIS retrievals. Over the high spatial heterogeneity surface pixel, MODIS is lower than ground measurements by 4-7%, partly due to a known in situ undersampling of darker surfaces that often are impassable by foot (e.g., meltwater features and shadowing effects over crevasses). Despite the sampling issue, our analysis errors are very close to the stated general accuracy of the MODIS product of 5%. Thus, our study suggests that the MODIS albedo product performs well in a very heterogeneous, low-albedo, area of the ice sheet ablation zone. Furthermore, we demonstrate that single 'point-to-pixel' methods alone are insufficient in characterizing and validating the variation of surface

  3. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation.

    PubMed

    Cavagnaro, M; Pinto, R; Lopresto, V

    2015-04-21

    Microwave thermal ablation (MTA) therapies exploit the local absorption of an electromagnetic field at microwave (MW) frequencies to destroy unhealthy tissue, by way of a very high temperature increase (about 60 °C or higher). To develop reliable interventional protocols, numerical tools able to correctly foresee the temperature increase obtained in the tissue would be very useful. In this work, different numerical models of the dielectric and thermal property changes with temperature were investigated, looking at the simulated temperature increments and at the size of the achievable zone of ablation. To assess the numerical data, measurement of the temperature increases close to a MTA antenna were performed in correspondence with the antenna feed-point and the antenna cooling system, for increasing values of the radiated power. Results show that models not including the changes of the dielectric and thermal properties can be used only for very low values of the power radiated by the antenna, whereas a good agreement with the experimental values can be obtained up to 20 W if water vaporization is included in the numerical model. Finally, for higher power values, a simulation that dynamically includes the tissue's dielectric and thermal property changes with the temperature should be performed.

  4. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  5. The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone

    NASA Astrophysics Data System (ADS)

    Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.

    2017-12-01

    Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo

  6. Identifying MRI markers to evaluate early treatment-related changes post-laser ablation for cancer pain management

    NASA Astrophysics Data System (ADS)

    Tiwari, Pallavi; Danish, Shabbar; Madabhushi, Anant

    2014-03-01

    Laser interstitial thermal therapy (LITT) has recently emerged as a new treatment modality for cancer pain management that targets the cingulum (pain center in the brain), and has shown promise over radio-frequency (RF) based ablation which is reported to provide temporary relief. One of the major advantages enjoyed by LITT is its compatibility with magnetic resonance imaging (MRI), allowing for high resolution in vivo imaging to be used in LITT procedures. Since laser ablation for pain management is currently exploratory and is only performed at a few centers worldwide, its short-, and long-term effects on the cingulum are currently unknown. Traditionally treatment effects are evaluated by monitoring changes in volume of the ablation zone post-treatment. However, this is sub-optimal since it involves evaluating a single global parameter (volume) to detect changes pre-, and post-MRI. Additionally, the qualitative observations of LITT-related changes on multi-parametric MRI (MPMRI) do not specifically address differentiation between the appearance of treatment related changes (edema, necrosis) from recurrence of the disease (pain recurrence). In this work, we explore the utility of computer extracted texture descriptors on MP-MRI to capture early treatment related changes on a per-voxel basis by extracting quantitative relationships that may allow for an in-depth understanding of tissue response to LITT on MRI, subtle changes that may not be appreciable on original MR intensities. The second objective of this work is to investigate the efficacy of different MRI protocols in accurately capturing treatment related changes within and outside the ablation zone post-LITT. A retrospective cohort of studies comprising pre- and 24-hour post-LITT 3 Tesla T1-weighted (T1w), T2w, T2-GRE, and T2-FLAIR acquisitions was considered. Our scheme involved (1) inter-protocol as well as inter-acquisition affine registration of pre- and post-LITT MRI, (2) quantitation of MRI parameters

  7. Effect of parameters on picosecond laser ablation of Cr12MoV cold work mold steel

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Zhang, Fei; Duan, Jun; Wang, Xizhao; Zeng, Xiaoyan

    2018-01-01

    Cr12MoV cold work mold steel, which is a difficult-to-machining material, is widely used in the mold and dye industry. A picosecond pulse Nd:YVO4 laser at 1064 nm was used to conduct the study. Effects of operation parameters (i.e., laser fluence, scanning speed, hatched space and number of scans) were studied on ablation depth and quality of Cr12MoV at the repetition rate of 20 MHz. The experimental results reveal that all the four parameters affect the ablation depth significantly. While the surface roughness depends mainly on laser fluence or scanning speed and secondarily on hatched space or number of scans. For laser fluence and scanning speed, three distinct surface morphologies were observed experiencing transition from flat (Ra < 1.40 μm) to bumpy (Ra = 1.40 - 2.40 μm) eventually to rough (Ra > 2.40 μm). However, for hatched space and number of scan, there is a small bumpy and rough zone or even no rough zone. Mechanisms including heat accumulation, plasma shielding and combustion reaction effects are proposed based on the ablation depth and processing morphology. By appropriate management of the laser fluence and scanning speed, high ablation depth with low surface roughness can be obtained at small hatched space and high number of scans.

  8. High-voltage zones within the pulmonary vein antra: Major determinants of acute pulmonary vein reconnections after atrial fibrillation ablation.

    PubMed

    Nagashima, Koichi; Watanabe, Ichiro; Okumura, Yasuo; Iso, Kazuki; Takahashi, Keiko; Watanabe, Ryuta; Arai, Masaru; Kurokawa, Sayaka; Nakai, Toshiko; Ohkubo, Kimie; Yoda, Shunichi; Hirayama, Atsushi

    2017-08-01

    Recurrence of atrial fibrillation (AF) after pulmonary vein isolation (PVI) is mainly due to PV reconnections. Patient-specific tissue characteristics that may contribute remain unidentified. This study aimed to assess the relationship between the bipolar electrogram voltage amplitudes recorded from the PV-left atrial (LA) junction and acute PV reconnection sites. Three-dimensional LA voltage maps created before an extensive encircling PVI in 47 AF patients (31 men; mean age 62 ± 11 years) were examined for an association between the EGM voltage amplitude recorded from the PV-LA junction and acute post-PVI PV reconnections (spontaneous PV reconnections and/or ATP-provoked dormant PV conduction). Acute PV reconnections were observed in 17 patients (36%) and in 24 (3%) of the 748 PV segments (16 segments per patient) and were associated with relatively high bipolar voltage amplitudes (3.26 ± 0.85 vs. 1.79 ± 1.15 mV, p < 0.0001) and a relatively low mean force-time integral (FTI) (428 ± 56 vs. 473 ± 76 gs, p = 0.0039) as well as FTI/PV-LA bipolar voltage (137 [106, 166] vs. 295 [193, 498] gs/mV, p < 0.0001). An analysis of the receiver operating characteristic curves revealed a high prognostic performance of the LA bipolar voltage and FTI/PV-LA bipolar voltage for acute PV reconnections (areas under the curve: 0.86 and 0.89, respectively); the best cutoff values were >2.12 mV and ≤183 gs/mV, respectively. The PV-LA voltage on the PV-encircling ablation line and FTI/PV-LA voltage were related to the acute post-PVI PV reconnections. A more durable ablation strategy is warranted for high-voltage zones.

  9. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation

    PubMed Central

    Hall, Sheldon K.; Ooi, Ean H.; Payne, Stephen J.

    2015-01-01

    Abstract Purpose: A sensitivity analysis has been performed on a mathematical model of radiofrequency ablation (RFA) in the liver. The purpose of this is to identify the most important parameters in the model, defined as those that produce the largest changes in the prediction. This is important in understanding the role of uncertainty and when comparing the model predictions to experimental data. Materials and methods: The Morris method was chosen to perform the sensitivity analysis because it is ideal for models with many parameters or that take a significant length of time to obtain solutions. A comprehensive literature review was performed to obtain ranges over which the model parameters are expected to vary, crucial input information. Results: The most important parameters in predicting the ablation zone size in our model of RFA are those representing the blood perfusion, electrical conductivity and the cell death model. The size of the 50 °C isotherm is sensitive to the electrical properties of tissue while the heat source is active, and to the thermal parameters during cooling. Conclusions: The parameter ranges chosen for the sensitivity analysis are believed to represent all that is currently known about their values in combination. The Morris method is able to compute global parameter sensitivities taking into account the interaction of all parameters, something that has not been done before. Research is needed to better understand the uncertainties in the cell death, electrical conductivity and perfusion models, but the other parameters are only of second order, providing a significant simplification. PMID:26000972

  10. Electric Ablation with Irreversible Electroporation (IRE) in Vital Hepatic Structures and Follow-up Investigation.

    PubMed

    Chen, Xinhua; Ren, Zhigang; Zhu, Tongyin; Zhang, Xiongxin; Peng, Zhiyi; Xie, Haiyang; Zhou, Lin; Yin, Shengyong; Sun, Junhui; Zheng, Shusen

    2015-11-09

    Irreversible electroporation (IRE) with microsecond-pulsed electric fields (μsPEFs) can effectively ablate hepatocellular carcinomas in animal models. This preclinical study evaluates the feasibility and safety of IRE on porcine livers. Altogether, 10 pigs were included. Computed tomography (CT) was used to guide two-needle electrodes that were inserted near the hilus hepatis and gall bladder. Animals were followed-up at 2 hours and at 2, 7 and 14 days post-treatment. During and after μsPEF ablation, electrocardiographs found no cardiovascular events, and contrast CT found no portal vein thrombosis. There was necrosis in the ablation zone. Mild cystic oedema around the gall bladder was found 2 hours post-treatment. Pathological studies showed extensive cell death. There was no large vessel damage, but there was mild endothelial damage in some small vessels. Follow-up liver function tests and routine blood tests showed immediate liver function damage and recovery from the damage, which correlated to the pathological changes. These results indicate that μsPEF ablation affects liver tissue and is less effective in vessels, which enable μsPEFs to ablate central tumour lesions close to the hilus hepatis and near large vessels and bile ducts, removing some of the limitations and contraindications of conventional thermal ablation.

  11. Electric Ablation with Irreversible Electroporation (IRE) in Vital Hepatic Structures and Follow-up Investigation

    PubMed Central

    Chen, Xinhua; Ren, Zhigang; Zhu, Tongyin; Zhang, Xiongxin; Peng, Zhiyi; Xie, Haiyang; Zhou, Lin; Yin, Shengyong; Sun, Junhui; Zheng, Shusen

    2015-01-01

    Irreversible electroporation (IRE) with microsecond-pulsed electric fields (μsPEFs) can effectively ablate hepatocellular carcinomas in animal models. This preclinical study evaluates the feasibility and safety of IRE on porcine livers. Altogether, 10 pigs were included. Computed tomography (CT) was used to guide two-needle electrodes that were inserted near the hilus hepatis and gall bladder. Animals were followed-up at 2 hours and at 2, 7 and 14 days post-treatment. During and after μsPEF ablation, electrocardiographs found no cardiovascular events, and contrast CT found no portal vein thrombosis. There was necrosis in the ablation zone. Mild cystic oedema around the gall bladder was found 2 hours post-treatment. Pathological studies showed extensive cell death. There was no large vessel damage, but there was mild endothelial damage in some small vessels. Follow-up liver function tests and routine blood tests showed immediate liver function damage and recovery from the damage, which correlated to the pathological changes. These results indicate that μsPEF ablation affects liver tissue and is less effective in vessels, which enable μsPEFs to ablate central tumour lesions close to the hilus hepatis and near large vessels and bile ducts, removing some of the limitations and contraindications of conventional thermal ablation. PMID:26549662

  12. The Results of Ultrasonography-Guided Percutaneous Radiofrequency Ablation in Hyperparathyroid Patients in Whom Surgery Is Not Feasible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sormaz, Ismail Cem, E-mail: icsormaz@gmail.com; Poyanlı, Arzu, E-mail: arzupoyanli@yahoo.com; Açar, Sami, E-mail: acarrsami@gmail.com

    BackgroundThe aim of the study was to evaluate the results of ultrasonography (US)-guided percutaneous radiofrequency ablation (RFA) in hyperparathyroid patients who refused surgery or had high surgical risks.Patients and MethodsFive patients with hyperparathyroidism (HPT) underwent US-guided RFA for a single hyperfunctioning parathyroid lesion. Post-ablation serum calcium and parathormone (PTH) assays were performed. All patients underwent imaging studies 6 months after the ablation to visualize the post-ablation change in the size of the treated parathyroid lesions.ResultsAll patients were normocalcemic on the post-ablation 1st day and 6th month. The post-ablation PTH levels were normal in three patients but remained elevated in two patients.more » The size of the parathyroid lesion was ≥30 mm in the two patients with elevated PTH, whereas the lesion was smaller than 30 mm in those with normal post-ablation PTH values.ConclusionAlthough this is a limited case series, it demonstrates the potential feasibility of RFA for HPT. Benefits were achieved particularly in patients with small parathyroid lesions.« less

  13. Development of moldable carbonaceous materials for ablative rocket nozzles.

    NASA Technical Reports Server (NTRS)

    Lockhart, R. J.; Bortz, S. A.; Schwartz, M. A.

    1972-01-01

    Description of a materials system developed for use as low-cost ablative nozzles for NASA's 260-in. solid rocket motor. Petroleum coke and carbon black fillers were employed; high density was achieved by controlling particle size distribution. An alumina catalyzed furfuryl ester resin which produced high carbon residues after pyrolysis was employed as the binder. Staple carbon fibers improved the strength and crack resistance of molded bodies. In static firing tests of two subscale nozzles, this material compared favorably in erosion rate with several other ablative systems.

  14. Image-Guided Radiofrequency Ablation (RFA) of Unresectable Hepatic Tumors Using a Triple-Spiral-Shaped Electrode Needle: Initial Experience in 34 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanos, Loukas; Poulou, Loukia S., E-mail: ploukia@hotmail.co; Ziakas, Panayiotis D.

    We evaluated the safety and efficacy of image-guided radiofrequency ablation (RFA) using a triple-spiral-shaped electrode needle for unresectable primary or metastatic hepatic tumors. Thirty-four patients with 46 index tumors were treated. Ablation zone, morbidity, and complications were assessed. The lesions were completely ablated with an ablative margin of about 1 cm. Five patients (14.7%) with a lesion larger than 4.5 cm had local tumor progression after 1 month and were retreated. Hemothorax, as a major complication, occurred in 1 of 34 patients (3.0%) or 1 of 46 lesions ablated (2.2%). RFA using this new electrode needle can be effective inmore » the treatment of large unresectable hepatic tumors.« less

  15. MRI-guided high-intensity focused ultrasound ablation of bone: evaluation of acute findings with MR and CT imaging in a swine model.

    PubMed

    Bucknor, Matthew D; Rieke, Viola; Do, Loi; Majumdar, Sharmila; Link, Thomas M; Saeed, Maythem

    2014-11-01

    To evaluate hyperacute (<1 hour) changes on magnetic resonance (MR) and computed tomography (CT) imaging following MR-guided high-intensity focused ultrasound (MRgHIFU) in a swine bone model as a function of sonication number and energy. Experimental procedures received approval from the local Institutional Animal Care and Use Committee. MRgHIFU was used to create distal and proximal ablations in the right femur of eight pigs. Each target was dosed with four or six sonications within similar volumes. The energy dosed to the distal target was higher (419 ± 19 J) than the proximal target (324 ± 17 J). The targeted femur and contralateral control were imaged before and after ablation using MR at 3T. Qualitative changes in signal on T1-weighted, T2-weighted, and T1-weighted postcontrast images were assessed. Ablation dimensions were calculated from postcontrast MRI. The 64-slice CT images were also obtained before and after ablation and qualitative changes were assessed. MRgHIFU bone ablation size measured on average 8.5 × 21.1 × 16.2 mm (transverse × craniocaudal × anteroposterior). Interestingly, within similar prescribed volumes, increasing the number of sonications from 4 to 6 increased the depth of the intramedullary hypoenhanced zone from 2.9 mm to 6.5 mm (P < 0.001). There was no difference in the appearance of low versus high energy ablations. CT imaging did not show structural abnormalities. The number of MRgHIFU focal sonications can be used to increase the depth of treatment within the targeted bone. Unlike CT, T2-weighted and contrast-enhanced MR demonstrated the hyperacute structural changes in the femur and surrounding soft tissue. © 2013 Wiley Periodicals, Inc.

  16. Quantifying Local Ablation Rates for the Greenland Ice Sheet Using Terrestrial LIDAR

    NASA Astrophysics Data System (ADS)

    Kershner, C. M.; Pitcher, L. H.; LeWinter, A.; Finnegan, D. C.; Overstreet, B. T.; Miège, C.; Cooper, M. G.; Smith, L. C.; Rennermalm, A. K.

    2016-12-01

    Quantifying accurate ice surface ablation or melt rates for the Greenland Ice Sheet is important for calibrating and validating surface mass balance models and constraining sea level rise estimates. Common practice is to monitor surface ablation at defined points by manually measuring ice surface lowering in relation to stakes inserted into the ice / snow. However, this method does not account for the effects of local topography, solar zenith angle, and local variations in ice surface albedo/impurities on ablation rates. To directly address these uncertainties, we use a commercially available terrestrial LIDAR scanner (TLS) to monitor daily melt rates in the ablation zone of the Greenland Ice Sheet for 7 consecutive days in July 2016. Each survey is registered to previous scans using retroreflective cylinders and is georeferenced using static GPS measurements. Bulk ablation will be calculated using multi-temporal differential LIDAR techniques, and difficulties in referencing scans and collecting high quality surveys in this dynamic environment will be discussed, as well as areas for future research. We conclude that this novel application of TLS technology provides a spatially accurate, higher fidelity measurements of ablation across a larger area with less interpolation and less time spent than using traditional manual point based methods alone. Furthermore, this sets the stage for direct calibration, validation and cross-comparison with existing airborne (e.g. NASA's Airborne Topographic Mapper - ATM - onboard Operation IceBridge and NASA's Land, Vegetation & Ice Sensor - LVIS) and forthcoming spaceborne sensors (e.g. NASA's ICESat-2).

  17. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    PubMed

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  18. Pneumothorax as a complication of percutaneous radiofrequency ablation for lung neoplasms.

    PubMed

    Yamagami, Takuji; Kato, Takeharu; Hirota, Tatsuya; Yoshimatsu, Rika; Matsumoto, Tomohiro; Nishimura, Tsunehiko

    2006-10-01

    The present study was performed to determine the frequency of the complication of pneumothorax after radiofrequency (RF) ablation for lung neoplasms and risk factors affecting such pneumothoraces. The study was based on 129 consecutive sessions of percutaneous RF ablation of lung neoplasms under real-time computed tomographic fluoroscopic guidance performed in a single institution between May 2003 and November 2005 in 41 patients (17 women, 24 men; mean age, 63 years; age range, 29-82 y). Correlation was determined between the incidence of pneumothorax after RF ablation and multiple factors: sex, age, presence of emphysema, lesion size, lesion depth, contact of tumor with pleura, number of punctures, maximum power of RF generator, period of ablation, tissue temperature at the end of the RF ablation session, and patient position during the procedure. Management of each case of iatrogenic pneumothorax was reviewed. Pneumothorax after RF ablation occurred in 38 of 129 RF ablation sessions (29.5%). Fourteen of the 38 cases were treated by manual aspiration, and 24 were simply observed. In five cases (3.9%), chest tube placement was required as therapy for pneumothorax. The risk of pneumothorax was significantly increased in patients with pulmonary emphysema. The frequency of pneumothorax after RF ablation in our experience is similar to the frequency of pneumothorax after lung biopsy reported in the literature. Various conditions for RF ablation did not influence the incidence of pneumothorax. Emphysema was the only individual factor that correlated significantly with the development of iatrogenic pneumothorax.

  19. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  20. Histological evaluation of vertical laser channels from ablative fractional resurfacing: an ex vivo pig skin model.

    PubMed

    Skovbølling Haak, Christina; Illes, Monica; Paasch, Uwe; Hædersdal, Merete

    2011-07-01

    Ablative fractional resurfacing (AFR) represents a new treatment potential for various skin conditions and new laser devices are being introduced. It is important to gain information about the impact of laser settings on the dimensions of the created laser channels for obtaining a safe and efficient treatment outcome. The aim of this study was to establish a standard model to document the histological tissue damage profiles after AFR and to test a new laser device at diverse settings. Ex vivo abdominal pig skin was treated with a MedArt 620, prototype fractional carbon dioxide (CO(2)) laser (Medart, Hvidovre, Denmark) delivering single microbeams (MB) with a spot size of 165 μm. By using a constant pulse duration of 2 ms, intensities of 1-18 W, single and 2-4 stacked pulses, energies were delivered in a range from 2-144 mJ/MB. Histological evaluations included 3-4 high-quality histological measurements for each laser setting (n = 28). AFR created cone-shaped laser channels. Ablation depths varied from reaching the superficial dermis (2 mJ, median 41 μm) to approaching the subcutaneous fat (144 mJ, median 1,943 μm) and correlated to the applied energy levels in an approximate linear relation (r(2) = 0.84, p < 0.001). The dermal ablation width increased slightly within the energy range of 4-144 mJ (median 163 μm). The thickness of the coagulation zone reached a plateau around 65 μm at energies levels above 16 mJ. The calculated volumes of ablated tissue increased with increasing energies. We suggest this ex vivo pig skin model to characterize AFR laser channels histologically.

  1. Global ablation techniques.

    PubMed

    Woods, Sarah; Taylor, Betsy

    2013-12-01

    Global endometrial ablation techniques are a relatively new surgical technology for the treatment of heavy menstrual bleeding that can now be used even in an outpatient clinic setting. A comparison of global ablation versus earlier ablation technologies notes no significant differences in success rates and some improvement in patient satisfaction. The advantages of the newer global endometrial ablation systems include less operative time, improved recovery time, and decreased anesthetic risk. Ablation procedures performed in an outpatient surgical or clinic setting provide advantages both of potential cost savings for patients and the health care system and improved patient convenience. Copyright © 2013. Published by Elsevier Inc.

  2. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shi-zhen; Yao, Cai-zhen; Dou, Hong-qiang; Liao, Wei; Li, Xiao-yang; Ding, Ren-jie; Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong; Zu, Xiao-tao

    2017-06-01

    Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm2 and 2.1 J/cm2 were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  3. Thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism.

    PubMed

    Duan, Ya-Qi; Liang, Ping

    2013-05-01

    Many studies have been conducted on splenic thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In this article, we review the evolution and current status of radiofrequency and microwave ablation in the treatment of spleen diseases. All publications from 1990 to 2011 on radiofrequency and microwave ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism were retrieved by searching PubMed. Thermal ablation in the spleen for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism can preserve part of the spleen and maintain splenic immunologic function. Thermal ablation for assisting hemostasis in partial splenectomy minimizes blood loss during operation. Thermal ablation for spleen trauma reduces the number of splenectomy and the amount of blood transfusion. Thermal ablation for splenic metastasis is minimally invasive and can be done under the guidance of an ultrasound, which helps shorten the recovery time. Thermal ablation for hypersplenism increases platelet (PLT) and white blood cell (WBC) counts and improves liver function. It also helps to maintain splenic immunologic function and even improves splenic immunologic function in the short-term. In conclusion, thermal ablative approaches are promising for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In order to improve therapeutic effects, directions for future studies may include standardized therapeutic indications, prolonged observation periods and enlarged sample sizes.

  4. The Effect of Atrial Fibrillation Ablation Techniques on P Wave Duration and P Wave Dispersion.

    PubMed

    Furniss, Guy O; Panagopoulos, Dimitrios; Kanoun, Sadeek; Davies, Edward J; Tomlinson, David R; Haywood, Guy A

    2018-02-14

    A reduction in surface electrocardiogram (ECG) P wave duration and dispersion is associated with improved outcomes in atrial fibrillation ablation. We investigated the effects of different ablation strategies on P wave duration and dispersion, hypothesising that extensive left atrial (LA) ablation with left atrial posterior wall isolation would give a greater reduction in P wave duration than more limited ablation techniques. A retrospective analysis of ECGs from patients who have undergone atrial fibrillation (AF) ablation was performed and pre-procedural sinus rhythm ECGs were compared with the post procedure ECGs. Maximal P wave duration was measured in leads I or II, minimum P wave duration in any lead and values were calculated for P wave duration and dispersion. Left atrial dimensions and medications at the time of ECG were documented. Ablation strategies compared were; pulmonary vein isolation (PVI) for paroxysmal atrial fibrillation (PAF) and the persistent AF (PsAF) ablation strategies of pulmonary vein isolation plus additional linear lesions (Lines), left atrial posterior wall isolation via catheter (PWI) and left atrial posterior wall isolation via staged surgical and catheter ablation (Hybrid). Sixty-nine patients' ECGs were analysed: 19 PVI, 21 Lines, 14 PWI, 15 Hybrid. Little correlation was seen between pre-procedure left atrial size and P wave duration (r=0.24) but LA size and P wave duration was larger in PsAF patients. A significant difference was seen in P wave reduction driven by Hybrid AF ablation (p<0.005) and Lines (<0.02). There was no difference amongst P wave dispersion between groups but the largest reduction was seen in the Hybrid ablation group. P wave duration increased with duration of continuous atrial fibrillation. Hybrid AF ablation significantly reduced P wave duration and dispersion compared to other ablation strategies including posterior wall isolation via catheter despite this being the same lesion set. Copyright © 2018

  5. Characteristic properties of laser ablation of translucent targets

    NASA Astrophysics Data System (ADS)

    Platonov, V. V.; Kochurin, E. A.; Osipov, V. V.; Lisenkov, V. V.; Zubarev, N. M.

    2018-07-01

    This study reveals the characteristic features of the laser ablation of the solid Nd:Y2O3 targets, such as the dynamics of the laser plume, the crater depth, and the weight and size distribution of liquid melt droplets. The ablation was initiated by the ytterbium fiber laser radiation pulses with constant energy (0.67 J) and with different power densities. The dependence on the power density of such parameters as the injection time of drops, mass distribution of drops, crater depth, and productivity of synthesis of nonopowder was revealed. To explain the formation of deep craters a model was proposed, stating that the formation of liquid droplets is a consequence of the Kelvin–Helmholtz instability’s appearing and developing on the border between the liquid melt on the crater’s wall and the vapor flow from the crater. The increment of this instability and its characteristic size was determined.

  6. Epileptogenicity and pathology - Under consideration of ablative approaches.

    PubMed

    Stefan, H; Schmitt, F C

    2018-05-01

    Besides resective epilepsy surgery, minimally invasive ablation using new diagnostic and therapeutic techniques recently became available. Optimal diagnostic approaches for these treatment options are discussed. The pathophysiology of epileptogenic networks differs depending on the lesion-types and location, requiring a differential use of non-invasive or invasive functional studies. In addition to the definition of epileptogenic zones, a challenge for pre-surgical investigation is the determination of three-dimensional epileptic networks to be removed. Copyright © 2018. Published by Elsevier B.V.

  7. Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Małolepszy, A.; Błonski, S.; Chrzanowska-Giżyńska, J.; Wojasiński, M.; Płocinski, T.; Stobinski, L.; Szymanski, Z.

    2018-04-01

    The results of synthesis of the fluorescent carbon dots (CDots) from graphite target and reduced graphene oxide (rGO) nanoparticles performed by the nanosecond laser ablation in polyethylene glycol 200 (PEG200) are shown. Two-step laser irradiation (first graphite target, next achieved suspension) revealed a very effective production of CDots. However, the ablation in PEG appeared to be effective with 1064 nm laser pulse in contrast to the ablation with 355 nm laser pulse. In the case of rGO nanoparticles similar laser irradiation procedure was less efficient. In both cases, received nanoparticles exhibited strong, broadband photoluminescence with a maximum dependent on the excitation wavelength. The size distribution for obtained CDots was evaluated using the DLS technique and HRTEM images. The results from both methods show quite good agreement in nanoparticle size estimation although the DLS method slightly overestimates nanoparticle's diameter.

  8. Rapid fibrin plug formation within cutaneous ablative fractional CO2 laser lesions.

    PubMed

    Kositratna, Garuna; Evers, Michael; Sajjadi, Amir; Manstein, Dieter

    2016-02-01

    Ablative fractional laser procedures have been shown to facilitate topical drug delivery into the skin. Past studies have mainly used ex vivo models to demonstrate enhanced drug delivery and in vivo studies have investigated laser created channels over a time course of days and weeks rather than within the first few minutes and hours after exposures. We have noticed rapid in vivo fibrin plug formation within ablative fractional laser lesions impairing passage through the laser created channels. In vivo laser exposures were performed in a porcine model. A fractional CO2 laser (AcuPulse™ system, AcuScan 120™ handpiece, Lumenis, Inc., Yokneam, Israel) was programmed in quasi-continuous wave (QCW) mode, at 40W, 50 mJ per pulse, 5% coverage, nominal 120 µm spot size, 8 × 8 mm square pattern, 169 MTZs per scan. Six millimeters punch biopsies were procured at 0, 2, 5, 10, 15, 30, 60, 90 minutes after completion of each scan, then fixed in 10% formalin. 12 repeats were performed of each time point. Skin samples were processed for serial vertically cut paraffin sections (5 μm collected every 25 μm) then H&E and special immunohistochemistry staining for fibrin and platelet. Dimensions of Microscopic Treatment Zones (MTZs) and extent of fibrin plug were assessed and quantified histologically. Ex vivo laser exposures of the identical laser parameter were performed on porcine and human skin at different storage conditions. Histology procured at various predetermined time intervals after in vivo fractional CO2 laser exposures revealed a rapidly forming fibrin plug initiating at the bottom of the MTZ lesions. At longer time intervals, the fibrin plug was extending towards the superficial sections. Within the first 5 minutes, more than 25% length of the entire laser-ablated channel was filled with a fibrin plug. With increased time intervals, the cavity was progressively filled with a fibrin plug. At 90 minutes, more than 90% length of the entire laser-ablated channel was

  9. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  10. Percutaneous Tumor Ablation Tools: Microwave, Radiofrequency, or Cryoablation—What Should You Use and Why?

    PubMed Central

    Lubner, Meghan G.; Ziemlewicz, Timothy J.; Lee, Fred T.; Brace, Christopher L.

    2014-01-01

    Image-guided thermal ablation is an evolving and growing treatment option for patients with malignant disease of multiple organ systems. Treatment indications have been expanding to include benign tumors as well. Specifically, the most prevalent indications to date have been in the liver (primary and metastatic disease, as well as benign tumors such as hemangiomas and adenomas), kidney (primarily renal cell carcinoma, but also benign tumors such as angiomyolipomas and oncocytomas), lung (primary and metastatic disease), and soft tissue and/or bone (primarily metastatic disease and osteoid osteomas). Each organ system has different underlying tissue characteristics, which can have profound effects on the resulting thermal changes and ablation zone. Understanding these issues is important for optimizing clinical results. In addition, thermal ablation technology has evolved rapidly during the past several decades, with substantial technical and procedural improvements that can help improve clinical outcomes and safety profiles. Staying up to date on these developments is challenging but critical because the physical properties underlying the different ablation modalities and the appropriate use of adjuncts will have a tremendous effect on treatment results. Ultimately, combining an understanding of the physical properties of the ablation modalities with an understanding of the thermal kinetics in tissue and using the most appropriate ablation modality for each patient are key to optimizing clinical outcomes. Suggested algorithms are described that will help physicians choose among the various ablation modalities for individual patients. ©RSNA, 2014 PMID:25208284

  11. Evaluation of corneal ablation by an optical parametric oscillator (OPO) at 2.94 μm and an Er:YAG laser and comparison to ablation by a 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Hoffman, Hanna J.; Nordquist, Robert E.; Eiferman, Richard A.

    1998-06-01

    Purpose: This study first evaluated the corneal ablation characteristics of (1) an Nd:YAG pumped OPO (Optical Parametric Oscillator) at 2.94 microns and (2) a short pulse Er:YAG laser. Secondly, it compared the histopathology and surface quality of these ablations with (3) a 193 nm excimer laser. Finally, the healing characteristics over 4 months of cat eyes treated with the OPO were evaluated. Methods: Custom designed Nd:YAG/OPO and Er:YAG lasers were integrated with a new scanning delivery system to perform PRK myopic correction procedures. After initial ablation studies to determine ablation thresholds and rates, human cadaver eyes and in-vivo cat eyes were treated with (1) a 6.0 mm Dia, 30 micron deep PTK ablation and (2) a 6.0 mm Dia, -5.0 Diopter PRK ablation. Cadaver eyes were also treated with a 5.0 mm Dia, -5.0 Diopter LASIK ablation. Finally, cats were treated with the OPO in a 4 month healing study. Results: Ablation thresholds below 100 mJ/cm2 and ablation rates comparable to the excimer were demonstrated for both infrared systems. Light Microscopy (LM) showed no thermal damage for low fluence treatments, but noticeable thermal damage at higher fluences. SEM and TEM revealed morphologically similar surfaces for low fluence OPO and excimer samples with a smooth base and no evidence of collagen shrinkage. The Er:YAG and higher fluence OPO treated samples revealed more damage along with visible collagen coagulation and shrinkage in some cases. Healing was remarkably unremarkable. All eyes had a mild healing response with no stromal haze and showed topographic flattening. LM demonstrated nothing except a moderate increase in keratocyte activity in the upper third of the stroma. TEM confirmed this along with irregular basement membranes. Conclusions: A non- thermal ablation process called photospallation is demonstrated for the first time using short pulse infrared lasers yielding damage zones comparable to the excimer and healing which is also comparable to

  12. Robotically assisted ablation produces more rapid and greater signal attenuation than manual ablation.

    PubMed

    Koa-Wing, Michael; Kojodjojo, Pipin; Malcolme-Lawes, Louisa C; Salukhe, Tushar V; Linton, Nick W F; Grogan, Aaron P; Bergman, Dale; Lim, Phang Boon; Whinnett, Zachary I; McCarthy, Karen; Ho, Siew Yen; O'Neill, Mark D; Peters, Nicholas S; Davies, D Wyn; Kanagaratnam, Prapa

    2009-12-01

    Robotic remote catheter ablation potentially provides improved catheter-tip stability, which should improve the efficiency of radiofrequency energy delivery. Percentage reduction in electrogram peak-to-peak voltage has been used as a measure of effectiveness of ablation. We tested the hypothesis that improved catheter-tip stability of robotic ablation can diminish signals to a greater degree than manual ablation. In vivo NavX maps of 7 pig atria were constructed. Separate lines of ablation were performed robotically and manually, recording pre- and postablation peak-to-peak voltages at 10, 20, 30, and 60 seconds and calculating signal amplitude reduction. Catheter ablation settings were constant (25W, 50 degrees , 17 mL/min, 20-30 g catheter tip pressure). The pigs were sacrificed and ablation lesions correlated with NavX maps. Robotic ablation reduced signal amplitude to a greater degree than manual ablation (49 +/- 2.6% vs 29 +/- 4.5% signal reduction after 1 minute [P = 0.0002]). The mean energy delivered (223 +/- 184 J vs 231 +/- 190 J, P = 0.42), power (19 +/- 3.5 W vs 19 +/- 4 W, P = 0.84), and duration of ablation (15 +/- 9 seconds vs 15 +/- 9 seconds, P = 0.89) was the same for manual and robotic. The mean peak catheter-tip temperature was higher for robotic (45 +/- 5 degrees C vs 42 +/- 3 degrees C [P < 0.0001]). The incidence of >50% signal reduction was greater for robotic (37%) than manual (21%) ablation (P = 0.0001). Robotically assisted ablation appears to be more effective than manual ablation at signal amplitude reduction, therefore may be expected to produce improved clinical outcomes.

  13. The Role Of Contact Force In Atrial Fibrillation Ablation.

    PubMed

    Nakagawa, Hiroshi; Jackman, Warren M

    2014-01-01

    During radiofrequency (RF) ablation, low electrode-tissue contact force (CF) is associated with ineffective RF lesion formation, whereas excessive CF may increase the risk of steam pop and perforation. Recently, ablation catheters using two technologies have been developed to measure real-time catheter-tissue CF. One catheter uses three optical fibers to measure microdeformation of a deformable body in the catheter tip. The other catheter uses a small spring connecting the ablation tip electrode to the catheter shaft with a magnetic transmitter and sensors to measure microdeflection of the spring. Pre-clinical experimental studies have shown that 1) at constant RF power and application time, RF lesion size significantly increases with increasing CF; 2) the incidence of steam pop and thrombus also increase with increasing CF; 3) modulating RF power based on CF (i.e, high RF power at low CF and lower RF power at high CF) results in a similar and predictable RF lesion size. In clinical studies in patients undergoing pulmonary vein (PV) isolation, CF during mapping in the left atrium and PVs showed a wide range of CF and transient high CF. The most common high CF site was located at the anterior/rightward left atrial roof, directly beneath the ascending aorta. There was a poor relationship between CF and previously used surrogate parameters for CF (unipolar or bipolar atrial potential amplitude and impedance). Patients who underwent PV isolation with an average CF of <10 g experienced higher AF recurrence, whereas patients with ablation using an average CF of > 20g had lower AF recurrence. AF recurred within 12 months in 6 of 8 patients (75%) who had a mean Force-Time Integral (FTI, area under the curve for contact force vs. time) < 500 gs. In contrast, AF recurred in only 4 of 13 patients (21%) with ablation using a mean FTI >1000 gs. In another study, controlling RF power based on CF prevented steam pop and impedance rise without loss of lesion effectiveness. These

  14. Production of microscale particles from fish bone by gas flow assisted laser ablation

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-12-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.

  15. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  16. Focal Laser Ablation of Prostate Cancer: Feasibility of Magnetic Resonance Imaging-Ultrasound Fusion for Guidance.

    PubMed

    Natarajan, Shyam; Jones, Tonye A; Priester, Alan M; Geoghegan, Rory; Lieu, Patricia; Delfin, Merdie; Felker, Ely; Margolis, Daniel J A; Sisk, Anthony; Pantuck, Allan; Grundfest, Warren; Marks, Leonard S

    2017-10-01

    Focal laser ablation is a potential treatment in some men with prostate cancer. Currently focal laser ablation is performed by radiologists in a magnetic resonance imaging unit (in bore). We evaluated the safety and feasibility of performing focal laser ablation in a urology clinic (out of bore) using magnetic resonance imaging-ultrasound fusion for guidance. A total of 11 men with intermediate risk prostate cancer were enrolled in this prospective, institutional review board approved pilot study. Magnetic resonance imaging-ultrasound fusion was used to guide laser fibers transrectally into regions of interest harboring intermediate risk prostate cancer. Thermal probes were inserted for real-time monitoring of intraprostatic temperatures during laser activation. Multiparametric magnetic resonance imaging (3 Tesla) was done immediately after treatment and at 6 months along with comprehensive fusion biopsy. Ten of 11 patients were successfully treated while under local anesthesia. Mean procedure time was 95 minutes (range 71 to 105). Posttreatment magnetic resonance imaging revealed a confined zone of nonperfusion in all 10 men. Mean zone volume was 4.3 cc (range 2.1 to 6.0). No CTCAE grade 3 or greater adverse events developed and no changes were observed in urinary or sexual function. At 6 months magnetic resonance imaging-ultrasound fusion biopsy of the treatment site showed no cancer in 3 patients, microfocal Gleason 3 + 3 in another 3 and persistent intermediate risk prostate cancer in 4. Focal laser ablation of prostate cancer appears safe and feasible with the patient under local anesthesia in a urology clinic using magnetic resonance imaging-ultrasound fusion for guidance and thermal probes for monitoring. Further development is necessary to refine out of bore focal laser ablation and additional studies are needed to determine appropriate treatment margins and oncologic efficacy. Copyright © 2017 American Urological Association Education and Research, Inc

  17. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Shin, Yung C.

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse.more » The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.« less

  18. Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium

    NASA Astrophysics Data System (ADS)

    Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto

    2009-08-01

    Pulsed laser ablation (PLA) in liquid medium was successfully employed to synthesize hydroxyapatite (HAp) colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the HAp nanoparticles were investigated in detail. The obtained HAp nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were studied in terms of the explosive ejection mechanism by investigating the change of the surface morphology on target. The stoichiometry and bonding properties were studied by using XPS, FT-IR and Raman spectroscopy. A molar ratio of Ca/P of the prepared HAp nanoparticles was more stoichiometric than the value reported in the case of ablation in vacuum.

  19. The Mixed Processing Models Development Of Thermal Fracture And Laser Ablation On Glass Substrate

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Cheng; Wu, Wen-Hong; Tseng, Shih-Feng; Hwang, Chi-Hung

    2011-01-01

    As the industries of cell phone and LCD TV were vigorously flourishing and the manufacturing requirements for LCD glass substrate were getting higher, the thermal fracture cutting technology (TFCT) has progressively become the main technology for LCD glass substrate cutting. Due to using laser as the heat source, the TFCT has many advantages, such as uniform heating, small heat effect zone, and high cutting speed, smooth cutting surface and low residual stress, etc. Moreover, a general laser ablation processing or traditional diamond wheel cutting does not have the last two advantages. The article presents a mixed processing of glass substrate, which consists of TFCT and laser ablation mechanisms, and how to enhance the cutting speed with little ablation laser energy. In this study, a 10W Nd:YAG laser and a 40W CO2 laser are used as the heat source of TFCT and laser ablation processing, respectively. The result indicates that the speed of the mixed processing is more than twice the speed of TFCT. Furthermore, after the mixed processing, the residual stresses in the glass substrates are also smaller.

  20. Focused US system for MR imaging-guided tumor ablation.

    PubMed

    Cline, H E; Hynynen, K; Watkins, R D; Adams, W J; Schenck, J F; Ettinger, R H; Freund, W R; Vetro, J P; Jolesz, F A

    1995-03-01

    To measure the performance characteristics of a focused ultrasound (US) system for magnetic resonance (MR) imaging-guided tumor ablation. The authors constructed a focused US system for MR imaging-guided tumor ablation. The location of the heated region and thermal dose were monitored with temperature-sensitive MR images obtained in phantoms and rabbit skeletal muscle after application of each sonic pulse. The region heated by the focused ultrasound beam was within 1 mm of that observed on temperature-sensitive fast gradient-echo MR images of in vivo rabbit skeletal muscle. Analysis of heat flow and the rate of coagulation necrosis provided an estimate of the size of the ablated region that was in agreement with experimental findings. MR imaging provides target definition and control for thermal therapy in regions of variable perfusion or in tissues that are not well characterized.

  1. The Floe Size Distribution in the Marginal Ice Zone of the Beaufort and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Schweiger, A. J. B.; Stern, H. L., III; Stark, M.; Zhang, J.; Steele, M.; Hwang, P. B.

    2014-12-01

    Several key processes in the Marginal Ice Zone (MIZ) of the Arctic Ocean are related to the size of the ice floes, whose diameters range from meters to tens of kilometers. The floe size distribution (FSD) influences the mechanical properties of the ice cover, air-sea momentum and heat transfer, lateral melting, and light penetration. However, no existing sea-ice/ocean models currently simulate the FSD in the MIZ. Model development depends on observations of the FSD for parameterization, calibration, and validation. To support the development and implementation of the FSD in the Marginal Ice Zone Modeling and Assimilation System (MIZMAS), we have analyzed the FSD in the Beaufort and Chukchi seas using multiple sources of satellite imagery: NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites (250 m pixel size), the USGS Landsat 8 satellite (80 m pixel size), the Canadian Space Agency's synthetic aperture radar (SAR) on RADARSAT (50 meter pixel size), and declassified National Technical Means imagery from the Global Fiducials Library (GFL) of the USGS (1 m pixel size). The procedure for identifying ice floes in the imagery begins with manually delineating cloud-free regions (if necessary). A threshold is then chosen to separate ice from water. Morphological operations and other semi-automated techniques are used to identify individual floes, whose properties are then easily calculated. We use the mean caliper diameter as the measure of floe size. The FSD is adequately described by a power-law in which the exponent characterizes the relative number of large and small floes. Changes in the exponent over time and space reflect changes in physical processes in the MIZ, such as sea-ice deformation, fracturing, and melting. We report results of FSD analysis for the spring and summer of 2013 and 2014, and show how the FSD will be incorporated into the MIZMAS model.

  2. Bipolar radiofrequency ablation of liver metastases during laparotomy. First clinical experiences with a new multipolar ablation concept.

    PubMed

    Ritz, Joerg-Peter; Lehmann, Kai S; Reissfelder, Christoph; Albrecht, Thomas; Frericks, Bernd; Zurbuchen, Urte; Buhr, Heinz J

    2006-01-01

    Radiofrequency ablation (RFA) is a promising method for local treatment of liver malignancies. Currently available systems for radiofrequency ablation use monopolar current, which carries the risk of uncontrolled electrical current paths, collateral damages and limited effectiveness. To overcome this problem, we used a newly developed internally cooled bipolar application system in patients with irresectable liver metastases undergoing laparotomy. The aim of this study was to clinically evaluate the safety, feasibility and effectiveness of this new system with a novel multipolar application concept. Patients with a maximum of five liver metastases having a maximum diameter of 5 cm underwent laparotomy and abdominal exploration to control resectability. In cases of irresectability, RFA with the newly developed bipolar application system was performed. Treatment was carried out under ultrasound guidance. Depending on tumour size, shape and location, up to three applicators were simultaneously inserted in or closely around the tumour, never exceeding a maximum probe distance of 3 cm. In the multipolar ablation concept, the current runs alternating between all possible pairs of consecutively activated electrodes with up to 15 possible electrode combinations. Post-operative follow-up was evaluated by CT or MRI controls 24-48 h after RFA and every 3 months. In a total of six patients (four male, two female; 61-68 years), ten metastases (1.0-5.5 cm) were treated with a total of 14 RF applications. In four metastases three probes were used, and in another four and two metastases, two and one probes were used, respectively. During a mean ablation time of 18.8 min (10-31), a mean energy of 48.8 kJ (12-116) for each metastases was applied. No procedure-related complications occurred. The patients were released from the hospital between 7 and 12 days post-intervention (median 9 days). The post-interventional control showed complete tumour ablation in all cases. Bipolar

  3. Endometrial Ablation

    MedlinePlus

    ... or lighter levels. If ablation does not control heavy bleeding, further treatment or surgery may be needed. ... ablation is used to treat many causes of heavy bleeding. In most cases, women with heavy bleeding ...

  4. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J.; Reininghaus, M.

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation ofmore » ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.« less

  5. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  6. NASA's Kepler Mission Discovers First Earth-size Planet in Habitable Zone of Another Star (Reporter Package)

    NASA Image and Video Library

    2014-04-17

    NASA's Kepler mission has discovered the first Earth-size planet orbiting in the habitable zone of a star outside our solar system. The newly discovered planet is called Kepler-186f and is about 10 percent larger than Earth.

  7. Properties of low power spark ablation in aqueous solution for dissolution of precious metals and alloys

    NASA Astrophysics Data System (ADS)

    Goltz, Douglas; Boileau, Michael; Plews, Ian; Charleton, Kimberly; Hinds, Michael W.

    2006-07-01

    Spark ablation or electric dispersion of metal samples in aqueous solution can be a useful approach for sample preparation. The ablated metal forms a stable suspension that has been described as colloidal, which is easily dissolved with a small amount of concentrated (16 M) HNO 3. In this study, we have examined some of the properties of the spark ablation process for a variety of metals (Rh and Au) and alloys (stainless steel) using a low power spark (100-300 W). Particle size distributions and conductivity measurements were carried out on selected metals to characterize the stable suspensions. A LASER diffraction particle size analyzer was useful for showing that ablated particles varied in size from 1 to 30 μm for both the silver and the nickel alloy, Inconel. In terms of weight percent most of the particles were between 10 and 30 μm. Conductivity of the spark ablation solution was found to increase linearly for approximately 3 min before leveling off at approximately 300 S cm 3. These measurements suggest that a significant portion of the ablated metal is also ionic in nature. Scanning electron microscope measurements revealed that a low power spark is much less damaging to the metal surface than a high power spark. Crater formation of the low power spark was found in a wider area than expected with the highest concentration where the spark was directed. The feasibility of using spark ablation for metal dissolution of a valuable artifact such as gold was also performed. Determinations of Ag (4-12%) and Cu (1-3%) in Bullion Reference Material (BRM) gave results that were in very good agreement with the certified values. The precision was ± 0.27% for Ag at 4.15% (RSD = 6.5%) and ± 0.09% for Cu at 1% (RSD = 9.0%).

  8. Image guided radiofrequency thermo-ablation therapy of chondroblastomas: should it replace surgery?

    PubMed

    Lalam, Radhesh K; Cribb, Gillian L; Tins, Bernard J; Cool, Wim P; Singh, Jaspreet; Tyrrell, Prudencia N M; Cassar-Pullicino, Victor N

    2014-04-01

    To assess the safety and effectiveness of image-guided radiofrequency ablation (RF ablation) in the treatment of chondroblastomas as an alternative to surgery. Twelve patients with histologically proven chondroblastoma at our institution from 2003 to date. We reviewed the indications, recurrences and complications in patients who underwent RF ablation. Twelve patients were diagnosed with chondroblastoma. Out of these, 8 patients (6 male, 2 female, mean age 17 years) with chondroblastoma (mean size 2.7 cm) underwent RF ablation. Multitine expandable electrodes were used in all patients. The number of probe positions needed varied from 1 to 4 and lesions were ablated at 90 °C for 5 min at each probe position. The tumours were successfully treated and all patients became asymptomatic. There were no recurrences. There were 2 patients with knee complications, 1 with minor asymptomatic infraction of the subchondral bone and a second patient with osteonecrosis/chondrolysis. Radiofrequency ablation appears to be a safe and effective alternative to surgical treatment with a low risk of recurrence and complications for most chondroblastomas. RF ablation is probably superior to surgery when chondroblastomas are small (less than 2.5 cm) with an intact bony margin with subchondral bone and in areas of difficult surgical access.

  9. Primary malignant tumours of the bony pelvis: US-guided high intensity focused ultrasound ablation.

    PubMed

    Wang, Yang; Wang, Wei; Tang, Jie

    2013-11-01

    The aim of this review is to evaluate the value of ultrasound (US)-guided high intensity focused ultrasound (HIFU) ablation in the treatment of primary malignant tumours of the bony pelvis. Eleven patients with primary malignant tumours of the bony pelvis received US-guided HIFU ablation. The maximum tumour size ranged from 5.6 to 25.0 cm (median 10.5 cm). Treatment was curative in four patients and palliative in seven patients. During follow-up, the effectiveness of HIFU ablation was assessed by contrast-enhanced magnetic resonance (MR). Significant coagulative necrosis was obtained in all patients after scheduled HIFU ablations; the volume ablation ratio was 86.7% ± 12.5% (range 65-100%). Complete tumour necrosis was achieved in all patients receiving curative HIFU ablation. No major complications were encountered. No patients died of local tumour progression during follow-up. US-guided HIFU ablation may be a safe and effective minimally invasive technique for the local treatment of primary malignant tumours of the bony pelvis.

  10. Optical comparison of multizone and single-zone photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Gonzalez-Cirre, Xochitl; Manns, Fabrice; Rol, Pascal O.; Parel, Jean-Marie A.

    1997-05-01

    The purpose is to calculate and compare the point-spread function and the central ablation depth (CAD) of a paraxial eye model after photo-refractive keratectomy (PRK), with single and multizone treatments. A modified Le Grand-El Hage paraxial eye model, with a pupil diameter ranging from 2 to 8 mm was used. Ray-tracing was performed for initial myopia ranging from 1 to 10D; after single zone PRK; after double zone PRK; and after tripe zone PRK. The ray-tracing of a parallel incident beam was calculated by using the paraxial matrix method. At equal CAD, the optical image quality is better after single zone treatments. Multizone treatments do not seem to be advantageous optically.

  11. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    PubMed

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  12. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  13. Thermal ablation of intrahepatic cholangiocarcinoma: Safety, efficacy, and factors affecting local tumor progression.

    PubMed

    Takahashi, Edwin A; Kinsman, Kristin A; Schmit, Grant D; Atwell, Thomas D; Schmitz, John J; Welch, Brian T; Callstrom, Matthew R; Geske, Jennifer R; Kurup, A Nicholas

    2018-06-04

    To evaluate the safety and oncologic efficacy of percutaneous thermal ablation of intrahepatic cholangiocarcinoma (ICC) and identify risk factors for local tumor progression (LTP). Retrospective review of an institutional tumor ablation registry demonstrated that 20 patients (9 males, 11 females; mean age 62.5 ± 15.8 years) with 50 ICCs (mean size 1.8 ± 1.3 cm) were treated with percutaneous radiofrequency ablation (RFA) or microwave ablation (MWA) between 2006 and 2015. Thirty-eight of the treated ICCs (76%) were metastases that developed after surgical resection of the primary tumor. Patient demographics, procedure technical parameters, and clinical outcomes were reviewed. A Cox proportional hazards model was used to examine the risk of LTP by ablation modality. Survival analyses were performed using the Kaplan-Meier method. Mean imaging follow-up time was 41.5 ± 42.7 months. Forty-four (88%) ICCs were treated with RFA, and 6 (12%) with MWA. Eleven (22%) cases of LTP developed in 5 (25%) patients. The median time to LTP among these 11 tumors was 7.1 months (range, 2.3-22.9 months). Risk of LTP was not significantly different for ICCs treated with MWA compared to RFA (HR 2.72; 95% CI 0.58-12.84; p = 03.21). Median disease-free survival was 8.2 months (1.1-70.4 months), and median overall survival was 23.6 months (7.4-122.5 months). No major complication occurred. Percutaneous thermal ablation is a safe and effective treatment for patients with ICCs and may be particularly valuable in unresectable patients, or those who have already undergone hepatic surgery. Tumor size and ablation modality were not associated with LTP, whereas primary tumors and superficially located tumors were more likely to subsequently recur.

  14. On the mechanism of pulsed laser ablation of phthalocyanine nanoparticles in an aqueous medium

    NASA Astrophysics Data System (ADS)

    Kogan, Boris; Malimonenko, Nicholas; Butenin, Alexander; Novoseletsky, Nicholas; Chizhikov, Sergei

    2018-06-01

    Laser ablation of phthalocyanine nanoparticles has potential for cancer treatment. The ablation is accompanied by the formation of microbubbles and the sublimation of nanoparticles. This was investigated in a liquid medium simulating tissue using optical-acoustic and spectral-luminescent methods. The thresholds for the appearance of microbubbles have been determined as a function of nanoparticle size. For the minimal size particles (80 nm) this threshold is equal to about 20–25 mJ cm‑2 and for the maximal size particles (230 nm) this threshold is equal to about 7 mJ cm‑2. It was estimated that the particle temperature at which bubbles arise is near 145 °С.

  15. Preparation of CuO nanoparticles by laser ablation in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulateef, Sinan A., E-mail: sinan1974@yahoo.com; MatJafri, M. Z.; Omar, A. F., E-mail: thinker-academy@yahoo.com

    2016-07-06

    Colloidal Cu nanoparticles (NPs) were synthesized by pulsed Nd:YAG laser ablation in acetone. Cu NPs were converted into CuO. The size and optical properties of these NPs were characterized using an UV/Vis spectrophotometer, transmission electron microscopy, and X-ray diffraction. Cu NPs were spherical, and their mean diameter in acetone was 8 nm–10 nm. Optical extinction immediately after the ablation showed surface Plasmon resonance peaks at 602 nm. The color of Cu NPs in acetone was green and stable even after a long time.

  16. Impact of solvent mixture on iron nanoparticles generated by laser ablation

    NASA Astrophysics Data System (ADS)

    Chakif, M.; Prymak, O.; Slota, M.; Heintze, E.; Gurevich, E. L.; Esen, C.; Bogani, L.; Epple, M.; Ostendorf, A.

    2014-03-01

    The present work reveals the structural and magnetic properties of iron oxide (FexOy) nanoparticles (NPs) prepared by femtosecond laser ablation. The FexOy-NPs were produced in solutions consisting of different ratios of water and acetone. Laser ablation in water yields agglomerates and that in acetone yields chain structures whereas that in water/acetone show a mixture of both. We observe significant fabrication dependent properties such as different crystallinities and magnetic behaviors. The structural characterization shows a change from iron (Fe) to a FexOy state of the NPs which depends on the solution composition. Furthermore, transmission electron microscopy measurements exhibit a broad particle size distribution in all samples but with significant differences in the mean sizes. Using magnetic measurements we show that nanoparticles fabricated in pure acetone have lower coercive fields which come along with a smaller mean particle size and therefore increasing superparamagnetic behavior.

  17. Influence of the ablation plume on the removal process during ArF-excimer laser photoablation

    NASA Astrophysics Data System (ADS)

    Doerbecker, Christina; Lubatschowski, Holger; Lohmann, Stefan; Ruff, Christine; Kermani, Omid; Ertmer, Wolfgang

    1996-01-01

    Correction of myopia with the ArF-excimer laser (PRK) sometimes leads to a so called 'central island' formation on the anterior corneal surface. The attenuation of the laser beam by the ablation plume might be one reason for this phenomenon. The attenuation properties of the ablation plume were investigated by a probe beam parallel to the surface of the tissue probe. By varying the laser parameters (fluence, repetition rate, spot size) and the target tissue (cornea, PMMA) the attenuation of the probe beam was measured time and spatial resolved. As a result of this study, a significant influence of the removal process due to scattering and absorption within the ablation plume can be assumed as a function of repetition rate, spot size and air flow on the tissue surface.

  18. Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser

    NASA Astrophysics Data System (ADS)

    Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard

    2002-03-01

    Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.

  19. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    PubMed

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  20. Preparation of silver nanoparticles in virgin coconut oil using laser ablation.

    PubMed

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-07

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.

  1. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation.

    PubMed

    Merckel, Laura G; Knuttel, Floor M; Deckers, Roel; van Dalen, Thijs; Schubert, Gerald; Peters, Nicky H G M; Weits, Teun; van Diest, Paul J; Mali, Willem P Th M; Vaessen, Paul H H B; van Gorp, Joost M H H; Moonen, Chrit T W; Bartels, Lambertus W; van den Bosch, Maurice A A J

    2016-11-01

    To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. • MR-HIFU ablation with the dedicated breast system is safe and feasible • In none of the patients was skin redness or burns observed • No correlation was found between the applied energy and the temperature increase • The correlation between applied energy and size of tumour necrosis was good.

  2. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning.

    PubMed

    Lopresto, Vanni; Pinto, Rosanna; Farina, Laura; Cavagnaro, Marta

    2017-08-01

    Microwave thermal ablation (MTA) therapy for cancer treatments relies on the absorption of electromagnetic energy at microwave frequencies to induce a very high and localized temperature increase, which causes an irreversible thermal damage in the target zone. Treatment planning in MTA is based on experimental observations of ablation zones in ex vivo tissue, while predicting the treatment outcomes could be greatly improved by reliable numerical models. In this work, a fully dynamical simulation model is exploited to look at effects of temperature-dependent variations in the dielectric and thermal properties of the targeted tissue on the prediction of the temperature increase and the extension of the thermally coagulated zone. In particular, the influence of measurement uncertainty of tissue parameters on the numerical results is investigated. Numerical data were compared with data from MTA experiments performed on ex vivo bovine liver tissue at 2.45GHz, with a power of 60W applied for 10min. By including in the simulation model an uncertainty budget (CI=95%) of ±25% in the properties of the tissue due to inaccuracy of measurements, numerical results were achieved in the range of experimental data. Obtained results also showed that the specific heat especially influences the extension of the thermally coagulated zone, with an increase of 27% in length and 7% in diameter when a variation of -25% is considered with respect to the value of the reference simulation model. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results.

    PubMed

    Lubner, Meghan G; Hinshaw, J Louis; Andreano, Anita; Sampson, Lisa; Lee, Fred T; Brace, Christopher L

    2012-03-01

    To evaluate the performance of a gas-cooled, high-powered microwave system. Investigators performed 54 ablations in ex vivo bovine livers using three devices-a single 17-gauge cooled radiofrequency(RF) electrode; a cluster RF electrode; and a single 17-gauge, gas-cooled microwave (MW) antenna-at three time points (n = 6 at 4 minutes, 12 minutes, and 16 minutes). RF power was applied using impedance-based pulsing with maximum 200 W generator output. MW power of 135 W at 2.45 GHz was delivered continuously. An approved in vivo study was performed using 13 domestic pigs. Hepatic ablations were performed using single applicators and the above-mentioned MW and RF generator systems at treatment times of 2 minutes (n = 7 MW, n = 6 RF), 5 minutes (n = 23 MW, n = 8 RF), 7 minutes (n = 11 MW, n = 6 RF), and 10 minutes (n = 7 MW, n = 9 RF). Mean transverse diameter and length of the ablation zones were compared using analysis of variance (ANOVA) with post-hoc t tests and Wilcoxon rank-sum tests. Single ex vivo MW ablations were larger than single RF ablations at all time points (MW mean diameter range 3.5-4.8 cm 4-16 minutes; RF mean diameter range 2.6-3.1 cm 4-16 minutes) (P < .05). There was no difference in mean diameter between cluster RF and MW ablations (RF 3.3-4.4 cm 4-16 minutes; P = .4-.9). In vivo lesion diameters for MW (and RF) were as follows: 2.6 cm ± 0.72 (RF 1.5 cm ± 0.14), 3.6 cm ± 0.89 (RF 2.0 cm ± 0.4), 3.4 cm ± 0.87 (RF 1.8 cm ± 0.23), and 3.8 cm ± 0.74 (RF 2.1 cm ± 0.3) at 2 minutes, 5 minutes, 7 minutes, and 10 minutes (P < .05 all time points). Gas-cooled, high-powered MW ablation allows the generation of large ablation zones in short times. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  4. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  5. Surface melt effects on Cryosat-2 elevation retrievals in the ablation zone of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Slater, T.; McMillan, M.; Shepherd, A.; Leeson, A.; Cornford, S. L.; Hogg, A.; Gilbert, L.; Muir, A. S.; Briggs, K.

    2017-12-01

    Over the past two decades, there has been an acceleration in the rate of mass losses from the Greenland ice sheet. This acceleration is, in part, attributed to an increasingly negative surface mass balance (SMB), linked to increasing melt water runoff rates due to enhanced surface melting. Understanding the past, present and future evolution in surface melting is central to ongoing monitoring of ice sheet mass balance and, in turn, to building realistic future projections. Currently, regional climate models are commonly used for this purpose, because direct in-situ observations are spatially and temporally sparse due to the logistics and resources required to collect such data. In particular, modelled SMB is used to estimate the extent and magnitude of surface melting, which influences (1) many geodetic mass balance estimates, and (2) snowpack microwave scattering properties. The latter is poorly understood and introduces uncertainty into radar altimeter estimates of ice sheet evolution. Here, we investigate the changes in CryoSat-2 waveforms and elevation measurements caused by the onset of surface melt in the summer months over the ablation zone of the Greenland ice sheet. Specifically, we use CryoSat-2 SARIn mode data acquired between 2011 and 2016, to characterise the effect of high variability in surface melt during this period, and to assess the associated impact on estimates of ice mass balance.

  6. Percutaneous microwave ablation of renal cell carcinoma using a high power microwave system: focus upon safety and efficacy.

    PubMed

    Filippiadis, D K; Gkizas, C; Chrysofos, M; Siatelis, A; Velonakis, G; Alexopoulou, E; Kelekis, A; Brountzos, E; Kelekis, N

    2017-12-04

    Percutaneous ablation is an expanding, minimally invasive approach for small- to medium-sized renal masses. The purpose of this study is to review safety, and mid-term efficacy of percutaneous microwave ablation (MWA) for Renal Cell Carcinoma (RCC) treatment using a high power microwave system. Institutional database research identified 50 consecutive patients with a single lesion resembling renal cell carcinoma in CT and MRI who underwent percutaneous microwave ablation using a high power microwave system. All patients underwent biopsy on the same session with ablation using an 18G semi-automatic soft tissue biopsy needle. Contrast-enhanced computed tomography or magnetic resonance imaging was used for post-ablation follow-up. Patient and tumour characteristics, microwave technique, complications and pattern of recurrence were evaluated. Mean patient age was 74 years (male-female: 31-19). Average lesion size was 3.1 cm (range 2.0-4.3 cm). Biopsy results report RCC (n = 48), inflammatory myofibroblastic tumour (n = 1), and non-diagnostic sample (n = 1). The 3-year overall survival was 95.8% (46/48). Two patients died during the 3-year follow-up period due to causes unrelated to the MW ablation and to the RCC. Minor complications including haematomas requiring nothing but observation occurred at 4% (2/50) of the cases. Local recurrence of 6.25% (3/48) was observed with 2/3 cases being re-treated achieving a total clinical success of 97.9% (47/48 lesions). Percutaneous microwave ablation of RCC using a high power microwave system is a safe and efficacious technique for the treatment of small- to medium-sized renal masses.

  7. Efficacy of catheter ablation of atrial fibrillation beyond HATCH score.

    PubMed

    Tang, Ri-Bo; Dong, Jian-Zeng; Long, De-Yong; Yu, Rong-Hui; Ning, Man; Jiang, Chen-Xi; Sang, Cai-Hua; Liu, Xiao-Hui; Ma, Chang-Sheng

    2012-10-01

    HATCH score is an established predictor of progression from paroxysmal to persistent atrial fibrillation (AF). The purpose of this study was to determine if HATCH score could predict recurrence after catheter ablation of AF. The data of 488 consecutive paroxysmal AF patients who underwent an index circumferential pulmonary veins (PV) ablation were retrospectively analyzed. Of these patients, 250 (51.2%) patients had HATCH score = 0, 185 (37.9%) patients had HATCH score = 1, and 53 (10.9%) patients had HATCH score ≥ 2 (28 patients had HATCH score = 2, 23 patients had HATCH score = 3, and 2 patients had HATCH score = 4). The patients with HATCH score ≥ 2 had significantly larger left atrium size, the largest left ventricular end systolic diameter, and the lowest ejection fraction. After a mean follow-up of (823 ± 532) days, the recurrence rates were 36.4%, 37.8% and 28.3% from the HATCH score = 0, HATCH score = 1 to HATCH score ≥ 2 categories (P = 0.498). Univariate analysis revealed that left atrium size, body mass index, and failure of PV isolation were predictors of AF recurrence. After adjustment for body mass index, left atrial size and PV isolation, the HATCH score was not an independent predictor of recurrence (HR = 0.92, 95% confidence interval = 0.76 - 1.12, P = 0.406) in multivariate analysis. HATCH score has no value in prediction of AF recurrence after catheter ablation.

  8. Assessment of laser ablation techniques in a-si technologies for position-sensor development

    NASA Astrophysics Data System (ADS)

    Molpeceres, C.; Lauzurica, S.; Ocana, J. L.; Gandia, J. J.; Urbina, L.; Carabe, J.

    2005-07-01

    Laser micromachining of semiconductor and Transparent Conductive Oxides (TCO) materials is very important for the practical applications in photovoltaic industry. In particular, a problem of controlled ablation of those materials with minimum of debris and small heat affected zone is one of the most vital for the successful implementation of laser micromachining. In particular, selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using Transparent Conductive Oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, Indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. The profiles of ablated grooves have been studied in order to determine the best processing conditions, i.e. laser pulse energy and wavelength, and to asses this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well defined ablation grooves having thicknesses in the order of 10 μm both in ITO and a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  9. Changes in Arctic Sea Ice Floe Size Distribution in the Marginal Ice Zone in a Thickness and Floe Size Distribution Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Stern, H. L., III; Hwang, P. B.; Schweiger, A. J. B.; Stark, M.; Steele, M.

    2015-12-01

    To better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. We have developed a FSD theory [Zhang et al., 2015] that is coupled to the ITD theory of Thorndike et al. [1975] in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice opening, ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave-induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. It is also based on the assumption that floes of larger sizes are easier to break because they are subject to larger flexure-induced stresses and strains than smaller floes that are easier to ride with waves with little bending; larger floes also have higher areal coverages and therefore higher probabilities to break. These assumptions with corresponding formulations ensure that the simulated FSD follows a power law as observed by satellites and airborne surveys. The FSD theory has been tested in the Pan-arctic Ice/Ocean Modeling and Assimilation System (PIOMAS). The existing PIOMAS has 12 categories each for ice thickness, ice enthalpy, and snow depth. With the implementation of the FSD theory, PIOMAS is able to represent 12 categories of floe sizes ranging from 0.1 m to ~3000 m. It is found that the simulated 12-category FSD agrees reasonably well with FSD derived from SAR and MODIS images. In this study, we will

  10. Pulmonary Microwave Ablation Near the Heart: Antenna Positioning Can Mitigate Cardiac Complications in a Porcine Model

    PubMed Central

    Nocerino, Elisabetta; Mason, Peter J.; Schwahn, Denise J.; Hetzel, Scott; Turnquist, Alyssa M.; Lee, Fred T.; Brace, Christopher L.

    2017-01-01

    Purpose To determine how close to the heart pulmonary microwave ablation can be performed without causing cardiac tissue injury or significant arrhythmia. Materials and Methods The study was performed with approval from the institutional animal care and use committee. Computed tomographic fluoroscopically guided microwave ablation of the lung was performed in 12 swine. Antennas were randomized to either parallel (180° ± 20°) or perpendicular (90° ± 20°) orientation relative to the heart surface and to distances of 0–10 mm from the heart. Ablations were performed at 65 W for 5 minutes or until a significant arrhythmia (asystole, heart block, bradycardia, supraventricular or ventricular tachycardia) developed. Heart tissue was evaluated with vital staining and histologic examination. Data were analyzed with mixed effects logistic regression, receiver operating characteristic curves, and the Fisher exact test. Results Thirty-four pulmonary microwave ablations were performed with the antenna a median distance of 4 mm from the heart in both perpendicular (n = 17) and parallel (n = 17) orientation. Significant arrhythmias developed during six (18%) ablations. Cardiac tissue injury occurred with 17 ablations (50%). Risk of arrhythmia and tissue injury decreased with increasing antenna distance from the heart with both antenna orientations. No cardiac complication occurred with a distance of greater than or equal to 4.4 mm from the heart. The ablation zone extended to the pleural surface adjacent to the heart in 71% of parallel and 17% of perpendicular ablations performed 5–10 mm from the heart. Conclusion Microwave lung ablations performed more than or equal to 5 mm from the heart were associated with a low risk of cardiac complications. © RSNA, 2016 PMID:27732159

  11. Localization of gaps during redo ablations of paroxysmal atrial fibrillation: Preferential patterns depending on the choice of cryoballoon ablation or radiofrequency ablation for the initial procedure.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Auffret, Vincent; Fénéon, Damien; Behaghel, Albin; Daubert, Jean-Claude; Mabo, Philippe; Martins, Raphaël P

    2016-11-01

    Pulmonary vein (PV) isolation, using cryoballoon or radiofrequency ablation, is the cornerstone therapy for symptomatic paroxysmal atrial fibrillation (AF) refractory to antiarrhythmic drugs. One-third of the patients have recurrences, mainly due to PV reconnections. To describe the different locations of reconnection sites in patients who had previously undergone radiofrequency or cryoballoon ablation, and to compare the characteristics of the redo procedures in both instances. Demographic data and characteristics of the initial ablation (cryoballoon or radiofrequency) were collected. Number and localization of reconduction gaps, and redo characteristics were reviewed. Seventy-four patients scheduled for a redo ablation of paroxysmal AF were included; 38 had been treated by radiofrequency ablation and 36 by cryoballoon ablation during the first procedure. For the initial ablation, procedural and fluoroscopy times were significantly shorter for cryoballoon ablation (147.8±52.6min vs. 226.6±64.3min [P<0.001] and 37.0±17.7min vs. 50.8±22.7min [P=0.005], respectively). Overall, an identical number of gaps was found during redo procedures of cryoballoon and radiofrequency ablations. However, a significantly higher number of gaps were located in the right superior PV for patients first ablated with radiofrequency (0.9±1.0 vs. 0.5±0.9; P=0.009). Gap localization displayed different patterns. Although not significant, redo procedures of cryoballoon ablation were slightly shorter and needed shorter durations of radiofrequency to achieve PV isolation. During redo procedures, gap localization pattern is different for patients first ablated with cryoballoon or radiofrequency ablation, and right superior PV reconnections occur more frequently after radiofrequency ablation. Redo ablation of a previous cryoballoon ablation appears to be easier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. ELECTROSTATIC BARRIER AGAINST DUST GROWTH IN PROTOPLANETARY DISKS. II. MEASURING THE SIZE OF THE 'FROZEN' ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzumi, Satoshi; Sakagami, Masa-aki; Tanaka, Hidekazu

    2011-04-20

    Coagulation of submicron-sized dust grains into porous aggregates is the initial step of dust evolution in protoplanetary disks. Recently, it has been pointed out that negative charging of dust in the weakly ionized disks could significantly slow down the coagulation process. In this paper, we apply the growth criteria obtained in Paper I to finding out a location ('frozen' zone) where the charging stalls dust growth at the fractal growth stage. For low-turbulence disks, we find that the frozen zone can cover a major part of the disks at a few to 100 AU from the central star. The maximummore » mass of the aggregates is approximately 10{sup -7}g at 1 AU and as small as a few monomer masses at 100 AU. Strong turbulence can significantly reduce the size of the frozen zone, but such turbulence will cause the fragmentation of macroscopic aggregates at later stages. We examine a possibility that complete freezeout of dust evolution in low-turbulence disks could be prevented by global transport of dust in the disks. Our simple estimation shows that global dust transport can lead to the supply of macroscopic aggregates and the removal of frozen aggregates on a timescale of 10{sup 6} yr. This overturns the usual understanding that tiny dust particles get depleted on much shorter timescales unless collisional fragmentation is effective. The frozen zone together with global dust transport might explain 'slow' ({approx}10{sup 6} yr) dust evolution suggested by infrared observation of T Tauri stars and by radioactive dating of chondrites.« less

  13. PHOTONICS AND NANOTECHNOLOGY Pulsed laser ablation of binary semiconductors: mechanisms of vaporisation and cluster formation

    NASA Astrophysics Data System (ADS)

    Bulgakov, A. V.; Evtushenko, A. B.; Shukhov, Yu G.; Ozerov, I.; Marin, W.

    2010-12-01

    Formation of small clusters during pulsed ablation of two binary semiconductors, zinc oxide and indium phosphide, in vacuum by UV, visible, and IR laser radiation is comparatively studied. The irradiation conditions favourable for generation of neutral and charged ZnnOm and InnPm clusters of different stoichiometry in the ablation products are found. The size and composition of the clusters, their expansion dynamics and reactivity are analysed by time-of-flight mass spectrometry. A particular attention is paid to the mechanisms of ZnO and InP ablation as a function of laser fluence, with the use of different ablation models. It is established that ZnO evapourates congruently in a wide range of irradiation conditions, while InP ablation leads to enrichment of the target surface with indium. It is shown that this radically different character of semiconductor ablation determines the composition of the nanostructures formed: zinc oxide clusters are mainly stoichiometric, whereas InnPm particles are significantly enriched with indium.

  14. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    PubMed

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  15. Preparation of starch stabilized silver nanoparticles with spatial self-phase modulation properties by laser ablation technique

    NASA Astrophysics Data System (ADS)

    Zamiri, Reza; Azmi, B. Z.; Darroudi, Majid; Sadrolhosseini, Amir R.; Husin, M. S.; Zaidan, A. W.; Mahdi, M. A.

    2011-01-01

    Silver nanoparticles inside the starch solution have been successfully fabricated by laser ablation of a silver plate immersed in starch solution. The ablation has been done using a Q-switched Nd:YAG laser at 10 Hz repetition rate. The starch solution allows for the formation of silver nanoparticles with uniform particle diameters and well dispersed. The ablation was performed at different time durations to study the influence of the laser ablation time on efficiency of particle formation and sizes. The Spatial Self-phase modulation phenomena which can determine the nonlinear optical property of the samples were also investigated for starch solutions containing silver nanoparticles.

  16. Ablation for Atrial Fibrillation

    PubMed Central

    2006-01-01

    Executive Summary Objective To review the effectiveness, safety, and costing of ablation methods to manage atrial fibrillation (AF). The ablation methods reviewed were catheter ablation and surgical ablation. Clinical Need Atrial fibrillation is characterized by an irregular, usually rapid, heart rate that limits the ability of the atria to pump blood effectively to the ventricles. Atrial fibrillation can be a primary diagnosis or it may be associated with other diseases, such as high blood pressure, abnormal heart muscle function, chronic lung diseases, and coronary heart disease. The most common symptom of AF is palpitations. Symptoms caused by decreased blood flow include dizziness, fatigue, and shortness of breath. Some patients with AF do not experience any symptoms. According to United States data, the incidence of AF increases with age, with a prevalence of 1 per 200 people aged between 50 and 60 years, and 1 per 10 people aged over 80 years. In 2004, the Institute for Clinical Evaluative Sciences (ICES) estimated that the rate of hospitalization for AF in Canada was 582.7 per 100,000 population. They also reported that of the patients discharged alive, 2.7% were readmitted within 1 year for stroke. One United States prevalence study of AF indicated that the overall prevalence of AF was 0.95%. When the results of this study were extrapolated to the population of Ontario, the prevalence of AF in Ontario is 98,758 for residents aged over 20 years. Currently, the first-line therapy for AF is medical therapy with antiarrhythmic drugs (AADs). There are several AADs available, because there is no one AAD that is effective for all patients. The AADs have critical adverse effects that can aggravate existing arrhythmias. The drug selection process frequently involves trial and error until the patient’s symptoms subside. The Technology Ablation has been frequently described as a “cure” for AF, compared with drug therapy, which controls AF but does not cure it

  17. Selections from 2015: Earth-Sized Planet Found in Star's Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-03-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Discovery and Validation of Kepler-452b: a 1.6 R Super Earth Exoplanet in the Habitable Zone of a G2 StarPublished July2015Main takeaway:A phase-folded light curve showing the transit of Kepler-452b. Its transit lasts 10.5 hours, and its period is 385 days. [Jenkins et al. 2015]A team led by Jon Jenkins (NASA Ames Research Center) announced the discovery and confirmation of Kepler-452b, an exoplanet only 60% larger than Earth and located in the habitable zone of its G2 star. This planet orbits its star at a distance of just over 1 AU, taking 385 days to complete an orbit. Kepler-452b also stands a good chance of being rocky, according to estimates.Why its interesting:Kepler-452b is the first near-Earth-sized planet to be found in the habitable zone of a Sun-like star making this the closest analog to the Earth-Sun system found in the Kepler dataset so far.About the history of the system (and the future of ours?):The authors estimate that the system is ~6 billion years old, and that Kepler-452b has been in the habitable zone of its star throughout its lifetime a substantially longer time than Earth has been around and habitable! Kepler-452bs host star, in addition to being 1.5 billion years older than the Sun, is roughly 10% larger. This system might therefore provide a glimpse of what Earths environment may be like in the future, as the Sun slowly expands on its way to becoming a red giant.CitationJon M. Jenkins et al 2015 AJ 150 56. doi:10.1088/0004-6256/150/2/56

  18. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.

    PubMed

    Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2005-10-01

    To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.

  19. High-frequency microwave ablation method for enhanced cancer treatment with minimized collateral damage.

    PubMed

    Yoon, Jeonghoon; Cho, Jeiwon; Kim, Namgon; Kim, Dae-Duk; Lee, Eunsook; Cheon, Changyul; Kwon, Youngwoo

    2011-10-15

    To overcome the limits of conventional microwave ablation, a new frequency spectrum above 6 GHz has been explored for low-power and low collateral damage ablation procedure. A planar coaxial probe-based applicator, suitable for easy insertion into the human body, was developed for our study to cover a wideband frequency up to 30 GHz. Thermal ablations with small input power (1-3 W) at various microwave frequencies were performed on nude mice xenografted with human breast cancer. Comparative study of ablation efficiencies revealed that 18-GHz microwave results in the largest difference in the temperature rise between cancer and normal tissues as well as the highest ablation efficiency, reaching 20 times that of 2 GHz. Thermal profile study on the composite region of cancer and fat also showed significantly reduced collateral damage using 18 GHz. Application of low-power (1 W) 18-GHz microwave on the nude mice xenografted with human breast cancer cells resulted in recurrence-free treatment. The proposed microwave ablation method can be a very effective process to treat small-sized tumor with minimized invasiveness and collateral damages. Copyright © 2010 UICC.

  20. Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.

    The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the

  1. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    PubMed Central

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-01

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983

  2. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation.

    PubMed

    Knuttel, Floortje M; Waaijer, Laurien; Merckel, Laura G; van den Bosch, Maurice A A J; Witkamp, Arjen J; Deckers, Roel; van Diest, Paul J

    2016-08-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This study aimed to compare histopathological features of breast cancer after MR-HIFU ablation and RFA. MR-HIFU ablation and RFA were performed in- and ex-vivo. Tumours in six mastectomy specimens were partially ablated with RFA or MR-HIFU. In-vivo MR-HIFU ablation was performed 3-6 days before excision; RFA was performed in the operation room. Tissue was fixed in formalin and processed to haematoxylin and eosin (H&E) and cytokeratin-8 (CK-8)-stained slides. Morphology and cell viability were assessed. Ex-vivo ablation resulted in clear morphological changes after RFA versus subtle differences after MR-HIFU. CK-8 staining was decreased or absent. H&E tended to underestimate the size of thermal damage. In-vivo MR-HIFU resulted in necrotic-like changes. Surprisingly, some ablated lesions were CK-8-positive. Histopathology after in-vivo RFA resembled ex-vivo RFA, with hyper-eosinophilic stroma and elongated nuclei. Lesion borders were sharp after MR-HIFU and indistinct after RFA. Histopathological differences between MR-HIFU-ablated tissue and RF-ablated tissue were demonstrated. CK-8 was more reliable for cell viability assessment than H&E when used directly after ablation, while H&E was more reliable in ablated tissue left in situ for a few days. Our results contribute to improved understanding of histopathological features in breast cancer lesions treated with minimally invasive ablative techniques. © 2016 John Wiley & Sons Ltd.

  3. Role of contact force in ischemic scar-related ventricular tachycardia ablation; optimal force required and impact of left ventricular access route.

    PubMed

    Elsokkari, Ihab; Sapp, John L; Doucette, Steve; Parkash, Ratika; Gray, Christopher J; Gardner, Martin J; Macintyre, Ciorsti; AbdelWahab, Amir M

    2018-06-26

    Contact force-sensing technology has become a widely used addition to catheter ablation procedures. Neither the optimal contact force required to achieve adequate lesion formation in the ventricle, nor the impact of left ventricular access route on contact force has been fully clarified. Consecutive patients (n = 24) with ischemic cardiomyopathy who underwent ablation for scar-related ventricular tachycardia were included in the study. All ablations (n = 25) were performed using irrigated contact force-sensing catheters (Smart Touch, Biosense Webster). Effective lesion formation was defined as electrical unexcitability post ablation at sites which were electrically excitable prior to ablation (unipolar pacing at 10 mA, 2 ms pulse width). We explored the contact force which achieved effective lesion formation and the impact of left ventricular access route (retrograde aortic or transseptal) on the contact force achieved in various segments of the left ventricle. Scar zone was defined as bipolar signal amplitude < 0.5 mV. Among 427 ablation points, effective lesion formation was achieved at 201 points (47.1%). Contact force did not predict effective lesion formation in the overall group. However, within the scar zone, mean contact force ≥ 10 g was significantly associated with effective lesion formation [OR 3.21 (1.43, 7.19) P = 0.005]. In the 12-segment model of the left ventricle, the retrograde approach was associated with higher median contact force in the apical anterior segment (31 vs 19 g; P = 0.045) while transseptal approach had higher median force in the basal inferior segment (25 vs 15 g; P = 0.021). In the 4-segment model, the retrograde approach had higher force in the anterior wall (28 vs 16 g; P = 0.004) while the transseptal approach had higher force in the lateral wall (21 vs 18 g; P = 0.032). There was a trend towards higher force in the inferior wall with the transseptal approach, but this was not

  4. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    PubMed

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  5. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  6. First Experience of Ultrasound-guided Percutaneous Ablation for Recurrent Hepatoblastoma after Liver Resection in Children

    PubMed Central

    Liu, Baoxian; Zhou, Luyao; Huang, Guangliang; Zhong, Zhihai; Jiang, Chunlin; Shan, Quanyuan; Xu, Ming; Kuang, Ming; Xie, Xiaoyan

    2015-01-01

    This study aimed to summarize the first experience with ultrasound-guided percutaneous ablation treatment (PAT) for recurrent hepatoblastoma (HB) after liver resection in children. From August 2013 to October 2014, PAT was used to treat 5 children with a total of 8 recurrent HB (mean size, 1.4 ± 0.8 cm; size range, 0.7–3.1 cm), including 4 patients with 7 tumors in the liver and 1 patient with 1 tumor in the lung. Technical success was achieved in all patients (5/5, 100%). The complete ablation rate after the first ablation session was 80% (4/5) on a patient-by-patient basis and 87.5% (7/8) on a tumor-by-tumor basis. Only 1 patient developed a fever with temperature >39 °C; it lasted 4 days after radiofrequency ablation (RFA) and was resolved by conservative therapy. During the follow-up period, new intrahepatic recurrences after PAT were detected in two patients. One died due to tumor progression 4 months after ablation. The median overall survival time after PAT was 13.8 months. PAT is a safe and promising therapy for children with recurrent HB after liver resection, and further investigation in large-scale randomized clinical trials is required to determine its role in the treatment of this disease. PMID:26578035

  7. Radiofrequency ablation for treatment of sporadic angiomyolipoma.

    PubMed

    Prevoo, Warner; van den Bosch, Maurice A A J; Horenblas, Simon

    2008-07-01

    Symptomatic angiomyolipoma (AML) and asymptomatic AML larger than 4 cm in size are usually treated with nephron-sparing surgery or arterial embolization. We used another technique, that is, radiofrequency ablation (RFA), for treatment of a sporadic AML in a patient with a solitary kidney, in whom maximal sparing of normal renal tissue was required. Contrast-enhanced computed tomography (CT) showed an enhancing well-defined mainly lipomatous tumor, with a maximum diameter of 4.5 cm in the upper pole of the left kidney. Diagnosis of AML was confirmed with fine-needle aspiration biopsy. RFA was performed with a RF 3000 system, consisting of a generator that supplied up to 200W of power, connected to a 15-gauge LeVeen multipolar array electrode that was placed under CT-guidance centrally in the AML. Initial power was set at low power and increased with increments of 10W, according to the algorithm provided by the manufacturer, resulting in a final tumor end temperature above 65 degrees C. No complications occurred and the patient was discharged home the day after. During follow-up (12 months) function of the solitary kidney of the patient was preserved and patient did not have any AML-related symptoms develop. Contrast-enhanced CT scan showed complete (100%) tumor ablation with absence of enhancement in the tumor and decreased tumor size from 4.5 cm to 2.9 cm at 12 months. CT-guided RFA is a minimally invasive ablation procedure that allowed successful treatment of a sporadic AML in a patient with a solitary kidney. No complications occurred and no AML recurrence was observed during the 12-month follow-up.

  8. Comparison between different thickness umbrella-shaped expandable radiofrequency electrodes (SuperSlim and CoAccess): Experimental and clinical study

    PubMed Central

    KODA, MASAHIKO; TOKUNAGA, SHIHO; MATONO, TOMOMITSU; SUGIHARA, TAKAAKI; NAGAHARA, TAKAKAZU; MURAWAKI, YOSHIKAZU

    2011-01-01

    The purpose of the present study was to compare the size and configuration of the ablation zones created by SuperSlim and CoAccess electrodes, using various ablation algorithms in ex vivo bovine liver and in clinical cases. In the experimental study, we ablated explanted bovine liver using 2 types of electrodes and 4 ablation algorithms (combinations of incremental power supply, stepwise expansion and additional low-power ablation) and evaluated the ablation area and time. In the clinical study, we compared the ablation volume and the shape of the ablation zone between both electrodes in 23 hepatocellular carcinoma (HCC) cases with the best algorithm (incremental power supply, stepwise expansion and additional low-power ablation) as derived from the experimental study. In the experimental study, the ablation area and time by the CoAccess electrode were significantly greater compared to those by the SuperSlim electrode for the single-step (algorithm 1, p=0.0209 and 0.0325, respectively) and stepwise expansion algorithms (algorithm 2, p=0.0002 and <0.0001, respectively; algorithm 3, p= 0.006 and 0.0407, respectively). However, differences were not significant for the additional low-power ablation algorithm. In the clinical study, the ablation volume and time in the CoAccess group were significantly larger and longer, respectively, compared to those in the SuperSlim group (p=0.0242 and 0.009, respectively). Round ablation zones were acquired in 91.7% of the CoAccess group, while irregular ablation zones were obtained in 45.5% of the SuperSlim group (p=0.0428). In conclusion, the CoAccess electrode achieves larger and more uniform ablation zones compared with the SuperSlim electrode, though it requires longer ablation times in experimental and clinical studies. PMID:22977647

  9. Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gubin, K. V.; Lotov, K. V.; Trunov, V. I.; Pestryakov, E. V.

    2016-09-01

    Powerful femtosecond laser pulses that propagate through narrow ablating capillaries cause modification of capillary walls, which is studied experimentally and theoretically. At low intensities, the laser-induced periodic surface structures and porous coating composed of sub-micron particles appear on the walls. At higher intensities, the surface is covered by deposited droplets of the size up to 10 μm. In both cases, the ablated material forms a solid plug that completely blocks the capillary after several hundreds or thousands of pulses. The suggested theoretical model indicates that the plug formation is a universal effect. It must take place in any narrow tube subject to ablation under the action of short laser pulses.

  10. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    NASA Astrophysics Data System (ADS)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  11. Intrahepatic radiofrequency ablation versus electrochemical treatment in vivo.

    PubMed

    Czymek, Ralf; Nassrallah, Jan; Gebhard, Maximilian; Schmidt, Andreas; Limmer, Stefan; Kleemann, Markus; Bruch, Hans-Peter; Hildebrand, Philipp

    2012-06-01

    Radiofrequency ablation (RFA) and electrochemical treatment (ECT) are two methods of local liver tumour ablation. The objective of this study was to compare these methods when applied in proximity to vessels in vivo. In a total of ten laparotomised pigs, we used ECT (Group A, four animals) and RFA (Group B, four animals) to create four areas of ablation per animal under ultrasound guidance within 10 mm of a vessel. Group C consisted of two control animals. Chemical laboratory tests were performed immediately before and after each procedure and on days 1, 3 and 7 after surgery. Following the last tests, the livers were harvested for morphological evaluation. The mean duration of surgery was 5 h 40 min in Group A (ECT), 2 h 47 min in Group B (RFA), and 2 h 30 min in Group C (control animals). After ECT, the harvested livers showed a mean volume of necrosis of 1.84 cm(3) ± 0.88 at the anode and 2.59 cm(3) ± 1.06 at the cathode. The presence of vessels did not influence the formation of necrotic zones. Ablation time was 67 min when a charge of 200 coulombs was delivered. We measured pH values of 1.2 (range: 0.9-1.7) at the anode and 11.7 (range: 11.0-12.1) at the cathode. In one of the 16 RFA ablations (6%), the target temperature was not reached and the procedure was discontinued. After 14 of 16 RFA procedures (88%), morphological analysis showed incomplete ablation in perivascular sites. Both ECT and RFA were associated with a reversible increase in monocyte, C-reactive protein (CRP) and aspartate aminotransferase (AST) levels. There was no significant increase in interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and IL-6. In the majority of cases, intrahepatic RFA in vivo leads to incomplete necrosis in proximity to vessels and the presence of histologically intact perivascular cells. Without a reduction in liver perfusion, the central application of RFA should be considered problematic. ECT is a safe alternative. It is not associated

  12. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  14. Survival after Radiofrequency Ablation in 122 Patients with Inoperable Colorectal Lung Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillams, Alice, E-mail: alliesorting@gmail.com; Khan, Zahid; Osborn, Peter

    2013-06-15

    Purpose. To analyze the factors associated with favorable survival in patients with inoperable colorectal lung metastases treated with percutaneous image-guided radiofrequency ablation. Methods. Between 2002 and 2011, a total of 398 metastases were ablated in 122 patients (87 male, median age 68 years, range 29-90 years) at 256 procedures. Percutaneous CT-guided cool-tip radiofrequency ablation was performed under sedation/general anesthesia. Maximum tumor size, number of tumors ablated, number of procedures, concurrent/prior liver ablation, previous liver or lung resection, systemic chemotherapy, disease-free interval from primary resection to lung metastasis, and survival from first ablation were recorded prospectively. Kaplan-Meier analysis was performed, andmore » factors were compared by log rank test. Results. The initial number of metastases ablated was 2.3 (range 1-8); the total number was 3.3 (range 1-15). The maximum tumor diameter was 1.7 (range 0.5-4) cm, and the number of procedures was 2 (range 1-10). The major complication rate was 3.9 %. Overall median and 3-year survival rate were 41 months and 57 %. Survival was better in patients with smaller tumors-a median of 51 months, with 3-year survival of 64 % for tumors 2 cm or smaller versus 31 months and 44 % for tumors 2.1-4 cm (p = 0.08). The number of metastases ablated and whether the tumors were unilateral or bilateral did not affect survival. The presence of treated liver metastases, systemic chemotherapy, or prior lung resection did not affect survival. Conclusion. Three-year survival of 57 % in patients with inoperable colorectal lung metastases is better than would be expected with chemotherapy alone. Patients with inoperable but small-volume colorectal lung metastases should be referred for ablation.« less

  15. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  16. Is AF Ablation Cost Effective?

    PubMed Central

    Martin-Doyle, William; Reynolds, Matthew R.

    2010-01-01

    The use of catheter ablation to treat AF is increasing rapidly, but there is presently an incomplete understanding of its cost-effectiveness. AF ablation procedures involve significant up-front expenditures, but multiple randomized trials have demonstrated that ablation is more effective than antiarrhythmic drugs at maintaining sinus rhythm in a second-line and possibly first-line rhythm control setting. Although truly long-term data are limited, ablation, as compared with antiarrrhythmic drugs, also appears associated with improved symptoms and quality of life and a reduction in downstream hospitalization and other health care resource utilization. Several groups have developed cost effectiveness models comparing AF ablation primarily to antiarrhythmic drugs and the model results suggest that ablation likely falls within the range generally accepted as cost-effective in developed nations. This paper will review available information on the cost-effectiveness of catheter ablation for the treatment of atrial fibrillation, and discuss continued areas of uncertainty where further research is required. PMID:20936083

  17. Measuring the iron spectral opacity in solar conditions using a double ablation front scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colaitis, A.; Ducret, J. E.; Turck-Chieze, S

    We propose a new method to achieve hydrodynamic conditions relevant for the investigation of the radiation transport properties of the plasma at the base of the solar convection zone. The method is designed in the framework of opacity measurements with high-power lasers and exploits the temporal and spatial stability of hydrodynamic parameters in counter-propagating Double Ablation Front (DAF) structures.

  18. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone

    PubMed Central

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms. PMID:24030599

  19. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone.

    PubMed

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.

  20. Towards crack-free ablation cutting of thin glass sheets with picosecond pulsed lasers

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Eppelt, Urs; Hartmann, Claudia; Schulz, Wolfgang; Zhu, Jianqiang; Lin, Zunqi

    2017-08-01

    We investigated the morphology and mechanism of laser-induced damage in the ablation cutting of thin glass sheets with picosecond laser. Two kinds of damage morphologies observed on the cross-section of the cut channel, are caused by high-density free-electrons and the temperature accumulation, respectively. Notches and micro-cracks can be observed on the top surface of the sample near the cut edge. The surface micro-cracks were related to high energy free-electrons and also the heat-affected zone. Heat-affected-zone and visible-cracks free conditions of glass cutting were achieved by controlling the repetition rate and spatial overlap of laser pulses.

  1. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  2. Value of microwave ablation in treatment of large lesions of hepatocellular carcinoma.

    PubMed

    Medhat, Eman; Abdel Aziz, Ashraf; Nabeel, Mohammed; Elbaz, Tamer; Zakaria, Zeinab; Shousha, Hend; Amer, Ayman; Fouad Fathalah, Waleed; Maher, Rabab; Musa, Shereif

    2015-08-01

    Thermal ablative therapies continue to be favored as a safe and effective treatment for patients with non-resectable hepatocellular carcinoma (HCC). Percutaneous microwave ablative therapy, which is a relatively new technique, has the advantage in providing faster ablation of large tumors. This study aimed to evaluate microwave ablation in the treatment of large HCC (5-7 cm) and to assess its effect on local tumor progression, prognostic outcome and patients' survival. In all, 26 patients with large HCC lesions (5-7 cm) were managed in the multidisciplinary clinic of Kasr Al Ainy University hospital using microwave ablation. The treatment was performed with the patient under conscious sedation and analgesia and ultrasonography-guided using an HS AMICA microwave machine operating at frequency of 2450 MHz and a power up to 100 W. Multiple needle insertions were made in one or two sessions according to the size of the lesion. The complete ablation rate, local tumor progression and patients' overall survival were analyzed, and the efficacy and safety of MWA was evaluated. Complete ablation was achieved in 19/26 (73.1%). Local tumor progression was recorded in five treated lesions (19.2%). Distant tumor progression within the liver was recorded in six patients (23.1%), with a mean survival of 21.5 months. No procedure-related major complications or deaths were observed. Percutaneous microwave ablation is safe and effective in the treatment of large HCC tumors. Patients' survival and local tumor control were acceptable. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  3. Robotic navigation and ablation.

    PubMed

    Malcolme-Lawes, L; Kanagaratnam, P

    2010-12-01

    Robotic technologies have been developed to allow optimal catheter stability and reproducible catheter movements with the aim of achieving contiguous and transmural lesion delivery. Two systems for remote navigation of catheters within the heart have been developed; the first is based on a magnetic navigation system (MNS) Niobe, Stereotaxis, Saint-Louis, Missouri, USA, the second is based on a steerable sheath system (Sensei, Hansen Medical, Mountain View, CA, USA). Both robotic and magnetic navigation systems have proven to be feasible for performing ablation of both simple and complex arrhythmias, particularly atrial fibrillation. Studies to date have shown similar success rates for AF ablation compared to that of manual ablation, with many groups finding a reduction in fluoroscopy times. However, the early learning curve of cases demonstrated longer procedure times, mainly due to additional setup times. With centres performing increasing numbers of robotic ablations and the introduction of a pressure monitoring system, lower power settings and instinctive driving software, complication rates are reducing, and fluoroscopy times have been lower than manual ablation in many studies. As the demand for catheter ablation for arrhythmias such as atrial fibrillation increases and the number of centres performing these ablations increases, the demand for systems which reduce the hand skill requirement and improve the comfort of the operator will also increase.

  4. Morphometric and chronological behavior of 2.45 GHz microwave ablation zones for colorectal cancer metastases and hepatocellular carcinoma in the liver: preliminary report.

    PubMed

    Hickson, Guy; Patel, Nirav; King, Alexander; Breen, David

    2016-08-01

    Percutaneous microwave ablation (MWA) is increasingly utilized in the treatment of primary and secondary hepatic malignancy. As an in-situ treatment appreciation of any signs of recurrence is critical for improving long-term oncological outcomes. Volumetry has been recognized as having advantages over orthogonal measurements in the response assessment of malignant lesions. Our study set out to look at the normal involution of an ablation zone (AZ) both volumetrically and morphologically to see if this information might aid the detection of local tumor progression. Cases were identified retrospectively from our database of liver MWA. We identified 34 AZs in total, 18 AZs in 16 hepatocellular carcinoma (HCC) patients with cirrhosis on imaging grounds and 13 AZs in patients with metastatic colorectal cancer. How these AZs developed over time was analyzed both morphologically and quantitatively using Siemens Syngo Via post-processing software. We used the software to produce volume measurements and short axis orthogonal measurements. A baseline measurement was taken on the first <30 day post-ablation scan and the chronological changes were then plotted. We saw differences between the cirrhotic and non-cirrhotic patients both in terms of morphological and volumetric changes. 12/13 non-cirrhotic AZs had a volume of <50% of the baseline scan within the first year. The cirrhotic patients were less predictable, but 14/18 still shrunk to less than 50% of baseline volume in the first year. Orthogonal measurements were less useful in both groups. Qualitatively, there was initially a slightly less well-defined border to the AZ in the first 3 months, which became better defined over time and certainly over the first year of AZ involution. Volumetric analysis is a useful adjunct to conventional measurements and qualitative analysis of AZs. This can be reassuring when orthogonal measurements are static or difficult to interpret. Our preliminary data suggest that the normal

  5. A novel thermal accelerant for augmentation of microwave energy during image-guided tumor ablation

    NASA Astrophysics Data System (ADS)

    Park, William K. C.; Maxwell, Aaron W. P.; Frank, Victoria E.; Primmer, Michael P.; Paul, Jarod B.; Susai, Cynthia; Collins, Scott A.; Borjeson, Tiffany M.; Baird, Greyson L.; Lombardo, Kara A.; Dupuy, Damian E.

    2017-02-01

    The greatest challenge in image-guided thermal ablation (IGTA) of liver tumors is a relatively high recurrence rate (ca. 30%) due to incomplete ablation. To meet this challenge, we have developed a novel Thermal Accelerator (TA) to demonstrate its capability to, 1) augment microwave (MW) energy from a distance unattainable by antenna alone; 2) turn into a gel at body temperature; 3) act as a CT or US contrast. We have examined the TA efficiency using in vitro and ex vivo models: microwave power, TA dose, frequencies and TA-to-tip distance were varied, and temperature readings compared with and without TA. Using the in vitro model, it was established that both the rate and magnitude of increase in ablation zone temperature were significantly greater with TA under all tested conditions (p<0.0001). On ultrasound imaging, the TA was echogenic as gel. On CT, TA density was proportional to dose, with average values ranging from 329 HU to 3071 HU at 10 mg/mL and 1,000mg/mL, respectively. TA can be accurately deposited to a target area using CT or US as image-guidance and augment MW energy effectively so that ablation time is significantly reduced, which will contribute to complete ablation. The preliminary results obtained from in vivo experiments using swine as an animal model are consistent with the observations made in in vitro and en vivo studies.

  6. A rotational ablation tool for calcified atherosclerotic plaque removal.

    PubMed

    Kim, Min-Hyeng; Kim, Hyung-Jung; Kim, Nicholas N; Yoon, Hae-Sung; Ahn, Sung-Hoon

    2011-12-01

    Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge. High-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods. However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation. It relies on surface modification to achieve the required surface roughness. The surface roughness of the tool for differential cutting was designed based on lubrication theory, and the surface of the tool was modified using Nd:YAG laser beam engraving. Electron microscope images and profiles indicated that the engraved surface of the tool had approximately 1 μm of root mean square surface roughness. The ablation experiment was performed on hydroxyapatite/polylactide composite with an elastic modulus similar to that of calcified plaque. In addition, differential cutting was verified on silicone rubber with an elastic modulus similar to that of a normal artery. The tool performance and reliability were evaluated by measuring the ablation force exerted, the size of the debris generated during ablation, and through visual inspection of the silicone rubber surface.

  7. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    NASA Astrophysics Data System (ADS)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  8. Epicardial Radiofrequency Ablation Failure During Ablation Procedures for Ventricular Arrhythmias: Reasons and Implications for Outcomes.

    PubMed

    Baldinger, Samuel H; Kumar, Saurabh; Barbhaiya, Chirag R; Mahida, Saagar; Epstein, Laurence M; Michaud, Gregory F; John, Roy; Tedrow, Usha B; Stevenson, William G

    2015-12-01

    Radiofrequency ablation (RFA) from the epicardial space for ventricular arrhythmias is limited or impossible in some cases. Reasons for epicardial ablation failure and the effect on outcome have not been systematically analyzed. We assessed reasons for epicardial RFA failure relative to the anatomic target area and the type of heart disease and assessed the effect of failed epicardial RFA on outcome after ablation procedures for ventricular arrhythmias in a large single-center cohort. Epicardial access was attempted during 309 ablation procedures in 277 patients and was achieved in 291 procedures (94%). Unlimited ablation in an identified target region could be performed in 181 cases (59%), limited ablation was possible in 22 cases (7%), and epicardial ablation was deemed not feasible in 88 cases (28%). Reasons for failed or limited ablation were unsuccessful epicardial access (6%), failure to identify an epicardial target (15%), proximity to a coronary artery (13%), proximity to the phrenic nerve (6%), and complications (<1%). Epicardial RFA was impeded in the majority of cases targeting the left ventricular summit region. Acute complications occurred in 9%. The risk for acute ablation failure was 8.3× higher (4.5-15.0; P<0.001) after no or limited epicardial RFA compared with unlimited RFA, and patients with unlimited epicardial RFA had better recurrence-free survival rates (P<0.001). Epicardial RFA for ventricular arrhythmias is often limited even when pericardial access is successful. Variability of success is dependent on the target area, and the presence of factors limiting ablation is associated with worse outcomes. © 2015 American Heart Association, Inc.

  9. Dual Switching Monopolar Radiofrequency Ablation Using a Separable Clustered Electrode: Comparison with Consecutive and Switching Monopolar Modes in Ex Vivo Bovine Livers

    PubMed Central

    Yoon, Jeong-Hee; Han, Joon Koo; Choi, Byung Ihn

    2013-01-01

    Objective To compare the in-vitro efficiency of dual-switching monopolar (DSM) radiofrequency ablation (RFA) using a separable clustered electrode (Octopus® electrodes) with consecutive monopolar (CM) and switching monopolar (SM) RFA techniques to create an ablative zone in the explanted bovine liver. Materials and Methods For DSM-RFA, we used a prototype, three-channel, dual generator RFA Unit and Octopus® electrodes with three, 17 gauge internally cooled electrodes. The RFA Unit allowed simultaneous radiofrequency (RF) energy delivery to two electrodes of the Octopus® electrodes as well as automatic switching among the three electrode pairs according to the impedance changes. RF energy was sequentially applied to one of the three electrodes for 24 minutes (group A; CM mode, n = 10) or alternatively applied for 12 minutes (group B; SM mode, n = 10) or concurrently applied to a pair of electrodes for 12 minutes (group C; DSM mode, n = 10) in explanted bovine livers. Changes in the impedance and current during RFA as well as the dimensions of the thermal ablative zones were compared among the three groups. Results The mean, delivered RF energy amounts in groups A, B, and C were 63.15 ± 8.6 kJ, 72.13 ± 5.4 kJ, and 106.08 ± 13.4 kJ, respectively (p < 0.001). The DSM mode created a significantly larger ablation volume than did the other modes, i.e., 68.1 ± 10.2 cm3 (group A), 92.0 ± 19.9 cm3 (group B), and 115.1 ± 14.0 cm3 (group C) (p < 0.001). The circularity in groups A, B, and C were 0.84 ± 0.06, 0.87 ± 0.04 and 0.90 ± 0.03, respectively (p = 0.03). Conclusion DSM-RFA using Octopus® electrodes can help create large ablative zones within a relatively short time. PMID:23690705

  10. Outcomes of repeat catheter ablation using magnetic navigation or conventional ablation.

    PubMed

    Akca, Ferdi; Theuns, Dominic A M J; Abkenari, Lara Dabiri; de Groot, Natasja M S; Jordaens, Luc; Szili-Torok, Tamas

    2013-10-01

    After initial catheter ablation, repeat procedures could be necessary. This study evaluates the efficacy of the magnetic navigation system (MNS) in repeat catheter ablation as compared with manual conventional techniques (MANs). The results of 163 repeat ablation procedures were analysed. Ablations were performed either using MNS (n = 84) or conventional manual ablation (n = 79). Procedures were divided into four groups based on the technique used during the initial and repeat ablation procedure: MAN-MAN (n = 66), MAN-MNS (n = 31), MNS-MNS (n = 53), and MNS-MAN (n = 13). Three subgroups were analysed: supraventricular tachycardias (SVTs, n = 68), atrial fibrillation (AF, n = 67), and ventricular tachycardias (VT, n = 28). Recurrences were assessed during 19 ± 11 months follow-up. Overall, repeat procedures using MNS were successful in 89.0% as compared with 96.2% in the MAN group (P = ns). The overall recurrence rate was significantly lower using MNS (25.0 vs. 41.4%, P = 0.045). Acute success and recurrence rates for the MAN-MAN, MAN-MNS, MNS-MNS, and MNS-MAN groups were comparable. For the SVT subgroup a higher acute success rate was achieved using MAN (87.9 vs. 100.0%, P = 0.049). The use of MNS for SVT is associated with longer procedure times (205 ± 82 vs. 172 ± 69 min, P = 0.040). For AF procedure and fluoroscopy times were longer (257 ± 72 vs. 185 ± 64, P = 0.001; 59.5 ± 19.3 vs. 41.1 ± 18.3 min, P < 0.001). Less fluoroscopy was used for MNS-guided VT procedures (22.8 ± 14.7 vs. 41.2 ± 10.9, P = 0.011). Our data suggest that overall MNS is comparable with MAN in acute success after repeat catheter ablation. However, MNS is related to fewer recurrences as compared with MAN.

  11. Effect of zone size on the convergence of exact solutions for diffusion in single phase systems with planar, cylindrical or spherical geometry

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.

    1981-01-01

    Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.

  12. Effects of Blood Flow and/or Ventilation Restriction on Radiofrequency Coagulation Size in the Lung: An Experimental Study in Swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anai, Hiroshi; Uchida, Barry T.; Pavcnik, Dusan, E-mail: pavcnikd@ohsu.edu

    2006-10-15

    The purpose of this study was to investigate how the restriction of blood flow and/or ventilation affects the radiofrequency (RF) ablation coagulation size in lung parenchyma. Thirty-one RF ablations were done in 16 normal lungs of 8 living swine with 2-cm LeVeen needles. Eight RF ablations were performed as a control (group G1), eight with balloon occlusion of the ipsilateral mainstem bronchus (G2), eight with occlusion of the ipsilateral pulmonary artery (G3), and seven with occlusion of both the ipsilateral bronchus and pulmonary artery (G4). Coagulation diameters and volumes of each ablation zone were compared on computed tomography (CT) andmore » gross specimen examinations. Twenty-six coagulation zones were suitable for evaluation: eight in G1, five in G2, seven in G3, and six in G4 groups. In G1, the mean coagulation diameter was 21.5 {+-} 3.5 mm on CT and 19.5 {+-} 1.78 mm on gross specimen examination. In G2, the mean diameters were 26.5 {+-} 5.1 mm and 23.0 {+-} 2.7 mm on CT and gross specimen examination, respectively. In G3, the mean diameters were 29.4 {+-} 2.2 mm and 27.4 {+-} 2.9 mm on CT and gross specimen examination, respectively, and in G4, they were 32.6 {+-} 3.33 mm and 28.8 {+-} 2.6 mm, respectively. The mean coagulation volumes were 3.39 {+-} l.52 cm{sup 3} on CT and 3.01 {+-} 0.94 cm{sup 3} on gross examinations in G1, 6.56 {+-} 2.47 cm{sup 3} and 5.22 {+-} 0.85 cm{sup 3} in G2, 10.93 {+-} 2.17 cm{sup 3} and 9.97 {+-} 2.91 cm{sup 3} in G3, and 13.81 {+-} 3.03 cm{sup 3} and 11.06 {+-} 3.27 cm{sup 3} in G4, respectively. The mean coagulation diameters on gross examination and mean coagulation volumes on CT and gross examination with G3 and G4 were significantly larger than those in G1 (p < 0.0001, p < 0.0001, p < 0.0001, respectively) or in G2 (p < 0.05, p < 0.005, p < 0.005, respectively). Pulmonary collapse occurred in one lung in G2 and pulmonary artery thrombus in two lungs of G3 and two lungs of G4. The coagulation size of RF ablation

  13. Effect of ablation time on femtosecond laser synthesis of Au- Ag colloidal nanoalloys

    NASA Astrophysics Data System (ADS)

    Hidayah, A. N.; Triyono, D.; Herbani, Y.; Isnaeni; Suliyanti, M. M.

    2018-03-01

    Au-Ag nanoalloys have been synthesized by laser irradiation technique. First, Au and Ag nanoparticles were prepared from Au and Ag pure metal (99.9%) ablated using an 800 nm femtosecond laser in distilled water. Using the same laser, Au and Ag nanoparticle with 1:1 ratio were subsequently mixed and irradiated with various irradiation time, i.e. 0, 5, 20, and 35 minutes. We varied the ablation time for each metal nanoparticles, i.e. 25 minutes and 1 hour to see its effect on the production of nanoalloys in the subsequent irradiation. Au-Ag nanoalloys were characterized and analyzed using transmission electron microscope and UV-Vis spectrophotometry. The result shows that Au-Ag nanoalloys were already formed in 20 minutes irradiation, either for the sample ablated for 25 minutes or 1 hour. The result of TEM shows that the size of Au-Ag nanoalloys prepared from 1 hour ablation was around 15.03 nm.

  14. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  15. Modeling Initial Stage of Ablation Material Pyrolysis: Graphitic Precursor Formation and Interfacial Effects

    NASA Technical Reports Server (NTRS)

    Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel

    2010-01-01

    Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.

  16. Surface nanotexturing of tantalum by laser ablation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A

    2009-01-31

    Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less

  17. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  18. Relationship Between LIBS Ablation and Pit Volume for Geologic Samples: Applications for the In Situ Absolute Geochronology

    NASA Technical Reports Server (NTRS)

    Devismes, Damien; Cohen, Barbara; Miller, J.-S.; Gillot, P.-Y.; Lefevre, J.-C.; Boukari, C.

    2014-01-01

    These first results demonstrate that LIBS spectra can be an interesting tool to estimate the ablated volume. When the ablated volume is bigger than 9.10(exp 6) cubic micrometers, this method has less than 10% of uncertainties. Far enough to be directly implemented in the KArLE experiment protocol. Nevertheless, depending on the samples and their mean grain size, the difficulty to have homogeneous spectra will increase with the ablated volume. Several K-Ar dating studies based on this approach will be implemented. After that, the results will be shown and discussed.

  19. A study of photothermal laser ablation of various polymers on microsecond time scales.

    PubMed

    Kappes, Ralf S; Schönfeld, Friedhelm; Li, Chen; Golriz, Ali A; Nagel, Matthias; Lippert, Thomas; Butt, Hans-Jürgen; Gutmann, Jochen S

    2014-01-01

    To analyze the photothermal ablation of polymers, we designed a temperature measurement setup based on spectral pyrometry. The setup allows to acquire 2D temperature distributions with 1 μm size and 1 μs time resolution and therefore the determination of the center temperature of a laser heating process. Finite element simulations were used to verify and understand the heat conversion and heat flow in the process. With this setup, the photothermal ablation of polystyrene, poly(α-methylstyrene), a polyimide and a triazene polymer was investigated. The thermal stability, the glass transition temperature Tg and the viscosity above Tg were governing the ablation process. Thermal decomposition for the applied laser pulse of about 10 μs started at temperatures similar to the start of decomposition in thermogravimetry. Furthermore, for polystyrene and poly(α-methylstyrene), both with a Tg in the range between room and decomposition temperature, ablation already occurred at temperatures well below the decomposition temperature, only at 30-40 K above Tg. The mechanism was photomechanical, i.e. a stress due to the thermal expansion of the polymer was responsible for ablation. Low molecular weight polymers showed differences in photomechanical ablation, corresponding to their lower Tg and lower viscosity above the glass transition. However, the difference in ablated volume was only significant at higher temperatures in the temperature regime for thermal decomposition at quasi-equilibrium time scales.

  20. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.

    PubMed

    Ibitoye, Ayo Zaccheaus; Nwoye, Ephraim Okeke; Aweda, Adebayo Moses; Oremosu, Ademola A; Anunobi, Chidozie Charles; Akanmu, Nurudeen Olanrewaju

    2016-12-01

    To study the efficiency of a dual slot antenna with a floating metallic sleeve on the ablation of different ex vivo bovine tissues. COMSOL Multiphysics® version 4.4 (Stockholm, Sweden), which is based on finite element methods (FEM), was used to design and simulate monopole and dual slot with sleeve antennas. Power, specific absorption rate (SAR), temperature and necrosis distributions in the selected tissues were determined using these antennas. Monopole and dual slot with sleeve antennas were designed, simulated, constructed and applied in this study based on a semi-rigid coaxial cable. Ex vivo experiments were performed on liver, lung, muscle and heart of bovine obtained from a public animal slaughter house. The microwave energy was delivered using a 2.45 GHz solid-state microwave generator at 40 W for 3, 5 and 10 min. Aspect ratio, ablation length and ablation diameter were also determined on ablated tissues and compared with simulated results. Student's t-test was used to compare the statistically significant difference between the performance of the two antennas. The dual slot antenna with sleeve produces localised microwave energy better than the monopole antenna in all ablated tissues using simulation and experimental validation methods. There were significant differences in ablation diameter and aspect ratio between the sleeve antenna and monopole antenna. Additionally, there were no significant differences between the simulation and experimental results. This study demonstrated that the dual slot antenna with sleeve produced larger ablation zones and higher sphericity index in ex vivo bovine tissues with minimal backward heating when compared with the monopole antenna.

  1. Ion acceleration enhanced by target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, S.; State Key Laboratory of Nuclear Physics and Technology, and Key Lab of HEDPS, CAPT, Peking University, Beijing 100871; Institute of Radiation, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  2. Planarization of Isolated Defects on ICF Target Capsule Surfaces by Pulsed Laser Ablation

    DOE PAGES

    Alfonso, Noel; Carlson, Lane C.; Bunn, Thomas L.

    2016-08-09

    Demanding surface quality requirements for inertial confinement fusion (ICF) capsules motivated the development of a pulsed laser ablation method to reduce or eliminate undesirable surface defects. The pulsed laser ablation technique takes advantage of a full surface (4π) capsule manipulation system working in combination with an optical profiling (confocal) microscope. Based on the defect topography, the material removal rate, the laser pulse energy and its beam profile, a customized laser raster pattern is derived to remove the defect. The pattern is a table of coordinates and number of pulses that dictate how the defect will be vaporized until its heightmore » is level with the capsule surface. This paper explains how the raster patterns are optimized to minimize surface roughness and how surface roughness after laser ablation is simulated. The simulated surfaces are compared with actual ablated surfaces. Large defects are reduced to a size regime where a tumble finishing process produces very high quality surfaces devoid of high mode defects. The combined polishing processes of laser ablation and tumble finishing have become routine fabrication steps for National Ignition Facility capsule production.« less

  3. Influence of different propellant systems on ablation of EPDM insulators in overload state

    NASA Astrophysics Data System (ADS)

    Guan, Yiwen; Li, Jiang; Liu, Yang; Xu, Tuanwei

    2018-04-01

    This study examines the propellants used in full-scale solid rocket motors (SRM) and investigates how insulator ablation is affected by two propellant formulations (A and B) during flight overload conditions. An experimental study, theoretical analysis, and numerical simulations were performed to discover the intrinsic causes of insulator ablation rates from the perspective of lab-scaled ground-firing tests, the decoupling of thermochemical ablation, and particle erosion. In addition, the difference in propellant composition, and the insulator charring layer microstructure were analyzed. Results reveal that the degree of insulator ablation is positively correlated with the propellant burn rate, particle velocity, and aggregate concentrations during the condensed phase. A lower ratio of energetic additive material in the AP oxidizer of the propellant is promising for the reduction in particle size and increase in the burn rate and pressure index. However, the overall higher velocity of a two-phase flow causes severe erosion of the insulation material. While the higher ratio of energetic additive to the AP oxidizer imparts a smaller ablation rate to the insulator (under lab-scale test conditions), the slag deposition problem in the combustion chamber may cause catastrophic consequences for future large full-scale SRM flight experiments.

  4. Simulation of radiofrequency ablation in real human anatomy.

    PubMed

    Zorbas, George; Samaras, Theodoros

    2014-12-01

    The objective of the current work was to simulate radiofrequency ablation treatment in computational models with realistic human anatomy, in order to investigate the effect of realistic geometry in the treatment outcome. The body sites considered in the study were liver, lung and kidney. One numerical model for each body site was obtained from Duke, member of the IT'IS Virtual Family. A spherical tumour was embedded in each model and a single electrode was inserted into the tumour. The same excitation voltage was used in all cases to underline the differences in the resulting temperature rise, due to different anatomy at each body site investigated. The same numerical calculations were performed for a two-compartment model of the tissue geometry, as well as with the use of an analytical approximation for a single tissue compartment. Radiofrequency ablation (RFA) therapy appears efficient for tumours in liver and lung, but less efficient in kidney. Moreover, the time evolution of temperature for a realistic geometry differs from that for a two-compartment model, but even more for an infinite homogenous tissue model. However, it appears that the most critical parameters of computational models for RFA treatment planning are tissue properties rather than tissue geometry. Computational simulations of realistic anatomy models show that the conventional technique of a single electrode inside the tumour volume requires a careful choice of both the excitation voltage and treatment time in order to achieve effective treatment, since the ablation zone differs considerably for various body sites.

  5. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radiusmore » of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.« less

  6. Laboratory Simulations of Micrometeoroid Ablation

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  7. Microwave ablation of the liver: a description of lesion evolution over time and an investigation of the heat sink effect.

    PubMed

    Bhardwaj, N; Dormer, J; Ahmad, F; Strickland, A D; Gravante, G; West, K; Dennison, A R; Lloyd, D M

    2011-12-01

    Microwave ablation has been successfully used to treat unresectable liver tumours for many years. However, despite its widespread use, there seems to be a relative paucity of experimental data regarding lesion evolution and the effects of any surrounding vasculature on ablation morphology. The aim of this study was to investigate the principal pathological changes in the liver following microwave ablation, in particular the heat sink effect. In addition we carefully reviewed the available literature to provide an overview of all relevant pathological studies. Microwave ablation was carried out on male rats at various distances from the hilum. Histological (H&E) and immunocytochemical (caspase 3) analyses of the lesion were performed at various time points; 0, 4, 24, 48  hours, 2 weeks and 1 month. A literature review was carried out using Medline, Embase and the Cochrane database to identify all relevant histological studies. The lesion underwent complete coagulative necrosis and was extremely regular at the ablation edge with no evidence of any influence from surrounding blood vessels at all time points. H&E and caspase 3 results were consistent and microwave caused little collateral damage outside the intended ablation zone. This study suggests that microwave ablation is extremely concise and is minimally affected by the heat sink effect. Comparative investigations with other treatment modalities are required.

  8. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  9. Histopathology of the tissue adhering to the multiple tine expandable electrodes used for radiofrequency ablation of hepatocellular carcinoma predicts local recurrence.

    PubMed

    Ishikawa, Toru; Kubota, Tomoyuki; Abe, Hiroyuki; Nagashima, Aiko; Hirose, Kanae; Togashi, Tadayuki; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki; Kamimura, Tomoteru; Nemoto, Takeo; Takeda, Keiko; Ishihara, Noriko

    2012-01-01

    To assess the ability to predict the local recurrence of hepatocellular carcinoma by analyzing tissues adhering to the radiofrequency ablation probe after complete ablation. From May 2002 to March 2011, tissue specimens adhering to the radiofrequency ablation probe from 284 radiofrequency ablation sessions performed for hepatocellular carcinomas ≤3 cm in size were analyzed. The specimens were classified as either viable tumor tissue or complete necrosis, and the local recurrence rates were calculated using the Kaplan-Meier method. From the tumors ≤3 cm in size, viable tissue was present in 6 (2.1%) of 284 specimens, and the local recurrence rates after 1 and 2 years of follow-up were 6.7% and 11.2%, respectively. Local recurrence developed significantly earlier in the viable tissue group. The recurrence rate was not significantly different based on whether transcatheter arterial chemoembolization was performed. The histopathology of the tissue adhering to the radiofrequency ablation probes used for hepatocellular carcinoma treatment can predict local recurrence. Additional aggressive treatment for patients with viable tissue can therefore improve the overall survival.

  10. Helicopter-based Photography for use in SfM over the West Greenland Ablation Zone

    NASA Astrophysics Data System (ADS)

    Mote, T. L.; Tedesco, M.; Astuti, I.; Cotten, D.; Jordan, T.; Rennermalm, A. K.

    2015-12-01

    Results of low-elevation high-resolution aerial photography from a helicopter are reported for a supraglacial watershed in West Greenland. Data were collected at the end of July 2015 over a supraglacial watershed terminating in the Kangerlussuaq region of Greenland and following the Utrecht University K-Transect of meteorological stations. The aerial photography reported here were complementary observations used to support hyperspectral measurements of albedo, discussed in the Greenland Ice sheet hydrology session of this AGU Fall meeting. A compact digital camera was installed inside a pod mounted on the side of the helicopter together with gyroscopes and accelerometers that were used to estimate the relative orientation. Continuous video was collected on 19 and 21 July flights, and frames extracted from the videos are used to create a series of aerial photos. Individual geo-located aerial photos were also taken on a 24 July flight. We demonstrate that by maintaining a constant flight elevation and a near constant ground speed, a helicopter with a mounted camera can produce 3-D structure of the ablation zone of the ice sheet at unprecedented spatial resolution of the order of 5 - 10 cm. By setting the intervalometer on the camera to 2 seconds, the images obtained provide sufficient overlap (>60%) for digital image alignment, even at a flight elevation of ~170m. As a result, very accurate point matching between photographs can be achieved and an extremely dense RGB encoded point cloud can be extracted. Overlapping images provide a series of stereopairs that can be used to create point cloud data consisting of 3 position and 3 color variables, X, Y, Z, R, G, and B. This point cloud is then used to create orthophotos or large scale digital elevation models, thus accurately displaying ice structure. The geo-referenced images provide a ground spatial resolution of approximately 6 cm, permitting analysis of detailed features, such as cryoconite holes, evolving small

  11. No-touch radiofrequency ablation using multiple electrodes: An in vivo comparison study of switching monopolar versus switching bipolar modes in porcine livers

    PubMed Central

    Chang, Won; Yoon, Jeong Hee; Lee, Dong Ho; Lee, Sang Min; Lee, Kyoung Bun; Kim, Bo Ram; Kim, Tae-Hyung; Lee, Seunghyun; Han, Joon Koo

    2017-01-01

    Objective To evaluate the in vivo technical feasibility, efficiency, and safety of switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) as a no-touch ablation technique in the porcine liver. Materials and methods The animal care and use committee approved this animal study and 16 pigs were used in two independent experiments. In the first experiment, RFA was performed on 2-cm tumor mimickers in the liver using a no-touch technique in the SM mode (2 groups, SM1: 10 minutes, n = 10; SM2: 15 minutes, n = 10) and SB-mode (1 group, SB: 10 minutes, n = 10). The technical success with sufficient safety margins, creation of confluent necrosis, ablation size, and distance between the electrode and ablation zone margin (DEM), were compared between groups. In the second experiment, thermal injury to the adjacent anatomic organs was compared between SM-RFA (15 minutes, n = 13) and SB-RFA modes (10 minutes, n = 13). Results The rates of the technical success and the creation of confluent necrosis were higher in the SB group than in the SM1 groups (100% vs. 60% and 90% vs. 40%, both p < 0.05). The ablation volume in the SM2 group was significantly larger than that in the SB group (59.2±18.7 cm3 vs. 39.8±9.7 cm3, p < 0.05), and the DEM in the SM2 group was also larger than that in the SB group (1.39±0.21 cm vs. 1.07±0.10 cm, p < 0.05). In the second experiment, the incidence of thermal injury to the adjacent organs and tissues in the SB group (23.1%, 3/13) was significantly lower than that in the SM group (69.2%, 8/13) (p = 0.021). Conclusion SB-RFA was more advantageous for a no-touch technique for liver tumors, showing the potential of a better safety profile than SM-RFA. PMID:28445542

  12. Methods for flexible sample-size design in clinical trials: Likelihood, weighted, dual test, and promising zone approaches.

    PubMed

    Shih, Weichung Joe; Li, Gang; Wang, Yining

    2016-03-01

    Sample size plays a crucial role in clinical trials. Flexible sample-size designs, as part of the more general category of adaptive designs that utilize interim data, have been a popular topic in recent years. In this paper, we give a comparative review of four related methods for such a design. The likelihood method uses the likelihood ratio test with an adjusted critical value. The weighted method adjusts the test statistic with given weights rather than the critical value. The dual test method requires both the likelihood ratio statistic and the weighted statistic to be greater than the unadjusted critical value. The promising zone approach uses the likelihood ratio statistic with the unadjusted value and other constraints. All four methods preserve the type-I error rate. In this paper we explore their properties and compare their relationships and merits. We show that the sample size rules for the dual test are in conflict with the rules of the promising zone approach. We delineate what is necessary to specify in the study protocol to ensure the validity of the statistical procedure and what can be kept implicit in the protocol so that more flexibility can be attained for confirmatory phase III trials in meeting regulatory requirements. We also prove that under mild conditions, the likelihood ratio test still preserves the type-I error rate when the actual sample size is larger than the re-calculated one. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    PubMed

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Ablation of the basivertebral nerve for treatment of back pain: a clinical study.

    PubMed

    Becker, Stephan; Hadjipavlou, Alexander; Heggeness, Michael H

    2017-02-01

    Lumbar axial back pain arising from degenerative disc disease continues to be a challenging clinical problem whether treated with nonsurgical management, local injection, or motion segment stabilization and fusion. The purpose of this study was to determine the efficacy of intraosseous basivertebral nerve (BVN) ablation for the treatment of chronic lumbar back pain in a clinical setting. Patients meeting predefined inclusion or exclusion criteria were enrolled in a study using radiofrequency energy to ablate the BVN within the vertebral bodies adjacent to the diagnosed level. Patients were evaluated at 6 weeks, and 3, 6, and 12 months postoperatively. Seventeen patients with chronic, greater than 6 months, low back pain unresponsive to at least 3 months of conservative care were enrolled. Sixteen patients were treated successfully following screening using magnetic resonance imaging finding of Modic type I or II changes and positive confirmatory discography to determine the affected levels. The treated population consisted of eight male and eight female patients; the mean age was 48 years (34-66 years). Self-reported outcome measures were collected prospectively at each follow-up interval. Measures included the Oswestry Disability Index (ODI), visual analogue scale score, and Medical Outcomes Trust 36-Item Short-Form Health Survey (SF-36). This is an industry-sponsored study to evaluate the effectiveness of intraosseous nerves in the treatment of chronic back pain. Consented and enrolled patients underwent ablation of the BVN using radiofrequency energy (INTRACEPT System, Relievant Medsystems, Inc, Redwood City, CA, USA) guided in a transpedicular or extrapedicular approach. Preoperative planning determined targeted ablation zone and safety zones. Mean baseline ODI of the treated cohort was 52±13, decreasing to a mean of 23±21 at 3 months follow-up (p<.001). The statistically significant improvement in ODI observed at 3 months was maintained through the 12-month

  15. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    PubMed

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  16. Lung Tumors Treated With Percutaneous Radiofrequency Ablation: Computed Tomography Imaging Follow-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palussiere, Jean, E-mail: palussiere@bergonie.org; Marcet, Benjamin; Descat, Edouard

    2011-10-15

    Purpose: To describe the morphologic evolution of lung tumors treated with radiofrequency ablation (RFA) by way of computed tomography (CT) images and to investigate patterns of incomplete RFA at the site of ablation. Materials and Methods: One hundred eighty-nine patients with 350 lung tumors treated with RFA underwent CT imaging at 2, 4, 6, and 12 months. CT findings were interpreted separately by two reviewers with consensus. Five different radiologic patterns were predefined: fibrosis, cavitation, nodule, atelectasis, and disappearance. The appearance of the treated area was evaluated at each follow-up CT using the predefined patterns. Results: At 1 year aftermore » treatment, the most common evolutions were fibrosis (50.5%) or nodules (44.8%). Differences were noted depending on the initial size of the tumor, with fibrosis occurring more frequently for tumors <2 cm (58.6% vs. 22.9%, P = 1 Multiplication-Sign 10{sup -5}). Cavitation and atelectasis were less frequent patterns (2.4% and 1.4%, respectively, at 1 year). Tumor location (intraparenchymatous, with pleural contact <50% or >50%) was not significantly correlated with follow-up image pattern. Local tumor progressions were observed with each type of evolution. At 1 year, 12 local recurrences were noted: 2 cavitations, which represented 40% of the cavitations noted at 1 year; 2 fibroses (1.9%); 7 nodules (7.4%); and 1 atelectasis (33.3%). Conclusion: After RFA of lung tumors, follow-up CT scans show that the shape of the treatment zone can evolve in five different patterns. None of these patterns, however, can confirm the absence of further local tumor progression at subsequent follow-up.« less

  17. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.

  18. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  19. Adjuvant Radioactive iodine 131 ablation in papillary microcarcinoma of thyroid: Saudi Arabian experience [corrected].

    PubMed

    Al-Qahtani, Khalid Hussain; Al Asiri, Mushabbab; Tunio, Mutahir A; Aljohani, Naji J; Bayoumi, Yasser; Fatani, Hanadi; AlHadab, Abdulrehman

    2015-12-01

    Papillary Microcarcinoma (PMC) of thyroid is a rare type of differentiated thyroid cancer (DTC), which according to the World Health Organization measures 1.0 cm or less. The gold standard of treatment of PMC is still controversy. Our aim was to contribute in resolving the debate on the therapeutic choices of the surgical and adjuvant I-131 (RAI) treatment in PMC. From 2000 to 2012, 326 patients were found to have PMC and were retrospectively reviewed for clinicopathological characteristics, treatment outcomes and prognostic factors. Mean age of cohort was 42.6 years (range: 18-76) and the mean tumor size was 0.61 cm ± 0.24; lymph node involvement was seen in 12.9 % of cases. Median follow up period was 8.05 years (1.62-11.4). Total 23 all site recurrences (7.13 %) were observed; more observed in patients without I-131 ablation (p <0.0001). Ten year DFS rates were 89.6 %. Cox regression Model analysis revealed size, histopathologic variants, multifocality, extrathyroidal extension, lymphovascular space invasion, nodal status, and adjuvant RAI ablation the important prognostic factors affecting DFS. Despite excellent DFS rates, a small proportion of patients with PMC develop recurrences after treatment. Adjuvant RAI therapy improves DFS in PMC patients with aggressive histopathologic variants, multifocality, ETE, LVSI, tumor size (> 0.5 cm) and lymph node involvement. Failure of RAI ablation to decrease risk in N1a/b supports prophylactic central neck dissection during thyroidectomy, however more trials are warranted. Adjuvant I-131 ablation following thyroidectomy in PMC patients, particularly with poor prognostic factors improves DFS rates.

  20. CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma: specific technical aspects and clinical results.

    PubMed

    Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L

    2013-06-01

    This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  1. Preclinical evaluation of an MR-compatible microwave ablation system and comparison with a standard microwave ablation system in an ex vivo bovine liver model.

    PubMed

    Hoffmann, Rüdiger; Kessler, David-Emanuel; Weiss, Jakob; Clasen, Stephan; Pereira, Philippe L; Nikolaou, Konstantin; Rempp, Hansjörg

    2017-09-01

    Evaluation of a newly developed MR-compatible microwave ablation system with focus on ablation performance and comparison with a corresponding standard microwave ablation system. A total of 52 ablations were performed with a non-cooled microwave ablation system in an ex vivo bovine liver model using the following settings: [A] 16G-standard antenna, 2 cm active tip, 2.4 m cable; [B] MR-compatible 16G-antenna, 2 cm active tip, 2.4 m cable; [C] MR-compatible 16G-antenna, 2 cm active tip, extended 6 m cable; and [D] MR-compatible 16G-antenna, 4 cm active tip, extended 6 m cable. Ablation durations were 3, 5 and 10 min, and additionally 15 min for [D]. Ablations zones were measured for short-axis diameter (SA) and long-axis diameter (LA). Settings [A]-[C] were compared regarding SA, volume (V) and generator energy output (E) with analysis of variance and Tukey-Kramer post hoc test. Ablation performance of the MR-compatible settings [C] and [D] were compared regarding SA, V, E and sphericity index (SA/LA) with unpaired t-test. p < 0.05 was considered as statistically significant. No significant differences were found between [A], [B] and [C] regarding SA and V (10 min; SA[A] = 25.8 ± 2.4 mm, SA[B] = 25.3 ± 1.9 mm, SA[C] = 25.0 ± 2.0 mm, p = 0.88; V[A] = 17.8 ± 4.4 cm³, V[B] = 16.6 ± 3.0 cm³, V[C] = 17.8 ± 2.7 cm³, p = 0.85); however, the highest energy output was measured for setting [C] (10 min; [A]: 9.9 ± 0.5 kJ, [B]: 10.1 ± 0.5 kJ, [C]: 13.1 ± 0.3 kJ, p < 0.001). SA, V and E were significantly larger with setting [D] than [C] with 10 min ablations (SA[C] = 25.0 ± 2.0 mm, SA[D] = 34.0 ± 2.9 mm, p = 0.003; V[C] = 17.8 ± 2.7 cm³, V[D] = 39.4 ± 7.5 cm³, p = 0.007; E[C] = 13.1 ± 0.3 kJ, E[D] = 16.7 ± 0.8 kJ, p = 0.002) without significant difference in sphericity

  2. Ablative heat shield design for space shuttle

    NASA Technical Reports Server (NTRS)

    Seiferth, R. W.

    1973-01-01

    Ablator heat shield configuration optimization studies were conducted for the orbiter. Ablator and reusable surface insulation (RSI) trajectories for design studies were shaped to take advantage of the low conductance of ceramic RSI and high temperature capability of ablators. Comparative weights were established for the RSI system and for direct bond and mechanically attached ablator systems. Ablator system costs were determined for fabrication, installation and refurbishment. Cost penalties were assigned for payload weight penalties, if any. The direct bond ablator is lowest in weight and cost. A mechanically attached ablator using a magnesium subpanel is highly competitive for both weight and cost.

  3. Primary particle diameter differentiation and bimodality identification by five analytical methods using gold nanoparticle size distributions synthesized by pulsed laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan

    2018-03-01

    For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied

  4. Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size

    PubMed Central

    2014-01-01

    Background Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the “Chebyshev Center Concept” was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin. Methods In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the “Chebyshev Center Concept” implemented (the “Chebyshev Center” is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position. Results For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B. Conclusions Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the “Chebyshev Center Concept” implemented provides

  5. Transgenic Reproductive Cell Ablation.

    PubMed

    Lawit, Shai J; Chamberlin, Mark A

    2017-01-01

    Numerous cell ablation technologies are available and have been used in reproductive tissues, particularly for male tissues and cells. The importance of ablation of reproductive tissues is toward a fundamental understanding reproductive tissue development and fertilization, as well as, in developing sterility lines important to breeding strategies. Here, we describe techniques for developing ablation lines for both male and female reproductive cells. Also discussed are techniques for analysis, quality control, maintenance, and the lessening of pleiotropism in such lines.

  6. Atrial Tachycardias Following Atrial Fibrillation Ablation

    PubMed Central

    Sághy, László; Tutuianu, Cristina; Szilágyi, Judith

    2015-01-01

    One of the most important proarrhythmic complications after left atrial (LA) ablation is regular atrial tachycardia (AT) or flutter. Those tachycardias that occur after atrial fibrillation (AF) ablation can cause even more severe symptoms than those from the original arrhythmia prior to the index ablation procedure since they are often incessant and associated with rapid ventricular response. Depending on the method and extent of LA ablation and on the electrophysiological properties of underlying LA substrate, the reported incidence of late ATs is variable. To establish the exact mechanism of these tachycardias can be difficult and controversial but correlates with the ablation technique and in the vast majority of cases the mechanism is reentry related to gaps in prior ablation lines. When tachycardias occur, conservative therapy usually is not effective, radiofrequency ablation procedure is mostly successful, but can be challenging, and requires a complex approach. PMID:25308808

  7. Transarterial Chemoembolization Combined with Either Radiofrequency or Microwave Ablation in Management of Hepatocellular Carcinoma

    PubMed Central

    Abdelaziz, Ashraf Omar; Abdelmaksoud, Ahmed Hosni; Nabeel, Mohamed Mahmoud; Shousha, Hend Ibrahim; Cordie, Ahmed Abdelmonem; Mahmoud, Sherif Hamdy; Medhat, Eman; Omran, Dalia; Elbaz, Tamer Mahmoud

    2017-01-01

    Introduction: Local ablative therapy and trans arterial chemoembolization (TACE) are applied to ablate non resectable hepatocellular carcinoma (HCC). Combination of both techniques has proven to be more effective. We aimed to study combined ablation techniques and assess survival benefit comparing TACE with radiofrequency (RFA) versus TACE with microwave (MWA) techniques. Methods: We retrospectively studied 22 patients who were ablated using TACE-RFA and 45 with TACE-MWA. All were classified as Child A-B and lesions did not exceed 5 cm in diameter. TACE was followed within two weeks by either RFA or MWA. We recorded total and partial ablation rates and complication rates. Survival analysis was then performed. Results: TACE-MWA showed a higher tendency to provide complete response rates than TACE-RFA (P 0.06). This was particularly evident with lesions sized 3-5 cm (P 0.01). Rates of complications showed no significant difference between the groups. Overall median survival was 27 months. The overall actuarial probability of survival was 80.1% at 1 year, 55% at 2 years, and 36.3% at 3 years. The recurrence free survival at 1 year, 2years and 3 years for the TACE-RFA group was 70%, 42% and 14% respectively and for TACE-MWA group 81.2%, 65.1% and 65.1% without any significant difference (P 0.1). In relation to the size of focal lesions, no statistically significant difference in the survival rates was detected between the groups. Conclusion: TACE-MWA led to better response rates than TACE-RFA with tumors 3-5 cm, with no difference in survival rates. PMID:28240516

  8. Transarterial Chemoembolization Combined with Either Radiofrequency or Microwave Ablation in Management of Hepatocellular Carcinoma

    PubMed

    Abdelaziz, Ashraf Omar; Abdelmaksoud, Ahmed Hosni; Nabeel, Mohamed Mahmoud; Shousha, Hend Ibrahim; Cordie, Ahmed Abdelmonem; Mahmoud, Sherif Hamdy; Medhat, Eman; Omran, Dalia; Elbaz, Tamer Mahmoud

    2017-01-01

    Introduction: Local ablative therapy and trans arterial chemoembolization (TACE) are applied to ablate non resectable hepatocellular carcinoma (HCC). Combination of both techniques has proven to be more effective. We aimed to study combined ablation techniques and assess survival benefit comparing TACE with radiofrequency (RFA) versus TACE with microwave (MWA) techniques. Methods: We retrospectively studied 22 patients who were ablated using TACE-RFA and 45 with TACE-MWA. All were classified as Child A-B and lesions did not exceed 5 cm in diameter. TACE was followed within two weeks by either RFA or MWA. We recorded total and partial ablation rates and complication rates. Survival analysis was then performed. Results: TACE-MWA showed a higher tendency to provide complete response rates than TACE-RFA (P 0.06). This was particularly evident with lesions sized 3-5 cm (P 0.01). Rates of complications showed no significant difference between the groups. Overall median survival was 27 months. The overall actuarial probability of survival was 80.1% at 1 year, 55% at 2 years, and 36.3% at 3 years. The recurrence free survival at 1 year, 2years and 3 years for the TACE-RFA group was 70%, 42% and 14% respectively and for TACE-MWA group 81.2%, 65.1% and 65.1% without any significant difference (P 0.1). In relation to the size of focal lesions, no statistically significant difference in the survival rates was detected between the groups. Conclusion: TACE-MWA led to better response rates than TACE-RFA with tumors 3-5 cm, with no difference in survival rates. Creative Commons Attribution License

  9. Experimental and computational study of the effect of 1 atm background gas on nanoparticle generation in femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.

    2018-03-01

    Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.

  10. Seasonal evolution of the Arctic marginal ice zone and its power-law obeying floe size distribution

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Stern, H. L., III; Schweiger, A. J. B.; Steele, M.; Hwang, P. B.

    2017-12-01

    A thickness, floe size, and enthalpy distribution (TFED) sea ice model, implemented numerically into the Pan-arctic Ice-Ocean Modeling and Assimilation System (PIOMAS), is used to investigate the seasonal evolution of the Arctic marginal ice zone (MIZ) and its floe size distribution. The TFED sea ice model, by coupling the Zhang et al. [2015] sea ice floe size distribution (FSD) theory with the Thorndike et al. [1975] ice thickness distribution (ITD) theory, simulates 12-category FSD and ITD explicitly and jointly. A range of ice thickness and floe size observations were used for model calibration and validation. The model creates FSDs that generally obey a power law or upper truncated power law, as observed by satellites and aerial surveys. In this study, we will examine the role of ice fragmentation and lateral melting in altering FSDs in the Arctic MIZ. We will also investigate how changes in FSD impact the seasonal evolution of the MIZ by modifying the thermodynamic processes.

  11. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  12. Is Cryoballoon Ablation Preferable to Radiofrequency Ablation for Treatment of Atrial Fibrillation by Pulmonary Vein Isolation? A Meta-Analysis

    PubMed Central

    Xu, Junxia; Huang, Yingqun; Cai, Hongbin; Qi, Yue; Jia, Nan; Shen, Weifeng; Lin, Jinxiu; Peng, Feng; Niu, Wenquan

    2014-01-01

    Objective Currently radiofrequency and cryoballoon ablations are the two standard ablation systems used for catheter ablation of atrial fibrillation; however, there is no universal consensus on which ablation is the optimal choice. We therefore sought to undertake a meta-analysis with special emphases on comparing the efficacy and safety between cryoballoon and radiofrequency ablations by synthesizing published clinical trials. Methods and Results Articles were identified by searching the MEDLINE and EMBASE databases before September 2013, by reviewing the bibliographies of eligible reports, and by consulting with experts in this field. Data were extracted independently and in duplicate. There were respectively 469 and 635 patients referred for cryoballoon and radiofrequency ablations from 14 qualified clinical trials. Overall analyses indicated that cryoballoon ablation significantly reduced fluoroscopic time and total procedure time by a weighted mean of 14.13 (95% confidence interval [95% CI]: 2.82 to 25.45; P = 0.014) minutes and 29.65 (95% CI: 8.54 to 50.77; P = 0.006) minutes compared with radiofrequency ablation, respectively, whereas ablation time in cryoballoon ablation was nonsignificantly elongated by a weighted mean of 11.66 (95% CI: −10.71 to 34.04; P = 0.307) minutes. Patients referred for cryoballoon ablation had a high yet nonsignificant success rate of catheter ablation compared with cryoballoon ablation (odds ratio; 95% CI; P: 1.34; 0.53 to 3.36; 0.538), and cryoballoon ablation was also found to be associated with the relatively low risk of having recurrent atrial fibrillation (0.75; 0.3 to 1.88; 0.538) and major complications (0.46; 0.11 to 1.83; 0.269). There was strong evidence of heterogeneity and low probability of publication bias. Conclusion Our findings demonstrate greater improvement in fluoroscopic time and total procedure duration for atrial fibrillation patients referred for cryoballoon ablation than those for

  13. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    NASA Astrophysics Data System (ADS)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  14. Liver Resection versus Radiofrequency Ablation plus Transcatheter Arterial Chemoembolization in Cirrhotic Patients with Solitary Large Hepatocellular Carcinoma.

    PubMed

    Saviano, Antonio; Iezzi, Roberto; Giuliante, Felice; Salvatore, Lucia; Mele, Caterina; Posa, Alessandro; Ardito, Francesco; De Gaetano, Anna Maria; Pompili, Maurizio

    2017-11-01

    To compare liver resection (LR) with single-step, balloon-occluded radiofrequency (RF) ablation plus drug-eluting embolics transarterial chemoembolization in cirrhotic patients with single hepatocellular carcinoma (HCC) ≥ 3 cm. From 2010 to 2014, 25 patients with compensated cirrhosis and single HCC ≥ 3 cm (median size 4.5 cm; range, 3.0-6.8 cm) not suitable for LR or liver transplantation were treated with RF ablation plus transarterial chemoembolization in a prospective observational single-center pilot study; all patients had complete tumor necrosis after treatment. A retrospective control group included 29 patients (median HCC size 4.0 cm; range, 3.0-7.4 cm) who underwent LR. RF ablation plus transarterial chemoembolization group included more patients with severe portal hypertension (65.5% vs 35.0%, P = .017). Primary endpoints were overall survival (OS) and tumor recurrence (TR) rates. One death and 1 major complication (4%) were observed in LR group. No major complications were reported in RF ablation plus transarterial chemoembolization group (P = .463). OS rates at 1 and 3 years were 91.8% and 79.3% in LR group and 89.4% and 48.2% in RF ablation plus transarterial chemoembolization group (P = 0.117). TR rates at 1 and 3 years were 29.5% and 45.0% in LR group and 42.4% and 76.0% in RF ablation plus transarterial chemoembolization group (P = .034). Local tumor progression (LTP) rates at 3 years were significantly lower in LR group (21.8% vs 58.1%, P = .005). Similar results were found in patients with HCC ≤ 5 cm (TR rates 35.4% vs 75.1%, P = .016; LTP 16.0% vs 55.7%, P = .013). LR achieved lower TR and LTP rates than RF ablation plus transarterial chemoembolization, but 3-years OS rates were not statistically different between the 2 groups. RF ablation plus transarterial chemoembolization is an effective treatment option in patients with compensated cirrhosis and solitary HCC ≥ 3 cm unsuitable for LR. Copyright © 2017 SIR. Published by

  15. Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue-mimicking phantom and cadaveric skin.

    PubMed

    Kim, Hee-Jin; Kim, Han Gu; Zheng, Zhenlong; Park, Hyoun Jun; Yoon, Jeung Hyun; Oh, Wook; Lee, Cheol Woo; Cho, Sung Bin

    2015-12-01

    High-intensity focused ultrasound (HIFU) can be applied noninvasively to create focused zones of tissue coagulation on various skin layers. We performed a comparative study of HIFU, evaluating patterns of focused tissue coagulation and ablation upon application thereof. A tissue-mimicking (TM) phantom was prepared with bovine serum albumin and polyacrylamide hydrogel to evaluate the geometric patterns of HIFU-induced thermal injury zones (TIZs) for five different HIFU devices. Additionally, for each device, we investigated histologic patterns of HIFU-induced coagulation and ablation in serial sections of cadaveric skin of the face and neck. All HIFU devices generated remarkable TIZs in the TM phantom, with different geometric values of coagulation for each device. Most of the TIZs seemed to be separated into two or more tiny parts. In cadaveric skin, characteristic patterns of HIFU-induced ablation and coagulation were noted along the mid to lower dermis at the focal penetration depth of 3 mm and along subcutaneous fat to the superficial musculoaponeurotic system or the platysma muscle of the neck at 4.5 mm. Additionally, remarkable pre-focal areas of tissue coagulation were observed in the upper and mid dermis at the focal penetration depth of 3 mm and mid to lower dermis at 4.5 mm. For five HIFU devices, we outlined various patterns of HIFU-induced TIZ formation along pre-focal, focal, and post-focal areas of TM phantom and cadaveric skin of the face and neck.

  16. Experimental studies and simulations of hydrogen pellet ablation in the stellarator TJ-II

    NASA Astrophysics Data System (ADS)

    Panadero, N.; McCarthy, K. J.; Koechl, F.; Baldzuhn, J.; Velasco, J. L.; Combs, S. K.; de la Cal, E.; García, R.; Hernández Sánchez, J.; Silvagni, D.; Turkin, Y.; TJ-II Team; W7-X Team

    2018-02-01

    Plasma core fuelling is a key issue for the development of steady-state scenarios in large magnetically-confined fusion devices, in particular for helical-type machines. At present, cryogenic pellet injection is the most promising technique for efficient fuelling. Here, pellet ablation and fuelling efficiency experiments, using a compact pellet injector, are carried out in electron cyclotron resonance and neutral beam injection heated plasmas of the stellarator TJ-II. Ablation profiles are reconstructed from light emissions collected by silicon photodiodes and a fast-frame camera system, under the assumptions that such emissions are loosely related to the ablation rate and that pellet radial acceleration is negligible. In addition, pellet particle deposition and fuelling efficiency are determined using density profiles provided by a Thomson scattering system. Furthermore, experimental results are compared with ablation and deposition profiles provided by the HPI2 pellet code, which is adapted here for the stellarators Wendelstein 7-X (W7-X) and TJ-II. Finally, the HPI2 code is used to simulate ablation and deposition profiles for pellets of different sizes and velocities injected into relevant W7-X plasma scenarios, while estimating the plasmoid drift and the fuelling efficiency of injections made from two W7-X ports.

  17. Brain Emboli After Left Ventricular Endocardial Ablation.

    PubMed

    Whitman, Isaac R; Gladstone, Rachel A; Badhwar, Nitish; Hsia, Henry H; Lee, Byron K; Josephson, S Andrew; Meisel, Karl M; Dillon, William P; Hess, Christopher P; Gerstenfeld, Edward P; Marcus, Gregory M

    2017-02-28

    Catheter ablation for ventricular tachycardia and premature ventricular complexes (PVCs) is common. Catheter ablation of atrial fibrillation is associated with a risk of cerebral emboli attributed to cardioversions and numerous ablation lesions in the low-flow left atrium, but cerebral embolic risk in ventricular ablation has not been evaluated. We enrolled 18 consecutive patients meeting study criteria scheduled for ventricular tachycardia or PVC ablation over a 9-month period. Patients undergoing left ventricular (LV) ablation were compared with a control group of those undergoing right ventricular ablation only. Patients were excluded if they had implantable cardioverter defibrillators or permanent pacemakers. Radiofrequency energy was used for ablation in all cases and heparin was administered with goal-activated clotting times of 300 to 400 seconds for all LV procedures. Pre- and postprocedural brain MRI was performed on each patient within a week of the ablation procedure. Embolic infarcts were defined as new foci of reduced diffusion and high signal intensity on fluid-attenuated inversion recovery brain MRI within a vascular distribution. The mean age was 58 years, half of the patients were men, half had a history of hypertension, and the majority had no known vascular disease or heart failure. LV ablation was performed in 12 patients (ventricular tachycardia, n=2; PVC, n=10) and right ventricular ablation was performed exclusively in 6 patients (ventricular tachycardia, n=1; PVC, n=5). Seven patients (58%) undergoing LV ablation experienced a total of 16 cerebral emboli, in comparison with zero patients undergoing right ventricular ablation ( P =0.04). Seven of 11 patients (63%) undergoing a retrograde approach to the LV developed at least 1 new brain lesion. More than half of patients undergoing routine LV ablation procedures (predominately PVC ablations) experienced new brain emboli after the procedure. Future research is critical to understanding the

  18. Fiber Bragg grating based temperature profiling in ferromagnetic nanoparticles-enhanced radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Jelbuldina, Madina; Korobeinyk, Alina V.; Korganbayev, Sanzhar; Inglezakis, Vassilis J.; Tosi, Daniele

    2018-07-01

    In this work, we report the real-time temperature profiling performed with a fiber Bragg grating (FBG) sensing system, applied to a ferromagnetic nanoparticles (NP)-enhanced radiofrequency ablation (RFA) for interventional cancer care. A minimally invasive RFA setup has been prepared and applied ex vivo on a liver phantom; NPs (with concentrations of 5 and 10 mg/mL) have been synthesized and injected within the tissue prior to ablation, in order to facilitate the heat distribution to the peripheral sides of the treated tissue. A network of 15 FBG sensors has been deployed in situ in order to detect the parenchymal temperature distribution and estimate the thermal profiles in real time during the ablation, highlighting the impact of the NPs on the RFA mechanism. The results confirm that NP-enhanced ablation with 5 mg/mL density shows a better heat penetration that a standard RFA achieving an almost double-sized lesion, while a higher density (10 mg/mL) does not improve the heat distribution. Thermal data are reported highlighting both spatial and temporal gradients, evaluating the capability of NPs to deliver sufficient heating to the peripheral sides of the tumor borders.

  19. Clinical Implications of Ablation of Drivers for Atrial Fibrillation: A Systematic Review and Meta-Analysis.

    PubMed

    Baykaner, Tina; Rogers, Albert J; Meckler, Gabriela L; Zaman, Junaid; Navara, Rachita; Rodrigo, Miguel; Alhusseini, Mahmood; Kowalewski, Christopher A B; Viswanathan, Mohan N; Narayan, Sanjiv M; Clopton, Paul; Wang, Paul J; Heidenreich, Paul A

    2018-05-01

    The outcomes from pulmonary vein isolation (PVI) for atrial fibrillation (AF) are suboptimal, but the benefits of additional lesion sets remain unproven. Recent studies propose ablation of AF drivers improves outcomes over PVI, yet with conflicting reports in the literature. We undertook a systematic literature review and meta-analysis to determine outcomes from ablation of AF drivers in addition to PVI or as a stand-alone procedure. Database search was done using the terms atrial fibrillation and ablation or catheter ablation and driver or rotor or focal impulse or FIRM (Focal Impulse and Rotor Modulation). We pooled data using random effects model and assessed heterogeneity with I 2 statistic. Seventeen studies met inclusion criteria, in a cohort size of 3294 patients. Adding AF driver ablation to PVI reported freedom from AF of 72.5% (confidence interval [CI], 62.1%-81.8%; P <0.01) and from all arrhythmias of 57.8% (CI, 47.5%-67.7%; P <0.01). AF driver ablation when added to PVI or as stand-alone procedure compared with controls produced an odds ratio of 3.1 (CI, 1.3-7.7; P =0.02) for freedom from AF and an odds ratio of 1.8 (CI, 1.2-2.7; P <0.01) for freedom from all arrhythmias in 4 controlled studies. AF termination rate was 40.5% (CI, 30.6%-50.9%) and predicted favorable outcome from ablation( P <0.05). In controlled studies, the addition of AF driver ablation to PVI supports the possible benefit of a combined approach of AF driver ablation and PVI in improving single-procedure freedom from all arrhythmias. However, most studies are uncontrolled and are limited by substantial heterogeneity in outcomes. Large multicenter randomized trials are needed to precisely define the benefits of adding driver ablation to PVI. © 2018 American Heart Association, Inc.

  20. The Most Earth Size, Habitable Zone Planets around a Single Star on This Week @NASA – 02/24/2017

    NASA Image and Video Library

    2017-02-24

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the agency’s Spitzer Space Telescope of seven Earth-sized planets around a tiny, relatively nearby, ultra-cool dwarf star. Three of the planets in this system, known as TRAPPIST-1, are in the habitable zone – the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone outside our solar system, and is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds. Also, Kennedy’s Pad 39A, Back in Business, Russian Cargo Ship Arrives at Space Station, RS-25 Engine Tests Resume at Stennis, Structural Testing Begins on SLS Hardware, and 55th Anniversary of Friendship 7 Flight!

  1. Corneal tissue ablation using 6.1 μm quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Kang, Jin U.

    2012-03-01

    High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.

  2. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue

    PubMed Central

    Ahmad, Iftikhar; Gribble, Adam; Murtza, Iqbal; Ikram, Masroor; Pop, Mihaela; Vitkin, Alex

    2017-01-01

    Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA) lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy) zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02), sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08), specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17) and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10) for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification. PMID:28380013

  3. Gold Nanoparticles as a Photothermal Agent in Cancer Therapy: The Thermal Ablation Characteristic Length.

    PubMed

    Grosges, Thomas; Barchiesi, Dominique

    2018-05-31

    In cancer therapy, the thermal ablation of diseased cells by embedded nanoparticles is one of the known therapies. It is based on the absorption of the energy of the illuminating laser by nanoparticles. The resulting heating of nanoparticles kills the cell where these photothermal agents are embedded. One of the main constraints of this therapy is preserving the surrounding healthy cells. Therefore, two parameters are of interest. The first one is the thermal ablation characteristic length, which corresponds to an action distance around the nanoparticles for which the temperature exceeds the ablation threshold. This critical geometric parameter is related to the expected conservation of the body temperature in the surroundings of the diseased cell. The second parameter is the temperature that should be reached to achieve active thermal agents. The temperature depends on the power of the illuminating laser, on the size of nanoparticles and on their physical properties. The purpose of this paper is to propose behavior laws under the constraints of both the body temperature at the boundary of the cell to preserve surrounding cells and an acceptable range of temperature in the target cell. The behavior laws are deduced from the finite element method, which is able to model aggregates of nanoparticles. We deduce sensitivities to the laser power and to the particle size. We show that the tuning of the temperature elevation and of the distance of action of a single nanoparticle is not significantly affected by variations of the particle size and of the laser power. Aggregates of nanoparticles are much more efficient, but represent a potential risk to the surrounding cells. Fortunately, by tuning the laser power, the thermal ablation characteristic length can be controlled.

  4. Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation.

    PubMed

    Aryana, Arash; O'Neill, Padraig Gearoid; Pujara, Deep K; Singh, Steve K; Bowers, Mark R; Allen, Shelley L; d'Avila, André

    2016-08-01

    The optimal irrigation flow rate (IFR) during epicardial radiofrequency (RF) ablation has not been established. This study specifically examined the impact of IFR and intrapericardial fluid (IPF) accumulation during epicardial RF ablation. Altogether, 452 ex vivo RF applications (10 g for 60 seconds) delivered to the epicardial surface of bovine myocardium using 3 open-irrigated ablation catheters (ThermoCool SmartTouch, ThermoCool SmartTouch-SF, and FlexAbility) and 50 in vivo RF applications delivered (ThermoCool SmartTouch-SF) in 4 healthy adult swine in the presence or absence of IPF were examined. Ex vivo, RF was delivered at low (≤3 mL/min), reduced (5-7 mL/min), and high (≥10 mL/min) IFRs using intermediate (25-35 W) and high (35-45 W) power. In vivo, applications were delivered (at 9.3 ± 2.2 g for 60 seconds at 39 W) using reduced (5 mL/min) and high (15 mL/min) IFRs. Ex vivo, surface lesion diameter inversely correlated with IFR, whereas maximum lesion diameter and depth did not differ. While steam pops occurred more frequently at low IFR using high power (ThermoCool SmartTouch and ThermoCool SmartTouch-SF), tissue disruption was rare and did not vary with IFR. In vivo, charring/steam pop was not detected. Although there were no discernible differences in lesion size with IFR, surface lesion diameter, maximum diameter, depth, and volume were all smaller in the presence of IPF at both IFRs. Cooled-tip epicardial RF ablation created using reduced IFRs (5-7 mL/min) yields lesion sizes similar to those created using high IFRs (≥10 mL/min) without an increase in steam pop/tissue disruption, whereas the presence of IPF significantly reduces the lesion size. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. Impact of steerable sheaths on contact forces and reconnection sites in ablation for persistent atrial fibrillation.

    PubMed

    Ullah, Waqas; Hunter, Ross J; McLean, Ailsa; Dhinoja, Mehul; Earley, Mark J; Sporton, Simon; Schilling, Richard J

    2015-03-01

    In preclinical studies, catheter contact force (CF) during radiofrequency ablation correlates with the subsequent lesion size. We investigated the impact of steerable sheaths on ablation CF, its consistency, and wide area circumferential ablation (WACA) line reconnection sites. Five thousand and sixty-four ablations were analyzed across 60 patients undergoing first-time ablation for persistent AF using a CF-sensing catheter: 19 manual nonsteerable sheath (Manual-NSS), 11 manual steerable sheath, and 30 robotic steerable sheath (Sensei, Hansen Medical Inc.) procedures were studied. Ablation CFs were higher in the steerable sheath groups for all left atrial ablations and also WACA ablations specifically (P < 0.006), but less consistent per WACA segment (P < 0.005). There were significant differences in the CFs around both WACAs by group: in the left WACA CFs were lower with Manual-NSS, other than at the anterior-inferior and posterior-superior regions, and lower in the right WACA, other than the anterior-superior region. There was a difference in the proportion of segments chronically reconnecting across groups: Manual-NSS 26.5%, manual steerable sheath 4.6%, robotic 12% (P < 0.0005). The left atrial appendage/PV ridge and right posterior wall were common sites of reconnection in all groups. Steerable sheaths increased ablation CF; however, there were region-specific heterogeneities in the extent of increment, with some segments where they failed to increase CF. Steerable sheath use was associated with reduced WACA-segment reconnection. It may be that the benefits of steerable sheath use in terms of higher CFs could be translated to improved clinical outcomes if regional weaknesses of this technology are taken into account during ablation procedures. © 2014 Wiley Periodicals, Inc.

  6. Nonthermal Ablation by Using Intravascular Oxygen Radical Generation with WST11: Dynamic Tissue Effects and Implications for Focal Therapy

    PubMed Central

    Kimm, Simon Y.; Tarin, Tatum V.; Monette, Sébastien; Srimathveeravalli, Govindarajan; Gerber, Daniel; Durack, Jeremy C.; Solomon, Stephen B.; Scardino, Peter T.; Scherz, Avigdor

    2016-01-01

    Purpose To examine the hypothesis that vascular-targeted photodynamic therapy (VTP) with WST11 and clinically relevant parameters can be used to ablate target tissues in a non–tumor-bearing large-animal model while selectively sparing blood vessels and collagen. Materials and Methods By using an institutional animal care and use committee–approved protocol, 68 ablations were performed in the kidneys (cortex and medulla) and livers of 27 adult pigs. Posttreatment evaluation was conducted with contrast material–enhanced computed tomography in the live animals at 24 hours. Immunohistochemistry was evaluated and histologic examination with hematoxylin-eosin staining was performed at 4 hours, 24 hours, and 7 days. Intravenous infusion of WST11 (4 mg per kilogram of body weight) was followed by using near-infrared illumination (753 nm for 20 minutes) through optical fibers prepositioned in target tissues by using a fixed template. Treated areas were scanned, measured, and statistically analyzed by using the Student t test and two-way analysis of variance. Results Focal WST11 VTP treatment in the liver and kidney by using a single optical fiber resulted in well-demarcated cylindrical zones of nonthermal necrosis concentrically oriented around the light-emitting diffuser, with no intervening viable parenchymal cells. The radius of ablated tissue increased from approximately 5 mm at 150 mW to approximately 7 mm at 415 mW (P < .01). Illumination through fiber triads at 1-cm separation resulted in confluent homogeneous necrosis. Patterns of acute injury within 24 hours were consistent with microcirculatory flow arrest and collagen preservation (demonstrated with trichrome staining). In the peripheral ablation zone, blood vessels at least 40 μm in diameter were selectively preserved and remained functional at 7 days. Ablated tissues exhibited progressive fibrosis and chronic inflammatory cell infiltrates. No histologic changes consistent with thermal injury were

  7. Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter.

    PubMed

    Thiagalingam, Aravinda; D'Avila, Andre; Foley, Lori; Guerrero, J Luis; Lambert, Hendrik; Leo, Giovanni; Ruskin, Jeremy N; Reddy, Vivek Y

    2010-07-01

    Ablation electrode-tissue contact has been shown to be an important determinant of lesion size and safety during nonirrigated ablation but little data are available during irrigated ablation. We aimed to determine the importance of contact force during irrigated-tip ablation. Freshly excised hearts from 11 male pigs were perfused and superfused using fresh, heparinized, oxygenated swine blood in an ex vivo model. One-minute ablations were placed using one of 3 different power control strategies (impedance control-15 Omega target impedance drop, and 20 W or 30 W fixed power) and 3 different contact forces (2 g, 20 g, and 60 g) to give a grid of 9 ablation groups. The force sensing catheter (Tacticath, Endosense SA) was irrigated at 17 mL/min for all of the ablations. Of a total 101 ablations, no thrombus formation was noted but popping was seen in 17 lesions. The lesion depth and incidence of pops was 5.0 +/- 1.3 mm /0%, 5.0 +/- 1.6 mm /10% and 6.7 +/- 2.5 mm /45% for the 15 Omega, 20 W, and 30 W groups (P < 0.01), respectively, and 4.4 +/- 1.8 mm /3%, 5.8 +/- 1.6 mm /17% and 6.6 +/- 2.0 mm /37% for the 2 g, 20 g, and 60 g groups, respectively (P < 0.01). The impedance drop in the first 5 seconds was significantly correlated to catheter contact force: 9.7 +/- 9.9 Omega, 22.3 +/- 11.0 Omega, and 41.7 +/- 22.1 Omega, respectively, for the 2 g, 20 g, and 60 g groups (Pearson's r = 0.65, P < 0.01). Catheter contact force has an important impact on both ablation lesion size and the incidence of pops.

  8. Ablation of Rotor and Focal Sources Reduces Late Recurrence of Atrial Fibrillation Compared to Trigger Ablation Alone

    PubMed Central

    Narayan, Sanjiv M.; Baykaner, Tina; Clopton, Paul; Schricker, Amir; Lalani, Gautam; Krummen, David E.; Shivkumar, Kalyanam; Miller, John M.

    2014-01-01

    Objectives To determine if ablation that targets patient-specific AF-sustaining substrates (rotors or focal sources) is more durable than trigger ablation alone at preventing late AF recurrences. Background Late recurrence substantially limits the efficacy of pulmonary vein (PV) isolation for AF, and is associated with PV reconnection and the emergence of new triggers. Methods We performed 3 year follow-up of the CONFIRM trial, in which 92 consecutive AF patients (70.7% persistent) underwent novel computational mapping to reveal a median of 2 (IQR 1–2) rotors or focal sources in 97.7% of patients during AF. Ablation comprised source (Focal Impulse and Rotor Modulation, FIRM) then conventional ablation in n=27 (FIRM-guided), and conventional ablation alone in n=65 (FIRM-blinded). Patients were followed with implanted ECG monitors when possible (85.2% FIRM guided, 23.1% FIRM-blinded). Results On 890 days follow-up (median; IQR 224–1563) compared FIRM-blinded therapy, patients receiving FIRM-guided ablation maintained higher freedom from AF after 1.2±0.4 procedures (median 1, IQR 1–1) (77.8% vs 38.5%; p=0.001) and a single procedure (p>0.001), and higher freedom from all atrial arrhythmias (p=0.003). Freedom from AF was higher when ablation directly or coincidentally passed through sources than when it missed sources (p>0.001). CONCLUSIONS FIRM-guided ablation is more durable than conventional trigger-based ablation at preventing 3 year AF recurrence. Future studies should investigate how ablation of patient-specific AF-sustaining rotors and focal sources alters the natural history of arrhythmia recurrence. PMID:24632280

  9. Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells

    NASA Technical Reports Server (NTRS)

    Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, Dinesh; Kazemba, Cole D.; Venkatapathy, E.

    2016-01-01

    This poster provides an overview of the work performed to date on the Conformal Ablative TPS (CA-TPS) element of the TPSM project out of GCDP. Under this element, NASA is developing improved ablative TPS materials based on flexible felt for reinforcement rather than rigid reinforcements. By replacing the reinforcements with felt, the resulting materials have much higher strain-to-failure and are much lower in thermal conductivity than their rigid counterparts. These characteristics should allow for larger tile sizes, direct bonding to aeroshells and even lower weight TPS. The conformal phenolic impregnated carbon felt (C-PICA) is a candidate for backshell TPS for both Venus and Saturn entry vehicles.

  10. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes ('Temperature Control' and 'Power Control') on Procedural Outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Arnegger, F.; Koch, V.

    2012-06-15

    Purpose: This study was designed to analyze the effect of two different ablation modes ('temperature control' and 'power control') of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Signmore » C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 {+-} 0 s in group I and 102 {+-} 21 s in group II. Long axis diameter was 20.3 {+-} 4.6 mm in group I and 19.8 {+-} 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 {+-} 2 mm in group I and 10.5 {+-} 2.4 mm in group II (NS). Circularity was 0.5 {+-} 0.1 in group I and 0.5 {+-} 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.« less

  11. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.

    2017-07-05

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  12. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, R. D.; Krasheninnikov, S. I.

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  13. [Catheter ablation for paroxysmal atrial fibrillation: new generation cryoballoon or contact force sensing radiofrequency ablation?].

    PubMed

    Nagy, Zsófia; Kis, Zsuzsanna; Som, Zoltán; Földesi, Csaba; Kardos, Attila

    2016-05-29

    Contact force sensing radiofrequency ablation and the new generation cryoballoon ablation are prevalent techniques for the treatment of paroxysmal atrial fibrillation. The authors aimed to compare the procedural and 1-year outcome of patients after radiofrequency and cryoballoon ablation. 96 patients with paroxysmal atrial fibrillation (radiofrequency ablation: 58, cryoballoon: 38 patients; 65 men and 31 women aged 28-70 years) were enrolled. At postprocedural 1, 3, 6 and 12 months ECG, Holter monitoring and telephone interviews were performed. Procedure and fluorosocopy time were: radiofrequency ablation, 118.5 ± 15 min and 15.8 ± 6 min; cryoballoon, 73.5 ± 16 min (p<0.05) and 13.8 ± 4.,1 min (p = 0.09), respectively. One year later freedom from atrial fibrillation was achieved in 76.5% of patients who underwent radiofrequency ablation and in 81% of patients treated with cryoballoon. Temporary phrenic nerve palsy occurred in two patients and pericardial tamponade developed in one patient. In this single center study freedom from paroxysmal atrial fibrillation was similar in the two groups with significant shorter procedure time in the cryoballoon group.

  14. Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage Areas With Selective Activation Characteristics.

    PubMed

    Jadidi, Amir S; Lehrmann, Heiko; Keyl, Cornelius; Sorrel, Jérémie; Markstein, Viktor; Minners, Jan; Park, Chan-Il; Denis, Arnaud; Jaïs, Pierre; Hocini, Mélèze; Potocnik, Clemens; Allgeier, Juergen; Hochholzer, Willibald; Herrera-Sidloky, Claudia; Kim, Steve; Omri, Youssef El; Neumann, Franz-Josef; Weber, Reinhold; Haïssaguerre, Michel; Arentz, Thomas

    2016-03-01

    Complex-fractionated atrial electrograms and atrial fibrosis are associated with maintenance of persistent atrial fibrillation (AF). We hypothesized that pulmonary vein isolation (PVI) plus ablation of selective atrial low-voltage sites may be more successful than PVI only. A total of 85 consecutive patients with persistent AF underwent high-density atrial voltage mapping, PVI, and ablation at low-voltage areas (LVA < 0.5 mV in AF) associated with electric activity lasting > 70% of AF cycle length on a single electrode (fractionated activity) or multiple electrodes around the circumferential mapping catheter (rotational activity) or discrete rapid local activity (group I). The procedural end point was AF termination. Arrhythmia freedom was compared with a control group (66 patients) undergoing PVI only (group II). PVI alone was performed in 23 of 85 (27%) patients of group I with low amount (< 10% of left atrial surface area) of atrial low voltage. Selective atrial ablation in addition to PVI was performed in 62 patients with termination of AF in 45 (73%) after 11 ± 9 minutes radiofrequency delivery. AF-termination sites colocalized within LVA in 80% and at border zones in 20%. Single-procedural arrhythmia freedom at 13 months median follow-up was achieved in 59 of 85 (69%) patients in group I, which was significantly higher than the matched control group (31/66 [47%], P < 0.001). There was no significant difference in the success rate of patients in group I with a low amount of low voltage undergoing PVI only and patients requiring PVI+selective low-voltage ablation (P = 0.42). Ablation of sites with distinct activation characteristics within/at borderzones of LVA in addition to PVI is more effective than conventional PVI-only strategy for persistent AF. PVI only seems to be sufficient to treat patients with left atrial low voltage < 10%. © 2016 American Heart Association, Inc.

  15. Left Atrial Size and Left Ventricular End-Systolic Dimension Predict the Progression of Paroxysmal Atrial Fibrillation After Catheter Ablation.

    PubMed

    Liao, Ying-Chieh; Liao, Jo-Nan; Lo, Li-Wei; Lin, Yenn-Jiang; Chang, Shih-Lin; Hu, Yu-Feng; Chao, Tze-Fan; Chung, Fa-Po; Tuan, Ta-Chuan; Te, Abigail Louise D; Walia, Rohit; Yamada, Shinya; Lin, Chung-Hsing; Lin, Chin-Yu; Chang, Yao-Ting; Allamsetty, Suresh; Yu, Wen-Chung; Huang, Jing-Long; Wu, Tsu-Juey; Chen, Shih-Ann

    2017-01-01

    Although rare, some paroxysmal atrial fibrillations (AF) still progress despite radiofrequency (RF) ablation. In the study, we evaluated the long-term efficacy of RF ablation and the predictors of AF progression. A total of 589 paroxysmal AF patients (404 men and 185 women; aged 54 ± 12 years) who received 3-dimensional mapping and ablation were enrolled. Their clinical parameters and electrophysiological characteristics were collected. They were divided into Group 1 (N = 13, with AF progression) and Group 2 (N = 576, no AF progression). AF progression was defined as recurrence of persistent AF. Group 1 patients had larger left atrial (LA) diameter, larger left ventricle (LV) end-systolic and end-diastolic diameters, poorer LV systolic function, and more amiodarone use at baseline. After 1.2 ± 0.5 procedures, 123 (21%) patients experienced recurrence during 56 ± 29 months' follow-up. In the multivariate analysis, LA diameter (P = 0.018, HR = 1.12, 95% CI = 1.02-1.24) and LV end-systolic diameter (P = 0.005, HR = 1.10, 95% CI = 1.03-1.17) independently predicted AF progression. LA diameter >43 mm and LV end-systolic diameter >31 mm were the best cut-off values for predicting AF progression by ROC analysis. AF progression rate achieved 19% if they had both larger LA diameter (>43 mm) and LV end-systolic diameter (>31 mm). RF ablation prevents the progression of paroxysmal AF effectively, except in patients with increased LA diameter and LV end-systolic diameter on echocardiogram, suggesting more aggressive rhythm control therapies should be considered in these patients. © 2016 Wiley Periodicals, Inc.

  16. Ultrasound-ultrasound image overlay fusion improves real-time control of radiofrequency ablation margin in the treatment of hepatocellular carcinoma.

    PubMed

    Minami, Yasunori; Minami, Tomohiro; Hagiwara, Satoru; Ida, Hiroshi; Ueshima, Kazuomi; Nishida, Naoshi; Murakami, Takamichi; Kudo, Masatoshi

    2018-05-01

    To assess the clinical feasibility of US-US image overlay fusion with evaluation of the ablative margin in radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). Fifty-three patients with 68 HCCs measuring 0.9-4.0 cm who underwent RFA guided by US-US overlay image fusion were included in this retrospective study. By an overlay of pre-/postoperative US, the tumor image could be projected onto the ablative hyperechoic zone. Therefore, the ablative margin three-dimensionally could be shown during the RFA procedure. US-US image overlay was compared to dynamic CT a few days after RFA for assessment of early treatment response. Accuracy of graded response was calculated, and the performance of US-US image overlay fusion was compared with that of CT using a Kappa agreement test. Technically effective ablation was achieved in a single session, and 59 HCCs (86.8 %) succeeded in obtaining a 5-mm margin on CT. The response with US-US image overlay correctly predicted early CT evaluation with an accuracy of 92.6 % (63/68) (k = 0.67; 95 % CI: 0.39-0.95). US-US image overlay fusion can be proposed as a feasible guidance in RFA with a safety margin and predicts early response of treatment assessment with high accuracy. • US-US image overlay fusion visualizes the ablative margin during RFA procedure. • Visualizing the margin during the procedure can prompt immediate complementary treatment. • US image fusion correlates with the results of early evaluation CT.

  17. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  18. Emerging needle ablation technology in urology.

    PubMed

    Leveillee, Raymond J; Pease, Karli; Salas, Nelson

    2014-01-01

    Thermal ablation of urologic tumors in the form of freezing (cryoablation) and heating (radiofrequency ablation) have been utilized successfully to treat and ablate soft tissue tumors for over 15 years. Multiple studies have demonstrated efficacy nearing that of extirpative surgery for certain urologic conditions. There are technical limitations to their speed and safety profile because of the physical limits of thermal diffusion. Recently, there has been a desire to investigate other forms of energy in an effort to circumvent the limitations of cryoblation and radiofrequency ablation. This review will focus on three relatively new energy applications as they pertain to tissue ablation: microwave, irreversible electroporation, and water vapor. High-intensity-focused ultrasound nor interstitial lasers are discussed, as there have been no recently published updates. Needle and probe-based ablative treatments will continue to play an important role. As three-dimensional imaging workstations move from the advanced radiologic interventional suite to the operating room, surgeons will likely still play a pivotal role in the +-application of these probe ablative devices. It is essential that the surgeon understands the fundamentals of these devices in order to optimize their application.

  19. [Thoracoscopic, epicardial ablation of atrial fibrillation using the COBRA Fusion system as the first part of hybrid ablation].

    PubMed

    Budera, P; Osmančík, P; Talavera, D; Fojt, R; Kraupnerová, A; Žďárská, J; Vaněk, T; Straka, Z

    2017-01-01

    Treatment of persistent and long-standing persistent atrial fibrillation is not successfully managed by methods of catheter ablation or pharmacotherapy. Hybrid ablation (i.e. combination of minimally invasive surgical ablation, followed by electrophysiological assessment and subsequent endocardial catheter ablation to complete the entire intended procedure) presents an ever more used and very promising treatment method. Patients underwent thoracoscopic ablation of pulmonary veins and posterior wall of the left atrium (the box-lesion) with use of the COBRA Fusion catheter; thoracoscopic occlusion of the left atrial appendage using the AtriClip system was also done in later patients. After 23 months, electrophysiological assessment and catheter ablation followed. In this article we summarize a strategy of the surgical part of the hybrid procedure performed in our centre. We describe the surgery itself (including possible periprocedural complications) and we also present our short-term results, especially with respect to subsequent electrophysiological findings. Data of the first 51 patients were analyzed. The first 25 patients underwent unilateral ablation; the mean time of surgery was 102 min. Subsequent 26 patients underwent the bilateral procedure with the mean surgery time of 160 min. Serious complications included 1 stroke, 1 phrenic nerve palsy and 2 surgical re-explorations for bleeding. After 1 month, 65% of patients showed sinus rhythm. The box-lesion was found complete during electrophysiological assessment in 38% of patients and after catheter ablation, 96% of patients were discharged in sinus rhythm. The surgical part of the hybrid procedure with use of the minimally invasive approach and the COBRA Fusion catheter is a well-feasible method with a low number of periprocedural complications. For electrophysiologists, it provides a very good basis for successful completion of the hybrid ablation.Key words: atrial fibrillation hybrid ablation - thoracoscopy

  20. Ablation Modeling of Ares-I Upper State Thermal Protection System Using Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; Page, Arthur T.

    2007-01-01

    The thermal protection system (TPS) for the Ares-I Upper Stage will be based on Space Transportation System External Tank (ET) and Solid Rocket Booster (SRB) heritage materials. These TPS materials were qualified via hot gas testing that simulated ascent and re-entry aerothermodynamic convective heating environments. From this data, the recession rates due to ablation were characterized and used in thermal modeling for sizing the thickness required to maintain structural substrate temperatures. At Marshall Space Flight Center (MSFC), the in-house code ABL is currently used to predict TPS ablation and substrate temperatures as a FORTRAN application integrated within SINDA/G. This paper describes a comparison of the new ablation utility in Thermal Desktop and SINDA/FLUINT with the heritage ABL code and empirical test data which serves as the validation of the Thermal Desktop software for use on the design of the Ares-I Upper Stage project.

  1. Shallow depth of seismogenic coupling in southern Mexico: implications for the maximum size of earthquakes in the subduction zone

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Sánchez, Osvaldo

    1996-01-01

    Studies of locally recorded microearthquakes and the centroidal depths of the largest earthquakes analyzed using teleseismic data show that the maximum depth of thrust faulting along the Mexican subduction zone is anomalously shallow. This observed maximum depth of about 25 ± 5 km is about half of that observed in most subduction zones of the world. A leveling line that crosses the rupture zone of the 19 September 1985 Michoacan event was revisited after the earthquake and it shows anomalously low deformation during the earthquake. The comparison between the observed coseismic uplift and dislocation models of the seismogenic interplate contact that extend to depths ranging from 20 to 40 km shows that the maximum depth at which seismic slip took place is about 20 km. This unusually shallow and narrow zone of seismogenic coupling apparently results in the occurrence of thrust events along the Mexican subduction zone that are smaller than would be expected for a trench where a relatively young slab subducts at a rapid rate of relative motion. A comparison with the Chilean subduction zone shows that the plate interface in Mexico is half that in Chile, not only in the down-dip extent of the seismogenic zone of plate contact, but also in the distance of the trench from the coast and in the thickness of the upper continental plate. It appears that the narrow plate contact produced by this particular plate geometry in Mexico is the controlling variable defining the size of the largest characteristic earthquakes in the Mexican subduction zone.

  2. Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlun; Schweiger, Axel; Steele, Michael; Stern, Harry

    2015-05-01

    To better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. In this work, we have developed a FSD theory that is coupled to the ITD theory of Thorndike et al. (1975) in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave-induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. To focus only on the properties of mechanical floe size redistribution, the FSD theory is implemented in a simplified ITD and FSD sea ice model for idealized numerical experiments. Model results show that the simulated cumulative floe number distribution (CFND) follows a power law as observed by satellites and airborne surveys. The simulated values of the exponent of the power law, with varying levels of ice breakups, are also in the range of the observations. It is found that floe size redistribution and the resulting FSD and mean floe size do not depend on how floe size categories are partitioned over a given floe size range. The ability to explicitly simulate multicategory FSD and ITD together may help to incorporate additional model physics, such as FSD-dependent ice mechanics, surface exchange of heat, mass, and momentum, and wave-ice interactions.

  3. Low cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Cecka, A. M.; Schofield, W. C.

    1972-01-01

    A material and process study was performed using subscale panels in an attempt to reduce the cost of fabricating ablative heat shield panels. Although no improvements were made in the material formulation, a significant improvement was obtained in the processing methods compared to those employed in the previous work. The principal feature of the new method is the press filling and curing of the ablation material in a single step with the bonding and curing of the face sheet. This method was chosen to replace the hand troweling and autoclave curing procedure used previously. Double-curvature panels of the same size as the flat panels were fabricated to investigate fabrication problems. It was determined that the same materials and processes used for flat panels can be used to produce the curved panels. A design with severe curvatures consisting of radii of 24 x 48 inches was employed for evaluation. Ten low-density and ten high-density panels were fabricated. With the exception of difficulties related to short run non-optimum tooling, excellent panel filling and density uniformity were obtained.

  4. CT-Guided Microwave Ablation of 45 Renal Tumors: Analysis of Procedure Complexity Utilizing a Percutaneous Renal Ablation Complexity Scoring System.

    PubMed

    Mansilla, Alberto V; Bivins, Eugene E; Contreras, Francisco; Hernandez, Manuel A; Kohler, Nathan; Pepe, Julie W

    2017-02-01

    To develop a scoring system that stratifies complexity of percutaneous ablation of renal tumors. Analysis was performed of 36 consecutive patients (mean age, 64 y; range, 30-89 y) who underwent CT-guided microwave (MW) ablation of 45 renal tumors (mean tumor diameter, 2.4 cm; range, 1.2-4.0 cm). Technical success and effectiveness were determined based on intraprocedural and follow-up imaging studies. The RENAL score and the proposed percutaneous renal ablation complexity (P-RAC) score were calculated for each tumor. Technical success was 93.3% (n = 42). Biopsy of 38 of 45 renal tumors revealed 23 renal cell carcinomas. Median follow-up period was 9.7 months (range, 2.9-46.8 months). There were no tumor recurrences. One major complication, ureteropelvic junction stricture, occurred (2.6%). The P-RAC score was found to differ statistically from the RENAL score (t = 3.754, df = 44, P = .001). A positive correlation was found between the P-RAC score and number of antenna insertions (r = .378, n = 45, P = .011) and procedure duration (r = .328, n = 45, P = .028). No correlation was found between the RENAL score and number of MW antenna insertions (r = .110, n = 45, P = .472) or procedure duration (r = .263, n = 45, P = .081). Hydrodissection was significantly more common in the P-RAC high-complexity category than in low-complexity category (χ 2 = 12.073, df = 2, P = .002). The P-RAC score may be useful in stratifying percutaneous renal ablation complexity. Further studies with larger sample sizes are necessary to validate the P-RAC score and to determine if it can predict risk of complications. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  5. Optimal approach for complete liver tumor ablation using radiofrequency ablation: a simulation study.

    PubMed

    Givehchi, Sogol; Wong, Yin How; Yeong, Chai Hong; Abdullah, Basri Johan Jeet

    2018-04-01

    To investigate the effect of radiofrequency ablation (RFA) electrode trajectory on complete tumor ablation using computational simulation. The RFA of a spherical tumor of 2.0 cm diameter along with 0.5 cm clinical safety margin was simulated using Finite Element Analysis software. A total of 86 points inside one-eighth of the tumor volume along the axial, sagittal and coronal planes were selected as the target sites for electrode-tip placement. The angle of the electrode insertion in both craniocaudal and orbital planes ranged from -90° to +90° with 30° increment. The RFA electrode was simulated to pass through the target site at different angles in combination of both craniocaudal and orbital planes before being advanced to the edge of the tumor. Complete tumor ablation was observed whenever the electrode-tip penetrated through the epicenter of the tumor regardless of the angles of electrode insertion in both craniocaudal and orbital planes. Complete tumor ablation can also be achieved by placing the electrode-tip at several optimal sites and angles. Identification of the tumor epicenter on the central slice of the axial images is essential to enhance the success rate of complete tumor ablation during RFA procedures.

  6. Evaluation of pain during high-intensity focused ultrasound ablation of benign thyroid nodules.

    PubMed

    Lang, Brian H H; Woo, Yu-Cho; Chiu, Keith Wan-Hang

    2018-06-01

    To assess severity and factors of pain during high-intensity focused ultrasound (HIFU) ablation of benign thyroid nodules. 128 patients who underwent a HIFU ablation for a benign thyroid nodule were analysed. All patients received a bolus of intravenous pethidine and diazepam before treatment. After treatment, patients were asked to rate their overall pain experience on a visual analogue scale (0-100) (0 = no pain; 100 = worse possible pain) during treatment, 2 h after treatment and the following morning. Binary logistic regression was performed to evaluate associated factors for pain including patient demographics, nodule size, body mass index (BMI) and treatment parameters. At T1, median (range) pain score was 65.0 (0.00-100.00). Only 16 (12.5 %) patients had a pain score of zero. In multivariate analysis, only lower BMI (OR 1.265, 95 % CI 1.102-1.452, p=0.001) and longer nodule diameter (OR 1.462, 95 % CI 1.071-1.996, p=0.017) were independent factors for pain score at T1 ≤ 65.0. A moderate to severe amount of pain was reported during ablation of benign thyroid nodules in over 50 % of patients. Patients' BMI and length of nodule diameter were independent variables for pain during HIFU ablation. • Pain was moderate to severe during HIFU ablation of thyroid nodules. • Only one in eight patients reported no pain during ablation. • Level of energy per pulse did not affect pain. • Patients with lower BMI and larger nodules had less pain.

  7. Aluminum X-ray mass-ablation rate measurements

    DOE PAGES

    Kline, John L.; Hager, Jonathan D.

    2016-10-15

    Measurements of the mass ablation rate of aluminum (Al) have been completed at the Omega Laser Facility. Measurements of the mass-ablation rate show Al is higher than plastic (CH), comparable to high density carbon (HDC), and lower than beryllium. The mass-ablation rate is consistent with predictions using a 1D Lagrangian code, Helios. Lastly, the results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators warranting further investigation into the viability of Al capsules for ignition should be pursued.

  8. Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Krstulović, Nikša; Salamon, Krešimir; Budimlija, Ognjen; Kovač, Janez; Dasović, Jasna; Umek, Polona; Capan, Ivana

    2018-05-01

    Al-doped ZnO crystalline colloidal nanoparticles were synthesized by a laser ablation of ZnO:Al2O3 in MilliQ water. Experiments were performed systematically by changing the number of applied laser pulses and laser output energy with the aim to affect the nanoparticle size, composition (Al/Zn ratio) and characteristics (band-gap, crystallinity). Distinctly, set of nanoparticle syntheses was performed in deionized water for comparison. SEM investigation of colloidal nanoparticles revealed that the formed nanoparticles are 30 nm thick discs with average diameters ranging from 450 to 510 nm. It was found that craters in the target formed during the laser ablation influence the size of synthesized colloidal nanoparticles. This is explained by efficient nanoparticle growth through diffusion process which take place in spatially restricted volume of the target crater. When laser ablation takes place in deionized water the synthesized nanoparticles have a mesh-like structure with sparse concentration of disc-like nanoparticles. Al/Zn ratio and band-gap energy of nanoparticles are highly influenced by the number and output energy of applied laser pulses. In addition, the procedure how to calculate the concentration of colloidal nanoparticles synthesized by laser ablation in liquids is proposed. The Al-doped ZnO colloidal nanoparticles properties were obtained using different techniques like scanning electron microscopy, optical microscopy, energy-dispersive X-ray spectroscopy, grazing-incidence X-ray diffraction, photoabsorption, photoluminescence and X-ray photoelectron spectroscopy.

  9. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    NASA Astrophysics Data System (ADS)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  10. Optical ablation/temperature gage (COTA)

    NASA Astrophysics Data System (ADS)

    Cassaing, J.; Balageas, D.

    ONERA has ground and flight tested for heat-shield recession a novel technique, different from current radiation and acoustic measurement methods. It uses a combined ablation/temperature gage that views the radiation optically from a cavity embedded within the heat shield. Flight measurements, both of temperature and of passage of the ablation front, are compared with data generated by a predictive numerical code. The ablation and heat diffusion into the instrumented ablator can be simulated numerically to evaluate accurately the errors due to the presence of the gage. This technology was established in 1978 and finally adopted after ground tests in arc heater facilities. After four years of flight evaluations, it is possible to evaluate and criticize the sensor reliability.

  11. Laser fractional photothermolysis of the skin: numerical simulation of microthermal zones.

    PubMed

    Marqa, Mohamad Feras; Mordon, Serge

    2014-04-01

    Laser Fractional Photothermolysis (FP) is one of the innovative techniques for skin remodeling and resurfacing. During treatment, the control of the Microscopic Thermal Zones' (MTZs) dimensions versus pulse energy requires detailed knowledge of the various parameters governing the heat transfer process. In this study, a mathematical model is devised to simulate the effect of pulse energy variations on the dimensions of MTZs. Two series of simulations for ablative (10.6 μm CO2) and non-ablative (1.550 μm Er:Glass) lasers systems were performed. In each series, simulations were carried for the following pulses energies: 5, 10, 15, 20, 25, 30, 35, and 40 mJ. Results of simulations are validated by histological analysis images of MTZs sections reported in works by Hantash et al. and Bedi et al. MTZs dimensions were compared between histology and those achieved using our simulation model using fusion data technique for both ablative FP and non-ablative FP treatment methods. Depths and widths from simulations are usually deeper (21 ± 2%) and wider (12 ± 2%) when compared with histological analysis data. When accounting for the shrinkage effect of excision of cutaneous tissues, a good correlation can be established between the simulation and the histological analysis results.

  12. The safety and efficacy of microwave ablation for the treatment of CRC pulmonary metastases.

    PubMed

    Cheng, Gui; Shi, Liangrong; Qiang, Weiguang; Wu, Jun; Ji, Mei; Lu, Qicheng; Li, Xiaodong; Xu, Bin; Jiang, Jingting; Wu, Changping

    2017-11-16

    Microwave ablation (MWA) is a recently developed thermal ablation technique that has been used for the treatment of different types of tumours. In the present study, we retrospectively evaluated the safety and efficacy of CT-guided percutaneous MWA for the treatment of colorectal cancer (CRC) pulmonary metastases. From June 2010 to June 2015, 48 unresectable lesions in 32 patients with CRC pulmonary metastases were subjected to CT-guided MWA. Imaging follow-up was with contrast-enhanced CT and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT. Oncologic imaging showed that 42 (87.5%) of the 48 lesions in the 32 patients were completely ablated. Needle track metastatic seeding was not found, and no patient deaths occurred within 30 d after ablation. The mean hospital stay was 3 d (range, 2-7 d). Pneumothorax was the most frequent complication and occurred in 6 (12.5%) of the 48 lesions. The median survival time was 31 months (95% CI: 15.4-46.6). The 1-, 2- and 3-year survival rates were 79.5%, 63.1% and 44.4%, respectively. Univariate Cox regression analysis showed that tumour size, disease-free interval (DFI) and number of tumours were significantly related to the overall survival time (p = .007, p = .022 and p = .030, respectively). Multivariate analysis showed that tumour size was an independent prognostic factor for survival (p = .017). CT-guided percutaneous MWA is a safe and effective minimally invasive method for treating CRC pulmonary metastases.

  13. Analysis of excimer laser radiant exposure effect toward corneal ablation volume at LASIK procedure

    NASA Astrophysics Data System (ADS)

    Adiati, Rima Fitria; Rini Rizki, Artha Bona; Kusumawardhani, Apriani; Setijono, Heru; Rahmadiansah, Andi

    2016-11-01

    LASIK (Laser Asissted In Situ Interlamelar Keratomilieusis) is a technique for correcting refractive disorders of the eye such as myopia and astigmatism using an excimer laser. This procedure use photoablation technique to decompose corneal tissues. Although preferred due to its efficiency, permanency, and accuracy, the inappropriate amount radiant exposure often cause side effects like under-over correction, irregular astigmatism and problems on surrounding tissues. In this study, the radiant exposure effect toward corneal ablation volume has been modelled through several processes. Data collecting results is laser data specifications with 193 nm wavelength, beam diameter of 0.065 - 0.65 cm, and fluence of 160 mJ/cm2. For the medical data, the myopia-astigmatism value, cornea size, corneal ablation thickness, and flap data are taken. The first modelling step is determining the laser diameter between 0.065 - 0.65 cm with 0.45 cm increment. The energy, power, and intensity of laser determined from laser beam area. Number of pulse and total energy is calculated before the radiant exposure of laser is obtained. Next is to determine the parameters influence the ablation volume. Regression method used to create the equation, and then the spot size is substituted to the model. The validation used is statistic correlation method to both experimental data and theory. By the model created, it is expected that any potential complications can be prevented during LASIK procedures. The recommendations can give the users clearer picture to determine the appropriate amount of radiant exposure with the corneal ablation volume necessary.

  14. THE MECHANISM OF LESION FORMATION BY FOCUSED ULTRASOUND ABLATION CATHETER FOR TREATMENT OF ATRIAL FIBRILLATION

    PubMed Central

    Sinelnikov, Y.D.; Fjield, T.; Sapozhnikov, O.A.

    2009-01-01

    The application of therapeutic ultrasound for the treatment of atrial fibrillation (AF) is investigated. The results of theoretical and experimental investigation of ultrasound ablation catheter are presented. The major components of the catheter are the high power cylindrical piezoelectric element and parabolic balloon reflector. Thermal elevation in the ostia of pulmonary veins is achieved by focusing the ultrasound beam in shape of a torus that transverses the myocardial tissue. High intensity ultrasound heating in the focal zone results in a lesion surrounding the pulmonary veins that creates an electrical conduction blocks and relief from AF symptoms. The success of the ablation procedure largely depends on the correct choice of reflector geometry and ultrasonic power. We present a theoretical model of the catheter’s acoustic field and bioheat transfer modeling of cardiac lesions. The application of an empirically derived relation between lesion formation and acoustic power is shown to correlate with the experimental data. Developed control methods combine the knowledge of theoretical acoustics and the thermal lesion formation simulations with experiment and thereby establish rigorous dosimetry that contributes to a safe and effective ultrasound ablation procedure. PMID:20161431

  15. Histologic analysis of rabbit liver cancer treated by bulk ultrasound ablation

    NASA Astrophysics Data System (ADS)

    Karunakaran, Chandra Priya; Rudich, Steven M.; Alqadah, Amel; Burgess, Mark T.; Narmoneva, Daria A.; Mast, T. Douglas

    2012-10-01

    VX2 rabbit liver cancer, treated in vivo using bulk ultrasound ablation by miniaturized image-ablate arrays, was histologically analyzed using TTC vital stain and DAPI nucleic acid stain. VX2 cells were implanted into rabbit liver lobes and allowed to grow for 11-21 days. Liver lobes containing solid VX2 tumors were then treated with 4.8 MHz, 22.5-38.5 W/cm2 in situ intensity, unfocused ultrasound for exposure times of 20-120 s. After animal sacrifice, thermal lesions were bisected along the imaging/treatment plane, one face stained with TTC, and the other with DAPI. Levels of TTC uptake (no uptake, partial uptake, and complete uptake) in liver parenchyma corresponded to three discrete regions of tan, pink and red color. By processing images of DAPI-stained parenchymal tissue from these three regions, cellular damage was quantified. A viability index parameter incorporating the size and shape of DAPI-stained nuclei correlated significantly with levels of TTC uptake, and thus with local tissue viability. For ablation of normal liver, viability indices for parenchymal regions of no TTC uptake and partial TTC uptake were significantly different from those for viable tissue. For ablation of VX2 tumor, differences in viability index between regions of no TTC uptake and complete TTC uptake were smaller, but significant overall.

  16. A trial of radiofrequency ablation for anal intraepithelial neoplasia.

    PubMed

    Goldstone, Robert N; Hasan, Shirin R; Drury, Steven; Darragh, Teresa M; van Zante, Annemieke; Goldstone, Stephen E

    2017-03-01

    Radiofrequency ablation (RFA) effectively treats esophageal high-grade dysplasia, but its efficacy in treating anal canal high-grade squamous intraepithelial lesions (HSILs) is unsubstantiated. This prospective study assessed the safety and efficacy of applying hemi-circumferential RFA to anal canal HSIL. Twenty-one HIV-negative participants with HSIL occupying ≤ half the anal canal circumference were treated with hemi-circumferential anal canal RFA. Participants were assessed every 3 months for 12 months with high-resolution anoscopy; recurrence in the treatment zone was re-treated with focal RFA. Twenty-one participants with a mean of 1.7 lesions (range 1-4) enrolled and completed the trial. Six (29 %) participants had recurrent HSIL within the treated hemi-circumference within 1 year. Four participants (19 %) had persistence of an index lesion at 3 months. One (2.9 %) index HSIL persisted again at 12 months. No participants had more than two RFA treatments. KM curve-predicted HSIL-free survival within the treatment zone at 1 year was 76 % (95 % CI 52-89 %). Comparing the first 7 and last 14 participants, the predicted 1-year HSIL-free survivals are 43 % (95 % CI 10-73 %) and 93 % (95 % CI 59-99 %), respectively (p = 0.008), suggesting a learning curve with the treating physician. Multivariable analysis showed decreased recurrence in the last 14 participants (HR 0.02; 95 % CI 0.001-0.63) while increasing BMI increased recurrence (HR 1.43, 95 % CI 1.01-2.01). No participants had device or procedure-related serious adverse events, anal stricture, or heavy bleeding. Hemi-circumferential RFA yielded a high rate of anal HSIL eradication in HIV-negative patients at 1 year with minimal adverse events. Lesion persistence was probably related to incomplete initial ablation.

  17. Magnetic Resonance Mediated Radiofrequency Ablation.

    PubMed

    Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L

    2018-02-01

    To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.

  18. Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water

    NASA Astrophysics Data System (ADS)

    Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan

    2018-04-01

    In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.

  19. Micrometeoroid ablation simulated in the laboratory

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  20. Formation of polymer nanoparticles by UV pulsed laser ablation of poly (bisphenol A carbonate) in liquid environment

    NASA Astrophysics Data System (ADS)

    Martínez-Tong, Daniel E.; Sanz, Mikel; Ezquerra, Tiberio A.; Nogales, Aurora; Marco, José F.; Castillejo, Marta; Rebollar, Esther

    2017-10-01

    Suspensions of poly(bisphenol A carbonate) (PBAC) nanoparticles of varying size and shape have been produced by ablation of a PBAC target in liquid media with the fourth harmonic of a Q-switched Nd:YAG laser (wavelength 266 nm, full width at half maximum 4 ns, repetition rate 10 Hz). The polymer target was placed at the bottom of a rotating glass vessel filled with around a 10 mm column of liquid. Laser ablation in water leads to spherical nanoparticles with diameters of several tens of nanometers for fluences close to 1 J/cm2. Ablation at lower fluences, around 0.1 J/cm2, results in the production of nanoparticles of smaller diameters and also of non-spherical nanoparticles. Additional irradiations at the fluence of 0.1 J/cm2 were performed in several liquid media with different properties, in terms of density, viscosity, thermal conductivity, boiling temperature, isothermal compressibility and polarity. The different size distributions observed were related to the thermal conductivity of the systems, while their viscosity seems to be responsible for the development of nanostructures with different morphologies.

  1. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate

  2. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  3. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  4. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    PubMed

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  5. Percutaneous Radiofrequency Ablation of Colorectal Cancer Liver Metastases: Factors Affecting Outcomes—A 10-year Experience at a Single Center

    PubMed Central

    Shady, Waleed; Petre, Elena N.; Gonen, Mithat; Erinjeri, Joseph P.; Brown, Karen T.; Covey, Anne M.; Alago, William; Durack, Jeremy C.; Maybody, Majid; Brody, Lynn A.; Siegelbaum, Robert H.; D’Angelica, Michael I.; Jarnagin, William R.; Solomon, Stephen B.; Kemeny, Nancy E.

    2016-01-01

    Purpose To identify predictors of oncologic outcomes after percutaneous radiofrequency ablation (RFA) of colorectal cancer liver metastases (CLMs) and to describe and evaluate a modified clinical risk score (CRS) adapted for ablation as a patient stratification and prognostic tool. Materials and Methods This study consisted of a HIPAA-compliant institutional review board–approved retrospective review of data in 162 patients with 233 CLMs treated with percutaneous RFA between December 2002 and December 2012. Contrast material–enhanced CT was used to assess technique effectiveness 4–8 weeks after RFA. Patients were followed up with contrast-enhanced CT every 2–4 months. Overall survival (OS) and local tumor progression–free survival (LTPFS) were calculated from the time of RFA by using the Kaplan-Meier method. Log-rank tests and Cox regression models were used for univariate and multivariate analysis to identify predictors of outcomes. Results Technique effectiveness was 94% (218 of 233). Median LTPFS was 26 months. At univariate analysis, predictors of shorter LTPFS were tumor size greater than 3 cm (P < .001), ablation margin size of 5 mm or less (P < .001), high modified CRS (P = .009), male sex (P = .03), and no history of prior hepatectomy (P = .04) or hepatic arterial infusion chemotherapy (P = .01). At multivariate analysis, only tumor size greater than 3 cm (P = .01) and margin size of 5 mm or less (P < .001) were independent predictors of shorter LTPFS. Median and 5-year OS were 36 months and 31%. At univariate analysis, predictors of shorter OS were tumor size larger than 3 cm (P = .005), carcinoembryonic antigen level greater than 30 ng/mL (P = .003), high modified CRS (P = .02), and extrahepatic disease (EHD) (P < .001). At multivariate analysis, tumor size greater than 3 cm (P = .006) and more than one site of EHD (P < .001) were independent predictors of shorter OS. Conclusion Tumor size of less than 3 cm and ablation margins greater than 5 mm

  6. Radiofrequency ablation versus electrocautery in tonsillectomy.

    PubMed

    Hall, Daniel J; Littlefield, Philip D; Birkmire-Peters, Deborah P; Holtel, Michael R

    2004-03-01

    The objective of this study was to compare the safety, difficulty of removal, and postoperative pain profile of radiofrequency ablation versus standard electrocautery removal of tonsils. A prospective, blinded study was designed to remove 1 tonsil with each of the 2 methods. Time of operation, estimated blood loss, difficulty of operation, postoperative pain, rate of postoperative hemorrhage, and the patient's preferred technique were evaluated. The operating time was significantly longer (P < 0.007) and the patients reported significantly less pain (P < 0.001) with radiofrequency ablation. There were no differences in blood loss, difficulty of operation, or postoperative hemorrhage rates. The patients preferred the radiofrequency ablation technique (P < 0.001). Radiofrequency ablation is a viable method to remove tonsillar tissue. Operating time for this procedure will likely decrease with experience. There was significantly less pain reported with radiofrequency ablation compared with standard electrocautery.

  7. Real-time iterative monitoring of radiofrequency ablation tumor therapy with 15O-water PET imaging.

    PubMed

    Bao, Ande; Goins, Beth; Dodd, Gerald D; Soundararajan, Anuradha; Santoyo, Cristina; Otto, Randal A; Davis, Michael D; Phillips, William T

    2008-10-01

    A method that provides real-time image-based monitoring of solid tumor therapy to ensure complete tumor eradication during image-guided interventional therapy would be a valuable tool. The short, 2-min half-life of (15)O makes it possible to perform repeated PET imaging at 20-min intervals at multiple time points before and after image-guided therapy. In this study, (15)O-water PET was evaluated as a tool to provide real-time feedback and iterative image guidance to rapidly monitor the intratumoral coverage of radiofrequency (RF) ablation therapy. Tumor RF ablation therapy was performed on head and neck squamous cell carcinoma (SCC) xenograft tumors (length, approximately 23 mm) in 6 nude rats. The tumor in each animal was ablated with RF (1-cm active size ablation catheter, 70 degrees C for 5 min) twice in 2 separate tumor regions with a 20-min separation. The (15)O-water PET images were acquired before RF ablation and after the first RF and second RF ablations using a small-animal PET scanner. In each PET session, approximately 100 MBq of (15)O-water in 1.0 mL of saline were injected intravenously into each animal. List-mode PET images were acquired for 7 min starting 20 s before injection. PET images were reconstructed by 2-dimensional ordered-subset expectation maximization into single-frame images and dynamic images at 10 s/frame. PET images were displayed and analyzed with software. Pre-RF ablation images demonstrate that (15)O-water accumulates in tumors with (15)O activity reaching peak levels immediately after administration. After RF ablation, the ablated region had almost zero activity, whereas the unablated tumor tissue continued to have a high (15)O-water accumulation. Using image feedback, the RF probe was repositioned to a tumor region with residual (15)O-water uptake and then ablated. The second RF ablation in this new region of the tumor resulted in additional ablation of the solid tumor, with a corresponding decrease in activity on the (15)O

  8. In vitro assessment of fiber sweeping angle during Q-switched 532-nm laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop; Kang, Hyun Wook; Ko, Woo Jin; Stinson, Douglas; Choi, Benjamin

    2011-03-01

    Photoselective vaporization of the prostate (PVP) has been widely used to treat benign prostatic hyperplasia (BPH). It is well regarded as a safe and minimally invasive procedure and an alternative to the gold standard transurethral resection of the prostate (TURP). Despite of its greatness, as well aware of, the operative procedure time during the PVP is still prolonged. Such attempts have been tried out in order to shorten the operative time and increase its efficacy. However, scientific study to investigate techniques used during the PVP is still lacking. The objective of this study is to investigate how sweeping angle might affect the PVP performance. Porcine kidneys acquired from a local grocery store were used (N=140). A Q-switched 532-nm GreenLight XPSTM (American Medical Systems, Inc., MN, USA), together with 750- μm core MoXyTM fiber, was set to have power levels of 120 W and 180 W. Treatment speed and sweeping speed were fixed at 2 mm/s and 0.5 sweep/s, respectively. Sweeping angles were varied from 0 (no sweeping motion) to 120 degree. Ablation rate, depth, and coagulation zone were measured and quantified. Tissue ablation rate was peaked at 15 and 30 degree for both 120- and 180-W power levels and dramatically decreased beyond 60 degree. At 180 W, ablation rate increased 20% at 30 degree compared to 0 degree. This study demonstrated that ablation rate could be maximized and was contingent upon sweeping angle.

  9. The effects of Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound ablation on human cadaver breast tissue.

    PubMed

    Merckel, Laura G; Deckers, Roel; Baron, Paul; Bleys, Ronald L A W; van Diest, Paul J; Moonen, Chrit T W; Mali, Willem P Th M; van den Bosch, Maurice A A J; Bartels, Lambertus W

    2013-10-05

    Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound (MR-HIFU) is a promising technique for non-invasive breast tumor ablation. The purpose of this study was to investigate the effects of HIFU ablation and thermal exposure on ex vivo human breast tissue. HIFU ablations were performed in three unembalmed cadaveric breast specimens using a clinical MR-HIFU system. Sonications were performed in fibroglandular and adipose tissue. During HIFU ablation, time-resolved anatomical MR images were acquired to monitor macroscopic tissue changes. Furthermore, the breast tissue temperature was measured using a thermocouple to investigate heating and cooling under HIFU exposure. After HIFU ablation, breast tissue samples were excised and prepared for histopathological analysis. In addition, thermal exposure experiments were performed to distinguish between different levels of thermal damage using immunohistochemical staining. Irreversible macroscopic deformations up to 3.7 mm were observed upon HIFU ablation both in fibroglandular and in adipose tissue. No relationship was found between the sonication power or the maximum tissue temperature and the size of the deformations. Temperature measurements after HIFU ablation showed a slow decline in breast tissue temperature. Histopathological analysis of sonicated regions demonstrated ablated tissue and morphologically complete cell death. After thermal exposure, samples exposed to three different temperatures could readily be distinguished. In conclusion, the irreversible macroscopic tissue deformations in ex vivo human breast tissue observed during HIFU ablation suggest that it might be relevant to monitor tissue deformations during MR-HIFU treatments. Furthermore, the slow decrease in breast tissue temperature after HIFU ablation increases the risk of heat accumulation between successive sonications. Since cell death was inflicted after already 5 minutes at 75°C, MR-HIFU may find a place in non-invasive treatment of

  10. An approach to ablate and pace:AV junction ablation and pacemaker implantation performed concurrently from the same venous access site.

    PubMed

    Issa, Ziad F

    2007-09-01

    Atrioventricular junction (AVJ) ablation combined with permanent pacemaker implantation (the "ablate and pace" approach) remains an acceptable alternative treatment strategy for symptomatic, drug-refractory atrial fibrillation (AF) with rapid ventricular response. This case series describes the feasibility and safety of catheter ablation of the AVJ via a superior vena caval approach performed during concurrent dual-chamber pacemaker implantation. A total of 17 consecutive patients with symptomatic, drug-refractory, paroxysmal AF underwent combined AVJ ablation and dual-chamber pacemaker implantation procedure using a left axillary venous approach. Two separate introducer sheaths were placed into the axillary vein. The first sheath was used for implantation of the pacemaker ventricular lead, which was then connected to the pulse generator. Subsequently, a standard ablation catheter was introduced through the second axillary venous sheath and used for radiofrequency (RF) ablation of the AVJ. After successful ablation, the catheter was withdrawn and the pacemaker atrial lead was advanced through that same sheath and implanted in the right atrium. Catheter ablation of the AVJ was successfully achieved in all patients. The median number of RF applications required to achieve complete AV block was three (range 1-10). In one patient, AV conduction recovered within the first hour after completion of the procedure, and AVJ ablation was then performed using the conventional femoral venous approach. There were no procedural complications. Catheter ablation of the AVJ can be performed successfully and safely via a superior vena caval approach in patients undergoing concurrent dual-chamber pacemaker implantation.

  11. In-Situ Apatite Laser Ablation U-Th-Sm/He Dating, Methods and Challenges

    NASA Astrophysics Data System (ADS)

    Pickering, J. E.; Matthews, W.; Guest, B.; Hamilton, B.; Sykes, C.

    2015-12-01

    In-situ, laser ablation U-Th-Sm/He dating is an emerging technique in thermochronology that has been proven as a means to date zircon and monzonite1-5. In-situ U-Th-Sm/He thermochronology eliminates many of the problems and inconveniences associated with traditional, whole grain methods, including; reducing bias in grain selection based on size, shape and clarity; allowing for the use of broken grains and grains with inclusions; avoiding bad neighbour effects; and eliminating safety hazards associated with dissolution. In-situ apatite laser ablation is challenging due to low concentrations of U and Th and thus a low abundance of radiogenic He. For apatite laser ablation to be effective the ultra-high-vacuum (UHV) line must have very low and consistent background levels of He. To reduce He background, samples are mounted in a UHV stable medium. Our mounting process uses a MicroHePP (Microscope Mounted Heated Platen Press) to press samples into FEP (fluorinated ethylene propylene) bonded to an aluminum backing plate. Samples are ablated using a Resonetics 193 nm excimer laser and liberated He is measured using a quadrupole mass spectrometer on the ASI Alphachron noble gas line; collectively this system is known as the Resochron. The ablated sites are imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol, a custom MatLab algorithm developed to enable precise and unbiased measurement of the ablated pit geometry. We use the well-characterized Durango apatite to demonstrate the accuracy and precision of the method. He liberated from forty-two pits, having volumes between 1700 and 9000 um3, were measured using the Resochron. The ablated sites were imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol. U, Th and Sm concentrations were measured by laser ablation and the U-Th-Sm/He age calculated by standard age equation. An age of 33.8±0.31 Ma was determined and compares well with conventional

  12. Ablative Thermal Protection Systems Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2017-01-01

    This is a presentation of the fundamentals of ablative TPS materials for a short course at TFAWS 2017. It gives an overall description of what an ablator is, the equations that define it, and how to model it.

  13. Designs for optimizing depth of focus and spot size for UV laser ablation

    NASA Astrophysics Data System (ADS)

    Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long

    2010-11-01

    The proposed optical systems are designed for extending the depths of foci (DOF) of UV lasers, which can be exploited in the laser-ablation technologies, such as laser machining and lithography. The designed systems are commonly constructed by an optical module that has at least one aspherical surface. Two configurations of optical module, lens-only and lens-reflector, are presented with the designs of 2-lens and 1-lens-1-reflector demonstrated by commercially optical software. Compared with conventional DOF-enhanced systems, which required the chromatic aberration lenses and the light sources with multiple wavelengths, the proposed designs are adapted to the single-wavelength systems, leading to more economical and efficient systems.

  14. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients.

    PubMed

    Cho, Suhyun; Choi, Min Ju; Zheng, Zhenlong; Goo, Boncheol; Kim, Do-Young; Cho, Sung Bin

    2013-04-01

    Both ablative and non-ablative fractional lasers have been applied to various uncommon hair disorders. The purpose of this study was to demonstrate the clinical effects of fractional laser therapy on the course of primary follicular and perifollicular pathologies and subsequent hair regrowth. A retrospective review of 17 patients with uncommon hair disorders - including ophiasis, autosomal recessive woolly hair/hypotrichosis, various secondary cicatricial alopecias, pubic hypotrichosis, frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens - was conducted. All patients had been treated with non-ablative and/or ablative fractional laser therapies. The mean clinical improvement score in these 17 patients was 2.2, while the mean patient satisfaction score was 2.5. Of the 17 subjects, 12 (70.6%) demonstrated a clinical response to non-ablative and/or ablative fractional laser treatments, including individuals with ophiasis, autosomal recessive woolly hair/hypotrichosis, secondary cicatricial alopecia (scleroderma and pressure-induced alopecia), frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens. Conversely, patients with long-standing ophiasis, surgical scar-induced secondary cicatricial alopecia, and pubic hypotrichosis did not respond to fractional laser therapy. Our findings demonstrate that the use of non-ablative and/or ablative fractional lasers promoted hair growth in certain cases of uncommon hair disorders without any remarkable side effects.

  15. Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface

    NASA Astrophysics Data System (ADS)

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2013-02-01

    Preferential heating of bone due to high ultrasound attenuation may enhance thermal ablation performed with cathetercooled interstitial ultrasound applicators in or near bone. At the same time, thermally and acoustically insulating cortical bone may protect sensitive structures nearby. 3D acoustic and biothermal transient finite element models were developed to simulate temperature and thermal dose distributions during catheter-cooled interstitial ultrasound ablation near bone. Experiments in ex vivo tissues and tissue-mimicking phantoms were performed to validate the models and to quantify the temperature profiles and ablated volumes for various distances between the interstitial applicator and the bone surface. 3D patient-specific models selected to bracket the range of clinical usage were developed to investigate what types of tumors could be treated, applicator configurations, insertion paths, safety margins, and other parameters. Experiments show that preferential heating at the bone surface decreases treatment times compared to when bone is absent and that all tissue between an applicator and bone can be ablated when they are up to 2 cm apart. Simulations indicate that a 5-7 mm safety margin of normal bone is needed to protect (thermal dose < 6 CEM43°C and T < 45°C) sensitive structures behind ablated bone. In 3D patient-specific simulations, tumors 1.0-3.8 cm (L) and 1.3-3.0 cm (D) near or within bone were ablated (thermal dose > 240 CEM43°C) within 10 min without damaging the nearby spinal cord, lungs, esophagus, trachea, or major vasculature. Preferential absorption of ultrasound by bone may provide improved localization, faster treatment times, and larger treatment zones in tumors in and near bone compared to other heating modalities.

  16. Adjuvant percutaneous radiofrequency ablation of feeding artery of hepatocellular carcinoma before treatment

    PubMed Central

    Hou, Yi-Bin; Chen, Min-Hua; Yan, Kun; Wu, Jin-Yu; Yang, Wei

    2009-01-01

    AIM: To evaluate the feasibility and efficacy of percutaneous radiofrequency ablation (RFA) of the feeding artery of hepatocellular carcinoma (HCC) in reducing the blood-flow-induced heat-sink effect of RFA. METHODS: A total of 154 HCC patients with 177 pathologically confirmed hypervascular lesions participated in the study and were randomly assigned into two groups. Seventy-one patients with 75 HCCs (average tumor size, 4.3 ± 1.1 cm) were included in group A, in which the feeding artery of HCC was identified by color Doppler flow imaging, and were ablated with multiple small overlapping RFA foci [percutaneous ablation of feeding artery (PAA)] before routine RFA treatment of the tumor. Eighty-three patients with 102 HCC (average tumor size, 4.1 ± 1.0 cm) were included in group B, in which the tumors were treated routinely with RFA. Contrast-enhanced computed tomography was used as post-RFA imaging, when patients were followed-up for 1, 3 and 6 mo. RESULTS: In group A, feeding arteries were blocked in 66 (88%) HCC lesions, and the size of arteries decreased in nine (12%). The average number of punctures per HCC was 2.76 ± 1.12 in group A, and 3.36 ± 1.60 in group B (P = 0.01). The tumor necrosis rate at 1 mo post-RFA was 90.67% (68/75 lesions) in group A and 90.20% (92/102 lesions) in group B. HCC recurrence rate at 6 mo post-RFA was 17.33% (13/75) in group A and 31.37% (32/102) in group B (P = 0.04). CONCLUSION: PAA blocked effectively the feeding artery of HCC. Combination of PAA and RFA significantly decreased post-RFA recurrence and provided an alternative treatment for hypervascular HCC. PMID:19496195

  17. Feasibility of Real-Time Intraprocedural Temperature Control during Bone Metastasis Thermal Microwave Ablation: A Bicentric Retrospective Study.

    PubMed

    Kastler, Adrian; Krainik, Alexandre; Sakhri, Linda; Mousseau, Mireille; Kastler, Bruno

    2017-03-01

    To evaluate feasibility of using a thermocouple for temperature monitoring during microwave (MW) ablation of metastatic bone disease. This retrospective study comprised 16 patients (8 men with mean age 63 y and 8 women with mean age 59 y) with 18 bone metastases treated with MW ablation using a thermocouple between March 2012 and October 2015. The mean maximum tumor size was 29.5 mm. MW ablation power was set between 15 W and 40 W and applied for 1-6 minutes. Thermocouple placements were as follows: epidural space (n = 7 cases), nerve roots (n = 9 cases), pleura (n = 1), and pericardium (n = 1). The procedure was considered technically successful when the MW and the thermocouple probes were accurately placed and thermoablation was initiated. Clinical success was defined as a 50% visual analog scale score decrease at 1 month as assessed by the operators. Mean MW ablation time was 4.3 minutes with a mean energy of 30 W. Procedural success was 100%. In 16 cases with neural structure monitoring, temperature did not increase > 43°C. In 8 cases, MW ablation had to be discontinued because of temperature reaching 42°C. Efficacy of the procedure in regard to pain was achieved in 17 of 18 ablation sessions at 1 month. Use of a thermocouple during bone MW ablation is a feasible technique and may be a potentially useful tool to help avoid nontarget ablation surrounding tumors. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  18. Comparison of Double-Freeze versus Modified Triple-Freeze Pulmonary Cryoablation and Hemorrhage Volume Using Different Probe Sizes in an In Vivo Porcine Lung.

    PubMed

    Pan, Patrick J; Bansal, Anshuman K; Genshaft, Scott J; Kim, Grace H; Suh, Robert D; Abtin, Fereidoun

    2018-05-01

    To determine size of ablation zone and pulmonary hemorrhage in double-freeze (DF) vs modified triple-freeze (mTF) cryoablation protocols with different probe sizes in porcine lung. In 10 healthy adult pigs, 20 pulmonary cryoablations were performed using either a 2.4-mm or a 1.7-mm probe. Either conventional DF or mTF protocol was used. Serial noncontrast CT scans were performed during ablations. Ablation iceball and hemorrhage volumes were measured and compared between protocols and probe sizes. With 1.7-mm probe, greater peak iceball volume was observed with DF compared with mTF, although difference was not statistically significant (16.1 mL ± 1.9 vs 8.8 mL ± 3.6, P = .07). With 2.4-mm probe, DF and mTF produced similar peak iceball volumes (14.0 mL ± 2.8 vs 14.6 mL ± 2.7, P = .88). Midcycle hemorrhage was significantly larger with DF with the 1.7-mm probe (94.3 mL ± 22.2 vs 19.6 mL ± 2.1, P = .02) and with both sizes combined (93.2 mL ± 17.5 vs. 50.9 mL ± 12.6, P = .048). Rate of hemorrhage increase was significantly higher in DF (10.4 mL/min vs 5.1 mL/min, P = .003). End-cycle hemorrhage was visibly larger in DF compared with mTF across probe sizes, although differences were not statistically significant (P = .14 for 1.7 mm probe, P = .18 for 2.4 mm probe, and P = .07 for both probes combined). Rate of increase in hemorrhage during the last thaw period was not statistically different between DF and mTF (3.0 mL/min vs 2.8 mL/min, P = .992). mTF reduced rate of midcycle hemorrhage compared with DF. With mTF, midcycle hemorrhage was significantly smaller with 1.7-mm probe; although noticeably smaller with 2.4-mm probe, statistical significance was not achieved. Iceball size was not significantly different across both protocols and probe types. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  19. Software-assisted post-interventional assessment of radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Rieder, Christian; Geisler, Benjamin; Bruners, Philipp; Isfort, Peter; Na, Hong-Sik; Mahnken, Andreas H.; Hahn, Horst K.

    2014-03-01

    Radiofrequency ablation (RFA) is becoming a standard procedure for minimally invasive tumor treatment in clinical practice. Due to its common technical procedure, low complication rate, and low cost, RFA has become an alternative to surgical resection in the liver. To evaluate the therapy success of RFA, thorough follow-up imaging is essential. Conventionally, shape, size, and position of tumor and coagulation are visually compared in a side-by-side manner using pre- and post-interventional images. To objectify the verification of the treatment success, a novel software assistant allowing for fast and accurate comparison of tumor and coagulation is proposed. In this work, the clinical value of the proposed assessment software is evaluated. In a retrospective clinical study, 39 cases of hepatic tumor ablation are evaluated using the prototype software and conventional image comparison by four radiologists with different levels of experience. The cases are randomized and evaluated in two sessions to avoid any recall-bias. Self-confidence of correct diagnosis (local recurrence vs. no local recurrence) on a six-point scale is given for each case by the radiologists. Sensitivity, specificity, positive and negative predictive values as well as receiver operating curves are calculated for both methods. It is shown that the software-assisted method allows physicians to correctly identify local tumor recurrence with a higher percentage than the conventional method (sensitivity: 0.6 vs. 0.35), whereas the percentage of correctly identified successful ablations is slightly reduced (specificity: 0.83 vs. 0.89).

  20. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    NASA Astrophysics Data System (ADS)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  1. High-intensity focused ultrasound ablation: an effective bridging therapy for hepatocellular carcinoma patients.

    PubMed

    Cheung, Tan To; Fan, Sheung Tat; Chan, See Ching; Chok, Kenneth S H; Chu, Ferdinand S K; Jenkins, Caroline R; Lo, Regina C L; Fung, James Y Y; Chan, Albert C Y; Sharr, William W; Tsang, Simon H Y; Dai, Wing Chiu; Poon, Ronnie T P; Lo, Chung Mau

    2013-05-28

    To analyze whether high-intensity focused ultrasound (HIFU) ablation is an effective bridging therapy for patients with hepatocellular carcinoma (HCC). From January 2007 to December 2010, 49 consecutive HCC patients were listed for liver transplantation (UCSF criteria). The median waiting time for transplantation was 9.5 mo. Twenty-nine patients received transarterial chemoembolization (TACE) as a bringing therapy and 16 patients received no treatment before transplantation. Five patients received HIFU ablation as a bridging therapy. Another five patients with the same tumor staging (within the UCSF criteria) who received HIFU ablation but not on the transplant list were included for comparison. Patients were comparable in terms of Child-Pugh and model for end-stage liver disease scores, tumor size and number, and cause of cirrhosis. The HIFU group and TACE group showed no difference in terms of tumor size and tumor number. One patient in the HIFU group and no patient in the TACE group had gross ascites. The median hospital stay was 1 d (range, 1-21 d) in the TACE group and two days (range, 1-9 d) in the HIFU group (P < 0.000). No HIFU-related complication occurred. In the HIFU group, nine patients (90%) had complete response and one patient (10%) had partial response to the treatment. In the TACE group, only one patient (3%) had response to the treatment while 14 patients (48%) had stable disease and 14 patients (48%) had progressive disease (P = 0.00). Seven patients in the TACE group and no patient in the HIFU group dropped out from the transplant waiting list (P = 0.559). HIFU ablation is safe and effective in the treatment of HCC for patients with advanced cirrhosis. It may reduce the drop-out rate of liver transplant candidate.

  2. Ablation layers to prevent pitting in laser peening

    DOEpatents

    Hackel, Lloyd A

    2016-08-09

    A hybrid ablation layer that comprises a separate under layer is applied to a material to prevent pitting resulting from laser peening. The underlayer adheres to the surface of the workpiece to be peened and does not have bubbles and voids that exceed an acceptable size. One or more overlayers are placed over and in contact with the underlayer. Any bubbles formed under the over layers are insulated from the surface to be peened. The process significantly reduces the incidence of pits on peened surfaces.

  3. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  4. Toward standardized mapping for left atrial analysis and cardiac ablation guidance

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R.; Linte, C. A.; Packer, D. L.; Robb, R. A.

    2014-03-01

    In catheter-based cardiac ablation, the pulmonary vein ostia are important landmarks for guiding the ablation procedure, and for this reason, have been the focus of many studies quantifying their size, structure, and variability. Analysis of pulmonary vein structure, however, has been limited by the lack of a standardized reference space for population based studies. Standardized maps are important tools for characterizing anatomic variability across subjects with the goal of separating normal inter-subject variability from abnormal variability associated with disease. In this work, we describe a novel technique for computing flat maps of left atrial anatomy in a standardized space. A flat map of left atrial anatomy is created by casting a single ray through the volume and systematically rotating the camera viewpoint to obtain the entire field of view. The technique is validated by assessing preservation of relative surface areas and distances between the original 3D geometry and the flat map geometry. The proposed methodology is demonstrated on 10 subjects which are subsequently combined to form a probabilistic map of anatomic location for each of the pulmonary vein ostia and the boundary of the left atrial appendage. The probabilistic map demonstrates that the location of the inferior ostia have higher variability than the superior ostia and the variability of the left atrial appendage is similar to the superior pulmonary veins. This technique could also have potential application in mapping electrophysiology data, radio-frequency ablation burns, or treatment planning in cardiac ablation therapy.

  5. Histologic comparison of microscopic treatment zones induced by fractional lasers and radiofrequency.

    PubMed

    Shin, Min-Kyung; Choi, Jeong Hwee; Ahn, Soo Beom; Lee, Mu Hyoung

    2014-12-01

    Fractional photothermolysis induces microscopic, localized thermal injury in the skin surrounded by undamaged viable tissue in order to promote wound healing. This study evaluated acute histologic changes following each single pass of various fractional lasers and radiofrequency (RF). Three male domestic swine were used. We used fractional Erbium:glass (Er:glass), Erbium:yttrium-aluminum-garnet (Er:YAG), CO2 lasers, and fractional ablative microplasma RF. We analyzed features and average values of the diameter, depth, and vertical sectional areas treated with each kind of laser and RF. The microscopic treatment zone (MTZ) of fractional Er:glass resulted in separation of dermoepidermal junction with no ablative zone. Fractional Er:YAG provided the most superficial and broad MTZ with little thermal collateral damage. Fractional CO2 resulted in a narrow and deep "cone"-like MTZ. Fractional RF resulted in a superficial and broad "crater"-like MTZ. This study provides the first comparison of MTZs induced by various fractional lasers and RF. These data provide basic information on proper laser and RF options. We think that these findings could be a good reference for information about fractional laser-assisted drug delivery.

  6. Artificial meteor ablation studies - Iron oxides.

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.

    1972-01-01

    Artificial meteor ablation was performed on natural minerals composed predominantly of magnetite and hematite by using an arc-heated plasma stream of air. Analysis indicates that most of the ablated debris was composed of two or more minerals. Wustite, a metastable mineral, was found to occur as a common product. The 'magnetite' sample, which was 80% magnetite, 14% hematite, 4% apatite, and 2% quartz, yielded ablated products consisting of more than 12 different minerals. Magnetite occurred in 91% of the specimens examined, hematite in 16%, and wustite in 30%. The 'hematite' sample, which was 96% hematite and 3% quartz, yielded ablated products consisting of more than 13 different minerals. Hematite occurred in 47% of the specimens examined, magnetite in 60%, and wustite in 28%. The more volatile elements (Si, P, and Cl) were depleted by about 50%. This study has shown that artificially created ablation products from iron oxides exhibit unique properties that can be used for identification.

  7. Composite Configuration Interventional Therapy Robot for the Microwave Ablation of Liver Tumors

    NASA Astrophysics Data System (ADS)

    Cao, Ying-Yu; Xue, Long; Qi, Bo-Jin; Jiang, Li-Pei; Deng, Shuang-Cheng; Liang, Ping; Liu, Jia

    2017-11-01

    The existing interventional therapy robots for the microwave ablation of liver tumors have a poor clinical applicability with a large volume, low positioning speed and complex automatic navigation control. To solve above problems, a composite configuration interventional therapy robot with passive and active joints is developed. The design of composite configuration reduces the size of the robot under the premise of a wide range of movement, and the robot with composite configuration can realizes rapid positioning with operation safety. The cumulative error of positioning is eliminated and the control complexity is reduced by decoupling active parts. The navigation algorithms for the robot are proposed based on solution of the inverse kinematics and geometric analysis. A simulation clinical test method is designed for the robot, and the functions of the robot and the navigation algorithms are verified by the test method. The mean error of navigation is 1.488 mm and the maximum error is 2.056 mm, and the positioning time for the ablation needle is in 10 s. The experimental results show that the designed robot can meet the clinical requirements for the microwave ablation of liver tumors. The composite configuration is proposed in development of the interventional therapy robot for the microwave ablation of liver tumors, which provides a new idea for the structural design of medical robots.

  8. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  9. Persistent Atrial Fibrillation Ablation using the Tip-Versatile Ablation Catheter.

    PubMed

    Davies, Edward J; Clayton, Ben; Lines, Ian; Haywood, Guy A

    2016-07-01

    The mechanisms by which persistent atrial fibrillation (PsAF) develops are incompletely understood. Consequently, the optimal strategy for the ablative management of PsAF remains debated. Current methods are often time consuming, complex and non-reproducible. We assessed the Tip-Versatile Ablation Catheter (T-VAC) technique, a rapidly delivered, empirical technique based on the box-set concept using duty-cycled linear catheter ablation technology. Forty-four procedures in 40 patients undergoing PsAF ablation with the novel technique were prospectively entered onto a database: 27 de novo. Primary endpoint was freedom from arrhythmia at over two-year follow-up. Secondary endpoints were time to first arrhythmia recurrence, freedom from atrial fibrillation (AF) on and off antiarrhythmic drugs (AAD), procedural and fluoroscopy duration and complication rate. At mean follow-up of 33 months, absolute freedom from arrhythmia recurrence was 45% in the de novo group. Overall, at 33 (IQR 24-63) months, 60% of de novo patients were in sustained normal sinus rhythm and a further 15% reported only occasional paroxysms of AF at long-term follow-up. Procedure time was 192±25 mins, total energy delivered 2239±883s and fluoroscopy time was 60±10mins. In selected patients with persistent AF, a long-term rate of 60% arrhythmia free survival off AAD can be achieved using this novel T-VAC technique. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  10. Determining Distributed Ablation over Dirty Ice Areas of Debris-covered Glaciers Using a UAV-SfM Approach

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.

    2017-12-01

    Dirty ice areas (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in areas of dirty ice is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the ice. However, in areas of dirty ice, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty ice ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty ice characteristics with a view to informing the construction of dirty ice melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty ice on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty ice

  11. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  12. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  13. Hard tissue ablation with a spray-assisted mid-IR laser

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  14. Modeling the Effects of Duration and Size of the Control Zones on the Consequences of a Hypothetical African Swine Fever Epidemic in Denmark

    PubMed Central

    Halasa, Tariq; Bøtner, Anette; Mortensen, Sten; Christensen, Hanne; Wulff, Sisse Birk; Boklund, Anette

    2018-01-01

    African swine fever (ASF) is a notifiable infectious disease. The disease is endemic in certain regions in Eastern Europe constituting a risk of ASF spread toward Western Europe. Therefore, as part of contingency planning, it is important to continuously explore strategies that can effectively control an epidemic of ASF. A previously published and well documented simulation model for ASF virus spread between herds was used to examine the epidemiologic and economic impacts of the duration and size of the control zones around affected herds. In the current study, scenarios were run, where the duration of the protection and surveillance zones were reduced from 50 and 45 days to 35 and 25 days or to 35 and 25 days, respectively. These scenarios were run with or without enlargement of the surveillance zone around detected herds from 10 to 15 km. The scenarios were also run with only clinical or clinical and serological surveillance of herds within the zones. Sensitivity analysis was conducted on influential input parameters in the model. The model predicts that reducing the duration of the protection and surveillance zones has no impact on the epidemiological consequences of the epidemics, while it may result in a substantial reduction in the total economic losses. In addition, the model predicts that increasing the size of the surveillance zone from 10 to 15 km may reduce both the epidemic duration and the total economic losses, in case of large epidemics. The ranking of the control strategies by the total costs of the epidemics was not influenced by changes of input parameters in the sensitivity analyses. PMID:29616228

  15. Fractional ablative laser skin resurfacing: a review.

    PubMed

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  16. Comparative evaluation of three-dimensional Gd-EOB-DTPA-enhanced MR fusion imaging with CT fusion imaging in the assessment of treatment effect of radiofrequency ablation of hepatocellular carcinoma.

    PubMed

    Makino, Yuki; Imai, Yasuharu; Igura, Takumi; Hori, Masatoshi; Fukuda, Kazuto; Sawai, Yoshiyuki; Kogita, Sachiyo; Fujita, Norihiko; Takehara, Tetsuo; Murakami, Takamichi

    2015-01-01

    To assess the feasibility of fusion of pre- and post-ablation gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) to evaluate the effects of radiofrequency ablation (RFA) of hepatocellular carcinoma (HCC), compared with similarly fused CT images This retrospective study included 67 patients with 92 HCCs treated with RFA. Fusion images of pre- and post-RFA dynamic CT, and pre- and post-RFA Gd-EOB-DTPA-MRI were created, using a rigid registration method. The minimal ablative margin measured on fusion imaging was categorized into three groups: (1) tumor protruding outside the ablation zone boundary, (2) ablative margin 0-<5.0 mm beyond the tumor boundary, and (3) ablative margin ≥5.0 mm beyond the tumor boundary. The categorization of minimal ablative margins was compared between CT and MR fusion images. In 57 (62.0%) HCCs, treatment evaluation was possible both on CT and MR fusion images, and the overall agreement between them for the categorization of minimal ablative margin was good (κ coefficient = 0.676, P < 0.01). MR fusion imaging enabled treatment evaluation in a significantly larger number of HCCs than CT fusion imaging (86/92 [93.5%] vs. 62/92 [67.4%], P < 0.05). Fusion of pre- and post-ablation Gd-EOB-DTPA-MRI is feasible for treatment evaluation after RFA. It may enable accurate treatment evaluation in cases where CT fusion imaging is not helpful.

  17. Ablative skin resurfacing with a novel microablative CO2 laser.

    PubMed

    Gotkin, Robert H; Sarnoff, Deborah S; Cannarozzo, Giovanni; Sadick, Neil S; Alexiades-Armenakas, Macrene

    2009-02-01

    Carbon dioxide (CO2) laser skin resurfacing has been a mainstay of facial rejuvenation since its introduction in the mid 1990s. Recently, a new generation of fractional or microablative CO2 lasers has been introduced to the marketplace. According to the concept of fractional photothermolysis, these lasers ablate only a fraction of the epidermal and dermal architecture in the treatment area. An array of microscopic thermal wounds is created that ablates the epidermis and dermis within very tiny zones; adjacent to these areas, the epidermis and dermis are spared. This microablative process of laser skin resurfacing has proven safe and effective not only for facial rejuvenation, but elsewhere on the body as well. It is capable of improving wrinkles, acne scars, and other types of atrophic scars and benign pigmented lesions associated with elastotic, sun-damaged skin. Because of the areas of spared epidermis and dermis inherent in a procedure that employs fractional photothermolysis, healing is more rapid compared to fully ablative CO2 laser skin resurfacing and downtime is proportionately reduced. A series of 32 consecutive patients underwent a single laser resurfacing procedure with the a new microablative CO2 laser. All patients were followed for a minimum of 6 months and were asked to complete patient satisfaction questionnaires; a 6 month postoperative photographic evaluation by an independent physician, not involved in the treatment, was also performed. Both sets of data were graded and reported on a quartile scale. Results demonstrated greater than 50% improvement in almost all patients with those undergoing treatment for wrinkles, epidermal pigment or solar elastosis deriving the greatest change for the better (>75%).

  18. Alternate energy sources for catheter ablation.

    PubMed

    Wang, P J; Homoud, M K; Link, M S; Estes III, N A

    1999-07-01

    Because of the limitations of conventional radiofrequency ablation in creating large or linear lesions, alternative energy sources have been used as possible methods of catheter ablation. Modified radiofrequency energy, cryoablation, and microwave, laser, and ultrasound technologies may be able to create longer, deeper, and more controlled lesions and may be particularly suited for the treatment of ventricular tachycardias and for linear atrial ablation. Future studies will establish the efficacy of these new and promising technologies.

  19. Emergency catheter ablation in critical patients

    PubMed Central

    Tebbenjohanns, Jürgen; Rühmkorf, Klaus

    2010-01-01

    Emergency catheter ablation is justified in critical patients with drug-refractory life-threatening arrhythmias. The procedure can be used for ablation of an accessory pathway in preexcitation syndrome with high risk of ventricular fibrillation and in patients with shock due to ischemic cardiomyopathy and incessant ventricular tachycardia. Emergency catheter ablation can also be justified in patients with an electrical storm of the implanted cardioverter-defibrillator or in patients with idiopathic ventricular fibrillation. PMID:20606793

  20. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  1. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  2. Ablation properties of carbon/carbon composites with tungsten carbide

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Huang, Baiyun; Zuo, Jinlv

    2009-02-01

    The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO 3, and denudation of WC, WO 3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO 3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.

  3. Comparative Effectiveness Review of Cooled Versus Pulsed Radiofrequency Ablation for the Treatment of Knee Osteoarthritis: A Systematic Review.

    PubMed

    Gupta, Anita; Huettner, Daniel P; Dukewich, Matthew

    2017-03-01

    Patients suffering from osteoarthritis of the knee and patients post total knee arthroplasty often develop refractory, disabling chronic knee pain. Radiofrequency ablation, including conventional, pulsed, and cooled, has recently become more accepted as an interventional technique to manage chronic knee pain in patients who have failed conservative treatment or who are not suitable candidates for surgical treatment. This systematic review aimed to analyze published studies on radiofrequency ablation to provide an overview of the current knowledge regarding variations in procedures, nerve targets, adverse events, and temporal extent of clinical benefit. A systematic review of published studies investigating conventional, pulsed, or cooled radiofrequency ablation in the setting of chronic knee pain. Medline, Google Scholar, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were reviewed for studies on radiofrequency ablation for patients with chronic knee pain through July 29, 2016. From the studies, the procedural details, outcomes after treatment, follow-up points, and complications were compiled and analyzed in this literature review. Included studies were analyzed for clinical relevance and strength of evidence was graded using either the NHLBI Quality assessment of controlled intervention studies or the NHLBI quality assessment for before-after (pre-post) studies with no control group. Seventeen total publications were identified in the search, including articles investigating conventional, pulsed, or cooled radiofrequency ablation. These studies primarily targeted either the genicular nerves or used an intraarticular approach. Of the studies, 5 were small-sized randomized controlled trials, although one involved diathermy radiofrequency ablation. There were 8 retrospective or prospective case series and 4 case reports. Utilizing the strength of evidence grading, there is a low level of certainty to suggest a superior benefit between

  4. Optimal contact forces to minimize cardiac perforations before, during, and/or after radiofrequency or cryothermal ablations.

    PubMed

    Quallich, Stephen G; Van Heel, Michael; Iaizzo, Paul A

    2015-02-01

    Catheter perforations remain a major clinical concern during ablation procedures for treatment of atrial arrhythmias and may lead to life-threatening cardiac tamponade. Radiofrequency (RF) ablation alters the biomechanical properties of cardiac tissue, ultimately allowing for perforation to occur more readily. Studies on the effects of cryoablation on perforation force as well as studies defining the perforation force of human tissue are limited. The purpose of this study was to investigate the required force to elicit perforation of cardiac atrial tissue after or during ablation procedures. Effects of RF or cryothermal ablations on catheter perforation forces for both swine (n = 83 animals, 530 treatments) and human (n = 8 specimens, 136 treatments) cardiac tissue were investigated. Overall average forces resulting in perforation of healthy unablated tissue were 406g ± 170g for swine and 591g ± 240g for humans. Post-RF ablation applications considerably reduced these forces to 246g ± 118g for swine and 362 ± 185g for humans (P <.001). Treatments with cryoablation did not significantly alter forces required to induce perforations. Decreasing catheter sizes resulted in a reduction in forces required to perforate the atrial wall (P <.001). Catheter perforations occurred over an array of contact forces with a minimum of 38g being observed. The swine model likely underestimates the required perforation forces relative to those of human tissues. We provide novel insights related to the comparative effects of RF and cryothermal ablations on the potential for inducing undesired punctures, with RF ablation reducing perforation force significantly. These data are insightful for physicians performing ablation procedures as well as for medical device designers. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.

    2017-03-01

    Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal

  6. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  7. Surf Zone Sediment Size Variation, Morphodynamics, and Hydrodynamics During Sea/Land Breeze and El-Norte Storm in Sisal, Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Alrushaid, T.; Figlus, J.; Torres-Freyermuth, A.; Puleo, J. A.; Dellapenna, T. M.

    2016-02-01

    Coastlines around the world are under ever-increasing pressure due to population trends, commerce, and geophysical processes like tropical storms and erosion. This multi-institutional field campaign was conducted to improve our understanding of complex nearshore processes under varying forcing conditions on a microtidal, sandy beach located in Sisal, Yucatan from 3/27 to 4/12/2014. Hydrodynamics, morphodynamics, and textural variability were investigated during: (1) a cold front event (referred to as El-Norte); (2) land breeze (LB); and (3) sea breeze (SB). The instrumentation layout included three surf/swash zone cross-shore transects where water elevation, suspended sediment concentration, bed load, and current velocities were measured, as well as several offshore ADCP for hydrodynamic measurements. TKE, τb, ɛ and were estimated using the data obtained from surf zone ADV. In addition, Hs and Tsin the surf zone were computed using measurements from ADV pressure sensors, while a separate pressure transducer was used to obtain water free-surface elevation within the swash zone. During SB cycles the study area experienced wind velocities reaching up to 12ms-1, and 15ms-1 during El-Norte. Elevated wind stress during El-Norte resulted in Hs of 1.5m and 0.6m in water depths of 10m and 0.4m, respectively. Surface sediment grab samples during SB/LB cycles showed that the swash zone had a moderately well sorted distribution with a mean grain size of 0.5mm, while poor sorting and a mean grain size of 0.7mm were found during El-Norte. Additionally, measured bathymetry data showed evidence for offshore sandbar migration during strong offshore currents (0.4ms-1) during El-Norte, while onshore sandbar migration was evident during SB/LB periods (0.3ms-1 and 0.1ms-1, respectively). This study highlights how different weather forcing conditions affect hydrodynamics, morphodynamics, and textural variability on a sandy beach. Aside from furthering our knowledge on these complex

  8. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    PubMed

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  9. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis

    PubMed Central

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B.

    2009-01-01

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5–E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1–independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis. PMID:19416849

  10. Radiofrequency ablation of the pancreas with and without intraluminal duodenal cooling in a porcine model.

    PubMed

    Fegrachi, Samira; Molenaar, I Quintus; Klaessens, John H; Besselink, Marc G; Offerhaus, Johan A; van Hillegersberg, Richard

    2013-10-01

    To determine the short-term outcome of radiofrequency ablation (RFA) of pancreatic tissue near the duodenum and portomesenteric vessels (PMV) in a porcine model with and without intraluminal duodenal cooling. RFA has been proposed as a new treatment strategy in patients with unresectable locally advanced pancreatic cancer. RFA may cause thermal damage to the duodenum and vascular structures, but these risks and potential protective measures have never been systematically addressed. Intraluminal duodenal cooling during RFA could prevent thermal damage to the duodenum. RFA was performed in 11 pigs during laparotomy with a bipolar probe of 30 mm active length at a power of 30 W until a total energy of 15 kJ was administered. The RFA probe was inserted in the pancreas at 5 or 15 mm from the duodenum, PMV, and in the pancreatic tail. RFA near the duodenum was performed with and without intraluminal duodenal cooling using 100 mL/min saline of 5°C. Histopathologic assessment was performed. The maximum RFA-induced temperature was 92°C. RFA with one single probe induced adequate ablation lesions with a diameter of 20 mm over a length of 30 mm. Without duodenal cooling, RFA induced duodenal thermal damage, whereas with duodenal cooling, no damage was observed. RFA at 15 mm from the PMV resulted in minimal superficial focal vascular damage, without thrombosis or hemorrhage. RFA provides adequate ablation zones in the pancreas of the porcine. Thermal damage to the duodenum can be prevented by intraluminal duodenal cooling without loss of ablation effectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  12. Biofunctionalized Hybrid Magnetic Gold Nanoparticles as Catalysts for Photothermal Ablation of Colorectal Liver Metastases.

    PubMed

    White, Sarah B; Kim, Dong-Hyun; Guo, Yang; Li, Weiguo; Yang, Yihe; Chen, Jeane; Gogineni, Venkateswara R; Larson, Andrew C

    2017-12-01

    Purpose To demonstrate that anti-MG1 conjugated hybrid magnetic gold nanoparticles (HNPs) act as a catalyst during photothermal ablation (PTA) of colorectal liver metastases, and thus increase ablation zones. Materials and Methods All experiments were performed with approval of the institutional animal care and use committee. Therapeutic and diagnostic multifunctional HNPs conjugated with anti-MG1 monoclonal antibodies were synthesized, and the coupling efficiency was determined. Livers of 19 Wistar rats were implanted with 5 × 10 6 rat colorectal liver metastasis cell line cells. The rats were divided into three groups according to injection: anti-MG1-coupled HNPs (n = 6), HNPs only (n = 6), and cells only (control group, n = 7). Voxel-wise R2 and R2* magnetic resonance (MR) imaging measurements were obtained before, immediately after, and 24 hours after injection. PTA was then performed with a fiber-coupled near-infrared (808 nm) diode laser with laser power of 0.56 W/cm 2 for 3 minutes, while temperature changes were measured. Tumors were assessed for necrosis with hematoxylin-eosin staining. Organs were analyzed with inductively coupled plasma mass spectrometry to assess biodistribution. Therapeutic efficacy and tumor necrosis area were compared by using a one-way analysis of variance with post hoc analysis for statistically significant differences. Results The coupling efficiency was 22 μg/mg (55%). Significant differences were found between preinfusion and 24-hour postinfusion measurements of both T2 (repeated measures analysis of variance, P = .025) and T2* (P < .001). Significant differences also existed for T2* measurements between the anti-MG1 HNP and HNP-only groups (P = .034). Mean temperature ± standard deviation with PTA in the anti-MG1-coated HNP, HNP, and control groups was 50.2°C ± 7.8, 51°C ± 4.4, and 39.5°C ± 2.0, respectively. Inductively coupled plasma mass spectrometry revealed significant tumor targeting and splenic sequestration

  13. Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment

    NASA Astrophysics Data System (ADS)

    Darwish, Ayman M.; Eisa, Wael H.; Shabaka, Ali A.; Talaat, Mohamed H.

    2016-01-01

    Pulsed laser ablation in a liquid medium is a promising technique as compared to the other synthetic methods to synthesize different materials in nanoscale form. The laser parameters (e.g., wavelength, pulse width, fluence, and repetition frequency) and liquid medium (e.g., aqueous/nonaqueous liquid or solution with surfactant) were tightly controlled during and after the ablation process. By optimizing these parameters, the particle size and distribution of materials can be adjusted. The UV-vis absorption spectra and weight changes of targets were used for the characterization and comparison of products.

  14. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  15. Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation.

    PubMed

    Yamada, Takumi; Maddox, William R; McElderry, H Thomas; Doppalapudi, Harish; Plumb, Vance J; Kay, G Neal

    2015-04-01

    Idiopathic ventricular arrhythmias (VAs) originating from the left ventricular outflow tract (LVOT) sometimes require catheter ablation from the endocardial and epicardial sides for their elimination, suggesting the presence of intramural VA foci. This study investigated the efficacy of sequential and simultaneous unipolar radiofrequency catheter ablation from the endocardial and epicardial sides in treating intramural LVOT VAs. Fourteen consecutive LVOT VAs, which required sequential or simultaneous irrigated unipolar radiofrequency ablation from the endocardial and epicardial sides for their elimination, were studied. The first ablation was performed at the site with the earliest local ventricular activation and best pace map on the endocardial or epicardial side. When the first ablation was unsuccessful, the second ablation was delivered on the other surface. If this sequential unipolar ablation failed, simultaneous unipolar ablation from both sides was performed. The first ablation was performed on the epicardial side in 9 VAs and endocardial side in 5 VAs. The intramural LVOT VAs were successfully eliminated by the sequential (n=9) or simultaneous (n=5) unipolar catheter ablation. Simultaneous ablation was most likely to be required for the elimination of the VAs when the distance between the endocardial and epicardial ablation sites was >8 mm and the earliest local ventricular activation time relative to the QRS onset during the VAs of <-30 ms was recorded at those ablation sites. LVOT VAs originating from intramural foci could usually be eliminated by sequential unipolar radiofrequency ablation and sometimes required simultaneous ablation from both the endocardial and epicardial sides. © 2015 American Heart Association, Inc.

  16. In vivo comparison of simultaneous versus sequential injection technique for thermochemical ablation in a porcine model.

    PubMed

    Cressman, Erik N K; Shenoi, Mithun M; Edelman, Theresa L; Geeslin, Matthew G; Hennings, Leah J; Zhang, Yan; Iaizzo, Paul A; Bischof, John C

    2012-01-01

    To investigate simultaneous and sequential injection thermochemical ablation in a porcine model, and compare them to sham and acid-only ablation. This IACUC-approved study involved 11 pigs in an acute setting. Ultrasound was used to guide placement of a thermocouple probe and coaxial device designed for thermochemical ablation. Solutions of 10 M acetic acid and NaOH were used in the study. Four injections per pig were performed in identical order at a total rate of 4 mL/min: saline sham, simultaneous, sequential, and acid only. Volume and sphericity of zones of coagulation were measured. Fixed specimens were examined by H&E stain. Average coagulation volumes were 11.2 mL (simultaneous), 19.0 mL (sequential) and 4.4 mL (acid). The highest temperature, 81.3°C, was obtained with simultaneous injection. Average temperatures were 61.1°C (simultaneous), 47.7°C (sequential) and 39.5°C (acid only). Sphericity coefficients (0.83-0.89) had no statistically significant difference among conditions. Thermochemical ablation produced substantial volumes of coagulated tissues relative to the amounts of reagents injected, considerably greater than acid alone in either technique employed. The largest volumes were obtained with sequential injection, yet this came at a price in one case of cardiac arrest. Simultaneous injection yielded the highest recorded temperatures and may be tolerated as well as or better than acid injection alone. Although this pilot study did not show a clear advantage for either sequential or simultaneous methods, the results indicate that thermochemical ablation is attractive for further investigation with regard to both safety and efficacy.

  17. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  18. Approaches to catheter ablation for persistent atrial fibrillation.

    PubMed

    Verma, Atul; Jiang, Chen-yang; Betts, Timothy R; Chen, Jian; Deisenhofer, Isabel; Mantovan, Roberto; Macle, Laurent; Morillo, Carlos A; Haverkamp, Wilhelm; Weerasooriya, Rukshen; Albenque, Jean-Paul; Nardi, Stefano; Menardi, Endrj; Novak, Paul; Sanders, Prashanthan

    2015-05-07

    Catheter ablation is less successful for persistent atrial fibrillation than for paroxysmal atrial fibrillation. Guidelines suggest that adjuvant substrate modification in addition to pulmonary-vein isolation is required in persistent atrial fibrillation. We randomly assigned 589 patients with persistent atrial fibrillation in a 1:4:4 ratio to ablation with pulmonary-vein isolation alone (67 patients), pulmonary-vein isolation plus ablation of electrograms showing complex fractionated activity (263 patients), or pulmonary-vein isolation plus additional linear ablation across the left atrial roof and mitral valve isthmus (259 patients). The duration of follow-up was 18 months. The primary end point was freedom from any documented recurrence of atrial fibrillation lasting longer than 30 seconds after a single ablation procedure. Procedure time was significantly shorter for pulmonary-vein isolation alone than for the other two procedures (P<0.001). After 18 months, 59% of patients assigned to pulmonary-vein isolation alone were free from recurrent atrial fibrillation, as compared with 49% of patients assigned to pulmonary-vein isolation plus complex electrogram ablation and 46% of patients assigned to pulmonary-vein isolation plus linear ablation (P=0.15). There were also no significant differences among the three groups for the secondary end points, including freedom from atrial fibrillation after two ablation procedures and freedom from any atrial arrhythmia. Complications included tamponade (three patients), stroke or transient ischemic attack (three patients), and atrioesophageal fistula (one patient). Among patients with persistent atrial fibrillation, we found no reduction in the rate of recurrent atrial fibrillation when either linear ablation or ablation of complex fractionated electrograms was performed in addition to pulmonary-vein isolation. (Funded by St. Jude Medical; ClinicalTrials.gov number, NCT01203748.).

  19. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  20. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    PubMed

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.