Sample records for ablative fractional co2

  1. Fractional CO2 resurfacing: has it replaced ablative resurfacing techniques?

    PubMed

    Duplechain, Jesse Kevin

    2013-05-01

    The author uses the pulsed ablative CO2 laser regularly for skin rejuvenation. This decision is based on the gold standard status of the CO2 modality and an innovative aftercare treatment shown in the author's practice to greatly reduce the complications of ablative pulsed CO2 laser treatment. Depending on the patient and the severity of the skin condition, the author customizes each treatment, which may also include fractional CO2 lasers, fat grafting, facelifting, or any combination of these techniques. This article presents a detailed description of the evolution of skin rejuvenation with lasers and the current role of lasers as an adjunct to face and necklift surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Rapid fibrin plug formation within cutaneous ablative fractional CO2 laser lesions.

    PubMed

    Kositratna, Garuna; Evers, Michael; Sajjadi, Amir; Manstein, Dieter

    2016-02-01

    Ablative fractional laser procedures have been shown to facilitate topical drug delivery into the skin. Past studies have mainly used ex vivo models to demonstrate enhanced drug delivery and in vivo studies have investigated laser created channels over a time course of days and weeks rather than within the first few minutes and hours after exposures. We have noticed rapid in vivo fibrin plug formation within ablative fractional laser lesions impairing passage through the laser created channels. In vivo laser exposures were performed in a porcine model. A fractional CO2 laser (AcuPulse™ system, AcuScan 120™ handpiece, Lumenis, Inc., Yokneam, Israel) was programmed in quasi-continuous wave (QCW) mode, at 40W, 50 mJ per pulse, 5% coverage, nominal 120 µm spot size, 8 × 8 mm square pattern, 169 MTZs per scan. Six millimeters punch biopsies were procured at 0, 2, 5, 10, 15, 30, 60, 90 minutes after completion of each scan, then fixed in 10% formalin. 12 repeats were performed of each time point. Skin samples were processed for serial vertically cut paraffin sections (5 μm collected every 25 μm) then H&E and special immunohistochemistry staining for fibrin and platelet. Dimensions of Microscopic Treatment Zones (MTZs) and extent of fibrin plug were assessed and quantified histologically. Ex vivo laser exposures of the identical laser parameter were performed on porcine and human skin at different storage conditions. Histology procured at various predetermined time intervals after in vivo fractional CO2 laser exposures revealed a rapidly forming fibrin plug initiating at the bottom of the MTZ lesions. At longer time intervals, the fibrin plug was extending towards the superficial sections. Within the first 5 minutes, more than 25% length of the entire laser-ablated channel was filled with a fibrin plug. With increased time intervals, the cavity was progressively filled with a fibrin plug. At 90 minutes, more than 90% length of the entire laser-ablated channel was

  3. Ablative fractional laser treatment for hypertrophic scars: comparison between Er:YAG and CO2 fractional lasers.

    PubMed

    Choi, Jae Eun; Oh, Ga Na; Kim, Jong Yeob; Seo, Soo Hong; Ahn, Hyo Hyun; Kye, Young Chul

    2014-08-01

    Nonablative fractional photothermolysis has been reported to show early promise in the treatment of hypertrophic scars, but there are few reports on ablative fractional photothermolysis for the treatment of hypertrophic scars. To evaluate and compare the efficacy and safety of Er:YAG fractional laser (EYFL) and CO2 fractional laser (CO2FL) for treatment of hypertrophic scars. Thirteen patients with hypertrophic scars were treated with 2,940 nm EYFL, and ten were treated with 10,600 nm CO2FL. An independent physician evaluator assessed the treatment outcomes using Vancouver scar scale (VSS) and 5-point grading scale (grade 0, no improvement; grade 1, 1-25%; grade 2, 26-50%; grade 3, 51-75%; grade 4, 76-100% improvement). Patients are queried about their subjective satisfaction with the treatment outcomes. After the final treatment, average percentage changes of VSS were 28.2% for EYFL and 49.8% for CO2FL. Improvement was evident in terms of pliability, while insignificant in terms of vascularity and pigmentation. Based on physician's global assessment, mean grade of 1.8 for EYFL and 2.7 for CO2FL was achieved. Patient's subjective satisfaction scores paralleled the physician's objective evaluation. CO2FL is a potentially effective and safe modality for the treatment of hypertrophic scars, particularly in terms of pliability.

  4. Laser treatment of solar lentigines on dorsum of hands: QS Ruby laser versus ablative CO2 fractional laser - a randomized controlled trial.

    PubMed

    Schoenewolf, Nicola L; Hafner, Jürg; Dummer, Reinhard; Bogdan Allemann, Inja

    2015-04-01

    Lentigines solares (LS) on the dorsum of hands are often esthetically disturbing. Q-switched ruby laser treatment is highly effective in the treatment of these lesions. Ablative fractional photothermolysis may be a suitable alternative. We compared the Q-switched ruby laser with ablative CO2 fractional photothermolysis for the treatment of solar lentigines. To evaluate the efficacy and side-effects of 694nm Q-switched ruby laser (Sinon) with the ablative 10,600nm CO2 fractional laser (Quantel Excel O2) in an intra-individual side-to-side comparison in the treatment of LS on the dorsum of hands. Eleven patients were included in the study. The hands of each patient were randomized for treatment with the two laser systems. Three treatment sessions were scheduled at weeks 0, 4 and 8. Evaluations by patients, treating physician and blinded experts were scheduled at weeks 0, 4, 8, 16 and 24. The Q-switched ruby laser was significantly more efficacious than the ablative CO2 fractional laser for removing LS on the dorsum of hands (p = 0.01). In this first study on this topic, the Q-switched ruby laser was superior to the ablative CO2 fractional laser in the treatment of lentigines solares on the dorsum of hands.

  5. Analysis of incidence of bulla formation after tattoo treatment using the combination of the picosecond Alexandrite laser and fractionated CO2 ablation.

    PubMed

    Au, Sonoa; Liolios, Ana M; Goldman, Mitchel P

    2015-02-01

    The picosecond Alexandrite laser has shown increased efficacy in tattoo removal in comparison to Q-switched lasers. However, bulla formation is a well-known and expected side effect of this novel treatment and causes patient discomfort. To analyze the incidence of bulla formation after tattoo treatment using the combination of the picosecond Alexandrite laser and fractionated CO2 ablation. This is a retrospective chart review to determine the incidence of bulla formation after laser tattoo removal in 95 patients who were treated with either with the picosecond Alexandrite laser alone or in combination with fractional CO2 ablation. Twenty-six patients (32%) treated with the picosecond laser alone experienced blistering, whereas none of the patients treated with the combination of the picosecond laser and fractionated CO2 ablation experienced blistering. The difference in incidence of bulla formation between the 2 groups was found to be statistically significant (p < .05). This study shows a significant decrease in bulla formation associated with tattoo treatment when fractionated CO2 ablation is added to the picosecond Alexandrite laser, which is consistent with observations from a previous case series. This is important because decreasing extensive blistering likely results in increased patient satisfaction and willingness to return for future treatments.

  6. Fractional CO2 Laser Resurfacing Complications

    PubMed Central

    Ramsdell, William M.

    2012-01-01

    Fractionated CO2 laser technology has allowed physicians to resurface patients with a lower rate of complications than nonfractionated ablative laser treatment. Unfortunately, adverse effects can still occur even with the best technology and physician care. Complication prevention, detection, and treatment are an important part of a physician's ability to provide the best result when treating a patient with fractionated CO2 resurfacing. PMID:23904822

  7. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    PubMed

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  8. Fractional CO2 lasers contribute to the treatment of stable non-segmental vitiligo.

    PubMed

    Yuan, Jinping; Chen, Hongqiang; Yan, Ru; Cui, Shaoshan; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2016-12-01

    Stable non-segmental vitiligo is often resistant to conventional therapies. The purpose of this study was to investigate the effect of three types of fractional lasers in the treatment of stable non-segmental vitiligo. Twenty patients were enrolled in the study. The vitiligo lesions of each patient were divided into four treatment parts, and all parts were treated with narrowband ultraviolet-B (NB-UVB). Three of the four parts were respectively treated with three types of fractional lasers (two ablative 10,600-nm CO 2 lasers and one non-ablative 1,565-nm laser), followed by topical betamethasone solution application. The treatment period lasted six months. Efficacy and satisfaction were respectively assessed by dermatologists and patients. The ablative CO 2 lasers, in combination with topical betamethasone solution and NB-UVB, achieved marked to excellent improvement on white patches assessed by dermatologists. Patients showed high satisfaction scores for the treatments. The non-ablative 1,565-nm fractional laser did not provide any further benefit in the treatment of vitiligo. No severe adverse events developed for any of the treatments. The treatment protocol with ablative CO 2 lasers, in combination with topical betamethasone solution and NB-UVB, was suitable for stable non-segmental vitiligo. For vitiligo, the ablative fractional CO 2 laser is more effective than the non-ablative fractional laser.

  9. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology

    PubMed Central

    Omi, Tokuya; Numano, Kayoko

    2014-01-01

    Background: Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. Rationale: The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. Conclusions: The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future. PMID:24771971

  10. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology.

    PubMed

    Omi, Tokuya; Numano, Kayoko

    2014-03-27

    Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future.

  11. Fractional CO2 Laser: From Skin Rejuvenation to Vulvo-Vaginal Reshaping.

    PubMed

    Filippini, Maurizio; Del Duca, Ester; Negosanti, Francesca; Bonciani, Diletta; Negosanti, Luca; Sannino, Mario; Cannarozzo, Giovanni; Nisticò, Steven Paul

    2017-03-01

    The CO 2 laser has become the gold standard treatment in dermatologic surgery for the treatment of a large number of skin and mucosal lesions. The introduction of the fractional micro-ablative technology represented an integration to the ablative resurfacing technique, reducing the healing time and the side effects. Vaginal rejuvenation performed with this technique is a minimally invasive procedure that stimulates internal tissues of the female lower genital tract to regenerate the mucosa, improving tissue trophism and restoring the correct functionality. In our experience, 386 menopausal women affected with vulvo-vaginal atrophy (VVA) were treated with three section of fractional micro-ablative CO 2 laser. After three treatments, patients reported a complete improvement of the symptoms (59.94% dryness, 56.26% burn, sensation, 48.75% dyspareunia, 56.37% itch, 73.15% soreness, and 48.79% vaginal introitus pain). Fractional micro-ablative CO 2 laser seems to reduce symptoms related to vaginal atrophy. The beneficial effects were reported just after the first session and confirmed 12 months after the last session.

  12. Ablative fractional lasers (CO(2) and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides.

    PubMed

    Karsai, Syrus; Czarnecka, Agnieszka; Jünger, Michael; Raulin, Christian

    2010-02-01

    Ablative fractional lasers were introduced for treating facial rhytides in an attempt to achieve results comparable to traditional ablative resurfacing but with fewer side effects. However, there is conflicting evidence on how well this goal has generally been achieved as well as on the comparative value of fractional CO(2) and Er:YAG lasers. The present study compares these modalities in a randomized controlled double-blind split-face study design. Twenty-eight patients were enrolled and completed the entire study. Patients were randomly assigned to receive a single treatment on each side of the peri-orbital region, one with a fractional CO(2) and one with a fractional Er:YAG laser. The evaluation included the profilometric measurement of wrinkle depth, the Fitzpatrick wrinkle score (both before and 3 months after treatment) as well as the assessment of side effects and patient satisfaction (1, 3, 6 days and 3 months after treatment). Both modalities showed a roughly equivalent effect. Wrinkle depth and Fitzpatrick score were reduced by approximately 20% and 10%, respectively, with no appreciable difference between lasers. Side effects and discomfort were slightly more pronounced after Er:YAG treatment in the first few days, but in the later course there were more complaints following CO(2) laser treatment. Patient satisfaction was fair and the majority of patients would have undergone the treatment again without a clear preference for either method. According to the present study, a single ablative fractional treatment session has an appreciable yet limited effect on peri-orbital rhytides. When fractional CO(2) and Er:YAG lasers are used in such a manner that there are comparable post-operative healing periods, comparable cosmetic improvement occurs. Multiple sessions may be required for full effect, which cancels out the proposed advantage of fractional methods, that is, fewer side effects and less down time.

  13. Ablative skin resurfacing with a novel microablative CO2 laser.

    PubMed

    Gotkin, Robert H; Sarnoff, Deborah S; Cannarozzo, Giovanni; Sadick, Neil S; Alexiades-Armenakas, Macrene

    2009-02-01

    Carbon dioxide (CO2) laser skin resurfacing has been a mainstay of facial rejuvenation since its introduction in the mid 1990s. Recently, a new generation of fractional or microablative CO2 lasers has been introduced to the marketplace. According to the concept of fractional photothermolysis, these lasers ablate only a fraction of the epidermal and dermal architecture in the treatment area. An array of microscopic thermal wounds is created that ablates the epidermis and dermis within very tiny zones; adjacent to these areas, the epidermis and dermis are spared. This microablative process of laser skin resurfacing has proven safe and effective not only for facial rejuvenation, but elsewhere on the body as well. It is capable of improving wrinkles, acne scars, and other types of atrophic scars and benign pigmented lesions associated with elastotic, sun-damaged skin. Because of the areas of spared epidermis and dermis inherent in a procedure that employs fractional photothermolysis, healing is more rapid compared to fully ablative CO2 laser skin resurfacing and downtime is proportionately reduced. A series of 32 consecutive patients underwent a single laser resurfacing procedure with the a new microablative CO2 laser. All patients were followed for a minimum of 6 months and were asked to complete patient satisfaction questionnaires; a 6 month postoperative photographic evaluation by an independent physician, not involved in the treatment, was also performed. Both sets of data were graded and reported on a quartile scale. Results demonstrated greater than 50% improvement in almost all patients with those undergoing treatment for wrinkles, epidermal pigment or solar elastosis deriving the greatest change for the better (>75%).

  14. Reduction of post-surgical scarring with the use of ablative fractional CO2 lasers: A pilot study using a porcine model.

    PubMed

    Baca, Marissa E; Neaman, Keith C; Rapp, Derek A; Burton, Michael E; Mann, Robert J; Renucci, John D

    2017-01-01

    Wound healing inevitably leads to scarring, which leads to functional and cosmetic defects. It is the goal of this study to investigate the immediate use of ablative fractional CO 2 lasers to reduce post-operative scarring secondary to surgical wounds. In this prospective controlled study, 20 surgical incisions were created on each of three pigs. Fifteen of the incisions were treated with an ablative fractional CO 2 laser at one of three laser settings. The remaining five incisions served as a control. Punch biopsies were taken post-operatively over time. Digital photographs were taken of each incisional scar at each time period. Blinded evaluators used a previously verified scoring system to score photographs of the incisional scars taken at the 6 month time period. With regards to the comparison between the three individual laser treatment groups and the control, there were no statistically significant effects for treatment (P = 0.40), time (P = 0.48), or for the interaction of time and treatment (P = 0.57). With regards to the visual assessment tool, there were no statistically significant differences between treatments for Overall Appearance (P = 0.21) or for Total Score (P = 0.24). In the limited setting of this pilot study, treatment of surgical incisions with ablative fractional CO 2 lasers does not significantly lessen scar formation. In addition, photographic analysis was not able to demonstrate a significant difference. Future studies on this topic will need a larger sample size to better answer whether a statistically significant difference may exist. Lasers Surg. Med. 49:122-128, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Hypertrophic Scarring of the Neck Following Ablative Fractional Carbon Dioxide Laser Resurfacing

    PubMed Central

    Avram, Mathew M.; Tope, Whitney D.; Yu, Thomas; Szachowicz, Edward; Nelson, J. Stuart

    2009-01-01

    Background Ablative fractional carbon dioxide (CO2) laser treatments have gained popularity due to their efficacy, shortened downtime, and decreased potential for scarring in comparison to traditional ablative CO2 resurfacing. To date, scarring with fractional CO2 lasers has not been reported. Objective Five patients treated with the same fractional CO2 laser technology for photodamage of the neck were referred to our practices 1–3 months after treatment. Each patient developed scarring. Of the five cases, two are discussed in detail. The first was treated under general anesthesia on the face and anterior neck at a pulse energy of 30 mJ (859 μm depth) with 25% coverage. Eleven days after treatment, three non-healing areas along the horizontal skin folds of the anterior neck were noted. At 2 weeks after CO2 ablative fractional resurfacing, these areas had become thickened. These raised areas were treated with a non-ablative fractionated 1,550 nm laser to modify the wound healing milieu. One week later, distinct firm pale papules in linear arrays with mild hypopigmentation had developed along involved neck skin folds. Skin biopsy was performed. For the second patient, the neck was treated at a pulse energy of 20 mJ (630 μm depth) with 30% coverage of the exposed skin, with a total treatment energy of 5.0 kJ. Minimal crusting was noted on the neck throughout the initial healing phase of 2 weeks. She then experienced tightness on her neck. Approximately 3 weeks after treatment, she developed multiple vertical and horizontal hypertrophic scars (HS). Results Histopathology for the first case confirmed the presence of a hypertrophic scar. The papules in this case completely resolved with mild residual hypopigmentation after treatment with topical corticosteroids. HS failed to resolve in the second case to date after 1 month. Conclusion As with traditional ablative CO2 laser resurfacing, HS is a potential complication of ablative fractional CO2 laser resurfacing

  16. Fractional CO2 laser is an effective therapeutic modality for xanthelasma palpebrarum: a randomized clinical trial.

    PubMed

    Esmat, Samia M; Elramly, Amany Z; Abdel Halim, Dalia M; Gawdat, Heba I; Taha, Hanaa I

    2014-12-01

    Xanthelasma palpebrarum (XP) is a common cosmetic concern. Although there is a wide range of therapeutic modalities for XP, there is no general consensus on the optimal treatment for such condition. Compare the efficacy and safety of super pulsed (SP) and fractional CO2 lasers in the treatment of XP. This prospective randomized comparative clinical study included 20 adult patients with bilateral and symmetrical XP lesions. Xanthelasma palpebrarum lesions were randomly assigned to treatment by either single session of ablative SP CO2 laser or 3 to 5 sessions of ablative fractional CO2 laser with monthly intervals. All patients were assessed using digital photography and optical coherence tomography images. Xanthelasma palpebrarum lesions on both sides were successfully removed with significant improvement in size, color, and thickness. Although lesions treated by SP CO2 laser showed significantly better improvement regarding color and thickness of the lesions, downtime and patient satisfaction were significantly better for lesions treated with fractional CO2 laser. Scarring and recurrence were significantly higher in lesions treated by SP CO2 laser. Ablative fractional CO2 laser is an effective and safe therapeutic option for XP with significantly shorter downtime and higher patient satisfaction compared with SP CO2 laser.

  17. Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing.

    PubMed

    Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J

    2012-10-01

    Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  18. Selective material ablation by the TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Tetsumi; Shiratori, Akira; Ninomiya, Yutaka; Obara, Minoru

    1995-03-01

    This paper reports two topics in the material processing using TEA CO2 lasers. We demonstrated selective ablation of hydrogenated amorphous silicon (a-Si:H) thin layer on a quartz substrate by the second harmonic (SH) radiation of TEA CO2 laser generated by AgGaSe2 nonlinear crystal. Si-H bonds contained in a-Si:H strongly absorb the 5 micrometers SH radiation and resulted in the selective ablation of the a-Si:H layer. The successful ablation processing of ethylenetetrafluoroethylene (ETFE) copolymer by the 9.6 micrometers fundamental wavelength TEA CO2 laser is also reported. Only ETFE thin film adhered to an aluminum substrate can be ablated by the TEA CO2 laser.

  19. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    PubMed

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  20. Outcomes of fractional CO2 laser application in aesthetic surgery: a retrospective review.

    PubMed

    Neaman, Keith C; Baca, Marissa E; Piazza, Rocco C; VanderWoude, Douglas L; Renucci, John D

    2010-01-01

    Despite the effectiveness of ablative CO(2) laser resurfacing for facial rejuvenation, its application has been limited owing to an undesirable side-effect profile, including prolonged hyperemia and potential pigmentary changes. However, newer fractional CO(2) laser technology has reduced the recovery time and led to decreases in postprocedural hypo- and hyperpigmentation. The authors investigate the application and outcomes of ablative fractional technology in a private cosmetic surgery practice. In this retrospective cohort study, the charts of patients who received fractional CO(2) laser resurfacing between March 2007 and May 2008 were reviewed. Data regarding patient demographics, pretreatment regimens, detailed operative data, and posttreatment findings were obtained. The length of hyperemia (less than five weeks, five to eight weeks, and more than eight weeks), complication rates, and revision rates were analyzed. A satisfaction survey was also sent to all patients. Throughout the 19-month study period, 97 patients received 101 treatments with an average follow-up of 4.5 months. Full-face laser resurfacing was performed in 81.1% of patients, with 64.3% receiving their treatment under local anesthesia without sedation. Length of hyperemia was less than five weeks in 93%, five to eight weeks in 5.9%, and more than eight weeks in 0.9% of patients. Hyperpigmentation (9.9%), milia (6.9%), acne breakout (5.9%), and transient ectropion (0.9%) were less common. Patient satisfaction surveys revealed that a majority of patients were satisfied with their results. New fractional CO(2) laser skin resurfacing is associated with shorter periods of hyperemia, resulting in shorter recovery time in comparison with older ablative technology. The side-effect profile is minor and infrequent. This new technology provides significant clinical improvement with high patient satisfaction.

  1. Advanced film-forming gel formula vs spring thermal water and white petrolatum as primary dressings after full-face ablative fractional CO2 laser resurfacing: a comparative split-face pilot study.

    PubMed

    Marini, L

    2018-01-01

    Aesthetically pleasing results and fast, uneventful recovery are highly desirable after rejuvenating ablative laser procedures. Wound dressings following ablative laser procedures should ideally improve and optimize the wound healing environment. The purpose of this comparative split-face, single-blinded, prospective observational study was to assess the efficacy and acceptability of two primary wound dressings immediately after a full-face fractional CO 2 laser resurfacing procedure. The assessments of an innovative film-forming dressing called Stratacel (SC) vs spring thermal water + Vaseline (V+) were conducted after a standardized, single-pass, full-face ablative fractional CO 2 laser skin resurfacing procedure. Clinical parameters, such as haemoglobin - HB; surface temperature - ST; micro-textural modifications - MT; superficial melanin - M; intrafollicular porphyrins - P, were assessed at different phases of the healing process using standardized, non-invasive technologies. Five female volunteers were enrolled in this inpatient, controlled pilot study. Most of the clinical parameters considered, including 3D surface texture analysis, revealed a better performance of SC vs. V+ during the early, more delicate phases of the healing process. This preliminary study, even if performed on a small number of volunteers, confirmed a definite advantage of the tested semipermeable film-forming formula (SC) over a more conventional postoperative skin care regime (V+). Clinical results could be explained by a better uniformity of distribution of SC over the micro-irregularities induced by ablative fractional CO 2 laser resurfacing. Its thin, semipermeable film might, in fact, act as an efficient, perfectly biocompatible, full contact, temporary skin barrier, able to protect extremely delicate healing surfaces from potential environmental irritations. © 2017 European Academy of Dermatology and Venereology.

  2. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing.

    PubMed

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2008-05-01

    The drive to attain cosmetic facial enhancement with minimal risk and rapid recovery has inspired the field of nonsurgical skin rejuvenation. Laser resurfacing was introduced in the 1980s with continuous wave carbon dioxide (CO(2)) lasers; however, because of a high rate of side effects, including scarring, short-pulse, high-peak power, and rapidly scanned, focused-beam CO(2) lasers and normal-mode erbium-doped yttrium aluminium garnet lasers were developed, which remove skin in a precisely controlled manner. The prolonged 2-week recovery time and small but significant complication risk prompted the development of non-ablative and, more recently, fractional resurfacing in order to minimize risk and shorten recovery times. Nonablative resurfacing produces dermal thermal injury to improve rhytides and photodamage while preserving the epidermis. Fractional resurfacing thermally ablates microscopic columns of epidermal and dermal tissue in regularly spaced arrays over a fraction of the skin surface. This intermediate approach increases efficacy as compared to nonablative resurfacing, but with faster recovery as compared to ablative resurfacing. Neither nonablative nor fractional resurfacing produces results comparable to ablative laser skin resurfacing, but both have become much more popular than the latter because the risks of treatment are limited in the face of acceptable improvement. At the completion of this learning activity, participants should be familiar with the spectrum of lasers and light technologies available for skin resurfacing, published studies of safety and efficacy, indications, methodologies, side effects, complications, and management.

  3. Fractional CO2 laser is as effective as Q-switched ruby laser for the initial treatment of a traumatic tattoo.

    PubMed

    Seitz, Anna-Theresa; Grunewald, Sonja; Wagner, Justinus A; Simon, Jan C; Paasch, Uwe

    2014-12-01

    Q-switched laser treatments are considered the standard method for removing both regular and traumatic tattoos. Recently, the removal of tattoo ink using ablative fractional lasers has been reported. Ablative fractional CO2 laser and q-switched ruby laser treatments were used in a split-face mode to compare the safety and efficacy of the two types of laser in removing a traumatic tattoo caused by the explosion of a firework. A male patient suffering from a traumatic tattoo due to explosive deposits in his entire face was subjected to therapy. A series of eleven treatments were performed. The right side of the face was always treated using an ablative fractional CO2 laser, whereas the left side was treated only using a q-switched ruby laser. After a series of eleven treatments, the patient demonstrated a significant lightening on both sides of his traumatic tattoo, with no clinical difference. After the first six treatments, the patient displayed greater lightening on the right side of his face, whereas after another five treatments, the left side of the patient's face appeared lighter. No side effects were reported. In the initial stage of removing the traumatic tattoo, the ablative fractional laser treatment appeared to be as effective as the standard ruby laser therapy. However, from the 6th treatment onward, the ruby laser therapy was more effective. Although ablative fractional CO2 lasers have the potential to remove traumatic tattoos, they remain a second-line treatment option.

  4. Dermal Remodeling of Burn Scar by Fractional CO2 Laser.

    PubMed

    Lee, Sang-Jun; Suh, Dong-Hye; Lee, Ji Min; Song, Kye-Yong; Ryu, Hwa Jung

    2016-10-01

    Ablative CO2 fractional lasers have recently been introduced for burn scar treatment because of pronounced clinical outcomes with fewer treatment sessions than nonablative fractional laser. This study was conducted to observe clinical as well as histologic changes of burn scars after treatment with CO2 fractional laser. Eleven patients (one female and 10 males, aged 31-59 years) with skin phototypes III to V with burn scars received 10 sessions of fractional CO2 laser treatments (UltraPulse(®) Encore; Lumenis, Santa Clara, CA, USA) over an average 5-week interval. Two passes were performed using the following parameters: deep FX mode, 12.5-30 mJ, with a density setting of 5-10 %. Clinical evaluations by three blinded dermatologists were obtained at baseline and at 6 months after the final treatment via photographs using the Vancouver scar scale (VSS). Skin biopsies were done on four patients before and after treatment. All patients showed clinical improvement in their scars with significant decrease in VSS. Histologic findings showed the changes in the upper dermis with newly formed dermal papilla. This characteristic upper dermis change was presented as improvement in surface smoothness and skin tension clinically. Postinflammatory hyperpigmentation and itching sensation were the most common adverse effects. Burn scar treatment by fractional CO2 laser is effective by forming new collagen fibers mainly in the upper dermis. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  5. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients.

    PubMed

    Cho, Suhyun; Choi, Min Ju; Zheng, Zhenlong; Goo, Boncheol; Kim, Do-Young; Cho, Sung Bin

    2013-04-01

    Both ablative and non-ablative fractional lasers have been applied to various uncommon hair disorders. The purpose of this study was to demonstrate the clinical effects of fractional laser therapy on the course of primary follicular and perifollicular pathologies and subsequent hair regrowth. A retrospective review of 17 patients with uncommon hair disorders - including ophiasis, autosomal recessive woolly hair/hypotrichosis, various secondary cicatricial alopecias, pubic hypotrichosis, frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens - was conducted. All patients had been treated with non-ablative and/or ablative fractional laser therapies. The mean clinical improvement score in these 17 patients was 2.2, while the mean patient satisfaction score was 2.5. Of the 17 subjects, 12 (70.6%) demonstrated a clinical response to non-ablative and/or ablative fractional laser treatments, including individuals with ophiasis, autosomal recessive woolly hair/hypotrichosis, secondary cicatricial alopecia (scleroderma and pressure-induced alopecia), frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens. Conversely, patients with long-standing ophiasis, surgical scar-induced secondary cicatricial alopecia, and pubic hypotrichosis did not respond to fractional laser therapy. Our findings demonstrate that the use of non-ablative and/or ablative fractional lasers promoted hair growth in certain cases of uncommon hair disorders without any remarkable side effects.

  6. Fractional ablative laser skin resurfacing: a review.

    PubMed

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  7. Deep pulse fractional CO2 laser combined with a radiofrequency system: results of a case series.

    PubMed

    Cannarozzo, Giovanni; Sannino, Mario; Tamburi, Federica; Chiricozzi, Andrea; Saraceno, Rosita; Morini, Cristiano; Nisticò, Steven

    2014-07-01

    The purpose of this study was evaluation of the safety and efficacy of this new combined technology that adds deep ablation to thermal stimulation. Minimally ablative or subablative lasers, such as fractional CO2 lasers, have been developed in an attempt to achieve the same clinical results observed with traditional ablative lasers, but with fewer side effects. Despite being an ablative laser, the system used in this study is able to produce a fractional supply of the beam of light. Fractional ablation of skin is performed through the development of microscopic vertical columns surrounded by spared areas of epidermis and dermis, ensuring rapid wound healing and minimum down time. Simultaneous synchronized delivery of a radiofrequency (RF) current to the deeper layers of the skin completes the therapeutic scenario, ensuring an effective skin tightening effect over the entire treated area. Nine adult patients were treated for wrinkles and acne scars using this new laser technology. An independent observer evaluated the improvement using a five point scale. All patients had good results in terms of improvement of skin texture, with mild and transitory side effects. This novel combined system produced improvement in wrinkles and acne scars, with progressive enhancement of skin tone and elasticity.

  8. Survey Of CO{sub 2} Laser Ablation Propulsion With Polyoxymethylene Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinko, John E.; Sasoh, Akihiro

    Polyoxymethylene (POM) has been widely studied as a laser propulsion propellant paired to CO{sub 2} laser radiation. POM is a good test case for studying ablation properties of polymer materials, and within limits, for study of general trends in laser ablation-induced impulse. Despite many studies, there is no general understanding of POM ablation that takes into account the ambient pressure, spot area, fluence, and effects from confinement and combustion. This paper reviews and synthesizes CO{sub 2} laser ablation propulsion research using POM targets. Necessary directions for future study are indicated to address incomplete regions of the various parameter spaces. Literaturemore » data is compared in terms of propulsion parameters such as momentum coupling coefficient and specific impulse, within a range of fluences from about 1-500 J/cm{sup 2}, ambient pressures from about 10{sup -2}-10{sup 5} Pa, and laser spot areas from about 0.01-10 cm{sup 2}.« less

  9. Fractional CO2 Laser Treatment of the Vestibule for Patients with Vestibulodynia and Genitourinary Syndrome of Menopause: A Pilot Study.

    PubMed

    Murina, Filippo; Karram, Mickey; Salvatore, Stefano; Felice, Raffaele

    2016-12-01

    Chronic vulvar pain and burning remains one of the most perplexing problems faced by practicing gynecologists. To evaluate the effectiveness and safety of the application of micro-ablative fractional CO 2 laser to the vulvar vestibule in the management of patients with vulvar pain from vestibulodynia or genitourinary syndrome of menopause. Patients (N = 70) underwent fractional micro-ablative CO 2 laser treatment for vestibular pain plus vestibulodynia (n = 37) or genitourinary syndrome of menopause (n = 33). Inclusion criteria were the existence of vestibular atrophic changes and the absence of moderate or severe pelvic floor hypertonic dysfunction. A visual analog scale of pain and the Marinoff score of dyspareunia were chosen to evaluate improvement. Grading of vestibular health also was quantified using a four-point scoring system (0 = no atrophy, 3 = severe atrophy). Data were collected at baseline, at weeks 4, 8, and 12, and 4 months after the final treatment. For visual analog scale and dyspareunia scoring and for the overall vestibular health index scoring, statistically significant improvement was noted after three sessions of vestibular fractional CO 2 laser treatment. Improvement gradually increased throughout the study period and was maintained through the 4-month follow-up visit. There was no statistically significant difference in outcomes between the two study groups. No adverse events from fractional CO 2 laser treatment were noted. Overall, 67.6% of patients stated significant improvement from the laser procedure. This preliminary case series showed encouraging results using fractional CO 2 laser treatment of the vestibule in women with vestibulodynia and genitourinary syndrome of menopause. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  10. Skin Pretreatment With Conventional Non-Fractional Ablative Lasers Promote the Transdermal Delivery of Tranexamic Acid.

    PubMed

    Hsiao, Chien-Yu; Sung, Hsin-Ching; Hu, Sindy; Huang, Chun-Hsun

    2016-07-01

    Laser pretreatment of skin can be used to enable drugs used in dermatology to penetrate the skin to the depth necessary for their effect to take place. To compare the permeation of tranexamic acid after conventional non-fractionated ablative Er:YAG and CO2 laser pretreatment in a laser-aided transdermal delivery system. An erbium-doped yttrium aluminium garnet (Er:YAG) and a CO2 laser were used to pretreat dorsal porcine skin. Scanning electron microscopy was used to examine disruption of the skin surface. Confocal laser scanning microscopy was used to determine the depth of penetration of a reporter molecule (fluorescein isothiocyanate) into the skin. A Franz diffusion assembly was used to examine fluency-related increases in transdermal delivery of transexamic acid. Transdermal delivery of tranexamic acid increased as Er:YAG laser fluency increased. Transdermal delivery was higher when CO2 laser pretreatment was used than when Er:YAG laser pretreatment was used, but a "ceiling effect" was present and increasing the wattage did not cause a further increase in delivery. CO2 laser pretreatment also caused more extensive and deeper skin disruption than Er:YAG laser pretreatment. For conventional, non-fractionated ablative laser pretreatment, the Er:YAG laser would be an optimal choice to enhance transdermal penetration of transexamic acid.

  11. Fractional CO2 laser resurfacing of photoaged facial and non-facial skin: histologic and clinical results and side effects.

    PubMed

    Sasaki, Gordon H; Travis, Heather M; Tucker, Barbara

    2009-12-01

    CO(2) fractional ablation offers the potential for facial and non-facial skin resurfacing with minimal downtime and rapid recovery. The purpose of this study was (i) to document the average depths and density of adnexal structures in non-lasered facial and non-facial body skin; (ii) to determine injury in ex vivo human thigh skin with varying fractional laser modes; and (iii) to evaluate the clinical safety and efficacy of treatments. Histologies were obtained from non-lasered facial and non-facial skin from 121 patients and from 14 samples of excised lasered thigh skin. Seventy-one patients were evaluated after varying energy (mJ) and density settings by superficial ablation, deeper penetration, and combined treatment. Skin thickness and adnexal density in non-lasered skin exhibited variable ranges: epidermis (47-105 mum); papillary dermis (61-105 mum); reticular dermis (983-1986 mum); hair follicles (2-14/ HPF); sebaceous glands (2-23/HPF); sweat glands (2-7/HPF). Histological studies of samples from human thigh skin demonstrated that increased fluencies in the superficial, deep and combined mode resulted in predictable deeper levels of ablations and thermal injury. An increase in density settings results in total ablation of the epidermis. Clinical improvement of rhytids and pigmentations in facial and non-facial skin was proportional to increasing energy and density settings. Patient assessments and clinical gradings by the Wilcoxon's test of outcomes correlated with more aggressive settings. Prior knowledge of normal skin depths and adnexal densities, as well as ex vivo skin laser-injury profiles at varying fluencies and densities, improve the safety and efficiency of fractional CO(2) for photorejuvenation of facial and non-facial skin.

  12. Efficacy and safety of fractional CO2 laser versus fractional Er:YAG laser in the treatment of facial skin wrinkles.

    PubMed

    Robati, Reza M; Asadi, Elmira

    2017-02-01

    Ablative fractional lasers were introduced for treating facial rhytides. Few studies have compared fractional CO 2 and Er:YAG lasers on cutaneous photodamages by a split trial. The aim of the present study was to compare these modalities in a randomized controlled double-blind split-face design with multiple sessions and larger sample size compared to previous studies done before. Forty patients with facial wrinkles were enrolled. Patients were randomly assigned to receive three monthly treatments on each side of the face, one with a fractional CO 2 and one with a fractional Er:YAG laser. The evaluations included investigating clinical outcome determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of cheeks using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, possible side effects and patients' satisfaction have been recorded at baseline, 1 month after each treatment, and 3 months after the last treatment session. Clinical assessment showed both modalities significantly reduce facial wrinkles (p value < 0.05), with no appreciable difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to the baseline in both laser groups. There was no serious long-standing adverse effect after both laser treatments, but the discomfort was more pronounced by the participants after CO 2 laser treatment. According to the present study, both fractional CO 2 and fractional Er:YAG lasers show considerable clinical improvement of facial skin wrinkles with no serious adverse effects, but post-treatment discomfort seems to be lower with Er:YAG laser.

  13. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    PubMed

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  14. Ablative and transport fractionation of trace elements during laser sampling of glass and copper

    NASA Astrophysics Data System (ADS)

    Outridge, P. M.; Doherty, W.; Gregoire, D. C.

    1997-12-01

    The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 10 4W cm -2 than at 0.62 × 10 4W cm -2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000° C exhibiting overall concentration increases of 20-1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50-100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.

  15. 120: THE CLINICAL EFFECTIVENESS AND COST-EFFECTIVENESS OF FRACTIONAL CO2 LASER IN ACNE SCARS AND SKIN REJUVENATION: A SYSTEMATIC REVIEW AND ECONOMIC EVALUATION

    PubMed Central

    Yaaghoobian, Barmak; Sadeghi-Ghyassi, Fatemeh; Hajebrahimi, Sakineh

    2017-01-01

    Background and aims Skin rejuvenation is one of high demand cosmetic interventions in Iran. Fractional CO2 Laser is a high power ablative laser which has variety of utilization in medicine including treatment of acne scars and rejuvenation. The aim of this study was to evaluate the safety, efficacy, and cost-effectiveness of Fractional CO2 Laser in comparison with other methods of rejuvenation and acne scar treatment. Methods A systematic database search including Medline (via OVID and PubMed), EMBASE, CINHAL, Cochrane Library, CRD, SCOPUS and Web of Science conducted. After screening search results, selected publications appraised by CASP and Cochrane Collaboration's tool for assessing risk of bias and eligible studies included in the systematic review. In economic evaluation, all costs and benefits analyzed from Iran ministry of health's perspective. Results From 2667 publications, two randomized control trials were eligible and included in the study. The affectivity and complications of Fractional CO2 laser were comparable with Er: YAG but Fractional CO2 laser was 14.7% (P=0.01) more effective than Q-Switched ND: YAG laser. Cost affectivity of this method was the same as other alternative lasers. Conclusions Fractional CO2 laser is an effective and safe method for curing several kinds of skin. Never the less there was not sufficient evidence to support its advantage. This device has equal or lower price in comparison to competent technologies except for the non- fractional ablative Co2 laser that has the same or lower price and comparable effects.

  16. Comparative analysis of the effects of CO2 fractional laser and sonophoresis on human skin penetration with 5-aminolevulinic acid.

    PubMed

    Choi, J H; Shin, E J; Jeong, K H; Shin, M K

    2017-11-01

    Successful delivery of a photosensitizer into the skin is an important factor for effective photodynamic therapy (PDT). The effective method to increase drug penetration within short incubation time overcoming skin barrier have been investigated. This study was performed to analyze and compare the effectiveness of ablative fractional laser (FXL) pretreatment and/or sonophoresis for enhancing the penetration of 5-aminolevulinic acid (ALA) into human skin in vivo. Twenty-four identical 1 × 1 cm 2 treatment areas were mapped on the backs of ten healthy male subjects. Each area received FXL pretreatment and/or sonophoresis with different energy settings and ALA incubation times. After treatments, porphyrin fluorescence reflecting the ALA penetration were measured. Application of ablative CO 2 FXL pretreatment resulted to higher fluorescence intensities than the non-treatment group. Incubation times were positively correlated with the increments of ALA penetration. However, increasing pulse energy or combining with sonophoresis did not show additional positive effects on ALA penetration. Ablative CO 2 FXL pretreatment effectively facilitated ALA penetration in human skin in vivo. Ablative CO 2 FXL alone without sonophoresis setting pulse energy of 10 and 20 mJ with more than 60 min of ALA incubation time could be an ideal setting for ALA penetration.

  17. Random fractional ultrapulsed CO2 resurfacing of photodamaged facial skin: long-term evaluation.

    PubMed

    Tretti Clementoni, Matteo; Galimberti, Michela; Tourlaki, Athanasia; Catenacci, Maximilian; Lavagno, Rosalia; Bencini, Pier Luca

    2013-02-01

    Although numerous papers have recently been published on ablative fractional resurfacing, there is a lack of information in literature on very long-term results. The aim of this retrospective study is to evaluate the efficacy, adverse side effects, and long-term results of a random fractional ultrapulsed CO2 laser on a large population with photodamaged facial skin. Three hundred twelve patients with facial photodamaged skin were enrolled and underwent a single full-face treatment. Six aspects of photodamaged skin were recorded using a 5 point scale at 3, 6, and 24 months after the treatment. The results were compared with a non-parametric statistical test, the Wilcoxon's exact test. Three hundred one patients completed the study. All analyzed features showed a significant statistical improvement 3 months after the procedure. Three months later all features, except for pigmentations, once again showed a significant statistical improvement. Results after 24 months were similar to those assessed 18 months before. No long-term or other serious complications were observed. From the significant number of patients analyzed, long-term results demonstrate not only how fractional ultrapulsed CO2 resurfacing can achieve good results on photodamaged facial skin but also how these results can be considered stable 2 years after the procedure.

  18. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  19. Effects of 1,540-nm Fractional Nonablative Erbium and 2,940-nm Fractional Ablative Erbium on p53 Epidermal Expression After 3 months: A Split-Face Interventional Study.

    PubMed

    Borges, Juliano; Araújo, Luciana; de Oliveira, Rodrigo P B; Manela-Azulay, Monica

    2018-04-16

    Expression of p53 by keratinocytes may be important in the pathogenesis of skin cancer induced by ultraviolet light. We used side-by-side nonablative and ablative erbium fractional laser resurfacing to assess the effects on expression of p53 by facial keratinocytes. Ten female patients (age range, 50-63 years) with Fitzpatrick skin Types I-IV and clinical signs of photoaging underwent erbium fractional laser resurfacing (nonablative, 1,540-nm; ablative, 2,940-nm) on opposite sides of the face. Skin biopsies were obtained before treatment and 3 months after treatment for comparison with control biopsies of face and inner arm, quantifying p53 in immunostained tissue sections. Only ablative (2,940-nm) treatments produced a statistically significant reduction in p53 scoring after 3 months. The histologic appearance of skin after ablative resurfacing more closely resembled inner arm skin (rather than facial skin) of control subjects. Epidermal repopulation with p53-negative keratinocytes through ablative erbium fractional laser resurfacing may diminish the risk of eventual malignancy in photoaged skin.

  20. Micro-fractional ablative skin resurfacing with two novel erbium laser systems.

    PubMed

    Dierickx, Christine C; Khatri, Khalil A; Tannous, Zeina S; Childs, James J; Cohen, Richard H; Erofeev, Andrei; Tabatadze, David; Yaroslavsky, Ilya V; Altshuler, Gregory B

    2008-02-01

    Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.

  1. Ablative fractional CO2 laser for burn scar reconstruction: An extensive subjective and objective short-term outcome analysis of a prospective treatment cohort.

    PubMed

    Issler-Fisher, Andrea C; Fisher, Oliver M; Smialkowski, Ania O; Li, Frank; van Schalkwyk, Constant P; Haertsch, Peter; Maitz, Peter K M

    2017-05-01

    The introduction of ablative fractional CO 2 lasers (CO 2 -AFL) for burn scar management shows promising results. Whilst recent studies have focused on objective scar outcomes following CO 2 -AFL treatment, to date no data on patient subjective factors such as quality of life are available. A prospective study was initiated to analyze the safety and efficacy of the CO 2 -AFL. Various objective and subjective outcome parameters were prospectively collected from the date of first consultation and follow-up following treatment. Objective factors include the Vancouver Scar Scale (VSS), the Patient and Observer Scar Assessment Scale (POSAS), and ultrasound measurements of the thickness of the scar. Subjective parameters included the assessment of neuropathic pain and pruritus, as well as the evaluation of improvement of quality of life following CO 2 -AFL with the Burns Specific Health Scale (BSHS-B). For treatment effect analysis, patients were stratified according to scar maturation status (> or <2 years after injury). 47 patients with 118 burn scars completed at least one treatment cycle. At a median of 55 days (IQR 32-74) after CO 2 -AFL treatment all analyzed objective parameters decreased significantly: intra-patient normalized scar thickness decreased from a median of 2.4mm to 1.9mm (p<0.001) with a concomitant VSS-drop from a median of 7 to 6 (p<0.001). The overall POSAS patient scale decreased from a median of 9 to 5 (p<0.001) with similar effects documented in POSAS observer scales. Both pain and pruritus showed significant reduction. Quality of life increased significantly by 15 points (median 120 to 135; p<0.001). All of the identified changes following CO 2 -AFL were equally significant irrespective of scar maturation status. Our preliminary results confirm significant improvement in thickness, texture, colour, and symptoms following treatment with CO 2 -AFL. Foremost, quality of life of patients with both immature and mature scars (up to 23 years after

  2. The clinical effectiveness and cost-effectiveness of fractional CO2 laser in acne scars and skin rejuvenation: A meta-analysis and economic evaluation.

    PubMed

    Ansari, Fereshteh; Sadeghi-Ghyassi, Fatemeh; Yaaghoobian, Barmak

    2018-01-31

    Fractional CO 2 has many indications in medicine including in treatment of acne scars and rejuvenation. The aim of this study was to evaluate the safety, efficacy, and cost-effectiveness of Fractional CO 2 Laser in comparison with other methods of rejuvenation and acne scar treatment. Several databases including Medline, OVID, EMBASE, CINHAL, SCOPUS, Web of science, CRD, and Cochrane were searched. After conducting the search and evaluation of selected publications, critical appraisal was done and eligible studies were accepted for inclusion in the systematic review. From 2667 identified publications two of the trials were eligible. The effectiveness and complications of Fractional CO 2 laser were comparable with Er:YAG but Fractional CO 2 laser was 14.7% (p = 0.01) more effective than Q-Switched ND:YAG laser. Cost affectivity of this method was the same as other alternative lasers. In conclusion Fractional CO 2 laser is an effective and safe method for curing of several kinds of skin diseases. Nevertheless there was not sufficient evidence to support its advantage. This device has equal or lower price in comparison to competent technologies except for the non- fractional ablative CO 2 laser that has the same or lower price and comparable effects.

  3. Hair regrowth through wound healing process after ablative fractional laser treatment in a murine model.

    PubMed

    Bae, Jung Min; Jung, Han Mi; Goo, Boncheol; Park, Young Min

    2015-07-01

    Alopecia is one of the most common dermatological problems in the elderly; however, current therapies for it are limited by low efficacy and undesirable side effects. Although clinical reports on fractional laser treatment for various alopecia types are increasing, the exact mechanism remains to be clarified. The purposes of this study were to demonstrate the effect of ablative fractional laser treatment on hair follicle regrowth in vivo and investigate the molecular mechanism after laser treatment. Ablative CO2 fractional laser was applied to the shaved dorsal skin of 7-week-old C57BL/6 mice whose hair was in the telogen stage. After 12 mice were treated at various energy (10-40 mJ/spot) and density (100-400 spots/cm(2) ) settings to determine the proper dosage for maximal effect. Six mice were then treated at the decided dosage and skin specimens were sequentially obtained by excision biopsy from the dorsal aspect of each mouse. Tissue samples were used for the immunohistochemistry and reverse transcription polymerase chain reaction assays to examine hair follicle status and their related molecules. The most effective dosage was the 10 mJ/spot and 300 spots/cm(2) setting. The anagen conversion of hair was observed in the histopathological examination, while Wnt/β-catenin expression was associated with hair regrowth in the immunohistochemistry and molecular studies. Ablative fractional lasers appear to be effective for inducing hair regrowth via activation of the Wnt/β-catenin pathway in vivo. Our findings indicate that fractional laser treatment can potentially be developed as new treatment options for stimulating hair regrowth. © 2015 Wiley Periodicals, Inc.

  4. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. Wemore » simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.« less

  5. The use of sunscreen starting on the first day after ablative fractional skin resurfacing.

    PubMed

    Wanitphakdeedecha, R; Phuardchantuk, R; Manuskiatti, W

    2014-11-01

    The most common side-effect of ablative fractional skin resurfacing in Asians is post inflammatory hyperpigmentation (PIH). Various attempts have been made to reduce the occurrence of PIH after laser treatment including sun avoidance, the use of preoperative and postoperative treatment regimens, and treatment using conservative energy settings and epidermal protection. To determine whether the use of broad-spectrum sunscreen with anti-inflammatory agents starting on the first day after fractional CO2 laser skin resurfacing reduces the incidence of post laser PIH. Thirty patients were treated with ablative fractional CO2 resurfacing on both sides of their faces at 10 mJ and 10% density. Each subject was randomly treated on one side of the face with petrolatum ointment four times a day for the first week after laser treatment and on the other side of the face with petrolatum ointment four times a day plus broad-spectrum sunscreen with anti-inflammatory agents in the morning starting on the first day after laser treatment. Transepidermal water loss was recorded at baseline and every day for 1 week. Melanin and erythema indexes were measured at baseline, 1-, 2-week, 1-, 2- and at 3-month post treatment. Of the 30 patients involved in the study, 26 received the treatment and attended 1-, 2-week, 1-, 2- and 3-month post-treatment visits. Four patients were withdrawn from the study because they could not attend every follow-up visit. There was no statistically significant difference in transepidermal water loss at baseline, immediately after laser treatment, or at the D1 to D7 follow-up visits. Erythema index had no significantly statistical difference at baseline, 1-, 2- and at 3-month after laser treatment. Furthermore, there was a statistically significant difference in melanin index at 1-week post laser treatment between both sides (P = 0.001). Melanin index at the 1-week follow-up visit on the side treated with broad-spectrum sunscreen with anti

  6. Inflammatory responses, matrix remodeling, and re-epithelialization after fractional CO2 laser treatment of scars.

    PubMed

    DeBruler, Danielle M; Blackstone, Britani N; Baumann, Molly E; McFarland, Kevin L; Wulff, Brian C; Wilgus, Traci A; Bailey, J Kevin; Supp, Dorothy M; Powell, Heather M

    2017-09-01

    Fractional CO 2 laser therapy has been used to improve scar pliability and appearance; however, a variety of treatment protocols have been utilized with varied outcomes. Understanding the relationship between laser power and extent of initial tissue ablation and time frame for remodeling could help determine an optimum power and frequency for laser treatment. The characteristics of initial injury caused by fractional CO 2 laser treatment, the rates of dermal remodeling and re-epithelialization, and the extent of inflammation as a function of laser stacking were assessed in this study in a porcine scar model. Full-thickness burn wounds were created on female Red Duroc pigs followed by immediate excision of the eschar and split-thickness autografting. Three months after injury, the resultant scars were treated with a fractional CO 2 laser with 70 mJ of energy delivered as either a single pulse or stacked for three consecutive pulses. Immediately prior to laser treatment and at 1, 24, 96, and 168 hours post-laser treatment, transepidermal water loss (TEWL), erythema, and microscopic characteristics of laser injury were measured. In addition, markers for inflammatory cytokines, extracellular matrix proteins, and re-epithelialization were quantified at all time points using qRT-PCR. Both treatments produced erythema in the scar that peaked 24 hours after treatment then decreased to basal levels by 168 hours. TEWL increased after laser treatment and returned to normal levels between 24 and 96 hours later. Stacking of the pulses did not significantly increase the depth of ablated wells or extend the presence of erythema. Interleukin 6 and monocyte chemoattractant protein-1 were found to increase significantly 1 hour after treatment but returned to baseline by 24 hours post laser. In contrast, expression of transforming growth factor β1 and transforming growth factor β3 increased slowly after treatment with a more modest increase than interleukin 6 and monocyte

  7. Graphite and ablative material response to CO2 laser, carbon-arc, and xenon-arc radiation

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.

    1976-01-01

    The behavior was investigated of graphite and several charring ablators in a variety of high-radiative heat-flux environments. A commercial-grade graphite and nine state-of-the-art charring ablators were subjected to various radiative environments produced by a CO2 laser and a carbon arc. Graphite was also tested in xenon-arc radiation. Heat-flux levels ranged from 10 to 47 MW/sq m. Tests were conducted in air, nitrogen, helium, and a CO2-N2 mixture which simulated the Venus atmosphere. The experimental results were compared with theoretical results obtained with a one-dimensional charring-ablator analysis and a two-dimensional subliming-ablator analysis. Neither the graphite nor the charring ablators showed significant differences in appearance or microstructure after testing in the different radiative environments. The performance of phenolic nylon and graphite was predicted satisfactorily with existing analyses and published material property data. Good agreement between experimental and analytical results was obtained by using sublimation parameters from a chemical nonequilibrium analysis of graphite sublimation. Some charring ablators performed reasonably well and could withstand radiative fluxes of the level encountered in certain planetary entries. Other materials showed excessive surface recession and/or large amounts of cracking and spalling, and appear to be unsuitable for severe radiative environments.

  8. Lower energy and pulse stacking. A safer alternative for skin tightening using fractional CO2 laser.

    PubMed

    Motta, Marcos Matias; Stelini, Rafael Fantelli; Calderoni, Davi Reis; Gilioli, Rovilson; Kharmandayan, Paulo

    2016-01-01

    To evaluate the effect of different energies and stacking in skin shrinkage. Three decreasing settings of a fractional CO2 laser were applied to the abdomen of Twenty five Wistar rats divided into three groups. Group I (n=5) was histologically evaluated for microthermal zones dimensions. Groups II and III (n=10 each) were macroscopic evaluated with freeware ImageJ for area contraction immediately and after 30 and 60 days. No statistical significance was found within microthermal zone histological dimensions (Group I) in all settings studied. (Ablation depth: 76.90 to 97.18µm; Coagulation depth: 186.01 to 219.84 µm). In Group II, macroscopic evaluation showed that all settings cause significant immediate skin contraction. The highest setting cause significant more intense tightening effect initially, contracting skin area from 258.65 to 179.09 mm2. The same pattern was observed in Group III. At 30 and 60 days, the lowest setting significantly sustained contraction. Lower fractional CO2 laser energies associated to pulse stacking could cause consistent and long lasting tissue contraction in rats.

  9. Significant skin-tightening by closure of fractional ablative laser holes.

    PubMed

    Russe, Elisabeth; Purschke, Martin; Limpiangkanan, Wikunda; Farinelli, William A; Wang, Ying; Doukas, Apostolos G; Sakamoto, Fernanda H; Wechselberger, Gottfried; Anderson, Richard Rox

    2018-01-01

    Ablative fractional laser treatment uses thousands of very small laser beam wounds to damage a fraction of the skin, which stimulates tissue remodeling. Each open micro-wound heals without scarring, but the amount of skin tightening achieved is limited. This animal study was performed to test the hypothesis that immediate temporary closure of fractional laser wounds could increase skin tightening after fractional ablative laser treatment. Four adult swine were used for the study; 98 square test sites (3 × 3 cm) were tattooed on the abdomen and flanks of each pig. An ablative fractional Erbium:YAG laser (Sciton Profile, Sciton Inc, Palo Alto, CA) was used to treat the test areas. A laser micro-spot fluence of 375 J/cm 2 was delivered in 150-250 microseconds pulses, resulting in an array of ablation channels extending 1.5 mm deep into the skin, with a spot size of 250 µm, with 10% treatment density. Immediately following laser exposure the resulting holes were closed using a stretched elastic adhesive dressing, which, when applied, recoiled and compressed the diameter of the ablation holes. The compressive dressings were removed after 7 days. This procedure was compared to removing the same amount of skin (10%) mechanically by specially designed 19 gauge coring needles, as well as to the same laser and coring methods without compression closure. Area and shape of test sites were measured by digital photography before and 28 days after treatment. Data analysis included compensation for animal growth, as measured by increase in the area of the untreated control sites. All treated and control sites healed within a week, without scarring evident at 28 days. Laser treatment combined with compressive wound closure caused significant shrinkage at 28 days compared with untreated control sites. The treated skin area was reduced by 11.5% (P = 0.0001). Needle coring with wound closure produced similar, significant shrinkage (8%, P < 0.0021), whereas laser

  10. Non-Ablative Fractional Laser to Facilitate Transdermal Delivery.

    PubMed

    Ganti, Sindhu S; Banga, Ajay K

    2016-11-01

    The advances in laser technology have led to its rapidly expanding applications in dermatology. This study aims at the novel use of a non-ablative fractional laser to enhance transdermal permeation of diclofenac sodium and sumatriptan succinate. The effects of the laser on skin were characterized visually with dye binding, scanning electron microscopy, pore permeability index, and histology. In vitro transdermal permeation of drugs through laser treated and untreated human dermatomed skin was analyzed over 24 h and quantified by HPLC. Drug transport through untreated skin resulted in transdermal delivery of 72.61 μg/cm 2 ± 50.35 and 22.80 ± 0.64 μg/cm 2 of diclofenac sodium and sumatriptan succinate, respectively. Laser treatment of skin significantly increased (p < 0.005) delivery of diclofenac sodium to 575.66 ± 207.18 μg/cm 2 and sumatriptan succinate to 498.32 ± 97.54 μg/cm 2 . This is a first of its kind study that demonstrates the use of 1410 nm non-ablative fractional laser to enhance transdermal permeation of 2 small molecular weight drugs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Enhancing hair growth in male androgenetic alopecia by a combination of fractional CO2 laser therapy and hair growth factors.

    PubMed

    Huang, Yue; Zhuo, Fenglin; Li, Linfeng

    2017-11-01

    Laser therapy and growth factors have been used as alternative treatments for male androgenetic alopecia (MAA). The aim of this study is to determine the efficacy and safety of hair growth factors alone or combined with ablative carbon dioxide (CO 2 ) fractional laser therapy in MAA. Twenty-eight men were enrolled in this randomized half-split study based on a left-head to right-head pattern. Fractional CO 2 laser treatment was unilaterally performed; hair growth factors were bilaterally applied. Six sessions with 2-week intervals were performed. Global photographs and dermoscopy assessments were performed at the baseline and 4 months after first treatment. Global photographs underwent blinded review by three independent dermatologists. Scanning electron microscopy was used to compare changes in hair-follicle phase and hair-shaft diameter. Twenty-seven participants completed the 4-month treatment schedule. One patient was lost. Mean hair density increased from 114 ± 27 to 143 ± 25/cm 2 (P < 0.001) in the combined group and from 113 ± 24 to 134 ± 19/cm 2 in the growth factor group (P < 0.001). The mean change from baseline between two groups was also compared (P = 0.003). Global photographs showed improvement in 93% (25/27) patients in the combined group and 67% (18/27) patients in the growth factor group. Under scanning electron microscopy, hair follicles appeared to transition from telogen to anagen, and hair-shaft diameter increased in five randomly selected patients. Ablative fractional CO 2 laser combined with hair growth factors may serve as an alternative treatment for MAA in individuals unwilling/unable to undergo medical or surgical treatment.

  12. StimuFrac Compressibility as a Function of CO2 Molar Fraction

    DOE Data Explorer

    Carlos A. Fernandez

    2016-04-29

    Compressibility values were obtained in a range of pressures at 250degC by employing a fixed volume view cell completely filled with PAA aqueous solution and injecting CO2 at constant flow rate (0.3mL/min). Pressure increase as a function of supercritical CO2 (scCO2) mass fraction in the mixture was monitored. The plot shows the apparent compressibility of Stimufrac as a function of scCO2 mass fraction obtained in a pressure range between 2100-7000 psi at 250degC. At small mass fractions of scCO2 the compressibility increases probably due to the dissolution/reaction of CO2 in aqueous PAA and reaches a maximum at mCO2/mH2O = 0.06. Then, compressibility decreases showing a linear relationship with scCO2 mass fraction due to the continuous increase in density of the binary fluid associated to the pressure increase.

  13. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    PubMed

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  14. Visualization of liquid-assisted hard tissue ablation with a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Li, X. W.; Chen, C. G.; Zhang, X. Z.; Zhan, Z. L.; Xie, S. S.

    2015-01-01

    To investigate the characteristics of liquid-mediated hard tissue ablation induced by a pulsed CO2 laser with a wavelength of 10.6 μm, a high speed camera was used to monitor the interaction between water, tissue and laser irradiation. The results showed that laser irradiation can directly impact on tissue through a vapor channel formed by the leading part of the laser pulse. The ablation debris plays a key role in liquid-assisted laser ablation, having the ability to keep the vapor channel open to extend actuation time. The runoff effect induced by vortex convection liquid flow can remove the tissue that obstructs the effect of the next laser pulse.

  15. Histological evaluation of vertical laser channels from ablative fractional resurfacing: an ex vivo pig skin model.

    PubMed

    Skovbølling Haak, Christina; Illes, Monica; Paasch, Uwe; Hædersdal, Merete

    2011-07-01

    Ablative fractional resurfacing (AFR) represents a new treatment potential for various skin conditions and new laser devices are being introduced. It is important to gain information about the impact of laser settings on the dimensions of the created laser channels for obtaining a safe and efficient treatment outcome. The aim of this study was to establish a standard model to document the histological tissue damage profiles after AFR and to test a new laser device at diverse settings. Ex vivo abdominal pig skin was treated with a MedArt 620, prototype fractional carbon dioxide (CO(2)) laser (Medart, Hvidovre, Denmark) delivering single microbeams (MB) with a spot size of 165 μm. By using a constant pulse duration of 2 ms, intensities of 1-18 W, single and 2-4 stacked pulses, energies were delivered in a range from 2-144 mJ/MB. Histological evaluations included 3-4 high-quality histological measurements for each laser setting (n = 28). AFR created cone-shaped laser channels. Ablation depths varied from reaching the superficial dermis (2 mJ, median 41 μm) to approaching the subcutaneous fat (144 mJ, median 1,943 μm) and correlated to the applied energy levels in an approximate linear relation (r(2) = 0.84, p < 0.001). The dermal ablation width increased slightly within the energy range of 4-144 mJ (median 163 μm). The thickness of the coagulation zone reached a plateau around 65 μm at energies levels above 16 mJ. The calculated volumes of ablated tissue increased with increasing energies. We suggest this ex vivo pig skin model to characterize AFR laser channels histologically.

  16. Nontuberculous Mycobacterial Infection after Fractionated CO2 Laser Resurfacing

    PubMed Central

    Culton, Donna A.; Miller, Becky A.; Miller, Melissa B.; MacKuen, Courteney; Groben, Pamela; White, Becky; Cox, Gary M.; Stout, Jason E.

    2013-01-01

    Nontuberculous mycobacteria are increasingly associated with cutaneous infections after cosmetic procedures. Fractionated CO2 resurfacing, a widely used technique for photorejuvenation, has been associated with a more favorable side effect profile than alternative procedures. We describe 2 cases of nontuberculous mycobacterial infection after treatment with a fractionated CO2 laser at a private clinic. Densely distributed erythematous papules and pustules developed within the treated area within 2 weeks of the laser procedure. Diagnosis was confirmed by histologic analysis and culture. Both infections responded to a 4-month course of a multidrug regimen. An environmental investigation of the clinic was performed, but no source of infection was found. The case isolates differed from each other and from isolates obtained from the clinic, suggesting that the infection was acquired by postprocedure exposure. Papules and pustules after fractionated CO2 resurfacing should raise the suspicion of nontuberculous mycobacterial infection. PMID:23628077

  17. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.

    PubMed

    Fogarty, Barbara A; Heppert, Kathleen E; Cory, Theodore J; Hulbutta, Kalonie R; Martin, R Scott; Lunte, Susan M

    2005-06-01

    The use of CO(2) laser ablation for the patterning of capillary electrophoresis (CE) microchannels in poly(dimethylsiloxane)(PDMS) is described. Low-cost polymer devices were produced using a relatively inexpensive CO(2) laser system that facilitated rapid patterning and ablation of microchannels. Device designs were created using a commercially available software package. The effects of PDMS thickness, laser focusing, power, and speed on the resulting channel dimensions were investigated. Using optimized settings, the smallest channels that could be produced averaged 33 microm in depth (11.1% RSD, N= 6) and 110 microm in width (5.7% RSD, N= 6). The use of a PDMS substrate allowed reversible sealing of microchip components at room temperature without the need for cleanroom facilities. Using a layer of pre-cured polymer, devices were designed, ablated, and assembled within minutes. The final devices were used for microchip CE separation and detection of the fluorescently labeled neurotransmitters aspartate and glutamate.

  18. Fractional CO2 laser treatment for vaginal laxity: A preclinical study.

    PubMed

    Kwon, Tae-Rin; Kim, Jong Hwan; Seok, Joon; Kim, Jae Min; Bak, Dong-Ho; Choi, Mi-Ji; Mun, Seok Kyun; Kim, Chan Woong; Ahn, Seungwon; Kim, Beom Joon

    2018-05-07

    Various studies have investigated treatment for vaginal laxity with microablative fractional carbon dioxide CO 2 laser in humans; however, this treatment has not yet been studied in an animal model. Herein, we evaluate the therapeutic effects of fractional CO 2 laser for tissue remodeling of vaginal mucosa using a porcine model, with the aim of improving vaginal laxity. The fractional CO 2 laser enables minimally invasive and non-incisional procedures. By precisely controlling the laser energy pulses, energy is sent to the vaginal canal and the introitus area to induce thermal denaturation and contraction of collagen. We examined the effects of fractional CO 2 laser on a porcine model via clinical observation and ultrasound measurement. Also, thermal lesions were histologically examined via hematoxylin-eosin staining, Masson's trichrome staining, and Elastica van Gieson staining and immunohistochemistry. The three treatment groups, which were determined according to the amount of laser-energy applied (60, 90, and 120 mJ), showed slight thermal denaturation in the vaginal mucosa, but no abnormal reactions, such as excessive hemorrhaging, vesicles, or erythema, were observed. Histologically, we also confirmed that the denatured lamina propria induced by fractional CO 2 laser was dose-dependently increased after laser treatment. The treatment groups also showed an increase in collagen and elastic fibers due to neocollagenesis and angiogenesis, and the vaginal walls became firmer and tighter because of increased capillary and vessel formation. Also, use of the fractional CO 2 laser increased HSP (heat shock protein) 70 and collagen type I synthesis. Our results show that microablative fractional CO 2 laser can produce remodeling of the vaginal connective tissue without causing damage to surrounding tissue, and the process of mucosa remodeling while under wound dressings enables collagen to increase and the vaginal wall to become thick and tightened. Lasers Surg. Med

  19. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched

  20. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    NASA Astrophysics Data System (ADS)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three

  1. Comparative study of fractional CO2 laser and fractional CO2 laser-assisted drug delivery of topical steroid and topical vitamin C in macular amyloidosis.

    PubMed

    Sobhi, Rehab Mohamed; Sharaoui, Iman; El Nabarawy, Eman Ahmad; El Nemr Esmail, Reham Shehab; Hegazy, Rehab Aly; Aref, Dina Hesham Fouad

    2018-05-01

    Macular amyloidosis (MA) represents a common variant of primary localized cutaneous amyloidosis. It has a characteristic female predominance; none of the treatment modalities described is either curative or uniformly effective in patients with macular amyloidosis. To determine the effect of fractional CO 2 laser in macular amyloidosis in comparison to fractional CO 2 laser-assisted drug delivery of topical steroids and topical vitamin C, the study includes 10 female patients with cutaneous macular amyloidosis aged between 20 and 62 years. Patients were treated with four sessions of fractional CO 2 laser with 4 weeks interval. Laser treatments were performed using fractional CO 2 laser with the following parameters (power 18 W, spacing 800 μm, dwell time 600 μs, stacking 3). The lesion is divided into three areas: area 1, treated by fractional laser only; area 2, treated by fractional laser followed by topical corticosteroid application under occlusion for 24 h; and area 3, treated by fractional laser followed by topical vitamin C serum application under occlusion for 24 h. All lesions were examined clinically and histologically before the therapy and 1 month after the end of the therapy to evaluate the degree of improvement. All treated areas show significant decrease in pigmentation score after treatment, significant drop in rippling (P value < 0.016), and improvement of lichenification; as regards the histological improvement, there was a significant decrease of the amyloid amount after treatment. As regards the amyloid amount, results show significant decrease in the amount of amyloid in all of the three treated areas. Area 2 reported the highest decrease in the amyloid amount followed by areas 1 and 3. One patient (10%) was highly satisfied by the treatment, 6 (60%) reported moderate degree of satisfaction, while only 3 (30%) reported mild satisfaction. Minimal complication occurred in the form of post-inflammatory hyperpigmentation in 1 patient

  2. Improving the outcome of fractional CO2 laser resurfacing using a probiotic skin cream: Preliminary clinical evaluation.

    PubMed

    Zoccali, Giovanni; Cinque, Benedetta; La Torre, Cristina; Lombardi, Francesca; Palumbo, Paola; Romano, Lucia; Mattei, Antonella; Orsini, Gino; Cifone, Maria Grazia; Giuliani, Maurizio

    2016-11-01

    As known, fractional CO 2 resurfacing treatments are more effective than non-ablative ones against aging signs, but post-operative redness and swelling prolong the overall downtime requiring up to steroid administration in order to reduce these local systems. In the last years, an increasing interest has been focused on the possible use of probiotics for treating inflammatory and allergic conditions suggesting that they can exert profound beneficial effects on skin homeostasis. In this work, the Authors report their experience on fractional CO 2 laser resurfacing and provide the results of a new post-operative topical treatment with an experimental cream containing probiotic-derived active principles potentially able to modulate the inflammatory reaction associated to laser-treatment. The cream containing DermaACB (CERABEST™) was administered post-operatively to 42 consecutive patients who were treated with fractional CO 2 laser. All patients adopted the cream twice a day for 2 weeks. Grades were given according to outcome scale. The efficacy of the cream containing DermaACB was evaluated comparing the rate of post-operative signs vanishing with a control group of 20 patients topically treated with an antibiotic cream and a hyaluronic acid based cream. Results registered with the experimental treatment were good in 22 patients, moderate in 17, and poor in 3 cases. Patients using the study cream took an average time of 14.3 days for erythema resolution and 9.3 days for swelling vanishing. The post-operative administration of the cream containing DermaACB induces a quicker reduction of post-operative erythema and swelling when compared to a standard treatment.

  3. Fractional ablative carbon dioxide laser resurfacing for skin rejuvenation and acne scars in Asians.

    PubMed

    Chan, Nicola P Y; Ho, Stephanie G Y; Yeung, Chi K; Shek, Samantha Y N; Chan, Henry H

    2010-11-01

    Ablative fractional resurfacing (AFR) is a new modality for photorejuvenation and acne scars which combines carbon dioxide (CO₂) laser ablation with fractional photothermolysis. The objective is to evaluate the efficacy and side effects of a new fractional CO₂ ablative device (Fraxel Re:pair) for skin rejuvenation and acne scars in Asians. Nine patients underwent one full-face treatment. The energy levels ranged from 30-70 mJ with coverage between 30% and 45%. Improvement in skin texture, laxity, wrinkles, enlarged pores, overall pigmentation irregularity, and adverse effects were assessed up to 6 months post-treatment. Standardized photographs using the Canfield Visia CR system® were assessed by two independent observers. Subjective improvement was assessed by patient questionnaires. Nine Chinese patients (skin types III and IV, mean age 44.8) were included. Statistically significant improvements were seen for skin texture, skin laxity, wrinkles, enlarged pores, and acne scars. The post-inflammatory hyperpigmentation rate was 55.5% and 11.1% at 1 and 6 months post-treatment, respectively. Eighty-six percent of patients were overall satisfied to very satisfied with the treatment. Ablative fractional CO₂ laser resurfacing was overall safe and effective for skin rejuvenation and acne scars in Asians. However, in view of the high post-inflammatory rate and the statistically significant but only mild to moderate improvement after a single treatment as observed in this study, there is a need to review the current role of fractional ablative CO₂ laser treatment as compared to fractional non-ablative for skin rejuvenation and acne scar treatment in Asians. © 2010 Wiley-Liss, Inc.

  4. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya

    The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms ofmore » the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.« less

  6. Effects of pulsed CO2 laser in caries selective ablation

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; David, Ion; Marinovici, Mariana

    1995-03-01

    We have evaluated the effect of pulsed carbon dioxide laser in the treatment for deep carious decay. The so called `caries profonda' is still a problem for conservative dentistry. A `Valvfivre' Master 20S carbon dioxide laser was pulsed to determine the effects on dentine and for testing the properties of softened dentine in selective ablation. Laser treatment parameters were from 1 to 2 W, 50 to 150 ms, 200 to 320 Hz. Fifteen human teeth samples were exposed to irradiation: extracted third molar were exposed to CO2 pulsed laser to determine in vitro the effects on pulp morphology. The tissue samples were analyzed histologically and by means of scanning electron microscopy for evidence of thermal damage. Next, we have evaluated the morphologic changes in vivo on 10 cases in patients with deep carious decay. Pulsed infrared lasers are capable of inducing physical and chemical changes in dentine structure. The results showed an artificially sclerosing and micro-hardness on the remaining dentine. CO2 laser can vaporized carious dentine.

  7. Delivery of Methotrexate and Characterization of Skin Treated by Fabricated PLGA Microneedles and Fractional Ablative Laser.

    PubMed

    Nguyen, Hiep X; Banga, Ajay K

    2018-02-21

    This study investigated in vitro transdermal delivery of methotrexate through dermatomed porcine ear and cadaver human skin treated with poly (D,L-lactide-co-glycolide) acid microneedles or fractional ablative laser. PLGA microneedles were fabricated and characterized using scanning electron microscopy and mechanical assessment techniques. The integrity of treated skin was evaluated by rheometer, transepidermal water loss, and skin electrical resistance measurements. Successful skin microporation was demonstrated by dye binding, histology, pore uniformity, confocal laser microscopy, and DermaScan studies. In vitro permeation experiment was performed on Franz diffusion cells to determine drug delivery into and across the skin. Both physical treatments resulted in a considerable decrease in skin resistance and an increase in transepidermal water loss value. The laser-created microchannels were significantly larger than those formed by microneedles (p < 0.05). An effective force of 41.04 ± 18.33 N was required to achieve 100% penetration efficiency of the microneedles. For both porcine ear and human skin, laser ablation provided a significantly higher methotrexate permeability into the receptor chamber and skin layers compared to microneedle poration and untreated skin (p < 0.05). Both fractional ablative laser and polymeric microneedles markedly enhanced in vitro transdermal delivery of methotrexate into and across skin. Graphical Abstract ᅟ.

  8. Successful Treatment of Rhinophyma With Fractionated Carbon Dioxide (CO2) Laser in an African-American Man: Case Report and Review of Literature of Fractionated CO2 Laser Treatment of Rhinophyma.

    PubMed

    Kraeva, Ekaterina; Ho, Derek; Jagdeo, Jared

    2016-11-01

    Rhinophyma, a late complication of rosacea (phymatous subtype), is a chronic, progressive dermatological condition. The classic pre- sentation of rhinophyma is nodular, thickened skin over the distal nose, and is often accompanied by underlying erythema secondary to in ammation. Due to the unpleasant aesthetic and dis guring appearance, rhinophyma may be associated with a signi cant nega- tive psychosocial impact, resulting in decreased patient quality-of-life. Treatment of rhinophyma is challenging as topical and systemic pharmacotherapies have shown limited ef cacy. We present a case of a 39-year-old African-American male with long-standing, mild rhinophyma who was successfully treated with two sessions of fractionated carbon dioxide (CO2) laser. We also review the medical literature on fractionated CO2 laser treatment of rhinophyma. To the best of our knowledge, this is the rst report of successful treat- ment of rhinophyma using fractionated CO2 laser in an African-American man (Fitzpatrick VI). We believe that fractionated CO2 laser may be a safe and ef cacious treatment modality for rhinophyma in skin of color patients (Fitzpatrick IV-VI) and early intervention with fractionated CO2 laser to prevent rhinophyma worsening may yield better results than late intervention. J Drugs Dermatol. 2016;15(11):1465-1468..

  9. Ellipsometric study of YBa2Cu3O(7-x) laser ablated and co-evaporated films

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Warner, J. D.; Stan, M. A.; Vitta, S.

    1990-01-01

    High temperature superconducting films of YBa2Cu3O(7-x) (YBCO were grown on SrTiO3, LaA1O3, and YSZ substrates using two techniques: excimer laser ablation with in situ annealing and co-evaporation of Y, Cu, and BaF2 with ex-situ annealing. Film thicknesses were typically 5000 A, with predominant c-axis alignment perpendicular to the substrate. Critical temperatures up to Tc(R=O)=90 K were achieved by both techniques. Ellipsometric measurements were taken in the range 1.6 to 4.3 eV using a variable angle spectroscopic ellipsometer. The complex dielectric function of the laser ablated films was reproducible from run to run, and was found to be within 10 percent of that previously reported for (001) oriented single crystals. A dielectric overlayer was observed in these films, with an index of refraction of approximately 1.55 and nearly zero absorption. For the laser ablated films the optical properties were essentially independent of substrate material. The magnitude of the dielectric function obtained for the co-evaported films was much lower than the value reported for single crystals, and was sample dependent.

  10. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.

    PubMed

    Yap, Yiing C; Guijt, Rosanne M; Dickson, Tracey C; King, Anna E; Breadmore, Michael C

    2013-11-05

    With the introduction of hobby laser engravers/cutters, the use of CO2 laser micromachining on poly(methyl methacrylate) (PMMA) has the potential for flexible, low cost, rapid prototyping of microfluidic devices. Unfortunately, the feature size created by most entry-level CO2 laser micromachining systems is too large to become a functional tool in analytical microfluidics. In this paper, we report a novel method to reduce the feature size of microchannels and the bulges formed at the rim of the channel during CO2 laser micromachining by passing the laser beam through a stainless steel pinhole. Without the pinhole, the channel width was typically 300 μm wide. However, when 50 or 35 μm diameter pinholes were used, channel widths of 60 and 25 μm, respectively, could be obtained. The height of the bulge deposited directly next to the channel was reduced to less than 0.8 μm with the pinhole during ablation. Separations of fluorescent dyes on devices ablated with and without the pinhole were compared. On devices fabricated with the pinhole, the number of theoretical plates/m was 2.2-fold higher compared to devices fabricated without the pinhole, and efficiencies comparable to embossed PMMA and laser ablated glass chips were obtained. A mass-produced commercial hobby laser (retailing at ∼$2500), when equipped with a $500 pinhole, represents a rapid and low-cost approach to the rapid fabrication of rigid plastic microchips including the narrow microchannels required for microchip electrophoresis.

  11. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air

    PubMed Central

    Jung, Heejung S.; Grady, Michael L.; Victoroff, Tristan; Miller, Arthur L.

    2017-01-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO2) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm3, although CO2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm3. We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50–75% maintained lower CO2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants’ exposures to particulate matter and CO2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO2 accumulation. PMID:28781568

  12. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    PubMed

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  13. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air

    NASA Astrophysics Data System (ADS)

    Jung, Heejung S.; Grady, Michael L.; Victoroff, Tristan; Miller, Arthur L.

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO2) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm3, although CO2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm3. We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO2 accumulation.

  14. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.

    1992-01-01

    Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.

  15. The sensitization potential of sunscreen after ablative fractional skin resurfacing using modified human repeated insult patch test.

    PubMed

    Boonchai, Waranya; Sathaworawong, Angkana; Wongpraparut, Chanisada; Wanitphakdeedecha, Rungsima

    2015-10-01

    Ablative fractional skin resurfacing has become popular and proven to be useful in treating scars, photoaging and wrinkles. Although post-inflammatory hyperpigmentation (PIH) is the most common complication especially in dark-skinned patients like Asian. Several modalities have been used to overcome the PIH. To determine the sensitization potential of sunscreen applied immediately after ablative fractional skin resurfacing. Sixty volunteers were recruited. Of these 30 subjects were from previous ablative fractional skin resurfacing study who applied broad-spectrum sunscreen containing anti-inflammatory agent starting on the first day after resurfacing and another 30 non-resurfacing subjects had applied the same sunscreen on the intact skin. All subjects were patch/photopatch tested for sensitization study by using modified human repeated insult patch test (HRIPT). There were significantly higher sensitization rate of UV-filter, octocrylene and the sunscreen in resurfacing group than in non-resurfacing group. Early application of sunscreen after ablative fractional skin resurfacing has increased the incidence of sensitization potential of sunscreen. The sunscreen is recommended to start using from D3 after fractional ablative skin resurfacing to ensure the complete recovery of skin barrier and minimize the risk of sensitization.

  16. Fractional versus ablative erbium:yttrium-aluminum-garnet laser resurfacing for facial rejuvenation: an objective evaluation.

    PubMed

    El-Domyati, Moetaz; Abd-El-Raheem, Talal; Abdel-Wahab, Hossam; Medhat, Walid; Hosam, Wael; El-Fakahany, Hasan; Al Anwer, Mustafa

    2013-01-01

    Laser is one of the main tools for skin resurfacing. Erbium:yttrium-aluminum-garnet (Er:YAG) was the second ablative laser, after carbon dioxide, emitting wavelength of 2940 nm. Fractional laser resurfacing has been developed to overcome the drawbacks of ablative lasers. We aimed to objectively evaluate the histopathological and immunohistochemical effects of Er:YAG 2940-nm laser for facial rejuvenation (multiple sessions of fractional vs single session of ablative Er:YAG laser). Facial resurfacing with single-session ablative Er:YAG laser was performed on 6 volunteers. Another 6 were resurfaced using fractional Er:YAG laser (4 sessions). Histopathological (hematoxylin-eosin, orcein, Masson trichrome, and picrosirius red stains) and immunohistochemical assessment for skin biopsy specimens were done before laser resurfacing and after 1 and 6 months. Histometry for epidermal thickness and quantitative assessment for neocollagen formation; collagen I, III, and VII; elastin; and tropoelastin were done for all skin biopsy specimens. Both lasers resulted in increased epidermal thickness. Dermal collagen showed increased neocollagen formation with increased concentration of collagen types I, III, and VII. Dermal elastic tissue studies revealed decreased elastin whereas tropoelastin concentration increased after laser resurfacing. Neither laser showed significant difference between their effects clinically and on dermal collagen. Changes in epidermal thickness, elastin, and tropoelastin were significantly more marked after ablative laser. The small number of patients is a limitation, yet the results show significant improvement. Multiple sessions of fractional laser have comparable effects to a single session of ablative Er:YAG laser on dermal collagen but ablative laser has more effect on elastic tissue and epidermis. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Carbon isotope fractionation between blood and expired CO2 at rest and exercise.

    PubMed

    Panteleev, N; Péronnet, F; Hillaire-Marcel, C; Lavoie, C; Massicotte, D

    1999-06-01

    Carbon isotope fractionation occurs between bicarbonates and gaseous CO2. Accordingly, expired CO2 could be impoverished in 13C vs. blood CO2 (approximately 90% bicarbonates). The ratio 13C/12C in expired and blood CO2 was measured in six healthy subjects at rest and at the end of exercise (90 min; 65+/-5% VO2max), with ingestion of water (300 ml) without or with glucose (30 g) naturally or artificially enriched in 13C, in order to study a range of 13C/12C in blood (-17.5+/-0.3 to 3.4+/-0.6% delta 13C PDB-1). At rest, 13C/12C in expired CO2 was 4.7+/-0.2% delta 13C PDB-1 lower than in blood CO2. This difference was not modified in response to exercise with ingestion of water or 13C-glucose (average difference 4.6+/-0.4 % delta 13C PDB-1). Carbon isotope fractionation across the lung was approximately 30% lower than predicted from the fractionation factor between bicarbonates and gaseous CO2 (1.00674 at 37 degrees C, or a approximately 6.6% delta 13C PDB-1 difference). This is consistent with the fact that approximately 40% of expired CO2 is released from carbamates and dissolved CO2. From a methodological point of view, these results indicate that 13C/12C in expired CO2 adequately tracks 13C/12C in blood CO2 with a constant approximately 4.6 % delta 13C PDB-1 difference.

  18. A comparison of the DPSS UV laser ablation characteristic of 1024 and H10F WC-Co

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar

    2017-07-01

    An investigation on ablation characteristics of 1024 and H10F cobalt cemented tungsten carbide (WC-Co) with a DPSS nanosecond UV laser (50 ns pulse width, 355 nm wavelength, 90 W average power and 10 kHz repetition rate) is presented. The ablation characteristic parameters such as ablation threshold, incubation effect and optical penetration depth were evaluated based on the spot ablation diameter and depth. It was observed that the ablation threshold is significantly influenced by the number of pulses (NOP) and it decreases with increase NOP which is attributed to the incubation effect. Only one ablation region is observed at low laser fluence and an additional molten ablation region is observed at high laser fluence accompanied with cracks. The cracks formation is due to the thermal induced stress and changes in WC microstructure during laser beam irradiation. The crack depth is proportional to the thickness of the molten WC region. The ablation threshold of 1024 WC-Co and H10F WC-Co were found to be Fth1 =4.32 J/cm2 and Fth1 =4.26 J/cm2 respectively. The difference in chemical composition has insignificant effect on the ablation threshold value of the material. The incubation factor and optical penetration depth values of 1024 WC-Co and H10F WC-Co were found to be ξ=0.73, α-1 =411 nm and ξ=0.75, α-1 =397 nm respectively.

  19. Clinical efficacy of utilizing Ultrapulse CO2 combined with fractional CO2 laser for the treatment of hypertrophic scars in Asians-A prospective clinical evaluation.

    PubMed

    Lei, Ying; Li, Shi Feng; Yu, Yi Ling; Tan, Jun; Gold, Michael H

    2017-06-01

    Hypertrophic scarring is seen regularly. Tissue penetration of laser energy into hypertrophic scars using computer defaults from some lasers may be insufficient and penetration not enough. We have developed a treatment with an interrupted laser "drilling" by the Ultrapulse CO 2 (Manual Fractional Technology, MFT) and, a second pass, with fractional CO 2 . The MFT with fractional CO 2 lasers to treat hypertrophic scars is evaluated. A total of 158 patients with hypertrophic scars had three sessions of MFT with fractional CO 2 laser at 3-month intervals. Evaluations made before and 6 months after the 3rd treatment: (1) the Vancouver Scar Scale (VSS), (2) the University of North Carolina (UNC) Scar Scale, and (3) a survey of patient satisfaction. All data were analyzed using a t-test before and after treatment. The VSS score decreased from 9.35 to 3.12 (P<.0001), and the UNC Scar Scale score decreased from 8.03 to 1.62 (P<.0001). The overall satisfaction rate was 92%. No long-term complications occurred in the clinical trial. The interrupted laser drilling by MFT and a fractional CO2 laser had profound effects on the hypertrophic scars treated. It works by increasing the penetration depth of the CO 2 laser in the scar tissue, exerting more precise effects on the hypertrophic scars. MFT combined with fractional CO 2 laser has the potential to be a major advance in the treatment of hypertrophic scars. © 2017 Wiley Periodicals, Inc.

  20. Fractional CO2 laser for vulvovaginal atrophy (VVA) dyspareunia relief in breast cancer survivors.

    PubMed

    Pieralli, Annalisa; Fallani, Maria Grazia; Becorpi, Angelamaria; Bianchi, Claudia; Corioni, Serena; Longinotti, Manuela; Tredici, Zelinda; Guaschino, Secondo

    2016-10-01

    The aim of this study was to evaluate the efficacy of fractional CO2 laser therapy in breast cancer survivors as a therapeutic method for vulvovaginal atrophy (VVA) dyspareunia. 50 patients (mean age 53.3 years) underwent fractional microablative CO2 laser treatment for dyspareunia in oncological menopause (mean time of menopause 6.6 years). The Gloria Bachmann's Vaginal Health Index (VHI) score was chosen as system to evaluate the presence of VVA and its improvement after the treatment. Intensity of dyspareunia was evaluated using a visual analog scale (VAS). Data indicated a significant improvement in VVA dyspareunia (p < 1.86e-22) in breast cancer survivors who had undergone 3 sessions of vaginal fractional CO2 laser treatment. Moreover, VHI scores were significantly higher 30 days post-treatment (T4) (p < 0.0001). 76 % of patients were satisfied or very satisfied with the treatment results. The majority (52 %) of patients were satisfied after a long-term follow-up (mean time 11 months). No adverse events due to fractional CO2 laser treatment occurred. The treatment with fractionated CO2 laser appeared to be a feasible and effective treatment for VVA dyspareunia in breast cancer survivors with contraindications to hormonal treatments.

  1. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.

  2. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, p<0.01) for ablated/acid-etched samples, 5.2 MPa (s.d.=2.4, p<0.001) for ablated/non-etched samples, and 37.0 MPa (s.d.=3.6) for control. The results indicate that a rapid-scanning 300 Hz CO2 laser can effectively ablate dentin and enamel without excessive heat accumulation and with minimal

  3. CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths

    NASA Astrophysics Data System (ADS)

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.

    1990-03-01

    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.

  4. Hypertrichotic Becker's nevi treated with combination 1,550 nm non-ablative fractional photothermolysis and laser hair removal.

    PubMed

    Balaraman, Brundha; Friedman, Paul M

    2016-04-01

    The removal of Becker's nevi poses a significant challenge due to limited available therapeutic options and increased risk of adverse effects, including scarring and dyspigmentation. Herein, we present the use of the non-ablative fractional photothermolysis in combination with laser hair removal for the treatment of hypertrichotic Becker's nevi. Retrospective analysis of three patients with Becker's nevi revealed that two patients with hypertrichotic Becker's nevi had greater than 75% clearance with combination therapy, and one patient with atrichotic Becker's nevus had a similar result with monotherapy non-ablative fractional photothermolysis. This report demonstrates the utility and safety of combination non-ablative fractional resurfacing and laser hair removal for the treatment of hypertrichotic Becker's nevi, and monotherapy non-ablative fractional photothermolysis for atrichotic Becker's nevi. Further comparative studies are necessary to determine optimal laser parameters, treatment schedules, and response duration. © 2016 Wiley Periodicals, Inc.

  5. Fractionated Er:YAG laser versus fully ablative Er:YAG laser for scar revision: Results of a split scar, double blinded, prospective trial.

    PubMed

    Tidwell, W James; Owen, Cindy E; Kulp-Shorten, Carol; Maity, Abhishek; McCall, Michael; Brown, Timothy S

    2016-11-01

    Ablative laser resurfacing is a common treatment for post-surgical scars. Fractional ablative laser resurfacing has been an emerging treatment option that is replacing fully ablative lasers in many applications. Data comparing fractionated and fully ablative lasers in treating post-operative scars are lacking. Twenty patients were enrolled in a split scar study following excisions from dermatologic surgery. Wounds had to be older than 8 weeks but less than 1 year. The scars were randomly divided into two halves. One half of the scar was treated with fully ablative erbium-doped yttrium aluminum garnet (Er:YAG) and the other was treated with fractionated Er:YAG. The scars were treated at monthly intervals for 3 months, then followed up at months 1 and 2 after the last treatment. POSAS was used to evaluate the scars by a panel of dermatologists blinded to the lasers in conjunction with the patients, who were also blinded. Physicians and patients both observed a superior outcome of 32.5% (P = 0.019) and 58.1% (P = 0.001), respectively, using the POSAS. There was no trend in difference in pain reported by the patient between the two lasers. Patients overwhelmingly preferred the fractionated Er:YAG laser (94%) to the fully ablative laser when asked at the end of the study. Although this study is limited by a short follow-up period, it shows a statistically significant superior outcome in fractionated Er:YAG over fully ablative Er:YAG for scar revision. It also adds quantitative values to the assessment of scar appearance when treated with fractionated lasers compared to fully ablative lasers. It was also found that the fractionated Er:YAG had increased patient satisfaction, but there was no difference in reported pain scores. These data are useful when counseling patients undergoing laser surgery. Lasers Surg. Med. 48:837-843, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Extending isotopic fractionation in phytoplankton for Phanerozoic pCO2 reconstruction

    NASA Astrophysics Data System (ADS)

    Witkowski, C. R.; Agostini, S.; Weijers, J.; Schouten, S.; S Sinninghe Damsté, J.

    2017-12-01

    The atmospheric concentration of carbon dioxide (pCO2) is a keystone in many earth system dynamics, including the biosphere, carbon cycle, and climate. In order to better understand the impact of today's exceptional increases in pCO2 on the future, we look to secular trends in pCO2. Photosynthetic carbon isotopic fractionation (Ɛp), calculated from the difference between the stable carbon isotopic composition (δ13C) of environmental CO2 and biomass, has some of the lowest uncertainty in estimation among CO2 proxies. However, Ɛp is generally applied to species-specific compounds which have an evolution-limited record (e.g. alkenones limited ca. 50 Ma). To extend the use of Ɛp, we explore the general phytoplankton biomarker phytane. As the fossilized side-chain of chlorophyll, phytane is spatially and temporally ubiquitous, with the potential to record pCO2 back to the earliest photoautotrophs in the geologic record. To develop and validate its potential as a pCO2 proxy, we explored phytane in modern environments, in a multi-proxy case study, and in a Phanerozoic reconstruction. As a proof-of-concept, the δ13C of phytane was tested in modern environments at naturally-occurring CO2 vents in Japan and Italy, which showed clear fractionation over the steep CO2 gradient. This was then further tested in a multi-proxy assessment in DSDP site 467 that spans the last 15 Ma, looking at both well-established (i.e. alkenones) and potential (i.e. phytane, steranes, hopanes) pCO2 proxies; phytane represented the average δ13C for these biomarkers. Finally, the δ13C of phytane data over the Phanerozoic was compiled, showing agreement with literature reconstructions of pCO2. Current pCO2 reconstructions are derived from many different types of proxies, which can create incongruities and inconsistencies throughout time, making this single well-constrained proxy that ubiquitously spans the geologic record a useful addition to the palaeo-detective's toolbox.

  7. Healing of chronic wounds with adjunctive ablative fractional laser resurfacing in two pediatric patients.

    PubMed

    Krakowski, Andrew C; Diaz, Lucia; Admani, Shehla; Uebelhoer, Nathan S; Shumaker, Peter R

    2016-02-01

    The development of chronic non-healing wounds is multifactorial and can lead to increased patient morbidity. When traditional wound care methods fail, alternative treatments are needed to prevent chronic ulcer complications. Ablative fractional laser resurfacing (AFR) is an emerging therapy for chronic wounds. We report the successful use of AFR to facilitate the healing of chronic wounds in two pediatric patients. This is a case series including two patients with chronic wounds within scars that were treated with a micro-fractionated carbon dioxide (CO2 ) laser in a single pass at a pulse energy of 50 mJ and a treatment density of 5%. One patient had one treatment and the other had two treatments 1 month apart. AFR led to rapid healing of chronic wounds in both pediatric patients. The wounds remained epithelialized after 9 months in one patient and 4 months in the other. There were no complications. The combination of tolerability and efficacy observed in these cases introduces AFR as a potential promising adjunct to existing treatments for chronic, non-healing wounds in the pediatric population. © 2015 Wiley Periodicals, Inc.

  8. A Model for Partitioning CO2 Flux and Calculating Transformation of Soil C Fractions

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Noormets, A.; Tu, C.; King, J.

    2011-12-01

    It has been recognized that mechanistic understanding of soil organic carbon (SOC) mineralization requires partitioning of SOM to different sub-pools, whose turnover kinetics differ. Different fractionation methods have been developed to separate and analyze SOC fractions with different turnover rates, but some recent studies have called to questions earlier assumptions about chemical structure of C compounds and their recalcitrance to decomposition. To our knowledge, there is also no model that would bring together the information on various indicators of recalcitrance in a kinetic model framework . Here we deploy an analytical framework to partition soil net CO2 emissions to three density fractions (F1, F2, and F3, in the order of increasing density) in a peat soil and follow mineralization-related transformations (from lighter to heavier fractions). We followed the changes in total C content [C] and 13C of each three density fractions through a 3-month incubation study. We partitioned the CO2 produced by the soil between the different fractions using 13C and [C] change data. Applying this approach to a factorial experiment, we found that partitioning of CO2 emission and transformation rates among fractions differed between the organic top soil and deeper sandy soil. At depth of 45-75cm, almost no C was released through CO2 emission for all three fractions, while at 0-30cm, emission reached 0.2 g C/g soil over the incubation period, an average of 99% of which was from F2. Mineralization-related transformation rate at 45-75cm was 0.02 g soil/g soil with no significant differences among fractions. At 0-30cm, out of one gram of initial bulk soil, an average of 0.31g F1 transformed to F2, whereas no F2 was transformed to F3. Although the current study was carried out on a high-organic soil, the partitioning method is applicable to all soil types.

  9. Next generation Er:YAG fractional ablative laser

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  10. Short incubation fractional CO2 laser-assisted photodynamic therapy vs. conventional photodynamic therapy in field-cancerized skin: 12-month follow-up results of a randomized intraindividual comparison study.

    PubMed

    Vrani, F; Sotiriou, E; Lazaridou, E; Vakirlis, E; Sideris, N; Kirmanidou, E; Apalla, Z; Lallas, A; Ioannides, D

    2018-06-04

    Topical methyl aminolevulinate photodynamic therapy (MAL-PDT) with 3 h incubation is recommended as a field directed treatment. Skin pretreatment with ablative CO 2 fractional laser (AFXL) prior to MAL-PDT enhances drug penetration and could minimize incubation time. To evaluate and compare the safety and the preventive effect in the development of new non-melanocytic skin cancers (NMSCs) of AFXL-assisted MAL-PDT with 1-h incubation with that of conventional MAL-PDT in patients with clinical and histological signs of field cancerization. Forty-two patients with two mirror cancerized areas of face or scalp were randomized to field treatment with 1-h incubation AFXL-assisted PDT or conventional PDT (CPDT). All patients underwent two treatment sessions 1 week apart. Irradiation was performed using a red light-emitting diode lamp at 37 J/cm 2 . Patients were followed up at 3, 6, 9 and 12 months for the evaluation of development of new NMSCs lesions. All patients completed the study. There was no statistically significant difference with respect to the total number of new actinic keratoses at any point of follow-up as well as to the mean time of occurrence of new lesions between treatment fields. Both treatment regimens were safe and well tolerated. Ablative CO 2 fractional laser pretreatment may be considered as an option for reducing photosensitizer occlusion time while providing the same preventative efficacy as CPDT in patients with field-cancerized skin. © 2018 European Academy of Dermatology and Venereology.

  11. Interaction of graphite and ablative materials with CO2-laser, carbon-arc, and xenon-arc radiation. M.S. Thesis - George Washington Univ., Washington, D. C.

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.

    1975-01-01

    The behavior of graphite and several charring ablators in a variety of high radiative heat flux environments was studied in various radiative environments produced by a CO2 laser and a carbon arc facility. Graphite was also tested in xenon arc radiation. Tests were conducted in air nitrogen, helium, and a mixture of CO2 and nitrogen, simulating the Venus atmosphere. The experimental results are compared with theoretical results obtained with a one dimensional charring ablator analysis and a two dimensional subliming ablator analysis. Photomicroscopy showed no significant differences in appearance or microstructure of the charring ablators or graphite after testing in the three different facilities, indicating that the materials respond fundamentally the same to the radiation of different frequencies. The performance of phenolic nylon and graphite was satisfactorily predicted with existing analyses and published material property data.

  12. Selective mucosal ablation using CO2 laser for the development of novel endoscopic submucosal dissection: comparison of continuous wave and nanosecond pulsed wave

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Watanabe, S.; Obata, D.; Hazama, H.; Morita, Y.; Matsuoka, Y.; Kutsumi, H.; Azuma, T.; Awazu, K.

    2010-02-01

    Endoscopic submucosal dissection (ESD) is accepted as a minimally invasive treatment technique for small early gastric cancers. Procedures are carried out using some specialized electrosurgical knifes with a submucosal injection solution. However it is not widely used because its procedure is difficult. The objective of this study is to develop a novel ESD method which is safe in principle and widely used by using laser techniques. In this study, we used CO2 lasers with a wavelength of 10.6 μm for mucosal ablation. Two types of pulse, continuous wave and pulsed wave with a pulse width of 110 ns, were studied to compare their values. Porcine stomach tissues were used as a sample. Aqueous solution of sodium hyaluronate (MucoUpR) with 50 mg/ml sodium dihydrogenphosphate is injected to a submucosal layer. As a result, ablation effect by CO2 laser irradiation was stopped because submucosal injection solution completely absorbed CO2 laser energy in the invasive energy condition which perforates a muscle layer without submucosal injection solution. Mucosal ablation by the combination of CO2 Laser and a submucosal injection solution is a feasible technique for treating early gastric cancers safely because it provides a selective mucosal resection and less-invasive interaction to muscle layer.

  13. Non-ablative fractional resurfacing of surgical and post-traumatic scars.

    PubMed

    Vasily, David B; Cerino, Mary E; Ziselman, Ethel M; Zeina, S Tannous

    2009-11-01

    Non-ablative, fractional lasers generate microscopic columns of coagulated tissue through the epidermis and dermis to evoke a wound healing response. In this study, the authors examined the efficacy and safety of the non-ablative 1540 nm erbium:glass fractional laser in the treatment of surgical and post-traumatic scars. Clinical studies were conducted on a range of surgical and post-traumatic scars with a 1540 nm erbium:glass fractional laser varying energy, pulse widths, treatment passes, and number of treatments. A histological study was conducted on a postsurgical scar to follow the time course of healing post-treatment and the impact of the fractional treatment on normalization of scar tissue, as compared to baseline histology of the scar. Histologic findings demonstrated rapid re-epithelialization of the epidermis within 72 hours of treatment. Remodeling of scar tissue with renewal and reorganization of collagen fibers in the dermis was noted two weeks post-treatment. Clinical subjects, with Fitzpatrick skin types II-V, received three to seven treatments with microbeam energies up to 60 mJ/pb and five passes. Relative to baseline, 73% of treated scars improved 50% or more and 43% improved 75% or more. Side effects included mild swelling (95% of subjects), erythema (94%) and purpura (5%), which all resolved within two to three days. Downtime was minimal-to-none for all subjects. These data illustrate the safety and efficacy of the 1540 nm erbium:glass fractional laser in the treatment of surgical and post-traumatic scars. Practitioners can vary energy and microbeam density in order to tailor the treatment to reflect the individual scar characteristics.

  14. Outcomes of radiofrequency ablation (RFA) and CO2 laser for early glottic cancer.

    PubMed

    Shuang, Yu; Li, Chao; Zhou, Xuan; Huang, Yongwang; Zhang, Lun

    2016-01-01

    In the present study, the voice and functional outcomes of radiofrequency ablation (RFA) and CO2 laser for early glottic cancer were evaluated. One hundred sixty eight patients with early glottic cancer from October 2007 to June 2015 were included. Ninety-seven patients underwent RFA and seventy-one patients underwent CO2 laser. The operation time and score of visual analog scale (VAS) for pain on the second day after surgery were recorded. The electronic laryngoscopy was performed at one week, one month and three months of postoperation. The operation time in RFA was shorter than that in CO2 laser (8.52±1.43min vs. 11.76±1.67min, P<0.05). There was no statistical difference in VAS scores between two operation methods (2.86±0.52 vs. 2.89±0.68, P>0.05). One month after operation, the mucosal recovery in RFA group was better than that in CO2 laser group (P<0.05). The alterations of acoustic parameters Jitter, Shimmer and HNR at three time points after operation showed statistical significances in both RFA and CO2 laser groups (P<0.05). The significant differences in acoustic parameters between two groups were also observed (P<0.05). There were no differences in three-year survival rate, local recurrence rate, recurrence rate with anterior commissure involvement and postoperative adhesion rate with anterior commissure between the patients with RFA and CO2 laser (P>0.05). No patient underwent tracheotomy and had symptoms of bucking, dyspnea, severe pain, hemoptysis and other serious complications. Both RFA and CO2 laser are safe and effective for the treatment of early glottic cancer. RFA has the advantage of quick voice recovery, low mucosa injury and short operation time, which is worthy for wide clinical application. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Catheter ablation of atrial fibrillation in patients with heart failure and preserved ejection fraction.

    PubMed

    Black-Maier, Eric; Ren, Xinru; Steinberg, Benjamin A; Green, Cynthia L; Barnett, Adam S; Rosa, Normita Sta; Al-Khatib, Sana M; Atwater, Brett D; Daubert, James P; Frazier-Mills, Camille; Grant, Augustus O; Hegland, Donald D; Jackson, Kevin P; Jackson, Larry R; Koontz, Jason I; Lewis, Robert K; Sun, Albert Y; Thomas, Kevin L; Bahnson, Tristam D; Piccini, Jonathan P

    2018-05-01

    Few studies have examined outcomes of catheter ablation for atrial fibrillation (AF) in patients with heart failure (HF) with preserved ejection fraction (HFpEF). The purpose of this study was to compare outcomes of AF ablation in patients with HFpEF vs HF with reduced ejection fraction (HFrEF). We performed a retrospective study of 230 patients with HF who underwent AF ablation, including 97 (42.2%) with HFrEF and 133 (57.8%) with HFpEF. Outcomes included adverse events, symptoms (Mayo AF Symptom Inventory [MAFSI]), New York Heart Association (NYHA) functional class, and freedom from recurrent atrial arrhythmia at 12 months. Overall, 150 of 230 patients had nonparoxysmal AF (62.8% HFpEF vs 63.0% HFrEF). Patients with HFpEF had a smaller mean left atrial diameter (4.4 ± 0.8 cm vs 4.7 ± 0.7 cm; P = .013) and were less likely to be taking a beta-blocker at baseline (72.9% vs 85.6%; P = .022). Median (Q1, Q3) procedure times (233 minutes [192, 290] vs 233.5 minutes [193.0, 297.5]; P = .780) and adverse events such as acute HF (3.8% vs 6.2%; P = .395) were similar between HFpEF and HFrEF patients. Freedom from recurrent atrial arrhythmia was not significantly different in HFpEF vs HFrEF patients (33.9% vs 32.6%; adjusted hazard ratio 1.47; 95% confidence interval 0.72-3.01), with similar improvements in NYHA functional class (-0.32 vs -0.19; P = .135) and MAFSI symptom severity (-0.23 vs -0.09; P = .116) after ablation. Catheter ablation of AF seems to have similar effectiveness in patients with HF, regardless of presence of systolic dysfunction. There were no significant differences in procedural characteristics, arrhythmia-free recurrence, or functional improvements between patients with HFpEF and those with HFrEF. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. Pulsed CO2 Laser Ablation of Superficial Basal Cell of Limbs and Trunk: A Comparative Randomized Clinical Trial With Cryotherapy and Surgical Ablation.

    PubMed

    Zane, Cristina; Facchinetti, Elena; Arisi, Mariachiara; Ortel, Bernhard; Calzavara-Pinton, Piergiacomo

    2017-07-01

    Pulsed CO2 laser is a treatment of superficial basal cell carcinoma (sBCC) although robust clinical evidence has not been reported so far. The authors investigated efficacy, safety, time to wound healing, cosmetic outcome, patient satisfaction, and cost-effectiveness ratio of pulsed CO2 laser in comparison to cryotherapy and surgery. BCCs of the trunk and extremities were randomized to one of the treatments. After 90 days, efficacy and cosmetic outcome were assessed. Patients recorded the time to complete healing of the wound and scored their overall satisfaction. Two hundred forty patients were randomized. After 3 months, complete remission (CR) rate with pulsed CO2 laser was 78.8%. This was significantly lower than surgery, whereas the CR rate with cryotherapy was not significantly different. Cosmetic result was better with surgery. High satisfaction was reported by 65.0% of patients treated with CO2 ablation. Time of wound healing was significantly shorter with CO2 laser. In comparison to cryotherapy, pulsed CO2 laser showed no statistically significant difference in efficacy, cosmetic outcome, and patient satisfaction. Time to healing was shorter; the cost and cost-effectiveness ratio were similar. Surgery had the greatest efficacy rate. The main limitation of this study was the short duration of follow-up (3 months).

  17. Histologic comparison of microscopic treatment zones induced by fractional lasers and radiofrequency.

    PubMed

    Shin, Min-Kyung; Choi, Jeong Hwee; Ahn, Soo Beom; Lee, Mu Hyoung

    2014-12-01

    Fractional photothermolysis induces microscopic, localized thermal injury in the skin surrounded by undamaged viable tissue in order to promote wound healing. This study evaluated acute histologic changes following each single pass of various fractional lasers and radiofrequency (RF). Three male domestic swine were used. We used fractional Erbium:glass (Er:glass), Erbium:yttrium-aluminum-garnet (Er:YAG), CO2 lasers, and fractional ablative microplasma RF. We analyzed features and average values of the diameter, depth, and vertical sectional areas treated with each kind of laser and RF. The microscopic treatment zone (MTZ) of fractional Er:glass resulted in separation of dermoepidermal junction with no ablative zone. Fractional Er:YAG provided the most superficial and broad MTZ with little thermal collateral damage. Fractional CO2 resulted in a narrow and deep "cone"-like MTZ. Fractional RF resulted in a superficial and broad "crater"-like MTZ. This study provides the first comparison of MTZs induced by various fractional lasers and RF. These data provide basic information on proper laser and RF options. We think that these findings could be a good reference for information about fractional laser-assisted drug delivery.

  18. Pulpal effects of enamel ablation with a microsecond pulsed lambda = 9.3-microm CO2 laser.

    PubMed

    Staninec, Michal; Darling, Cynthia L; Goodis, Harold E; Pierre, Daniel; Cox, Darren P; Fan, Kenneth; Larson, Michael; Parisi, Renaldo; Hsu, Dennis; Manesh, Saman K; Ho, Chi; Hosseini, Mehran; Fried, Daniel

    2009-04-01

    In vitro studies have shown that CO2 lasers operating at the highly absorbed 9.3 and 9.6-microm wavelengths with a pulse duration in the range of 10-20-microsecond are well suited for the efficient ablation of enamel and dentin with minimal peripheral thermal damage. Even though these CO2 lasers are highly promising, they have yet to receive FDA approval. Clinical studies are necessary to determine if excessive heat deposition in the tooth may have any detrimental pulpal effects, particularly at higher ablative fluencies. The purpose of this study was to evaluate the pulpal safety of laser irradiation of tooth occlusal surfaces under the conditions required for small conservative preparations confined to enamel. Test subjects requiring removal of third molar teeth were recruited and teeth scheduled for extraction were irradiated using a pulsed CO2 laser at a wavelength of 9.3 microm operating at 25 or 50 Hz using a incident fluence of 20 J/cm(2) for a total of 3,000 laser pulses (36 J) for both rates with water cooling. Two control groups were used, one with no treatment and one with a small cut made with a conventional high-speed hand-piece. No anesthetic was used for any of the procedures and tooth vitality was evaluated prior to treatment by heat, cold and electrical testing. Short term effects were observed on teeth extracted within 72 hours after treatment and long term effects were observed on teeth extracted 90 days after treatment. The pulps of the teeth were fixed with formalin immediately after extraction and subjected to histological examination. Additionally, micro-thermocouple measurements were used to estimate the potential temperature rise in the pulp chamber of extracted teeth employing the same irradiation conditions used in vivo. Pulpal thermocouple measurements showed the internal temperature rise in the tooth was within safe limits, 3.3+/-1.4 degrees C without water cooling versus 1.7+/-1.6 degrees C with water-cooling, n = 25, P<0.05. None of

  19. Novel use of non-ablative fractional photothermolysis for café-au-lait macules in darker skin types.

    PubMed

    Balaraman, Brundha; Ravanfar-Jordan, Parisa; Friedman, Paul M

    2017-01-01

    The removal of café-au-lait macules (CALMs) in patients with darker skin phototypes poses a significant challenge due to limited available therapeutic options and increased risk of adverse effects, including permanent scarring and further dyspigmentation. Herein, we demonstrate the novel use of non-ablative fractional photothermolysis for the safe removal of CALMs in individuals with Fitzpatrick skin type (FST) IV-V. Retrospective analysis of four patients (FST IV-V) with CALMs revealed that three of these patients had greater than 50% clearance after multiple treatment sessions with the non-ablative fractional 1,550-nm erbium-doped fiber laser. This report demonstrates the utility and safety of non-ablative fractional resurfacing in the treatment of CALMs in darker skin phototypes. Lasers Surg. Med. 49:84-87, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Combined fractional resurfacing (10600 nm/1540 nm): Tridimensional imaging evaluation of a new device for skin rejuvenation.

    PubMed

    Mezzana, Paolo; Valeriani, Maurizio; Valeriani, Roberto

    2016-11-01

    In this study were described the results, by tridimensional imaging evaluation, of the new "Combined Fractional Resurfacing" technique with the first fractional laser that overtakes the limits of traditional ablative, nonablative fractional resurfacing by combining CO 2 ablative and GaAs nonablative lasers. These two wavelengths can work separately or in a mixed modality to give the best treatment choice to all the patients. In this study, it is demonstrated that the simultaneous combination of the CO 2 wavelength (10600 nm) and GaAs wavelength (1540 nm) reduced the downtime, reduced pain during the treatment, and produced better results on fine wrinkles reduction and almost the same results on pigmentation as seen with 3D analysis by Antera (Miravex).

  1. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China

    NASA Astrophysics Data System (ADS)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong

    2018-05-01

    As CO2 is a primary driving factor of climate change, the mole fraction and source-sink characteristics of atmospheric CO2 over China are constantly inferred from multi-source and multi-site data. In this paper, we compared ground-based CO2 measurements with satellite retrievals and investigated the source-sink regional representativeness at China's four WMO/GAW stations. The results indicate that, firstly, atmospheric CO2 mole fractions from ground-based sampling measurement and Greenhouse Gases Observing Satellite (GOSAT) products reveal similar seasonal variation. The seasonal amplitude of the column-averaged CO2 mole fractions is smaller than that of the ground-based CO2 at all stations. The extrema of the seasonal cycle of ground-based and column CO2 mole fractions are basically synchronous except a slight phase delay at Lin'an (LAN) station. For the two-year average, the column CO2 is lower than ground-based CO2, and both of them reveal the lowest CO2 mole fraction at Waliguan (WLG) station. The lowest (∼4 ppm) and largest (∼8 ppm) differences between the column and ground-based CO2 appear at WLG and Longfengshan (LFS) stations, respectively. The CO2 mole fraction and its difference between GOSAT and ground-based measurement are smaller in summer than in winter. The differences of summer column CO2 among these stations are also much smaller than their ground-based counterparts. In winter, the maximum of ground-based CO2 mole fractions and the greatest difference between the two (ground-based and column) datasets appear at the LFS station. Secondly, the representative areas of the monthly CO2 background mole fractions at each station were found by employing footprints and emissions. Smaller representative areas appeared at Shangdianzi (SDZ) and LFS, whereas larger ones were seen at WLG and LAN. The representative areas in summer are larger than those in winter at WLG and SDZ, but the situation is opposite at LAN and LFS. The representative areas for the

  2. Combination of supercritical CO2 and vacuum distillation for the fractionation of bergamot oil.

    PubMed

    Fang, Tao; Goto, Motonobu; Sasaki, Mitsuru; Hirose, Tsutomu

    2004-08-11

    Supercritical CO2 can be used to separate oxygenated compounds from essential oils. This technique still cannot replace vacuum distillation as an industrial process because of low recoveries and inconsistent results. In the present work, a comparison between the two methods was made in terms of composition, recovery, and color. Vacuum distillation and supercritical CO2 are complementary processes for producing high quality oxygenated compounds with high recovery rates. The former is more suitable for removing monoterpenes at low fraction temperatures (< or =308 K), and the latter is more suitable for separating oxygenated compounds from pigments and waxes. Consequently, the two methods were combined. For supercritical CO2 fractionation, the parameters of pressure, temperature gradient, and the ratio of solvent to feed were investigated for the fractionation of oxygenated compounds with high recoveries (> or =85%) and without other macromolecules, such as pigments and waxes.

  3. Parameters in fractional laser assisted delivery of topical anesthetics: Role of laser type and laser settings.

    PubMed

    Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert

    2018-05-07

    Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P < 0.01). We found no significant difference in VAS scores between the CO 2 and the Er:YAG laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P < 0.05) and the Er:YAG laser (P < 0.01). Pretreatment with the CO 2 laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can

  4. Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy.

    PubMed

    Banzhaf, Christina A; Wind, Bas S; Mogensen, Mette; Meesters, Arne A; Paasch, Uwe; Wolkerstorfer, Albert; Haedersdal, Merete

    2016-02-01

    Optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) offer high-resolution optical imaging of the skin, which may provide benefit in the context of laser-assisted drug delivery. We aimed to characterize postoperative healing of ablative fractional laser (AFXL)-induced channels and dynamics in their spatiotemporal closure using in vivo OCT and RCM techniques. The inner forearm of healthy subjects (n = 6) was exposed to 10,600 nm fractional CO2 laser using 5 and 25% densities, 120 μm beam diameter, 5, 15, and 25 mJ/microbeam. Treatment sites were scanned with OCT to evaluate closure of AFXL-channels and RCM to evaluate subsequent re-epithelialization. OCT and RCM identified laser channels in epidermis and upper dermis as black, ablated tissue defects surrounded by characteristic hyper-and hyporeflective zones. OCT imaged individual laser channels of the entire laser grid, and RCM imaged epidermal cellular and structural changes around a single laser channel to the depth of the dermoepidermal junction (DEJ) and upper papillary dermis. OCT images visualized a heterogeneous material in the lower part of open laser channels, indicating tissue fluid. By OCT the median percentage of open channels was evaluated at several time points within the first 24 hours and laser channels were found to gradually close, depending on the used energy level. Thus, at 5 mJ/microbeam, 87% (range 73-100%) of channels were open one hour after laser exposure, which declined to 27% (range 20-100%) and 20% (range 7-93%) at 12 and 24 hours after laser exposure, respectively. At 25 mJ/microbeam, 100% (range 100-100%) of channels were open 1 hour after laser exposure while 53% (range 33-100%) and 40% (range 0-100%) remained open at 12 and 24 hours after exposure. Median depth and width of open channels decreased over time depending of applied energy. RCM verified initial re-epithelialization from day 2 for all energy levels used. Morphology of ablation defects by OCT and

  5. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    NASA Astrophysics Data System (ADS)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  6. Translational medicine in the field of ablative fractional laser (AFXL)-assisted drug delivery: A critical review from basics to current clinical status.

    PubMed

    Haedersdal, Merete; Erlendsson, Andrés M; Paasch, Uwe; Anderson, R Rox

    2016-05-01

    Ablative fractional lasers enhance uptake of topical therapeutics and the concept of fractional laser-assisted drug delivery has now been taken into clinical practice. We systematically reviewed preclinical data and clinical evidence for fractional lasers to enhance drug uptake and improve clinical efficacy. We searched PubMed and Embase databases; 34 articles met the inclusion criteria. Studies were categorized into experimental preclinical studies and clinical trials, the latter graded according to level of evidence. All preclinical trials (n = 16) documented enhanced topical drug uptake into skin after ablative fractional laser treatment. Clinical evidence encompassed 18 studies, of which 9 were randomized controlled trials and 2 were controlled trials, examining neoplastic lesions, photodamaged skin, scars, onychomycosis, and topical anesthetics. The highest level of evidence was reached for actinic keratoses treated with methylaminolevulinate for photodynamic therapy (level IB, 5 randomized controlled trials), substantiating superior and long-lasting efficacy versus conventional photodynamic therapy. No adverse events were reported, but ablative fractional laser-assisted drug delivery implies risks of systemic drug absorption, especially when performed over large skin areas. Fractional laser-assisted drug delivery is beneficial in enhancing preclinical and clinical outcomes for certain skin conditions. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  7. The effect of pre-operative topical anaesthetic cream on the ablative width and coagulative depth of ablative fractional resurfacing laser.

    PubMed

    Punyaratabandhu, Preawphan; Wanitphakdeedecha, Rungsima; Pattanaprichakul, Penvadee; Sitthinamsuwan, Panitta; Phothong, Weeranut; Eimpunth, Sasima; Lohsiriwat, Visnu; Manuskiatti, Woraphong

    2017-02-01

    Topical anaesthetic cream (TAC) is commonly used as a pre-treatment of ablative fractional resurfacing (AFR) laser. Most of anaesthetic cream contains distilled water as major component. Therefore, pre-operative TAC may interfere the photothermal reaction in the skin treated with fractional carbon-dioxide (FCO 2 ) laser and fractional erbium-doped yttrium aluminium garnet (FEr:YAG) laser. The objective of the study was to compare the ablative width (AW) and coagulative depth (CD) of AFR laser with and without pre-treatment with TAC. Four Thai females who underwent abdominoplasty were included in the study. The excised skin of each subject was divided into four areas. TAC (eutectic mixture of local anaesthesia; EMLA) with 1-h occlusion was applied only on the first and second areas. The first and third areas were treated with FCO 2 at 15 mj and 5% density. The second and fourth areas were treated with FEr:YAG at 28 J/cm 2 and 5% density. Six biopsied specimens were obtained from each area. A total of 96 specimens (24 specimens from each area) were collected from four patients and examined randomly by two dermatopathologists. The ablative width and coagulative depth from each specimen were determined. In FCO 2 -treated specimens, the mean AW of the specimens that were pre-treated with TAC and control was 174.86 ± 24.57 and 188.52 ± 41.32 μm. The mean CD of the specimens that were pre-treated with TAC and control was 594.96 ± 111.72 and 520.03 ± 147.40 μm. There were no significant differences in AW and CD between both groups (p = 0.53 and p = 0.15). In FEr:YAG-treated specimens, the mean AW of the specimens that were pre-treated with TAC and control was 381.11 ± 48.02 and 423.65 ± 60.16 μm. The mean CD of the specimens that were pre-treated with TAC and control was 86.03 ± 29.44 and 71.59 ± 18.99 μm. There were no significant differences in AW and CD between both groups (p = 0.16 and p = 0.24). The pre

  8. Fractional non-ablative laser treatment at 1410 nm wavelength for periorbital wrinkles - reviscometrical and clinical evaluation.

    PubMed

    Augustyniak, Anna; Rotsztejn, Helena

    2016-10-01

    The aim of the research was to establish the influence of 1410-nm fractional non-ablative laser treatment on skin aging in the eye area. The reviscometer reference test is an objective method of estimating the flexibility of the skin. The photographic records were used as the auxiliary method of the therapy quality effectiveness. The study involved the group of 13 people (12 females and 1 male, aged 33-47 with prototype II and III according to the Fitzpatrick scale), who underwent two sessions of fractional non-ablative laser therapy (wavelength of 1410 nm) with a 2-week interval. In order to evaluate the effectiveness of the quality of the treatment a reviscometer probe was used to measure the skin elasticity (Reviscometer RVM 600). The measurements were taken twice: directly before and two weeks after the treatment. Furthermore, to facilitate the clinical evaluation an anonymous photographical documentation was prepared. An improvement of the skin flexibility in the eye area was observed and the fact was confirmed by values obtained using the reviscometer probe (significant statistic differences: P < 0.0001) as well as clinical assessment based on photographical records. On the basis of the reviscometer measurements analysis and photographical records, 1410-nm fractional non-ablative laser treatment appears to be an efficient method contributing to the improvement of the skin flexibility of the eyes area as well as to the reduction of the number of wrinkles. The post-treatment observation proves that the method is well-tolerated in the sensitive eyes area and does not cause any significant side effects.

  9. Dentin ablation-rate measurements in endodontics witj HF and CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Makropoulou, Mersini I.; Serafetinides, Alexander A.; Khabbaz, Marouan; Sykaras, Sotirios; Tsikrikas, G. N.

    1996-01-01

    Recent studies focused on the ability of the laser light to enlarge the root canal during the endodontic therapy. The aim of this research is the experimental and theoretical study of the ablation rate of two infrared laser wavelengths on dentin. Thirty freshly extracted human teeth were longitudinally sectioned at thicknesses ranged from 0.5 to 2 mm, and irradiated on the root canal dentin. The measured ablation rates in dentinal wall of the root canal showed that the HF laser at 2.9 micrometer can more effectively penetrate into the tissue, whereas the carbon dioxide laser at 10.6 micrometer leads to high thermal damage of the ablation crater surroundings.

  10. Tunable solvation effects on the size-selective fractionation of metal nanoparticles in CO2 gas-expanded solvents.

    PubMed

    Anand, Madhu; McLeod, M Chandler; Bell, Philip W; Roberts, Christopher B

    2005-12-08

    This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and

  11. Are left ventricular ejection fraction and left atrial diameter related to atrial fibrillation recurrence after catheter ablation?

    PubMed Central

    Jin, Xiao; Pan, Jianke; Wu, Huanlin; Xu, Danping

    2018-01-01

    Abstract Atrial fibrillation (AF), the most common form of arrhythmia, is associated with the prevalence of many common cardiovascular and cerebrovascular diseases. Catheter ablation is considered the first-line therapy for AF; however, AF recurrence is very common after catheter ablation. Studies have been performed to analyze the factors associated with AF recurrence, but none have reached a consistent conclusion on whether left ventricular ejection fraction (LVEF) and left atrial diameter (LA diameter) affect AF recurrence after catheter ablation. The databases PubMed, Embase, and the Cochrane Library were used to search for relevant studies up to September 2017. RevMan 5.3.5 software provided by the Cochrane Collaboration Network was used to conduct this meta-analysis. Thirteen studies involving 2825 patients were included in this meta-analysis. Overall, the results revealed that elevated LA diameter values were significantly associated with AF recurrence in patients after catheter ablation (MD = 2.19, 95% CI: 1.63–2.75, P < .001), while baseline LVEF levels were not significantly positively associated with AF recurrence in patients after catheter ablation (MD = −0.91, 95% CI: −1.18 to 1.67, P = .14). Overall, elevated LA diameter may be associated with AF recurrence after catheter ablation; however, there was no direct relationship between LVEF values and AF recurrence after catheter ablation when baseline LVEF values are normal or mildly decreased. Besides, because of publication bias, further studies should be performed to explore the mechanisms underlying AF recurrence. PMID:29768386

  12. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    NASA Astrophysics Data System (ADS)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  13. Early treatment using fractional CO2 laser before skin suture during scar revision surgery in Asians.

    PubMed

    Du, Feiya; Yu, Yusheng; Zhou, Zhiqin; Wang, Liujia; Zheng, Shusen

    2018-04-01

    Fractional CO 2 laser is one of the most effective treatment options used to resurface scars. However, most previous studies have been performed on mature scars at least 2 months after surgery. Recent studies have emphasized the importance of early treatment to reduce scar formation. In the present study, we described our experience with fractional CO 2 laser intervention before skin suture during scar revision surgery in Asians, and found the treatment was safe and effective.

  14. Pulpal Effects of Enamel Ablation With a Microsecond Pulsed λ=9.3-μm CO2 Laser

    PubMed Central

    Staninec, Michal; Darling, Cynthia L.; Goodis, Harold E.; Pierre, Daniel; Cox, Darren P.; Fan, Kenneth; Larson, Michael; Parisi, Renaldo; Hsu, Dennis; Manesh, Saman K.; Ho, Chi; Hosseini, Mehran; Fried, Daniel

    2011-01-01

    Background and Objectives In vitro studies have shown that CO2 lasers operating at the highly absorbed 9.3 and 9.6-μm wavelengths with a pulse duration in the range of 10–20-microsecond are well suited for the efficient ablation of enamel and dentin with minimal peripheral thermal damage. Even though these CO2 lasers are highly promising, they have yet to receive FDA approval. Clinical studies are necessary to determine if excessive heat deposition in the tooth may have any detrimental pulpal effects, particularly at higher ablative fluencies. The purpose of this study was to evaluate the pulpal safety of laser irradiation of tooth occlusal surfaces under the conditions required for small conservative preparations confined to enamel. Study Design/Materials and Methods Test subjects requiring removal of third molar teeth were recruited and teeth scheduled for extraction were irradiated using a pulsed CO2 laser at a wavelength of 9.3 μm operating at 25 or 50 Hz using a incident fluence of 20 J/cm2 for a total of 3,000 laser pulses (36 J) for both rates with water cooling. Two control groups were used, one with no treatment and one with a small cut made with a conventional high-speed hand-piece. No anesthetic was used for any of the procedures and tooth vitality was evaluated prior to treatment by heat, cold and electrical testing. Short term effects were observed on teeth extracted within 72 hours after treatment and long term effects were observed on teeth extracted 90 days after treatment. The pulps of the teeth were fixed with formalin immediately after extraction and subjected to histological examination. Additionally, micro-thermocouple measurements were used to estimate the potential temperature rise in the pulp chamber of extracted teeth employing the same irradiation conditions used in vivo. Results Pulpal thermocouple measurements showed the internal temperature rise in the tooth was within safe limits, 3.3±4°C without water cooling versus 1.7±6

  15. Direct biological effects of fractional ultrapulsed CO2 laser irradiation on keratinocytes and fibroblasts in human organotypic full-thickness 3D skin models.

    PubMed

    Schmitt, L; Huth, S; Amann, P M; Marquardt, Y; Heise, R; Fietkau, K; Huth, L; Steiner, T; Hölzle, F; Baron, J M

    2018-05-01

    Molecular effects of various ablative and non-ablative laser treatments on human skin cells-especially primary effects on epidermal keratinocytes and dermal fibroblasts-are not yet fully understood. We present the first study addressing molecular effects of fractional non-sequential ultrapulsed CO 2 laser treatment using a 3D skin model that allows standardized investigations of time-dependent molecular changes ex vivo. While histological examination was performed to assess morphological changes, we utilized gene expression profiling using microarray and qRT-PCR analyses to identify molecular effects of laser treatment. Irradiated models exhibited dose-dependent morphological changes resulting in an almost complete recovery of the epidermis 5 days after irradiation. On day 5 after laser injury with a laser fluence of 100 mJ/cm 2 , gene array analysis identified an upregulation of genes associated with tissue remodeling and wound healing (e.g., COL12A1 and FGF7), genes that are involved in the immune response (e.g., CXCL12 and CCL8) as well as members of the heat shock protein family (e.g., HSPB3). On the other hand, we detected a downregulation of matrix metalloproteinases (e.g., MMP3), differentiation markers (e.g., LOR and S100A7), and the pro-inflammatory cytokine IL1α.Overall, our findings substantiate the understanding of time-dependent molecular changes after CO 2 laser treatment. The utilized 3D skin model system proved to be a reliable, accurate, and reproducible tool to explore the effects of various laser settings both on skin morphology and gene expression during wound healing.

  16. Combination of microneedle radiofrequency (RF), fractional RF skin resurfacing and multi-source non-ablative skin tightening for minimal-downtime, full-face skin rejuvenation.

    PubMed

    Kaplan, Haim; Kaplan, Lilach

    2016-12-01

    In the recent years, there is a growth in demand for radiofrequency (RF)-based procedures to improve skin texture, laxity and contour. The new generation of systems allow non-invasive and fractional resurfacing treatments on one platform. The aim of this study was to evaluate the safety and efficacy of a new treatment protocol using a multisource RF, combining 3 different modalities in each patient: [1] non-ablative RF skin tightening, [2] fractional skin resurfacing, and [3] microneedling RF for non-ablative coagulation and collagen remodelling. 14 subjects were enrolled in this study using EndyMed PRO ™ platform. Each patient had 8 non-ablative treatments and 4 fractional treatments (fractional skin resurfacing and Intensif). The global aesthetic score was used to evaluate improvement. All patients had improvement in skin appearance. About 43% had excellent or very good improvement above 50%, 18% had good improvement between 25 and 50%, and the rest 39% had a mild improvement of < 25%. Downtime was minimal and no adverse effect was reported. Our data show significant improvement of skin texture, skin laxity and wrinkle reduction achieved using RF treatment platform.

  17. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.

    PubMed

    Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J

    2017-04-01

    -rotational pre-ablation increased by 13 ∼ 33%, when compared with the no pre-ablation or microjet only cases. A noticeable point is that the fraction-rotational pre-ablation and microjet result is comparable to the bulk ablation and microjet result of 11 ∼ 42%. The penetration depth underneath ablated stratum corneum (SC) is also measured in order to verify the pre-ablation effect. The penetration depths for each case are (a) 443 ± 104 µm; (b) 625 ± 98 µm; (c) 523 ± 95 µm; and (d) 595 ± 141 µm for microjet only, bulk ablation and microjet, fractional ablation and microjet, and fractional-rotational ablation and microjet, respectively. This is quite beneficial since any healing time associated with ablation is significantly reduced by avoiding hard-core bulk ablation. Thus the bulk pre-ablation and microjet may well be superseded by the less invasive fractiona-rotational ablation followed by the microjet injection. The density of micro-holes is 1.27 number/mm 2 for fractional ablation and 4.84 number/mm 2 for fractional-rotational ablation. The penetration depths measured underneath the ablated SC are 581 µm (fractional ablation and microjet) and 691 µm (fractional-rotational ablation and microjet). Fractional-rotational ablation increases number of micro-holes in a unit area, enabling fast reepithelialization and high drug delivery efficiency. Optimization of system parameters such as ablation time, number of ablations, and injection time will eventually ensure a macromolecule delivery technique with the potential to include vaccines, insulins, and growth hormones, all of which require deeper penetration into the skin. Lasers Surg. Med. 49:387-394, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    PubMed Central

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  19. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  20. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage.

    PubMed

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO(2) lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO(2) laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO(2) lasers with

  1. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    NASA Technical Reports Server (NTRS)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  2. Fractional CO2 lasers for the treatment of atrophic acne scars: a review of the literature.

    PubMed

    Magnani, Lauren Rose; Schweiger, Eric S

    2014-04-01

    This review examines the efficacy and safety of fractional CO2 lasers for the treatment of atrophic scarring secondary to acne vulgaris. We reviewed 20 papers published between 2008 and 2013 that conducted clinical studies using fractional CO2 lasers to treat atrophic scarring. We discuss the prevalence and pathogenesis of acne scarring, as well as the laser mechanism. The histologic findings are included to highlight the ability of these lasers to induce the collagen reorganization and formation that improves scar appearance. We considered the number of treatments and different laser settings to determine which methods achieve optimal outcomes. We noted unique treatment regimens that yielded superior results. An overview of adverse effects is included to identify the most common ones. We concluded that more studies need to be done using uniform treatment parameters and reporting in order to establish which fractional CO2 laser treatment approaches allow for the greatest scar improvement.

  3. Non-ablative fractionated laser skin resurfacing for the treatment of aged neck skin.

    PubMed

    Bencini, Pier Luca; Tourlaki, Athanasia; Galimberti, Michela; Pellacani, Giovanni

    2015-06-01

    Aging of the neck skin includes poikiloderma of Civatte, skin laxity and wrinkles. While the vascular alterations of poikiloderma of Civatte can be effectively treated with lasers or intense pulsed light, a successful treatment of dyschromia, skin laxity and wrinkles is still difficult to achieve. To evaluate the safety and efficacy of non-ablative fractional 1540 erbium glass laser for the treatment of aged neck skin, also by means of in vivo reflectance confocal microscopy (RCM). A prospective study for neck resurfacing in 18 women with aged neck skin. Six laser treatments were performed in 4-week intervals with a 1540-nm erbium-glass fiber laser. By using a 6-point grading scale, the mean score (±SD; range) at baseline was 3.6 (±1.5; 1-6) for skin dyschromia, 2.9 (±1.4; 1-6) for laxity and 3.3 (±1.3; 1-5) for wrinkles. Three months after the last laser session, we found a significant clinical improvement of dyschromia (p = 0.0002; Wilcoxon test), and wrinkles (p = 0.0004; Wilcoxon test), with a mean (±SD) reduction of 2.5 (±1.0) and 1.9 (±1.1) points in the 6-point grading scale, respectively. No change was observed in laxity. These results were also supported by structural changes documented by RCM. Non-ablative fractional 1540 erbium glass laser was both safe and effective for the treatment of dyschromia and wrinkles, but not effective for the laxity of the neck skin.

  4. Fractional laser skin resurfacing.

    PubMed

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  5. Efficacy of fractional CO2 laser in treatment of atrophic scar of cutaneous leishmaniasis.

    PubMed

    Banihashemi, Mahnaz; Nahidi, Yalda; Maleki, Masoud; Esmaily, Habibollah; Moghimi, Hamid Reza

    2016-05-01

    Cutaneous leishmaniasis is an endemic disease in Iran. Unfortunately, it can lead to unsightly atrophic scars with limited treatment options. Fractional CO2 laser is accepted for treatment of atrophic acne scars and recently has been used to treat cutaneous leishmaniasis, so we planned to use fractional CO2 laser on leishmaniasis scar. We conducted this study on 60 leishmaniasis scars on the face of 40 patients. The lesions were treated by a fractional CO2 laser with beam size of 120 μm, with energy of 50-90 mJ, and 50-100 spots/cm(2) density with two passes in three monthly sessions. Evaluation was done in the first and second months after the first treatment and 3 and 6 months after the last treatment. Digital photography was performed at each visit. Assessment of improvement rate by patient and physician was rated separately as follows: no improvement (0%), mild (<25%), moderate (25-50%), good (51-75%), and excellent (76-100%). Based on patients' opinion, in the first and second follow-up, 48.3 and 90% of them reported moderate to excellent healing, respectively (p < 0.001). In 3 and 6 months follow-up after the end of the experiment, most of the patients (88.3 and 95%, respectively) reported moderate to excellent healing of scars. Based on two observers' opinion, healing in the first follow-up in most of the patients (65%) was mild to moderate and 33% were reported as having no healing. In the second follow-up, only 5% of the patients were reported with no healing and 60% were reported as having moderate healing (p < 0.001). In 3 and 6 months follow-up, most of the patients (95 and 96.6%) were reported as having moderate to excellent healing (p = <0.001). Our results underlined the high efficacy of fractional CO2 laser for leishmaniasis scar. No significant adverse effects were noted.

  6. Mexametric and cutometric assessment of the signs of aging of the skin area around the eyes after the use of non-ablative fractional laser, non-ablative radiofrequency and intense pulsed light.

    PubMed

    Kołodziejczak, Anna Maria; Rotsztejn, Helena

    2017-03-01

    The assessment of the signs of aging within eyes area in cutometric (skin elasticity) and mexametric (discoloration and severity of erythema) examination after the treatment with: non-ablative fractional laser, non-ablative radiofrequency (RF) and intense light source (IPL). This study included 71 patients, aged 33-63 years (the average age was 45.81) with Fitzpatrick skin type II and III. 24 patients received 5 successive treatment sessions with a 1,410-nm non-ablative fractional laser in two-week intervals, 23 patients received 5 successive treatment sessions with a non-ablative RF in one-week intervals and 24 patients received 5 successive treatment sessions with an IPL in two-week intervals. The treatment was performed for the skin in the eye area. The Cutometer and Mexameter (Courage + Khazaka electronic) reference test was used as an objective method for the assessment of skin properties: elasticity, skin pigmentation and erythema. Measurements of skin elasticity were made in three or four sites within eye area. The results of cutometric measurements for R7 showed the improvement in skin elasticity in case of all treatment methods. The largest statistically significant improvement (p < .0001) was observed in case of laser and RF, during treatment sessions, at sites at upper and lower eyelid. The smallest change in skin elasticity for the laser, RF and IPL - p = .017, p = .003 and p = .001, respectively-was observed in a site within the outer corner of the eye. In all sites of measurements and for all methods, the greatest improvement in skin elasticity was demonstrated between the first and second measurement (after 3rd procedures). The majority of the results of mexametric measurements-MEX (melanin level) and ERYT (the severity of erythema) are statistically insignificant. Fractional, non-ablative laser, non-ablation RF and intense light source can be considered as methods significantly affecting elasticity and to a lesser extent erythema

  7. Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application: A treatment option for pediatric cutaneous leishmaniasis.

    PubMed

    Hilerowicz, Yuval; Koren, Amir; Mashiah, Jacob; Katz, Oren; Sprecher, Eli; Artzi, Ofir

    2018-05-01

    Leishmaniasis is a protozoan zoonotic parasitic infection with cutaneous, mucocutaneous, and visceral manifestations. Israel is endemic for cutaneous leishmaniasis, which is a self-limited disease but is associated with scarring, which is often a source of psychological and social burden for patients. Scars can be especially devastating for children and teenagers. A wide range of physical and medical approaches is used to treat cutaneous leishmaniasis, among which intralesional injections of sodium stibogluconate rank among the most frequently used. Unfortunately, despite being effective, this therapeutic modality can be very painful. Fractional ablative laser creates a controlled mesh-like pattern of tissue ablation in the skin that promotes dermal remodeling and collagen production while at the same time facilitating enhanced delivery of topically applied medications. Patients were treated with fractional ablative carbon dioxide laser followed by immediate topical application of sodium stibogluconate. All children were diagnosed with cutaneous leishmaniasis prior to treatment initiation.. Ten children were treated. One leishmania tropica-positive girl failed to respond. The other nine patients achieved clinical cure and demonstrated good to excellent final cosmesis. Self-rated patient satisfaction and tolerance were high No adverse effects were observed or reported during treatment. Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application appears to be a safe and promising treatment for cutaneous leishmaniasis infection in children. Future controlled studies are required to validate these findings and compare this technique with traditional approaches. © 2018 Wiley Periodicals, Inc.

  8. Early effect of fractional CO2 laser treatment in Post-menopausal women with vaginal atrophy.

    PubMed

    Eder, Scott Evan

    2018-03-31

    Fractional CO 2 lasers have been shown to provide improvement of vulvovaginal atrophy (VVA). The aim of the current study was to assess the early effect of a fractional CO 2 laser system in treating postmenopausal women with clinical symptoms of VVA. 28 healthy post-menopausal women (mean age 60.1 ± 5.55 years) with VVA-related symptoms were treated with fractional CO 2 laser 3 times, in 4-week intervals. At each study visit, VHIS score and VVA symptom severity were recorded. Sexual function was assessed with the Female Sexual Function Index (FSFI). One month following the first laser treatment, the mean VHIS score was significantly improved (13.89 ± 4.25 vs. baseline 11.93 ± 3.82; p < 0.05), and improved further at 3 and 6 months following all three laser treatments (16.43 ± 4.20 and 17.46 ± 4.07, respectively). Almost all VVA symptoms were significantly improved at one month following the first treatment. A further significant improvement in VVA symptoms was noted at 3 and 6 months following the third laser treatment. Following treatments, the FSFI score increased significantly (22.36 ± 10.40 vs. baseline 13.78 ± 7.70; p < 0.05), and remained significantly higher than baseline at the 3- and 6-month follow-up visits. CO 2 laser therapy for post-menopausal women can be considered an effective therapeutic option providing relief of symptoms already noted after one laser treatment.

  9. Raman spectroscopy differentiates squamous cell carcinoma (SCC) from normal skin following treatment with a high-powered CO2 laser.

    PubMed

    Fox, Sara A; Shanblatt, Ashley A; Beckman, Hugh; Strasswimmer, John; Terentis, Andrew C

    2014-12-01

    The number of cases of non-melanoma skin cancer (NMSC), which include squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), continues to rise as the aging population grows. Mohs micrographic surgery has become the treatment of choice in many cases but is not always necessary or feasible. Ablation with a high-powered CO2 laser offers the advantage of highly precise, hemostatic tissue removal. However, confirmation of complete cancer removal following ablation is difficult. In this study we tested for the first time the feasibility of using Raman spectroscopy as an in situ diagnostic method to differentiate NMSC from normal tissue following partial ablation with a high-powered CO2 laser. Twenty-five tissue samples were obtained from eleven patients undergoing Mohs micrographic surgery to remove NMSC tumors. Laser treatment was performed with a SmartXide DOT Fractional CO2 Laser (DEKA Laser Technologies, Inc.) emitting a wavelength of 10.6 μm. Treatment levels ranged from 20 mJ to 1200 mJ total energy delivered per laser treatment spot (350 μm spot size). Raman spectra were collected from both untreated and CO2 laser-treated samples using a 785 nm diode laser. Principal Component Analysis (PCA) and Binary Logistic Regression (LR) were used to classify spectra as originating from either normal or NMSC tissue, and from treated or untreated tissue. Partial laser ablation did not adversely affect the ability of Raman spectroscopy to differentiate normal from cancerous residual tissue, with the spectral classification model correctly identifying SCC tissue with 95% sensitivity and 100% specificity following partial laser ablation, compared with 92% sensitivity and 60% selectivity for untreated NMSC tissue. The main biochemical difference identified between normal and NMSC tissue was high levels of collagen in the normal tissue, which was lacking in the NMSC tissue. The feasibility of a combined high-powered CO2 laser ablation, Raman diagnostic procedure for the

  10. Metal fractionation in marine sediments acidified by enrichment of CO2: A risk assessment.

    PubMed

    de Orte, Manoela Romanó; Bonnail, Estefanía; Sarmiento, Aguasanta M; Bautista-Chamizo, Esther; Basallote, M Dolores; Riba, Inmaculada; DelValls, Ángel; Nieto, José Miguel

    2018-06-01

    Carbon-capture and storage is considered to be a potential mitigation option for climate change. However, accidental leaks of CO 2 can occur, resulting in changes in ocean chemistry such as acidification and metal mobilization. Laboratory experiments were performed to provide data on the effects of CO 2 -related acidification on the chemical fractionation of metal(loid)s in marine-contaminated sediments using sequential extraction procedures. The results showed that sediments from Huelva estuary registered concentrations of arsenic, copper, lead, and zinc that surpass the probable biological effect level established by international protocols. Zinc had the greatest proportion in the most mobile fraction of the sediment. Metals in this fraction represent an environmental risk because they are weakly bound to sediment, and therefore more likely to migrate to the water column. Indeed, the concentration of this metal was lower in the most acidified scenarios when compared to control pH, indicating probable zinc mobilization from the sediment to the seawater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Evaluation of the effect of fractional CO2 laser on histopathological picture and TGF-β1 expression in hypertrophic scar.

    PubMed

    Makboul, Mohamed; Makboul, Rania; Abdelhafez, Assem Hk; Hassan, Safaa Said; Youssif, Sherif M

    2014-09-01

    Hypertrophic scar is a form of abnormal wound healing process in which tissue repair regulating mechanism is disrupted. Transforming growth factor β1 has a particular importance in the fibrotic scarring response. Treatment of hypertrophic scar included many chemical, physical, and surgical options. Fractional CO2 laser devices have gained acceptance as a way for managing hypertrophic scar. Aims of this study are: (a) to determine the clinical and histopathological effects of fractional CO2 laser on hypertrophic scar, (b) to evaluate the expression pattern of transforming growth factor-β1 (TGF-β1) as an important fibrogenic factor before and 6 months after fractional CO2 laser treatment. Forty patients of hypertrophic scar were selected, each patient was treated by four sessions with 1 month apart with fractional CO2 laser. Vancouver Scar Scale (VSS) was used to assess the patients before and after laser treatment. Skin biopsy was taken from eight cases before and 3 months after four fractional CO2 laser sessions and four normal skin control biopsies. All were assessed by hematoxylin-eosin (H&E), Masson's trichrome, Van Gieson and immunohistochemical (IHC) staining with TGF-β1. The epidermal thickness was assessed before and after treatment by image analyzing system software. There was statistically significant difference in VSS before and after fractional CO2 laser (P > 0.001). The epidermal thickness showed significant increase after laser treatment (P > 0.001), and there was also thinning in stratum corneum and replacement of the irregular collagen bands with organized new collagen fibrils as demonstrated by H&E and the other special stains. The study also showed significant decrease in TGF-β1 expression after laser therapy (P = 0.008). Fractional CO2 laser could be considered as a good way for hypertrophic scar management. It normalizes dermal collagen as imaged by histopathological picture and the change in TGF-β1 expression. © 2014 Wiley

  12. Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin.

    PubMed

    Reilly, Michael J; Cohen, Marc; Hokugo, Akishige; Keller, Gregory S

    2010-01-01

    Objective To elucidate the sequential changes in protein expression that play a role in the clinically beneficial results seen with fractional carbon dioxide (CO(2)) laser resurfacing of the face and neck. Methods Nine healthy volunteers were recruited for participation from the senior author's facial plastic surgery practice. After informed consent was obtained, each volunteer underwent a 2-mm punch biopsy from a discrete area of infra-auricular neck skin prior to laser treatment. Patients then immediately underwent laser resurfacing of photodamaged face and neck skin at a minimal dose (30 W for 0.1 second) with the Pixel Perfect fractional CO(2) laser. On completion of the treatment, another biopsy specimen was taken adjacent to the first site. Additional biopsy specimens were subsequently taken from adjacent skin at 2 of 3 time points (day 7, day 14, or day 21). RNA was extracted from the specimens, and reverse transcriptase-polymerase chain reaction and protein microarray analysis were performed. Comparisons were then made between time points using pairwise comparison testing. Results We found statistically significant changes in the gene expression of several matrix metalloproteinases (MMPs). The data demonstrate a consistent up-regulation of MMPs 1, 3, 9, and 13, all of which have been previously reported for fully ablative CO(2) laser resurfacing. There was also a statistically significant increase in MMP-10 and MMP-11 levels in this data set. Conclusion This study suggests that the molecular mechanisms of action are similar for both fractional and fully ablative CO(2) laser resurfacing.

  13. The efficacy and safety of subcision using CO2 gas combined with fractional laser for acne scars: Clinical and microscopic evaluation.

    PubMed

    Lee, Sang Jun; Suh, Dong Hye; Chang, Ka Yeon; Kim, Hyun Joo; Kim, Tae In; Jeong, Ki-Heon; Shin, Min Kyung; Song, Kye Yong

    2016-11-01

    Various modalities have been used to treat acne scars. CO 2 fractional laser is an effective and commonly used treatment. CO 2 gas injection into the dermis by needle with high pressure can cause fibrotic collagen breakage, producing the effects of subcision. CO 2 also stimulates collagen synthesis by increasing neovascularization and releasing oxygen. This study evaluated the efficacy and the safety of the combined treatment with CO 2 gas subcision and CO 2 fractional laser for acne scars. Fourteen patients with acne scars were treated with three sessions of CO 2 gas subcision at 2-week intervals and two sessions of fractional laser at 4-week interval. The clinical improvement was assessed using a 4-point scale. For histologic analysis, punch biopsy was performed before and after treatment in 10 patients. All patients experienced clinical improvements. Excellent, marked, moderate, and mild response was achieved in 1 (7%), 8 (57%), 4 (29%), and 1 patient (7%), respectively. Histologic evaluation of the biopsy specimens showed increased dermal collagen with dermal thickening and elastic fiber straightening in the reticular dermis after the treatment. The combination therapy with CO 2 gas subcision and fractional laser was satisfactory and safe for treating acne scars. Abbreviation and acronym: CO 2 : Carbon dioxide GAS: Global assessment scale H&E: hematoxylin and eosin; SD: standard deviation.

  14. Treatment of striae distensae with needling therapy versus CO2 fractional laser.

    PubMed

    Khater, Mohamed H; Khattab, Fathia M; Abdelhaleem, Manal R

    2016-01-01

    Striae are atrophic dermal scars with overlying epidermal atrophy causing cosmetic concern. This study assesses and compares the efficacy and safety of needling therapy versus CO2 fractional laser in treatment of striae. Twenty Egyptian female patients with striae in the abdomen and lower limbs were involved in the study. The patients were treated with needling therapy and CO2 laser every 1 month for 3 sessions. Follow-up by digital photography and skin biopsy was conducted at baseline and 6 months after treatment. Clinical improvement was assessed by comparing photographs and patient's satisfaction before and after treatment. Nine of 10 (90%) needle-treated patients showed improvement. Among them, 3 (30%) had good, 4 (40%) had fair, and 2 (20%) had poor improvements; however, 1 (10%) did not show any improvement after the treatment. In CO2-laser treated patients, 5 of 10 (50%) of the patients showed clinical improvement; 1 (10%) were good, 3 (30%) were fair, and 1 (10%) were poor; however, 5 (50%) did not show improvement. The results support the use of microneedle therapy over CO2 lasers for striae treatment.

  15. Fractional resurfacing in the Asian patient: Current state of the art.

    PubMed

    Wat, Heidi; Wu, Douglas C; Chan, Henry Hin Lee

    2017-01-01

    Fractionated photothermolysis (FP) has revolutionized modern laser technology. By creating selective columns of microthermal damage, fractionated devices allows for greater treatment depths to be achieved without the prolonged downtime and risk of complications seen in traditional fully ablative laser resurfacing. Fractional resurfacing is a proven method to treat a variety of cutaneous conditions. In the Caucasian patient, a wide range of devices and treatment settings can be utilized safely and effectively. However, ethnic skin requires special consideration due to its unique pigmentary characteristics and clinical presentations. In this review article, we detail the current indications and strategies to optimize results and mitigate complications when utilizing fractional resurfacing for the Asian patient. A review of the MEDLINE English literature was conducted on fractionated laser devices studied in the Asian population. Articles included describe non-ablative devices including fractionated erbium glass, thulium fiber, diode, and radiofrequency devices; and ablative devices including fractionated carbon dioxide (CO 2 ) laser, erbium yttrium aluminum garnet and yttrium scandium gallium garnet (YSGG) laser. These data were integrated with the expert opinion of the authors. Taking into account the unique characteristics and cosmetic concerns of the Asian population, fractional resurfacing can be considered a safe and effective option for the treatment of atrophic and hypertrophic scarring, and photorejuvenation in ethnic skin types. Select cases of melasma may be treated with fractionated non-ablative devices, but utilized with caution. The predominant complication associated with fractional resurfacing for these conditions is post-inflammatory hyperpigmentation (PIH) and rebound worsening of melasma. A greater number of treatments at lower density settings and wider treatment intervals typically produce the lowest risks of PIH without compromising treatment

  16. Benefits of Permanent His Bundle Pacing Combined With Atrioventricular Node Ablation in Atrial Fibrillation Patients With Heart Failure With Both Preserved and Reduced Left Ventricular Ejection Fraction.

    PubMed

    Huang, Weijian; Su, Lan; Wu, Shengjie; Xu, Lei; Xiao, Fangyi; Zhou, Xiaohong; Ellenbogen, Kenneth A

    2017-04-01

    Clinical benefits from His bundle pacing (HBP) in heart failure patients with preserved and reduced left ventricular ejection fraction are still inconclusive. This study evaluated clinical outcomes of permanent HBP in atrial fibrillation patients with narrow QRS who underwent atrioventricular node ablation for heart failure symptoms despite rate control by medication. The study enrolled 52 consecutive heart failure patients who underwent attempted atrioventricular node ablation and HBP for symptomatic atrial fibrillation. Echocardiographic left ventricular ejection fraction and left ventricular end-diastolic dimension, New York Heart Association classification and use of diuretics for heart failure were assessed during follow-up visits after permanent HBP. Of 52 patients, 42 patients (80.8%) received permanent HBP and atrioventricular node ablation with a median 20-month follow-up. There was no significant change between native and paced QRS duration (107.1±25.8 versus 105.3±23.9 milliseconds, P =0.07). Left ventricular end-diastolic dimension decreased from the baseline ( P <0.001), and left ventricular ejection fraction increased from baseline ( P <0.001) in patients with a greater improvement in heart failure with reduced ejection fraction patients (N=20) than in heart failure with preserved ejection fraction patients (N=22). New York Heart Association classification improved from a baseline 2.9±0.6 to 1.4±0.4 after HBP in heart failure with reduced ejection fraction patients and from a baseline 2.7±0.6 to 1.4±0.5 after HBP in heart failure with preserved ejection fraction patients. After 1 year of HBP, the numbers of patients who used diuretics for heart failure decreased significantly ( P <0.001) when compared to the baseline diuretics use. Permanent HBP post-atrioventricular node ablation significantly improved echocardiographic measurements and New York Heart Association classification and reduced diuretics use for heart failure management in atrial

  17. Stable carbon isotope fractionation of trans-1,2-dichloroethylene during co-metabolic degradation by methanotrophic bacteria

    USGS Publications Warehouse

    Brungard, Karen L.; Munakata-Marr, Junko; Johnson, Craig A.; Mandernack, Kevin W.

    2003-01-01

    Changes in the carbon isotope ratio (δ13C) of trans-1,2-dichloroethylene (t-DCE) were measured during its co-metabolic degradation by Methylomonas methanica, a type I methanotroph, and Methylosinus trichosporium OB3b, a type II methanotroph. In closed-vessel incubation experiments with each bacterium, the residual t-DCE became progressively enriched in 13C, indicating isotopic fractionation. From these experiments, the biological fractionation during t-DCE co-metabolism, expressed as ε, was measured to be -3.50/00 for the type I culture and -6.70/00 for the type II culture. This fractionation effect and subsequent enrichment in the δ13C of the residual t-DCE can thus be applied to determine the extent of biodegradation of DCE by these organisms. Based on these results, isotopic fractionation clearly warrants further study, as measured changes in the δ13C values of chlorinated solvents could ultimately be used to monitor the extent of biodegradation in laboratory or field settings where co-metabolism by methanotrophs occurs.

  18. Prospective study of atrial fibrillation termination during ablation guided by automated detection of fractionated electrograms.

    PubMed

    Porter, Michael; Spear, William; Akar, Joseph G; Helms, Ray; Brysiewicz, Neil; Santucci, Peter; Wilber, David J

    2008-06-01

    Complex fractionated atrial electrograms (CFAE) may identify critical sites for perpetuation of atrial fibrillation (AF) and provide useful targets for ablation. Current assessment of CFAE is subjective; automated detection algorithms may improve reproducibility, but their utility in guiding ablation has not been tested. In 67 patients presenting for initial AF ablation (42 paroxysmal, 25 persistent), LA and CS mapping were performed during induced or spontaneous AF. CFAE were identified by an online automated computer algorithm and displayed on electroanatomical maps. A mean of 28 +/- 18 sites/patient were identified (20 +/- 13% of mapped sites), and were more frequent during persistent AF. CFAE occurred most commonly within the CS, on the atrial septum, and around the pulmonary veins. Ablation initially targeting CFAE terminated AF in 88% of paroxysmal AF, but only 20% of persistent AF (P < 0.001). Subsequently, additional ablation was performed in all patients (PV isolation for paroxysmal AF, PV isolation + mitral and roof lines for persistent AF). Minimum follow-up was 1 year. One-year freedom from recurrent atrial arrhythmias without antiarrhythmic drug therapy after a single procedure was 90% for paroxysmal AF, and 68% for persistent AF. Ablation guided by automated detection of CFAE proved feasible, and was associated with a high AF termination rate in paroxysmal, but not persistent AF. As an adjunct to conventional techniques, it was associated with excellent long-term single procedure outcomes in both groups. Criteria for identifying optimal CFAE sites for ablation, and selection of patients most likely to benefit, require additional study.

  19. Treatment of acne scarring using a dual-spot-size ablative fractionated carbon dioxide laser: review of the literature.

    PubMed

    Tierney, Emily P

    2011-07-01

    Fractional photothermolysis has been reported in the literature to improve pigmentary and textural changes associated with acne scarring. To review the literature for the treatment of acne scarring using nonablative fractional laser (NAFL) and ablative fractional laser (AFL) resurfacing. Review of the Medline literature evaluating NAFL and AFL for acne scarring. NAFL and AFL are safe and effective treatments for acne scarring. It is likely that the controlled, limited dermal heating of fractional resurfacing initiates a cascade of events in which normalization of the collagenesis-collagenolysis cycle occurs. We present the results of a patient treated using a novel dual-spot-size AFL device. Three months after the final treatment, the patient reported 75% improvement in acne scarring and 63% overall improvement in photoaging. Fractionated resurfacing for the treatment of acne scarring is associated with lesser risks of side effects of prolonged erythema and risks of delayed-onset dyspigmentation and scarring which complicate traditional ablative laser resurfacing approaches. We present herein preliminary data suggesting that a dual-spot-size AFL device presents novel advantages of improving texture and pigmentation in acne scarring and photoaging. © 2011 by the American Society for Dermatologic Surgery, Inc.

  20. CO2 laser ablation of external genital lesions with a SwiftLase flashscanner: treatment of extramammary Paget's disease of the vulva, penile condylomata, and other lesions

    NASA Astrophysics Data System (ADS)

    Sacknoff, Eric J.; Schweitzer, Jay; Slatkine, Michael; Mead, Douglass S.

    1995-05-01

    The ability to vaporize extremely thin layers of epithelial tissue without any char and with minimal thermal necrosis is extremely advantageous in the treatment of superficial lesions of the external genitalia. We present a novel CO2 laser `SwiftLase' flashscan technology capable of providing char free ablation of 3 mm diameter lesions with only 150 micron residual thermal necrosis depth at power level as low as 10 watts. These power levels are achievable with a small transportable CO2 laser. The SwiftLaser is a miniature opto- mechanical scanner which homogeneously covers a 3 mm diameter surface with a 0.1 mm spot size focused beam within 0.1 seconds. The instantaneous beam's dwelling time is 1 millisecond. The instantaneous power density level at the focal point is higher than the threshold for char free ablation, thus providing a large char free ablation crater. Since depth of each ablated layer is 0.1 mm, the depth of treatment can be precisely controlled. The SwiftLaser technology has extensively and successfully been used in the last two years for the treatment of HPV in female lower tracts (Vulvectomy). The same technique may be performed with extramammary Paget's disease of the vulva, penile condylomata, and other epithelial disorders of the external genitalia without damage to surrounding healthy tissue. Technique and clinical results will be discussed.

  1. Risk assessment of excess drug and sunscreen absorption via skin with ablative fractional laser resurfacing : optimization of the applied dose for postoperative care.

    PubMed

    Chen, Wei-Yu; Fang, Chia-Lang; Al-Suwayeh, Saleh A; Yang, Hung-Hsu; Li, Yi-Ching; Fang, Jia-You

    2013-09-01

    The ablative fractional laser is a new modality used for surgical resurfacing. It is expected that laser treatment can generally deliver drugs into and across the skin, which is toxicologically relevant. The aim of this study was to establish skin absorption characteristics of antibiotics, sunscreens, and macromolecules via laser-treated skin and during postoperative periods. Nude mice were employed as the animal model. The skin received a single irradiation of a fractional CO2 laser, using fluences of 4-10 mJ with spot densities of 100-400 spots/cm(2). In vitro skin permeation using Franz cells was performed. Levels of skin water loss and erythema were evaluated, and histological examinations with staining by hematoxylin and eosin, cyclooxygenase-2, and claudin-1 were carried out. Significant signs of erythema, edema, and scaling of the skin treated with the fractional laser were evident. Inflammatory infiltration and a reduction in tight junctions were also observed. Laser treatment at 6 mJ increased tetracycline and tretinoin fluxes by 70- and 9-fold, respectively. A higher fluence resulted in a greater tetracycline flux, but lower skin deposition. On the other hand, tretinoin skin deposition increased following an increase in the laser fluence. The fractional laser exhibited a negligible effect on modulating oxybenzone absorption. Dextrans with molecular weights of 4 and 10 kDa showed increased fluxes from 0.05 to 11.05 and 38.54 μg/cm(2)/h, respectively. The optimized drug dose for skin treated with the fractional laser was 1/70-1/60 of the regular dose. The skin histology and drug absorption had recovered to a normal status within 2-3 days. Our findings provide the first report on risk assessment of excessive skin absorption after fractional laser resurfacing.

  2. Efficacy of fractional lasers in treating alopecia: a literature review.

    PubMed

    Perper, Marina; Aldahan, Adam S; Fayne, Rachel A; Emerson, Christopher P; Nouri, Keyvan

    2017-11-01

    Hair loss stemming from different types of alopecia, such as androgenic alopecia and alopecia areata, negatively affects over half the population and, in many circumstances, causes serious psychosocial distress. Current treatment options for alopecia, such as minoxidil, anthralin, and intralesional corticosteroids, vary efficacy and side effect profiles. It is known that low-level laser/light therapies (LLLT), or photobiomodulations, such as the US FDA-cleared HairMax Lasercomb®, He-Ne laser, and excimer laser, are relatively affordable, user-friendly, safe, and effective forms of treatment for hair loss. While less is known about the effectiveness of fractional lasers for combating hair loss, research suggests that by creating microscopic thermal injury zones, fractional lasers may cause an increase in hair growth from a wound healing process, making them potential therapeutic options for alopecia. A literature review was performed to evaluate the effectiveness of fractional lasers on hair regrowth. The specific fractional laser therapies include the 1550-nm nonablative fractional erbium-glass laser, the ablative fractional 2940-nm erbium:YAG laser, and the ablative fractional CO 2 fractional laser. Additional randomized controlled trials are necessary to further evaluate the effectiveness of the lasers, as well as to establish appropriate parameters and treatment intervals.

  3. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    PubMed

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (< 20 micros) CO(2) laser pulses at 9.6 microm and for Q-switched erbium laser pulses at 2.79 and 2.94 microm. Droplets of water applied to the surface before ablation significantly reduced the residual heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  4. Efficacy and Safety of Fractional CO2 Laser Resurfacing in Non-hypertrophic Traumatic and Burn Scars

    PubMed Central

    Majid, Imran; Imran, Saher

    2015-01-01

    Background: Fractional photothermolysis is one of the most effective treatment options used to resurface scars of different aetiologies. Aim: To assess the efficacy and safety of fractional CO2 laser resurfacing treatment in the management of non-hypertrophic traumatic and burn scars. Materials and Methods: Twenty-five patients affected by non-hypertrophic traumatic and burn scars were treated with four sessions of fractional CO2 laser resurfacing treatment at 6-weekly intervals. Patients were photographed at each visit and finally, 3 months after the end of treatment schedule. Response to treatment was assessed clinically as well as by comparing the initial photograph of the patient with the one taken at the last follow-up visit 3-months after the final treatment session. Changes in skin texture, surface irregularity and pigmentation were assessed on a quartile grading scale and scored individually from 0 to 4. A mean of the three individual scores was calculated and the response was labelled as ‘excellent’ if the mean score achieved was >2. A score of 1-2 was labeled as good response while a score below 1 was labeled as ‘poor’ response. The subjective satisfaction of each patient with the treatment offered was also assessed at the last follow-up visit. Results: The commonest site of scarring treated was the face followed by hands. Response to treatment was rated as excellent in 60% (15/25) patients while 24% (6/25) and 16% (4/25) patients were labeled as good and poor responders, respectively. Skin texture showed better response than other variables with average score of 2.44. Linear post-traumatic scars were seen to respond less than other morphological types. Majority of the patients (19 out of 25) were highly satisfied with the treatment offered. No long-term adverse effects were noted in any patient. Conclusions: Fractional photothermolysis with a fractional CO2 laser gives excellent results in patients with post-burn scars with minimal adverse

  5. Selective laser ablation of carious lesions using simultaneous scanned near-IR diode and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  6. Selective Laser Ablation of Carious Lesions using Simultaneous Scanned Near-IR Diode and CO2 Lasers.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2017-01-28

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO 2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  7. Fractional ablative and nonablative radiofrequency for skin resurfacing and rejuvenation of Thai patients.

    PubMed

    Thanasarnaksorn, Wilai; Siramangkhalanon, Vorapot; Duncan, Diane Irvine; Belenky, Inna

    2018-04-01

    Fractional radiofrequency (RF) technology is often the preferable skin resurfacing treatment, especially among Asian patients. Second generation fractional RF technology has exclusive capability to produce separate biological responses (ablation, coagulation, or a combination of both) with 3 distinguished penetration depth programs. The aim of this study was to evaluate the efficacy and safety of a fractional RF handpiece such as this, on the Thai population. Fifty-five Thai patients were treated with a fractional RF handpiece. The clinical assessment included a pain score, satisfaction survey, physician assessment, a combined patient and physician's assessment of skin condition, and clinical photographic assessments. The wound healing response was evaluated according to 5-time points: immediately after applying a pulse, post 24 hours, post 7 days, post 1 month and post 8 weeks. The obtained patient satisfaction score was "very satisfied" among 74% of the patients, post 3 sessions. Positive correlation was found between patient satisfaction and the physician's assessment. The skin condition assessment showed an increase from an average of 4.2 to 7.9. All treated symptoms improved after each treatment and the clinical outcome lasted at least up to 3-5 months. No significant adverse events were recorded. The in vivo prospective study showed a dose-related response in the deepness of the coagulation injury. In addition, there was evidence for a progressive healing process beginning shortly after exposure and completed within a week. This study clinically and histologically supports the efficacy of fractional RF handpiece in question with a high safety profile. © 2017 Wiley Periodicals, Inc.

  8. The effect of fractional CO2 laser irradiation on remineralization of enamel white spot lesions.

    PubMed

    Poosti, Maryam; Ahrari, Farzaneh; Moosavi, Horieh; Najjaran, Hoda

    2014-07-01

    This study investigated the combined effect of fractional CO(2) laser irradiation and fluoride on treatment of enamel caries. Sixty intact premolars were randomly assigned into four groups and then stored in a demineralizing solution to induce white spot lesions. Tooth color was determined at baseline (T1) and after demineralization (T2). Afterwards, the teeth in group 1 remained untreated (control), while group 2 was exposed to an acidulated phosphate fluoride (APF) gel for 4 min. In groups 3 and 4, a fractional CO(2) laser was applied (10 mJ, 200 Hz, 10 s) either before (group 3) or through (group 4) the APF gel. The teeth were then immersed in artificial saliva for 90 days while subjected to daily fluoride mouthrinse and weekly brushing. Color examinations were repeated after topical fluoride application (T3) and 90 days later (T4). Finally, the teeth were sectioned, and microhardness was measured at the enamel surface and at 30 and 60 μ from the surface. In both lased groups, the color change between T1 and T4 stages (∆E(T1-T4)) was significantly lower than those of the other groups (p < 0.05). Laser irradiation followed by fluoride application (group 3) caused a significant increase in surface microhardness compared to APF alone and control groups (p < 0.05). Microhardness at depths of 30 and 60 μ was also significantly greater in group 3 compared to those of all other groups (p < 0.05). Application of a fractional CO(2) laser before fluoride therapy is suggested for recovering the color and rehardening of demineralized enamel.

  9. Fractional non-ablative laser-assisted drug delivery leads to improvement in male and female pattern hair loss.

    PubMed

    Bertin, Ana Carina Junqueira; Vilarinho, Adriana; Junqueira, Ana Lúcia Ariano

    2018-02-16

    Androgenetic alopecia, also known as male and female pattern hair loss, is a very prevalent condition; however, approved therapeutic options are limited. Fractionated laser has been proposed to assist in penetration of topical medications to the cutaneous tissue. We present four cases of androgenetic alopecia that underwent treatment with a non-ablative erbium glass fractional laser followed by the application of topical finasteride 0,05% and growth factors including basic fibroblast growth factor, insulin-like growth factor, vascular endothelial growth factor, and copper peptide 1%. During all laser treatment sessions, eight passes were performed, at 7 mJ, 3-9% of coverage and density of 120 mzt/cm 2 . A positive response was observed in all of the four patients. Photographs taken 2 weeks after the last session showed improvement in hair regrowth and density. No significant side effects were observed.

  10. Ablation velocity and thermal damage of myocardial tissue using a CO2 laser for transmyocardial laser revascularization

    NASA Astrophysics Data System (ADS)

    Sachinopoulou, Anna; Beek, Johan F.; van Leeuwen, Ton G. J. M.; Beek, W. J.

    1999-02-01

    Transmyocardial Laser Revascularization (TMLR) is a new experimental method for relief of angina pectoris in patients with severe coronary artery disease. TMLR aims at revascularizing chronic hibernating myocardium by creating transmural channels. One of the working mechanism hypotheses is that the endocardial side of the channels remains open, enabling perfusion of the hibernating myocardium directly from the left ventricle. Although the working mechanism of TMLR is still unknown (perfusion through patent channels, induction of angiogenesis, relief of angina through destruction of sympatic innervation, others?), first clinical studies are successful. Currently, the Heart LaserTM and other CO2 lasers, XeCl Excimer laser and Ho:YAG laser are under investigation for TMLR. The initial attempts of TMR with needles were soon replaced by laser induced channels. Efforts were focused on developing a CO2 laser that could penetrate a beating heart during its relaxation phase. Later, the position of the beam could be fixed in the myocardial wall using lasers with fiber delivery systems and perforation was achieved within multiple cycles. Various researchers reported on both patent and non-patent channels after TMLR. Our belief is that the extent of laser induced thermal damage is one of the factors that determine the clinical outcome and the extent of angiogenesis (and, possibly, the patency of the channel). The purpose of this study is to present a simple theoretical model to predict the extent of thermal damage around a transmyocardial channel. In vitro experiments were performed on myocardial bovine tissue and damage was assessed. The results were used to determine the final parameters of the approximating theoretical equation. To evaluate our results, we compared our results to in vitro data using the Heart LaserTM from the literature. Ablation velocities were also measured and the results were compared to ablation velocity calculations using a model described by Ostegar

  11. Histological study on the effects of microablative fractional CO2 laser on atrophic vaginal tissue: an ex vivo study.

    PubMed

    Salvatore, Stefano; Leone Roberti Maggiore, Umberto; Athanasiou, Stavros; Origoni, Massimo; Candiani, Massimo; Calligaro, Alberto; Zerbinati, Nicola

    2015-08-01

    Microablative fractional CO2 laser has been proven to determine tissue remodeling with neoformation of collagen and elastic fibers on atrophic skin. The aim of our study is to evaluate the effects of microablative fractional CO2 laser on postmenopausal women with vulvovaginal atrophy using an ex vivo model. This is a prospective ex vivo cohort trial. Consecutive postmenopausal women with vulvovaginal atrophy managed with pelvic organ prolapse surgical operation were enrolled. After fascial plication, the redundant vaginal edge on one side was treated with CO2 laser (SmartXide2; DEKA Laser, Florence, Italy). Five different CO2 laser setup protocols were tested. The contralateral part of the vaginal wall was always used as control. Excessive vagina was trimmed and sent for histological evaluation to compare treated and nontreated tissues. Microscopic and ultrastructural aspects of the collagenic and elastic components of the matrix were studied, and a specific image analysis with computerized morphometry was performed. We also considered the fine cytological aspects of connective tissue proper cells, particularly fibroblasts. During the study period, five women were enrolled, and 10 vaginal specimens were finally retrieved. Four different settings of CO2 laser were compared. Protocols were tested twice each to confirm histological findings. Treatment protocols were compared according to histological findings, particularly in maximal depth and connective changes achieved. All procedures were uneventful for participants. This study shows that microablative fractional CO2 laser can produce a remodeling of vaginal connective tissue without causing damage to surrounding tissue.

  12. Verruca plana as a complication of CO2 laser treatment: a case report.

    PubMed

    Winn, Aubrey E; Kentosh, Joshua; Bingham, Jonathan L

    2015-04-01

    Carbon dioxide (CO2) laser treatment is a common therapeutic modality for many dermatologic conditions. It uses a high energy, infrared beam of light, which selectively targets water-containing tissue resulting in controlled ablative resurfacing. This modality, however, can manifest significant cosmetic side effects. Here we report a case of verruca plana manifesting as a response to CO2 laser treatment. A 74-year-old female with recent Mohs surgery for a basal cell carcinoma, presented for full-face-fractionated CO2 treatment to address her surgical scars in addition to treating her mild diffuse actinic damage. Six weeks post treatment, the patient developed erythematous thin plaques over the areas that had been treated. Histology was consistent with verruca plana. Lesions showed mild improvement with topical tretinoin. Verruca plana are benign and typically self-limited; however, they can present a significant cosmetic burden to patients and are an important complication to consider when performing elective cosmetic procedures.

  13. The Clinical Efficacy of Autologous Platelet-Rich Plasma Combined with Ultra-Pulsed Fractional CO2 Laser Therapy for Facial Rejuvenation

    PubMed Central

    Hui, Qiang; Chang, Peng; Guo, Bingyu; Zhang, Yu

    2017-01-01

    Abstract Ultra-pulsed fractional CO2 laser is an efficient, precise, and safe therapeutic intervention for skin refreshing, although accompanied with prolonged edema and erythema. In recent years, autologous platelet-rich plasma (PRP) has been proven to promote wound and soft tissue healing and collagen regeneration. To investigate whether the combination of PRP and ultra-pulsed fractional CO2 laser had a synergistic effect on therapy for facial rejuvenation. Totally, 13 facial aging females were treated with ultra-pulsed fractional CO2 laser. One side of the face was randomly selected as experimental group and injected with PRP, the other side acted as the control group and was injected with physiological saline at the same dose. Comprehensive assessment of clinical efficacy was performed by satisfaction scores, dermatologists' double-blind evaluation and the VISIA skin analysis system. After treatment for 3 months, subjective scores of facial wrinkles, skin texture, and skin elasticity were higher than that in the control group. Similarly, improvement of skin wrinkles, texture, and tightness in the experimental group was better compared with the control group. Additionally, the total duration of erythema, edema, and crusting was decreased, in the experimental group compared with the control group. PRP combined with ultra-pulsed fractional CO2 laser had a synergistic effect on facial rejuvenation, shortening duration of side effects, and promoting better therapeutic effect. PMID:27222038

  14. Experimental Study of 5-fluorouracil Encapsulated Ethosomes Combined with CO2 Fractional Laser to Treat Hypertrophic Scar.

    PubMed

    Zhang, Zhen; Chen, Jun; Huang, Jun; Wo, Yan; Zhang, Yixin; Chen, Xiangdong

    2018-01-18

    This study is designed to explore permeability of ethosomes encapsulated with 5-florouracil (5-FU) mediated by CO 2 fractional laser on hypertrophic scar tissues. Moreover, therapeutic and duration effect of CO 2 fractional laser combined with 5-FU encapsulated ethosomes in rabbit ear hypertrophic scar model will be evaluated. The permeated amount of 5-FU and retention contents of 5-FU were both determined by high-performance liquid chromatography (HPLC). Fluorescence intensities of ethosomes encapsulated with 5-FU (5E) labeled with Rodanmin 6GO (Rho) were measured by confocal laser scanning microscopy (CLSM). The permeability promotion of 5E labeled with Rho in rabbit ear hypertrophic scar mediated by CO 2 fractional laser was evaluated at 0 h, 6 h, 12 h, 24 h, 3 days and 7 days after the irradiation. The opening rates of the micro-channels were calculated according to CLSM. The therapeutic effect of 5EL was evaluated on rabbit ear hypertrophic scar in vivo. Relative thickness of rabbit ear hypertrophic scar before and after the treatment was measured by caliper method. Scar elevation index (SEI) of rabbit ear hypertrophic scar was measured using H&E staining. The data showed that the penetration amount of 5EL group was higher than 5E group (4.15 ± 2.22 vs. 0.73 ± 0.33; p < 0.05) after 1-h treatment. Additionally, the penetration amount of 5EL was higher than that of the 5E group (107.61 ± 13.27 vs. 20.73 ± 3.77; p < 0.05) after 24-h treatment. The retention contents of the 5EL group also showed higher level than 5E group (24.42 ± 4.37 vs.12.25 ± 1.64; p < 0.05). The fluorescence intensity of Rho in hypertrophic scar tissues of the 5EL group was higher than that of the 5E group at different time points (1, 6, and 24 h). The opening rates of the micro-channels were decreased gradually within 24 h, and micro-channels were closed completely 3 days after the irradiation by CO 2 fractional laser. The relative thickness

  15. Objective evaluation of the efficacy of a non-ablative fractional 1565 nm laser for the treatment of deliberate self-harm scars.

    PubMed

    Guertler, Anne; Reinholz, Markus; Poetschke, Julian; Steckmeier, Stephanie; Schwaiger, Hannah; Gauglitz, Gerd G

    2018-02-01

    Scars resulting from deliberate self-harm (DSH) represent therapeutically challenging forms of scarring due to their highly variable patterns, with no official therapeutic guidelines available. In this pilot study, we aimed to evaluate the effectiveness and safety of a non-ablative fractional Er:glass 1565 nm laser, as a potential new, minimal-invasive approach for the improvement of DSH scars. Sixteen Caucasians suffering from mature DSH scars were included in this clinical study. Patients received a total of three treatments using a non-ablative fractional 1565 nm Er:glass laser every 4 weeks, employing two passes (300 μbeams/cm 2 , 40 mJ, onto the scar; 150 μbeams/cm 2 , 50 mJ, overall area). Measurements included questionnaires (DLQI, POSAS), digital photography, and objective three-dimensional analysis using PRIMOS and VECTRA software at baseline, 1 and 6 months after treatment. PRIMOS objective measurements showed highly significant changes in scar surface with a reduction of atrophic lesions by 27.5% at 6 months follow-up (FU), a decrease in scar height by 42.7% at 6 months FU, resulting in an overall diminished skin irregularity dropping from 678.3 μm at baseline to 441.6 μm throughout the course of the study (p = <0.001 respectively). Improvements in objective measurements were supported by clinical evaluation of scar parameters and showed a strong correlation with enhanced life quality of treated patients. Procedures were well-tolerated, with no lasting negative side effects and little to no downtime. The use of a fractional non-ablative 1565 nm Er:glass laser represents a promising and safe approach for the therapy of DSH scars. Although these scars will never fully resolve, their appearance can be significantly improved to a cosmetically and socially more acceptable appearance.

  16. Long-term reliability of fractioned CO2 laser as a treatment for vulvovaginal atrophy (VVA) symptoms.

    PubMed

    Pieralli, Annalisa; Bianchi, Claudia; Longinotti, Manuela; Corioni, Serena; Auzzi, Noemi; Becorpi, Angelamaria; Fallani, Maria Grazia; Cariti, Giuseppe; Petraglia, Felice

    2017-11-01

    The aim of this study was to evaluate long-term effects of the fractional CO 2 laser for the treatment of vulvovaginal atrophy (VVA) symptoms. Women presenting with VVA symptoms and meeting inclusion criterion were enrolled to fractioned CO 2 laser therapy. Patient's satisfaction was measured on five-point Likert scale at 4 weeks and 6, 12, 18, 24 months after treatment by interview and clinical examination for vaginal livability. 184 patients constituted the final study group: 128 women were spontaneous menopause and 56 were oncological menopause. 117 women were nulliparous and 36 had previous hysterectomy. 95.4% (172/184) of the patients declared that they were satisfied or very satisfied with the procedure at 4 weeks after treatment. At 6 months 92% (170/184) patients were satisfied; at 12 months 72% (118/162) were satisfied; at 18 months 63% (60/94) were satisfied; at 24 months 25% (4/16) of patients answered they were still satisfied. We observed a decline in patient's satisfaction between 18 and 24 months after laser therapy. Data showed that the time interval from onset of menopause was a statistically significant factor (p < 0.05) for treatment satisfaction in oncological group. Long-term data showed that the improvement of vaginal health may continue up to 24 months after fractional CO 2 laser treatment although between 18 and 24 months benefits decline, and approximately 80% of women decide to start a new treatment cycle of laser applications.

  17. Infrared spectra of the CO2- and C2O4- anions isolated in solid argon

    NASA Astrophysics Data System (ADS)

    Zhou, Mingfei; Andrews, Lester

    1999-02-01

    Laser ablation of transition metal targets with concurrent 11 to 12 K condensation of CO2-Ar mixtures produces a sharp metal independent infrared absorption at 1657.0 cm-1 due to CO2-, which is formed from the capture of ablated electrons by CO2 molecules during the condensation process. Two additional metal independent absorptions are produced at 1856.7 and 1184.7 cm-1 on matrix annealing to 25 K to allow diffusion and reaction of CO2 and CO2-. Isotopic substitution (13CO2, C18O2, C16,18O2, and mixtures) shows that these two vibrations involve two equivalent CO2 subunits. The excellent agreement with frequencies, intensities, and isotopic frequency ratios from density-functional calculations supports assignment to the symmetrical C2O4- anion with D2d symmetry. Photodissociation (470-580 nm) and failure to observe these absorptions in identical experiments doped with the electron trapping molecule CCl4 further support the molecular anion assignments. Although absorptions were observed for weak (CO2)(CO2-) complexes, no evidence was found for the asymmetric O2CṡOCO- molecule-anion complex characterized by calculations.

  18. Molecular effects of fractional ablative erbium:YAG laser treatment with multiple stacked pulses on standardized human three-dimensional organotypic skin models.

    PubMed

    Schmitt, Laurenz; Amann, P M; Marquardt, Y; Heise, R; Czaja, K; Gerber, P A; Steiner, T; Hölzle, F; Baron, Jens Malte

    2017-05-01

    The molecular changes in gene expression following ablative laser treatment of skin lesions, such as atrophic scars and UV-damaged skin, are not completely understood. A standardized in vitro model of human skin, to study the effects of laser treatment on human skin, has been recently developed. Therefore, the aim of the investigation was to examine morphological and molecular changes caused by fractional ablative erbium:YAG laser treatment on an in vitro full-thickness 3D standardized organotypic model of human skin. A fractional ablative erbium:YAG laser was used to irradiate organotypic human 3D models. Laser treatments were performed at four different settings using a variety of stacked pulses with similar cumulative total energy fluence (60 J/cm 2 ). Specimens were harvested at specified time points and real-time PCR (qRT-PCR) and microarray studies were performed. Frozen sections were examined histologically. Three days after erbium:YAG laser treatment, a significantly increased mRNA expression of matrix metalloproteinases and their inhibitors (MMP1, MMP2, MMP3, TIMP1, and TIMP2), chemokines (CXCL1, CXCL2, CXCL5, and CXCL6), and cytokines such as IL6, IL8, and IL24 could be detected. qRT-PCR studies confirmed the enhanced mRNA expression of IL6, IL8, IL24, CXCLs, and MMPs. In contrast, the mRNA expression of epidermal differentiation markers, such as keratin-associated protein 4, filaggrin, filaggrin 2, and loricrin, and antimicrobial peptides (S100A7A, S100A9, and S100A12) as well as CASP14, DSG2, IL18, and IL36β was reduced. Four different settings with similar cumulative doses have been tested (N10%, C10%, E10%, and W25%). These laser treatments resulted in different morphological changes and effects on gene regulations. Longer pulse durations (1000 μs) especially had the strongest impact on gene expression and resulted in an upregulation of genes, such as collagen-1A2, collagen-5A2, and collagen-6A2, as well as FGF2. Histologically, all treatment

  19. Fractional CO2 Laser Resurfacing as Monotherapy in the Treatment of Atrophic Facial Acne Scars.

    PubMed

    Majid, Imran; Imran, Saher

    2014-04-01

    While laser resurfacing remains the most effective treatment option for atrophic acne scars, the high incidence of post-treatment adverse effects limits its use. Fractional laser photothermolysis attempts to overcome these limitations of laser resurfacing by creating microscopic zones of injury to the dermis with skip areas in between. The aim of the present study is to assess the efficacy and safety of fractional CO2 laser resurfacing in atrophic facial acne scars. Sixty patients with moderate to severe atrophic facial acne scars were treated with 3-4 sessions of fractional CO2 laser resurfacing at 6-week intervals. The therapeutic response to treatment was assessed at each follow up visit and then finally 6 months after the last laser session using a quartile grading scale. Response to treatment was labelled as 'excellent' if there was >50% improvement in scar appearance and texture of skin on the grading scale while 25-50% response and <25% improvement were labelled as 'good' and 'poor' response, respectively. The overall satisfaction of the patients and any adverse reactions to the treatment were also noted. Most of the patients showed a combination of different morphological types of acne scars. At the time of final assessment 6 months after the last laser session, an excellent response was observed in 26 patients (43.3%) while 15 (25%) and 19 patients (31.7%) demonstrated a good and poor response respectively. Rolling and superficial boxcar scars responded the best while pitted scars responded the least to fractional laser monotherapy. The commonest reported adverse effect was transient erythema and crusting lasting for an average of 3-4 and 4-6 days, respectively while three patients developed post-inflammatory pigmentation lasting for 8-12 weeks. Fractional laser resurfacing as monotherapy is effective in treating acne scars especially rolling and superficial boxcar scars with minimal adverse effects.

  20. Randomized, Controlled Trial of Fractional Carbon Dioxide Laser Resurfacing Followed by Ultrashort Incubation Aminolevulinic Acid Blue Light Photodynamic Therapy for Actinic Keratosis.

    PubMed

    Alexiades, Macrene

    2017-08-01

    Aminolevulinic acid (ALA) photodynamic therapy (PDT) is an established treatment option for actinic keratosis (AK), and recently fractional carbon dioxide (CO2) laser was shown to improve outcomes; but studies of short incubation photosensitizer are lacking. Assess the efficacy of short incubation ALA followed by blue light PDT with and without previous fractional CO2 treatment for the treatment of AK. Randomized, paired split-design, controlled trial of fractional CO2 followed by ultrashort 15-minute versus 30-minute incubation ALA and blue light PDT for the treatment of AK on the face. The complete clearance rates (CRs) at 8 weeks after ALA PDT with and without FxCO2 at 30- and 15-minute ALA incubation times were 89.78% (+FxCO2) versus 71.20% CR (-FxCO2) at 30', and 86.38% (+FxCO2) versus 69.23% (-FxCO2) at 15' ALA incubation. All lesion improvements were statistically significant. This randomized, comparative paired group controlled clinical study demonstrates that ultrashort 15- and 30-minute incubation ALA PDTs are of limited efficacy for the treatment of AK. Pretreatment with fractional ablative resurfacing yields statistically significant greater AK clearance with ALA-PDT at ultrashort ALA incubations followed by blue light.

  1. The use of the fractional CO2 laser resurfacing in the treatment of photoaging in Asians: five years long-term results.

    PubMed

    Tan, Jun; Lei, Ying; Ouyang, Hua-Wei; Gold, Michael H

    2014-12-01

    The purpose of this clinical paper is to explore the therapeutic effects, healing times, adverse effects, and maintenance periods of using a CO2 fractional laser in the treatment of photoaging in Asian skin. One fractional CO2 laser procedure was performed on the full face in 56 patients with photoaging. Based on the Dover scoring system, we evaluated the degree of skin aging before treatment and at one-month post laser and at five years post laser therapy in 30 of the patients. Statistical analysis was performed by the Wilcoxon's method. Thirty of the treated patients have had follow-up for 5 years at this time. The photoaging scores in these thirty patients were significantly changed (P < 0.01) at one month, one year, and five years after the fractional laser treatment, as compared with their baseline. Adverse events seen during this analysis were found to be minimal and not of clinical significance. Fractional CO2 laser resurfacing in the treatment of photoaging in Asians is a useful modality with results, for the first time, being shown to have continued efficacy for up to 5 years. © 2014 Wiley Periodicals, Inc.

  2. Barium isotope fractionation during experimental formation of the double carbonate BaMn[CO3](2) at ambient temperature.

    PubMed

    Böttcher, Michael E; Geprägs, Patrizia; Neubert, Nadja; von Allmen, Katja; Pretet, Chloé; Samankassou, Elias; Nägler, Thomas F

    2012-09-01

    In this study, we present the first experimental results for stable barium (Ba) isotope ((137)Ba/(134)Ba) fractionation during low-temperature formation of the anhydrous double carbonate BaMn[CO(3)](2). This investigation is part of an ongoing work on Ba fractionation in the natural barium cycle. Precipitation at a temperature of 21±1°C leads to an enrichment of the lighter Ba isotope described by an enrichment factor of-0.11±0.06‰ in the double carbonate than in an aqueous barium-manganese(II) chloride/sodium bicarbonate solution, which is within the range of previous reports for synthetic pure BaCO (3) (witherite) formation.

  3. Evaluation of a Low Energy, Low Density, Non-Ablative Fractional 1927 nm Wavelength Laser for Facial Skin Resurfacing.

    PubMed

    Brauer, Jeremy A; Alabdulrazzaq, Hamad; Bae, Yoon-Soo Cindy; Geronemus, Roy G

    2015-11-01

    We investigated the safety, tolerability and efficacy of a low energy low density, non-ablative fractional 1,927-nm laser in the treatment of facial photodamage, melasma, and post inflammatory hyperpigmentation. Prospective non-randomized trial. Single center, private practice with a dedicated research department. Subjects with clinically diagnosed facial photodamage, melasma, or post inflammatory hyperpigmentation. Subjects received four to six treatments at 14-day intervals (+/- 3 days) with a low energy low density non-ablative fractional 1,927-nm laser (Solta Hayward, CA) with an energy level of 5 mJ, and density coverage of either 5%, 7.5%, or 10%, with a total of up to 8 passes. Blinded assessment of clinical photos for overall improvement at one and three months post final treatment. Investigator improvement scores, and subject pain and satisfaction scores for overall improvement were recorded as well. We enrolled 23 subjects, average age 45.0 years (range, 25-64 years), 22 with Fitzpatrick Skin Types I-IV and 1 with Type VI, with facial photodamage, melasma, or post inflammatory hyperpigmentation. Approximately 55% of subjects reported marked to very significant improvement at one and three months post final treatment. Blinded assessment of photography of 20 subjects revealed an average of moderate improvement at one-month follow up and mild to moderate improvement at three months. Average subject pain score was 3.4/10 during treatment. Favorable outcomes were demonstrated using the low energy low density, non-ablative fractional 1,927-nm laser in facial resurfacing for photodamage, melasma, and post inflammatory hyperpigmentation. Results were maintained at the 3-month follow up, as demonstrated by investigator and subject assessments, as well as blinded evaluations by three independent dermatologists utilizing photographs obtained from a standardized facial imaging device.

  4. Control of Atmospheric CO2 by the Ocean's Biological Pump and Shelf-Basin Fractionation

    NASA Astrophysics Data System (ADS)

    Anderson, R. F.; Fleisher, M. Q.; Mix, A. C.

    2006-12-01

    Identifying the cause of the dramatic correlation between atmospheric CO2 concentrations and past climate variability has been one of the principal goals of paleoclimate research over the past quarter century. Several plausible mechanisms have been proposed, and each has been rejected as being incapable by itself of accounting for the full range (80 to 100 ppm) of glacial to interglacial variability of atmospheric CO2 concentration. Consequently, recent studies have focused on scenarios by which a combination of mechanisms work synergistically to account for the full range of CO2 variability. We will present evidence from equatorial Pacific sediment cores that increased strength of the ocean's biological pump was primarily responsible for drawdown of atmospheric CO2 during the early stages of glaciation, and that increased ocean alkalinity (or, more specifically, an increase in the ocean carbonate ion concentration) led to a further reduction of atmospheric CO2 during maximum glaciation. Increased strength of the biological pump is manifest as increasing differences between the carbon isotope composition of planktonic and benthic foraminifera during early stages of glaciation, as predicted a quarter century ago in classic works by Broecker and by Shackleton. Increased carbonate ion concentration is manifest by increased preservation and burial of calcium carbonate in deep equatorial Pacific sediments. The carbon isotope record is noisy, but the pattern is repeated over each of the past three glacial cycles, lending confidence to its reliability. Increased preservation and burial of CaCO3 occurred each time the oxygen isotope composition of benthic foraminifera rose above a threshold value corresponding to a sea level lowering of roughly 70 m below present. This relationship is reproduced systematically throughout the past 450 kyr, again lending confidence to the finding and supporting the view that shelf-basin fractionation, or the shift in CaCO3 deposition from

  5. Reactions of laser-ablated Fe, Co, and Ni with NO: Infrared spectra and density functional calculations of MNO{sup +} and M(NO){sub x} (M = Fe, Co, x = 1--3; M = Ni, x = 1,2), and M(NO){sub x}{sup {minus}} (M = Co, Ni; x = 1,2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M.; Andrews, L.

    2000-05-04

    Laser-ablated iron, cobalt, and nickel atoms, cations, and electrons have been reacted with NO molecules during condensation in excess neon and argon. The end-on bonded Fe(NO){sub 1-3}, Co(NO){sub 1-3}, and Ni(NO){sub 1-2} nitrosyls and side-bonded Fe-({eta}{sup 2}-NO), Co-({eta}{sup 2}-NO), and Ni-({eta}{sup 2}-NO) species are formed during sample deposition or on annealing. The FeNO{sup +}, CoNO{sup +}, and NiNO{sup +} mononitrosyl cations are also produced via metal cation reactions with NO. Evidence is also presented for the Ni(NO){sub 1,2}{sup {minus}} and Co(NO){sub 1,2}{sup {minus}} anions. The product absorptions are identified by isotopic substitution ({sup 15}N{sup 16}O, {sup 15}N{sup 18}O, and mixtures),more » electron trapping with added CCl{sub 4}, and density functional calculations of isotopic frequencies. This work provides the first vibrational spectroscopic characterization of Fe, Co, and Ni nitrosyl cations and anions.« less

  6. Simulating the reactions of CO2 in aqueous monoethanolamine solution by reaction ensemble Monte Carlo using the continuous fractional component method.

    PubMed

    Balaji, Sayee Prasaad; Gangarapu, Satesh; Ramdin, Mahinder; Torres-Knoop, Ariana; Zuilhof, Han; Goetheer, Earl L V; Dubbeldam, David; Vlugt, Thijs J H

    2015-06-09

    Molecular simulations were used to compute the equilibrium concentrations of the different species in CO2/monoethanolamine solutions for different CO2 loadings. Simulations were performed in the Reaction Ensemble using the continuous fractional component Monte Carlo method at temperatures of 293, 333, and 353 K. The resulting computed equilibrium concentrations are in excellent agreement with experimental data. The effect of different reaction pathways was investigated. For a complete understanding of the equilibrium speciation, it is essential to take all elementary reactions into account because considering only the overall reaction of CO2 with MEA is insufficient. The effects of electrostatics and intermolecular van der Waals interactions were also studied, clearly showing that solvation of reactants and products is essential for the reaction. The Reaction Ensemble Monte Carlo using the continuous fractional component method opens the possibility of investigating the effects of the solvent on CO2 chemisorption by eliminating the need to study different reaction pathways and concentrate only on the thermodynamics of the system.

  7. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  8. Fractional CO2 Laser Resurfacing as Monotherapy in the Treatment of Atrophic Facial Acne Scars

    PubMed Central

    Majid, Imran; Imran, Saher

    2014-01-01

    Background: While laser resurfacing remains the most effective treatment option for atrophic acne scars, the high incidence of post-treatment adverse effects limits its use. Fractional laser photothermolysis attempts to overcome these limitations of laser resurfacing by creating microscopic zones of injury to the dermis with skip areas in between. Aim: The aim of the present study is to assess the efficacy and safety of fractional CO2 laser resurfacing in atrophic facial acne scars. Materials and Methods: Sixty patients with moderate to severe atrophic facial acne scars were treated with 3-4 sessions of fractional CO2 laser resurfacing at 6-week intervals. The therapeutic response to treatment was assessed at each follow up visit and then finally 6 months after the last laser session using a quartile grading scale. Response to treatment was labelled as ‘excellent’ if there was >50% improvement in scar appearance and texture of skin on the grading scale while 25-50% response and <25% improvement were labelled as ‘good’ and ‘poor’ response, respectively. The overall satisfaction of the patients and any adverse reactions to the treatment were also noted. Results: Most of the patients showed a combination of different morphological types of acne scars. At the time of final assessment 6 months after the last laser session, an excellent response was observed in 26 patients (43.3%) while 15 (25%) and 19 patients (31.7%) demonstrated a good and poor response respectively. Rolling and superficial boxcar scars responded the best while pitted scars responded the least to fractional laser monotherapy. The commonest reported adverse effect was transient erythema and crusting lasting for an average of 3-4 and 4-6 days, respectively while three patients developed post-inflammatory pigmentation lasting for 8-12 weeks. Conclusions: Fractional laser resurfacing as monotherapy is effective in treating acne scars especially rolling and superficial boxcar scars with minimal

  9. Low Hepatic Toxicity in Primary and Metastatic Liver Cancers after Stereotactic Ablative Radiotherapy Using 3 Fractions.

    PubMed

    Bae, Sun Hyun; Kim, Mi-Sook; Jang, Won Il; Cho, Chul Koo; Yoo, Hyung Jun; Kim, Kum Bae; Han, Chul Ju; Park, Su Cheol; Lee, Dong Han

    2015-08-01

    This study evaluated the incidence of hepatic toxicity after stereotactic ablative radiotherapy (SABR) using 3 fractions to the liver, and identified the predictors for hepatic toxicity. We retrospectively reviewed 78 patients with primary and metastatic liver cancers, who underwent SABR using 3 fractions between 2003 and 2011. To examine the incidence of hepatic toxicity, we defined newly developed hepatic toxicity≥grade 2 according to the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 within 3 months after the end of SABR as a significant adverse event. To identify the predictors for hepatic toxicity, we analyzed several clinical and dosimetric parameters (rV5Gy-rV35Gy: normal liver volume receiving 2 occurred in 10 patients (13%): grade 2 in 9 patients and grade 3 in 1 patient. On univariate analysis, baseline Child-Pugh (CP) score (5 vs. 6-8), normal liver volume, and planning target volume were the significant clinical predictors. All dosimetric parameters were significant: rV20Gy was the most significant predictor. On multivariate analysis, baseline CP score (hazard ratio, 0.026; P=0.001) was the only significant predictor. In conclusion, SABR using 3 fractions in primary and metastatic liver cancers produces low hepatic toxicity, especially in patients with a baseline CP score of 5. However, further studies are needed to minimize hepatic toxicity in patients with baseline CP scores≥6.

  10. Comparison of four different lasers for acne scars: Resurfacing and fractional lasers.

    PubMed

    You, Hi-Jin; Kim, Deok-Woo; Yoon, Eul-Sik; Park, Seung-Ha

    2016-04-01

    Acne scars are common and cause cosmetic problems. There is a multitude of treatment options for acne scars, including dermabrasion, chemical peeling, and fillers, but the advent of laser technology has greatly improved the treatment of acne scars. Although several laser systems are available, studies comparing their efficacy are limited. This study compares the results of treatments using resurfacing (carbon dioxide, CO2; erbium-doped yttrium aluminum garnet, Er:YAG) versus fractional (nonablative fractional laser, NAFL; ablative fractional laser, AFL) lasers. A retrospective photographic analysis of 58 patients who underwent laser treatment for facial atrophic acne scars was performed. Clinical improvement was assessed by six blinded investigators with a scale graded from 0 to 10. Adverse events were also noted. Mean improvement scores of the CO2, Er:YAG, NAFL, and AFL groups were 6.0, 5.8, 2.2, and 5.2, respectively. The NAFL group showed a significantly lower score than the other groups. The mean number of treatments was significantly greater in the fractional laser groups than in the resurfacing laser groups. The resurfacing laser groups had a prolonged recovery period and high risk of complications. The Er:YAG laser caused less erythema or pigmentation compared to the CO2 laser. Although the CO2 laser, Er:YAG laser, and AFL improved the acne scars, the CO2 laser had a greater downtime. Three consecutive AFL treatments are as effective as a single treatment with resurfacing lasers, with shorter social downtime periods and less adverse effects. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Nonablative fractional laser resurfacing in Asian skin--a review.

    PubMed

    Sachdeva, Silonie

    2010-12-01

    Skin resurfacing has been a part of cosmetic dermatology for more than two decades now, and most of it has been ablative with traditional aggressive lasers including the CO(2) and erbium. The last few years have seen a revolutionary change with the invention of nonablative lasers for skin tightening. Fractional resurfacing is a new concept of cutaneous remodeling whereby laser-induced zones of microthermal injury are surrounded by normal untreated tissue that helps in quicker healing. The various wavelengths used are 1320, 1440, and 2940 nm with depth of penetration ranging from 25 μ to 1.2 mm. This article reviews the history of nonablative fractional laser resurfacing, its indications, contraindications, and a review of use in Asian skin with Fitzpatrick type III-VI. © 2010 Wiley Periodicals, Inc.

  12. Laser fractional photothermolysis of the skin: numerical simulation of microthermal zones.

    PubMed

    Marqa, Mohamad Feras; Mordon, Serge

    2014-04-01

    Laser Fractional Photothermolysis (FP) is one of the innovative techniques for skin remodeling and resurfacing. During treatment, the control of the Microscopic Thermal Zones' (MTZs) dimensions versus pulse energy requires detailed knowledge of the various parameters governing the heat transfer process. In this study, a mathematical model is devised to simulate the effect of pulse energy variations on the dimensions of MTZs. Two series of simulations for ablative (10.6 μm CO2) and non-ablative (1.550 μm Er:Glass) lasers systems were performed. In each series, simulations were carried for the following pulses energies: 5, 10, 15, 20, 25, 30, 35, and 40 mJ. Results of simulations are validated by histological analysis images of MTZs sections reported in works by Hantash et al. and Bedi et al. MTZs dimensions were compared between histology and those achieved using our simulation model using fusion data technique for both ablative FP and non-ablative FP treatment methods. Depths and widths from simulations are usually deeper (21 ± 2%) and wider (12 ± 2%) when compared with histological analysis data. When accounting for the shrinkage effect of excision of cutaneous tissues, a good correlation can be established between the simulation and the histological analysis results.

  13. Flash scanning the CO2 laser: a revival of the CO2 laser in plastic surgery

    NASA Astrophysics Data System (ADS)

    Lach, Elliot

    1994-09-01

    The CO2 laser has broad clinical application yet also presents a number of practical disadvantages. These drawbacks have limited the success and utilization of this laser in plastic surgery. Flashscanner technology has recently been used for char-free CO2 laser surgery of the oropharynx, the external female genital tract, and perirectal mucosa. A commercially available optomechanical flashscanner unit `Swiftlase,' was adapted to a CO2 laser and used for treatment in numerous plastic surgical applications. Conditions and situations that were treated in this study included generalized neurofibromatosis, tuberous sclerosis, rhinophyma, viral warts, breast reconstruction, and deepithelialization prior to microsurgery or local flap transfer and/or skin graft placement. There were no significant wound healing complications. Some patients previously sustained undue scarring from conventional CO2 laser surgery. Conservative, primarily ablative CO2 laser surgery with the Swiftlase has usefulness for treatment of patients in plastic surgery including those that were previously unsuccessfully treated.

  14. Fractional ablative erbium YAG laser: histological characterization of relationships between laser settings and micropore dimensions.

    PubMed

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M; Philipsen, Peter A; Anderson, R Rox; Paasch, Uwe; Haedersdal, Merete

    2014-04-01

    Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating laser parameters with tissue effects. Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse energies of 2.3-12.8 mJ/microbeam and total energy levels of 4.6-640 mJ/microchannel. Histological endpoints were ablation depth (AD), coagulation zone (CZ) and ablation width (AW). Data were logarithmically transformed if required prior to linear regression analyses. Results for histological endpoints were combined in a mathematical model. In 138 sections from 91 biopsies, AD ranged from 16 to a maximum of 1,348 µm and increased linearly with the logarithm of total energy delivered by stacked pulses, but also depended on variations in power, pulse duration, pulse repetition rate, and pulse energy (r(2)  = 0.54-0.85, P < 0.0001). Microchannels deeper than 500 µm were created only by the highest pulse energy of 12.8 mJ/microbeam. Pulse stacking increased AD, and enlarged CZ and AW. CZ varied from 0 to 205 µm and increased linearly with total energy (r(2)  = 0.56-0.75, P < 0.0001). AW ranged from 106 to 422 µm and increased linearly with the logarithm of number of stacked pulses (r(2)  = 0.53-0.61, P < 0.001). The mathematical model estimated micropores of specific ADs with an associated range of CZs and AWs, for example, 300 µm ADs were associated with CZs from 27 to 73 µm and AWs from 190 to 347 µm. Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling

  15. Safety and long-term efficacy of fractional CO2 laser treatment in women suffering from genitourinary syndrome of menopause.

    PubMed

    Behnia-Willison, Fariba; Sarraf, Sara; Miller, Joseph; Mohamadi, Behrang; Care, Alison S; Lam, Alan; Willison, Nadia; Behnia, Leila; Salvatore, Stefano

    2017-06-01

    To evaluate the safety and long-term efficacy of fractional CO 2 laser treatment in reducing the severity of symptoms of genitourinary syndrome of menopause (GSM) in menopausal women. 102 women presenting with symptomatic GSM were treated with the fractional CO 2 laser (MonaLisa Touch, DEKA) system across a series of treatments delivered at intervals of six or more weeks. The Australian Pelvic Floor Questionnaire was used to gather data on sexual function and side-effects at three time-points across the study period (prospective panel design study). Wilcoxon signed-rank tests were used to detect statistically and clinically significant changes in sexual function and side-effects occurring from pre- to post-treatment. The primary outcome of this study was an improvement of the symptoms of GSM. The secondary outcome included bladder function and prolapse symptoms. A total of 102 women suffering from moderate to severe GSM were recruited. Eighty-four percent experienced significant improvement in their symptoms after CO 2 laser treatment. Scores on measures of sexual function, dyspareunia, and bothersomeness of sexual issues were improved from pre-treatment to long-term (12-24 month) follow-up. Furthermore, there were improvements on measures of bladder function (P=0.001), prolapse (P=0.001), vaginal sensation (P=0.001), vaginal lubrication (P<0.001) and urge incontinence (P=0.003) from the pre-treatment assessment to the second assessment (i.e. after the third treatment). In this study, fractional microablative CO 2 laser treatment was associated with an improvement in symptoms of GSM and sexual function. Copyright © 2017. Published by Elsevier B.V.

  16. High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation

    USGS Publications Warehouse

    Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, David A.; Rogie, J.D.; Shuster, D.L.

    2001-01-01

    Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22

  17. [Impact of CHA2DS2 VASc score on substrate for persistent atrial fibrillation and outcome post catheter ablation of atrial fibrillation].

    PubMed

    Ribo, Tang; Jianzeng, Dong; Xiaohui, Liu; Meisheng, Shang; Ronghui, Yu; Deyong, Long; Xin, Du; Junping, Kang; Jiahui, Wu; Man, Ning; Caihua, Sang; Chenxi, Jiang; Rong, Bai; Songnan, Li; Yan, Yao; Songnan, Wen; Changsheng, Ma

    2015-08-01

    To explore if CHA2DS2 VASc score can predict substrate for persistent atrial fibrillation ( AF) and outcome post catheter ablation of AF. From January 2011 to December 2012,116 patients underwent catheter ablation of persistent AF in our department and were enrolled in this study. CHA2DS2VASc score was calculated as follows: two points were assigned for a history of stroke or transient ischemic attack and age ≥ 75 and 1 point each was assigned for age ≥ 65, a history of hypertension, diabetes,recent cardiac failure, vessel disease, female. Left atrial geometry ( LA) was reconstructed with a 3.5 mm tip ablation catheter with fill-in threshold 10 in CARTO system. The mapping catheter was stabled at each endocardial location for at least 3 seconds for recording. The electrogram recordings at each endocardial location were analyzed with a custom software embedded in the CARTO mapping system. Interval confidence level (ICL) was used to characterize complex fractionated atrial electrograms (CFAEs) . As the default setting of the software, ICL more than or equal to 7 was considered sites with a highly repetitive CFAEs complex. CFAEs index was defined as the fraction of area of ICL more than or equal to 7 to the left atrial surface. The CFAEs index and outcome of catheter ablation among different CHA2DS2VASc groups were compared. Of the 116 patients, CHA2DS2VASc was 0 in 33 patients, 1 in 31 patients and ≥ 2 in 52 patients. Left atrial surface ((121.2 ± 18.9) cm2, (133.6 ± 23.8) cm2, (133.9 ± 16.1) cm2, P = 0.008), left atrial volume ((103.6 ± 24.8) ml, (118.3 ± 27.8) ml, (120.9 ± 20.9) ml, P = 0.005) and CFAEs index (44.6% ± 22.4%, 54.2% ± 22.2%, 58.7% ± 23.1%, P = 0.023) increased in proportion with increasing CHA2DS2VASc. ICLmax, ICLmin and CFAEs spatial distribution were similar among the three groups. During the mean follow-up of (13 ± 8) months, the recurrence rate were 36.4%, 35.5%, 55.8% among the three groups (P = 0.025). A high CHA2DS2VASc score

  18. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial.

    PubMed

    Vietti Violi, Naïk; Duran, Rafael; Guiu, Boris; Cercueil, Jean-Pierre; Aubé, Christophe; Digklia, Antonia; Pache, Isabelle; Deltenre, Pierre; Knebel, Jean-François; Denys, Alban

    2018-05-01

    Radiofrequency ablation is the recommended treatment for patients with hepatocellular carcinoma who have lesions smaller than 3 cm and are therefore not candidates for surgery. Microwave ablation is a more recent technique with certain theoretical advantages that have not yet been confirmed clinically. We aimed to compare the efficacy of both techniques in the treatment of hepatocellular carcinoma lesions of 4 cm or smaller. We did a randomised controlled, single-blinded phase 2 trial at four tertiary university centres in France and Switzerland. Patients with chronic liver disease and hepatocellular carcinoma with up to three lesions of 4 cm or smaller who were not eligible for surgery were randomised to receive microwave ablation (experimental group) or radiofrequency ablation (control group). Randomisation was centralised and done by use of a fixed block method (block size 4). Patients were randomly assigned by a co-investigator by use of the sealed opaque envelope method and were masked to the treatment; physicians were not masked to treatment, since the devices used were different. The primary outcome was the proportion of lesions with local tumour progression at 2 years of follow-up. Local tumour progression was defined as the appearance of a new nodule with features typical of hepatocellular carcinoma in the edge of the ablation zone. All analyses were done in the per-protocol population. The study is completed, but patients will continue to be followed up for 5 years. This study is registered with ClinicalTrials.gov, number NCT02859753. Between Nov 15, 2011, and Feb 27, 2015, 152 patients were randomly assigned: 76 patients to receive microwave ablation and 76 patients to receive radiofrequency ablation. For the per-protocol analysis, five patients were excluded from the microwave ablation group as were three patients from the radiofrequency ablation group. Median follow-up was 26 months (IQR 18-29) in the microwave ablation group and 25 months (18-34) in

  19. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-03-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.

  20. Improving CO2 permeation and separation performance of CO2-philic polymer membrane by blending CO2 absorbents

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Hu, Leiqing; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-07-01

    To research effects of CO2 absorption capacity and type of CO2 absorbent on the CO2 separation and free-volume properties of facilitated transport membranes, two types of CO2 absorbents, namely monoethanolamine (MEA) and ionic liquids (ILs:[P66614][Triz] and [P66614][2-Op]), were adopted. The CO2 absorption capacities of MEA, [P66614][Triz] and [P66614][2-Op] were about 0.561 mol CO2 per mol, 0.95 mol CO2 per mol and 1.60 mol CO2 per mol, respectively. All mean free-volume hole radiuses of membranes decreased after blending CO2 absorbents. After polymer membrane blended with two ILs, number of free-volume hole increased, resulting in modest increase of the fractional free volume. Both CO2 permeability and selectivity increased after blending MEA and ILs. The increasing range of CO2 permeability corresponded with CO2 absorption capacity of CO2 absorbents, and membrane blending with [P66614][2-Op] showed the highest CO2 permeability of 672.1 Barrers at 25 °C. Pebax/PEGDME membrane blending with MEA obtained the highest CO2/H2 and CO2/CH4 selectivity at 17.8 and 20.5, respectively.

  1. Micrometeoroid ablation simulated in the laboratory

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  2. Complete resolution of minocycline pigmentation following a single treatment with non-ablative 1550-nm fractional resurfacing in combination with the 755-nm Q-switched alexandrite laser.

    PubMed

    Vangipuram, Ramya K; DeLozier, Whitney L; Geddes, Elizabeth; Friedman, Paul M

    2016-03-01

    Pigmentation secondary to minocycline ingestion is an uncommon adverse event affecting 3.7-14.8% of treated individuals for which few effective therapies are available. Three patterns of minocycline pigmentation have a characteristic clinical and histological appearance. The pigment composition in each variety is different and occurs at varying skin depths. Accordingly, a tailored approach according to the type of minocycline pigmentation is crucial for treatment success. The purpose of this intervention was to evaluate the efficacy of non-ablative fractional photothermolysis in combination with the Q-switched alexandrite laser for the treatment of type I minocycline pigmentation on the face. A patient with type I minocycline pigmentation was treated with non-ablative 1550-nm fractional photothermolysis followed immediately by 755-nm Q-switched alexandrite laser and then observed clinically to determine the outcome of this modality. The patient was seen in clinic 1 month later following her single treatment session and 100% clearance of all blue facial pigment was observed. Non-ablative fractional photothermolysis in combination with the 755-nm Q-switched alexandrite laser should be considered for treatment of type I minocycline pigmentation. © 2015 Wiley Periodicals, Inc.

  3. CO2 and Er:YAG laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2013-01-01

    Plant leaves are multi-component optical materials consisting of water, pigments, and dry matter, among which water is the predominant constituent. In this article, we investigate laser interaction with grass using CO2 and Er:YAG lasers theoretically and experimentally, especially targeting water in grass tissues. We have first studied the optical properties of light absorbing constituents of grass theoretically, and then have identified interaction regimes and constructed interaction maps through a systematic experiment. Using the interaction maps, we have studied how interaction regimes change as process parameters are varied. This study reveals some interesting findings concerning carbonization and ablation mechanisms, the effect of laser beam diameter, and the ablation efficiency and quality of CO2 and Er:YAG lasers.

  4. Comparison of Q-switched Nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians.

    PubMed

    Vachiramon, Vasanop; Panmanee, Wikanda; Techapichetvanich, Thanya; Chanprapaph, Kumutnart

    2016-04-01

    Solar lentigines are benign pigmented lesions that occur mostly on sun-exposed areas. Q-switched and ablative lasers are effective for removing these lesions but the high incidence of postinflammatory hyperpigmentation raises concern in darker skin types. The objective of this study is to compare the efficacy and degree of postinflammatory hyperpigmentation with the Q-switched Nd:YAG and fractional carbon dioxide (CO2 ) laser for treatment of solar lentigines in Asians. Twenty-five Thai patients (skin phototype III-IV) with at least two lesions of solar lentigines on upper extremities were enrolled in this study. Two lesions were randomly selected for the treatment with a single session of Q-switched Nd:YAG or fractional CO2 laser. Outcomes were evaluated using physician grading scale, colorimeter, and patient self-assessment at 6 and 12 weeks after treatment. Side effects were recorded. A total of 532 nm Q-switched Nd:YAG laser showed significant improvement of pigmentation over fractional CO2 laser at 6th and 12th week by both colorimeter assessment and physician grading scale (P < 0.05). No significant difference in postinflammatory hyperpigmentation from both lasers was observed. In terms of patient self-assessment, 80% of the patients treated with 532 nm Q-switched Nd:YAG laser had excellent results compared to 8% in fractional CO2 laser group. However, fractional CO2 laser treatment had faster healing time and less pain score compared to Q-switched Nd:YAG laser. Q-switched Nd:YAG is superior to fractional CO2 laser for treatment of solar lentigines but requires longer healing time and produces more pain. The incidence of postinflammatory hyperpigmentation was not significantly different with both lasers. Further studies are needed to obtain the proper parameter and the treatment frequency of fractional CO2 laser in solar lentigines. © 2016 Wiley Periodicals, Inc.

  5. Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models.

    PubMed

    Amann, Philipp M; Marquardt, Yvonne; Steiner, Timm; Hölzle, Frank; Skazik-Voogt, Claudia; Heise, Ruth; Baron, Jens M

    2016-04-01

    Clinical experiences with non-ablative fractional erbium glass laser therapy have demonstrated promising results for dermal remodelling and for the indications of striae, surgical scars and acne scars. So far, molecular effects on human skin following treatment with these laser systems have not been elucidated. Our aim was to investigate laser-induced effects on skin morphology and to analyse molecular effects on gene regulation. Therefore, human three-dimensional (3D) organotypic skin models were irradiated with non-ablative fractional erbium glass laser systems enabling qRT-PCR, microarray and histological studies at same and different time points. A decreased mRNA expression of matrix metalloproteinases (MMPs) 3 and 9 was observed 3 days after treatment. MMP3 also remained downregulated on protein level, whereas the expression of other MMPs like MMP9 was recovered or even upregulated 5 days after irradiation. Inflammatory gene regulatory responses measured by the expression of chemokine (C-X-C motif) ligands (CXCL1, 2, 5, 6) and interleukin expression (IL8) were predominantly reduced. Epidermal differentiation markers such as loricrin, filaggrin-1 and filaggrin-2 were upregulated by both tested laser optics, indicating a potential epidermal involvement. These effects were also shown on protein level in the immunofluorescence analysis. This novel standardised laser-treated human 3D skin model proves useful for monitoring time-dependent ex vivo effects of various laser systems on gene expression and human skin morphology. Our study reveals erbium glass laser-induced regulations of MMP and interleukin expression. We speculate that these alterations on gene expression level could play a role for dermal remodelling, anti-inflammatory effects and increased epidermal differentiation. Our finding may have implications for further understanding of the molecular mechanism of erbium glass laser-induced effects on human skin.

  6. Successful Treatment of Keloid With Fractionated Carbon Dioxide (CO2) Laser and Laser-Assisted Drug Delivery of Triamcinolone Acetonide Ointment in an African-American Man.

    PubMed

    Kraeva, Ekaterina; Ho, Derek; Jagdeo, Jared

    2017-09-01

    Keloids are fibrous growths that occur as a result of abnormal response to dermal injury. Keloids are cosmetically disfiguring and may impair function, often resulting in decreased patient quality-of-life. Treatment of keloids remains challenging, and rate of recurrence is high. We present a case of a 39-year-old African-American man (Fitzpatrick VI) with a 10-year history of keloid, who was successfully treated with eight sessions of fractionated carbon dioxide (CO2) laser immediately followed by laser-assisted drug delivery (LADD) of topical triamcinolone acetonide (TAC) ointment and review the medical literature on fractionated CO2 laser treatment of keloids. To the best of our knowledge, this is the first report of successful treatment of a keloid using combination therapy of fractionated CO2 laser and LADD with topical TAC ointment in an African-American man (Fitzpatrick VI) with excellent cosmetic results sustained at 22 months post-treatment. We believe that this combination treatment modality may be safe and efficacious for keloids in skin of color (Fitzpatrick IV-VI) and other patients. This case highlights the ability of laser surgeons to safely use fractionated CO2 lasers in patients of all skin colors.

    J Drugs Dermatol. 2017;16(9):925-927.

    .

  7. Upper Eyelid Fractional CO2 Laser Resurfacing With Incisional Blepharoplasty.

    PubMed

    Kotlus, Brett S; Schwarcz, Robert M; Nakra, Tanuj

    2016-01-01

    Laser resurfacing, performed at the same time as blepharoplasty, has most commonly been applied to the lower eyelid skin but can effectively be used on the upper eyelid to reduce rhytidosis and improve skin quality. The authors evaluate the safety and efficacy of this procedure. Fractional CO2 laser resurfacing was performed in conjunction with incisional upper blepharoplasty. The ultrapulsed laser energy was applied to the sub-brow skin, the upper medial canthal skin, and the pretarsal skin in 30 patients. Photos were obtained preoperatively and at 3 months. All patients demonstrated reduction in upper eyelid rhytidosis without any serious complications. Independent rhytidosis grading (0-4) showed a mean improvement of 42%. One patient experienced wound dehiscence that satisfactorily resolved without intervention. Upper eyelid laser resurfacing is effective and can be safely performed at the same time as upper blepharoplasty. This approach reduces or eliminates the need for medial incisions to address medial canthal skin redundancy and rhytidosis and it directly treats upper eyelid wrinkles on residual eyelid and infra-brow skin during blepharoplasty.

  8. Facelift combined with simultaneous fractional laser resurfacing: Outcomes and complications.

    PubMed

    Wright, Eric J; Struck, Steve K

    2015-10-01

    The combination of simultaneous surgical rhytidectomy with ablative resurfacing has been a controversial procedure due to the concern of postoperative wound healing. Traditional ablative resurfacing lasers are believed to have higher rates of complications, leading to delayed healing and skin flap loss when combined with face rhytidectomy surgeries. With the development of fractionated ablative laser therapy, there has been increased interest in combining these two procedures. The objective of this study is to evaluate the clinical outcomes of patients undergoing simultaneous full-face rhytidectomy in combination with fractionated ablative skin resurfacing. A retrospective chart analysis was performed for all patients who had a combined procedure of facelift and ablative fractional laser resurfacing from 2008 to 2013 by the senior author (SKS). Postoperative recovery and complications were recorded. The surgical technique used for performing the facelift was an extended supraplatysmal dissection with SMAS plication. Fraxel Re:Pair 10,600-nm fractional carbon dioxide laser was used to perform an ablative resurfacing including the elevated skin flaps. A total of 86 patients were included. Average age was 60.01 years (range of 45-78 years). Longest follow up was five years. The average size of the elevated skin flaps was 100 cm(2). Average skin type was a Fitzpatrick type 2. All patients had complete re-epithelialization by one week after their procedure. Four patients (4.6%) experienced acne outbreaks. Four patients (4.6%) had facial erythema that persisted greater than two weeks. Of these four patients, all resolved by five weeks postoperatively. There was no delayed wound healing or skin flap loss observed. Our results indicate that simultaneous rhytidectomy with fractionated ablative laser resurfacing does not cause an increase in wound healing or skin loss. Due to improved patient outcomes with combining these procedures, we believe that this can be increasingly

  9. Improved respirable fraction of budesonide powder for dry powder inhaler formulations produced by advanced supercritical CO2 processing and use of a novel additive.

    PubMed

    Miyazaki, Yuta; Aruga, Naoki; Kadota, Kazunori; Tozuka, Yuichi; Takeuchi, Hirofumi

    2017-08-07

    A budesonide (BDS) suspension was obtained via advanced supercritical carbon dioxide (scCO 2 ) processing. Thereafter, the suspension was freeze-dried (FD) to produce BDS particles for dry powder inhaler formulations (scCO 2 /FD processing). The scCO 2 /FD processed BDS powder showed low crystallinity by powder X-ray diffraction and a rough surface by scanning electron microscopy. The respirable fraction of BDS was assessed using a twin impinger and revealed that the amount of the scCO 2 /FD processed sample that reached stage 2 was 4-fold higher than that of the supplied powder. To extend the utility of scCO 2 processing, BDS particles for dry powder inhalers were fabricated by combining the scCO 2 system with various additives. When BDS was processed via scCO 2 /FD in the presence of the novel additive, namely, monoglyceride stearate (MGS), the residual BDS/MGS particles remaining in the capsule and devices decreased, followed by an increase in the respirable fraction of BDS 6-fold higher than with the supplied powder. The scCO 2 /FD processed BDS/MGS particles had a smooth surface, in contrast to the scCO 2 /FD processed BDS particles. A combination of BDS and an appropriate additive in scCO 2 treatment may induce changes in particle surface morphology, leading to an improvement in the inhalation properties of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  11. Experimental investigation of the laser ablation process on wood surfaces

    NASA Astrophysics Data System (ADS)

    Panzner, M.; Wiedemann, G.; Henneberg, K.; Fischer, R.; Wittke, Th.; Dietsch, R.

    1998-05-01

    Processing of wood by conventional mechanical tools like saws or planes leaves behind a layer of squeezed wood only slightly adhering to the solid wood surface. Laser ablation of this layer could improve the durability of coatings and glued joints. For technical applications, thorough knowledge about the laser ablation process is necessary. Results of ablation experiments by excimer lasers, Nd:YAG lasers, and TEA-CO 2 lasers on surfaces of different wood types and cut orientations are shown. The process of ablation was observed by a high-speed camera system and optical spectroscopy. The influence of the experimental parameters are demonstrated by SEM images and measurement of the ablation rate depending on energy density. Thermal effects like melting and also carbonizing of cellulose were found for IR- and also UV-laser wavelengths. Damage of the wood surface after laser ablation was weaker for excimer lasers and CO 2-TEA lasers. This can be explained by the high absorption of wood in the ultraviolet and middle infrared spectral range. As an additional result, this technique provides an easy way for preparing wood surfaces with excellently conserved cellular structure.

  12. Atmospheric CO2 mole fraction affects stand-scale carbon use efficiency of sunflower by stimulating respiration in light.

    PubMed

    Gong, Xiao Ying; Schäufele, Rudi; Lehmeier, Christoph Andreas; Tcherkez, Guillaume; Schnyder, Hans

    2017-03-01

    Plant carbon-use-efficiency (CUE), a key parameter in carbon cycle and plant growth models, quantifies the fraction of fixed carbon that is converted into net primary production rather than respired. CUE has not been directly measured, partly because of the difficulty of measuring respiration in light. Here, we explore if CUE is affected by atmospheric CO 2 . Sunflower stands were grown at low (200 μmol mol -1 ) or high CO 2 (1000 μmol mol -1 ) in controlled environment mesocosms. CUE of stands was measured by dynamic stand-scale 13 C labelling and partitioning of photosynthesis and respiration. At the same plant age, growth at high CO 2 (compared with low CO 2 ) led to 91% higher rates of apparent photosynthesis, 97% higher respiration in the dark, yet 143% higher respiration in light. Thus, CUE was significantly lower at high (0.65) than at low CO 2 (0.71). Compartmental analysis of isotopic tracer kinetics demonstrated a greater commitment of carbon reserves in stand-scale respiratory metabolism at high CO 2 . Two main processes contributed to the reduction of CUE at high CO 2 : a reduced inhibition of leaf respiration by light and a diminished leaf mass ratio. This work highlights the relevance of measuring respiration in light and assessment of the CUE response to environment conditions. © 2016 John Wiley & Sons Ltd.

  13. In vivo non-invasive monitoring of collagen remodelling by two-photon microscopy after micro-ablative fractional laser resurfacing.

    PubMed

    Cicchi, Riccardo; Kapsokalyvas, Dimitrios; Troiano, Michela; Campolmi, Piero; Morini, Cristiano; Massi, Daniela; Cannarozzo, Giovanni; Lotti, Torello; Pavone, Francesco Saverio

    2014-11-01

    Non-linear optical microscopy is becoming popular as a non-invasive in vivo imaging modality in dermatology. In this study, combined TPF and SHG microscopy were used to monitor collagen remodelling in vivo after micro-ablative fractional laser resurfacing. Papillary dermis of living subjects, covering a wide age range, was imaged immediately before and forty days after treatment. A qualitative visual examination of acquired images demonstrated an age-dependent remodelling effect on collagen. Additional quantitative analysis of new collagen production was performed by means of two image analysis methods. A higher increase in SHG to TPF ratio, corresponding to a stronger treatment effectiveness, was found in older subjects, whereas the effect was found to be negligible in young, and minimal in middle age subjects. Analysis of collagen images also showed a dependence of the treatment effectiveness with age but with controversial results. While the diagnostic potential of in vivo multiphoton microscopy has already been demonstrated for skin cancer and other skin diseases, here we first successfully explore its potential use for a non-invasive follow-up of a laser-based treatment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    NASA Astrophysics Data System (ADS)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  15. The association of fractional CO2 laser 10.600nm and photodynamic therapy in the treatment of onychomycosis*

    PubMed Central

    de Oliveira, Guilherme Bueno; Antonio, João Roberto; Antonio, Carlos Roberto; Tomé, Fernanda Alves

    2015-01-01

    BACKGROUND Onychomycosis is a fungal infection of the nails caused in most cases by dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes. Despite numerous available antifungal drugs for therapy of this infection, the cure rate is low, with high rates of relapse after treatment and side effects. OBJECTIVES To present a new option for the treatment of onychomycosis, in search of a more effective and rapid method than conventional ones. METHODS Patients underwent two sessions of CO2 fractional laser 10.600nm associated with photodynamic therapy. Mycological and digital photography were performed before and after the treatment. RESULTS McNemar test with continuity correction and degrees of freedom = 1: for clinical cure rate, 13.06, with p=0.00005; for mycological cure, 17.05, with p=0.00005; 72% felt fully satisfied with the procedure. CONCLUSIONS The use of fractional CO2 laser 10.600nm associated with photodynamic therapy can be effective in the treatment of onychomycosis, decreasing the risk of systemic lesions that may be triggered with prolonged use of oral antifungals. PMID:26375214

  16. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  17. Catalytic Oxidation of CO for Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Schryer, D. R.; Hess, R. V.; Sidney, B. D.; Wood, G. M., Jr.; Paulin, P. A.; Upchurch, B. T.; Brown, K. G.

    1987-01-01

    Stoichiometric mixture converted completely. High-energy pulsed CO2 lasers have potential for measuring many different features of atmosphere of Earth and particularly useful on airborne or space platforms. For this application, laser must be operated in closed cycle to conserve gas, especially if rare nonradioactive isotopes of carbon and oxygen used. However, laser discharge decomposes fraction of CO2 to CO and O2, causing rapid loss in power leading to erratic behavior. To maintain operation, CO and O2 must be recombined to form CO2.

  18. Transepidermal drug delivery: a new treatment option for areata alopecia?

    PubMed

    Issa, Maria Claudia Almeida; Pires, Marianna; Silveira, Priscilla; Xavier de Brito, Esther; Sasajima, Cristiane

    2015-02-01

    Transepidermal drug delivery (TED) is a new potential method in dermatology. Permeability alterations induced by ablative fractional resurfacing have been described with the aim to increasing the delivery of different substances into the skin. To evaluate clinical response and side effects of TED in areata alopecia (AA) treatment using ablative fractional methods associated with acoustic pressure ultrasound (US) to deliver triamcinolone solution into the skin. Five cases of AA underwent treatment which comprised of 3 steps: 1) Ablative fractioned RF or CO2 laser 2) topical application of triamcinolone 3) acoustic pressure wave US. The number of sessions varied according to the clinical response, ranging from one to six sessions. All patients had complete recovery of the area treated. Two of them treated with ablative fractional RF + triamcinolone + US had complete response after three and six sessions. The other two treated with ablative fractional CO2 + triamcinolone + US had complete response after one session. Fractioned ablative resurfacing associated with acoustic pressure wave US is a new option to areata alopecia treatment with good clinical result and low incidence of side effects.

  19. Kinetics and tissue repair process following fractional bipolar radiofrequency treatment.

    PubMed

    Kokolakis, G; von Eichel, L; Ulrich, M; Lademann, J; Zuberbier, T; Hofmann, M A

    2018-05-15

    Fractionated radiofrequency (RF) tissue tightening is an alternative method to fractionated laser treatment of skin wrinkling, laxity and acne scars, with reduced risk of scarring or persistent pigmentation. The aim of this study was to evaluate and quantify the wound healing process after RF treatment. 12 patients were treated with a 64-pin fractional bipolar RF device with 60 mJ/pin applied energy. Confocal laser scanning microscopy (CLSM) examination was performed on day 1, day 2, day 7 and day 14 after treatment. Clinical wound healing process was measured and expressed as a percentage. All patients developed erythema, mild edema and crusts at the treated areas. Two weeks after treatment clinical symptoms resolved. During ablation patients reported moderate pain. Directly after ablation microscopic ablation zones could be detected in CLSM. Measurement of MAZ at epidermis, dermo-epidermal junction and papilary dermis showed a constant diameter until two weeks after treatment. Re-epithelization of the MAZ could be detected already 1 week after treatment. However, 2 weeks after ablation the honeycomb pattern of the epidermis was not yet completely restored. Bipolar fractionated RF treatment demonstrates clinically a rapid wound healing response. The subepidermal remodelling process still ongoing after 14 days, showing new granulation tissue. Therefore, treatment intervals of at least 14 days should be recommended to allow completion of the remodelling process.

  20. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds

    USGS Publications Warehouse

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe; Küsel, Kirsten

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricellaand Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.

  1. Large Fractions of CO2-Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds

    PubMed Central

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds. PMID:25616797

  2. Fractional carbon dioxide laser versus low-dose UVA-1 phototherapy for treatment of localized scleroderma: a clinical and immunohistochemical randomized controlled study.

    PubMed

    Shalaby, S M; Bosseila, M; Fawzy, M M; Abdel Halim, D M; Sayed, S S; Allam, R S H M

    2016-11-01

    Morphea is a rare fibrosing skin disorder that occurs as a result of abnormal homogenized collagen synthesis. Fractional ablative laser resurfacing has been used effectively in scar treatment via abnormal collagen degradation and induction of healthy collagen synthesis. Therefore, fractional ablative laser can provide an effective modality in treatment of morphea. The study aimed at evaluating the efficacy of fractional carbon dioxide laser as a new modality for the treatment of localized scleroderma and to compare its results with the well-established method of UVA-1 phototherapy. Seventeen patients with plaque and linear morphea were included in this parallel intra-individual comparative randomized controlled clinical trial. Each with two comparable morphea lesions that were randomly assigned to either 30 sessions of low-dose (30 J/cm 2 ) UVA-1 phototherapy (340-400 nm) or 3 sessions of fractional CO 2 laser (10,600 nm-power 25 W). The response to therapy was then evaluated clinically and histopathologically via validated scoring systems. Immunohistochemical analysis of TGF-ß1 and MMP1 was done. Patient satisfaction was also assessed. Wilcoxon signed rank test for paired (matched) samples and Spearman rank correlation equation were used as indicated. Comparing the two groups, there was an obvious improvement with fractional CO 2 laser that was superior to that of low-dose UVA-1 phototherapy. Statistically, there was a significant difference in the clinical scores (p = 0.001), collagen homogenization scores (p = 0.012), and patient satisfaction scores (p = 0.001). In conclusion, fractional carbon dioxide laser is a promising treatment modality for cases of localized morphea, with proved efficacy of this treatment on clinical and histopathological levels.

  3. The efficacy of fractional carbon dioxide (CO2) laser combined with terbinafine hydrochloride 1% cream for the treatment of onychomycosis.

    PubMed

    Shi, Jian; Li, Jin; Huang, He; Permatasari, Felicia; Liu, Juan; Xu, Yang; Wu, Di; Zhou, Bing-Rong; Luo, Dan

    2017-10-01

    Although systemic and topical antifungal agents are widely used to treat onychomycosis, oral medications can cause adverse effects and the efficacy of topical agents is not satisfying. Currently, laser treatment has been studied for its efficacy in the treatment of onychomycosis. Our study was aimed to evaluate the efficacy of fractional carbon dioxide (CO 2 ) laser treatment combined with terbinafine cream for 6 months in the treatment of onychomycosis and to analyze the influencing factors. A total of 30 participants (124 nails) with clinical and mycological diagnosis of onychomycosis received fractional CO 2 laser treatment at 2-week interval combined with terbinafine cream once daily for 6 months. The clinical efficacy rate (CER) was assessed from the percentage of fully normal-appearing nails or nails with ≤5% abnormal appearance, and the mycological clearance rate (MCR) was assessed from the percentage of nails with negative fungal microscopy. The CER was evaluated at 3 time points: at the end of treatment (58.9%), at 1 month after the last treatment (63.5%), and at 3 months after the last treatment (68.5%). The MCRs at 1 month and 3 months after the last treatment were 77.4 and 74.2%, respectively. The evaluation of influencing factors showed significantly higher CER (p < 0.05) in nails of participants with age <50 years, distal lateral subungual onychomycosis (DLSO), superficial white onychomycosis (SWO), nail thickness <2 mm, affected first-to-fourth finger/toenails, Trichophyton rubrum, and Trichophyton mentagrophytes. All participants experienced tolerable mild burning sensation during laser treatment, but there were no other adverse reactions reported. Fractional CO 2 laser treatment combined with terbinafine cream for 6 months was an effective and safe method for the treatment of onychomycosis. There were 5 factors that positively influenced the treatment outcome: age, clinical type of onychomycosis, nail thickness, involved nail, and species of

  4. Carbon Dioxide Laser Ablation of Basal Cell Carcinoma with Visual Guidance by Reflectance Confocal Microscopy: A Proof of Principle Pilot Study

    PubMed Central

    Hibler, B.P.; Sierra, H.; Cordova, M.; Phillips, W.; Rajadhyaksha, M.; Nehal, K.S.; Rossi, A.M.

    2016-01-01

    Background Laser ablation is an alternative, non-surgical treatment modality for low-risk basal cell carcinoma (BCC); however, lack of confirmative tumour destruction or residual tumour presence has been a limiting factor to adoption. Reflectance confocal microscopy (RCM) provides non-invasive, cellular-level resolution imaging of the skin and is capable of identifying tumour. Objective To evaluate the use of RCM to guide carbon dioxide (CO2) laser ablation of BCC, confirm destruction, and correlate findings with histology. Methods RCM was used pre-ablation to evaluate for features of BCC. Ablation was performed with a CO2 laser, and the response rapidly assessed using handheld RCM to evaluate for residual tumour. Confirmative pathology was used to verify confocal imaging. Results RCM imaging identified tumour pre-ablation with features not identified on normal, surrounding skin. Post-ablation, RCM documented complete removal of tumour in six cases and residual tumour in two. Histologic examination identified the ablated area and confirmed clearance of tumour in the six aforementioned cases and corroborated confocal findings for residual tumour in the other two cases. Conclusions We report successful treatment of superficial and nodular BCC using CO2 laser ablation augmented by RCM imaging for pre-ablation guidance and verification of tumour removal post-ablation. Akin to complete circumferential and deep margin control techniques, using RCM helps to map peripheral and deep BCC margins to hone in on areas exhibiting persistent tumour after ablation. CO2 laser ablation visually guided by RCM can help circumvent previously cited limiting factors of laser ablation for tumour destruction by providing cellular-level resolution imaging of tumour and margin assessment in between each laser pass and post-ablation. PMID:26800657

  5. Analysis of ablation debris from natural and artificial iron meteorites

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Davis, A. S.

    1977-01-01

    Artificial ablation studies were performed on iron and nickel-iron samples using an arc-heated plasma of ionized air. Experiment conditions simulated a meteoroid traveling about 12 km/sec at an altitude of 70 km. The artificially produced fusion crusts and ablation debris show features very similar to natural fusion crusts of the iron meteorites Boguslavka, Norfork, and N'Kandhla and to magnetic spherules recovered from Mn nodules. X-ray diffraction, electron microprobe, optical, and scanning electron microscope analyses reveal that important mineralogical, elemental, and textural changes occur during ablation. Some metal is melted and ablated. The outer margin of the melted rind is oxidized and recrystallizes as a discontinuous crust of magnetite and wustite. Adjacent to the oxidized metallic ablation zone is an unoxidized metallic ablation zone in which structures such as Widmannstatten bands are obliterated as the metal is transformed to unequilibrated alpha 2 nickel-iron. Volatile elements are vaporized and less volatile elements undergo fractionation.

  6. Bipolar radiofrequency ablation with 2 × 2 electrodes as a building block for matrix radiofrequency ablation: Ex vivo liver experiments and finite element method modelling.

    PubMed

    Mulier, Stefaan; Jiang, Yansheng; Jamart, Jacques; Wang, Chong; Feng, Yuanbo; Marchal, Guy; Michel, Luc; Ni, Yicheng

    2015-01-01

    Size and geometry of the ablation zone obtained by currently available radiofrequency (RF) electrodes is highly variable. Reliability might be improved by matrix radiofrequency ablation (MRFA), in which the whole tumour volume is contained within a cage of x × y parallel electrodes. The aim of this study was to optimise the smallest building block for matrix radiofrequency ablation: a recently developed bipolar 2 × 2 electrode system. In ex vivo bovine liver, the parameters of the experimental set-up were changed one by one. In a second step, a finite element method (FEM) modelling of the experiment was performed to better understand the experimental findings. The optimal power to obtain complete ablation in the shortest time was 50-60 W. Performing an ablation until impedance rise was superior to ablation for a fixed duration. Increasing electrode diameter improved completeness of ablation due to lower temperature along the electrodes. A chessboard pattern of electrode polarity was inferior to a row pattern due to an electric field void in between the electrodes. Variability of ablation size was limited. The FEM correctly simulated and explained the findings in ex vivo liver. These experiments and FEM modelling allowed a better insight in the factors influencing the ablation zone in a bipolar 2 × 2 electrode RF system. With optimal parameters, complete ablation was obtained quickly and with limited variability. This knowledge will be useful to build a larger system with x × y electrodes for MRFA.

  7. Evolution of the ablation region after magnetic resonance-guided high-intensity focused ultrasound ablation in a Vx2 tumor model.

    PubMed

    Wijlemans, Joost W; Deckers, Roel; van den Bosch, Maurice A A J; Seinstra, Beatrijs A; van Stralen, Marijn; van Diest, Paul J; Moonen, Chrit T W; Bartels, Lambertus W

    2013-06-01

    Volumetric magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) is a completely noninvasive image-guided thermal ablation technique. Recently, there has been growing interest in the use of MR-HIFU for noninvasive ablation of malignant tumors. Of particular interest for noninvasive ablation of malignant tumors is reliable treatment monitoring and evaluation of response. At this point, there is limited evidence on the evolution of the ablation region after MR-HIFU treatment. The purpose of the present study was to comprehensively characterize the evolution of the ablation region after volumetric MR-HIFU ablation in a Vx2 tumor model using MR imaging, MR temperature data, and histological data. Vx2 tumors in the hind limb muscle of New Zealand White rabbits (n = 30) were ablated using a clinical MR-HIFU system. Twenty-four animals were available for analyses. Magnetic resonance imaging was performed before and immediately after ablation; MR temperature mapping was performed during the ablation. The animals were distributed over 7 groups with different follow-up lengths. Depending on the group, animals were reimaged and then killed on day 0, 1, 3, 7, 14, 21, or 28 after ablation. For all time points, the size of nonperfused areas (NPAs) on contrast-enhanced T1-weighted (CE-T1-w) images was compared with lethal thermal dose areas (ie, the tissue area that received a thermal dose of 240 equivalent minutes or greater [EM] at 43°C) and with the necrotic tissue areas on histology sections. The NPA on CE-T1-w imaging showed an increase in median size from 266 ± 148 to 392 ± 178 mm(2) during the first day and to 343 ± 170 mm(2) on day 3, followed by a gradual decrease to 113 ± 103 mm(2) on day 28. Immediately after ablation, the NPA was 1.6 ± 1.4 times larger than the area that received a thermal dose of 240 EM or greater in all animals. The median size of the necrotic area on histology was 1.7 ± 0.4 times larger than the NPA immediately after

  8. Ablative fractional laser enhances MAL-induced PpIX accumulation: Impact of laser channel density, incubation time and drug concentration.

    PubMed

    Haak, C S; Christiansen, K; Erlendsson, A M; Taudorf, E H; Thaysen-Petersen, D; Wulf, H C; Haedersdal, M

    2016-06-01

    Pretreatment of skin with ablative fractional laser enhances accumulation of topical provided photosensitizer, but essential information is lacking on the interaction between laser channel densities and pharmacokinetics. Hence our objectives were to investigate how protoporphyrin accumulation was affected by laser densities, incubation time and drug concentration. We conducted the study on the back of healthy male volunteers (n=11). Test areas were pretreated with 2940nm ablative fractional Er:YAG laser, 11.2mJ per laser channel using densities of 1, 2, 5, 10 and 15% (AFL 1-15%). Control areas received pretreatment with curettage or no pretreatment. Methyl aminolevulinate (MAL) was applied under occlusion in concentrations of 0, 80 and 160mg/g. MAL-induced protoporphyrin fluorescence was quantified with a handheld photometer after 0, 30, 60, 120 and 180min incubation. The individual fluorescence intensity reached from the highest density (15%) and longest MAL 160mg/g incubation time (180min) was selected as reference (100%) for other interventional measurements. A low laser density of 1% markedly enhanced fluorescence intensities from 34% to 75% (no pretreatment vs. AFL 1%, MAL 160mg/g, 180min; p<0.001). Furthermore, fluorescence intensities increased substantially by enhancing densities up to 5% (p≤0.0195). Accumulation of protoporphyrins was accelerated by laser exposure. Thus, laser exposure of 5% density and a median incubation time of 80min MAL (range 46-133min) induced fluorescence levels similar to curettage and 180min incubation. Furthermore, MAL 80 and 160mg/g induced similar fluorescence intensities in skin exposed to laser densities of 1, 2 and 5% (p>0.0537, 30-180min). MAL-induced protoporphyrin accumulation is augmented by enhancing AFL densities up to 5%. Further, this model indicates that incubation time as well as drug concentration of MAL may be reduced with laser pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Feasibility and potential utility of multicomponent exhaled breath analysis for predicting development of radiation pneumonitis after stereotactic ablative radiotherapy.

    PubMed

    Moré, Jayaji M; Eclov, Neville C W; Chung, Melody P; Wynne, Jacob F; Shorter, Joanne H; Nelson, David D; Hanlon, Alexandra L; Burmeister, Robert; Banos, Peter; Maxim, Peter G; Loo, Billy W; Diehn, Maximilian

    2014-07-01

    In this prospective pilot study, we evaluated the feasibility and potential utility of measuring multiple exhaled gases as biomarkers of radiation pneumonitis (RP) in patients receiving stereotactic ablative radiotherapy (SABR) for lung tumors. Breath analysis was performed for 26 patients receiving SABR for lung tumors. Concentrations of exhaled nitric oxide (eNO), carbon monoxide (eCO), nitrous oxide (eN2O), and carbon dioxide (eCO2) were measured before and immediately after each fraction using real-time, infrared laser spectroscopy. RP development (CTCAE grade ≥2) was correlated with baseline gas concentrations, acute changes in gas concentrations after each SABR fraction, and dosimetric parameters. Exhaled breath analysis was successfully completed in 77% of patients. Five of 20 evaluable patients developed RP at a mean of 5.4 months after SABR. Acute changes in eNO and eCO concentrations, defined as percent changes between each pre-fraction and post-fraction measurement, were significantly smaller in RP versus non-RP cases (p = 0.022 and 0.015, respectively). In an exploratory analysis, a combined predictor of baseline eNO greater than 24 parts per billion and acute decrease in eCO less than 5.5% strongly correlated with RP incidence (p =0.0099). Neither eN2O nor eCO2 concentrations were significantly associated with RP development. Although generally higher in patients destined to develop RP, dosimetric parameters were not significantly associated with RP development. The majority of SABR patients in this pilot study were able to complete exhaled breath analysis. Baseline concentrations and acute changes in concentrations of exhaled breath components were associated with RP development after SABR. If our findings are validated, exhaled breath analysis may become a useful approach for noninvasive identification of patients at highest risk for developing RP after SABR.

  10. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    NASA Astrophysics Data System (ADS)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  11. Approaches to catheter ablation for persistent atrial fibrillation.

    PubMed

    Verma, Atul; Jiang, Chen-yang; Betts, Timothy R; Chen, Jian; Deisenhofer, Isabel; Mantovan, Roberto; Macle, Laurent; Morillo, Carlos A; Haverkamp, Wilhelm; Weerasooriya, Rukshen; Albenque, Jean-Paul; Nardi, Stefano; Menardi, Endrj; Novak, Paul; Sanders, Prashanthan

    2015-05-07

    Catheter ablation is less successful for persistent atrial fibrillation than for paroxysmal atrial fibrillation. Guidelines suggest that adjuvant substrate modification in addition to pulmonary-vein isolation is required in persistent atrial fibrillation. We randomly assigned 589 patients with persistent atrial fibrillation in a 1:4:4 ratio to ablation with pulmonary-vein isolation alone (67 patients), pulmonary-vein isolation plus ablation of electrograms showing complex fractionated activity (263 patients), or pulmonary-vein isolation plus additional linear ablation across the left atrial roof and mitral valve isthmus (259 patients). The duration of follow-up was 18 months. The primary end point was freedom from any documented recurrence of atrial fibrillation lasting longer than 30 seconds after a single ablation procedure. Procedure time was significantly shorter for pulmonary-vein isolation alone than for the other two procedures (P<0.001). After 18 months, 59% of patients assigned to pulmonary-vein isolation alone were free from recurrent atrial fibrillation, as compared with 49% of patients assigned to pulmonary-vein isolation plus complex electrogram ablation and 46% of patients assigned to pulmonary-vein isolation plus linear ablation (P=0.15). There were also no significant differences among the three groups for the secondary end points, including freedom from atrial fibrillation after two ablation procedures and freedom from any atrial arrhythmia. Complications included tamponade (three patients), stroke or transient ischemic attack (three patients), and atrioesophageal fistula (one patient). Among patients with persistent atrial fibrillation, we found no reduction in the rate of recurrent atrial fibrillation when either linear ablation or ablation of complex fractionated electrograms was performed in addition to pulmonary-vein isolation. (Funded by St. Jude Medical; ClinicalTrials.gov number, NCT01203748.).

  12. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    PubMed

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-12-01

    The present study was designed to evaluate the effect of combining fractional CO 2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO 2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO 2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO 2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  13. Selective ablation of carious lesions using an integrated near-IR imaging system and a novel 9.3-μm CO2 Laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Nathaniel M.; Fried, Daniel

    2018-02-01

    Previous studies have shown that reflectance imaging at wavelengths greater than 1200-nm can be used to image demineralization on tooth occlusal surfaces with high contrast and without the interference of stains. In addition, these near-IR imaging systems can be integrated with laser ablation systems for the selective removal of carious lesions. Higher wavelengths, such as 1950-nm, yield higher lesion contrast due to higher water absorption and lower scattering. In this study, a point-to-point scanning system employing diode and fiber lasers operating at 1450, 1860, 1880, and 1950-nm was used to acquire reflected light images of the tooth surface. Artificial lesions were imaged at these wavelengths to determine the highest lesion contrast. Near-IR images at 1880-nm were used to demarcate lesion areas for subsequent selective carious lesion removal using a new compact air-cooled CO2 laser prototype operating at 9.3-μm. The highest lesion contrast was at 1950-nm and the dual NIR/CO2 laser system selectively removed the simulated lesions with a mean loss of only 12-μm of sound enamel.

  14. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial.

    PubMed

    Faghihi, Gita; Keyvan, Shima; Asilian, Ali; Nouraei, Saeid; Behfar, Shadi; Nilforoushzadeh, Mohamad Ali

    2016-01-01

    Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15) or 4 months after the second (P = 0.23). In addition, adverse effects (erythema and edema) on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects and also resulted in more severe side effects and longer downtime.

  15. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  16. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  17. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.

    PubMed

    Griepentrog, Marco; Eglinton, Timothy I; Hagedorn, Frank; Schmidt, Michael W I; Wiesenberg, Guido L B

    2015-01-01

    Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant- and microbial-derived OM in soil density fractions. We analyzed above- and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short-chain FAs (C16+18) were affected. Fractions of 'new' (experimental-derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. 'New' FAs were higher in short-chain compared to long-chain FAs (C20-30), indicating a faster turnover of short-chain compared to long-chain FAs. Increased N deposition did not significantly affect the quantity of 'new' FAs in soil fractions, but showed a tendency of increased amounts of 'old' (pre-experimental) C suggesting that decomposition of 'old' C is retarded by high N inputs. © 2014 John Wiley & Sons Ltd.

  18. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    PubMed

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  19. Abundances of isotopologues and calibration of CO2 greenhouse gas measurements

    NASA Astrophysics Data System (ADS)

    Tans, Pieter P.; Crotwell, Andrew M.; Thoning, Kirk W.

    2017-07-01

    We have developed a method to calculate the fractional distribution of CO2 across all of its component isotopologues based on measured δ13C and δ18O values. The fractional distribution can be used with known total CO2 to calculate the amount of substance fraction (mole fraction) of each component isotopologue in air individually. The technique is applicable to any molecule where isotopologue-specific values are desired. We used it with a new CO2 calibration system to account for isotopic differences among the primary CO2 standards that define the WMO X2007 CO2-in-air calibration scale and between the primary standards and standards in subsequent levels of the calibration hierarchy. The new calibration system uses multiple laser spectroscopic techniques to measure mole fractions of the three major CO2 isotopologues (16O12C16O, 16O13C16O, and 16O12C18O) individually. The three measured values are then combined into total CO2 (accounting for the rare unmeasured isotopologues), δ13C, and δ18O values. The new calibration system significantly improves our ability to transfer the WMO CO2 calibration scale with low uncertainty through our role as the World Meteorological Organization Global Atmosphere Watch Central Calibration Laboratory for CO2. Our current estimates for reproducibility of the new calibration system are ±0.01 µmol mol-1 CO2, ±0.2 ‰ δ13C, and ±0.2 ‰ δ18O, all at 68 % confidence interval (CI).

  20. Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression.

    PubMed

    Waibel, Jill S; Mi, Qing-Sheng; Ozog, David; Qu, Le; Zhou, Li; Rudnick, Ashley; Al-Niaimi, Firas; Woodward, Julie; Campos, Valerie; Mordon, Serge

    2016-03-01

    Laser-assisted drug delivery is an emerging technology to achieve greater penetration by existing topical medications to reach desired targets in the tissue. The objective of this research was to study whether laser-assisted delivery of Vitamin C, E, and Ferulic immediately postoperatively of fractional ablative laser could improve wound healing. Secondary objectives were to evaluate the potential molecular markers involved in this wound-healing process. A double blinded, prospective, single center, randomized split face trial of Vitamin C, E, and Ferulic topical formula #740019 to decrease postoperative recovery time in fractional ablative laser resurfacing for photo damage. Fifteen healthy men and women of ages 30-55 years were treated with the Vitamin C, E, and Ferulic acid serum to one side of face and vehicle to the other side of face, within 2 minutes immediately after fractional ablative CO2 laser surgery and daily during the healing process. Patients were evaluated daily on days 1-7 using photographs, patient questionnaires, and molecular evaluation. Clinically, postoperative Vitamin C, E, and Ferulic delivery resulted in decreased edema versus vehicle on postoperative day 7 and decreased erythema versus vehicle on postoperative days 3 and 5. Molecularly, the expression of basic fibroblast growth factor (bFGF) was significantly increased at day 5 on the lesion treated with Vitamin C, E, and Ferulic acid serum compared to vehicle control on the other side. This is first study to show that Vitamin C, E, and Ferulic acid correlate with more rapid wound healing post-fractional ablative laser. Elevated bFGF could be involved in the Vitamin C, E, and Ferulic acid-induced rapid wound healing. © 2015 Wiley Periodicals, Inc.

  1. Properties of Laser Ablation Products of Delrin with CO2 Laser

    DTIC Science & Technology

    2004-07-01

    was then measured with the fast detector. Optical observation in air shows that a jet of luminous gas exits the hole to the rear side of the 16 probe...g) Ab la te Pressure (mbar) Diagramm 12 Ablated mass per pulse at a pulse energy of 280 J vs. pressure 34 independent of the metal...m itt ed P ul se (µ s) Incident Laser Pulse Energy (J) Diagramm 32 Pulse duration shortening effect with incident pulse energy in tr

  2. Near-infrared image-guided laser ablation of artificial caries lesions.

    PubMed

    Tao, You-Chen; Fan, Kenneth; Fried, Daniel

    2007-01-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO(2) laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm(2) bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO(2) laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.

  3. Near-infrared image-guided laser ablation of artificial caries lesions

    PubMed Central

    Tao, You-Chen; Fan, Kenneth; Fried, Daniel

    2012-01-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two–dimensional NIR images of demineralized tooth surfaces can be used to guide CO2 laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO2 laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:22866210

  4. The efficacy of fractional carbon dioxide (CO2) laser combined with luliconazole 1% cream for the treatment of onychomycosis: A randomized, controlled trial.

    PubMed

    Zhou, Bing Rong; Lu, Yan; Permatasari, Felicia; Huang, He; Li, Jin; Liu, Juan; Zhang, Jia An; Luo, Dan; Xu, Yang

    2016-11-01

    To evaluate the efficacy of fractional carbon dioxide (CO2) laser combined with luliconazole 1% cream for the treatment of onychomycosis and to compare it with that of fractional CO2 laser alone. This was a randomized, parallel group, 2-arm, positive-controlled, single-center, superiority trial with a 1:2 allocation ratio. Sixty patients with clinical and mycological diagnosis of onychomycosis were enrolled from the Dermatology Department of the First Affiliated Hospital of Nanjing Medical University in Nanjing, China from March 2015 to May 2015. Patients were randomized following simple randomization procedures (computerized random number generator) into 2 groups; L group only received 12 sessions of laser treatment at 2-week interval for 6 months, while L + D group received 12 sessions of laser treatment at 2-week interval combined with luliconazole 1% cream once daily for 6 months. This was not a blind trial. The main outcome measures were the clinical efficacy rate (CER) assessed from the percentage of fully and >60% normal-appearing nails and the mycological clearance rate (MCR) assessed from the percentage of nails with negative fungal microscopy. There were no changes to trial outcome measures after the trial commenced. A total of 60 patients (N = 233 nails) completed treatments and follow-up, and were randomized and divided into 2 groups: L group (31 patients, N = 108 nails) and L + D group (29 patients, N = 115 nails). The CER and MCR of L + D group were 69.6% and 57.4%, respectively. L + D group showed significantly higher CER (69.6% vs 50.9%; χ = 8.1, P = 0.004) and MCR (57.4% vs 38.9%; χ = 7.6, P = 0.006) compared with those in L group. Some patients experienced mild pain during laser treatment, but there was no bleeding or oozing during or after treatment. There were no adverse effects reported during the observation period. Fractional CO2 laser treatment combined with 1% luliconazole cream for 6 months was

  5. In-vitro ablation of fibrocartilage by XeCl excimer laser

    NASA Astrophysics Data System (ADS)

    Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.

    1991-07-01

    A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.

  6. Early Efficacy Analysis of Biatrial Ablation versus Left and Simplified Right Atrial Ablation for Atrial Fibrillation Treatment in Patients with Rheumatic Heart Disease.

    PubMed

    Liu, Hong; Chen, Lin; Xiao, Yingbin; Ma, Ruiyan; Hao, Jia; Chen, Baicheng; Qin, Chuan; Cheng, Wei

    2015-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia. About 60% of patients with rheumatic heart disease have persistent AF. A total of 197 patients underwent valve replacement concomitant bipolar radiofrequency ablation (BRFA). Patients were divided into the biatrial ablation group and the simplified right atrial ablation group. In biatrial ablation group, the patients underwent a complete left and right atrial ablation. In simplified right atrial ablation group, the patients underwent a complete left atrial ablation and a simplified right atrial ablation. The conversion of sinus rhythm (SR) was high in both groups during the follow-up period. In the simplified right atrial ablation group, SR conversion rate was 88.29% at discharge. At six months and 12 months after surgery, 87.39% of patients and 86.49% of patients were in SR free of antiarrhythmic drugs, respectively. While in the biatrial ablation group, SA conversion rate was 89.53% at discharge. Percentage of patients in SR free of antiarrhythmic drugs was 88.37% and 88.37% at six months and 12 months after surgery, respectively. Echocardiography showed left atrial diameter decreased significantly after the surgery in the two groups. The ejection fraction and fractional shortening were improved significantly, without significant differences between the two groups. The results suggest that the concomitant left atrial and simplified right atrial BRFA for AF in patients undergoing valve replacement can achieve similar early efficiency as biatrial ablation. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. The comparison of the rejuvenation effects on the skin of Wistar rats between 10600 nm CO2 fractional laser and retinoic acid.

    PubMed

    Qu, Y; Ma, W-Y; Sun, Q

    2017-04-01

    The fractional laser and topical retinoic acid treatment have been applied for skin rejuvenation; however, the possible molecular mechanism of promoting remodeling of dermis is not clearly. Here we aimed to compare the effects of 10600 nm CO2 fractional laser and topical retinoic acid formulation on the skin collagen proliferation of Wistar rats, and to further explore the possible molecular mechanism of promoting remodeling of dermis. The hair on the back of Wistar rats was removed, and the back was divided equally into four regions with the cross-streaking method: A (the control group), B (the retinoic acid group), C (retinoic acid and fractional laser combination treatment group), and D (the fractional laser group). Specimens were collected at 3rd day and in 1-8 weeks after CO2 fractional laser irradiation; then they were used for detection of the changes of dermis thickness and content of hydroxyproline in the four regions of the rats' back. Real-time PCR method was used to detect the dynamic changes of the expression level of type III procollagen mRNA and the expression levels of miR-29a, Akt and transforming growth factor-β (TGF-β) mRNA at 3rd week in the skin tissue of Wistar rats. The thickness of dermis, content of hydroxyproline and expression level of type III procollagen mRNA in the treatment groups (B, C, and D) were found all significantly increased compared with those in the control group (A) (p<0.05); at 3rd week, up-regulation of Akt and TGF-β mRNA expression and down-regulation of miR-29a mRNA expression were observed in the treatment groups (B, C, and D). The difference in the combination treatment group (C) was the most significant (p<0.05). These results demonstrate that retinoic acid formulation and CO2 fractional laser both can promote collagen proliferation and reconstruction, with the skin rejuvenation efficacy in group C > group D > group B. miR-29a/Akt/TGF-β signal pathways may play a certain role in the promotion of collagen

  8. 2D shear-wave ultrasound elastography (SWE) evaluation of ablation zone following radiofrequency ablation of liver lesions: is it more accurate?

    PubMed Central

    Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H

    2016-01-01

    Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p < 0.001, and 0.856, p = 0.002, respectively) with those by gross pathological specimen, whereas both conventional ultrasound and SE underestimated the volume of the whole ablation zone. The SWV values of the central necrotic zone, lateral necrotic zone, transitional zone and unablated liver parenchyma were 7.54–8.03 m s−1, 5.13–5.28 m s−1, 3.31–3.53 m s−1 and 2.11–2.21 m s−1, respectively (p < 0.001 for all the comparisons). The SWV value for each ablation zone did not change significantly at different observation times within an hour after RFA

  9. Ignition and Combustion of Pulverized Coal and Biomass under Different Oxy-fuel O2/N2 and O2/CO2 Environments

    NASA Astrophysics Data System (ADS)

    Khatami Firoozabadi, Seyed Reza

    This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi

  10. Rejuvenation of the male scalp using 1,927 nm non-ablative fractional thulium fiber laser.

    PubMed

    Boen, Monica; Wilson, Monique J Vanaman; Goldman, Mitchel P; Wu, Douglas C

    2017-07-01

    The male scalp undergoes extensive photodamage due to a high prevalence of androgenic alopecia and exposure to ultraviolet radiation. This photodamage presents as solar lentigines, fine rhytides, and keratosis, and can prematurely age a patient. In this study, we demonstrate the safety and efficacy of the fractionated 1,927 nm thulium fiber laser using high density and high energy settings to achieve rejuvenation of the male scalp after a single treatment session. Four male patients with Fitzpatrick skin types II-III and extensive photodamage on the scalp underwent one treatment with the fractional non-ablative 1,927 nm thulium fiber laser. The patients had a 60-90% improvement in dyspigmentation, lentigines, and keratosis. No adverse events were observed and the patients tolerated the procedure well. This case series is the first report in the literature demonstrating the successful rejuvenation of the scalp using the 1,927 nm thulium fiber laser. Lasers Surg. Med. 49:475-479, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Flexible CO2 laser and submucosal gel injection for safe endoluminal resection in the intestines.

    PubMed

    Au, Joyce T; Mittra, Arjun; Wong, Joyce; Carpenter, Susanne; Carson, Joshua; Haddad, Dana; Monette, Sebastien; Ezell, Paula; Patel, Snehal; Fong, Yuman

    2012-01-01

    The CO(2) laser's unique wavelength of 10.6 μm has the advantage of being readily absorbed by water but historically limited it to line-of-sight procedures. Through recent technological advances, a flexible CO(2) laser fiber has been developed and holds promise for endoluminal surgery. We examined whether this laser, along with injection of a water-based gel in the submucosal space, will allow safe dissection of the intestines and enhance the potential of this tool for minimally invasive surgery. Using an ex vivo model with porcine intestines, spot ablation was performed with the flexible CO(2) laser at different power settings until transmural perforation. Additionally, excisions of mucosal patches were performed by submucosal dissection with and without submucosal injection of a water-based gel. With spot ablation at 5 W, none of the specimens was perforated by 5 min, which was the maximum recorded time. The time to perforation was significantly shorter with increased laser power, and gel pretreatment protected the intestines against spot ablation, increasing the time to perforation from 6 to 37 s at 10 W and from 1 to 7 s at 15 W. During excision of mucosal patches, 56 and 83% of untreated intestines perforated at 5 and 10 W, respectively. Gel pretreatment prior to excision protected all intestines against perforation. These specimens were verified to be intact by inflation with air to over 100 mmHg. Furthermore, excision of the mucosal patch was complete in gel-pretreated specimens, whereas 22% of untreated specimens had residual islands of mucosa after excision. The flexible CO(2) laser holds promise as a precise dissection and cutting tool for endoluminal surgery of the intestines. Pretreatment with a submucosal injection of a water-based gel protects the intestines from perforation during ablation and mucosal dissection.

  12. Flexible CO2 laser and submucosal gel injection for safe endoluminal resection in the intestines

    PubMed Central

    Au, Joyce T.; Mittra, Arjun; Wong, Joyce; Carpenter, Susanne; Carson, Joshua; Haddad, Dana; Monette, Sebastien; Ezell, Paula; Patel, Snehal

    2012-01-01

    Background The CO2 laser’s unique wavelength of 10.6 µm has the advantage of being readily absorbed by water but historically limited it to line-of-sight procedures. Through recent technological advances, a flexible CO2 laser fiber has been developed and holds promise for endoluminal surgery. We examined whether this laser, along with injection of a water-based gel in the submucosal space, will allow safe dissection of the intestines and enhance the potential of this tool for minimally invasive surgery. Methods Using an ex vivo model with porcine intestines, spot ablation was performed with the flexible CO2 laser at different power settings until transmural perforation. Additionally, excisions of mucosal patches were performed by submucosal dissection with and without submucosal injection of a water-based gel. Results With spot ablation at 5 W, none of the specimens was perforated by 5 min, which was the maximum recorded time. The time to perforation was significantly shorter with increased laser power, and gel pretreatment protected the intestines against spot ablation, increasing the time to perforation from 6 to 37 s at 10 W and from 1 to 7 s at 15 W. During excision of mucosal patches, 56 and 83% of untreated intestines perforated at 5 and 10 W, respectively. Gel pretreatment prior to excision protected all intestines against perforation. These specimens were verified to be intact by inflation with air to over 100 mmHg. Furthermore, excision of the mucosal patch was complete in gel-pretreated specimens, whereas 22% of untreated specimens had residual islands of mucosa after excision. Conclusion The flexible CO2 laser holds promise as a precise dissection and cutting tool for endoluminal surgery of the intestines. Pretreatment with a submucosal injection of a water-based gel protects the intestines from perforation during ablation and mucosal dissection. PMID:21898027

  13. Influence of peak power in ablation rate of dental hard tissues: mathematical model

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.

    1996-12-01

    Pulsed Er:YAG and CO2 lasers should be suitable instruments for dentin and enamel ablation because both tissues have absorption peaks for radiation at 2.9 and 9.6 micrometers wavelengths. This is the context of our research that emphasizes the way in which the diameter and the depth of the crater made in enamel and dentin with the laser Er:YAG and CO2 is influenced in quantity and quality. Freshly extracted human third molar were used for this experiment. The laser source is Er:YAG Kavo Key dental model 1240 and CO2 Laser Sonics LS 860. The dimensions of the obtained craters were measured using the optical microscopy method. The obtained results were modelled experimentally with programs: GRAPHER and STATGRAPHICS. After the mathematical processing to the results what we obtain is relevant regarding the influence of the key parameters in the efficiency of the ablation according to the type of laser. On the whole, from our research results that both lasers ablate efficiently the dentin when the laser energy is between 200 and 300 mJ.

  14. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Bose, A.; Yan, R.; Betti, R.; Lafon, M.; Mangino, D.; Christopherson, A. R.; Stoeckl, C.; Seka, W.; Shang, W.; Michel, D. T.; Ren, C.; Nora, R. C.; Casner, A.; Peebles, J.; Beg, F. N.; Ribeyre, X.; Llor Aisa, E.; Colaïtis, A.; Tikhonchuk, V.; Wei, M. S.

    2017-12-01

    Experiments were performed with CH, Be, C, and SiO2 ablators interacting with high-intensity UV laser radiation (5 × 1015 W/cm2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ˜13% instantaneous conversion efficiency), while the amount is a factor of ˜2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. The higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presence of light H ions.

  15. Microscopically proven cure of actinic cheilitis by CO/sub 2/ laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, D.C.

    1987-01-01

    Actinic cheilitis is a premalignant condition of the lip frequently seen in individuals with chronic sun exposure. Various surgical and ablative therapies have been employed, but microscopic outcome has not been well documented. In this study CO/sub 2/ laser ablation was performed on 16 patients with actinic cheilitis that involved 50% or greater of the lower lip. Pre- and post-treatment biopsies were performed to assess results of therapy. After treatment all 16 patients showed microscopic clearing of atypical cells and disorderly maturation characteristic of actinic cheilitis. One patient had clinical recurrence at 14 months, which was retreated with laser.

  16. Uranium isotope fractionation induced by aqueous speciation: Implications for U isotopes in marine CaCO3 as a paleoredox proxy

    NASA Astrophysics Data System (ADS)

    Chen, Xinming; Romaniello, Stephen J.; Anbar, Ariel D.

    2017-10-01

    Natural variations of 238U/235U in marine CaCO3 rocks are being explored as a novel paleoredox proxy to investigate oceanic anoxia events. Although it is generally assumed that U isotopes in CaCO3 directly record 238U/235U of seawater, recently published laboratory experiments demonstrate slight U isotope fractionation during U(VI) incorporation into abiotic calcium carbonates. This fractionation is hypothesized to depend on aqueous U(VI) speciation, which is controlled by pH, ionic strength, pCO2 and Mg2+ and Ca2+ concentrations. Secular variation in seawater chemistry could lead to changes in aqueous U(VI) speciation, and thus, may affect the extent of U isotope fractionation during U(VI) incorporation into CaCO3. In this study, we combine estimates of seawater composition over the Phanerozoic with a model of aqueous U speciation and isotope fractionation to explore variations in the expected offset between the U isotope composition of seawater and primary marine CaCO3 through time. We find that U isotope fractionation between U in primary marine CaCO3 and seawater could have varied between 0.11 and 0.23‰ over the Phanerozoic due to secular variations in seawater chemistry. Such variations would significantly impact estimates of the extent of marine anoxia derived from the U isotope record. For example, at the Permo-Triassic boundary, this effect might imply that the estimated extent of anoxia is ∼32% more extreme than previously inferred. One significant limitation of our model is that the existing experimental database covers only abiotic carbonate precipitation, and does not include a possible range of biological effects which might enhance or suppress the range of isotopic fractionation calculated here. As biotic carbonates dominate the marine carbonate record, more work is need to assess controls on U isotopic fractionation into biotic marine carbonates.

  17. Update of Ablative Fractionated Lasers to Enhance Cutaneous Topical Drug Delivery.

    PubMed

    Waibel, Jill S; Rudnick, Ashley; Shagalov, Deborah R; Nicolazzo, Danielle M

    2017-08-01

    Ablative fractional lasers (AFXL) enhance uptake of therapeutics and this newly emerging field is called laser-assisted drug delivery (LAD). This new science has emerged over the past decade and is finding its way into clinical practice. LAD is poised to change how medicine delivers drugs. Topical and systemic application of pharmaceutical agents for therapeutic effect is an integral part of medicine. With topical therapy, the stratum corneum barrier of the skin impairs the ability of drugs to enter the body. The purpose of LAD is to alter the stratum corneum, epidermis, and dermis to facilitate increased penetration of a drug, device, or cell to its respected target. AFXL represents an innovative, non-invasive strategy to overcome the epidermal barrier. LAD employs three steps: (1) breakdown of the skin barrier with a laser, (2) optional use a laser for a therapeutic effect, (3) delivery of the medicine through laser channels to further enhance the therapeutic effect. The advantages of using lasers for drug delivery include the ease of accessibility, the non-invasive aspect, and its effectiveness. By changing the laser settings, one may use LAD to have a drug remain locally within the skin or to have systemic delivery. Many drugs are not intended for use in the dermis and so it has yet to be determined which drugs are appropriate for this technique. It appears this developing technology has the ability to be a new delivery system for both localized and systemic delivery of drugs, cells, and other molecules. With responsible development AFXL-assisted drug delivery may become a new important part of medicine.

  18. Impact of stepwise ablation on the biatrial substrate in patients with persistent atrial fibrillation and heart failure.

    PubMed

    Jones, David G; Haldar, Shouvik K; Jarman, Julian W E; Johar, Sofian; Hussain, Wajid; Markides, Vias; Wong, Tom

    2013-08-01

    Ablation of persistent atrial fibrillation can be challenging, often involving not only pulmonary vein isolation (PVI) but also additional linear lesions and ablation of complex fractionated electrograms (CFE). We examined the impact of stepwise ablation on a human model of advanced atrial substrate of persistent atrial fibrillation in heart failure. In 30 patients with persistent atrial fibrillation and left ventricular ejection fraction ≤35%, high-density CFE maps were recorded biatrially at baseline, in the left atrium (LA) after PVI and linear lesions (roof and mitral isthmus), and biatrially after LA CFE ablation. Surface area of CFE (mean cycle length ≤120 ms) remote to PVI and linear lesions, defined as CFE area, was reduced after PVI (18.3±12.03 to 10.2±7.1 cm(2); P<0.001) and again after linear lesions (7.7±6.5 cm(2); P=0.006). Complete mitral isthmus block predicted greater CFE reduction (P=0.02). Right atrial CFE area was reduced by LA ablation, from 25.9±14.1 to 12.9±11.8 cm(2) (P<0.001). Estimated 1-year arrhythmia-free survival was 72% after a single procedure. Incomplete linear lesion block was an independent predictor of arrhythmia recurrence (hazard ratio, 4.69; 95% confidence interval, 1.05-21.06; P=0.04). Remote LA CFE area was progressively reduced following PVI and linear lesions, and LA ablation reduced right atrial CFE area. Reduction of CFE area at sites remote from ablation would suggest either regression of the advanced atrial substrate or that these CFE were functional phenomena. Nevertheless, in an advanced atrial fibrillation substrate, linear lesions after PVI diminished the target area for CFE ablation, and complete lesions resulted in a favorable clinical outcome.

  19. Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.

    PubMed

    Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Trabelzini, Franco; Grolman, Wilko

    2014-06-01

    High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.

  20. Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation.

    PubMed

    Arrivault, Stéphanie; Obata, Toshihiro; Szecówka, Marek; Mengin, Virginie; Guenther, Manuela; Hoehne, Melanie; Fernie, Alisdair R; Stitt, Mark

    2017-01-01

    Worldwide efforts to engineer C 4 photosynthesis into C 3 crops require a deep understanding of how this complex pathway operates. CO 2 is incorporated into four-carbon metabolites in the mesophyll, which move to the bundle sheath where they are decarboxylated to concentrate CO 2 around RuBisCO. We performed dynamic 13 CO 2 labeling in maize to analyze C flow in C 4 photosynthesis. The overall labeling kinetics reflected the topology of C 4 photosynthesis. Analyses of cell-specific labeling patterns after fractionation to enrich bundle sheath and mesophyll cells revealed concentration gradients to drive intercellular diffusion of malate, but not pyruvate, in the major CO 2 -concentrating shuttle. They also revealed intercellular concentration gradients of aspartate, alanine, and phosphenolpyruvate to drive a second phosphoenolpyruvate carboxykinase (PEPCK)-type shuttle, which carries 10-14% of the carbon into the bundle sheath. Gradients also exist to drive intercellular exchange of 3-phosphoglycerate and triose-phosphate. There is rapid carbon exchange between the Calvin-Benson cycle and the CO 2 -concentrating shuttle, equivalent to ~10% of carbon gain. In contrast, very little C leaks from the large pools of metabolites in the C concentration shuttle into respiratory metabolism. We postulate that the presence of multiple shuttles, alongside carbon transfer between them and the Calvin-Benson cycle, confers great flexibility in C 4 photosynthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  2. Phasic changes in bone CO2 fractions, calcium, and phosphorus during chronic hypercapnia.

    PubMed

    Schaefer, K E; Pasquale, S; Messier, A A; Shea, M

    1980-05-01

    The bone CO2 buffering system and bone calcium and phosphorus were studied in guinea pigs exposed to 1% CO2 for periods up to 8 wk and killed at weekly intervals together with control animals of the same age. Measurements were made of arterial CO2 tension, pH, standard bicarbonate, and bone Ca and P. Heat-stabile bone CO2 (carbonate) was determined as dry bone CO2 and heat-labile bone CO2 (bicarbonate) as delta wet-dry bone CO2. During the first 3-4 wk of exposure to 1% CO2, a systemic acidosis was found as indicated in a lowered pH, increased arterial CO2 tension, and decreased standard bicarbonate. The acidosis subsided during the last 4 wk of exposure. Phasic changes in bone bicarbonate were observed as shown in immediate rise lasting for 2 wk followed by a 2-wk decline and second rise after 6 and 8 wk. Bone carbonate exhibited the opposite change during the first 4 wk and thereafter remained stable at an elevated level. Bone Ca and P fell in association with increasing bone bicarbonate and rose with increasing bone carbonate.

  3. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species

    PubMed Central

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L.

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes. PMID:27010947

  4. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    DOE PAGES

    Theobald, W.; Bose, A.; Yan, R.; ...

    2017-12-08

    Experiments were performed with CH, Be, C, and SiO 2 ablators interacting with high-intensity UV laser radiation (5 × 10 15 W/cm 2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ~13% instantaneous conversion efficiency), while the amount is a factor of ~2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. As a result, the higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presencemore » of light H ions.« less

  5. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theobald, W.; Bose, A.; Yan, R.

    Experiments were performed with CH, Be, C, and SiO 2 ablators interacting with high-intensity UV laser radiation (5 × 10 15 W/cm 2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ~13% instantaneous conversion efficiency), while the amount is a factor of ~2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. As a result, the higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presencemore » of light H ions.« less

  6. Carbon dioxide laser ablation of basal cell carcinoma with visual guidance by reflectance confocal microscopy: a proof-of-principle pilot study.

    PubMed

    Hibler, B P; Sierra, H; Cordova, M; Phillips, W; Rajadhyaksha, M; Nehal, K S; Rossi, A M

    2016-06-01

    Laser ablation is an alternative, nonsurgical treatment modality for low-risk basal cell carcinoma (BCC). However, lack of confirmative tumour destruction or residual tumour presence has been a limiting factor to its adoption. Reflectance confocal microscopy (RCM) provides noninvasive, cellular-level resolution imaging of the skin and is capable of identifying tumour. To evaluate the use of RCM to guide carbon dioxide (CO2 ) laser ablation of BCC, confirm destruction and correlate findings with histology. RCM was used preablation to evaluate for features of BCC. Ablation was performed with a CO2 laser, and the response rapidly assessed using handheld RCM to evaluate for residual tumour. Confirmative pathology was used to verify confocal imaging. Preablation RCM imaging identified tumour with features not identified on normal, surrounding skin. Postablation, RCM documented complete removal of tumour in six cases and residual tumour in two. Histological examination identified the ablated area and confirmed clearance of tumour in the six aforementioned cases and corroborated confocal findings for residual tumour in the other two cases. We report successful treatment of superficial and nodular BCC using CO2 laser ablation augmented by RCM imaging for preablation guidance and verification of tumour removal postablation. Akin to complete circumferential and deep margin control techniques, using RCM helps to map peripheral and deep BCC margins to hone in on areas exhibiting persistent tumour after ablation. CO2 laser ablation visually guided by RCM can help circumvent previously cited limiting factors of laser ablation for tumour destruction by providing cellular-level resolution imaging of tumour and margin assessment in between each laser pass and postablation. © 2016 British Association of Dermatologists.

  7. Reflectivity and laser ablation of ZrB2/Cu ultra high temperature ceramic

    NASA Astrophysics Data System (ADS)

    Yan, Zhenyu; Ma, Zhuang; Zhu, Shizhen; Liu, Ling; Xu, Qiang

    2013-05-01

    Ultra high temperature ceramics (UHTCs) were thought to be candidates for laser protective materials due to their high melting point, thermal shock and ablation resistance. The ablation behaviors of UHTCs like ZrB2 and its composite had been intensely investigated by the means of arc, plasma, oxyacetylene ablation. However, the ablation behavior under laser irradiation was still unknown by now. In this paper, the dense bulk composites of ZrB2/Cu were successfully sintered by spark plasma sintering (SPS) at 1650 degree C for 3min. The reflectivity of the composites measured by spectrophotometry achieved 60% in near infrared range and it decreased with the increasing wavelength of incident light. High intensity laser ablation was carried out on the ZrB2/Cu surface. The phase composition and microstructure changes before and after laser irradiation were characterized by X-ray diffraction and SEM respectively. The results revealed that the oxidation and melting were the main mechanisms during the ablation processing.

  8. Preparation of silver nanoparticles in virgin coconut oil using laser ablation.

    PubMed

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-07

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.

  9. Non-ablative fractional resurfacing in combination with topical tretinoin cream as a field treatment modality for multiple actinic keratosis: a pilot study and a review of other field treatment modalities.

    PubMed

    Prens, Sebastiaan P; de Vries, Karin; Neumann, H A Martino; Prens, Errol P

    2013-06-01

    Actinic keratoses (AK) are premalignant lesions occurring mainly in sun-damaged skin. Current topical treatment options for AK and photo-damaged skin such as liquid nitrogen and electrosurgery are not suitable for field treatment. Otherwise, therapies suitable for field treatment bring along considerable patient discomfort. Non-ablative fractional resurfacing has emerged as a logical treatment option especially for field treatment of AK. To evaluate the clinical efficacy of fractional laser therapy for clearing AK and improving skin quality. To compare patient friendliness of the "fractional" therapy with those reported for other field treatment modalities. Ten patients with Fitzpatrick skin type I to III with multiple AK and extensive sun-damaged skin, received 5-10 sessions with a 4-week interval using a 1550 nm Erbium-Glass Fractionated laser (Sellas, Korea). Four weeks and 24 weeks after the last treatment the clinical results were evaluated by an independent physician. The mean degree of improvement, in terms of reduction in the number of AK and improvement of skin texture, was 54% on a 4 point PGA scale, and persisted for approximately 6 months. The biggest advantage of fractional laser treatment, besides the eradication of AK and a clear rejuvenation effect, is the absence of "downtime". Fractional non-ablative resurfacing induces significant reduction in the number of AK and improves the skin quality. Also all patients preferred fractional laser therapy above other AK treatment modalities.

  10. [Septal alcohol ablation in patients with hypertrophic cardiomyopathy].

    PubMed

    López-Aburto, Gustavo; Palacios-Rodríguez, Juan Manuel; Cantú-Ramírez, Samuel; Galván-García, Eduardo; Tolosa-Dzul, Gonzalo; Morán-Benavente, Armando; Ontiveros-Martínez, Raúl

    2013-01-01

    to know the clinical and hemodynamic course in septal obstructive hypertrophic cardiomyopathy (SOHC) after alcohol ablation. this was an observational, longitudinal study, including 21 patients with SOHC with functional class of the New York Heart Association (CF-NYHA) refractory to treatment and/or = 30 mm Hg gradient at rest or = 60 mm Hg provoked, or have systolic anterior motion or mitral incompetence (MI) > grade II by echocardiography. average age was 50 ± 16 years, males 38.1 %, females 61.9 %; symptoms: angina 42.9 %, dyspnea 85.7 %, syncope 23.8 %. Pre-ablation CF-NYHA was III and IV in 61.9 %; after a year follow-up all of them were class I-II. Pre-ablation, after and one year later, interventricle septum measures were 22.7 ± 4.9 and 20.7 ± 3.1 mm; left ventricular ejection fraction was 65.5 ± 7 %, 62.2 % ± 6.5 % and 68.7 ± 6.2 %; the output gradient of the left ventricle were 106.9 ± 29.9, 44.6 ± 24.3 and 22.0 ± 5.7 mm Hg. Pre-ablation MI grade-III and IV were 33.3 % and 47.6 %; after a year it was grade-0, 52.4 %, grade-I 28.6 %, grade-II, 19 %. There were no hospital mortality. the alcohol septal ablation in SOHC patients had a high success treatment with a low complication rate.

  11. Fractional carbon dioxide laser resurfacing of rhytides and photoaged skin--a prospective clinical study on patient expectation and satisfaction.

    PubMed

    Kohl, Elisabeth; Meierhöfer, Julia; Koller, Michael; Zeman, Florian; Groesser, Leopold; Karrer, Sigrid; Hohenleutner, Ulrich; Landthaler, Michael; Hohenleutner, Silvia

    2015-02-01

    Fractional CO2 -laser resurfacing is increasingly used for treating rhytides and photoaged skin because of its favorable benefit-risk ratio. A key outcome measure and treatment goal in aesthetic laser therapy is patient satisfaction. However, few data are available on patient-reported outcomes after fractional ablative skin-resurfacing. To compare patient expectations before and patient satisfaction after three fractional CO2 -laser treatments and to correlate objectively measured wrinkle reduction with patient satisfaction after treatment. We investigated patient expectation and satisfaction using a 14-item questionnaire in 24 female patients. We assessed the skin-related quality of life and patient satisfaction with skin appearance. We profilometrically measured wrinkle size in four facial areas before and three months after treatment and investigated correlations between wrinkle reduction and patient satisfaction. The high patient expectations before treatment (ceiling effect) were actually slightly exceeded. The average score of 14 items delineating patient satisfaction with laser treatment was higher (4.64 ± 0.82; n = 24) than the respective expectations before treatment (4.43 ± 0.88; n = 24). Skin-related quality of life and patient satisfaction with skin appearance had significantly improved after the last treatment. Patients dissatisfied with their skin appearance before treatment (mean 2.1 ± 1.5; evaluated on a scale ranging from 0-6) were satisfied (mean 5.1 ± 1.2) (P < 0.001) with skin appearance at the follow-up. Patient satisfaction with skin appearance was not correlated to the profilometrically measured reduction of wrinkle size of any facial area. Our results show high patient satisfaction with ablative fractional skin resurfacing, also regarding improved self-esteem and self-satisfaction despite high pre-treatment expectations. Skin-specific quality of life had significantly improved. Thus, this treatment modality

  12. CO oxidation and O2 removal on meteoric material in Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; James, Alexander D.; Carrillo-Sánchez, Juan Diego; Nesvorný, David; Pokorný, Petr; Plane, John M. C.

    2017-11-01

    The heterogeneous oxidation of CO by O2 on olivine, Fe sulfate and Fe oxide particles was studied using a flow tube apparatus between 300 and 680 K. These particles were chosen as possible analogues of unablated cosmic dust and meteoric smoke in Venus' atmosphere. On olivine and Fe oxides, the rate of CO oxidation to CO2 only becomes significant above 450 K. For iron sulfates, CO2 production was not observed until these dust analogues had decomposed into iron oxides at ∼ 540 K. The CO oxidation rate increases significantly with a higher Fe content in the dust, implying that oxidation occurs through Fe active sites (no reaction was observed on Mg2SiO4). The oxidation kinetics can be explained by CO reacting with chemi-sorbed O2 through an Eley-Rideal mechanism, which is supported by electronic structure calculations. Uptake coefficients were measured from 450 to 680 K, yielding: log10(γ (CO on MgFeSiO4)) = (2.9 ± 0.1) × 10-3 T(K) - (8.2 ± 0.1); log10(γ (CO on Fe2SiO4)) = (2.3 ± 0.3) × 10-3 T(K) - (7.7 ± 0.2); log10(γ (CO on FeOOH/Fe2O3)) = (5.6 ± 0.8) × 10-3T(K) - (9.3 ± 0.4). A 1-D atmospheric model of Venus was then constructed to explore the role of heterogeneous oxidation. The cosmic dust input to Venus, mostly originating from Jupiter Family Comets, is around 32 tonnes per Earth day. A chemical ablation model was used to show that ∼34% of this incoming mass ablates, forming meteoric smoke particles which, together with unablated dust particles, provide a significant surface for the heterogeneous oxidation of CO to CO2 in Venus' troposphere. This process should cause almost complete removal of O2 below 40 km, but have a relatively small impact on the CO mixing ratio (since CO is in large excess over O2). Theoretical quantum calculations indicate that the gas-phase oxidation of CO by SO2 in the lower troposphere is not competitive with the heterogeneous oxidation of CO. Finally, the substantial number density of meteoric smoke particles predicted

  13. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Laser ablation in analytical chemistry - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less

  15. Randomized ablation strategies for the treatment of persistent atrial fibrillation: RASTA study.

    PubMed

    Dixit, Sanjay; Marchlinski, Francis E; Lin, David; Callans, David J; Bala, Rupa; Riley, Michael P; Garcia, Fermin C; Hutchinson, Mathew D; Ratcliffe, Sarah J; Cooper, Joshua M; Verdino, Ralph J; Patel, Vickas V; Zado, Erica S; Cash, Nancy R; Killian, Tony; Tomson, Todd T; Gerstenfeld, Edward P

    2012-04-01

    The single-procedure efficacy of pulmonary vein isolation (PVI) is less than optimal in patients with persistent atrial fibrillation (AF). Adjunctive techniques have been developed to enhance single-procedure efficacy in these patients. We conducted a study to compare 3 ablation strategies in patients with persistent AF. Subjects were randomized as follows: arm 1, PVI + ablation of non-PV triggers identified using a stimulation protocol (standard approach); arm 2, standard approach + empirical ablation at common non-PV AF trigger sites (mitral annulus, fossa ovalis, eustachian ridge, crista terminalis, and superior vena cava); or arm 3, standard approach + ablation of left atrial complex fractionated electrogram sites. Patients were seen at 6 weeks, 6 months, and 1 year; transtelephonic monitoring was performed at each visit. Antiarrhythmic drugs were discontinued at 3 to 6 months. The primary study end point was freedom from atrial arrhythmias off antiarrhythmic drugs at 1 year after a single-ablation procedure. A total of 156 patients (aged 59±9 years; 136 males; AF duration, 47±50 months) participated (arm 1, 55 patients; arm 2, 50 patients; arm 3, 51 patients). Procedural outcomes (procedure, fluoroscopy, and PVI times) were comparable between the 3 arms. More lesions were required to target non-PV trigger sites than a complex fractionated electrogram (33±9 versus 22±9; P<0.001). The primary end point was achieved in 71 patients and was worse in arm 3 (29%) compared with arm 1 (49%; P=0.04) and arm 2 (58%; P=0.004). These data suggest that additional substrate modification beyond PVI does not improve single-procedure efficacy in patients with persistent AF. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00379301.

  16. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components.

    PubMed

    de Menezes, Rebeca Ferraz; Harvey, Catherine Malinda; de Martínez Gerbi, Marleny Elizabeth Márquez; Smith, Zachary J; Smith, Dan; Ivaldi, Juan C; Phillips, Alton; Chan, James W; Wachsmann-Hogiu, Sebastian

    2017-10-01

    The goal of this work is to investigate the thermal effects of femtosecond laser (fs-laser) ablation for the removal of carious dental tissue. Additional studies identify different tooth tissues through femtosecond laser induced breakdown spectroscopy (fsLIBS) for the development of a feedback loop that could be utilized during ablation in a clinical setting. Scanning Election Microscope (SEM) images reveal that minimal morphological damages are incurred at repetition rates below the carbonization threshold of each tooth tissue. Thermal studies measure the temperature distribution and temperature decay during laser ablation and after laser cessation, and demonstrate that repetition rates at or below 10kHz with a laser fluence of 40 J/cm 2 would inflict minimal thermal damage on the surrounding nerve tissues and provide acceptable clinical removal rates. Spectral analysis of the different tooth tissues is also conducted and differences between the visible wavelength fsLIBS spectra are evident, though more robust classification studies are needed for clinical translation. These results have initiated a set of precautionary recommendations that would enable the clinician to utilize femtosecond laser ablation for the removal of carious lesions while ensuring that the solidity and utility of the tooth remain intact. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

    PubMed

    Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L

    2009-09-01

    To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.

  18. Rapid and high-resolution stable isotopic measurement of biogenic accretionary carbonate using an online CO2 laser ablation system: Standardization of the analytical protocol.

    PubMed

    Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya

    2017-12-30

    The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  20. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.

    2000-01-01

    There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.

  1. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm2. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  2. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    PubMed Central

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-01

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983

  3. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers

    NASA Astrophysics Data System (ADS)

    Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.

    2016-06-01

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  4. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers.

    PubMed

    Del Rosso, T; Rey, N A; Rosado, T; Landi, S; Larrude, D G; Romani, E C; Junior, F L Freire; Quinteiro, S M; Cremona, M; Aucelio, R Q; Margheri, G; Pandoli, O

    2016-06-24

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  5. [Catheter ablation of ectopic incessant atrial tachycardia using radiofrequency. Reversion of tachycardiomyopathy].

    PubMed

    de Paola, A A; Mendonça, A; Balbão, C E; Tavora, M Z; da Silva, R M; Hara, V M; Guiguer Júnior, N; Vattimo, A C; Souza, I A; Portugal, O P

    1993-10-01

    A 8-year-old female patient with refractory incessant atrial tachycardia, very symptomatic and with left ventricular ejection fraction of 0.25. Electrophysiological study and endocardial mapping localized the site of the origin of atrial tachycardia in the superior right atrium. In this site 2 applications of radiofrequency current (25V, 20 and 50 seconds) resulted in termination of the atrial tachycardia. She was discharged off antiarrhythmic drugs and after 2 months ejection fraction was 0.52. She was completely asymptomatic 6 months after ablation procedure.

  6. Near-infrared image-guided laser ablation of artificial caries lesions

    NASA Astrophysics Data System (ADS)

    Tao, You-Chen; Fan, Kenneth; Fried, Daniel

    2007-02-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO II laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 x 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO II laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO II laser ablation system for the selective removal of dental caries.

  7. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Westphal, Saskia, E-mail: swestphal@ukaachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MWmore » ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.« less

  8. CO Diffusion into Amorphous H2O Ices

    NASA Astrophysics Data System (ADS)

    Lauck, Trish; Karssemeijer, Leendertjan; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I.; Cuppen, Herma M.

    2015-03-01

    The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H2O, and diffusion on external and internal (pore) surfaces of H2O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H2O-dominated ices at low temperatures (15-23 K), by measuring the mixing rate of initially layered H2O(:CO2)/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H2O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H2O ice. The extracted energy barrier for CO diffusion into amorphous H2O ice is ˜160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.

  9. Biocompatible Au@Carbynoid/Pluronic-F127 nanocomposites synthesized by pulsed laser ablation assisted CO2 recycling

    NASA Astrophysics Data System (ADS)

    Del Rosso, T.; Louro, S. R. W.; Deepak, F. L.; Romani, E. C.; Zaman, Q.; Tahir; Pandoli, O.; Cremona, M.; Freire Junior, F. L.; De Beule, P. A. A.; De St. Pierre, T.; Aucelio, R. Q.; Mariotto, G.; Gemini-Piperni, S.; Ribeiro, A. R.; Landi, S. M.; Magalhães, A.

    2018-05-01

    Ligand-free carbynoid-encapsulated gold nanocomposites (Au@Carbynoid NCs) with blue-shifted localized surface plasmon resonance (LSPR) have been synthesized by CO2 recycling induced by pulsed laser ablation (PLA) of a solid gold target in aqueous solution with NaOH at pH 7.0. High Resolution Transmission Electron Microscopy (HRTEM) images at not destructive acceleration voltage of 80 kV revealed carbynoid nanocrystals around the gold core, associated to the intense bond length alternation (BLA) Raman mode of the carbon atomic wires (CAWs), centered at 2124 cm-1, observed in the Surface Enhanced Raman Scattering (SERS) spectra. It was verified that interlinking process with sp to sp2 conversion of the CAWs is induced both by high acceleration voltage in HRTEM and high irradiance of the excitation beam used in SERS measurements. Post synthesis mixing of Pluronic-F127 copolymer with pre-synthesized Au@Carbynoid NCs allows the formation of a fully biocompatible colloidal solution of Au@Carbynoid/Copolymer NCs. SERS investigation highlights that the Raman band of the BLA mode can be used as efficient Raman tag to monitor the functionalization of the NCs with the copolymer. The biocompatibility of the NCs was demonstrated performing a study of cytotoxicity using human skin fibroblasts. As proof of principle, it was demonstrated that the photodynamic activity of the bifunctional Au@Carbynoid/PF127 NCs in the presence of chlorin e6 (Ce6) drug can be enhanced inducing the aggregation state of the colloidal suspension. The stability of the colloidal dispersions of Au@Carbynoid NCs functionalized with Pluronic-F127 is verified after centrifugation in PBS (0.15 mol L-1 NaCl) solutions, confirming the possibility to use the green carbynoid based NCs as drug-carrier in biological applications.

  10. Near-infrared image-guided laser ablation of dental decay

    NASA Astrophysics Data System (ADS)

    Tao, You-Chen; Fried, Daniel

    2009-09-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries.

  11. Near-infrared image-guided laser ablation of dental decay

    PubMed Central

    Tao, You-Chen; Fried, Daniel

    2009-01-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:19895146

  12. Near-infrared image-guided laser ablation of dental decay.

    PubMed

    Tao, You-Chen; Fried, Daniel

    2009-01-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO(2) laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO(2) laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.

  13. High-intensity focused ultrasound ablation of myocardium in vivo and instantaneous biological response.

    PubMed

    Zheng, Minjuan; Shentu, Weihui; Chen, Dingzhang; Sahn, David J; Zhou, Xiaodong

    2014-10-01

    This study aimed to evaluate the instantaneous biological response of canine myocardium in vivo to high-intensity focused ultrasound (HIFU) ablation, and thereby determine the feasibility of this method. Left ventricle myocardium HIFU ablation was performed on six dogs at four levels of HIFU energy (acoustic intensity was 3000 W/cm2 ; ablation durations were 1.2, 2.4, 3.6, and 4.8 sec, respectively). Gross lesion volumes were confirmed and assessed by tetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and electron microscopy. Global cardiac function and focal wall motion were evaluated by echocardiography. Blood enzymes and cardiac troponin T (CTnT) were tested after ablation. HIFU ablation was repeated on another set of six fresh canine hearts in vitro at the same four energy levels. Focal maximum temperatures were detected both in vivo and in vitro. Different sizes of ablation via HIFU can be created in beating hearts using controlled energy emission. Focal maximum temperatures varied from 62 ± 4.8 °C to 81 ± 12.9 °C. The lesion sizes were significantly smaller in vivo than in vitro, as verified by TTC and HE staining. Focal wall motion immediately decreased after ablation (P < 0.05), although the ejection fraction (EF) and E/A ratio were unchanged (P > 0.05). Enzymes and CTnT immediately increased. HIFU can be used for the controllable ablation of myocardial tissue, with instantly increased serum markers, decreased regional wall motion, and unaffected left ventricular global function. © 2014, Wiley Periodicals, Inc.

  14. Isotopic fractionation of gases during its migration: experiments and 2D numerical simulation

    NASA Astrophysics Data System (ADS)

    Kara, S.; Prinzhofer, A.

    2003-04-01

    Several works have been developed in the last decade on the experimental isotope fractionation of gases during migration (Prinzhofer et al., 1997 and Zhang &Krooss, 2001 among others). We add to these results new experiments on diffusion of CO_2, which becomes currently a crucial subject for environmental purpose. Our experiments showed that transport by diffusion of CO_2 through a water saturated shale induces a significant and systematic carbon isotopic fractionation with heavier (13C enriched) CO_2 migrating first. In all experiments, significant isotope fractionation was found but still remains without quantitative interpretation. To interpret these data, we developed a 2D numerical model at the pore scale. The general principle of this model is the study of transport by water solubilization/diffusion of gas in a capillary saturated with water with two different media : a mobile zone representing free water and a immobile zone representing bounded water. The model takes also into account solubilization coefficients of gas in water, as well as the migration distance and the volume of upstream and downstream reservoirs. Using our numerical model, we could reproduce the evolution of isotopic fractionations and the velocity of CO_2 migration versus the production factor F (proportion of diffused gas). We determined some physical parameters of the porous medium (bentonite) which are not directly measurable at the present time. Furthermore, we used these parameters to reproduce the curves of isotopic fractionation obtained by Pernaton (1998) on methane migration with the same porous rock. We used also a modified version of this model with infinite reservoirs to reproduce the curves of isotopic fractionation of Zhang &Krooss (2001). Application of this model to geological scale is under progress, in order to implement it into sedimentary basins modelling. REFERENCES: Zhang T. and Krooss M. (2001). Geochim. Cosmochim. Acta, Vol. 65, No.16, pp. 2723-2742. Pernaton E

  15. Fractional carbon dioxide (CO2) laser combined with topical tretinoin for the treatment of different forms of cystic acne.

    PubMed

    Pestoni Porvén, Carmela; Vieira Dos Santos, Vanessa; Del Pozo Losada, Jesus

    2017-12-01

    Nodulocystic acne is prone to scarring and difficult to treat with treatments other than oral isotretinoin. The aim of this article is to discuss the role of a single session of a fractional carbon dioxide (CO 2 ) laser combined with a topical treatment with a tretinoin and antibiotic gel for a month as a successful treatment to improve nodulocystic acne and chronic microcystic acne. Two cases were involved: the first with nodulocystic acne lesions that persisted after oral retinoids and the second with chronic microcystic acne resistant to topical treatments. After only one session of treatment with the CO 2 laser and the topical treatment, a complete healing of the nodulocystic acne lesions was observed with minimal secondary effects. The microcystic acne showed great improvement. No other topical or oral treatment was needed. This treatment could be a safe and effective treatment for nodulocystic acne lesions and microcystic acne when other treatments fail. More studies should be performed to confirm our results.

  16. Incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers Cultured Under Controlled pCO2

    NASA Astrophysics Data System (ADS)

    Not, C.; Thibodeau, B.; Yokoyama, Y.

    2018-01-01

    Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.

  17. Effects of early combinatorial treatment of autologous split-thickness skin grafts in red duroc pig model using pulsed dye laser and fractional CO2 laser.

    PubMed

    Bailey, J Kevin; Blackstone, Britani N; DeBruler, Danielle M; Kim, Jayne Y; Baumann, Molly E; McFarland, Kevin L; Imeokparia, Folasade O; Supp, Dorothy M; Powell, Heather M

    2018-01-01

    The use of pulsed dye laser (PDL) and fractional CO 2 (FX CO 2 ) laser therapy to treat and/or prevent scarring following burn injury is becoming more widespread with a number of studies reporting reduction in scar erythema and pruritus following treatment with lasers. While the majority of studies report positive outcomes following PDL or FX CO 2 therapy, a number of studies have reported no benefit or worsening of the scar following treatment. The objective of this study was to directly compare the efficacy of PDL, FX CO 2 , and PDL + FX CO 2 laser therapy in reducing scarring post burn injury and autografting in a standardized animal model. Eight female red Duroc pigs (FRDP) received 4 standardized, 1 in. x 1 in. third degree burns that were excised and autografted. Wound sites were treated with PDL, FX CO 2 , or both at 4, 8, and 12 weeks post grafting. Grafts receiving no laser therapy served as controls. Scar appearance, morphology, size, and erythema were assessed and punch biopsies collected at weeks 4, 8, 12, and 16. At week 16, additional tissue was collected for biomechanical analyses and markers for inflammatory cytokines, extracellular matrix (ECM) proteins, re-epithelialization, pigmentation, and angiogenesis were quantified at all time points using qRT-PCR. Treatment with PDL, FX CO 2 , or PDL + FX CO 2 resulted in significantly less contraction versus skin graft only controls with no statistically significant difference among laser therapy groups. Scars treated with both PDL and FX CO 2 were visually more erythematous than other groups with a significant increase in redness between two and three standard deviations above normal skin redness. Scars treated with FX CO 2 were visually smoother and contained significantly fewer wrinkles. In addition, hyperpigmentation was significantly reduced in scars treated with FX CO 2 . The use of fractional carbon dioxide or pulsed dye laser therapy within 1 month of autografting significantly reduced scar

  18. Near-IR imaging of erbium laser ablation with a water spray

    NASA Astrophysics Data System (ADS)

    Darling, Cynthia L.; Maffei, Marie E.; Fried, William A.; Fried, Daniel

    2008-02-01

    Near-IR (NIR) imaging can be used to view the formation of ablation craters during laser ablation since the enamel of the tooth is almost completely transparent near 1310-nm1. Laser ablation craters can be monitored under varying irradiation conditions to assess peripheral thermal and transient-stress induced damage, measure the rate and efficiency of ablation and provide insight into the ablation mechanism. There are fundamental differences in the mechanism of enamel ablation using erbium lasers versus carbon dioxide laser systems due to the nature of the primary absorber and it is necessary to have water present on the tooth surface for efficient ablation at erbium laser wavelengths. In this study, sound human tooth sections of approximately 2-3-mm thickness were irradiated by free running and Q-switched Er:YAG & Er:YSGG lasers under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with a band-pass filter centered at 1310-nm combined with an InGaAs area camera with a NIR zoom microscope. Obvious differences in the crater evolution were observed between CO2 and erbium lasers. Ablation stalled after a few laser pulses without a water spray as anticipated. Efficient ablation was re-initiated by resuming the water spray. Micro-fractures were continuously produced apparently driven along prism lines during multi-pulse ablation. These fractures or fissures appeared to merge together as the crater evolved to form the leading edge of the ablation crater. These observations support the proposed thermo-mechanical mechanisms of erbium laser involving the strong mechanical forces generated by selective absorption by water.

  19. Selective Removal of Natural Occlusal Caries by Coupling Near-infrared Imaging with a CO2 Laser

    PubMed Central

    Tao, You-Chen; Fried, Daniel

    2011-01-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO2 laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO2 laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO2 laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO2 laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure. PMID:21909225

  20. Selective Removal of Natural Occlusal Caries by Coupling Near-infrared Imaging with a CO(2) Laser.

    PubMed

    Tao, You-Chen; Fried, Daniel

    2008-03-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO(2) laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO(2) laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO(2) laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO(2) laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure.

  1. The effects of fractional microablative CO2 laser therapy on sexual function in postmenopausal women and women with a history of breast cancer treated with endocrine therapy.

    PubMed

    Gittens, Paul; Mullen, Gregory

    2018-06-08

    To examine the outcomes of sexual function in postmenopausal women and women with a history of breast cancer treated with endocrine therapy who were experiencing the symptoms of GSM for which they were treated with fractional microablative CO 2 laser. From July 2015 to October 2016, a retrospective chart review of women who underwent fractional microablative CO 2 laser therapy (MonaLisa Touch, DEKA) for GSM was conducted. Several validated questionnaires were used to assess changes in symptoms and sexual function including the Female Sexual Function Index (FSFI), the Wong-Baker Faces Scale (WBFS), and the Female Sexual Distress Scale-Revised (FSDSR). Comparisons of mean symptom scores were described at baseline and six weeks after each treatment. There was a statistically significant improvement in every domain of FSFI, WBFS, and FSDS-R when comparing baseline symptom scores to after treatment three symptom scores for all patients. The secondary outcome was to evaluate the differences, if any, in outcomes of sexual function between postmenopausal women and women with a history of breast cancer treated with endocrine therapy. Both groups had statistically significant improvements in many domains studied. Fractional microablative CO 2 laser therapy (MonaLisa Touch, DEKA) is an effective modality in treating the symptoms of GSM in postmenopausal women and women with a history of breast cancer treated with endocrine therapy.

  2. Effects of topical application of B-Resorcinol and Glycyrrhetinic acid monotherapy and in combination with fractional CO2 laser treatment for benign hand hyperpigmentation treatment.

    PubMed

    Grippaudo, Francesca Romana; Di Russo, Pier Paolo

    2016-12-01

    Hand solar lentigines are frequent benign lesions of elderly population, requiring longtime treatments with topical agents or laser to lighten. The aim of this study was to evaluate and compare the efficacy of CO 2 fractional laser photothermolysis followed by topical application of B-Resorcinol and Glycyrrhetinic acid vs. only topical B-Resorcinol and Glycyrrhetinic acid application for hand solar lentigines treatment. Hand solar lentigines of eleven volunteers were divided into two groups: Group A spots received CO 2 fractional laser photothermolysis followed by 4 weeks topical application of B-Resorcinol and Glycyrrhetinic acid, and Group B spots received only 4 weeks topical treatments. All hands were photographed, and hand solar lentigines scanned with dermatoscope at the beginning of the study (T 0 ), 1 month after laser treatment (T 1 ), and at the end of the study (T 2 ) to document spots dimensions and color. A blinded dermatologist evaluated dermoscopic T 0 and T 2 images. The considered variables were assessed for significance by the nonparametric Mann-Whitney U-test. In all volunteers, investigators and blinded dermatologist's evaluation hand solar lentigines features improved, with no statistical differences in the two groups. Topical application of B-Resorcinol and Glycyrrhetinic acid is effective to lighten hand solar lentigines after 4 weeks of treatment, with or without a previous fractional laser photothermolysis. © 2016 Wiley Periodicals, Inc.

  3. Structural characterization on in vitro porcine skin treated by ablative fractional laser using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Feng, Kairui; Zhou, Kanheng; Ling, Yuting; O'Mahoney, Paul; Ewan, Eadie; Ibbotson, Sally H.; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Ablative fractional skin laser is widely applied for various skin conditions, especially for cosmetic repairing and promoting the located drug delivery. Although the influence of laser treatment over the skin has been explored before in means of excision and biopsy with microscopy, these approaches are invasive, only morphological and capable of distorting the skin. In this paper the authors use fresh porcine skin samples irradiated by the lasers, followed by detected by using Optical Coherence Tomography (OCT). This advanced optical technique has the ability to present the high resolution structure image of treated sample. The results shows that laser beams can produce holes left on the surface after the irradiation. The depth of holes can be affected by changes of laser energy while the diameter of holes have no corresponding relation. Plus, OCT, as a valuable imaging technology, is capable of monitoring the clinical therapy procedure and assisting the calibration.

  4. Method for reducing CO2, CO, NOX, and SOx emissions

    DOEpatents

    Lee, James Weifu; Li, Rongfu

    2002-01-01

    Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

  5. Pilot-scale fractionation of whey proteins with supercritical CO2

    USDA-ARS?s Scientific Manuscript database

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  6. Solubility of CO2 and N2O in an Imidazolium-Based Lipidic Ionic Liquid.

    PubMed

    Langham, Jacob V; O'Brien, Richard A; Davis, James H; West, Kevin N

    2016-10-13

    Imidazolium-based ionic liquids have been extensively studied for their ability to dissolve a wide variety of gases and for their potential to be used as separation agents in industrial processes. For many short chain 1-alkyl-3-methylimidazolium bistriflimde salts, CO 2 and N 2 O solublities are very similar. In this work, the solubility of CO 2 and N 2 O has been measured in the lipidic ionic liquid 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide ([oleyl-mim][NTf 2 ]) at 298 K, 310 and 323 K up to ∼2 MPa. N 2 O was found to have higher solubility than CO 2 under the same conditions, similar to the behavior observed when olive oil, a natural lipid, was the liquid solvent. However, the solubility of each gas on a mole fraction basis is lower in the ionic liquid than in olive oil. Comparison of the gas solubilities on a mass fraction basis demonstrates that CO 2 solubility is nearly identical in both liquids; N 2 O solubility is higher than CO 2 for both liquids, but more so in the olive oil. The difference is attributed to the high mass fraction of the olive oil that is lipid-like in character. The differential solubility of N 2 O/CO 2 in this ionic liquid, in contrast to that of shorter chain 1-alkyl-3-methylimidazolium bistriflimide salts, gives physical insight into the solvent properties of this class of ionic liquids and provides further support for their lipid-like character.

  7. Randomized, Split-Face/Décolleté Comparative Trial of Procedure Enhancement System for Fractional non-Ablative Laser Resurfacing Treatment.

    PubMed

    Robinson, Deanne Mraz; Frulla, Ashton P

    2017-07-01

    INTRODUCTION: A topical proprietary procedural enhancement system (PES) containing a combination of active ingredients including a tripeptide and hexapeptide (TriHex Technology™, Alastin Procedure Enhancement Invasive System, ALASTIN Skincare™, Inc., Carlsbad, CA) has been used successfully to aid in healing and improve symptomatology following resurfacing procedures.

    METHODS: PES (Gentle Cleanser, Regenerating Skin Nectar with TriHex Technology™, Ultra Nourishing Moisturizer with TriHex Technology™, Soothe + Protect Recovery Balm, Broad Spectrum 30+ Sunscreen) was compared to a basic regimen (Aquaphor™, Cerave™ cleanser, Vanicream™, Alastin Broad Spectrum 30+ Sunscreen) in a split face/ décolleté trial following fractional non-ablative thulium-doped resurfacing treatment to the face or décolleté. The skin was pre-conditioned and treated during and after the procedure using the two regimens.

    RESULTS: A blinded investigator rated the PES statistically superior to the basic regimen on healing post-laser treatment on day 4 based on lentigines, texture, and Global Skin Quality. Subjects also reported 'better looking and feeling' skin on the PES side.

    CONCLUSION: PES appears to improve healing post-non ablative thulium-doped resurfacing treatment to the face/décolleté in comparison with standard of care.

    J Drugs Dermatol. 2017;16(7):707-710.

    .

  8. Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator.

    PubMed

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A; Munsat, Tobin; Plane, John M C; Sternovsky, Zoltan

    2017-03-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N 2 , air, CO 2 , and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  9. Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator

    NASA Astrophysics Data System (ADS)

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan

    2017-03-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  10. Experimental Setup for the Laboratory Investigation of Micrometeoroid Ablation Using a Dust Accelerator

    NASA Technical Reports Server (NTRS)

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan

    2017-01-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 kilometers. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 centimeters along the ablating particles path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities greater than 20 kilometers per second, and are reported by Thomas et al. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 centimeters and 90 nanoseconds. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  11. Successful Treatment of Tattoo-Induced Pseudolymphoma with Sequential Ablative Fractional Resurfacing Followed by Q-Switched Nd: YAG 532 nm Laser

    PubMed Central

    Lucinda, Tan Siyun; Hazel, Oon Hwee Boon; Joyce, Lee Siong Siong; Hon, Chua Sze

    2013-01-01

    Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR) followed by Q-Switched (QS) Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott's Methenamine Silver (GMS) stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present. PMID:24470721

  12. Development of Naphthalene PLIF for Making Quantitative Measurements of Ablation Products Transport in Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Combs, Christopher; Clemens, Noel

    2014-11-01

    Ablation is a multi-physics process involving heat and mass transfer and codes aiming to predict ablation are in need of experimental data pertaining to the turbulent transport of ablation products for validation. Low-temperature sublimating ablators such as naphthalene can be used to create a limited physics problem and simulate ablation at relatively low temperature conditions. At The University of Texas at Austin, a technique is being developed that uses planar laser-induced fluorescence (PLIF) of naphthalene to visualize the transport of ablation products in a supersonic flow. In the current work, naphthalene PLIF will be used to make quantitative measurements of the concentration of ablation products in a Mach 5 turbulent boundary layer. For this technique to be used for quantitative research in supersonic wind tunnel facilities, the fluorescence properties of naphthalene must first be investigated over a wide range of state conditions and excitation wavelengths. The resulting calibration of naphthalene fluorescence will be applied to the PLIF images of ablation from a boundary layer plug, yielding 2-D fields of naphthalene mole fraction. These images may help provide data necessary to validate computational models of ablative thermal protection systems for reentry vehicles. Work supported by NASA Space Technology Research Fellowship Program under grant NNX11AN55H.

  13. Viscosity Measurements and Correlation of the Squalane + CO2 Mixture

    NASA Astrophysics Data System (ADS)

    Tomida, D.; Kumagai, A.; Yokoyama, C.

    2007-02-01

    Experimental results for the viscosity of squalane + CO2 mixtures are reported. The viscosities were measured using a rolling ball viscometer. The experimental temperatures were 293.15, 313.15, 333.15, and 353.15 K, and pressures were 10.0, 15.0, and 20.0 MPa. The CO2 mole fraction of the mixtures varied from 0 to 0.417. The experimental uncertainties in viscosity were estimated to be within ±3.0%. The viscosity of the mixtures decreased with an increase in the CO2 mole fraction. The experimental data were compared with predictions from the Grunberg-Nissan and McAllister equations, which correlated the experimental data with maximum deviations of 10 and 8.7%, respectively.

  14. The use of ablative lasers in the treatment of facial melasma.

    PubMed

    Morais, Orlando Oliveira de; Lemos, Érica Freitas Lima; Sousa, Márcia Carolline dos Santos; Gomes, Ciro Martins; Costa, Izelda Maria Carvalho; Paula, Carmen Déa Ribeiro de

    2013-01-01

    Melasma represents a pigmentary disorder that is difficult to treat. This study aims to broadly review the use of ablative lasers (Er:YAG and CO2) in the treatment of melasma, presenting the level of evidence of studies published to date. A total of 75 patients were enrolled in four case series studies (n=39), one controlled clinical trial (n=6) and one randomized controlled clinical trial (n=30). Studies on the Er:YAG laser showed better results with the use of short square-shaped pulses, which determined low rates of post-inflammatory hyperpigmentation and long-lasting maintenance of results. Likewise, studies on the CO2 laser proved the benefits of short pulse duration along with low-density energy. Post-treatment maintenance with the use of antipigmenting creams was necessary and effective to sustain long-term results. Ablative lasers may represent another useful and effective tool against melasma. Postinflammatory hyperpigmentation and difficulty in sustaining long-term results still represent the main limitations to a broader use of ablative lasers. Based on actual evidence, the use of this technology should be restricted to patients with recalcitrant disease. Further studies will help establish optimal laser parameters and treatment regimens.

  15. The use of ablative lasers in the treatment of facial melasma*

    PubMed Central

    de Morais, Orlando Oliveira; Lemos, Érica Freitas Lima; Sousa, Márcia Carolline dos Santos; Gomes, Ciro Martins; Costa, Izelda Maria Carvalho; de Paula, Carmen Déa Ribeiro

    2013-01-01

    Melasma represents a pigmentary disorder that is difficult to treat. This study aims to broadly review the use of ablative lasers (Er:YAG and CO2) in the treatment of melasma, presenting the level of evidence of studies published to date. A total of 75 patients were enrolled in four case series studies (n=39), one controlled clinical trial (n=6) and one randomized controlled clinical trial (n=30). Studies on the Er:YAG laser showed better results with the use of short square-shaped pulses, which determined low rates of post-inflammatory hyperpigmentation and long-lasting maintenance of results. Likewise, studies on the CO2 laser proved the benefits of short pulse duration along with low-density energy. Post-treatment maintenance with the use of antipigmenting creams was necessary and effective to sustain long-term results. Ablative lasers may represent another useful and effective tool against melasma. Postinflammatory hyperpigmentation and difficulty in sustaining long-term results still represent the main limitations to a broader use of ablative lasers. Based on actual evidence, the use of this technology should be restricted to patients with recalcitrant disease. Further studies will help establish optimal laser parameters and treatment regimens. PMID:23739704

  16. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination

    NASA Astrophysics Data System (ADS)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges

    2012-07-01

    Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo

  17. Physiologic Factors Influencing the Arterial-To-End-Tidal CO2 Difference and the Alveolar Dead Space Fraction in Spontaneously Breathing Anesthetised Horses.

    PubMed

    Mosing, Martina; Böhm, Stephan H; Rasis, Anthea; Hoosgood, Giselle; Auer, Ulrike; Tusman, Gerardo; Bettschart-Wolfensberger, Regula; Schramel, Johannes P

    2018-01-01

    The arterial to end-tidal CO 2 difference (P (a-ET) CO 2 ) and alveolar dead space fraction (VDalv frac  = P (a-ET) CO 2 /PaCO 2 ), are used to estimate Enghoff's "pulmonary dead space" (V/Q Eng ), a factor which is also influenced by venous admixture and other pulmonary perfusion abnormalities and thus is not just a measure of dead space as the name suggests. The aim of this experimental study was to evaluate which factors influence these CO 2 indices in anesthetized spontaneously breathing horses. Six healthy adult horses were anesthetized in dorsal recumbency breathing spontaneously for 3 h. Data to calculate the CO 2 indices (response variables) and dead space variables were measured every 30 min. Bohr's physiological and alveolar dead space variables, cardiac output (CO), mean pulmonary pressure (MPP), venous admixture [Formula: see text], airway dead space, tidal volume, oxygen consumption, and slope III of the volumetric capnogram were evaluated (explanatory variables). Univariate Pearson correlation was first explored for both CO 2 indices before V/Q Eng and the explanatory variables with rho were reported. Multiple linear regression analysis was performed on P (a-ET) CO 2 and VDalv frac assessing which explanatory variables best explained the variance in each response. The simplest, best-fit model was selected based on the maximum adjusted R 2 and smallest Mallow's p (C p ). The R 2 of the selected model, representing how much of the variance in the response could be explained by the selected variables, was reported. The highest correlation was found with the alveolar part of V/Q Eng to alveolar tidal volume ratio for both, P (a-ET) CO 2 ( r  = 0.899) and VDalv frac ( r  = 0.938). Venous admixture and CO best explained P (a-ET) CO 2 ( R 2  = 0.752; C p  = 4.372) and VDalv frac ( R 2  = 0.711; C p  = 9.915). Adding MPP (P (a-ET) CO 2 ) and airway dead space (VDalv frac ) to the models improved them only marginally. No "real

  18. The effect of CO2 laser treatment on skin tissue.

    PubMed

    Baleg, Sana Mohammed Anayb; Bidin, Noriah; Suan, Lau Pik; Ahmad, Muhammad Fakarruddin Sidi; Krishnan, Ganesan; Johari, Abd Rahman; Hamid, Asma

    2015-09-01

    The aim of this study was to evaluate the effects of multiple pulses on the depth of injury caused by CO2 laser in an in vivo rat model. A 10 600-nm CO2 laser was applied to rat skin, with one side of the rat dorsal skin being exposed, leaving the other side as a control. All of the various laser pulses tested led to gradual loss of epidermal thickness as well as a dramatic increase in thermal damage depth. Collagen coagulation was most effective with ten pulses of CO2 laser, while the strength of irradiated skin tissue increased as the influence of the laser increased. Fundamental laser-skin interaction effects were studied using a CO2 laser. The photodamaged areas obtained from laser interaction were recorded via couple charge device video camera and analyzed via ImageJ software. Photodamage induced by CO2 laser is due to photothermal effects, which involve burning and vaporizing mechanisms to ablate the epidermis layer. The burning area literally expands and penetrates deep into the dermis layer, subsequently causing collagen coagulation. This fundamental study shows in detail the effect of CO2 laser interaction with skin. The CO2 attributed severe burning, producing deep coagulation, and induced strength to treated skin. © 2015 Wiley Periodicals, Inc.

  19. Current Status of Fractional Laser Resurfacing.

    PubMed

    Carniol, Paul J; Hamilton, Mark M; Carniol, Eric T

    2015-01-01

    Fractional lasers were first developed based on observations of lasers designed for hair transplantation. In 2007, ablative fractional laser resurfacing was introduced. The fractionation allowed deeper tissue penetration, leading to greater tissue contraction, collagen production and tissue remodeling. Since then, fractional erbium:YAG resurfacing lasers have also been introduced. These lasers have yielded excellent results in treating photoaging, acne scarring, and dyschromia. With the adjustment of microspot density, pulse duration, number of passes, and fluence, the surgeon can adjust the treatment effects. These lasers have allowed surgeons to treat patients with higher Fitzpatrick skin types (types IV to VI) and greater individualize treatments to various facial subunits. Immunohistochemical analysis has demonstrated remodeling effects of the tissues for several months, producing longer lasting results. Adjuvant treatments are also under investigation, including concomitant face-lift, product deposition, and platelet-rich plasma. Finally, there is a short recovery time from treatment with these lasers, allowing patients to resume regular activities more quickly. Although there is a relatively high safety profile for ablative fractionated lasers, surgeons should be aware of the limitations of specific treatments and the associated risks and complications.

  20. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  1. The effect of microablative fractional CO2 laser on vaginal flora of postmenopausal women.

    PubMed

    Athanasiou, S; Pitsouni, E; Antonopoulou, S; Zacharakis, D; Salvatore, S; Falagas, M E; Grigoriadis, T

    2016-10-01

    To assess the effect of microablative fractional CO2 laser (MFCO2-Laser) therapy on the vaginal microenvironment of postmenopausal women. Three laser therapies at monthly intervals were applied in postmenopausal women with moderate to severe symptoms of genitourinary syndrome of menopause, pH of vaginal fluid >4.5 and superficial epithelial cells on vaginal smear <5%. Vaginal fluid pH values, fresh wet mount microscopy, Gram stain and aerobic and anaerobic cultures were evaluated at baseline and 1 month after each subsequent therapy. Nugent score and Hay-Ison criteria were used to evaluate vaginal flora. Fifty-three women (mean age 57.2 ± 5.4 years) participated and completed this study. MFCO2-Laser therapy increased Lactobacillus (p < 0.001) and normal flora (p < 0.001) after the completion of the therapeutic protocol, which decreased vaginal pH from a mean of 5.5 ± 0.8 (initial value) to 4.7 ± 0.5 (p < 0.001). The prevalence of Lactobacillus changed from 30% initially to 79% after the last treatment. Clinical signs and symptoms of bacterial vaginosis, aerobic vaginitis or candidiasis did not appear in any participant. MFCO2-Laser therapy is a promising treatment for improving the vaginal health of postmenopausal women by helping repopulate the vagina with normally existing Lactobacillus species and reconstituting the normal flora to premenopausal status.

  2. Thermoplastic microchannel fabrication using carbon dioxide laser ablation.

    PubMed

    Wang, Shau-Chun; Lee, Chia-Yu; Chen, Hsiao-Ping

    2006-04-14

    We report the procedures of machining microchannels on Vivak co-polyester thermoplastic substrates using a simple industrial CO(2) laser marker. To avoid overheating the substrates, we develop low-power marking techniques in nearly anaerobic environment. These procedures are able to machine microchannels at various aspect ratios. Either straight or serpent channel can be easily marked. Like the wire-embossed channel walls, the ablated channel surfaces become charged after alkaline hydrolysis treatment. Stable electroosmotic flow in the charged conduit is observed to be of the same order of magnitude as that in fused silica capillary. Typical dynamic coating protocols to alter the conduit surface properties are transferable to the ablated channels. The effects of buffer acidity on electroosmotic mobility in both bare and coated channels are similar to those in fused silica capillaries. Using video microscopy we also demonstrate that this device is useful in distinguishing the electrophoretic mobility of bare and latex particles from that of functionalized ones.

  3. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    PubMed

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  4. Advances in laser ablation MC-ICPMS isotopic analysis of rock materials

    NASA Astrophysics Data System (ADS)

    Young, E. D.

    2007-12-01

    Laser ablation multiple-collector inductively coupled plasma-source mass spectrometry (LA-MC-ICPMS) is a rapid method for obtaining high-precision isotope ratio measurements in geological samples. The method has been used with success for measuring isotope ratios of numerous elements, including Pb, Hf, Mg, Si, and Fe in terrestrial and extraterrestrial samples. It fills the gap between the highest precision obtainable with acid digestion together with MC-ICPMS and thermal ionization mass spectrometry (TIMS) and the maximum spatial resolution afforded by secondary ion mass spectrometry (SIMS). Matrix effects have been shown to be negligible for Pb isotopic analysis by LA-MC-ICPMS (Simon et al., 2007). Glass standards NBS 610, 612, and 614 have Pb/matrix ratios spanning two orders of magnitude. Our sample-standard bracketing laser ablation technique gives accurate and precise 208Pb/206Pb and 207Pb/206Pb for these glasses. The accuracy is superior to that obtained when using Tl to correct for mass fractionation. Accuracy and precision (± 0.2 ‰) for Pb in feldspars is comparable to that for double-spike TIMS. Data like these have been used to distinguish distinct sources of magmas in the Long Valley silicic magma system. LA-MC-ICPMS analyses of Mg isotope ratios in calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrite meteorites have revealed a wealth of new information about the history of these objects. A byproduct of this work has been recognition of the importance of different mass fractionation laws among three isotopes of a given element. Kinetic and equilibrium processes define distinct fractionation laws. Reservoir effects can further modify these laws. The result is that the linear coefficient β that relates the logarithms of the ratios n2/n1 and n3/n1 (ni refers to the number of atoms of isotope i) of isotopes with masses m3 > m2 > m1 is not unique. Rather, it is process dependent. In the case of Mg, this coefficient ranges from 0.521 for

  5. Δ14CO2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2.

    PubMed

    Xiong, Xiaohu; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Niu, Zhenchuan; Du, Hua; Lu, Xuefeng; Fu, Yunchong; Burr, George S

    2017-04-01

    Radiocarbon ( 14 C) has been widely used for quantification of fossil fuel CO 2 (CO 2ff ) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the 14 C signature of fossil fuels and other sources. In past studies, the 14 C content of CO 2 derived from plants has been equated with the 14 C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO 2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO 2 we determine Δ 14 C res values, and from the bulk organic matter we determine Δ 14 C bom values. A significant difference between Δ 14 C res and Δ 14 C bom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ 14 C res values are in agreement with mean atmospheric Δ 14 CO 2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ 14 C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO 2ff , an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ 14 C in plants to quantify atmospheric CO 2ff . Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparison between different thickness umbrella-shaped expandable radiofrequency electrodes (SuperSlim and CoAccess): Experimental and clinical study

    PubMed Central

    KODA, MASAHIKO; TOKUNAGA, SHIHO; MATONO, TOMOMITSU; SUGIHARA, TAKAAKI; NAGAHARA, TAKAKAZU; MURAWAKI, YOSHIKAZU

    2011-01-01

    The purpose of the present study was to compare the size and configuration of the ablation zones created by SuperSlim and CoAccess electrodes, using various ablation algorithms in ex vivo bovine liver and in clinical cases. In the experimental study, we ablated explanted bovine liver using 2 types of electrodes and 4 ablation algorithms (combinations of incremental power supply, stepwise expansion and additional low-power ablation) and evaluated the ablation area and time. In the clinical study, we compared the ablation volume and the shape of the ablation zone between both electrodes in 23 hepatocellular carcinoma (HCC) cases with the best algorithm (incremental power supply, stepwise expansion and additional low-power ablation) as derived from the experimental study. In the experimental study, the ablation area and time by the CoAccess electrode were significantly greater compared to those by the SuperSlim electrode for the single-step (algorithm 1, p=0.0209 and 0.0325, respectively) and stepwise expansion algorithms (algorithm 2, p=0.0002 and <0.0001, respectively; algorithm 3, p= 0.006 and 0.0407, respectively). However, differences were not significant for the additional low-power ablation algorithm. In the clinical study, the ablation volume and time in the CoAccess group were significantly larger and longer, respectively, compared to those in the SuperSlim group (p=0.0242 and 0.009, respectively). Round ablation zones were acquired in 91.7% of the CoAccess group, while irregular ablation zones were obtained in 45.5% of the SuperSlim group (p=0.0428). In conclusion, the CoAccess electrode achieves larger and more uniform ablation zones compared with the SuperSlim electrode, though it requires longer ablation times in experimental and clinical studies. PMID:22977647

  7. The Inherent Tracer Fingerprint of Captured CO2

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gyore, Domokos; Stuart, Finlay; Boyce, Adrian; Haszeldine, Stuart; Chalaturnyk, Rick; Gilfillan, Stuart

    2017-04-01

    Inherent tracers, the isotopic and trace gas composition of captured CO2 streams, are potentially powerful tracers for use in CCS technology [1,2]. Despite this potential, the inherent tracer fingerprint in captured CO2 streams has yet to be robustly investigated and documented [3]. Here, we will present the first high quality systematic measurements of the carbon and oxygen isotopic and noble gas fingerprints measured in anthropogenic CO2 captured from combustion power stations and fertiliser plants, using amine capture, oxyfuel and gasification processes, and derived from coal, biomass and natural gas feedstocks. We will show that δ13C values are mostly controlled by the feedstock composition, as expected. The majority of the CO2 samples exhibit δ18O values similar to atmospheric O2 although captured CO2 samples from biomass and gas feedstocks at one location in the UK are significantly higher. Our measured noble gas concentrations in captured CO2 are generally as expected [2], typically being two orders of magnitude lower in concentration than in atmospheric air. Relative noble gas elemental abundances are variable and often show an opposite trend to that of a water in contact with the atmosphere. Expected enrichments in radiogenic noble gases (4He and 40Ar) for fossil fuel derived CO2 were not always observed due to dilution with atmospheric noble gases during the CO2 generation and capture process. Many noble gas isotope ratios indicate that isotopic fractionation takes place during the CO2 generation and capture processes, resulting in isotope ratios similar to fractionated air. We conclude that phase changes associated with CO2 transport and sampling may induce noble gas elemental and isotopic fractionation, due to different noble gas solubilities between high (liquid or supercritical) and low (gaseous) density CO2. Data from the Australian CO2CRC Otway test site show that δ13C of CO2 will change once injected into the storage reservoir, but that this

  8. Atmospheric measurements of ratios between CO2 and co-emitted species from traffic: a tunnel study in the Paris megacity

    NASA Astrophysics Data System (ADS)

    Ammoura, L.; Xueref-Remy, I.; Gros, V.; Baudic, A.; Bonsang, B.; Petit, J.-E.; Perrussel, O.; Bonnaire, N.; Sciare, J.; Chevallier, F.

    2014-12-01

    Measurements of CO2, CO, NOx and selected Volatile Organic Compounds (VOCs) mole fractions were performed continuously during a 10-day period in the Guy Môquet tunnel in Thiais, a peri-urban area about 15 km south of the centre of Paris, between 28 September and 8 October 2012. This data set is used here to identify the characteristics of traffic-emitted CO2 by evaluating its ratios to co-emitted species for the first time in the Paris region. High coefficients of determination (r2 > 0.7) are observed between CO2 and certain compounds that are characteristic of the traffic source (CO, NOx, benzene, xylenes and acetylene). Weak correlations (r2 < 0.2) are found with species such as propane, n-butane and i-butane that are associated with fuel evaporation, an insignificant source for CO2. To better characterise the traffic signal we focus only on species that are well-correlated with CO2 and on rush-hour periods characterised by the highest traffic-related mole fractions. From those mole fractions we remove the nighttime-average weekday mole fraction obtained for each species that we infer to be the most appropriate background signal for our study. Then we calculate observed Δspecies / ΔCO2 ratios, which we compare with the ones provided by the 2010 bottom-up high-resolved regional emission inventory from Airparif (the association in charge of monitoring the air quality in Île-de-France), focusing on local emission data for the specific road of the tunnel. We find an excellent agreement (2%) between the local inventory emission CO / CO2 ratio and our observed ΔCO / ΔCO2 ratio. Former tunnel experiments carried out elsewhere in the world provided observed ΔCO / ΔCO2 ratios that differ from 49 to 592% to ours. This variability can be related to technological improvement of vehicles, differences in driving conditions, and fleet composition. We also find a satisfactory agreement with the Airparif inventory for n-propylbenzene, n-pentane and xylenes to CO2 ratios

  9. Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser

    NASA Astrophysics Data System (ADS)

    Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard

    2002-03-01

    Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.

  10. Fractional nonablative laser resurfacing: is there a skin tightening effect?

    PubMed

    Kauvar, Arielle N B

    2014-12-01

    Fractional photothermolysis, an approach to laser skin resurfacing that creates microscopic thermal wounds in skin separated by islands of spared tissue, was developed to overcome the high incidence of adverse events and prolonged healing times associated with full coverage ablative laser procedures. To examine whether fractional nonablative laser resurfacing induces skin tightening. A literature review was performed to evaluate the clinical and histologic effects of fractional nonablative laser resurfacing and full coverage ablative resurfacing procedures. Fractional nonablative lasers produce excellent outcomes with minimal risk and morbidity for a variety of clinical conditions, including photodamaged skin, atrophic scars, surgical and burn scars. Efforts to induce robust fibroplasia in histologic specimens and skin tightening in the clinical setting have yielded inconsistent results. A better understanding of the histology of fractional laser resurfacing will help to optimize clinical outcomes.

  11. A Topical Anti-inflammatory Healing Regimen Utilizing Conjugated Linolenic Acid for Use Post-ablative Laser Resurfacing of the Face: A Randomized, Controlled Trial

    PubMed Central

    Goldman, Mitchel P.

    2017-01-01

    Background: Fractionated, ablative lasers are usually associated with post-treatment erythema, edema, and crusting, which can last from 5 to 14 days. Conjugated linolenic acid, an omega-5 fatty acid, has significant antioxidant and anti-inflammatory properties, and has been shown to stimulate keratinocyte proliferation and epidermal regeneration. By modulating the early inflammatory milieu and directly affecting skin structure and function, conjugated linolenic acid might therefore shorten downtime following fractionated ablative laser resurfacing of the face. Objective: To evaluate the efficacy and subject satisfaction of a topical regimen containing conjugated linolenic acid derived from pomegranate seed extract in accelerating wound healing and improving skin quality following fractionated ablative laser resurfacing of the face. Materials and Methods: Thirty-four subjects were enrolled and received fractionated CO2 laser resurfacing. Subjects were randomized to use the test healing regimen (n=24) or 1% dimethicone ointment (n=10) post-procedure. The primary endpoint was the degree of erythema, edema, crusting, and exudation evaluated by a blinded clinician at post-treatment Days 1,3,7,10, 14, and 30. Secondary endpoints included a blinded evaluator assessment of the degree of wrinkling and elastosis using the Fitzpatrick-Goldman Wrinkle and Elastosis Scale; subject-assessed degree of pain, itching, tightness, oozing, and crusting; and subject overall satisfaction. Results: Subjects who applied the topical conjugated linolenic acid healing regimen experienced significantly reduced edema on post-procedure Day 3 (p=0.04), and itching on Days 1 and 3 (p=0.03 and p=0.04). Both regimens produced significant improvements in wrinkling and elastosis at Days 14 and 30 post-treatment, with conjugated linolenic acid outperforming placebo in improvements in wrinkling at Day 14. Both regimens were well tolerated with no statistical differences in adverse events or subject

  12. A Topical Anti-inflammatory Healing Regimen Utilizing Conjugated Linolenic Acid for Use Post-ablative Laser Resurfacing of the Face: A Randomized, Controlled Trial.

    PubMed

    Wu, Douglas C; Goldman, Mitchel P

    2017-10-01

    Background: Fractionated, ablative lasers are usually associated with post-treatment erythema, edema, and crusting, which can last from 5 to 14 days. Conjugated linolenic acid, an omega-5 fatty acid, has significant antioxidant and anti-inflammatory properties, and has been shown to stimulate keratinocyte proliferation and epidermal regeneration. By modulating the early inflammatory milieu and directly affecting skin structure and function, conjugated linolenic acid might therefore shorten downtime following fractionated ablative laser resurfacing of the face. Objective: To evaluate the efficacy and subject satisfaction of a topical regimen containing conjugated linolenic acid derived from pomegranate seed extract in accelerating wound healing and improving skin quality following fractionated ablative laser resurfacing of the face. Materials and Methods: Thirty-four subjects were enrolled and received fractionated CO2 laser resurfacing. Subjects were randomized to use the test healing regimen (n=24) or 1% dimethicone ointment (n=10) post-procedure. The primary endpoint was the degree of erythema, edema, crusting, and exudation evaluated by a blinded clinician at post-treatment Days 1,3,7,10, 14, and 30. Secondary endpoints included a blinded evaluator assessment of the degree of wrinkling and elastosis using the Fitzpatrick-Goldman Wrinkle and Elastosis Scale; subject-assessed degree of pain, itching, tightness, oozing, and crusting; and subject overall satisfaction. Results: Subjects who applied the topical conjugated linolenic acid healing regimen experienced significantly reduced edema on post-procedure Day 3 ( p =0.04), and itching on Days 1 and 3 ( p =0.03 and p =0.04). Both regimens produced significant improvements in wrinkling and elastosis at Days 14 and 30 post-treatment, with conjugated linolenic acid outperforming placebo in improvements in wrinkling at Day 14. Both regimens were well tolerated with no statistical differences in adverse events or

  13. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  14. Review of Laser Ablation Process for Single Wall Carbon Nanotube Production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2003-01-01

    Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers

  15. Lithium isotope fractionation by diffusion in minerals Part 2: Olivine

    NASA Astrophysics Data System (ADS)

    Richter, Frank; Chaussidon, Marc; Bruce Watson, E.; Mendybaev, Ruslan; Homolova, Veronika

    2017-12-01

    Recent experiments have shown that lithium isotopes can be significantly fractionated by diffusion in silicate liquids and in augite. Here we report new laboratory experiments that document similarly large lithium isotopic fractionation by diffusion in olivine. Two types of experiments were used. A powder-source method where lithium from finely ground spodumene (LiAlSi2O6) diffused into oriented San Carlos olivine, and piston cylinder annealing experiments where Kunlun clinopyroxene (∼30 ppm lithium) and oriented San Carlos olivine (∼2 ppm lithium) were juxtaposed. The lithium concentration along traverses across the run products was measured using both laser ablation as a source for a Varian 820-MS quadrupole mass spectrometer and a CAMECA 1270 secondary ion mass spectrometer. The CAMECA 1270 was also used to measure the lithium isotopic fractionation across olivine grains recovered from the experiments. The lithium isotopes were found to be fractionationed by many tens of permil in the diffusion boundary layer at the grain edges as a result of 6Li diffusing significantly faster than 7Li. The lithium concentration and isotopic fractionation data across the olivine recovered from the different experiments were modeled using calculations in which lithium was assumed to be of two distinct types - one being fast diffusing interstitial lithium, the other much less mobile lithium on a metal site. The two-site diffusion model involves a large number of independent parameters and we found that different choices of the parameters can produce very comparable fits to the lithium concentration profiles and associated isotopic fractionation. Because of this nonuniqueness we are able to determine only a range for the relative diffusivity of 6Li compared to 7Li. When the mass dependence of lithium diffusion is parameterized as D6Li /D7Li =(7 / 6) β , the isotope fractionation for diffusion along the a and c crystallographic direction of olivine can be fit by β = 0.4 ± 0

  16. A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.

    2014-01-01

    Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column

  17. Effect of amine structure on CO2 capture by polymeric membranes.

    PubMed

    Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki

    2017-01-01

    Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO 2 separation properties over H 2 . However, the CO 2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO 2 determining agent in the current CO 2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO 2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO 2 permeability coefficient of MEA containing membrane was 604 barrer with CO 2 selectivity of 58.5 over H 2 , which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO 2 -selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO 2 separation performance.

  18. Effect of amine structure on CO2 capture by polymeric membranes

    PubMed Central

    Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki

    2017-01-01

    Abstract Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO2 separation properties over H2. However, the CO2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO2 determining agent in the current CO2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO2 permeability coefficient of MEA containing membrane was 604 barrer with CO2 selectivity of 58.5 over H2, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO2-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO2 separation performance. PMID:29383045

  19. First bite syndrome: our experience of laser tympanic plexus ablation.

    PubMed

    Amin, N; Pelser, A; Weighill, J

    2014-02-01

    First bite syndrome is a condition characterised by severe facial pain brought on by the first bite of each meal. This can severely affect the patient's ability to eat. We present a 70-year-old woman for whom we performed a laser ablation of the left ear tympanic plexus, as treatment of first bite syndrome. A permeatal approach was used to raise a tympanomeatal flap. The tympanic plexus was identified on the promontory and a 4 mm2 area of the plexus was ablated using CO2 laser. The flap was repositioned and a dressing was placed with topical antibiotics. At two-month follow up, there was full resolution of the patient's symptoms. First bite syndrome carries a high morbidity; treatment options are variable, and often unsuccessful. We describe the first documented case of laser tympanic plexus ablation, with a very effective initial response. This procedure represents a useful therapeutic option for first bite syndrome.

  20. CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma: specific technical aspects and clinical results.

    PubMed

    Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L

    2013-06-01

    This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  1. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  2. Mechanistic Comparison of "Nearly Missed" Versus "On-Target" Rotor Ablation.

    PubMed

    Yamazaki, Masatoshi; Avula, Uma Mahesh R; Berenfeld, Omer; Kalifa, Jérôme

    2015-08-01

    This study used advanced optical mapping techniques to examine atrial fibrillation (AF) dynamics before and after 2 distinct electrogram-based ablation strategies: complex fractionated atrial electrograms (CFAEs) and DFmax/rotor ablation. Among the electrogram analytical features proposed to unravel the atrial regions that perpetuate AF, CFAEs, highest dominant frequency sites (DFmax), and, more recently, phase analysis-enabled rotor mapping have received the largest attention. Still, the mechanisms by which these approaches modulate AF dynamics and lead to AF termination are unknown. In Langendorff-perfused sheep hearts, AF was maintained by the continuous perfusion of acetylcholine and high-resolution endocardial-epicardial optical videos were recorded from the left atrial free wall and the posterior left atrium. Then, DFmax/rotor regions (n = 7), or CFAE regions harboring the highest wavebreak density (HWD) (n = 5), were targeted with a 4F ablation catheter (5 to 15 W, 30 to 60 s/point). Thereafter, we examined the changes in AF dynamics and whether AF terminated. DFmax/rotor point ablation resulted in a significant decrease in DFmax values. In 2 animals AF terminated, whereas in the remaining 5 animals the post-ablation DFmax domain remained in the vicinity of its pre-ablation location. However, after HWD/CFAEs density ablation, DFmax values did not change, AF did not terminate, and post-ablation DFmax domains relocated from the left atrial free wall to the pulmonary vein-posterior left atrium region. In another group of hearts (n = 12), we observed that upon a progressive increase in acetylcholine concentration-mimicking the acute electrophysiological changes occurring after ablation-3-dimensional rotors drifted from one atrial region to another along large gradients of myocardial thickness. "On-target" DFmax/rotor ablation leads to the annihilation of the fibrillation-driving rotor. This translates into large decreases in AF frequency or AF termination. In

  3. Intraprocedure contrast enhanced ultrasound: the value in assessing the effect of ultrasound-guided high intensity focused ultrasound ablation for uterine fibroids.

    PubMed

    Peng, Song; Hu, Liang; Chen, Wenzhi; Chen, Jinyun; Yang, Caiyong; Wang, Xi; Zhang, Rong; Wang, Zhibiao; Zhang, Lian

    2015-04-01

    To investigate the value of microbubble contrast-enhanced ultrasound (CEUS) in evaluating the treatment response of uterine fibroids to HIFU ablation. Sixty-eight patients with a solitary uterine fibroid from the First Affiliated Hospital of Chongqing Medical University were included and analyzed. All patients underwent pre- and post-treatment magnetic resonance imaging (MRI) with a standardized protocol, as well as pre-evaluation, intraprocedure, and immediate post-treatment CEUS. CEUS and MRI were compared by different radiologists. In comparison with MRI, CEUS showed that the size of fibroids, volume of fibroids, size of non-perfused regions, non-perfused volume (NPV) or fractional ablation (NPV ratio) was similar to that of MRI. In terms of CEUS examination results, the median volume of fibroids was 75.2 (interquartile range, 34.2-127.3) cm(3), the median non-perfused volume was 54.9 (interquartile range, 28.0-98.1) cm(3), the mean fractional ablation was 83.7±13.6 (range, 30.0-100.0)%. In terms of MRI examination results, the median volume of fibroids was 74.1 (interquartile range, 33.4-116.2) cm(3). On the basis of contrast-enhanced T1-weighted images immediately after HIFU treatment, the median non-perfused volume was 58.5 (interquartile range, 27.7-100.0) cm(3), the average fractional ablation was 84.2±14.2 (range, 40.0-100.0)%. CEUS clearly showed the size of fibroids and the non-perfused areas of the fibroid. Results from CEUS correlated well with results obtained from MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Echo Decorrelation Imaging of Rabbit Liver and VX2 Tumor during In Vivo Ultrasound Ablation.

    PubMed

    Fosnight, Tyler R; Hooi, Fong Ming; Keil, Ryan D; Ross, Alexander P; Subramanian, Swetha; Akinyi, Teckla G; Killin, Jakob K; Barthe, Peter G; Rudich, Steven M; Ahmad, Syed A; Rao, Marepalli B; Mast, T Douglas

    2017-01-01

    In open surgical procedures, image-ablate ultrasound arrays performed thermal ablation and imaging on rabbit liver lobes with implanted VX2 tumor. Treatments included unfocused (bulk ultrasound ablation, N = 10) and focused (high-intensity focused ultrasound ablation, N = 13) exposure conditions. Echo decorrelation and integrated backscatter images were formed from pulse-echo data recorded during rest periods after each therapy pulse. Echo decorrelation images were corrected for artifacts using decorrelation measured prior to ablation. Ablation prediction performance was assessed using receiver operating characteristic curves. Results revealed significantly increased echo decorrelation and integrated backscatter in both ablated liver and ablated tumor relative to unablated tissue, with larger differences observed in liver than in tumor. For receiver operating characteristic curves computed from all ablation exposures, both echo decorrelation and integrated backscatter predicted liver and tumor ablation with statistically significant success, and echo decorrelation was significantly better as a predictor of liver ablation. These results indicate echo decorrelation imaging is a successful predictor of local thermal ablation in both normal liver and tumor tissue, with potential for real-time therapy monitoring. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

    PubMed

    Gómez-Muñoz, B; Case, S D C; Jensen, L S

    2016-03-01

    The combined effects of pig slurry acidification, subsequent separation techniques and biochar production from the solid fraction on N mineralisation and N2O and CO2 emissions in soil were investigated in an incubation experiment. Acidification of pig slurry increased N availability from the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Abundance of Atmospheric CO{sub 2} in Ocean Exoplanets: a Novel CO{sub 2} Deposition Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, A.; Sasselov, D.; Podolak, M., E-mail: amitlevi.planetphys@gmail.com

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO{sub 2}, the amount of CO{sub 2} dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO{sub 2}. We find that, in a steady state, the abundance of CO{sub 2} in the atmospheremore » has two possible states. When wind-driven circulation is the dominant CO{sub 2} exchange mechanism, an atmosphere of tens of bars of CO{sub 2} results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO{sub 2} deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO{sub 2} is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO{sub 2} into the atmosphere to increase the greenhouse effect.« less

  7. Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin

    2017-12-01

    In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr

  8. Methane-producing bacteria - Natural fractionations of the stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Games, L. M.; Hayes, J. M.; Gunsalus, R. P.

    1978-01-01

    Procedures for determining the C-13/C-12 fractionation factors for methane-producing bacteria are described, and the fractionation factors (CO2/CH4) for the reduction of CO2 to CH4 by pure cultures are 1.045 for Methanosarcina barkeri at 40 C, 1.061 for Methanobacterium strain M.o.H. at 40 C, and 1.025 for Methanobacterium thermoautotrophicum at 65 C. The data are consistent with the field determinations if fractionation by acetate dissimilation approximates fractionations observed in natural environments. In other words, the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2H/CH3) approximating the observed CO2/CH4 fractionation.

  9. Fractionated laser skin resurfacing treatment complications: a review.

    PubMed

    Metelitsa, Andrei I; Alster, Tina S

    2010-03-01

    Fractional photothermolysis represents a new modality of laser skin resurfacing that was developed to provide a successful clinical response while minimizing postoperative recovery and limiting treatment complications. To review all of the reported complications that develop as a result of fractional ablative and nonablative laser skin resurfacing. A literature review was based on a MEDLINE search (1998-2009) for English-language articles related to laser treatment complications and fractional skin resurfacing. Articles presenting the highest level of evidence and the most recent reports were preferentially selected. Complications with fractional laser skin resurfacing represent a full spectrum of severity and can be longlasting. In general, a greater likelihood of developing post-treatment complications is seen in sensitive cutaneous areas and in patients with intrinsically darker skin phototypes or predisposing medical risk factors. Although the overall rate of complications associated with fractional laser skin resurfacing is much lower than with traditional ablative techniques, recent reports suggest that serious complications can develop. An appreciation of all of the complications associated with fractional laser skin resurfacing is important, especially given that many of them can be potentially prevented. The authors have indicated no significant interest with commercial supporters.

  10. CO2 flux from Javanese mud volcanism.

    PubMed

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  11. CO2 flux from Javanese mud volcanism

    NASA Astrophysics Data System (ADS)

    Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-06-01

    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  12. Single-coal-particle combustion in O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejarano, Paula A.; Levendis, Yiannis A.

    A fundamental investigation has been conducted on the combustion of single particles of a bituminous coal (45-53, 75-90, and 150-180 {mu}m), of a lignite coal (45-53 and 75-90 {mu}m), and of spherical and monodisperse synthetic chars (43 {mu}m) at increasing O{sub 2} mole fractions in either N{sub 2} or CO{sub 2} balance gases. The synthetic particles were used to facilitate the observation of combustion phenomena with minimum distractions from particle-to-particle variabilities. The laboratory setup consisted of a drop-tube furnace operated at temperatures of 1400 and 1600 K. A calibrated three-color pyrometer, interfaced with the furnace, recorded luminous particle temperature-time profiles.more » Experimental results revealed that coal particles burned at higher mean temperatures and shorter combustion times in O{sub 2}/N{sub 2} than in O{sub 2}/CO{sub 2} environments at analogous oxygen mole fractions. In the case of the bituminous coal used herein and for the experimental combustion conditions tested, measured volatile and char temperatures as in air (21% O{sub 2}) were attained with an oxygen content in the CO{sub 2} mixtures in the neighborhood of 30%. Bituminous coal volatile and char burnout times comparable to those in air (21% O{sub 2}) were attained with oxygen content in the CO{sub 2} mixtures in the range of 30-35%. In the case of the lignite coal burned, the corresponding differences in oxygen mole fractions, which result in similar particle temperatures and burnout times in the two different gas mixtures, were less pronounced. (author)« less

  13. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years

    NASA Technical Reports Server (NTRS)

    Jasper, J. P.; Hayes, J. M.; Mix, A. C.; Prahl, F. G.

    1994-01-01

    Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C [is equivalent to epsilon(p)] in a central equatorial Pacific sediment core that spans the last approximately 255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic composition of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon(p), derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 [is equivalent to c(e)] based on a new, site-specific calibration of the relationship between epsilon(p) and c(e). The calibration was based on reassessment of existing epsilon(p) versus c(e) data, which support a physiologically based model in which epsilon(p) is inversely related to c(e). Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index U(K/37). Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon(p) and 1/c(e). These are discussed in detail and it is concluded that the observed record of epsilon(p) most probably reflects significant variations in delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from approximately 110 microatmospheres during glacial intervals (ocean > atmosphere) to approximately 60 microatmospheres during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial

  14. Ablation effects in oxygen-lead fragmentation at 2.1 GeV/nucleon

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1984-01-01

    The mechanism of particle evaporation was used to examine ablation effects in the fragmentation of 2.1 GeV/nucleon oxygen nuclei by lead targets. Following the initial abrasion process, the excited projectile prefragment is assumed to statistically decay in a manner analogous to that of a compound nucleus. The decay probabilities for the various particle emission channels are calculated by using the EVAP-4 Monte Carlo computer program. The input excitation energy spectrum for the prefragment is estimated from the geometric ""clean cut'' abrasion-ablation model. Isotope production cross sections are calculated and compared with experimental data and with the predictions from the standard geometric abrasion-ablation fragmentation model.

  15. Effect of ZrO2 Powders on the Pyrolysis of Polycarbosilanes Coating Under Laser Ablation

    NASA Astrophysics Data System (ADS)

    Cheng, Han; Chen, Zhaofeng; Tao, Jie; Yan, Bo; Li, Cong; Wang, Liangbing; Zhang, Ying; Fang, Dan; Wan, Shuicheng; Wu, Wangping

    Aircrafts hold the outstanding mastery of the sky in modern wars, however the laser beam weapons can carry out laser attacking to aircrafts. The purpose of the present paper is to research on a new type laser protective material. Polycarbosilanes (PCS)/divinylbenzene mixtures containing ZrO2 powders were brushed to the surface of the aluminum alloy plates and then cured at 150°C for 6 h. The PCS-coated plates were ablated by laser for 3 s. The phase identification of as-ablated powders was examined by X-ray diffraction. The results indicated that the as-ablated powders of cured PCS were composed of major phase β-SiC and smaller amounts of free carbon. The PCS composite coating played a certain role of laser ablation resistance. The effect of added ZrO2 powders on the pyrolysis of PCS-coating under laser ablation is conspicuous.

  16. Twelve-month prostate volume reduction after MRI-guided transurethral ultrasound ablation of the prostate.

    PubMed

    Bonekamp, David; Wolf, M B; Roethke, M C; Pahernik, S; Hadaschik, B A; Hatiboglu, G; Kuru, T H; Popeneciu, I V; Chin, J L; Billia, M; Relle, J; Hafron, J; Nandalur, K R; Staruch, R M; Burtnyk, M; Hohenfellner, M; Schlemmer, H-P

    2018-06-25

    To quantitatively assess 12-month prostate volume (PV) reduction based on T2-weighted MRI and immediate post-treatment contrast-enhanced MRI non-perfused volume (NPV), and to compare measurements with predictions of acute and delayed ablation volumes based on MR-thermometry (MR-t), in a central radiology review of the Phase I clinical trial of MRI-guided transurethral ultrasound ablation (TULSA) in patients with localized prostate cancer. Treatment day MRI and 12-month follow-up MRI and biopsy were available for central radiology review in 29 of 30 patients from the published institutional review board-approved, prospective, multi-centre, single-arm Phase I clinical trial of TULSA. Viable PV at 12 months was measured as the remaining PV on T2-weighted MRI, less 12-month NPV, scaled by the fraction of fibrosis in 12-month biopsy cores. Reduction of viable PV was compared to predictions based on the fraction of the prostate covered by the MR-t derived acute thermal ablation volume (ATAV, 55°C isotherm), delayed thermal ablation volume (DTAV, 240 cumulative equivalent minutes at 43°C thermal dose isocontour) and treatment-day NPV. We also report linear and volumetric comparisons between metrics. After TULSA, the median 12-month reduction in viable PV was 88%. DTAV predicted a reduction of 90%. Treatment day NPV predicted only 53% volume reduction, and underestimated ATAV and DTAV by 36% and 51%. Quantitative volumetry of the TULSA phase I MR and biopsy data identifies DTAV (240 CEM43 thermal dose boundary) as a useful predictor of viable prostate tissue reduction at 12 months. Immediate post-treatment NPV underestimates tissue ablation. • MRI-guided transurethral ultrasound ablation (TULSA) achieved an 88% reduction of viable prostate tissue volume at 12 months, in excellent agreement with expectation from thermal dose calculations. • Non-perfused volume on immediate post-treatment contrast-enhanced MRI represents only 64% of the acute thermal ablation volume

  17. Carbon dioxide (CO2) laser treatment of cutaneous papillomas in a common snapping turtle, Chelydra serpentina.

    PubMed

    Raiti, Paul

    2008-06-01

    Carbon dioxide (CO2) laser was used to treat multiple cutaneous papillomas on an adult female common snapping turtle, Chelydra serpentina serpentina. A combination of excisional and ablative techniques provided excellent intraoperative visibility and postoperative results due to the laser's unique ability to incise and vaporize soft tissue.

  18. Skin vaccination via fractional infrared laser ablation - Optimization of laser-parameters and adjuvantation.

    PubMed

    Scheiblhofer, Sandra; Strobl, Anna; Hoepflinger, Veronika; Thalhamer, Theresa; Steiner, Martin; Thalhamer, Josef; Weiss, Richard

    2017-03-27

    Methods to deliver an antigen into the skin in a painless, defined, and reproducible manner are essential for transcutaneous immunization (TCI). Here, we employed an ablative fractional infrared laser (P.L.E.A.S.E. Professional) to introduce clinically relevant vaccines into the skin. To elicit the highest possible antibody titers with this system, we optimized different laser parameters, such as fluence and pore number per area, and tested various adjuvants. BALB/c mice were immunized with Hepatitis B surface antigen (HBsAg) by laser-microporation. Adjuvants used were alum, CRM 197 , monophosphoryl lipid A, heat-labile enterotoxin subunit B of E. coli (LT-B), and CpG ODN1826. The influence of different fluences (2.1 to 16.8J/cm 2 ) and pore densities (5-15%) was investigated. Furthermore, immunogenicity of HBsAg and the commercially available conjugate vaccines ActHIB® and Menveo® applied via TCI was compared to standard i.m. injection. Antigen-specific antibody titers were assessed by luminometric ELISA. Antibody titers against HBsAg were dependent on pore depth and peaked at a fluence of 8.4J/cm 2 . Immunogenicity was independent of pore density. Adjuvantation with alum significantly reduced antibody titers after TCI, whereas other adjuvants only induced marginal changes in total IgG titers. LT-B and CpG shifted the polarization of the immune response as indicated by decreased IgG1/IgG2a ratios. HBsAg/LT-B applied via TCI induced similar antibody titers compared to i.m. injection of HBsAg/alum. In contrast to i.m. injection, we observed a dose response from 5 to 20μg after TCI. Both, ActHIB® and Menveo® induced high antibody titers after TCI, which were comparable to i.m. injection. Alum, the most commonly used adjuvant, is contraindicated for transcutaneous vaccination via laser-generated micropores. TCI with optimized laser parameters induces high antibody titers, which cannot be significantly increased by the tested adjuvants. Commercially available

  19. Tektite ablation - Some confirming calculations.

    NASA Technical Reports Server (NTRS)

    O'Keefe, J. A., III; Silver, A. D.; Cameron, W. S.; Adams , E. W.; Warmbrod, J. D.

    1973-01-01

    The calculation of tektite ablation has been redone, taking into account transient effects, internal radiation, melting and nonequilibrium vaporization of the glass, and the drag effect of the flanges. It is found that the results confirm the earlier calculations of Chapman and his group and of Adams and his co-workers. The general trend of the results is not sensitive to reasonable changes of the physical parameters. The ablation is predominantly by melting rather than by vaporization at all velocities up to 11 km/sec; this is surprising in view of the lack of detectable melt flow in most tektites. Chemical effects have not been considered.

  20. Photodissociation dynamics of gaseous CpCo(CO)2 and ligand exchange reactions of CpCoH2 with C3H4, C3H6, and NH3.

    PubMed

    Oana, Melania; Nakatsuka, Yumiko; Albert, Daniel R; Davis, H Floyd

    2012-05-31

    The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).

  1. H2CO3(s): a new candidate for CO2 capture and sequestration.

    PubMed

    Tossell, J A

    2009-04-01

    To reduce the magnitude of anthropogenic global warming it is necessary to remove CO2(g) from the effluent streams of coal-fired power plants and to sequester the CO2 either as a liquid or by reaction with other compounds. A major difficulty in achieving this goal arises from the very weak acidity of CO2(g), causing it to react only incompletely with weak bases, although this weak interaction does provide a means for "stripping" the CO2 from the acid-base complex at high temperatures. Reaction with strong bases like Na0H yields more stable complexes, but massive amounts of chemical reactants would need to be purchased and chemical products like NaHCO3 then stored. However, when gas-phase CO2 reacts with the weak base water (or when bicarbonate reacts with strong acid) the unstable product monomeric "H2CO3" can be formed. The free energy required is about 16 kcal/mol in the gas phase and about 10 kcal/mol in aqueous solution. This energy can be supplied by particle or photon excitation and is only a small fraction ofthe energy released when a mole of CH4 is converted to a mole of CO2. Although this monomeric compound is highly unstable, its oligomers are considerably more stable, due to internal H-bonding, with free energies for the larger oligomers in the gas phase which are about 4 kcal/(mol of H2CO3) lower, only about 6 kcal/mol H2CO3 higher than the gas-phase combination of CO2 and H2O at room temperature. Also, at lower temperature the entropic penalty for the oligomer is less and oligomeric H2CO3 becomes stable around the sublimation temperature of dry ice. This indicates that it may be possible to capture gas-phase CO2 directly, using only cheap and abundant H2O as a reactant, and to store the resulting (H2CO3)n as a oligomeric solid at only moderately cold temperatures. These conclusions are based on quantum computations that accurately reproduce the structures, spectra, and stabilities of H2CO3 oligomers. Methods for producing and characterizing the H2CO3

  2. Safe and effective one-session fractional skin resurfacing using a carbon dioxide laser device in super-pulse mode: a clinical and histologic study.

    PubMed

    Trelles, Mario A; Shohat, Michael; Urdiales, Fernando

    2011-02-01

    Carbon dioxide (CO(2)) laser ablative fractional resurfacing produces skin damage, with removal of the epidermis and variable portions of the dermis as well as associated residual heating, resulting in new collagen formation and skin tightening. The nonresurfaced epidermis helps tissue to heal rapidly, with short-term postoperative erythema. The results for 40 patients (8 men and 32 women) after a single session of a fractional CO(2) resurfacing mode were studied. The treatments included resurfacing of the full face, periocular upper lip, and residual acne scars. The patients had skin prototypes 2 to 4 and wrinkle degrees 1 to 3. The histologic effects, efficacy, and treatment safety in various clinical conditions and for different phototypes are discussed. The CO(2) laser for fractional treatment is used in super-pulse mode. The beam is split by a lens into several microbeams, and super-pulse repetition is limited by the pulse width. The laser needs a power adaptation to meet the set fluence per microbeam. Laser pulsing can operate repeatedly on the same spot or be moved randomly over the skin, using several passes to achieve a desired residual thermal effect. Low, medium, and high settings are preprogrammed in the device, and they indicate the strength of resurfacing. A single treatment was given with the patient under topical anesthesia. However, the anesthesia was injected on areas of scar tissue. Medium settings (2 Hz, 30 W, 60 mJ) were used, and two passes were made for dark skins and degree 1 wrinkles. High settings (2 Hz, 60 W, 120 mJ) were used, and three passes were made for degree 3 wrinkles and scar tissue. Postoperatively, resurfaced areas were treated with an ointment of gentamycin, Retinol Palmitate, and DL-methionine (Novartis; Farmaceutics, S.A., Barcelona, Spain). Once epithelialization was achieved, antipigment and sun protection agents were recommended. Evaluations were performed 15 days and 2 months after treatment by both patients and

  3. Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels.

    PubMed

    Asensio, Jose Salvador Rubio; Rachmilevitch, Shimon; Bloom, Arnold J

    2015-05-01

    A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3 (-)) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3 (-) assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3 (-) assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3 (-) or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3 (-), shoot organic N, (15)N isotope fractionation, (15)NO3 (-) assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3 (-) assimilation and thus decreased dark respiration in the plants reliant on NO3 (-). These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge.

    PubMed

    De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F

    2018-06-01

    In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    PubMed

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  6. Interaction of gases with ablative composites. I - Ar, CO2, and N2

    NASA Technical Reports Server (NTRS)

    King, C. A.; Wightman, J. P.

    1974-01-01

    The sorption of argon, carbon dioxide, and nitrogen on two heat shield composites (SLA-561 and SLA-561V) and on the SLA components was measured over the pressure range of 0.001 to 760 torr and in the temperature range of 30 to 50 C. The sorption of the gases by both the composites and the components varied directly with pressure. The sorption of CO2 by the phenolic spheres and the silicone elastomer and of Ar by the silicone elastomer varied inversely with temperature. The mechanism involved in the gas sorption was primarily absorption.

  7. CO2 flux from Javanese mud volcanism

    PubMed Central

    Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-01-01

    Abstract Studying the quantity and origin of CO2 emitted by back‐arc mud volcanoes is critical to correctly model fluid‐dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s−1 (117 t d−1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d−1, comparable with the expected back‐arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man‐portable active remote sensing instruments for probing natural gas releases, enabling bottom‐up quantification of CO2 fluxes. PMID:28944134

  8. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  9. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  10. Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean

    2011-01-01

    An ablative composite is low-density (0.25 to 0.40 g/cu cm), easy to fabricate, and superior to the current state-of-the-art ablator (phenolic impregnated carbon ablator, PICA) in terms of decomposition temperature, char yield, and mechanical strength. Initial ablative testing with a CO2 laser under high-heat-flux (1,100 W/sq cm) conditions showed these new ablators are over twice as effective as PICA in terms of weight loss, as well as transfer of heat through the specimen. The carbon fiber/poly(azomethine) composites have the same density as PICA, but are 8 to 11 times stronger to irreversible breaking by tensile compression. In addition, polyazomethine char yields by thermogravimetric analysis are 70 to 80 percent at 1,000 C. This char yield is 10 to 20 percent higher than phenolic resins, as well as one of the highest char yields known for any polymer. A high char yield holds the composite together better toward shearing forces on reentry, as well as reradiates high heat fluxes. This innovative composite is stronger than PICA, so multiple pieces can be sealed together without fracture. Researchers have also studied polyazomethines before as linear polymers. Due to poor solubility, these polymers precipitate from the polymerization solvent as a low-molecular-weight (2 to 4 repeat units) powder. The only way found to date to keep linear polyazomethines in solution is by adding solubilizing side groups. However, these groups sacrifice certain polymer properties. These hyperbranched polyazomethines are high molecular weight and fully aromatic.

  11. Use of a novel fractional CO2 laser for the treatment of genitourinary syndrome of menopause: 1-year outcomes.

    PubMed

    Sokol, Eric R; Karram, Mickey M

    2017-07-01

    To assess safety and efficacy of a fractional CO2 laser therapy for the treatment of genitourinary syndrome of menopause (GSM) with follow-up to 1 year posttreatment. Women presenting with GSM and meeting inclusion criterion were enrolled. Visual Analog Scales were used to grade vaginal pain, burning, itching, dryness, dyspareunia, and dysuria. Dilators were used to rate vaginal elasticity at baseline and at each follow-up visit. Before each treatment and at follow-up, Vaginal Health Index scoring and Female Sexual Function Index questionnaires were completed. Women received three vaginal laser treatments spaced 6 weeks apart. Participant satisfaction was measured on 5-point Likert scales (1 = very dissatisfied, 5 = very satisfied). Of 30 women (mean age 58.6 ± 8.8 years), three were lost to follow-up at 3 months and six at 1 year. None were discontinued or withdrew due to an adverse event. Average improvement in Visual Analog Scale scores for all symptom categories was statistically significant at 3 months and remained so through 1 year, except dysuria. Differences between data at 3 months and 1 year were not statistically significant, indicating persistence of positive outcomes. Average overall improvement in pain was 1.9 (±3.4), burning 1.9 (±3.1), itching 1.4 (±1.9), dryness 5.9 (±2.8), dyspareunia 4.9 (±3.3), and dysuria 0.9 (±3.1). Improvement in average Vaginal Health Index and Female Sexual Function Index scores was also statistically significant (P < 0.0001). Of 19 women undergoing dilator examination at 1 year, 18 (94.8%) were comfortable with the same or larger dilator size. Twenty-two of 24 women (92%) were satisfied or extremely satisfied with the treatment at 1 year. Based on study data up to 1 year, the fractional CO2 laser may be an effective and safe treatment for women suffering from symptoms of GSM, although additional studies with larger populations and placebo control is needed to confirm these results.

  12. Treatment of acne scars and wrinkles in asian patients using carbon-dioxide fractional laser resurfacing: its effects on skin biophysical profiles.

    PubMed

    Hwang, Young Ji; Lee, Yu Na; Lee, Yang Won; Choe, Yong Beom; Ahn, Kyu Joong

    2013-11-01

    Although ablative fractional resurfacing is known to be effective against photoaging and acne scars, studies on its efficacy, safety and changes in the skin characteristics of Asians are limited. The aim of this study is to assess the efficacy and safety of carbon dioxide fractional laser (CO2FL) in Koreans treated for wrinkles and acne scars, and to define the changes in skin characteristics during recovery period. We administered one session of CO2FL on 10 acne scar patients and 14 wrinkles patients with skin types IV and V. The surveillance of efficacy and side effects along with the measurement of biophysical properties was carried out before 1 day, 1 week, 1 month and 3 months after treatment. Using a non-invasive method, skin barrier damage, erythema and bronzing of skin during the recovery period were assessed, and all of the items eventually returned to the pre-treatment level. Skin elasticity was measured in the wrinkle group, and the statistically significant effect was sustained throughout the next three months. The outcome of treatment was found to be better than 'moderate improvement' in both the acne scar and wrinkle groups. Further, there were no serious side effects three months post-procedure. CO2 FL is thought to be an effective and safe method for treating moderate to severe acne scars and wrinkles in Asians.

  13. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    PubMed Central

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  14. Biomarkers in Persistent AF and Heart Failure: Impact of Catheter Ablation Compared with Rate Control.

    PubMed

    Jones, David G; Haldar, Shouvik K; Donovan, Jacqueline; McDonagh, Theresa A; Sharma, Rakesh; Hussain, Wajid; Markides, Vias; Wong, Tom

    2016-09-01

    To investigate the effects of catheter ablation and rate control strategies on cardiac and inflammatory biomarkers in patients with heart failure and persistent atrial fibrillation (AF). Patients were recruited from the ARC-HF trial (catheter Ablation vs Rate Control for management of persistent AF in Heart Failure, NCT00878384), which compared ablation with rate control for persistent AF in heart failure. B-type natriuretic peptide (BNP), midregional proatrial natriuretic peptide (MR-proANP), apelin, and interleukin-6 (IL-6) were assayed at baseline, 3 months, 6 months, and 12 months. The primary end point, analyzed per-protocol, was changed from baseline at 12 months. Of 52 recruited patients, 24 ablation and 25 rate control subjects were followed to 12 months. After 1.2 ± 0.5 procedures, sinus rhythm was present in 22 (92%) ablation patients; under rate control, rate criteria were achieved in 23 (96%) of 24 patients remaining in AF. At 12 months, MR-proANP fell significantly in the ablation arm (-106.0 pmol/L, interquartile range [IQR] -228.2 to -60.6) compared with rate control (-28.7 pmol/L, IQR -69 to +9.5, P = 0.028). BNP showed a similar trend toward reduction (P = 0.051), with no significant difference in apelin (P = 0.13) or IL-6 (P = 0.68). Changes in MR-proANP and BNP correlated with peak VO2 and ejection fraction, and MR-proANP additionally with quality-of-life score. Catheter ablation, compared with rate control, in patients with heart failure and persistent AF was associated with significant reduction in MR-proANP, which correlated with physiological and symptomatic improvement. Ablation-based rhythm control may induce beneficial cardiac remodeling, unrelated to changes in inflammatory state. This may have prognostic implications, which require confirmation by event end point studies. © 2016 Wiley Periodicals, Inc.

  15. A kinetic study of Ca-containing ions reacting with O, O2, CO2 and H2O: implications for calcium ion chemistry in the upper atmosphere.

    PubMed

    Broadley, Sarah; Vondrak, Tomas; Wright, Timothy G; Plane, John M C

    2008-09-14

    A series of gas-phase reactions involving molecular Ca-containing ions was studied by the pulsed laser ablation of a calcite target to produce Ca+ in a fast flow of He, followed by the addition of reagents downstream and detection of ions by quadrupole mass spectrometry. Most of the reactions that were studied are important for describing the chemistry of meteor-ablated calcium in the earth's upper atmosphere. The following rate coefficients were measured: k(CaO+ + O --> Ca+ + O2) = (4.2 +/- 2.8) x 10(-11) at 197 K and (6.3 +/- 3.0) x 10(-11) at 294 K; k(CaO+ + CO --> Ca+ + CO2, 294 K) = (2.8 +/- 1.5) x 10(-10); k(Ca+.CO2 + O2 --> CaO2+ + CO2, 294 K) = (1.2 +/- 0.5) x10(-10); k(Ca+.CO2 + H2O --> Ca+.H2O + CO2) = (13.0 +/- 4.0) x 10(-10); and k(Ca+.H2O + O2 --> CaO2+ + H2O, 294 K) = (4.0 +/- 2.5) x 10(-10) cm3 molecule(-1) s(-1). The quoted uncertainties are a combination of the 1 sigma standard errors in the kinetic data and the systematic errors in the models used to extract the rate coefficients. Rate coefficients were also obtained for the following recombination (also termed association) reactions in He bath gas: k(Ca+.CO2 + CO2 --> Ca+.(CO2)2, 294 K) = (2.6 +/- 1.0) x 10(-29); k(Ca+.H2O + H2O --> Ca+.(H2O)2) = (1.6 +/- 1.1) x 10(-27); and k(CaO2+ + O2 --> CaO2+.O2) < 1 x 10(-31) cm6 molecule(-2) s(-1). These recombination rate coefficients, as well as those for the ligand-switching reactions listed above, were then interpreted using a combination of high level quantum chemistry calculations and RRKM theory using an inverse Laplace transform solution of the master equation. The surprisingly slow reaction between CaO+ and O was explained using quantum chemistry calculations on the lowest 2A', 2A'' and 4A'' potential energy surfaces. These calculations indicate that reaction mostly occurs on the 2A' surface, leading to production of Ca+ (2S) + O2(1 Delta g). The importance of this reaction for controlling the lifetime of Ca+ in the upper mesosphere and lower

  16. CO2 laser therapy of rhinophyma

    NASA Astrophysics Data System (ADS)

    Voigt, Peggy; Jovanovic, Sergije; Sedlmaier, Benedikt W.

    2000-06-01

    Laser treatment of skin changes has become common practice in recent years. High absorption of the CO2 laser wavelength in water is responsible for its low penetration dpt in biological tissue. Shortening the tissue exposure time minimizes thermic side effects of laser radiation such as carbonization and coagulation. This can be achieved with scanner systems that move the focused laser beam over a defined area by microprocessor-controlled rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scars, scars after common acne, wrinkles and rhinophyma. Laser ablation of rhinophyma is a stress-minimizing procedure for the surgeon and the patient, since it is nearly bloodless and can be performed under local anaesthesia. Cosmetically favorable reepithelization of the lasered surfaces is achieved within a very short period of time.

  17. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  18. New application of the long-pulsed Nd-YAG laser as an ablative resurfacing tool for skin rejuvenation: a 7-year study.

    PubMed

    Alshami, Mohammad Ali

    2013-09-01

    Carbon dioxide (CO2 ) and erbium-yttrium aluminum garnet (Er-YAG) lasers are the gold standards in ablative skin resurfacing. Neodymium-doped yttrium aluminum garnet (Nd-YAG) laser is considered a nonablative skin resurfacing laser whose usage is limited due to its high cost. To assess the efficacy and safety of Nd-YAG as an ablative resurfacing laser and to compare the results with those previously published for CO2 and Erbium-YAG lasers. A total of 296 patients (251 female and 45 male) with Fitzpatrick skin types III-IV and dermatological conditions amenable to ablative skin resurfacing participated in this study. Nd-YAG laser parameters assessed were wavelength (1064 nm), pulse duration (5 ms), fluence (10 J/cm(2) ), and spot size (8-10 mm). Efficacy of Nd-YAG laser was assessed by comparing pre- and posttreatment photographs. An improvement of 30-80% was observed in treated patients. The degree of improvement correlated positively with the number of laser sessions. The most common side effect was hyperpigmentation. Other side effects were less common and mild in intensity compared with published results for gold standard ablative lasers. Not only was the Nd-YAG laser found to be as effective as Er-YAG and CO2 lasers, but treated patients also had shorter recovery and treatment times, and at lower cost. © 2013 Wiley Periodicals, Inc.

  19. Robotically assisted ablation produces more rapid and greater signal attenuation than manual ablation.

    PubMed

    Koa-Wing, Michael; Kojodjojo, Pipin; Malcolme-Lawes, Louisa C; Salukhe, Tushar V; Linton, Nick W F; Grogan, Aaron P; Bergman, Dale; Lim, Phang Boon; Whinnett, Zachary I; McCarthy, Karen; Ho, Siew Yen; O'Neill, Mark D; Peters, Nicholas S; Davies, D Wyn; Kanagaratnam, Prapa

    2009-12-01

    Robotic remote catheter ablation potentially provides improved catheter-tip stability, which should improve the efficiency of radiofrequency energy delivery. Percentage reduction in electrogram peak-to-peak voltage has been used as a measure of effectiveness of ablation. We tested the hypothesis that improved catheter-tip stability of robotic ablation can diminish signals to a greater degree than manual ablation. In vivo NavX maps of 7 pig atria were constructed. Separate lines of ablation were performed robotically and manually, recording pre- and postablation peak-to-peak voltages at 10, 20, 30, and 60 seconds and calculating signal amplitude reduction. Catheter ablation settings were constant (25W, 50 degrees , 17 mL/min, 20-30 g catheter tip pressure). The pigs were sacrificed and ablation lesions correlated with NavX maps. Robotic ablation reduced signal amplitude to a greater degree than manual ablation (49 +/- 2.6% vs 29 +/- 4.5% signal reduction after 1 minute [P = 0.0002]). The mean energy delivered (223 +/- 184 J vs 231 +/- 190 J, P = 0.42), power (19 +/- 3.5 W vs 19 +/- 4 W, P = 0.84), and duration of ablation (15 +/- 9 seconds vs 15 +/- 9 seconds, P = 0.89) was the same for manual and robotic. The mean peak catheter-tip temperature was higher for robotic (45 +/- 5 degrees C vs 42 +/- 3 degrees C [P < 0.0001]). The incidence of >50% signal reduction was greater for robotic (37%) than manual (21%) ablation (P = 0.0001). Robotically assisted ablation appears to be more effective than manual ablation at signal amplitude reduction, therefore may be expected to produce improved clinical outcomes.

  20. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation

  1. Near-IR Image-Guided Laser Ablation of Demineralization on Tooth Occlusal Surfaces

    PubMed Central

    Tom, Henry; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2016-01-01

    Introduction Studies have shown that reflectance images at near-IR wavelengths coincident with higher water absorption are well-suited for image-guided laser ablation of carious lesions since the contrast between sound and demineralized enamel is extremely high and interference from stains is minimized. The objective of this study was to demonstrate that near-IR reflectance images taken at a wavelength range of 1,500–1,700 nm can be used to guide a 9.3 μm CO2 laser for the selective ablation of early demineralization on tooth occlusal surfaces. Methods The occlusal surfaces of ten sound human molars were used in this in vitro study. Shallow simulated caries lesions with random patterns and varying depth and position were produced on tooth occlusal surfaces. Sequential near-IR reflectance images at 1,500–1,700 nm were used to guide the laser for the selective removal of the demineralized enamel. Digital microscopy and polarization sensitive optical coherence tomography (PS-OCT) were used to assess selectivity. Results Images taken before and after lesion removal suggest that the demineralized areas were removed with high selectivity. Although the estimated volume of tissue ablated was typically higher than the initial lesion volume measured with PS-OCT, the volume of enamel removed by the laser correlated well with the initial lesion volume. Conclusion Sequential near-IR reflectance images at 1,500–1,700 nm can be used to guide a 9.3 μm CO2 laser for the selective ablation of early demineralization on tooth occlusal surfaces. PMID:26763111

  2. Efficacy of catheter ablation of atrial fibrillation beyond HATCH score.

    PubMed

    Tang, Ri-Bo; Dong, Jian-Zeng; Long, De-Yong; Yu, Rong-Hui; Ning, Man; Jiang, Chen-Xi; Sang, Cai-Hua; Liu, Xiao-Hui; Ma, Chang-Sheng

    2012-10-01

    HATCH score is an established predictor of progression from paroxysmal to persistent atrial fibrillation (AF). The purpose of this study was to determine if HATCH score could predict recurrence after catheter ablation of AF. The data of 488 consecutive paroxysmal AF patients who underwent an index circumferential pulmonary veins (PV) ablation were retrospectively analyzed. Of these patients, 250 (51.2%) patients had HATCH score = 0, 185 (37.9%) patients had HATCH score = 1, and 53 (10.9%) patients had HATCH score ≥ 2 (28 patients had HATCH score = 2, 23 patients had HATCH score = 3, and 2 patients had HATCH score = 4). The patients with HATCH score ≥ 2 had significantly larger left atrium size, the largest left ventricular end systolic diameter, and the lowest ejection fraction. After a mean follow-up of (823 ± 532) days, the recurrence rates were 36.4%, 37.8% and 28.3% from the HATCH score = 0, HATCH score = 1 to HATCH score ≥ 2 categories (P = 0.498). Univariate analysis revealed that left atrium size, body mass index, and failure of PV isolation were predictors of AF recurrence. After adjustment for body mass index, left atrial size and PV isolation, the HATCH score was not an independent predictor of recurrence (HR = 0.92, 95% confidence interval = 0.76 - 1.12, P = 0.406) in multivariate analysis. HATCH score has no value in prediction of AF recurrence after catheter ablation.

  3. Evaluation of corneal ablation by an optical parametric oscillator (OPO) at 2.94 μm and an Er:YAG laser and comparison to ablation by a 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Hoffman, Hanna J.; Nordquist, Robert E.; Eiferman, Richard A.

    1998-06-01

    Purpose: This study first evaluated the corneal ablation characteristics of (1) an Nd:YAG pumped OPO (Optical Parametric Oscillator) at 2.94 microns and (2) a short pulse Er:YAG laser. Secondly, it compared the histopathology and surface quality of these ablations with (3) a 193 nm excimer laser. Finally, the healing characteristics over 4 months of cat eyes treated with the OPO were evaluated. Methods: Custom designed Nd:YAG/OPO and Er:YAG lasers were integrated with a new scanning delivery system to perform PRK myopic correction procedures. After initial ablation studies to determine ablation thresholds and rates, human cadaver eyes and in-vivo cat eyes were treated with (1) a 6.0 mm Dia, 30 micron deep PTK ablation and (2) a 6.0 mm Dia, -5.0 Diopter PRK ablation. Cadaver eyes were also treated with a 5.0 mm Dia, -5.0 Diopter LASIK ablation. Finally, cats were treated with the OPO in a 4 month healing study. Results: Ablation thresholds below 100 mJ/cm2 and ablation rates comparable to the excimer were demonstrated for both infrared systems. Light Microscopy (LM) showed no thermal damage for low fluence treatments, but noticeable thermal damage at higher fluences. SEM and TEM revealed morphologically similar surfaces for low fluence OPO and excimer samples with a smooth base and no evidence of collagen shrinkage. The Er:YAG and higher fluence OPO treated samples revealed more damage along with visible collagen coagulation and shrinkage in some cases. Healing was remarkably unremarkable. All eyes had a mild healing response with no stromal haze and showed topographic flattening. LM demonstrated nothing except a moderate increase in keratocyte activity in the upper third of the stroma. TEM confirmed this along with irregular basement membranes. Conclusions: A non- thermal ablation process called photospallation is demonstrated for the first time using short pulse infrared lasers yielding damage zones comparable to the excimer and healing which is also comparable to

  4. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  5. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation.

    PubMed

    Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish

    2017-01-01

    Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

  6. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    NASA Astrophysics Data System (ADS)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  7. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    NASA Astrophysics Data System (ADS)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  8. Skin graft take and healing following 193-nm excimer, continuous-wave carbon dioxide (CO2), pulsed CO2, or pulsed holmium: YAG laser ablation of the graft bed.

    PubMed

    Green, H A; Burd, E E; Nishioka, N S; Compton, C C

    1993-08-01

    Ablative lasers have been used for cutaneous surgery for greater than two decades since they can remove skin and skin lesions bloodlessly and efficiently. Because full-thickness skin wounds created after thermal laser ablation may require skin grafting in order to heal, we have examined the effect of the residual laser-induced thermal damage in the wound bed on subsequent skin graft take and healing. In a pig model, four different pulsed and continuous-wave lasers with varying wavelengths and radiant energy exposures were used to create uniform fascial graft bed thermal damage of approximately 25, 160, 470, and 1100 microns. Meshed split-thickness skin graft take and healing on the thermally damaged fascial graft beds were examined on a gross and microscopic level on days 3 and 7, and then weekly up to 42 days. Laser-induced thermal damage on the graft bed measuring greater than 160 +/- 60 microns in depth significantly decreased skin graft take. Other deleterious effects included delayed graft revascularization, increased inflammatory cell infiltrate at the graft-wound bed interface, and accelerated formation of hypertrophied fibrous tissue within the graft bed and underlying muscle. Ablative lasers developed for cutaneous surgery should create less than 160 +/- 60 microns of residual thermal damage to permit optimal skin graft take and healing. Pulsed carbon dioxide and 193-nm excimer lasers may be valuable instruments for the removal of full-thickness skin, skin lesions, and necrotic tissue, since they create wound beds with minimal thermal damage permitting graft take comparable to that achieved with standard surgical techniques.

  9. Effect of venous (gut) CO2 loading on intrapulmonary gas fractions and ventilation in the tegu lizard.

    PubMed

    Ballam, G O; Donaldson, L A

    1988-01-01

    Studies were conducted to determine regional pulmonary gas concentrations in the tegu lizard lung. Additionally, changes in pulmonary gas concentrations and ventilatory patterns caused by elevating venous levels of CO2 by gut infusion were measured. It was found that significant stratification of lung gases was present in the tegu and that dynamic fluctuations of CO2 concentration varied throughout the length of the lung. Mean FCO2 was greater and FO2 less in the posterior regions of the lung. In the posterior regions gas concentrations remained nearly constant, whereas in the anterior regions large swings were observed with each breath. In the most anterior sections of the lung near the bronchi, CO2 and O2 concentrations approached atmospheric levels during inspiration and posterior lung levels during expiration. During gut loading of CO2, the rate of rise of CO2 during the breathing pause increased. The mean level of CO2 also increased. Breathing rate and tidal volume increased to produce a doubling of VE. These results indicate that the method of introduction of CO2 into the tegu respiratory system determines the ventilatory response. If the CO2 is introduced into the venous blood a dramatic increase in ventilation is observed. If the CO2 is introduced into the inspired air a significant decrease in ventilation is produced. The changes in pulmonary CO2 environment caused by inspiratory CO2 loading are different from those caused by venous CO2 loading. We hypothesize that the differences in pulmonary CO2 environment caused by either inspiratory CO2 loading or fluctuations in venous CO2 concentration act differently on the IPC. The differing response of the IPC to the two methods of CO2 loading is the cause of the opposite ventilatory response seen during either venous or inspiratory loading.

  10. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    PubMed

    Wu, Po-Hung; Brace, Chris L

    2016-08-21

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  11. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    PubMed

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  12. O3, CO2 and chemical fractionation in ponderosa pine saplings

    EPA Science Inventory

    Environmental factors can affect plant tissue quality which is important for quality of organic matter inputs into soil food webs and decomposition of soil organic matter. Thus the effects of increases in CO2 and O3 and their interactions were determined for various chemical fra...

  13. Modeling of Isotope Fractionation in Stratospheric CO2, N2O, CH4, and O3: Investigations of Stratospheric Chemistry and Transport, Stratosphere-Troposphere Exchange, and Their Influence on Global Isotope Budgets

    NASA Technical Reports Server (NTRS)

    Boering, Kristie A.; Connell, Peter; Rotman, Douglas

    2004-01-01

    We investigated the isotopic fractionation of CH4 and hydrogen (H2) in the stratosphere by incorporating isotope-specific rate coefficients into the Lawrence Livermore National Laboratory (LLNL) 2D model and comparing the model results with new observations from the NASA ER-2 aircraft (funded through a separate task under the Upper Atmosphere Research Program). The model results reveal that fractionation which occurs in the stratosphere has a significant influence on isotope compositions in the free troposphere, an important point which had previously been ignored, unrecognized or unquantified for many long-lived trace gases, including CH4 and H2 which we have focused our efforts on to date. Our analyses of the model results and new isotope observations have also been used to test how well the kinetic isotope effects are known, at least to within the uncertainties in model chemistry and transport. Overall, these results represent an important step forward in our understanding of isotope fractionation in the atmosphere and demonstrate that stratospheric isotope fractionation cannot be ignored in modeling studies which use isotope observations in the troposphere to infer the global budgets of CH4 (an important greenhouse gas) and of H2 (a gas whose atmospheric budget must be better quantified, particularly before a large human perturbation from fuel cell use is realized). Our analyses of model results and observations from the NASA ER-2 aircraft are briefly summarized separately below for CH4, H2, and H2O and for the contribution of these modeling studies to date to our understanding of isotope fractionation for N2O, CO2, and O3 as well.

  14. Evaluation of the pentose phosphate pathway from 14CO2 data. Fallibility of a classic equation when applied to non-homogeneous tissues.

    PubMed

    Larrabee, M G

    1990-11-15

    A classic equation that has frequently been used to estimate the fraction of glucose metabolized by the pentose phosphate pathway, using 14CO2 data, is more simply re-derived with careful consideration of the assumptions involved and the conditions under which it is applicable. The equation is shown to be unreliable for non-homogeneous tissues, depending on the fraction of triose phosphate converted to CO2. The formula in question is as follows: ([1]CO2/G-[6]CO2/G)/(1-[6]CO2/G) = 3Fmet./(1 + 2Fmet.) where [1]CO2 and [6]CO2 are output rates of carbons 1 and 6 of glucose respectively to CO2, G is the rate of glucose uptake and Fmet. is the fraction of the glucose that is metabolized to CO2 and triose phosphate by the pentose phosphate pathway, allowing for recycling of an appropriate fraction of the fructose-6-phosphate produced by the pathway. This analysis illustrates the importance of suitably testing any equation that assumes homogeneity before application to non-homogeneous tissues.

  15. Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore

    NASA Astrophysics Data System (ADS)

    Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni

    2018-03-01

    Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.

  16. Outcomes after cryoballoon or radiofrequency ablation for persistent atrial fibrillation: a multicentric propensity-score matched study.

    PubMed

    Boveda, Serge; Providência, Rui; Defaye, Pascal; Pavin, Dominique; Cebron, Jean-Pierre; Anselme, Frederic; Halimi, Franck; Khoueiry, Ziad; Combes, Nicolas; Combes, Stephane; Jacob, Sophie; Albenque, Jean-Paul; Sousa, Pedro

    2016-11-01

    Recent data show no benefit of additional ablation beyond pulmonary vein isolation (PVI) in persistent atrial fibrillation (AF). Evidence suggests that radiofrequency energy (RF) and cryoballoon (CRYO) have comparable efficacy for PVI. We aimed to assess the outcomes after a single catheter ablation procedure, comparing PVI using CRYO vs. RF ablation for PVI plus additional ablation in a cohort of patients with persistent AF. In this prospective multicenter propensity score-matched comparison, 59 consecutive patients undergoing CRYO ablation of persistent AF were matched to 59 patients treated with RF from November 2010 to June 2012. During a mean follow-up of 15.6 ± 11.5 months, 43.2 % of patients presented atrial arrhythmia relapse after a blanking period of 3 months, which was comparable between the two groups (40.7 % in CRYO vs. 45.8 % in RF, Log rank P = 0.14; HR = 0.67, 95 %CI 0.38-1.16, P = 0.15), despite the fact that 52.5 % of RF patients add additional complex fractionated atrial electrogram ablation, as well as left atrial linear ablation in over two-thirds (roof line in 67.8 % and mitral isthmus in 32.2 %). On multivariate Cox regression, only AF duration in years (HR = 1.10, 95 %CI 1.01-1.10, P = 0.04) was a predictor of relapse. Patients undergoing RF ablation presented a numerically, but non-significantly, lower complication rate (6.8 vs 10.2 %, P = 0.51). In our multicenter experience, freedom from atrial arrhythmias was comparable among matched patients treated with CRYO and RF, despite non-significant trends in favor of RF in terms of complications, at the cost of longer procedure times.

  17. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.

    PubMed

    Bedard, Jeremy; Hong, Do-Young; Bhan, Aditya

    2013-08-07

    Co-processing of formic acid or carbon dioxide with CH4 (FA/CH4 = 0.01-0.03 and CO2/CH4 = 0.01-0.03) on Mo/H-ZSM-5 catalysts at 950 K with the prospect of kinetically coupling dehydrogenation and deoxygenation cycles results instead in a two-zone, staged bed reactor configuration consisting of upstream oxygenate/CH4 reforming and downstream CH4 dehydroaromatization. The addition of an oxygenate co-feed (oxygenate/CH4 = 0.01-0.03) causes oxidation of the active molybdenum carbide catalyst while producing CO and H2 until completely converted. Forward rates of C6H6 synthesis are unaffected by the introduction of an oxygenate co-feed after rigorously accounting for the thermodynamic reversibility caused by the H2 produced in oxygenate reforming reactions and the fraction of the active catalyst deemed unavailable for CH4 DHA. All effects of co-processing oxygenates with CH4 can be construed in terms of an approach to equilibrium.

  18. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  19. Ablation of Rotor and Focal Sources Reduces Late Recurrence of Atrial Fibrillation Compared to Trigger Ablation Alone

    PubMed Central

    Narayan, Sanjiv M.; Baykaner, Tina; Clopton, Paul; Schricker, Amir; Lalani, Gautam; Krummen, David E.; Shivkumar, Kalyanam; Miller, John M.

    2014-01-01

    Objectives To determine if ablation that targets patient-specific AF-sustaining substrates (rotors or focal sources) is more durable than trigger ablation alone at preventing late AF recurrences. Background Late recurrence substantially limits the efficacy of pulmonary vein (PV) isolation for AF, and is associated with PV reconnection and the emergence of new triggers. Methods We performed 3 year follow-up of the CONFIRM trial, in which 92 consecutive AF patients (70.7% persistent) underwent novel computational mapping to reveal a median of 2 (IQR 1–2) rotors or focal sources in 97.7% of patients during AF. Ablation comprised source (Focal Impulse and Rotor Modulation, FIRM) then conventional ablation in n=27 (FIRM-guided), and conventional ablation alone in n=65 (FIRM-blinded). Patients were followed with implanted ECG monitors when possible (85.2% FIRM guided, 23.1% FIRM-blinded). Results On 890 days follow-up (median; IQR 224–1563) compared FIRM-blinded therapy, patients receiving FIRM-guided ablation maintained higher freedom from AF after 1.2±0.4 procedures (median 1, IQR 1–1) (77.8% vs 38.5%; p=0.001) and a single procedure (p>0.001), and higher freedom from all atrial arrhythmias (p=0.003). Freedom from AF was higher when ablation directly or coincidentally passed through sources than when it missed sources (p>0.001). CONCLUSIONS FIRM-guided ablation is more durable than conventional trigger-based ablation at preventing 3 year AF recurrence. Future studies should investigate how ablation of patient-specific AF-sustaining rotors and focal sources alters the natural history of arrhythmia recurrence. PMID:24632280

  20. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  1. Thermal protection during percutaneous thermal ablation procedures: interest of carbon dioxide dissection and temperature monitoring.

    PubMed

    Buy, Xavier; Tok, Chung-Hong; Szwarc, Daniel; Bierry, Guillaume; Gangi, Afshin

    2009-05-01

    Percutaneous image-guided thermal ablation of tumor is widely used, and thermal injury to collateral structures is a known complication of this technique. To avoid thermal damage to surrounding structures, several protection techniques have been reported. We report the use of a simple and effective protective technique combining carbon dioxide dissection and thermocouple: CO(2) displaces the nontarget structures, and its low thermal conductivity provides excellent insulation; insertion of a thermocouple in contact with vulnerable structures achieves continuous thermal monitoring. We performed percutaneous thermal ablation of 37 tumors in 35 patients (4 laser, 10 radiofrequency, and 23 cryoablations) with protection of adjacent vulnerable structures by using CO(2) dissection combined with continuous thermal monitoring with thermocouple. Tumor locations were various (19 intra-abdominal tumors including 4 livers and 9 kidneys, 18 musculoskeletal tumors including 11 spinal tumors). CO(2) volume ranged from 10 ml (epidural space) to 1500 ml (abdominal). Repeated insufflations were performed if necessary, depending on the information given by the thermocouple and imaging control. Dissection with optimal thermal protection was achieved in all cases except two patients where adherences (one postoperative, one arachnoiditis) blocked proper gaseous distribution. No complication referred to this technique was noted. This safe, cost-effective, and simple method increases the safety and the success rate of percutaneous thermal ablation procedures. It also offers the potential to increase the number of tumors that can be treated via a percutaneous approach.

  2. The modified stepwise ablation guided by low-dose ibutilide in chronic atrial fibrillation trial (The MAGIC-AF Study).

    PubMed

    Singh, Sheldon M; d'Avila, Andre; Kim, Young-Hoon; Aryana, Arash; Mangrum, J Michael; Michaud, Gregory F; Dukkipati, Srinivas R; Barrett, Conor D; Heist, E Kevin; Parides, Michael K; Thorpe, Kevin E; Reddy, Vivek Y

    2016-05-21

    Complex fractionated atrial electrograms (CFAE) are targeted during persistent atrial fibrillation (AF) ablation. However, many CFAE sites are non-specific resulting in extensive ablation. Ibutilide has been shown to reduce left atrial surface area exhibiting CFAE. We hypothesized that ibutilide administration prior to CFAE ablation would identify sites critical for persistent AF maintenance allowing for improved procedural efficacy and long-term freedom from atrial arrhythmias. Two hundred patients undergoing a first-ever persistent AF catheter ablation procedure were randomly assigned to receive either 0.25 mg of intravenous ibutilide or saline placebo upon completion of pulmonary vein isolation. Complex fractionated atrial electrogram sites were then targeted with ablation. The primary efficacy endpoint was the 1-year single procedure freedom from atrial arrhythmia off anti-arrhythmic drugs. Similar procedural characteristics (procedure, fluoroscopy, and ablation times) were observed with both strategies despite a greater reduction in left atrial surface area with CFAE sites (8 vs. 1%, P < 0.0001) and AF termination during CFAE ablation with ibutilide compared with placebo (75 vs. 57%, P = 0.007). The primary efficacy endpoint was achieved in 56% of patients receiving ibutilide and 49% receiving placebo (P = 0.35). No significant differences in peri-procedural complications were observed in both groups. Despite a reduction in CFAE area and greater AF termination during CFAE ablation, procedural characteristics and clinical outcomes were unchanged when CFAE ablation was guided by ibutilide administration. ClinicalTrials.gov number: NCT01014741. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  3. Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation.

    PubMed

    Orozco-Duque, A; Novak, D; Kremen, V; Bustamante, J

    2015-11-01

    Complex fractionated atrial electrograms provide an important tool for identifying arrhythmogenic substrates that can be used to guide catheter ablation for atrial fibrillation (AF). However, fractionation is a phenomenon that remains unclear. This paper aims to evaluate the multifractal properties of electrograms in AF in order to propose a method based on multifractal analysis able to discriminate between different levels of fractionation. We introduce a new method, the h-fluctuation index (hFI), where h is the generalised Hurst exponent, to extract information from the shape of the multifractal spectrum. Two multifractal frameworks are evaluated: multifractal detrended fluctuation analysis and wavelet transform modulus maxima. hFI is exemplified through its application in synthetic signals, and it is evaluated in a database of electrograms labeled on the basis of four degrees of fractionation. We compare the performance of hFI with other indexes, and find that hFI outperforms them. The results of the study provide evidence that multifractal analysis is useful for studying fractionation phenomena in AF electrograms, and indicate that hFI can be proposed as a tool for grade fractionation associated with the detection of target sites for ablation in AF.

  4. Laser Resurfacing: Full Field and Fractional.

    PubMed

    Pozner, Jason N; DiBernardo, Barry E

    2016-07-01

    Laser resurfacing is a very popular procedure worldwide. Full field and fractional lasers are used in many aesthetic practices. There have been significant advances in laser resurfacing in the past few years, which make patient treatments more efficacious and with less downtime. Erbium and carbon dioxide and ablative, nonablative, and hybrid fractional lasers are all extremely effective and popular tools that have a place in plastic surgery and dermatology offices. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Responses of Arabidopsis and Wheat to Rising CO2 Depend on Nitrogen Source and Nighttime CO2 Levels1[OPEN

    PubMed Central

    Rachmilevitch, Shimon

    2015-01-01

    A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3−) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3− assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3− assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3− or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3−, shoot organic N, 15N isotope fractionation, 15NO3− assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3− assimilation and thus decreased dark respiration in the plants reliant on NO3−. These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. PMID:25755253

  6. Bundle branch block after ablation for Wolff-Parkinson-White syndrome.

    PubMed

    Fuenmayor A, Abdel J; Rodríguez S, Yenny A

    2013-09-20

    Bundle branch block (BBB) is a difficult diagnosis in the Wolff-Parkinson-White syndrome (WPW). We investigated the clinical implications of BBB that appears after performing an accessory pathway (AP) ablation. We studied 199 patients with WPW who were submitted to AP ablation. Thirty (15%) exhibited BBB after the ablation. Twenty-two patients had right BBB and 8 had left BBB. Thirteen patients had right-sided AP and 17 had left-sided AP. They were compared with 82 similar patients without BBB after the AP ablation. Among the patients with BBB, 86.66% showed delays in the middle part of the QRS in the ECG recorded before ablation vs. 18.29% of the patients without BBB (p<0.05) (sensitivity 86%, specificity 81%, positive predictive value 67% and negative predictive value 93%). Forty-four percent of the patients with BBB had BBB morphology during orthodromic tachycardia vs. 10% of the patients without BBB (p<0.05) (sensitivity 44%, specificity 89%, positive predictive value 57% and negative predictive value 82%). No relationship was found between AP location and the site of the BBB. Ejection fraction was normal before (0.61 ± 0.03) and upon completion of follow-up (0.61 ± 0.07). BBB disappeared in 95.3% of the patients. Delays in the middle portion of the QRS may predict BBB after AP ablation. BBB after performing AP ablation is frequent, transient, benign, and not related to either the ablation lesion location or progression to structural heart disease. BBB after AP ablation may be related to cardiac memory. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Outcomes of repeat catheter ablation using magnetic navigation or conventional ablation.

    PubMed

    Akca, Ferdi; Theuns, Dominic A M J; Abkenari, Lara Dabiri; de Groot, Natasja M S; Jordaens, Luc; Szili-Torok, Tamas

    2013-10-01

    After initial catheter ablation, repeat procedures could be necessary. This study evaluates the efficacy of the magnetic navigation system (MNS) in repeat catheter ablation as compared with manual conventional techniques (MANs). The results of 163 repeat ablation procedures were analysed. Ablations were performed either using MNS (n = 84) or conventional manual ablation (n = 79). Procedures were divided into four groups based on the technique used during the initial and repeat ablation procedure: MAN-MAN (n = 66), MAN-MNS (n = 31), MNS-MNS (n = 53), and MNS-MAN (n = 13). Three subgroups were analysed: supraventricular tachycardias (SVTs, n = 68), atrial fibrillation (AF, n = 67), and ventricular tachycardias (VT, n = 28). Recurrences were assessed during 19 ± 11 months follow-up. Overall, repeat procedures using MNS were successful in 89.0% as compared with 96.2% in the MAN group (P = ns). The overall recurrence rate was significantly lower using MNS (25.0 vs. 41.4%, P = 0.045). Acute success and recurrence rates for the MAN-MAN, MAN-MNS, MNS-MNS, and MNS-MAN groups were comparable. For the SVT subgroup a higher acute success rate was achieved using MAN (87.9 vs. 100.0%, P = 0.049). The use of MNS for SVT is associated with longer procedure times (205 ± 82 vs. 172 ± 69 min, P = 0.040). For AF procedure and fluoroscopy times were longer (257 ± 72 vs. 185 ± 64, P = 0.001; 59.5 ± 19.3 vs. 41.1 ± 18.3 min, P < 0.001). Less fluoroscopy was used for MNS-guided VT procedures (22.8 ± 14.7 vs. 41.2 ± 10.9, P = 0.011). Our data suggest that overall MNS is comparable with MAN in acute success after repeat catheter ablation. However, MNS is related to fewer recurrences as compared with MAN.

  8. Percutaneous Microwave Ablation of Renal Angiomyolipomas.

    PubMed

    Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T

    2016-03-01

    To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  9. Atmospheric CO2 Record from In Situ Measurements at Amsterdam Island (1980-1995)

    DOE Data Explorer

    Gaudry, A. [Centre des Faibles Radioactivites, Laboratoire de Modelisation du Climat et de l'Environnement, Centre d'Etudes de Saclay, France; Kazan, V. [Centre des Faibles Radioactivites, Laboratoire de Modelisation du Climat et de l'Environnement, Centre d'Etudes de Saclay, France; Monfray, P. [Centre des Faibles Radioactivites, Laboratoire de Modelisation du Climat et de l'Environnement, Centre d'Etudes de Saclay, France

    1996-09-01

    Until 1993 air samples were collected continuously through an air intake located at the top of a tower, 9 m above ground and 65 m above mean sea level. Since 1994, the intake has been situated 20 m above ground and 76 m above mean sea level. The tower is located at the north-northwest end of the island on the edge of a 55 m cliff. The air is dried by means of a cryogenic water trap at -60°C. Until 1990, determinations of CO2 were made by using successively two Hartmann-Braun URAS 2T nondispersive infrared (NDIR) analyzers. Since 1991, CO2 determinations have been made using a Siemens ULTRAMAT 5F NDIR. Standard gases in use from October 1980 to December of 1984 were CO2-in-N2 mixtures certified by Scripps Institution of Oceanography (SIO). The N2 scale was corrected for the carrier gas effect to obtain the air scale (WMO mole fraction scale). In 1985, CO2-in-air mixtures expressed in the 1985 WMO mole fraction in air scale were introduced. In 1990, a new series of 12 primary standard gases were gravimetrically prepared, then linearly adjusted at the laboratory and checked several times (i.e., 1990, 1992, and 1993) through intercalibrations with DSIR in New Zealand and NOAA/CMDL, which both used the 1985 mole fraction scale. The agreement was always better than 0.1 ppm (Monfray et al. 1992). Since 1993, the 1993 mole fraction scale has been used thanks to a new series of 10 cylinders provided by SIO.

  10. SwiftLase: a new technology for char-free ablation in rectal surgery

    NASA Astrophysics Data System (ADS)

    Arnold, David A.

    1995-05-01

    We describe layer-by-layer char-free ablation of hemorrhoids and other rectal lesions at very low CO2 laser power levels with a miniature `SwiftLaser' optomechanical flashscanner. Increased speed with excellent control, very shallow thermal damage, and less postoperative pain are the main advantages of the flashscan technology in rectal surgery.

  11. Image-guided automatic triggering of a fractional CO2 laser in aesthetic procedures.

    PubMed

    Wilczyński, Sławomir; Koprowski, Robert; Wiernek, Barbara K; Błońska-Fajfrowska, Barbara

    2016-09-01

    Laser procedures in dermatology and aesthetic medicine are associated with the need for manual laser triggering. This leads to pulse overlapping and side effects. Automatic laser triggering based on image analysis can provide a secure fit to each successive doses of radiation. A fractional CO2 laser was used in the study. 500 images of the human skin of healthy subjects were acquired. Automatic triggering was initiated by an application together with a camera which tracks and analyses the skin in visible light. The tracking algorithm uses the methods of image analysis to overlap images. After locating the characteristic points in analysed adjacent areas, the correspondence of graphs is found. The point coordinates derived from the images are the vertices of graphs with respect to which isomorphism is sought. When the correspondence of graphs is found, it is possible to overlap the neighbouring parts of the image. The proposed method of laser triggering owing to the automatic image fitting method allows for 100% repeatability. To meet this requirement, there must be at least 13 graph vertices obtained from the image. For this number of vertices, the time of analysis of a single image is less than 0.5s. The proposed method, applied in practice, may help reduce the number of side effects during dermatological laser procedures resulting from laser pulse overlapping. In addition, it reduces treatment time and enables to propose new techniques of treatment through controlled, precise laser pulse overlapping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Valentine, David L.; Chidthaisong, Amnat; Rice, Andrew; Reeburgh, William S.; Tyler, Stanley C.

    2004-04-01

    A series of laboratory studies were conducted to increase understanding of stable carbon (13C/12C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetate- and hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionation of only 7‰ (α = 1.007) between the methyl position of acetate and the resulting methane. Methane formed by this process is enriched in 13C when compared with other natural sources of methane; the magnitude of this isotope effect raises the possibility that methane produced at elevated temperature by the aceticlastic reaction could be mistaken for thermogenic methane based on carbon isotopic content. Studies of H2/CO2 methanogenesis were conducted with Methanothermobacter marburgensis. The fractionation of carbon isotopes between CO2 and CH4 was found to range from 22 to 58‰ (1.023 ≤ α ≤ 1.064). Greater fractionation was associated with low levels of molecular hydrogen and steady-state metabolism. The fractionation of hydrogen isotopes between source H2O and CH4 was found to range from 127 to 275‰ (1.16 ≤ α ≤ 1.43). Fractionation was dependent on growth phase with greater fractionation associated with later growth stages. The maximum observed fractionation factor was 1.43, independent of the δD-H2 supplied to the culture. Fractionation was positively correlated with temperature and/or metabolic rate. Results demonstrate significant variability in both hydrogen and carbon isotope fractionation during methanogenesis from H2/CO2. The relatively small fractionation associated with deuterium during H2/CO2 methanogenesis provides an explanation for the relatively enriched deuterium content of biogenic natural gas originating from a variety of thermal environments. Results from these experiments are used to develop a hypothesis that differential

  13. Century scale char and non-char C co-stabilization in soil free C fractions

    NASA Astrophysics Data System (ADS)

    Vasilyeva, N. A.; Chenu, C.

    2012-04-01

    class minerals reflected in C concentrations of fractions were 1.2 g C kg-1 for silt-size minerals and 19.4 g C kg-1 for clay-size minerals, contrastingly three orders of magnitude more C was associated with char particles or about 1.2 kg non-char C kg-1 sand-size char and about 1.4 to 3.5 kg non-char C kg-1 silt-size char. Such a high capacity of stabilization by char particles could not be explained by adorbtion alone. In conclusion, combination of C/N and δ13C signature allowed estimation of char content in this soil. Total char C content (sum up of redistributed char C in free fractions) remained not significantly different in the C depletion experiment during five decades after char input. Century scale char and non-char C co-stabilization in this soil could be explained by combination of adsorption and physical protection in microaggregates constructed of mineral and char particles.

  14. Selective removal of demineralized enamel using a CO2 laser coupled with near-IR reflectance imaging

    NASA Astrophysics Data System (ADS)

    Tom, Henry; Chan, Kenneth H.; Saltiel, Daniel; Fried, Daniel

    2015-02-01

    Detection and diagnosis of early dental caries lesions can be difficult due to variable tooth coloration, staining of the teeth and poor contrast between sound and demineralized enamel. These problems can be overcome by using near-infrared (NIR) imaging. Previous studies have demonstrated that lasers can be integrated with NIR imaging devices, allowing image-guided ablation. The aim of this study was to demonstrate that NIR light at 1500 - 1700 nm can be used to guide a 9.3-μm CO2 laser for the selective ablation of early demineralization on tooth occlusal surfaces. The occlusal surfaces of ten sound human molars were used in this in-vitro study. Shallow simulated caries lesions of varying depth and position were produced on tooth occlusal surfaces using a demineralization solution. Sequential NIR reflectance images at 1500 - 1700 nm were used to guide the laser for selective ablation of the lesion areas. Digital microscopy and polarization sensitive optical coherence tomography (PS-OCT) were used to assess the selectivity of removal. This study demonstrates that high contrast NIR reflectance images can be used for the image-guided laser ablation of early demineralization from tooth occlusal surfaces.

  15. pCO2 Effects on Species Composition and Growth of an Estuarine Phytoplankton Community

    NASA Astrophysics Data System (ADS)

    Grear, J. S.; Rynearson, T. A.; Montalbano, A. L.; Govenar, B. W.; Menden-Deuer, S.

    2016-02-01

    Ocean and coastal waters are experiencing changes in carbonate chemistry, including pH, in response to increasing atmospheric CO2 concentration and the microbial degradation of organic matter associated with nutrient enrichment. The effects of this change on plankton communities have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding responses of phytoplankton species and communities to experimental CO2 enrichment. We performed winter "ecostat" incubations of natural plankton communities from lower Narragansett Bay at ambient bay temperatures (5-13 C), light, and nutrients under three levels of CO2 enrichment simulating past, present and future conditions (mean pCO2 levels were 224, 361, and 724 uatm). Major increases in relative diatom abundance occurred during the experiment but were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 varied as a function of cell size. The smallest size fraction (<5 µm) grew faster at the elevated pCO2 level. In contrast, the 5-20 µm size fraction grew fastest in the Present treatment and there were no significant differences in growth rate among treatments in the > 20 µm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. These non-monotonic effects of increasing pCO2 may be related to opposing physiological effects of high CO2 vs low pH both within and among species. Interaction of these effects with other factors (e.g., nutrients, light, temperature, grazing, initial species composition) may explain variability among published studies. The absence of clear treatment-specific effects at the community level suggest that extrapolation of species-specific responses would produce misleading predictions of ocean acidification impacts on plankton production.

  16. A diatom record of CO2 decline since the late Miocene

    NASA Astrophysics Data System (ADS)

    Mejía, Luz María; Méndez-Vicente, Ana; Abrevaya, Lorena; Lawrence, Kira T.; Ladlow, Caroline; Bolton, Clara; Cacho, Isabel; Stoll, Heather

    2017-12-01

    Extratropical sea surface temperature records from alkenones record a dramatic cooling of up to 17 °C over the last ∼14 Ma, but the relationship between this cooling and greenhouse gas forcing has been elusive due to sparse and contrasting reconstructions of atmospheric CO2 for the time period. Alkenone carbon isotopic fractionation during photosynthesis has previously been used to estimate changes in pCO2 over this interval, but is complicated by significant changes in cell size of the alkenone-producing coccolithophorids over this time period. In this study, we reconstruct carbon isotopic fractionation during photosynthesis (εp) using organic compounds trapped within the frustules of pennate diatoms in sediments from the Eastern Equatorial Pacific Ocean at Ocean Drilling Program Site 846 over the last ∼13 Ma. Physical separation of pennate diatoms prior to measuring carbon isotopic fractionation enables us to obtain a record with constant cell geometry, eliminating this factor of uncertainty in our pCO2 reconstruction. In the past ∼11 Ma, εp declines from 15.5 to 10.3‰. Using the classic diffusive model and taking into account variations in opal content, alkenone concentration and coccolith Sr/Ca as indicators of past productivity and growth rate, and sea surface temperature records from the site, we estimate a decline in pCO2 from 454 (+ / - 41) to 250 (+ / - 15) ppmv between ∼11 and 6 Ma. Models accounting for changing the significance of active carbon uptake for photosynthesis, which likely produce more accurate CO2 estimates, suggest a significant larger pCO2 decline of up to twice that shown by the classic diffusive model (in average from 794 (+ / - 233) ppmv at ∼11 Ma to 288 (+/-25) ppmv at ∼6 Ma, considering growth rates varying between 0.5 and 1.7 day-1). Large uncertainties in the pCO2 estimated between ∼8 and 11 Ma using the active uptake model are related to the growth rate used for calculations. Together, these results suggest CO2

  17. An Unaccounted Fraction of Marine Biogenic CaCO3 Particles

    PubMed Central

    Heldal, Mikal; Norland, Svein; Erichsen, Egil S.; Thingstad, T. Frede; Bratbak, Gunnar

    2012-01-01

    Biogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances. The particles occur in a variety of different morphologies, in a size range from <1 to >100 µm, and in a typical concentration of 104–105 particles L−1 (size range counted 1–100 µm). Quantitative estimates of annual averages suggests that the pure calcium particles we counted in the 1–100 µm size range account for 2–4 times more CaCO3 than the dominating coccolithophoride Emiliania huxleyi and for 21% of the total concentration of particulate calcium. Due to their high density, we hypothesize that the particles sediment rapidly, and therefore contribute significantly to the export of carbon and alkalinity from surface waters. The biological and environmental factors affecting the formation of these particles and possible impact of this process on global atmospheric CO2 remains to be investigated. PMID:23110119

  18. CO2 acclimation impacts leaf isoprene emissions: evidence from past to future CO2 levels

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo; van der Laan, Annick; Dekker, Stefan; Holzinger, Rupert

    2017-04-01

    Isoprene is emitted by many plant species as a side-product of photosynthesis. Once in the atmosphere, isoprene exhibits climate forcing through various feedback mechanisms. In order to quantify the climate feedbacks of biogenic isoprene emission it is crucial to establish how isoprene emissions are effected by plant acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. The energetic imbalance is critically related to the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (Vcmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 growth conditions representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. These plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters Vcmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. In the short term, an increase in CO2 stimulates photosynthesis through an increase in the leaf interior CO2

  19. Ca2+ and calpain mediate capsaicin-induced ablation of axonal terminals expressing transient receptor potential vanilloid 1.

    PubMed

    Wang, Sheng; Wang, Sen; Asgar, Jamila; Joseph, John; Ro, Jin Y; Wei, Feng; Campbell, James N; Chung, Man-Kyo

    2017-05-19

    Capsaicin is an ingredient in spicy peppers that produces burning pain by activating transient receptor potential vanilloid 1 (TRPV1), a Ca 2+ -permeable ion channel in nociceptors. Capsaicin has also been used as an analgesic, and its topical administration is approved for the treatment of certain pain conditions. The mechanisms underlying capsaicin-induced analgesia likely involve reversible ablation of nociceptor terminals. However, the mechanisms underlying these effects are not well understood. To visualize TRPV1-lineage axons, a genetically engineered mouse model was used in which a fluorophore is expressed under the TRPV1 promoter. Using a combination of these TRPV1-lineage reporter mice and primary afferent cultures, we monitored capsaicin-induced effects on afferent terminals in real time. We found that Ca 2+ influx through TRPV1 is necessary for capsaicin-induced ablation of nociceptive terminals. Although capsaicin-induced mitochondrial Ca 2+ uptake was TRPV1-dependent, dissipation of the mitochondrial membrane potential, inhibition of the mitochondrial transition permeability pore, and scavengers of reactive oxygen species did not attenuate capsaicin-induced ablation. In contrast, MDL28170, an inhibitor of the Ca 2+ -dependent protease calpain, diminished ablation. Furthermore, overexpression of calpastatin, an endogenous inhibitor of calpain, or knockdown of calpain 2 also decreased ablation. Quantitative assessment of TRPV1-lineage afferents in the epidermis of the hind paws of the reporter mice showed that EGTA and MDL28170 diminished capsaicin-induced ablation. Moreover, MDL28170 prevented capsaicin-induced thermal hypoalgesia. These results suggest that TRPV1/Ca 2+ /calpain-dependent signaling plays a dominant role in capsaicin-induced ablation of nociceptive terminals and further our understanding of the molecular mechanisms underlying the effects of capsaicin on nociceptors. © 2017 by The American Society for Biochemistry and Molecular Biology

  20. Lessons Learned From Recent Research on Internal CO2 Transport in Trees. Part I, CO2 Efflux and Respiration

    NASA Astrophysics Data System (ADS)

    McGuire, M. A.; Bloemen, J.; Aubrey, D. P.; Steppe, K.; Teskey, R. O.

    2016-12-01

    Currently, the most pressing problem regarding respiration in trees is determining the rate of respiration in woody tissues. In stems and roots, barriers to diffusion promote the buildup of CO2 from respiration to high concentrations, often in the range of 3 to 10% and sometimes exceeding 20%, substantially higher than that of the atmosphere ( 0.04%). A substantial portion of this internal CO2 released from respiring cells in roots and stems can dissolve in xylem sap and move upward in the xylem stream, resulting in internal transport of respired CO2 that rivals the efflux of respired CO2from woody tissues. The importance of such internal CO2 transport for the assessment of above- and below-ground respiration has gained increasing interest and here we will synthesize the latest research. The most important recent finding has been that in tree roots, a large fraction of respired CO2 remains within the root system rather than diffusing into the soil. This CO2 is transported in xylem sap into the shoot, and because respiration is almost always measured as the flux of CO2 into the atmosphere from plant tissues, it represents an unaccounted- for component of tree root metabolism. In Populus deltoides trees, for which xylem CO2 transport and soil CO2 efflux near the tree was measured, twice the amount of CO2 derived from below-ground autotrophic respiration entered the xylem stream as diffused into the soil environment. For both Eucalyptus and Quercus, up to 24 and 19% of root-respired CO2 was transported via the transpiration stream, respectively, illustrating that a significant internal transport of root-respired CO2 is present across a wide range of plant families. These findings suggest that root and soil respiration can be substantially underestimated by "soil-centric" measurements. Moreover, internal transport of respired CO2, which has only recently been recognized and measured, has important implications for our understanding of carbon dynamics at both plant and

  1. Treatment of Acne Scars and Wrinkles in Asian Patients Using Carbon-Dioxide Fractional Laser Resurfacing: Its Effects on Skin Biophysical Profiles

    PubMed Central

    Hwang, Young Ji; Lee, Yu Na; Choe, Yong Beom; Ahn, Kyu Joong

    2013-01-01

    Background Although ablative fractional resurfacing is known to be effective against photoaging and acne scars, studies on its efficacy, safety and changes in the skin characteristics of Asians are limited. Objective The aim of this study is to assess the efficacy and safety of carbon dioxide fractional laser (CO2FL) in Koreans treated for wrinkles and acne scars, and to define the changes in skin characteristics during recovery period. Methods We administered one session of CO2FL on 10 acne scar patients and 14 wrinkles patients with skin types IV and V. The surveillance of efficacy and side effects along with the measurement of biophysical properties was carried out before 1 day, 1 week, 1 month and 3 months after treatment. Results Using a non-invasive method, skin barrier damage, erythema and bronzing of skin during the recovery period were assessed, and all of the items eventually returned to the pre-treatment level. Skin elasticity was measured in the wrinkle group, and the statistically significant effect was sustained throughout the next three months. The outcome of treatment was found to be better than 'moderate improvement' in both the acne scar and wrinkle groups. Further, there were no serious side effects three months post-procedure. Conclusion CO2 FL is thought to be an effective and safe method for treating moderate to severe acne scars and wrinkles in Asians. PMID:24371392

  2. Comparison of a fractional microplasma radio frequency technology and carbon dioxide fractional laser for the treatment of atrophic acne scars: a randomized split-face clinical study.

    PubMed

    Zhang, Zhen; Fei, Ye; Chen, Xiangdong; Lu, Wenli; Chen, Jinan

    2013-04-01

    No studies have compared fractional microplasma radio frequency (RF) technology with the carbon dioxide fractional laser system (CO2 FS) in the treatment of atrophic acne scars in the same patient. To compare the efficacy and safety of fractional microplasma RF with CO2 FS in the treatment of atrophic acne scars. Thirty-three Asian patients received three sessions of a randomized split-face treatment of fractional microplasma RF or CO2 FS. Both modalities had a roughly equivalent effect. Échelle d'Évaluation Clinique Des Cicatrices d'Acné scores were significantly lower after fractional microplasma RF (from 51.1 ± 14.2 to 22.3 ± 8.6, 56.4% improvement) and CO2 FS (from 48.8 ± 15.1 to 19.9 ± 7.9, 59.2% improvement) treatments. There was no statistically significant difference between the two therapies. Twelve subjects (36.4%) experienced postinflammatory hyperpigmentation (PIH) after 30 of 99 treatment sessions (30.3%) on the CO2 FS side and no PIH was observed on the fractional microplasma RF sides. Both modalities have good effects on treating atrophic scars. PIH was not seen with the fractional microplasma RF, which might make it a better choice for patients with darker skin. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  3. Simultaneous CO concentration and temperature measurements using tunable diode laser absorption spectroscopy near 2.3 μm

    NASA Astrophysics Data System (ADS)

    Sane, Anup; Satija, Aman; Lucht, Robert P.; Gore, Jay P.

    2014-10-01

    Simultaneous measurements of carbon monoxide (CO) mole fraction and temperature using tunable diode laser absorption spectroscopy (TDLAS) near 2.3 μm are reported. The measurement method uses ro-vibrational transitions [R(27): v″ = 1 → v' = 3] and [R(6): v″ = 0 → v' = 2] in the first overtone band of CO near 2.3 μm (~4,278 cm-1). The measurements were performed in the post flame environment of fuel rich premixed ethylene-air flames with a N2 co-flow, stabilized over a water cooled McKenna burner. Non-uniformity in the temperature and CO mole fraction, along the absorption line of sight, in the mixing layer of the co-flow, was considered during data analysis. The TDLAS based temperature measurements (±80 K) were in good agreement with those obtained using N2 vibrational coherent anti-Stokes Raman scattering (±20 K), and the CO mole fraction measurements were in good agreement with the equilibrium values, for equivalence ratios lower than 1.8. A signal to noise ratio of 45 was achieved at an equivalence ratio of 1 for a CO concentration of 0.8 % at 1,854 K.

  4. Analysis of Depth of Ablation,Thermal Damage, Wound Healing, and Wound Contraction With Erbium YAG Laser in a Yorkshire Pig Model.

    PubMed

    Alsaad, Salman M S; Ross, E Victor; Smith, Wiley J; DeRienzo, Damian P

    2015-11-01

    The erbium YAG laser is commonly used for skin resurfacing. It is known that varying the pulse duration can influence residual thermal damage and wound healing. Our study used a porcine model to evaluate a broad range of settings in a comparison of depth of ablation, depth of residual thermal damage (RTD), and wound contraction employing both a full coverage and fractional hand piece with an erbium YAG laser. The laser delivered an ablative pulse followed by a heating pulse of variable duration using either the full coverage or fractional hand piece. Pulse durations for specific coagulation depths were selected based on existing heat transfer models. The bilateral flanks of a single Yorkshire pig were irradiated. There were 14 treatment groups. 3 sites were treated per group for a total of 42 sites. Two of the 3 sites were for observational assessments and the 3rd site served as a reservoir for biopsies. Biopsy specimens were collected on days 0, 1, 3, 7, 14, and 28. Bleeding, erythema, wound healing, and wound contraction (in the fractional hand piece groups) were assessed. Wound healing is faster for fractional laser skin resurfacing compared with traditional contiguous resurfacing as demonstrated by textural changes and degree of erythema. The laser operator can be confident that the depth of ablation displayed on this system accurately reflects what is occurring in vivo for both confluent and fractional modes. Likewise, the measured degree of coagulation was consistent with panel display settings for the confluent mode. However, the degree of coagulation, as measured by the thickness of residual thermal damage, did not vary significantly between the fractional groups. In other words, the pulse duration of the second (heating) pulse did not impact the degree of coagulation in the fractional mode. There was a 2.3% wound contraction between some groups and a 6.5% wound contraction between other groups. A two way analysis of variance found a statistically

  5. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal

    USGS Publications Warehouse

    Strapoc, D.; Schimmelmann, A.; Mastalerz, Maria

    2006-01-01

    Canister desorption of coal gas from freshly sampled coal is commonly used for exploratory assessment of the coalbed methane (CBM) potential of a basin or prospect, as well as for the sampling of gas for isotopic determination of the gas origin. Compositional and ??13C isotopic time-series of desorbing CBM and carbon dioxide (CO2) over 3-4 months demonstrate considerable compositional and isotopic shifts over time. Non-stationary chemical and isotopic characteristics are due to differences in diffusivity and adsorbance behavior of gas molecules and must be taken into account when attempting to reproducibly sample coal gases. Off-line gas processing on a vacuum line and on-line GC/MS analyses were performed on coal gas samples from the Springfield and Seelyville Coal Members of the Pennsylvanian age that were cored in the SE Illinois Basin in SW Indiana, USA. The coals cover a narrow range of maturity from 0.54% to 0.64% vitrinite reflectance. Methane initially desorbed faster than CO2, resulting in a 50% increase of the CO 2 content in bulk desorbing gas on the 50th day relative to the first day of desorption. After 50 days of desorption, about 90% of all coal gas was desorbed. Over the same time period, ??13C values of incrementally sampled coal gas increased by 2??? and 9???, for CH 4 and CO2, respectively, testifying to the greater retention of 13CH4 and 13CO2 relative to 12CH4 and 12CO2. An isotopic mass balance of the individual, sequentially desorbed and sampled gas amounts yielded weighted mean ??13CCH4 and ??13CCO2 values for characterizing the cumulatively desorbed gas. The overall mean ??13C values were equivalent to ??13C values of gases that desorbed at a time when half of the potentially available gas had been desorbed from coal, corresponding in this study to a time between day 5 and day 12 of canister desorption at 15-18??C. The total expected gas volume and the ???50% midpoint can thus be approximated for a desorbing coal gas sample, based on a

  6. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes ('Temperature Control' and 'Power Control') on Procedural Outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Arnegger, F.; Koch, V.

    2012-06-15

    Purpose: This study was designed to analyze the effect of two different ablation modes ('temperature control' and 'power control') of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Signmore » C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 {+-} 0 s in group I and 102 {+-} 21 s in group II. Long axis diameter was 20.3 {+-} 4.6 mm in group I and 19.8 {+-} 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 {+-} 2 mm in group I and 10.5 {+-} 2.4 mm in group II (NS). Circularity was 0.5 {+-} 0.1 in group I and 0.5 {+-} 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.« less

  7. CO2-neutral fuels

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  8. Evaluation of a novel high-resolution mapping technology for ablation of recurrent scar-related atrial tachycardias.

    PubMed

    Anter, Elad; McElderry, Thomas H; Contreras-Valdes, Fernando M; Li, Jianqing; Tung, Patricia; Leshem, Eran; Haffajee, Charles I; Nakagawa, Hiroshi; Josephson, Mark E

    2016-10-01

    Rhythmia is a new technology capable of rapid and high-resolution mapping. However, its potential advantage over existing technologies in mapping complex scar-related atrial tachycardias (ATs) has not yet been evaluated. The purpose of this study was to examine the utility of Rhythmia for mapping scar-related ATs in patients who had failed previous ablation procedure(s). This multicenter study included 20 patients with recurrent ATs within 2 years after a previous ablation procedure (1.8 ± 0.7 per patient). In all cases, the ATs could not be adequately mapped during the index procedure because of scar with fractionated electrograms, precluding accurate time annotation, frequent change in the tachycardia in response to pacing, and/or degeneration into atrial fibrillation. These patients underwent repeat mapping and ablation procedure with Rhythmia. From a total of 28 inducible ATs, 24 were successfully mapped. Eighteen ATs (75%) terminated during radiofrequency ablation and 4 (16.6%) with catheter pressure or entrainment from the site of origin or isthmus. Two ATs that were mapped to the interatrial septum slowed but did not terminate with ablation. In 21 of 24 ATs the mechanism was macroreentry, while in 3 of 24 the mechanism was focal. Interestingly, in 5 patients with previously failed ablation of an allegedly "focal" tachycardia, high-resolution mapping demonstrated macroreentrant arrhythmia. The mean mapping time was 28.6 ± 17 minutes, and the mean radiofrequency ablation time to arrhythmia termination was 3.2 ± 2.6 minutes. During a mean follow-up of 7.5 ± 3.1 months, 15 of 20 patients (75%) were free of AT recurrences. The Rhythmia mapping system may be advantageous for mapping complex scar-related ATs. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  10. Monitoring Ocean CO2 Fluxes from Space: GOSAT and OCO-2

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2012-01-01

    The ocean is a major component of the global carbon cycle, emitting over 330 billion tons of carbon dioxide (CO2) into the atmosphere each year, or about 10 times that emitted fossil fuel combustion and all other human activities [1, 2]. The ocean reabsorbs a comparable amount of CO2 each year, along with 25% of the CO2 emitted by these human activities. The nature and geographic distribution of the processes controlling these ocean CO2 fluxes are still poorly constrained by observations. A better understanding of these processes is essential to predict how this important CO2 sink may evolve as the climate changes.While in situ measurements of ocean CO2 fluxes can be very precise, the sampling density is far too sparse to quantify ocean CO2 sources and sinks over much of the globe. One way to improve the spatial resolution, coverage, and sampling frequency is to make observations of the column averaged CO2 dry air mole fraction, XCO2, from space [4, 5, 6]. Such measurements could provide global coverage at high resolution (< 100 km) on monthly time scales. High precision (< 1 part per million, ppm) is essential to resolve the small, near-surface CO2 variations associated with ocean fluxes and to better constrain the CO2 transport over the ocean. The Japanese Greenhouse gases Observing Satellite (GOSAT) and the NASA Orbiting Carbon Observatory (OCO) were first two space based sensors designed specifically for this task. GOSAT was successfully launched on January 23, 2009, and has been returning measurements of XCO2 since April 2009. The OCO mission was lost in February 2009, when its launch vehicle malfunctioned and failed to reach orbit. In early 2010, NASA authorized a re-flight of OCO, called OCO-2, which is currently under development.

  11. The Orbiting Carbon Observatory Mission: Watching the Earth Breathe Mapping CO2 from Space

    NASA Technical Reports Server (NTRS)

    Boain, Ron

    2007-01-01

    Approach: Collect spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight. Use these data to resolve spatial and temporal variations in the column averaged CO2 dry air mole fraction, X(sub CO2) over the sunlit hemisphere. Employ independent calibration and validation approaches to produce X(sub CO2) estimates with random errors and biases no larger than 1-2 ppm (0.3-0.5%) on regional scales at monthly intervals.

  12. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    PubMed Central

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2015-01-01

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation. PMID:26640294

  13. pCO2 effects on species composition and growth of an estuarine phytoplankton community

    NASA Astrophysics Data System (ADS)

    Grear, Jason S.; Rynearson, Tatiana A.; Montalbano, Amanda L.; Govenar, Breea; Menden-Deuer, Susanne

    2017-05-01

    The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses have been difficult to predict. To assess community level effects (e.g., production) of altered carbonate chemistry, studies are needed that capitalize on the benefits of controlled experiments but also retain features of intact ecosystems that may exacerbate or ameliorate the effects observed in single-species or single cohort experiments. We performed incubations of natural plankton communities from Narragansett Bay, RI, USA in winter at ambient bay temperatures (5-13 °C), light and nutrient concentrations. Three levels of controlled and constant CO2 concentrations were imposed, simulating past, present and future conditions at mean pCO2 levels of 224, 361, and 724 μatm respectively. Samples for carbonate analysis, chlorophyll a, plankton size-abundance, and plankton species composition were collected daily and phytoplankton growth rates in three different size fractions (<5, 5-20, and >20 μm) were measured at the end of the 7-day incubation period. Community composition changed during the incubation period with major increases in relative diatom abundance, which were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 levels varied as a function of cell size. The smallest size fraction (<5 μm) grew faster at the elevated pCO2 level. In contrast, the 5-20 μm size fraction grew fastest in the Present treatment and there were no significant differences in growth rate among treatments in the >20 μm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. Similarity in Past and Future treatments for cell size distribution and growth rate (5-20 μm size

  14. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes

    PubMed Central

    Butler, Julie M.; Field, Karen E.; Maruska, Karen P.

    2016-01-01

    Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of CoCl2 in future

  15. Selective Adsorption and Selective Transport Diffusion of CO2-CH4 Binary Mixture in Coal Ultramicropores.

    PubMed

    Zhao, Yongliang; Feng, Yanhui; Zhang, Xinxin

    2016-09-06

    The adsorption and diffusion of the CO2-CH4 mixture in coal and the underlying mechanisms significantly affect the design and operation of any CO2-enhanced coal-bed methane recovery (CO2-ECBM) project. In this study, bituminous coal was fabricated based on the Wiser molecular model and its ultramicroporous parameters were evaluated; molecular simulations were established through Grand Canonical Monte Carlo (GCMC) and Molecular Dynamic (MD) methods to study the effects of temperature, pressure, and species bulk mole fraction on the adsorption isotherms, adsorption selectivity, three distinct diffusion coefficients, and diffusivity selectivity of the binary mixture in the coal ultramicropores. It turns out that the absolute adsorption amount of each species in the mixture decreases as temperature increases, but increases as its own bulk mole fraction increases. The self-, corrected, and transport diffusion coefficients of pure CO2 and pure CH4 all increase as temperature or/and their own bulk mole fractions increase. Compared to CH4, the adsorption and diffusion of CO2 are preferential in the coal ultramicropores. Adsorption selectivity and diffusivity selectivity were simultaneously employed to reveal that the optimal injection depth for CO2-ECBM is 800-1000 m at 308-323 K temperature and 8.0-10.0 MPa.

  16. Constraining biosphere CO2 flux at regional scale with WRF-CO2 4DVar assimilation system

    NASA Astrophysics Data System (ADS)

    Zheng, T.

    2017-12-01

    The WRF-CO2 4DVar assimilation system is updated to include (1) operators for tower based observations (2) chemistry initial and boundary condition in the state vector (3) mechanism for aggregation from simulation model grid to state vector space. The update system is first tested with synthetic data to ensure its accuracy. The system is then used to test regional scale CO2 inversion at MCI (Midcontinental intensive) sites where CO2 mole fraction data were collected at multiple high towers during 2007-2008. The model domain is set to center on Iowa and include 8 towers within its boundary, and it is of 12x12km horizontal grid spacing. First, the relative impacts of the initial and boundary condition are assessed by the system's adjoint model. This is done with 24, 48, 72 hour time span. Second, we assessed the impacts of the transport error, including the misrepresentation of the boundary layer and cumulus activities. Third, we evaluated the different aggregation approach from the native model grid to the control variables (including scaling factors for flux, initial and boundary conditions). Four, we assessed the inversion performance using CO2 observation with different time-interval, and from different tower levels. We also examined the appropriate treatment of the background and observation error covariance in relation with these varying observation data sets.

  17. Pleural Puncture that Excludes the Ablation Zone Decreases the Risk of Pneumothorax after Percutaneous Microwave Ablation in Porcine Lung

    PubMed Central

    Lee, Kyungmouk Steve; Takaki, Haruyuki; Yarmohammadi, Hooman; Srimathveeravalli, Govindarajan; Luchins, Kerith; Monette, Sébastien; Nair, Sreejit; Kishore, Sirish; Erinjeri, Joseph P.

    2017-01-01

    Purpose To test the hypothesis that the geometry of probe placement with respect to the pleural puncture site affects the risk of pneumothorax after microwave (MW) ablation in the lung. Materials and Methods Computed tomography–guided MW ablation of the lung was performed in 8 swine under general anesthesia and mechanical ventilation. The orientation of the 17-gauge probe was either perpendicular (90°) or parallel (< 30°) with respect to the pleural puncture site, and the ablation power was 30 W or 65 W for 5 minutes. After MW ablation, swine were euthanized, and histopathologic changes were assessed. Frequency and factors affecting pneumothorax were evaluated by multivariate analysis. Results Among 62 lung MW ablations, 13 (21%) pneumothoraces occurred. No statistically significant difference was noted in the rate of pneumothorax between the perpendicular and the parallel orientations of the probe (31% vs 14%; odds ratio [OR], 2.8; P = .11). The pneumothorax rate was equal for 65-W and 30-W ablation powers (21% and 21%; OR, 1.0; P = .94). Under multivariate analysis, 2 factors were independent positive predictors of pneumothorax: ablation zone inclusive of pleural insertion point (OR, 7.7; P = .02) and time since intubation (hours) (OR, 2.7; P = .02). Conclusions Geometries where the pleural puncture site excluded the ablation zone decreased pneumothorax in swine undergoing MW ablation in the lung. Treatment planning to ensure that the pleural puncture site excludes the subsequent ablation zone may reduce the rate of pneumothorax in patients undergoing MW ablation in the lung. PMID:25753501

  18. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  19. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    PubMed

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  20. CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendivil, M.I.; García, L.V.; Krishnan, B.

    2015-12-15

    Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electronmore » microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.« less

  1. Uterine fibroids: Influence of "T2-Rim sign" on immediate therapeutic responses to magnetic resonance imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Yeo, Sin Yuin; Kim, Young-Sun; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Hwang, Na Young

    2017-12-01

    To investigate the influence of a high-signal-intensity peripheral rim on T2-weighted MR images (i.e., T2-rim sign) on the immediate therapeutic responses of MR-guided high intensity focused ultrasound (MR-HIFU) ablation of uterine fibroids. This retrospective study was approved by the institutional review board, and patient informed consent was obtained for MR-HIFU ablation. In total, 196 fibroids (diameter 6.2±2.6cm) in 123 women (age 43.4±5.0 years) who underwent MR-HIFU ablation from January 2013 to April 2016 were included. The effects of a T2-rim sign on the immediate therapeutic responses (non-perfused volume [NPV] ratio, ablation efficiency [NPV/treatment cell volume], ablation quality [grade 1-5, poor to excellent]) were investigated with univariable and multivariable analyses using generalized estimating equation (GEE) analysis. In multivariable analysis, T2 signal intensity ratio of fibroids-to-skeletal muscle, relative peak enhancement of fibroids, and subcutaneous fat thickness were also considered. The presence of a T2-rim sign significantly lowered the NPV ratio (54.0±28.0% vs. 83.7±17.7%), ablation efficiency (0.6±0.5 vs. 1.3±0.6), ablation quality (3.1±1.2 vs. 4.2±0.8), (P<0.0001). GEE analysis showed that the presence of a T2-rim sign was independently significant for ablation efficiency and ablation quality (P<0.05). Uterine fibroids with a T2-rim sign showed significantly poorer immediate therapeutic responses to MR-HIFU ablation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The effects of fractional CO2 laser, Nano-hydroxyapatite and MI paste on mechanical properties of bovine enamel after bleaching

    PubMed Central

    Moosavi, Horieh

    2017-01-01

    Background This study investigated the effect of post bleaching treatments to the change of enamel elastic modulus and microhardness after dental bleaching in- vitro. Material and Methods Fifty bovine incisor slab were randomly assigned into five groups (n=10). The samples were bleached for three times; 20 minutes each time, by 40% hydrogen peroxide. Next it was applied fractional CO2 laser for two minutes, Nano- hydroxy apatite (N-HA) and MI-paste for 7 days and 2 minutes per day. The sound enamel and bleached teeth without post treatment remained as control groups. The elastic modulus and microhardness were measured at three times; 24 hours, 1 and 2 months. Data were statistically analyzed by two-way analysis of variance with 95% confidence level. Results Different methods of enamel treatment caused a significant increase in elastic modulus compared to bleached group (P<0.05). Modulus was significantly increased in 1 and 2 months (P<0/001: bleach, P= 0/015: laser, P= 0/008: NHA, P=0/010: MI paste) but there were no significantly difference between 1 and 2 months (P>0.05). There was any significance difference for hardness among treated and control groups, but hardness increased significantly by increasing storage time (P<0.05). Conclusions The use of the protective tested agents can be useful in clinical practice to reduce negative changes of enamel surface after whitening procedures. Key words:Bleaching enamel, CO2 laser, MI pastes, Nano-hydroxy apatite, Microhardness, Elastic modulus. PMID:29410753

  3. Polydeoxyribonucleotide improves wound healing of fractional laser resurfacing in rat model.

    PubMed

    Yu, Mi; Lee, Jun Young

    2017-02-01

    Polydeoxyribonucleotide (PDRN) is an active compound that can promote wound healing. PDRN stimulates wound healing by enhancing angiogenesis and increasing fibroblast growth rates. Laser skin resurfacing is a popular cosmetic procedure for skin rejuvenation. Despite excellent improvement of photo-damaged skin and acne scarring, it is accompanied with drawbacks, such as prolonged erythema and crusting. This study was designed to assess the effect of PDRN on wounds induced by fractional laser resurfacing. Twelve male rats aged 8 weeks were randomly assigned to the PDRN treatment group and the control group. Wounds were induced using a fractional ablative CO 2 laser. The treatment group received daily injections of PDRN and the control group received injections of the vehicle. Wound healing assessed by clinical features and histopathologic findings. The process of wound healing was faster in the treatment group than in the control group. In the histopathological examination, the granulation tissue thickness score of the treatment group was significantly higher than that of the control group. Results of immunohistochemical staining showed a marked increase of VEGF-positive cells and PECAM-1/CD31-positive microvessels in the treatment group. PDRN may be a beneficial option to promote wound healing after laser treatment.

  4. Investigations of the Cavitation and Damage Thresholds of Histotripsy and Applications in Targeted Tissue Ablation

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli

    Histotripsy is a noninvasive ultrasound therapy that controls acoustic cavitation to mechanically fractionate soft tissue. This dissertation investigates the physical thresholds to initiate cavitation and produce tissue damage in histotripsy and factors affecting these thresholds in order to develop novel strategies for targeted tissue ablation. In the first part of this dissertation, the effects of tissue properties on histotripsy cavitation thresholds and damage thresholds were investigated. Results demonstrated that the histotripsy shock scattering threshold using multi-cycle pulses increases in stiffer tissues, while the histotripsy intrinsic threshold using single-cycle pulses is independent of tissue stiffness. Further, the intrinsic threshold slightly decreases with lower frequencies and significantly decreases with increasing temperature. The effects of tissue properties on the susceptibility to histotripsy-induced tissue damage were also investigated, demonstrating that stiffer tissues are more resistant to histotripsy. Two strategies were investigated for increasing the effectiveness of histotripsy for the treatment of stiffer tissues, with results showing that thermal preconditioning may be used to alter tissue susceptibility to histotripsy and that lower frequency treatments may increase the efficiency of histotripsy tissue ablation due to enhanced bubble expansion. In the second part of this dissertation, the feasibility of using histotripsy for targeted liver ablation was investigated in an intact in vivo porcine model, with results demonstrating that histotripsy was capable of non-invasively creating precise lesions throughout the entire liver. Additionally, a tissue selective ablation approach was developed, where histotripsy completely fractionated the liver tissue surrounding the major hepatic vessels and gallbladder while being self-limited at the boundaries of these critical structures. Finally, the long-term effects of histotripsy liver

  5. Measurements of NH 3 and CO 2 with Distributed-Feedback Diode Lasers Near 2.0 m in Bioreactor Vent Gases

    NASA Astrophysics Data System (ADS)

    Webber, Michael E.; Claps, Ricardo; Englich, Florian V.; Tittel, Frank K.; Jeffries, Jay B.; Hanson, Ronald K.

    2001-08-01

    Measurements of NH3 and CO2 were made in bioreactor vent gases with distributed-feedback diode-laser sensors operating near 2 m. Calculated spectra of NH3 and CO2 were used to determine the optimum transitions for interrogating with an absorption sensor. For ammonia, a strong and isolated absorption transition at 5016.977 cm-1 was selected for trace gas monitoring. For CO2 , an isolated transition at 5007.787 cm-1 was selected to measure widely varying concentrations [500 parts per million (ppm) to 10% ,] with sufficient signal for low mole fractions and without being optically thick for high mole fractions. Using direct absorption and a 36-m total path-length multipass flow-through cell, we achieved a minimum detectivity of 0.25 ppm for NH3 and 40 ppm for CO2 . We report on the quasi-continuous field measurements of NH3 and CO2 concentration in bioreactor vent gases that were recorded at NASA Johnson Space Center with a portable and automated sensor system over a 45-h data collection window.

  6. Energetics of CO2 and H2O adsorption on zinc oxide.

    PubMed

    Gouvêa, Douglas; Ushakov, Sergey V; Navrotsky, Alexandra

    2014-08-05

    Adsorption of H2O and CO2 on zinc oxide surfaces was studied by gas adsorption calorimetry on nanocrystalline samples prepared by laser evaporation in oxygen to minimize surface impurities and degassed at 450 °C. Differential enthalpies of H2O and CO2 chemisorption are in the range -150 ±10 kJ/mol and -110 ±10 kJ/mol up to a coverage of 2 molecules per nm(2). Integral enthalpy of chemisorption for H2O is -96.8 ±2.5 kJ/mol at 5.6 H2O/nm(2) when enthalpy of water condensation is reached, and for CO2 is -96.6 ±2.5 kJ/mol at 2.6 CO2/nm(2) when adsorption ceases. These values are consistent with those reported for ZnO prepared by other methods after similar degas conditions. The similar energetics suggests possible competition of CO2 and H2O for binding to ZnO surfaces. Exposure of bulk and nanocrystalline ZnO with preadsorbed CO2 to water vapor results in partial displacement of CO2 by H2O. In contrast, temperature-programmed desorption (TPD) indicates that a small fraction of CO2 is retained on ZnO surfaces up to 800 °C, under conditions where all H2O is desorbed, with adsorption energies near -200 kJ/mol. Although molecular mechanisms of adsorption were not studied, the thermodynamic data are consistent with dissociative adsorption of H2O at low coverage and with several different modes of CO2 binding.

  7. Diffuse CO2 degassing at Vesuvio, Italy

    NASA Astrophysics Data System (ADS)

    Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido

    2004-10-01

    At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.

  8. The efficacy and safety of combined microneedle fractional radiofrequency and sublative fractional radiofrequency for acne scars in Asian skin.

    PubMed

    Park, Jae Yang; Lee, Eo Gin; Yoon, Moon Soo; Lee, Hee Jung

    2016-06-01

    Microneedle fractional radiofrequency has been reported to be effective for improving wrinkles, enlarged pores and various scars. Sublative fractional radiofrequency has been shown to induce both fractional ablation of epidermis and upper dermal remodelling, which had rejuvenation effects in photoaged skin. Both modalities may have the potential synergy to improve acne scars. To evaluate the efficacy and safety of combined microneedle and sublative fractional radiofrequency for acne scars in Asian skin. Twenty subjects comprised 11 males and 9 females (mean age 23.65 ± 2.94, skin phototype III-IV) with moderate to severe acne scars. The subjects received three consecutive combined microneedle and sublative fractional radiofrequency at 4-week intervals over 12 weeks. Both blinded dermatologists and subjects assessed the clinical improvement based on the standardized photography and questionnaires, respectively. The quartile grading scale was utilized and defined as follows: grade 1, 0-25% improvement; grade 2, 26-50% improvement; grade 3, 51-75% improvement and grade 4, 76-100% improvement. All 20 subjects were assessed to have grade 2 or more clinical improvement by physicians; four (20%) had grade 4, 10 (50%) had grade 3, and six (30%) had grade 2 improvement. The subjects' grading also showed a good concordance as indicated by Kappa index of 0.695. The mean duration of post-therapy crusting was 5.2 days and post-therapy erythema lasted 2.5 days. Combined microneedle and sublative fractional radiofrequency can have a positive therapeutic effect with no serious complications and may provide a new therapeutic approach on acne scars in Asians. © 2015 Wiley Periodicals, Inc.

  9. Clinical Outcomes and Complications Associated with Fractional Lasers: A Review of 730 Patients.

    PubMed

    Cohen, Steven R; Goodacre, Ashley; Lim, Soobin; Johnston, Jennifer; Henssler, Cory; Jeffers, Brian; Saad, Ahmad; Leong, Tracy

    2017-02-01

    Fractional lasers were introduced to provide increased safety, while maintaining high efficacy and patient satisfaction. Patients with virtually all Fitzpatrick skin types could be safely treated using a wide spectrum of wavelengths and a broad array of skin conditions, and aging could be addressed. Although safety studies have been reported for ablative CO 2 and erbium lasers, surprisingly few data are available on adverse events and complications associated with fractional lasers. We report the frequency of adverse events, skin improvement and complications in a broad range of skin types using a standardized protocol that can be safely tailored to the patient's presenting complaints by varying the laser wavelength and number of treatments. The medical records of 730 patients (>90% females, age ranged from 50.5. to 59.9 years.) who had been treated at FACES+ Aesthetic Facility were reviewed. Patients were followed from 1 to 10 months and were reviewed to determine the frequency of complications, as well as their frequency, type, cause, treatment and resolution thereof. Patients were categorized by Fitzpatrick skin type (I-IV) to determine whether skin type was related to the frequency of complications. Improvement in skin condition (wrinkles, nasolabial folds and pigment) was rated by a technician before and after treatment using a Likert scale, 0-5, with 0 being no change and 5 being the most improvement. Seven hundred thirty patients underwent procedures using fractional lasers in our center. Procedures were carried out with 3 different laser wavelengths, depending on the condition(s) treated (wrinkling vs. pigmentation issues, etc.) and the patients' desired length of downtime. The fractional Fraxel 1927-nm laser was used in 224 patients [Fitzpatrick skin type I (2.2%), II (38.4%), III (46.0%), IV (12.5%)]; the fractional Fraxel 1550-nm laser was used in 334 [type I (4.5%), II (31.9%), III (50.0%), IV (13.3%)], and the fractional Fraxel CO 2 laser was used in

  10. Reasons for recurrent ventricular tachycardia after catheter ablation of post-infarction ventricular tachycardia.

    PubMed

    Yokokawa, Miki; Desjardins, Benoit; Crawford, Thomas; Good, Eric; Morady, Fred; Bogun, Frank

    2013-01-08

    The purpose of this study was to assess the determinants of ventricular tachycardia (VT) recurrence in patients who underwent VT ablation for post-infarction VT. The factors that predict recurrence of VT after catheter ablation in patients with prior infarctions are not well described. Catheter ablation was performed in 98 consecutive patients (88 males [90%]; mean age 67 ± 10 years; ejection fraction 27 ± 13%) with post-infarction VT. Electrograms from the implantable cardioverter-defibrillator were analyzed, and VTs were classified as clinical, nonclinical, or new clinical. A total of 725 VTs were induced during the ablation procedure. All VTs were targeted. In 76 patients, 105 clinical VTs were inducible. Critical sites were identified with entrainment mapping and pace-mapping (≥10 of 12 matching leads) for 75 of 105 clinical VTs (71%) and for 278 of 620 nonclinical VTs (45%). Post-ablation, the clinical VT was not inducible in any patient, and all VTs were rendered noninducible in 63% of the patients. Over a mean follow-up period of 35 ± 23 months, 65 of 98 patients (66%) had no recurrent VTs and 33 (34%) had VT recurrence. A new VT occurred in 26 of 33 patients (79%), and a prior clinical VT recurred in 7 patients (21%). Patients with recurrent VT had a larger scar area as assessed by electroanatomic mapping compared with patients without recurrent VTs (93 ± 40 cm(2) vs. 69 ± 30 cm(2); p = 0.002). In patients with repeat procedures, the majority of inducible VTs for which a critical area could be identified were at a distance of 6 ± 3 mm to the prior ablation lesions. Patients with recurrent VTs have a larger scar as assessed by electroanatomic mapping. Most recurrent VTs were new, and the majority of these VTs were mapped to the vicinity of prior ablation lesions in patients with repeat procedures. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Low pressure laser ablation coupled to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fliegel, Daniel; Günther, Detlef

    2006-07-01

    The particle size distribution in laser ablation inductively coupled plasma mass spectrometry is known to be a critical parameter for complete vaporization of particles. Any strategy to reduce the particle size distribution of laser generated aerosols has the potential to increase the ion signal intensity and to reduce fractionation effects. Due to the fact that vapor generation, nucleation, condensation, and agglomeration take place within an extremely short period of time, ablation under atmospheric pressure might not allow influencing these processes while under reduced pressure condition the cooling of the aerosol and therefore the condensation is expected to be slower. In this study, a low pressure laser ablation cell for the generation of laser aerosols was coupled to an ICP-MS. In contrast to the previously developed trapped ablation mode, the newly designed cell allows the adjustment of the pressure in the ablation cell between 20 and 1400 mbar prior to the ablation. Ablation experiments carried out using this configuration showed a dependence of the aerosol properties (size distribution and particle structure) on the ablation cell pressure. The intensity ratio U/Th measured as a figure of merit for complete vaporization within the ICP indicated a change in the aerosol structure at approximately 500 mbar toward smaller particle size. A significant difference between low pressure and at ambient pressure ablated aerosol was observed. The intensity ratios (U/Th) of the ablated sample moves closer to the bulk composition at lower pressures at the expense of sensitivity. Therefore the decrease in the ICP-MS signal intensity in the low pressure cell can be attributed to vapor deposition within the ablation cell walls. Moreover, scanning electron microscope images of aerosols collected on filters after the low pressure ablation cell suggest the possibility of a slower cooling velocity of the aerosol, which was observed in the condensed material on the surface of

  12. Quantification of the effect of electrical and thermal parameters on radiofrequency ablation for concentric tumour model of different sizes.

    PubMed

    Jamil, Muhammad; Ng, E Y K

    2015-07-01

    Radiofrequency ablation (RFA) has been increasingly used in treating cancer for multitude of situations in various tissue types. To perform the therapy safely and reliably, the effect of critical parameters needs to be known beforehand. Temperature plays an important role in the outcome of the therapy and any uncertainties in temperature assessment can be lethal. This study presents the RFA case of fixed tip temperature where we've analysed the effect of electrical conductivity, thermal conductivity and blood perfusion rate of the tumour and surrounding normal tissue on the radiofrequency ablation. Ablation volume was chosen as the characteristic to be optimised and temperature control was achieved via PID controller. The effect of all 6 parameters each having 3 levels was quantified with minimum number of experiments harnessing the fractional factorial characteristic of Taguchi's orthogonal arrays. It was observed that as the blood perfusion increases the ablation volume decreases. Increasing electrical conductivity of the tumour results in increase of ablation volume whereas increase in normal tissue conductivity tends to decrease the ablation volume and vice versa. Likewise, increasing thermal conductivity of the tumour results in enhanced ablation volume whereas an increase in thermal conductivity of the surrounding normal tissue has a debilitating effect on the ablation volume and vice versa. With increase in the size of the tumour (i.e., 2-3cm) the effect of each parameter is not linear. The parameter effect varies with change in size of the tumour that is manifested by the different gradient observed in ablation volume. Most important is the relative insensitivity of ablation volume to blood perfusion rate for smaller tumour size (2cm) that is also in accordance with the previous results presented in literature. These findings will provide initial insight for safe, reliable and improved treatment planning perceptively. Copyright © 2015 Elsevier Ltd. All

  13. Absorption performance for CO2 capture process using MDEA-AMP aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Kou, Liqing; Li, Chao

    2017-03-01

    The absorption capacity and the absorption rate of CO2 in 2-amino-2-methyl-1-propanol (AMP)-N-methyldiethanolamine (MDEA) aqueous solution were measured. The temperatures ranged from 303.2K to 323.2K. The mass fractions of AMP and MDEA respectively ranged from 0 to 0.03 and 0.2 to 0.3. The influence of temperature and w AMP on the absorption capacity and absorption rate of CO2 was illustrated.

  14. Carbon sequestration in soybean crop soils: the role of hydrogen-coupled CO2 fixation

    NASA Astrophysics Data System (ADS)

    Graham, A.; Layzell, D. B.; Scott, N. A.; Cen, Y.; Kyser, T. K.

    2011-12-01

    Conversion of native vegetation to agricultural land in order to support the world's growing population is a key factor contributing to global climate change. However, the extent to which agricultural activities contribute to greenhouse gas emissions compared to carbon storage is difficult to ascertain, especially for legume crops, such as soybeans. Soybean establishment often leads to an increase in N2O emissions because N-fixation leads to increased soil available N during decomposition of the low C:N legume biomass. However, soybean establishment may also reduce net greenhouse gas emissions by increasing soil fertility, plant growth, and soil carbon storage. The mechanism behind increased carbon storage, however, remains unclear. One explanation points to hydrogen coupled CO2 fixation; the process by which nitrogen fixation releases H2 into the soil system, thereby promoting chemoautotrophic carbon fixation by soil microbes. We used 13CO2 as a tracer to track the amount and fate of carbon fixed by hydrogen coupled CO2 fixation during one-year field and laboratory incubations. The objectives of the research are to 1) quantify rates of 13CO2 fixation in soil collected from a field used for long-term soybean production 2) examine the impact of H2 gas concentration on rates of 13CO2 fixation, and 3) measure changes in δ13C signature over time in 3 soil fractions: microbial biomass, light fraction, and acid stable fraction. If this newly-fixed carbon is incorporated into the acid-stable soil C fraction, it has a good chance of contributing to long-term soil C sequestration under soybean production. Soil was collected in the field both adjacent to root nodules (nodule soil) and >3cm away (root soil) and labelled with 13CO2 (1% v/v) in the presence and absence of H2 gas. After a two week labelling period, δ13C signatures already revealed differences in the four treatments of bulk soil: -17.1 for root, -17.6 for nodule, -14.2 for root + H2, and -6.1 for nodule + H2

  15. Laser-ablation ICP-MS as a tool for whole rock trace element analyses on fused powders

    NASA Astrophysics Data System (ADS)

    Girard, G.; Rooney, T. O.

    2013-12-01

    Here we present an accurate and precise technique for routine trace element analysis of geologic materials by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We focus on rock powders previously prepared for X-ray fluorescence by fusion in a Li2B4O7 flux, and subsequently quenched in a Pt mold to form a glass disk. Our method allows for the analysis up to 30 trace elements by LA-ICP-MS using a Photon-Machines Analyte G2 193 nm excimer laser coupled to a Thermo-Fisher Scientific ICAP Q quadrupole ICP-MS. Analyses are run as scans on the surface of the disks. Laser ablation conditions for which trace element fractionation effects are minimal have been empirically determined to be ~ 4 J m-2 fluence, at 10 Hz , and 10 μm s-1 scan speed, using a 110 μm laser beam size. Ablated material is carried into the ICP-MS by a He carrier at a rate of 0.75 L min-1. Following pre-ablation to remove surface particles, samples are ablated for 200 s, of which 140 s are used for data acquisition. At the end of each scan, a gas blank is collected for 30 s. Dwell times for each element vary between 15 and 60 μs, depending on abundance and instrument sensitivity, allowing 120 readings of each element during the data acquisition time window. To correct for variations in the total volume of material extracted by the laser, three internal standards are used, Ca, Fe and Zr. These elements are routinely analyzed by X-ray fluorescence by the Geoanalytical laboratory at Michigan State University with precision and accuracy of <5%. The availability of several internal standards allows for better correction of possible persisting laser ablation fractionation effects; for a particular trace element, we correct using the internal standard that best reproduces its ablation behavior. Our calibration is based on a combination of fused powders of US Geological Survey and Geological Survey of Japan rock standards, NIST SRM 612 glass, and US Geological Survey natural and

  16. Global Modeling of Uranium Molecular Species Formation Using Laser-Ablated Plasmas

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Finko, Mikhail; Azer, Magdi; Armstrong, Mike; Crowhurst, Jonathan; Radousky, Harry; Rose, Timothy; Stavrou, Elissaios; Weisz, David; Zaug, Joseph

    2016-10-01

    Uranium is chemically fractionated from other refractory elements in post-detonation nuclear debris but the mechanism is poorly understood. Fractionation alters the chemistry of the nuclear debris so that it no longer reflects the chemistry of the source weapon. The conditions of a condensing fireball can be simulated by a low-temperature plasma formed by vaporizing a uranium sample via laser heating. We have developed a global plasma kinetic model in order to model the chemical evolution of U/UOx species within an ablated plasma plume. The model allows to track the time evolution of the density and energy of an uranium plasma plume moving through an oxygen atmosphere of given fugacity, as well as other relevant quantities such as average electron and gas temperature. Comparison of model predictions with absorption spectroscopy of uranium-ablated plasmas provide preliminary insights on the key chemical species and evolution pathways involved during the fractionation process. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16-1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.

    2015-02-01

    To determine partitioning of C between upper mantle silicate minerals and basaltic melts, we executed 26 experiments between 0.8 and 3 GPa and 1250-1500 °C which yielded 37 mineral/glass pairs suitable for C analysis by secondary ion mass spectrometry (SIMS). To enhance detection limits, experiments were conducted with 13C-enriched bulk compositions. Independent measurements of 13C and 12C in coexisting phases produced two C partition coefficients for each mineral pair and allowed assessment of the approach to equilibrium during each experiment. Concentrations of C in olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and garnet (gt) range from 0.2 to 3.5 ppm, and resulting C partition coefficients for ol/melt, opx/melt, cpx/melt and gt/melt are, respectively, 0.0007 ± 0.0004 (n = 2), 0.0003 ± 0.0002 (n = 45), 0.0005 ± 0.0004 (n = 17) and 0.0001 ± 0.00007 (n = 5). The effective partition coefficient of C during partial melting of peridotite is 0.00055 ± 0.00025, and therefore C is significantly more incompatible than Nb, slightly more compatible than Ba, and, among refractory trace elements, most similar in behavior to U or Th. Experiments also yielded partition coefficients for F and H between minerals and melts. Combining new and previous values of DFmineral/melt yields bulk DFperidotite/melt = 0.011 ± 0.002, which suggests that F behaves similarly to La during partial melting of peridotite. Values of DHpyx/melt correlate with tetrahedral Al along a trend consistent with previously published determinations. Small-degree partial melting of the mantle results in considerable CO2/Nb fractionation, which is likely the cause of high CO2/Nb evident in some Nb-rich oceanic basalts. CO2/Ba is much less easily fractionated, with incompatible-element-enriched partial melts having lower CO2/Ba than less enriched basalts. Comparison of calculated behavior of CO2, Nb, and Ba to systematics of oceanic basalts suggests that depleted (DMM-like) sources have 75 ± 25

  18. Histologic comparison of the CO2 laser and Nd:YAG with and without water/air surface cooling on tooth root structure

    NASA Astrophysics Data System (ADS)

    Cobb, Charles M.; Spencer, Paulette; McCollum, Mark H.

    1995-05-01

    Specimens consisted of 18 extracted single rooted teeth unaffected by periodontal disease. After debriding roots, specimens were randomly divided into 4 treatment groups and subjected to a single pass, at varying energy densities, of a CO2, Nd:YAG, and Nd:YAG with air/water surface cooling (Nd:YAG-C). The rate of exposure was controlled at 4 mm/sec. Approximate energy densities were: CO2, 138, 206, 275, and 344 J/cm2; Nd:YAG, 114, 171, 229, and 286 J/cm2; Nd:YAG-C, 286, 343, 514, and 571 J/cm2. The CO2 laser was used both in continuous and pulsed beam modes (20 Hz, 0.01 sec pulse length and 0.8 mm dia spot size) whereas the Nd:YAG and Nd:YAG-C were preset at 50 Hz, 0.08 sec pulse length and 0.6 mm dia spot size. Specimen examination by SEM revealed, for all lasers, a direct correlation between increasing energy densities and depth of tissue ablation and width of tissue damage. However, to achieve the same relative dept of tissue ablation, the Nd:YAG-C required higher energy densities than either the CO2 or Nd:YAG lasers. The Nd:YAG-C generated a cavitation with sharply defined margins. Furthermore, regardless of energy density, and in contrast with other laser types, areas treated with the Nd:YAG-C did not exhibit collateral zones of heat damaged surface tissue.

  19. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.

    PubMed

    Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove

    2009-12-01

    The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (<0.2 microm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO(2) seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity

  20. Rates of CO2 Mineralization in Geological Carbon Storage.

    PubMed

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of

  1. Oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system up to 0.7 mol/kg ionic strength at 25 °C

    USGS Publications Warehouse

    Kim, Sang-Tae; Gebbinck, Christa Klein; Mucci, Alfonso; Coplen, Tyler B.

    2014-01-01

    To investigate the oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system, witherite (BaCO3) was precipitated quasi-instantaneously and quantitatively from Na-Cl-Ba-CO2 solutions of seawater-like ionic strength (I = 0.7 mol/kg) at two pH values (~7.9 and ~10.6) at 25 °C. The oxygen isotope composition of the witherite and the dissolved inorganic carbon speciation in the starting solution were used to estimate the oxygen isotope fractionations between HCO3¯ and H2O as well as between CO3 2 and H2O. Given the analytical error on the oxygen isotope composition of the witherite and uncertainties of the parent solution pH and speciation, oxygen isotope fractionation between NaHCO3° and HCO3¯, as well as between NaCO3¯ and CO3 2, is negligible under the experimental conditions investigated. The influence of dissolved NaCl concentration on the oxygen isotope fractionation in the aragonite-CO2-H2O-NaCl system also was investigated at 25 °C. Aragonite was precipitated from Na-Cl-Ca-Mg-(B)-CO2 solutions of seawater-like ionic strength using passive CO2 degassing or constant addition methods. Based upon our new experimental observations and published experimental data from lower ionic strength solutions by Kim et al. (2007b), the equilibrium aragonite-water oxygen isotope fractionation factor is independent of the ionic strength of the parent solution up to 0.7 mol/kg. Hence, our study also suggests that the aragonite precipitation mechanism is not affected by the presence of sodium and chloride ions in the parent solution over the range of concentrations investigated.

  2. Decrease in B-Type Natriuretic Peptide Levels and Successful Catheter Ablation for Atrial Fibrillation in Patients with Heart Failure.

    PubMed

    Yanagisawa, Satoshi; Inden, Yasuya; Kato, Hiroyuki; Fujii, Aya; Mizutani, Yoshiaki; Ito, Tadahiro; Kamikubo, Yosuke; Kanzaki, Yasunori; Hirai, Makoto; Murohara, Toyoaki

    2016-03-01

    Little is known about the association between B-type natriuretic peptide (BNP) levels and catheter ablation of atrial fibrillation (AF) in patients with heart failure. This study aimed to examine the impact of elimination of AF by catheter ablation on BNP levels in patients with left ventricular systolic dysfunction. Fifty-four AF patients with left ventricular ejection fraction (LVEF) ≤ 50%, who underwent radiofrequency catheter ablation therapy of AF, were included. BNP sampling was performed at baseline, 3 days, and 1 month after ablation. After a follow-up period of 6 months, the BNP levels decreased significantly in the nonrecurrence group (n = 35; median 126.3 [interquartile 57.2-206.5] pg/mL, 63.5 [23.9-180.2] pg/mL, and 45.9 [21.9-160.3] pg/mL, P < 0.001, respectively), but not in the recurrence group (n = 19; 144.7 [87.1-217.3] pg/mL, 88.8 [12.9-213.2] pg/mL, and 118.5 [51.6-298.2] pg/mL, P = 0.368, respectively). The patients in the nonrecurrence group had a higher percentage relative reduction in BNP levels from baseline to 1 month after ablation than those in the recurrence group (56.5 [-9.0-77.4]% vs -2.4 [-47.1-60.9]%, P = 0.027). Additionally, a relative reduction in BNP levels significantly correlated with an increase in LVEF after ablation (r = 0.486, P < 0.001). Plasma BNP levels decreased significantly with successful catheter ablation of AF in patients with impaired LVEF. The decrease in BNP levels might be associated with early recovery of cardiac function and subsequent maintenance of sinus rhythm at follow-up. ©2015 Wiley Periodicals, Inc.

  3. Correlation of histological findings of single session Er:YAG skin fractional resurfacing with various passes and energies and the possible clinical implications.

    PubMed

    Trelles, Mario A; Vélez, Mariano; Mordon, Serge

    2008-03-01

    Ablative fractional resurfacing shows promise for skin resurfacing and tightening and also to improve treatment of epidermal and dermal pigmentary disorders. This study aimed at determining any correlation between epidermal ablation and effects on the dermis when using an Er:YAG laser in ablative fractional resurfacing mode. Ten female subjects participated in the study, mean age 52 years, Skin phototypes: 1 Fitzpatrick type II; 8 type III and 1 type IV. The degree of wrinkles (Glogau scale II or III) was similar in all cases. The laser used was the Pixel Er:YAG system (Alma Lasertrade mark, Israel) which delivers the laser beam via a hand-piece equipped with a beam splitter to divide the 2,940 nm beam into various microbeams of 850 microm in diameter in an 11 mmx11 mm treatment area. Using a constant energy of 1,400 mJ/cm(2), on a test area of 4 cmx2 cm. Two, 4, 6, and 8 passes on the preauricular area of the face were evaluated immediately after treatment. In all cases, the handpiece was kept in the same position, and rotated slightly around its perpendicular axis between passes, then moved on to the next spot. Biopsies were performed and tissue samples were routinely processed and stained with hematoxylin and eosin (H&E). No patient reported any noticeable discomfort, even at 8 passes. The histological findings revealed that, independent of the degree of the wrinkles, more laser passes produced more ablative removal of the epidermis. Residual thermal damage (RTD) with 2 laser passes was not observed but with 4 and 6 passes increased thermal effects and vacuole formation in the epidermal cells were noticed. With 8 laser passes, total epidermal removal was seen together with frank RTD-related changes in the upper part of the papillary dermis. In this study, we have demonstrated that high density fractional Er:YAG laser energy in a single session with multiple passes targeted not only the skin surface with elimination of the epidermis, but could also achieve heat

  4. The carbon isotope biogeochemistry of (epsilon)CO2 production in a methanogenic marine sediment

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    To investigate the relationship between sigma(CO2) delta(C-13) values and rates of the dominant remineralization processes at the organic-rich field site of Cape Lookout Bight, NC, the isotopic composition of porewater sigma(CO2) was measured on a seasonal basis. The sigma(CO2) delta(C-13) values varies seasonally in response to changes in rates of sulfate reduction and methanogenesis, the dominant remineralization processes at this site. A tube incubation experiment was also performed to determine the isotopic signature of the sigma(CO2) produced by sulfate reduction and methanogenesis. The delta(C-13) of the sigma(CO2) produced in the sulfate reduction zone determined from the tube incubation was -14.3 plus or minus 1.9, a value enriched in C-13 relative to the labile organic fraction. The C-13-enrichment may be caused by low rates of methanogenesis occurring in the sulfate reduction zone. The delta(C-13) of the sigma(CO2) produced in the methanogenic zone was estimated to be +44 per mil, whereas the co-produced methane was -65 per mil. The fractionation factor for CO2 reduction was calculated to be 1.055, a value in agreement with previous estimates at this site. The measured concentration and delta(C-13) of the sigma(CO2) at Cape Lookout was closely reproduced by a diagenetic model using the measured rates of sulfate reduction and sigma(CO2) production, and the isotopic signature of the sigma(CO2) production in the two biogeochemical zones.

  5. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  6. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  7. Ablation for Atrial Fibrillation

    PubMed Central

    2006-01-01

    Executive Summary Objective To review the effectiveness, safety, and costing of ablation methods to manage atrial fibrillation (AF). The ablation methods reviewed were catheter ablation and surgical ablation. Clinical Need Atrial fibrillation is characterized by an irregular, usually rapid, heart rate that limits the ability of the atria to pump blood effectively to the ventricles. Atrial fibrillation can be a primary diagnosis or it may be associated with other diseases, such as high blood pressure, abnormal heart muscle function, chronic lung diseases, and coronary heart disease. The most common symptom of AF is palpitations. Symptoms caused by decreased blood flow include dizziness, fatigue, and shortness of breath. Some patients with AF do not experience any symptoms. According to United States data, the incidence of AF increases with age, with a prevalence of 1 per 200 people aged between 50 and 60 years, and 1 per 10 people aged over 80 years. In 2004, the Institute for Clinical Evaluative Sciences (ICES) estimated that the rate of hospitalization for AF in Canada was 582.7 per 100,000 population. They also reported that of the patients discharged alive, 2.7% were readmitted within 1 year for stroke. One United States prevalence study of AF indicated that the overall prevalence of AF was 0.95%. When the results of this study were extrapolated to the population of Ontario, the prevalence of AF in Ontario is 98,758 for residents aged over 20 years. Currently, the first-line therapy for AF is medical therapy with antiarrhythmic drugs (AADs). There are several AADs available, because there is no one AAD that is effective for all patients. The AADs have critical adverse effects that can aggravate existing arrhythmias. The drug selection process frequently involves trial and error until the patient’s symptoms subside. The Technology Ablation has been frequently described as a “cure” for AF, compared with drug therapy, which controls AF but does not cure it

  8. Early use of CO2 lasers and silicone gel on surgical scars: Prospective study.

    PubMed

    Alberti, Luiz Ronaldo; Vicari, Eduardo Faria; De Souza Jardim Vicari, Roselaine; Petroianu, Andy

    2017-08-01

    Some publications have shown good aesthetic results for scars through the early application of fractional CO 2 lasers on elective surgery scars. The aim of this randomized, double-blinded clinical trial was to compare the aesthetic quality of the scar from a group of patients submitted to super-pulsed fractional CO 2 laser applications (10,600 nm fractional CO 2 , set at a density of 20% and an energy of 10 mJ, a scanner of 03 × 03 mm, and a pulse repetition time of 0.3 seconds) in contrast with the other group that used only the silicone gel on the scar after plastic surgery. A prospective study was conducted by analyzing 42 patients with recent scars of up to three weeks in patients with a I-IV Fitz-Patrick skin phototype. The scars were evaluated aesthetically in the second and sixth months by applying the Vancouver scale. At 2 months of treatment, the statistical data showed a discrete superiority in the LASER group's treatment, as compared to that of the SILICONE group, in both percentage and significance concerning flexibility (P = 0.05) and pigmentation (P = 0.01). Laser group presented better results in the sixth month (P = 0,03). The early use of the fractional CO 2 laser contributed to improving the aesthetic quality of scars from elective surgeries in the second and in the 6th months. Lasers Surg. Med. 49:570-576, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Robot-assisted radiofrequency ablation of a sacral S1-S2 aggressive hemangioma.

    PubMed

    Kaoudi, A; Capel, C; Chenin, L; Peltier, J; Lefranc, M

    2018-05-16

    Aggressive vertebral hemangiomas are rare tumors of the spine. The treatment management strategy usually consists of vertebroplasty, radiation therapy or in rare cases of surgical strategy. We present a case of a bulging sacral S1-S2 hemangioma in the spinal canal that could not be managed in the usual manner. Here, we demonstrate the usefulness of radiofrequency ablation technique as an alternative treatment as well as robotic assistance for optimal placement of the ablation probe within the lesion. Copyright © 2018. Published by Elsevier Inc.

  10. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.

    PubMed

    Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L

    2011-09-01

    This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Impact of CO2-solvent separators on the degradation of benzyl-2,3-dihydroxypiperidine-1-carboxylate during preparative supercritical fluid chromatographic (SFC) purification.

    PubMed

    Asokan, Kathiravan; Naidu, Harshavardhan; Madam, Ratalababu; Shaikh, Khaja Mohiuddin; Reddy, Manjunath; Kumar, Hemantha; Shirude, Pravin S; Rajendran, Muruganantham; Sarabu, Ramakanth; Wu, Dauh-Rurng; Bajpai, Lakshmikant; Zhang, Yingru

    2017-12-29

    During a preparative separation of the cis enantiomeric pair of benzyl-2,3-dihydroxypiperidine-1-carboxylate using supercritical-fluid chromatography (SFC) with methanol modifier, significant degradation of the products in the collected fractions was observed when a Waters SFC-350 ® (Milford, MA, USA) was used, but same was not observed when a Waters SFC-80q ® (Milford, MA, USA) was used. Through a systematic investigation, we discovered that the compound degraded over time under an acidic condition created by the formation of methyl carbonic acid from methanol and CO 2. The extent of the product degradation was dependent on the time and the concentration of CO 2 remained in the product fraction, which was governed by the efficiency of CO 2 -methanol separation during the fraction collection. Hence, we demonstrated that the different designs of CO 2 -solvent separator (high pressurized cyclone in Waters SFC-350 ® and low-pressurized vortexing separator in Waters SFC-80q ®® ) had a significant impact on the degradation of an acid-sensitive compound. The acidity caused by CO 2 in methanol was supported by diminished degradation after a nitrogen purging or after neutralizing the collected fractions with a base. Three different solutions to overcome the degradation problem of the acid sensitive compounds using SFC-350 ® with the high pressurized separator were investigated and demonstrated. The degraded products were isolated as four enantiomers and their relative stereochemistry were established based on 2D NMR data along with the plausible mechanism of degradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Clinical applications of CO2 laser resurfacing in the treatment of various pathologic skin disorders

    NASA Astrophysics Data System (ADS)

    Giler, Shamai

    1997-12-01

    CO2 laser skin resurfacing devices are widely used in cosmetic surgery for the treatment of facial rhytides, acne scars and aging skin. This technique is also useful in the treatment of various benign and premalignant or multiple pathological skin conditions and disorders originating in the epidermal, dermal and skin appendages, vascular lesions, epidermal nevi, infected wounds and ulcers, and keloids. Various surgical techniques have been developed in our clinic using laser resurfacing in the treatment of more than 2,000 patients with various skin pathologic disorders. We describe our experience with the various techniques used. The precise depth control and ablation properties combined with the hemostatic and sterilizing effects of the CO2 laser beam, reduction of the possibility of bleeding, infection and damage to healthy tissues, make the CO2 laser resurfacing techniques the treatment of choice for cosmetic surgery and treatment of benign, premalignant and multiple pathologic skin conditions.

  13. High Resolution CO2 Simulation for Detecting Emission Hotspots Signal in GOSAT XCO2 Data

    NASA Astrophysics Data System (ADS)

    Janardanan Achari, R.; Kaiser, J. W.; Maksyutov, S. S.; Ito, A.; Ganshin, A.; Zhuravlev, R.; Yoshida, Y.

    2014-12-01

    Emissions due to combustion of fossil fuel and biomass are two major sources of atmospheric carbon dioxide. The trace gases emitted by biomass burning have a significant influence on the atmosphere which currently accounts for ~25% of the annual anthropogenic emission of CO2into the atmosphere. Also some of the world's most carbon-dense ecosystems like South America and Africa are increasingly susceptible to fire. Though observing atmospheric greenhouse gas dry air mole fractions from space is an approach in practice, the problem of delineating the contribution from the flux arising from different sources has always been a matter of interest. Here we demonstrate the capability of a space-borne CO2 observational platform (Greenhouse gas Observing SATellite, GOSAT) to detect emissions of CO2 due to biomass burning. We made an attempt to detect fire emission signal of CO2 in GOSAT observed total column dry air mole fractions of CO2 (XCO2) for a period June 2009 through December 2012. We performed Lagrangian time inverted simulation (trajectory between 2-3 days) of CO2 transport using FLEXPART for GOSAT observation locations using high resolution (0.1 degree) biomass burning (GFAS V1.1) fluxes. The resulting total column mixing ratios of CO2 (ΔXCO2,model) were grouped into 0.2 ppm bins over spatial regions of 10x10 degree. The result was compared to anomalies of GOSAT XCO2, calculated as ΔXCO2,obs=XCO2,obs-local background (omitting influence from other regimes of emission), collectively for the analysis period and for large continental regions where these detected signals predominate. GOSAT data showed good agreement with modeled ΔXCO2 till about 0.9 ppm (for example regression slope of 0.989 for African continent up to 0.7 ppm) , beyond this, the number of observations with higher ΔXCO2drops and hence poor correspondence to model values. Our analysis points towards the potential of dedicated greenhouse gas observing satellites providing larger number observations

  14. Implementation of Radiation, Ablation, and Free Energy Minimization Modules for Coupled Simulations of Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Thompson, Richard A.

    2009-01-01

    A description of models and boundary conditions required for coupling radiation and ablation physics to a hypersonic flow simulation is provided. Chemical equilibrium routines for varying elemental mass fraction are required in the flow solver to integrate with the equilibrium chemistry assumption employed in the ablation models. The capability also enables an equilibrium catalytic wall boundary condition in the non-ablating case. The paper focuses on numerical implementation issues using FIRE II, Mars return, and Apollo 4 applications to provide context for discussion. Variable relaxation factors applied to the Jacobian elements of partial equilibrium relations required for convergence are defined. Challenges of strong radiation coupling in a shock capturing algorithm are addressed. Results are presented to show how the current suite of models responds to a wide variety of conditions involving coupled radiation and ablation.

  15. Laboratory investigations of stable carbon and oxygen isotope ratio data enhance monitoring of CO2 underground

    NASA Astrophysics Data System (ADS)

    Barth, Johannes A. C.; Myrttinen, Anssi; Becker, Veith; Nowak, Martin; Mayer, Bernhard

    2014-05-01

    Stable carbon and oxygen isotope data play an important role in monitoring CO2 in the subsurface, for instance during carbon capture and storage (CCS). This includes monitoring of supercritical and gaseous CO2 movement and reactions under reservoir conditions and detection of potential CO2 leakage scenarios. However, in many cases isotope data from field campaigns are either limited due to complex sample retrieval or require verification under controlled boundary conditions. Moreover, experimentally verified isotope fractionation factors are also accurately known only for temperatures and pressures lower than commonly found in CO2 reservoirs (Myrttinen et al., 2012). For this reason, several experimental series were conducted in order to investigate effects of elevated pressures, temperatures and salinities on stable carbon and oxygen isotope changes of CO2 and water. These tests were conducted with a heateable pressure device and with glass or metal gas containers in which CO2 reacted with fluids for time periods of hours to several weeks. The obtained results revealed systematic differences in 13C/12C-distributions between CO2 and the most important dissolved inorganic carbon (DIC) species under reservoir conditions (CO2(aq), H2CO3 and HCO3-). Since direct measurements of the pH, even immediately after sampling, were unreliable due to rapid CO2 de-gassing, one of the key results of this work is that carbon isotope fractionation data between DIC and CO2 may serve to reconstruct in situ pH values. pH values reconstructed with this approach ranged between 5.5 and 7.4 for experiments with 60 bars and up to 120 °C and were on average 1.4 pH units lower than those measured with standard pH electrodes directly after sampling. In addition, pressure and temperature experiments with H2O and CO2 revealed that differences between the oxygen isotope ratios of both phases depended on temperature, water-gas ratios as well as salt contents of the solutions involved. Such

  16. The Mixed Processing Models Development Of Thermal Fracture And Laser Ablation On Glass Substrate

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Cheng; Wu, Wen-Hong; Tseng, Shih-Feng; Hwang, Chi-Hung

    2011-01-01

    As the industries of cell phone and LCD TV were vigorously flourishing and the manufacturing requirements for LCD glass substrate were getting higher, the thermal fracture cutting technology (TFCT) has progressively become the main technology for LCD glass substrate cutting. Due to using laser as the heat source, the TFCT has many advantages, such as uniform heating, small heat effect zone, and high cutting speed, smooth cutting surface and low residual stress, etc. Moreover, a general laser ablation processing or traditional diamond wheel cutting does not have the last two advantages. The article presents a mixed processing of glass substrate, which consists of TFCT and laser ablation mechanisms, and how to enhance the cutting speed with little ablation laser energy. In this study, a 10W Nd:YAG laser and a 40W CO2 laser are used as the heat source of TFCT and laser ablation processing, respectively. The result indicates that the speed of the mixed processing is more than twice the speed of TFCT. Furthermore, after the mixed processing, the residual stresses in the glass substrates are also smaller.

  17. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL CARBON DENSITY FRACTIONS IN A DOUGLAS FIR MESOCOSM STUDY

    EPA Science Inventory

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  18. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis.

    PubMed

    Aspinwall, Michael J; Blackman, Chris J; de Dios, Víctor Resco; Busch, Florian A; Rymer, Paul D; Loik, Michael E; Drake, John E; Pfautsch, Sebastian; Smith, Renee A; Tjoelker, Mark G; Tissue, David T

    2018-05-08

    Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO2. We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO2 were predictive of genotype biomass production responses to eCO2. Averaged across genotypes, growth at eCO2 increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO2 reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea, -6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO2 also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF, -9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 × provenance or CO2 × genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO2 had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO2.

  19. Using Chlorophyll Fluorescence to Assess the Impact of Agriculture on Northern Hemisphere CO2 Seasonality

    NASA Astrophysics Data System (ADS)

    Butterfield, Z.; Keppel-Aleks, G.

    2015-12-01

    The seasonality of carbon dioxide (CO2) concentrations in the northern hemisphere (NH) has increased by up to 50% over the previous five decades. A significant portion of this increase may be explained by enhanced agricultural productivity. The impact that increased crop production has on CO­­2 seasonality is dependent on the fraction of the crop Gross Primary Product (GPP) that occurs during the natural carbon uptake period (CUP). Solar Induced Fluorescence (SIF), an artifact of photosynthesis, can be used to assess GPP directly via remote sensing. New methods for measuring SIF from space provide tools for obtaining GPP data at regional and global levels. We use SIF data from the GOSAT and OCO-2 satellites to obtain observational estimates of the fraction of GPP occurring within the CUP in NH agricultural regions. We compare these fractions with estimates made using crop calendars and inventories and, where available, with CO2 flux data from eddy covariance towers. Our results offer insight into the impact that increased agricultural productivity has on the seasonal amplitude of NH CO2 concentrations.

  20. 78 FR 23524 - Approval and Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... treatment, or manure management processes; CO 2 from fermentation during ethanol production or other industrial fermentation processes; CO 2 from combustion of the biological fraction of municipal solid waste...

  1. Study on ablation behavior of silicone rubber based insulation material under the condition of boron oxide particles erosion

    NASA Astrophysics Data System (ADS)

    Zha, B. L.; Shi, Y. A.; Wang, J. J.; Su, Q. D.

    2018-01-01

    Self-designed oxygen-kerosene ablation system was employed to study the ablation characteristics of silicone rubber based thermal insulation materials under the condition of boron oxide particles erosion. The ablation test was designed with a mass fraction of 1.69% boron oxide particles and particles-free, the microstructure and elemental analysis of the specimens before and after ablation were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersion Spectrum (EDS). Experiment results show that the average mass ablation rate of the materials was 0.0099 g•s-1 and the average ablation rate was -0.025 mm•s-1 under the condition of pure gas phase ablation; and the average mass ablation rate of the multiphase ablation test group was 0.1775 g•s-1, whose average ablation rate was 0.437 mm•s-1 during the ablation process, the boron oxide particles would adhere a molten layer on the flame contact surface of the specimen, which covering the pores on the material surface, blocking the infiltration channel for the oxidizing component and slowing down the oxidation loss rate of the material below the surface, but because the particles erosion was the main reason for material depletion, the combined effect of the above both led to the upward material ablation rates of Silicone Rubber.

  2. CO2 laser laparoscopic surgery. Adhesiolysis, salpingostomy, laser uterine nerve ablation and tubal pregnancy.

    PubMed

    Donnez, J; Nisolle, M

    1989-09-01

    Used endoscopically, the CO2 laser offers some advantages over other operative techniques for endometriosis and adhesions but, in spite of the continuing development of new instrumentation there are still problems with the system. The technique needs specialized equipment requiring ongoing biomedical maintenance and specialized technical care in the operating room. Some problems such as the intraperitoneal accumulation of smoke, gas leakage, and difficulty with maintenance of proper beam alignment still occur. In spite of these problems the advantages are numerous: the system allows precise bloodless destruction of diseased tissue and eliminates the risks of cautery. In the hands of an experienced laparoscopist, it appears safe and effective in vaporization of endometriotic lesions, utero-sacral neurectomy, adhesiolysis and salpingostomy. The judicious use of these techniques, combined with carefully planned further investigations by well-trained and experienced laparoscopists and continuing improvements in the delivery systems, will soon reveal the true efficacy of the CO2 laser laparoscope. If studies continue to show pregnancy rates and pain relief to be equivalent to those patients treated by laparotomy, CO2 laser laparoscopy will become the preferred procedure for the management of pelvic endometriosis and its associated adhesions, distal tubal occlusion, pelvic pain and tubal pregnancy. With the exception of using the argon laser to treat endometriosis, the selective absorption characteristic of lasers has not been greatly utilized. While the CO2 laser is heavily absorbed by water and hence vaporizes most cells in a rather indiscriminate fashion, this is not true for other wavelengths, such as argon, Nd-YAG, KTP, krypton, xenon, copper and gold vapour lasers. The energy form of each of these lasers has different properties of penetration, absorption, reflection and heat dissipation. Many of these lasers have not yet been evaluated in human subjects. An

  3. SnO2/Pt Thin Film Laser Ablated Gas Sensor Array

    PubMed Central

    Shahrokh Abadi, Mohammad Hadi; Hamidon, Mohd Nizar; Shaari, Abdul Halim; Abdullah, Norhafizah; Wagiran, Rahman

    2011-01-01

    A gas sensor array was developed in a 10 × 10 mm2 space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO2 and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa) of O2. A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times. PMID:22164041

  4. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum andmore » the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.« less

  5. Radiocarbon-depleted CO2 evidence for fuel biodegradation at the Naval Air Station North Island (USA) fuel farm site.

    PubMed

    Boyd, Thomas J; Pound, Michael J; Lohr, Daniel; Coffin, Richard B

    2013-05-01

    Dissolved CO(2) radiocarbon and stable carbon isotope ratios were measured in groundwater from a fuel contaminated site at the North Island Naval Air Station in San Diego, CA (USA). A background groundwater sampling well and 16 wells in the underground fuel contamination zone were evaluated. For each sample, a two end-member isotopic mixing model was used to determine the fraction of CO(2) derived from fossil fuel. The CO(2) fraction from fossil sources ranged from 8 to 93% at the fuel contaminated site, while stable carbon isotope values ranged from -14 to +5‰VPDB. Wells associated with highest historical and contemporary fuel contamination showed the highest fraction of CO(2) derived from petroleum (fossil) sources. Stable carbon isotope ratios indicated sub-regions on-site with recycled CO(2) (δ(13)CO(2) as high as +5‰VPDB) - most likely resulting from methanogenesis. Ancillary measurements (pH and cations) were used to determine that no fossil CaCO(3), for instance limestone, biased the analytical conclusions. Radiocarbon analysis is verified as a viable and definitive technique for confirming fossil hydrocarbon conversion to CO(2) (complete oxidation) at hydrocarbon-contaminated groundwater sites. The technique should also be very useful for assessing the efficacy of engineered remediation efforts and by using CO(2) production rates, contaminant mass conversion over time and per unit volume.

  6. Spectroscopy Study of Ar + CO2 Plasmas in ASTRAL.

    NASA Astrophysics Data System (ADS)

    Munoz, Jorge; Boivin, Robert; Kamar, Ola; Loch, Stuart; Ballance, Connor

    2006-10-01

    A spectroscopy study of the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source running Ar + CO2 gas mix is presented. ASTRAL produces Ar plasmas: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A spectrometer which features a 0.33 m Criss-Cross monochromator and a CCD camera is used for this study. Very different plasmas are produced following the relative importance of CO2 in the gas mixture. At low CO2 concentration, the plasmas are similar to those obtained with pure Ar with weak CO2, CO2^+, CO and CO^+ bands. The usual blue plasma core associated with intense Ar II transitions is observed with however a significant white glow coming from the outer plasma regions. At higher CO2 concentration, the plasma becomes essentially molecular and can be described as an intense white plasma column. Molecular dissociative processes associated with the production of strong C and O atomic lines are observed under specific plasma conditions. The atomic spectral lines are compared with ADAS modeling results. This study indicates the possible advantages of using a helicon source to control the CO2 plasma chemistry for industrial applications.

  7. Carbon dioxide laser ablation of dermatosis papulosa nigra: high satisfaction and few complications in patients with pigmented skin.

    PubMed

    Ali, Faisal R; Bakkour, Waseem; Ferguson, Janice E; Madan, Vishal

    2016-04-01

    Dermatosis papulosa nigra (DPN) is a common condition of pigmented skin. Whilst lesions are benign, they may be symptomatic or cosmetically disfiguring. Ablative lasers have previously been reported as a useful therapeutic modality in DPN. We report the largest case series to date of patients with DPN ablated with the carbon dioxide (CO2) laser. A retrospective case note review was conducted of all patients with DPN treated in our laser clinic in the last five years, and a post-treatment telephone survey was undertaken to assess patient satisfaction. Forty-five patients were identified, with a median age of 41 years (range 25-74 years), of whom 37 (82%) were female. The median number of treatments undertaken was three (range 1-10). Of the 18 respondents to the telephone survey, when asked to grade their satisfaction with the procedure out of 10, median response was 9.5 (range 6-10) with nine patients citing the maximum score of 10. All patients replied that their confidence had improved following the procedure and that they would recommend the treatment to other patients. Five respondents (28%) reported recurrence of a few lesions following CO2 laser ablation; the remaining 13 respondents (72%) reported no recurrence of DPN. No respondents reported any other post-procedural complications (including scarring, hypopigmentation and hyperpigmentation). We advocate use of the CO2 laser as a safe, convenient means of treating DPN, with a high degree of patient satisfaction, low recurrence rate and few complications.

  8. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates.

    PubMed

    Holzammer, Christine; Schicks, Judith M; Will, Stefan; Braeuer, Andreas S

    2017-09-07

    We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO 2 ) gas hydrates using Raman spectroscopy. The CO 2 hydrates were formed from sodium chloride/water solutions with salinities of 0-10 wt %, which were pressurized with liquid CO 2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO 2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, x H , and the fraction of the dispersed liquid water-rich phase, x L , from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate x H contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO 2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO 2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO 2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect.

  9. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates

    PubMed Central

    2017-01-01

    We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO2) gas hydrates using Raman spectroscopy. The CO2 hydrates were formed from sodium chloride/water solutions with salinities of 0–10 wt %, which were pressurized with liquid CO2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, xH, and the fraction of the dispersed liquid water-rich phase, xL, from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate xH contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect. PMID:28817275

  10. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs

    PubMed Central

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-01-01

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521

  11. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  12. The effect of CO2 on the plasma remediation of NxOy

    NASA Astrophysics Data System (ADS)

    Gentile, Ann C.; Kushner, Mark J.

    1996-04-01

    Plasma remediation is being investigated for the removal of oxides of nitrogen (NxOy) from atmospheric pressure gas streams. In previous works we have investigated the plasma remediation of NxOy from N2/O2/H2O mixtures using repetitively pulsed dielectric barrier discharges. As combustion effluents contain large percentages of CO2, in this paper we discuss the consequences of CO2 in the gas mixture on the efficiency of remediation and on the end products. We find that there is a small increase in the efficiency of total NxOy remediation (molecules/eV) with increasing CO2 fraction, however the efficiency of NO remediation alone generally decreases with increasing CO2. This differential is more pronounced at low energy deposition per pulse. More remediation occurs through the reduction channel with increasing CO2 while less NO2 and HNOx are produced through the oxidation channel. CO is produced by electron impact of CO2 though negligible amounts of cyanides are generated.

  13. Efficacy of ablative fractional laser-assisted photodynamic therapy for the treatment of actinic cheilitis: 12-month follow-up results of a prospective, randomized, comparative trial.

    PubMed

    Choi, S H; Kim, K H; Song, K-H

    2015-07-01

    Early identification and treatment of actinic cheilitis (AC) is recommended. Although photodynamic therapy (PDT) is an attractive therapeutic option for AC, PDT for AC does not result in the same satisfactory outcomes as in actinic keratosis (AK). The aim of our study was to compare efficacy, recurrence rate, cosmetic outcome and safety between erbium:yttrium-aluminium-garnet ablative fractional laser-assisted methyl aminolaevulinate-PDT (Er:YAG AFL MAL-PDT) and standard MAL-PDT. Thirty-three patients with histologically confirmed AC randomly received either one session of Er:YAG AFL MAL-PDT or two sessions of MAL-PDT. In the MAL-PDT group, the second session of MAL-PDT was administered 7 days later. Patients were followed up at 1 week and 3 and 12 months, and biopsies were taken from all patients at 3 and 12 months after the last treatment session. At the final 12-month follow-up, cosmetic outcomes were assessed. Adverse events were assessed at week 1 of the treatment phase and every subsequent follow-up visit. In the per-protocol (PP) population, Er:YAG AFL MAL-PDT was significantly more effective (92% complete response rate) than MAL-PDT (59%; P = 0.040) at the 3-month follow-up, and differences in efficacy remained significant at the 12-month follow-up (85% in Er:YAG AFL MAL-PDT and 29% in MAL-PDT). The recurrence rate was significantly lower for Er:YAG AFL MAL-PDT (8%) than for MAL-PDT (50%) group at 12 months (P = 0.029). No significant difference in cosmetic outcome or safety was observed between Er:YAG AFL MAL-PDT and MAL-PDT. Ablative fractional laser pretreatment has significant benefit for the treatment of AC with PDT. © 2014 British Association of Dermatologists.

  14. New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO(2) laser-induced gas plasma.

    PubMed

    Khumaeni, Ali; Ramli, Muliadi; Deguchi, Yoji; Lee, Yong Inn; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2008-12-01

    Taking advantage of the differences between the interactions of transversely excited atmospheric (TEA) CO(2) lasers with metal and with organic powder, a new technique for the direct analysis of food powder samples has been developed. In this technique, the powder samples were placed into a small hole with a diameter of 2 mm and a depth of 3 mm and covered by a metal mesh. The TEA CO(2) laser (1500 mJ, 200 ns) was focused on the powder sample surfaces, passing through the metal mesh, at atmospheric pressure in nitrogen gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off of sample, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are then ablated by laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited; this method cannot be applied for the case of Nd:YAG lasers because in such case the metal mesh itself was ablated by the laser irradiation. A quantitative analysis of a milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.

  15. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    PubMed Central

    Keenan, Trevor F; Prentice, I. Colin; Canadell, Josep G; Williams, Christopher A; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-01-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly. PMID:27824333

  16. Recent pause in the growth rate of atmospheric CO 2 due to enhanced terrestrial carbon uptake

    DOE PAGES

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; ...

    2016-11-08

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO 2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO 2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO 2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We also attribute the observed decline tomore » increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO 2 on vegetation and the slowdown in the rate of warming on global respiration. Furthermore, the pause in the atmospheric CO 2 growth rate provides further evidence of the roles of CO 2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.« less

  17. Recent pause in the growth rate of atmospheric CO 2 due to enhanced terrestrial carbon uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO 2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO 2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO 2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We also attribute the observed decline tomore » increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO 2 on vegetation and the slowdown in the rate of warming on global respiration. Furthermore, the pause in the atmospheric CO 2 growth rate provides further evidence of the roles of CO 2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.« less

  18. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    NASA Astrophysics Data System (ADS)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  19. Modeling of CBM production, CO2 injection, and tracer movement at a field CO2 sequestration site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Hema J.; Bowes, Benjamin D.; Bromhal, Grant S.

    2012-07-01

    Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane production (ECBM). Several pilot tests have been performed around the globe leading to mixed results. Numerous modeling efforts have been carried out successfully to model methane production and carbon dioxide (CO{sub 2}) injection. Sensitivity analyses and history matching along with several optimization tools were used to estimate reservoir properties and to investigate reservoir performance. Geological and geophysical techniques have also been used to characterize field sequestration sites and to inspect reservoir heterogeneity. The fate and movement of injectedmore » CO{sub 2} can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring technologies. As a part of this monitoring technique, a small fraction of a traceable fluid is added to the injection wellhead along with the CO{sub 2} stream at different times to monitor the timing and location of the breakthrough in nearby monitoring wells or offset production wells. A reservoir modeling study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site were estimated by modeling the coal seam as a dual porosity formation and by history matching the methane production and CO{sub 2} injection. In addition to reservoir modeling of methane production and CO{sub 2} injection, tracer injection was modeled. Tracers serve as a surrogate for determining potential leakage of CO{sub 2}. The tracer was modeled as a non-reactive gas and was injected into the reservoir as a mixture along with CO{sub 2}. Geologic and geometric details of the field site, numerical modeling details of methane production, CO{sub 2} injection, and tracer injection are presented in this paper. Moreover, the numerical

  20. Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI.

    PubMed

    Song, Yongchen; Jiang, Lanlan; Liu, Yu; Yang, Mingjun; Zhou, Xinhuan; Zhao, Yuechao; Dou, Binlin; Abudula, Abuliti; Xue, Ziqiu

    2014-06-01

    The objective of this study was to understand fluid flow in porous media. Understanding of fluid flow process in porous media is important for the geological storage of CO2. The high-resolution magnetic resonance imaging (MRI) technique was used to measure fluid flow in a porous medium (glass beads BZ-02). First, the permeability was obtained from velocity images. Next, CO2-water immiscible displacement experiments using different flow rates were investigated. Three stages were obtained from the MR intensity plot. With increasing CO2 flow rate, a relatively uniform CO2 distribution and a uniform CO2 front were observed. Subsequently, the final water saturation decreased. Using core analysis methods, the CO2 velocities were obtained during the CO2-water immiscible displacement process, which were applied to evaluate the capillary dispersion rate, viscous dominated fractional flow, and gravity flow function. The capillary dispersion rate dominated the effects of capillary, which was largest at water saturations of 0.5 and 0.6. The viscous-dominant fractional flow function varied with the saturation of water. The gravity fractional flow reached peak values at the saturation of 0.6. The gravity forces played a positive role in the downward displacements because they thus tended to stabilize the displacement process, thereby producing increased breakthrough times and correspondingly high recoveries. Finally, the relative permeability was also reconstructed. The study provides useful data regarding the transport processes in the geological storage of CO2. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  1. Efficacy and Safety of Radiofrequency Ablation for Focal Hepatic Lesions Adjacent to Gallbladder: Reconfiguration of the Ablation Zone through Probe Relocation and Ablation Time Reduction.

    PubMed

    Choi, In Young; Kim, Pyo Nyun; Lee, Sung Gu; Won, Hyung Jin; Shin, Yong Moon

    2017-10-01

    To evaluate the safety and efficacy of radiofrequency (RF) ablation for treatment of focal hepatic lesions adjacent to the gallbladder with electrode relocation and ablation time reduction. Thirty-nine patients who underwent RF ablation for focal hepatic lesions adjacent to the gallbladder (≤ 10 mm) were evaluated retrospectively from January 2011 to December 2014 (30 men and 9 women; age range, 51-85 y; mean age, 65 y). Of 36 patients with hepatocellular carcinoma, 3 had a second treatment for recurrence (mean tumor size, 15 mm ± 6). Patients were divided into 2 subgroups based on lesion distance from the gallbladder: nonabutting (> 5 mm; n = 19) and abutting (≤ 5 mm; n = 20). Electrodes were inserted parallel to the gallbladder through the center of a tumor in the nonabutting group and through the center of the expected ablation zone between a 5-mm safety zone on the liver side and the gallbladder in the abutting group. Ablation time was decreased in proportion to the transverse diameter of the expected ablation zone. Technical success and technical effectiveness rates were 89.7% and 97.4%, respectively, with no significant differences between groups (P = 1.00). Local tumor progression was observed in 3 patients (1 in the nonabutting group and 2 in the abutting group; P = 1.00). There were no major complications. The gallbladder was thickened in 10 patients, with no significant difference between groups (P = .72). Biloma occurred in 1 patient in the nonabutting group. RF ablation with electrode relocation and reduction of ablation time can be a safe and effective treatment for focal hepatic lesions adjacent to the gallbladder. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  2. CO 2 Storage by Sorption on Organic Matter and Clay in Gas Shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Diana H.; Yonkofski, Catherine MR; Schaef, Herbert T.

    2015-10-10

    Simulations of methane production and supercritical carbon dioxide injection were developed that consider competitive adsorption of CH 4 and CO 2 on both organic matter and montmorillonite. The results were used to assess the potential for storage of CO 2 in a hydraulically fractured shale gas reservoir and for enhanced recovery of CH 4. Assuming equal volume fractions of organic matter and montmorillonite, amounts of CO 2 adsorbed on both materials were comparable, while methane desorption was from clays was two times greater than desorption from organic material. The most successful strategy considered CO 2 injection from a separate wellmore » and enhanced methane recovery by 73%, while storing 240 kmt of CO 2.« less

  3. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis.

    PubMed

    Zhou, Hui; Long, YanQiu; Meng, AiHong; Li, QingHai; Zhang, YanGuo

    2015-04-01

    The interactions of nine typical municipal solid waste (MSW) fractions during pyrolysis were investigated using the thermogravimetric analyzer (TGA). To compare the mixture results with the calculation results of superposition of single fractions quantitatively, TG overlap ratio was introduced. There were strong interactions between orange peel and rice (overlap ratio 0.9736), and rice and poplar wood (overlap ratio 0.9774). The interactions of mixture experiments postponed the peak and lowered the peak value. Intense interactions between PVC and rice, poplar wood, tissue paper, wool, terylene, and rubber powder during co-pyrolysis were observed, and the pyrolysis at low temperature was usually promoted. The residue yield was increased when PVC was blended with rice, poplar wood, tissue paper, or rubber powder; while the residue yield was decreased when PVC was blended with wool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; van Zuilen, Kirsten; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2016-10-01

    This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04‰, 2 sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (∼7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.

  5. Dorsal Raphe Serotonin Neurons Mediate CO2-Induced Arousal from Sleep.

    PubMed

    Smith, Haleigh R; Leibold, Nicole K; Rappoport, Daniel A; Ginapp, Callie M; Purnell, Benton S; Bode, Nicole M; Alberico, Stephanie L; Kim, Young-Cho; Audero, Enrica; Gross, Cornelius T; Buchanan, Gordon F

    2018-02-21

    -rich aCSF to the dorsal raphe nucleus, but not the medullary raphe, causes arousal from sleep, and that this arousal was lost with genetic ablation or acute inhibition of 5-HT neurons. We propose that 5-HT neurons in the dorsal raphe nucleus can be activated directly by CO 2 to cause arousal independently of respiratory activation. Copyright © 2018 the authors 0270-6474/18/381915-11$15.00/0.

  6. Long-term sampling of CO(2) from waste-to-energy plants: (14)C determination methodology, data variation and uncertainty.

    PubMed

    Fuglsang, Karsten; Pedersen, Niels Hald; Larsen, Anna Warberg; Astrup, Thomas Fruergaard

    2014-02-01

    A dedicated sampling and measurement method was developed for long-term measurements of biogenic and fossil-derived CO(2) from thermal waste-to-energy processes. Based on long-term sampling of CO(2) and (14)C determination, plant-specific emission factors can be determined more accurately, and the annual emission of fossil CO(2) from waste-to-energy plants can be monitored according to carbon trading schemes and renewable energy certificates. Weekly and monthly measurements were performed at five Danish waste incinerators. Significant variations between fractions of biogenic CO(2) emitted were observed, not only over time, but also between plants. From the results of monthly samples at one plant, the annual mean fraction of biogenic CO(2) was found to be 69% of the total annual CO(2) emissions. From weekly samples, taken every 3 months at the five plants, significant seasonal variations in biogenic CO(2) emissions were observed (between 56% and 71% biogenic CO(2)). These variations confirmed that biomass fractions in the waste can vary considerably, not only from day to day but also from month to month. An uncertainty budget for the measurement method itself showed that the expanded uncertainty of the method was ± 4.0 pmC (95 % confidence interval) at 62 pmC. The long-term sampling method was found to be useful for waste incinerators for determination of annual fossil and biogenic CO(2) emissions with relatively low uncertainty.

  7. Electrophysiological Rotor Ablation in In-Silico Modeling of Atrial Fibrillation: Comparisons with Dominant Frequency, Shannon Entropy, and Phase Singularity.

    PubMed

    Hwang, Minki; Song, Jun-Seop; Lee, Young-Seon; Li, Changyong; Shim, Eun Bo; Pak, Hui-Nam

    2016-01-01

    Although rotors have been considered among the drivers of atrial fibrillation (AF), the rotor definition is inconsistent. We evaluated the nature of rotors in 2D and 3D in- silico models of persistent AF (PeAF) by analyzing phase singularity (PS), dominant frequency (DF), Shannon entropy (ShEn), and complex fractionated atrial electrogram cycle length (CFAE-CL) and their ablation. Mother rotor was spatiotemporally defined as stationary reentries with a meandering tip remaining within half the wavelength and lasting longer than 5 s. We generated 2D- and 3D-maps of the PS, DF, ShEn, and CFAE-CL during AF. The spatial correlations and ablation outcomes targeting each parameter were analyzed. 1. In the 2D PeAF model, we observed a mother rotor that matched relatively well with DF (>9 Hz, 71.0%, p<0.001), ShEn (upper 2.5%, 33.2%, p<0.001), and CFAE-CL (lower 2.5%, 23.7%, p<0.001). 2. The 3D-PeAF model also showed mother rotors that had spatial correlations with DF (>5.5 Hz, 39.7%, p<0.001), ShEn (upper 8.5%, 15.1%, p <0.001), and CFAE (lower 8.5%, 8.0%, p = 0.002). 3. In both the 2D and 3D models, virtual ablation targeting the upper 5% of the DF terminated AF within 20 s, but not the ablations based on long-lasting PS, high ShEn area, or lower CFAE-CL area. Mother rotors were observed in both 2D and 3D human AF models. Rotor locations were well represented by DF, and their virtual ablation altered wave dynamics and terminated AF.

  8. Do Tree Stems Recapture Respired CO2?

    NASA Astrophysics Data System (ADS)

    Hilman, B.; Angert, A.

    2016-12-01

    Tree stem respiration is an important, yet not well understood, component of the terrestrial carbon cycle. Predicting how trees as whole organisms respond to changes in climate and atmospheric CO2 requires understanding of the variability in the fraction of assimilated carbon allocated to respiration, versus the allocation to growth, damage repair, and to rhizosphere symbionts. Here we used the ratio of CO2 efflux/O2 influx (Apparent Respiratory Quotient, ARQ) to study stem respiration. The ARQ in trees stems is predicted to be 1.0, as a result of carbohydrates metabolism. Lower than 1.0 ARQ values may indicate a local assimilation of respired CO2, or dissolution and transport of CO2 in the xylem stream. We measured stems ARQ in 16 tree species at tropical, Mediterranean and temperate ecosystems using stem chambers and in-vitro incubations. The CO2 and O2 were measured by a system we developed, which is based on an IRGA and a Fuel-cell O2 analyzer (Hilman and Angert 2016). We found typical values of ARQ in the range of 0.4-0.8. Since incubations of detach stem tissues yielded similar ARQ values, and since the influence of natural variations in the transpiration stream on ARQ was found to be small, we conclude that the removal of the respired CO2 is not via dissolution in the xylem stream. Using 13C labeling, dark fixation of stem tissues was detected, which is most probably phosphoenolpyruvate carboxylase (PEPC) mediated. Hence, we suggest that in-stem dark fixation of respired CO2 to organic acids (e.g. malate) affects the outgoing efflux. Further research should determine if these organic acids are transported to the canopy, stored in the stem, or transported to the roots to serve as exudates. Hilman B, Angert A (2016) Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiol 2016, doi: 10.1093/treephys/tpw057

  9. New constraints on kinetic isotope effects during CO2(aq) hydration and hydroxylation: Revisiting theoretical and experimental data

    NASA Astrophysics Data System (ADS)

    Sade, Ziv; Halevy, Itay

    2017-10-01

    CO2 (de)hydration (i.e., CO2 hydration/HCO3- dehydration) and (de)hydroxylation (i.e., CO2 hydroxylation/HCO3- dehydroxylation) are key reactions in the dissolved inorganic carbon (DIC) system. Kinetic isotope effects (KIEs) during these reactions are likely to be expressed in the DIC and recorded in carbonate minerals formed during CO2 degassing or dissolution of gaseous CO2. Thus, a better understanding of KIEs during CO2 (de)hydration and (de)hydroxylation would improve interpretations of disequilibrium compositions in carbonate minerals. To date, the literature lacks direct experimental constraints on most of the oxygen KIEs associated with these reactions. In addition, theoretical estimates describe oxygen KIEs during separate individual reactions. The KIEs of the related reverse reactions were neither derived directly nor calculated from a link to the equilibrium fractionation. Consequently, KIE estimates of experimental and theoretical studies have been difficult to compare. Here we revisit experimental and theoretical data to provide new constraints on oxygen KIEs during CO2 (de)hydration and (de)hydroxylation. For this purpose, we provide a clearer definition of the KIEs and relate them both to isotopic rate constants and equilibrium fractionations. Such relations are well founded in studies of single isotope source/sink reactions, but they have not been established for reactions that involve dual isotopic sources/sinks, such as CO2 (de)hydration and (de)hydroxylation. We apply the new quantitative constraints on the KIEs to investigate fractionations during simultaneous CaCO3 precipitation and HCO3- dehydration far from equilibrium.

  10. Magnetisation studies of phase co-existence in Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirumurugan, N.; Bharathi, A., E-mail: bharathi@igcar.gov.in; Arulraj, A.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The series Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5} was synthesised by solid state reaction. Black-Right-Pointing-Pointer Magnetisation studies were carried out in the 4-300 K temperature range in magnetic fields upto 16 Tesla. Black-Right-Pointing-Pointer Results were used to formulate the T versus Ca fraction, phase diagram. Black-Right-Pointing-Pointer Evidence for Magnet-electronic phase separation is shown for the first time in the compound. -- Abstract: Magnetic properties of hole doped, oxygen deficient double perovskite compounds, Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5}, have been investigated. Ferromagnetic transition temperatures increase and the anti-ferromagnetic transition temperatures decrease with Ca substitution leading to stabilisation of ferromagnetisim formore » x {>=} 0.05. A detailed study of the ferromagnetic phase indicates the presence of double hysterisis loops for Ca fractions, 0.05 {<=} x {<=} 0.2 in the 50-200 K temperature range, suggestive of the co-existence of two ferromagnetic phases with different co-ercivities. Based on the magnetisation and transport measurements a phase diagram is proposed for Ca doped GdBaCo{sub 2}O{sub 5.5}.« less

  11. Highly efficient nonthermal ablation of bone under bulk water with a frequency-doubled Nd:YVO4 picosecond laser

    NASA Astrophysics Data System (ADS)

    Tulea, C.; Caron, J.; Wahab, H.; Gehlich, N.; Hoefer, M.; Esser, D.; Jungbluth, B.; Lenenbach, A.; Noll, R.

    2013-03-01

    Several laser systems in the infrared wavelength range, such as Nd:YAG, Er:YAG or CO2 lasers are used for efficient ablation of bone tissue. Here the application of short pulses in coaction with a thin water film results in reduced thermal side effects. Nonetheless up to now there is no laser-process for bone cutting in a clinical environment due to lack of ablation efficiency. Investigations of laser ablation rates of bone tissue using a rinsing system and concerning bleedings have not been reported yet. In our study we investigated the ablation rates of bovine cortical bone tissue, placed 1.5 cm deep in water under laminar flow conditions, using a short pulsed (25 ps), frequency doubled (532 nm) Nd:YVO4 laser with pulse energies of 1 mJ at 20 kHz repetition rate. The enhancement of the ablation rate due to debris removal by an additional water flow from a well-directed blast pipe as well as the negative effect of the admixture of bovine serum albumin to the water were examined. Optical Coherence Tomography (OCT) was used to measure the ablated volume. An experimental study of the depth dependence of the ablation rate confirms a simplified theoretical prediction regarding Beer-Lambert law, Fresnel reflection and a Gaussian beam profile. Conducting precise incisions with widths less than 1.5 mm the maximum ablation rate was found to be 0.2 mm3/s. At depths lower than 100 μm, while the maximum depth was 3.5 mm.

  12. Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage Areas With Selective Activation Characteristics.

    PubMed

    Jadidi, Amir S; Lehrmann, Heiko; Keyl, Cornelius; Sorrel, Jérémie; Markstein, Viktor; Minners, Jan; Park, Chan-Il; Denis, Arnaud; Jaïs, Pierre; Hocini, Mélèze; Potocnik, Clemens; Allgeier, Juergen; Hochholzer, Willibald; Herrera-Sidloky, Claudia; Kim, Steve; Omri, Youssef El; Neumann, Franz-Josef; Weber, Reinhold; Haïssaguerre, Michel; Arentz, Thomas

    2016-03-01

    Complex-fractionated atrial electrograms and atrial fibrosis are associated with maintenance of persistent atrial fibrillation (AF). We hypothesized that pulmonary vein isolation (PVI) plus ablation of selective atrial low-voltage sites may be more successful than PVI only. A total of 85 consecutive patients with persistent AF underwent high-density atrial voltage mapping, PVI, and ablation at low-voltage areas (LVA < 0.5 mV in AF) associated with electric activity lasting > 70% of AF cycle length on a single electrode (fractionated activity) or multiple electrodes around the circumferential mapping catheter (rotational activity) or discrete rapid local activity (group I). The procedural end point was AF termination. Arrhythmia freedom was compared with a control group (66 patients) undergoing PVI only (group II). PVI alone was performed in 23 of 85 (27%) patients of group I with low amount (< 10% of left atrial surface area) of atrial low voltage. Selective atrial ablation in addition to PVI was performed in 62 patients with termination of AF in 45 (73%) after 11 ± 9 minutes radiofrequency delivery. AF-termination sites colocalized within LVA in 80% and at border zones in 20%. Single-procedural arrhythmia freedom at 13 months median follow-up was achieved in 59 of 85 (69%) patients in group I, which was significantly higher than the matched control group (31/66 [47%], P < 0.001). There was no significant difference in the success rate of patients in group I with a low amount of low voltage undergoing PVI only and patients requiring PVI+selective low-voltage ablation (P = 0.42). Ablation of sites with distinct activation characteristics within/at borderzones of LVA in addition to PVI is more effective than conventional PVI-only strategy for persistent AF. PVI only seems to be sufficient to treat patients with left atrial low voltage < 10%. © 2016 American Heart Association, Inc.

  13. A Prospective Study of Ripple Mapping the Post-Infarct Ventricular Scar to Guide Substrate Ablation for Ventricular Tachycardia.

    PubMed

    Luther, Vishal; Linton, Nick W F; Jamil-Copley, Shahnaz; Koa-Wing, Michael; Lim, Phang Boon; Qureshi, Norman; Ng, Fu Siong; Hayat, Sajad; Whinnett, Zachary; Davies, D Wyn; Peters, Nicholas S; Kanagaratnam, Prapa

    2016-06-01

    Post-infarct ventricular tachycardia is associated with channels of surviving myocardium within scar characterized by fractionated and low-amplitude signals usually occurring late during sinus rhythm. Conventional automated algorithms for 3-dimensional electro-anatomic mapping cannot differentiate the delayed local signal of conduction within the scar from the initial far-field signal generated by surrounding healthy tissue. Ripple mapping displays every deflection of an electrogram, thereby providing fully informative activation sequences. We prospectively used CARTO-based ripple maps to identify conducting channels as a target for ablation. High-density bipolar left ventricular endocardial electrograms were collected using CARTO3v4 in sinus rhythm or ventricular pacing and reviewed for ripple mapping conducting channel identification. Fifteen consecutive patients (median age 68 years, left ventricular ejection fraction 30%) were studied (6 month preprocedural implantable cardioverter defibrillator therapies: median 19 ATP events [Q1-Q3=4-93] and 1 shock [Q1-Q3=0-3]). Scar (<1.5 mV) occupied a median 29% of the total surface area (median 540 points collected within scar). A median of 2 ripple mapping conducting channels were seen within each scar (length 60 mm; initial component 0.44 mV; delayed component 0.20 mV; conduction 55 cm/s). Ablation was performed along all identified ripple mapping conducting channels (median 18 lesions) and any presumed interconnected late-activating sites (median 6 lesions; Q1-Q3=2-12). The diastolic isthmus in ventricular tachycardia was mapped in 3 patients and colocated within the ripple mapping conducting channels identified. Ventricular tachycardia was noninducible in 85% of patients post ablation, and 71% remain free of ventricular tachycardia recurrence at 6-month median follow-up. Ripple mapping can be used to identify conduction channels within scar to guide functional substrate ablation. © 2016 American Heart Association

  14. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    NASA Astrophysics Data System (ADS)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore

  15. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  16. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  17. Conventional versus 3-D Echocardiography to Predict Arrhythmia Recurrence After Atrial Fibrillation Ablation.

    PubMed

    Bossard, Matthias; Knecht, Sven; Aeschbacher, Stefanie; Buechel, Ronny R; Hochgruber, Thomas; Zimmermann, Andreas J; Kessel-Schaefer, Arnheid; Stephan, Frank-Peter; Völlmin, Gian; Pradella, Maurice; Sticherling, Christian; Osswald, Stefan; Kaufmann, Beat A; Conen, David; Kühne, Michael

    2017-06-01

    Arrhythmia recurrence after atrial fibrillation (AF) ablation remains high and requires repeat interventions in a substantial number of patients. We assessed the value of conventional and 3-D echocardiography to predict AF recurrence. Consecutive patients undergoing AF ablation by means of pulmonary vein isolation were included in a prospective registry. Echocardiograms were obtained prior to the ablation procedure, and analyzed offline in a standardized manner, including 3-D left atrial (LA) volumetry and determination of LA function and sphericity. The primary endpoint, AF recurrence (>30 seconds) between 3 to 12 months after AF ablation, was independently adjudicated. We included 276 patients (73% male, mean age 59.9 ± 9.9 years). Paroxysmal and persistent AF were present in 178 (64%) and 98 (36%) patients, respectively. Mean left ventricular ejection fraction and indexed LA volume in 3-D (LAVI) were 52 ± 12% and 42 ± 13 mL/m 2 , respectively. AF recurrence was observed in 110 (40%) patients after a single procedure. Median (interquartile range) time to AF recurrence was 123 (92; 236) days. In multivariable Cox regression models, the only predictors for AF recurrence were the minimal, maximal, and indexed 3-D LA volumes, P = 0.024, P = 0.016, and P = 0.014, respectively. Quartile specific analysis of 3-D LAVI showed an HR of 1.885 (95%CI 1.066-3.334; P for trend = 0.015) for the highest compared to the lowest quartile. Our results show the important role of LA volume for the long-term freedom from arrhythmia after AF ablation. These data also highlight the potential of 3-D echocardiography in this context and may facilitate patient selection for AF ablation. © 2017 Wiley Periodicals, Inc.

  18. Real-time rotational ICE imaging of the relationship of the ablation catheter tip and the esophagus during atrial fibrillation ablation.

    PubMed

    Helms, Adam; West, J Jason; Patel, Amit; Mounsey, J Paul; DiMarco, John P; Mangrum, J Michael; Ferguson, John D

    2009-02-01

    Atrioesophageal fistula is a rare complication of atrial fibrillation (AF) ablation that should be avoided. We investigated whether rotational intracardiac echocardiography (ICE) can help to minimize ablation close to the esophagus. We studied 41 patients referred for catheter ablation of refractory AF. A rotational ICE catheter was inserted into the (LA) to determine the location of the esophagus. The esophagus was identified to be either adjacent to the pulmonary vein (PV) ostium or to a cuff 2 cm outside the ostium. Circumferential ablation was performed at the PV ostium, with the exact ablation location determined by ICE. The relationship of the catheter tip to the esophagus was imaged during energy delivery, allowing interruption when respiration moved the tip closer to the esophagus. Out of 41 patients, the esophagus was seen near left-sided PVs in 32 and near right-sided PVs in three patients. The median distance from LA endocardium to esophagus was 2.2 mm (range, 1.4-6 mm). In 21 of 35 patients with a closely related esophagus, ablation over the esophagus was avoided by ablating either lateral or medial to the esophagus. In 14 patients, the esophagus could not be avoided, and risk was minimized by limiting lesion size. Significant movement (>10 mm) of the esophagus during the procedure occurred in 3/41 cases. Rotational ICE can accurately determine the distance of ablation sites from the esophagus. Real-time imaging of the relationship of the ablation catheter tip to the esophagus may reduce the incidence of esophageal injury.

  19. Comparison of CO2 Emissions Data for 30 Cities from Different Sources

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.

    2017-12-01

    Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used

  20. Tuning Micellar Structures in Supercritical CO2 Using Surfactant and Amphiphile Mixtures.

    PubMed

    Peach, Jocelyn; Czajka, Adam; Hazell, Gavin; Hill, Christopher; Mohamed, Azmi; Pegg, Jonathan C; Rogers, Sarah E; Eastoe, Julian

    2017-03-14

    For equivalent micellar volume fraction (ϕ), systems containing anisotropic micelles are generally more viscous than those comprising spherical micelles. Many surfactants used in water-in-CO 2 (w/c) microemulsions are fluorinated analogues of sodium bis(2-ethylhexyl) sulfosuccinate (AOT): here it is proposed that mixtures of CO 2 -philic surfactants with hydrotropes and cosurfactants may generate elongated micelles in w/c systems at high-pressures (e.g., 100-400 bar). A range of novel w/c microemulsions, stabilized by new custom-synthesized CO 2 -phillic, partially fluorinated surfactants, were formulated with hydrotropes and cosurfactant. The effects of water content (w = [water]/[surfactant]), surfactant structure, and hydrotrope tail length were all investigated. Dispersed water domains were probed using high pressure small-angle neutron scattering (HP-SANS), which provided evidence for elongated reversed micelles in supercritical CO 2 . These new micelles have significantly lower fluorination levels than previously reported (6-29 wt % cf. 14-52 wt %), and furthermore, they support higher water dispersion levels than other related systems (w = 15 cf. w = 5). The intrinsic viscosities of these w/c microemulsions were estimated based on micelle aspect ratio; from this value a relative viscosity value can be estimated through combination with the micellar volume fraction (ϕ). Combining these new results with those for all other reported systems, it has been possible to "map" predicted viscosity increases in CO 2 arising from elongated reversed micelles, as a function of surfactant fluorination and micellar aspect ratio.