The ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. The UPS mediates the removal of soluble abnormal proteins as well as the targeted degradation of most normal proteins that are no longer needed. Autophagy is generally responsible for bulky removal of ...
PubMed Central
Proteinopathies are a family of human disease caused by toxic aggregation-prone proteins and featured by the presence of protein aggregates in the affected cells. The ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. The UPS mediates the targeted degradation of most normal proteins after performing ...
Autophagy is primarily a non-selective intracellular bulk degradation process. However, it was recently shown that ubiquitin-positive substrates, such as protein aggregates, mitochondria, peroxisomes, and invading bacteria, are selectively targeted to lysosomes via autophagy. Thus, ubiquitination seems to function ...
PubMed
Endomyocardial biopsy of a patient in transition stage from hypertrophic cardiomyopathy to heart failure was investigated. The tissue showed hypertrophy, atrophy of myocytes and an increased amount of fibrosis. In addition, numerous cardiomyocytes revealed ubiquitin positive inclusions. Ultrastructural analysis indicated that cardiomyocytes contained typical autophagic ...
The efficient management of misfolded protein aggregates is essential for cell viability and requires 3 interconnected pathways: the molecular chaperone machinery that assists protein folding, the proteasome pathway that degrades misfolded proteins, and the aggresomal pathway that sequesters and delivers toxic protein aggregates to autophagy for clearance. Although ...
p62, NBR, and HDAC6 recognize aggregated ubiquitinated proteins and target them for autophagy in the process of "selective autophagy". Even the ubiquitination of multiple proteins within whole organelles that drive the more general macro-autophagy may be due, in part, to similar ...
E-print Network
... of Autophagy in Breast Cancer Development and Treatment. ... DEATH, CELLS(BIOLOGY), ABNORMALITIES, LUCIFERASE, ALZHEIMER DISEASE ...
DTIC Science & Technology
Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting ...
Autophagy is a conserved cellular process for bulk degradation of intracellular protein and organelles in lysosomes. In contrast to elegant studies of beclin1 using mouse models and cultured cells demonstrating a tumor suppression function for autophagy, knockout of other essential autophagy proteins such as ATG5, ATG7, or FIP200 (FAK ...
in aggresome formation and autophagy Lih-Shen Chin1 , James A. Olzmann and Lian Li Department of Pharmacology) and Alzheimer's disease. In addition to the ubiquitin�proteasome system, the aggresome�autophagy pathway has. In contrast with basal autophagy that mediates non-selective, bulk clearance of misfolded ...
In a recent study, we reported in vivo evidence of early and sustained alterations of autophagy markers in a novel knock-in mouse model of Huntington disease (HD). The novel model is derived from selective breeding of HdhQ150 knock-in mice to generate mice with ~200 CAG/polyglutamine repeats (HdhQ200). HdhQ200 knockin mice exhibit an accelerated and more robust motor phenotype ...
Autophagy is a highly conserved bulk protein degradation pathway responsible for the turnover of long-lived proteins, disposal of damaged organelles, and clearance of aggregate-prone proteins. Thus, inactivation of autophagy results in cytoplasmic protein inclusions, which are composed of misfolded proteins and excess accumulation of deformed organelles, ...
Autophagy plays a critical and seemingly dual-purposed role in cardiomyocytes, being implicated as a mechanism of both cellular survival, for example, during ischemia/reperfusion injury and a mechanism of cell death at stages in which progressive myocyte alterations are beyond repair. This review aims to highlight the current literature as it relates to ...
Proteotoxicity resulting from accumulation of damaged/unwanted proteins contributes prominently to cellular aging and neurodegeneration. Proteasomal removal of these proteins upon covalent polyubiquitination is highly regulated. Recent reports proposed a role for autophagy in clearance of diffuse ubiquitinated proteins delivered by p62/SQSTM1. Here, we ...
Aggregation and cleavage are two hallmarks of Tau pathology in Alzheimer disease (AD), and abnormal fragmentation of Tau is thought to contribute to the nucleation of Tau paired helical filaments. Clearance of the abnormally modified protein could occur by the ubiquitin-proteasome and autophagy-lysosomal pathways, ...
Autophagy and endocytic pathway are highly regulated catabolic processes. Both processes are crucial for cell growth, development, differentiation, disease and homeostasis and exhibit membrane rearrangement for their function. Autophagy and endocytic pathway represent branches of the lysosomal digestive system, autophagy being ...
The AAA-ATPase Cdc48/p97 controls a large array of cellular functions including protein degradation, cell division, membrane fusion through its ability to interact with and control the fate of ubiquitylated proteins. More recently, Cdc48/p97 also appeared to be involved in autophagy, a catabolic cell response that has long been viewed as completely distinct from the ...
Genetic ablation of autophagy in mice leads to liver and brain degeneration accompanied by the appearance of ubiquitin (Ub) inclusions, which has been considered to support the hypothesis that ubiquitination serves as a cis-acting signal for selective autophagy. We show that tissue-specific disruption of the ...
BackgroundLysosomal storage diseases are characterized by intracellular accumulation of metabolites within lysosomes. Recent evidence suggests that lysosomal storage impairs autophagy resulting in accumulation of polyubiquitinated proteins and dysfunctional mitochondria, ultimately leading to apoptosis. We studied the relationship between lysosome storage and impairment of ...
Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. ...
Autophagy is a self-eating system conserved among eukaryotes, in which cellular components including organelles are entrapped into a double membrane structure called the autophagosome and then degraded by lysosomal hydrolases. In addition to its role in supplying amino acids in response to nutrient starvation, autophagy is involved in quality control to ...
Rsp5p is a conserved HECT-domain ubiquitin ligase with diverse roles in cellular physiology. Here we report a previously unknown role of Rsp5p in facilitating the stability of the cytoplasmic ribosome pool in budding yeast. Yeast strains carrying temperature-sensitive mutations in RSP5 showed a progressive decline in levels of 18S and 25S rRNAs and accumulation of rRNA decay ...
l e t t e r s Mature ribosomes are selectively degraded upon starvation by an autophagy pathway and Matthias Peter1,2 Eukaryotic cells use autophagy and the ubiquitin�proteasome system (UPS) as their major adaptation is needed, autophagy pathways selectively remove protein aggregates and damaged or excess
The ubiquitin proteasome system and autophagy constitute key signalling pathways in the host response to infection. The identification of adaptors linking the two pathways has prompted a re-examination of the latter's involvement in inflammatory reactions and the clearance of bacteria. The ubiquitin-autophagy pathway is a preferred ...
The role of autophagy, a catabolic lysosome-dependent pathway, has recently been recognized in a variety of disorders, including Pompe disease, the genetic deficiency of the glycogen-degrading lysosomal enzyme acid-alpha glucosidase. Accumulation of lysosomal glycogen, presumably transported from the cytoplasm by the autophagic pathway, occurs in multiple tissues, but ...
Autophagy, a lysosome-dependent degradation mechanism, mediates many biological processes, including cellular stress responses and neuroprotection. In this study, we demonstrate that autophagy positively regulates development of the Drosophila melanogaster larval neuromuscular junction (NMJ). Autophagy induces an NMJ overgrowth ...
Autophagy is a ubiquitous eukaryotic cytoplasmic quality and quantity control pathway. The role of autophagy in cytoplasmic homeostasis seamlessly extends to cell-autonomous defense against intracellular microbes. Recent studies also point to fully integrated, multitiered regulatory and effector connections between autophagy and nearly ...
SummaryAutophagy is a ubiquitous eukaryotic cytoplasmic quality and quantity control pathway. The role of autophagy in cytoplasmic homeostasis seamlessly extends to cell-autonomous defense against intracellular microbes. Recent studies also point to fully integrated, multitiered regulatory and effector connections between autophagy and ...
Autophagy is the cellular homeostatic pathway that delivers large cytosolic materials for degradation in the lysosome. Recent evidence indicates that autophagy mediates selective removal of protein aggregates, organelles and microbes in cells. Yet, the specificity in targeting a particular substrate to the autophagy pathway remains ...
Autophagy is a cellular process that nonspecifically degrades cytosolic components and is involved in many cellular responses. We found that amino sugars with a free amino group such as glucosamine, galactosamine and mannosamine induced autophagy via an mTOR-independent pathway. Glucosamine-induced autophagy at concentrations of at ...
Autophagy is a bulk protein degradation system that likely plays an important role in normal proximal tubule function and recovery from acute ischemic kidney injury. Using conditional Atg5 gene deletion to eliminate autophagy in the proximal tubule, we determined whether autophagy prevents accumulation of damaged proteins and ...
Autophagy is an evolutionarily conserved cell survival pathway that enables cells to recoup ATP and other critical biosynthetic molecules during nutrient deprivation or exposure to hypoxia, which are hallmarks of the tumour microenvironment. Autophagy has been implicated as a potential mechanism of resistance to anticancer agents as it can promote cell ...
Autophagy is an intracellular degradation process responsible for the clearance of most long-lived proteins and organelles. Cytoplasmic components are enclosed by double-membrane autophagosomes, which subsequently fuse with lysosomes for degradation. Autophagy dysfunction may contribute to the pathology of various neurodegenerative disorders, which ...
BackgroundProtein aggregation is a hallmark of many neurodegenerative diseases and has been linked to the failure to degrade misfolded and damaged proteins. In the cell, aberrant proteins are degraded by the ubiquitin proteasome system that mainly targets short-lived proteins, or by the lysosomes that mostly clear long-lived and poorly soluble proteins. Both systems are ...
Autophagy is responsible for nonspecific, bulk degradation of cytoplasmic components. Recent work has revealed also that there is specific, autophagic degradation of polyubiquitinated protein aggregates, whose buildup occurs during neurodegenerative disease. Here, we report that simple mono-ubiquitination of normally long-lived cytoplasmic substrates is ...
The ubiquitin proteasome system (UPS) plays a crucial role in biological processes integral to the development of the cardiovascular system and cardiovascular diseases. The UPS prototypically recognizes specific protein substrates and places polyubiquitin chains on them for subsequent destruction by the proteasome. This system is in place to degrade not only misfolded and ...
The ubiquitin-proteasome system and the autophagy-lysosome pathway are the two main routes for eukaryotic intracellular protein clearance. Inhibition of proteasome activity leads to cell death. Due to the dual roles of autophagy in tumor cell survival and death, the effect of suppression of autophagy on breast ...
Bacterial infection relies on the micro-organism's ability to orchestrate the host's cell signalling such that the immune response is not activated. Conversely, the host cell has dedicated signalling pathways for coping with intrusions by pathogens. The autophagy of foreign micro-organisms (known as ...
Autophagy is a lysosomal pathway by which intracellular organelles and proteins are degraded to supply the cell with energy and to maintain cellular homeostasis. Recently, lipid droplets (LDs) have been identified as a substrate for macroautophagy. In addition to the classic pathway of lipid metabolism by cytosolic lipases, LDs are sequestered in autophagosomes that fuse with ...
Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-ras(V12) or K-ras(V12) oncogene up-regulates basal autophagy, which is required for tumor cell survival in starvation and in tumorigenesis. In Ras-expressing ...
Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-rasV12 or K-rasV12 oncogene up-regulates basal autophagy, which is required for tumor cell survival in ...
Autophagy is an innate immune defense against bacterial invasion. Recent studies show that two adaptor proteins, p62 and NDP52, are required for autophagy of the bacterial pathogen Salmonella enterica serovar Typhimurium (S. typhimurium). However, it is not known why two different adaptors are required to target the same bacterial cargo to ...
Injury and loss of podocytes are leading factors of glomerular disease and renal failure. The postmitotic podocyte is the primary glomerular target for toxic, immune, metabolic, and oxidant stress, but little is known about how this cell type copes with stress. Recently, autophagy has been identified as a major pathway that delivers damaged proteins and organelles to lysosomes ...
Damaged mitochondria can be eliminated by autophagy, i.e. mitophagy, which is important for cellular homeostasis and cell survival. Despite the fact that a number of factors have been found to be important for mitophagy in mammalian cells, their individual roles in the process had not been clearly defined. Parkin is a ubiquitin-protein isopeptide ligase ...
Chemical modulators of autophagy provide useful pharmacological tools for examination of autophagic processes, and also may lead to new therapeutic agents for diseases in which control of cellular sequestration and degradation capacity are beneficial. We have identified that timosaponin A-III (TAIII), a medicinal saponin reported to exhibit anticancer properties and improve ...
p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ...
Protein folding stress in the endoplasmic reticulum (ER) may lead to activation of the unfolded protein response (UPR), aimed to restore proteostasis in the ER. Previously, we demonstrated that UPR activation is an early event in Alzheimer disease (AD) brain. In our recent work we investigated whether activation of the UPR is employed to enhance the capacity of the ubiquitin ...
Sustained hypertension promotes structural, functional and metabolic remodeling of cardiomyocyte mitochondria. As long-lived, postmitotic cells, cardiomyocytes turn over mitochondria continuously to compensate for changes in energy demands and to remove damaged organelles. This process involves fusion and fission of existing mitochondria to generate new organelles and separate old ones for ...
Accumulating evidence has revealed that autophagy may be beneficial for treatment of neurodegenerative diseases through removal of abnormal protein aggregates. However, the critical autophagic events during neurodegeneration remain to be elucidated. Here, we investigated whether prototypic autophagic events occur in the MN9D dopaminergic neuronal cell line ...
Autophagy is primarily considered a non-selective degradation process induced by starvation. Nutrient-independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these ...
The dynamics of ubiquitin pools within the cultured human lung fibroblast line IMR-90 were examined using solid phase immunochemical methods to quantitate free and conjugated polypeptide. Fetal calf serum was found to contain a nondialyzable factor that induced a transient accumulation of ubiquitin. During the induction, free and conjugated ...
The proteasome, which identifies and destroys unwanted proteins rapidly, plays a vital role in maintaining cellular protein homeostasis. Proteins that are destined for proteasome-mediated degradation are usually tagged with a chain of ubiquitin linked via lysine (K) 48 that targets them to the proteolytic machinery. However, when the proteasome becomes compromised in its ...
Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ...
Mitochondrial clearance is a well recognized but poorly understood biologic process, and reticulocytes, which undergo programmed mitochondrial clearance, provide a useful model to study this phenomenon. At the ultrastructural level, mitochondrial clearance resembles an autophagy-related process; however, the role of autophagy in mitochondrial clearance has ...
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the ...
Energy Citations Database
Autophagy, the major degradative pathway for organelles and long-lived proteins, is essential for the survival of neurons. Mounting evidence has implicated defective autophagy in the pathogenesis of several major neurodegenerative diseases, particularly Alzheimer's disease (AD). A continuum of abnormalities of the lysosomal system has ...
Pathological processing of tau protein during the formation and maturation of neurofibrillary tangles (NFTs) includes abnormal phosphorylation, conformational changes, and truncation of the C-terminus at aspartic-acid(421) (apoptotic product) and glutamic-acid(391) residues. Abnormal phosphorylation and misfolding may serve as recognition signals for ...
Parkin, an E3 ubiquitin ligase implicated in Parkinson's disease, promotes degradation of dysfunctional mitochondria by autophagy. Using proteomic and cellular approaches, we show that upon translocation to mitochondria, Parkin activates the ubiquitin�proteasome system (UPS) for widespread degradation of outer membrane proteins. This ...
Parkin, an E3 ubiquitin ligase implicated in Parkinson's disease, promotes degradation of dysfunctional mitochondria by autophagy. Using proteomic and cellular approaches, we show that upon translocation to mitochondria, Parkin activates the ubiquitin-proteasome system (UPS) for widespread degradation of outer membrane proteins. This ...
ABSTRACT: Autophagy-related (Atg) proteins are eukaryotic factors participating in various stages of the autophagic process. Thus far 34 Atgs have been identified in yeast, including the key autophagic protein Atg8. The Atg8 gene family encodes ubiquitin-like proteins that share a similar structure consisting of two amino-terminal ? helices and a ...
The molecular details of the biogenesis of double-membraned autophagosomes are poorly understood. We identify the Saccharomyces cerevisiae AAA�adenosine triphosphatase Cdc48 and its substrate-recruiting cofactor Shp1/Ubx1 as novel components needed for autophagosome biogenesis. In mammals, the Cdc48 homologue p97/VCP and the Shp1 homologue p47 mediate Golgi reassembly by extracting an unknown ...
There is compelling evidence to support the idea that autophagy has a protective function in neurons and its disruption results in neurodegenerative disorders. Neuronal damage is well-documented in the brains of HIV-infected individuals, and evidence of inflammation, oxidative stress, damage to synaptic and dendritic structures, and neuronal loss are present in the brains of ...
Proteolysis within the cardiac sarcomere is a constantly evolving area of research. Three major pathways of proteolysis have been identified as being active within the cardiac sarcomere, namely the ubiquitin-proteasome system, autophagy, and the calpain system. The role of ubiquitin-proteasome system-mediated proteolysis in ...
The endosomal-sorting complex required for transport (ESCRT) apparatus has multiple ubiquitin (Ub)-binding domains and participates in a wide variety of cellular processes. Many of these ESCRT-dependent processes are keenly regulated by Ub, which serves as a lysosomal-sorting signal for membrane proteins targeted into multivesicular bodies (MVBs) and which may serve as a ...
obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular COPD patients, as indicated by electron microscopic analysis, as well as by increased activation in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel
The heart is capable of robust structural remodeling, sometimes improving performance and sometimes leading to failure. Recent studies have uncovered a critical role for autophagy in disease-related remodeling of the cardiomyocyte. We have shown previously that hemodynamic load elicits a maladaptive autophagic response in cardiomyocytes which contributes to disease ...
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and survivin) to regulate the lipid kinase Vps-34 ...
The highly conserved self-degradation pathway known as autophagy plays important roles in regulating T lymphocyte homeostasis. Recently, we found that T lymphocytes lacking the autophagy-related gene Atg5 or Atg7 have defective survival and contain expanded mitochondria and endoplasmic reticulum (ER); however, whether these defects are caused by impaired ...
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known ...
The autoimmune regulator (AIRE) is a crucial factor for the induction of central tolerance, and mutations in this gene lead to abnormal immune responses. However, the role of AIRE in autophagy in immune cells, especially in monocytes, is obscure. In the present study, we found that overexpression of AIRE in THP-1 human monocytes resulted in increased ...
Autophagy is a highly conserved process in lower to higher eukaryotic organisms, and occurs in many types of cells as tissues are remodeled during development. In this study, we investigated the functional role of the Trichoderma reesei TrATG5 gene, which encodes an essential protein required for autophagy. TrATG5 is conserved in structure and function in ...
Mutations in Parkin, an E3 ubiquitin ligase that regulates protein turnover, represent one of the major causes of familial Parkinson disease, a neurodegenerative disorder characterized by the loss of dopaminergic neurons and impaired mitochondrial functions. The underlying mechanism by which pathogenic Parkin mutations induce mitochondrial abnormality is ...
The p62 protein, also called sequestosome 1 (SQSTM1), is a ubiquitin-binding scaffold protein that colocalizes with ubiquitinated protein aggregates in many neurodegenerative diseases and proteinopathies of the liver. The protein is able to polymerize via an N-terminal PB1 domain and can interact with ubiquitinated proteins via the ...
In response to stress, cells can utilize several cellular processes, such as autophagy, which is a bulk-lysosomal degradation pathway, to mitigate damages and increase the chances of cell survival. Deregulation of autophagy causes upregulation of p62 and the formation of p62-containing aggregates, which are associated with neurodegenerative diseases and ...
p62 is a ubiquitously expressed cellular protein conserved in metazoa but not in plants and fungi, and is known as one of the selective substrates for autophagy. This protein is localized at the autophagosome formation site and directly interacts with LC3, an autophagosome-localizing protein, and it is incorporated subsequently into the autophagosome and finally degraded. ...
J. Neurochem. (2011) 118, 636-645. ABSTRACT: Mutations in the parkin gene cause early-onset, autosomal recessive Parkinson's disease. Parkin functions as an E3 ubiquitin ligase to mediate the covalent attachment of ubiquitin monomers or linked chains to protein substrates. Substrate ubiquitination can target proteins for proteasomal ...
We have developed and validated a ubiquitin (Ub) and ubiquitin-like protein (Ubl) spectral library, consisting of 467 consensus spectra (320 unique peptides derived from autophagy-related protein 8, F-adjacent transcript 10, interferon-stimulated gene 15 kDa protein, neural precursor cell expressed developmentally down-regulated ...
The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue ...
PML-RAR? oncoprotein is a fusion protein of promyelocytic leukemia (PML) and the retinoic acid receptor-? (RAR?) and causes acute promyelocytic leukemias (APL). A hallmark of all-trans retinoic acid (ATRA) responses in APL is PML-RAR? degradation which promotes cell differentiation. Here, we demonstrated that autophagy is a crucial regulator of PML-RAR? degradation. Inhibition ...
PML-RAR? oncoprotein is a fusion protein of promyelocytic leukemia (PML) and the retinoic acid receptor-? (RAR?) and causes acute promyelocytic leukemias (APL). A hallmark of all-trans retinoic acid (ATRA) responses in APL is PML-RAR? degradation, which promotes cell differentiation. Here, we demonstrated that autophagy is a crucial regulator of PML-RAR? degradation. ...
Autophagy is responsible for the degradation of long-lived proteins and damaged organelles intracellular, even extracellular,and autophagy is proved to have relationship with Alzheimer's disease (AD) and aging. The senescence accelerated mouse prone 8 (SAMP8) was a non-genetically modified mice widely used as a rodent model of aging and senile dementia. ...
The molecular and cellular mechanisms underlying nephropathic cystinosis, which exhibits generalized proximal tubular dysfunction and progressive renal failure, remain largely unknown. Renal biopsies from patients with this disorder can reveal abnormally large mitochondria, but the relevance of this and other ultrastructural abnormalities is unclear. We ...
The deposition of abnormal protein aggregates is a feature of several neurodegenerative diseases. We have employed a rat model to investigate whether chronic cerebral hypoperfusion (CCH) induces proteasome dysfunction and the accumulation of ubiquitinated proteins and aggregates in the CNS. Protein aggregation was analyzed by ethanolic phosphotungstic acid ...
BackgroundThe ubiquitin-proteasome system is responsible for homeostatic degradation of intact protein substrates as well as the elimination of damaged or misfolded proteins that might otherwise aggregate. During ageing there is a decline in proteasome activity and an increase in aggregated proteins. Many neurodegenerative diseases are characterised by the presence of ...
Mitochondria are the primary site of energy production in animal cells. In mitochondria, the flow of electrons through the electron transport chain creates a potential difference across the inner membrane, which is utilized for ATP production. However, due to inherent inefficiencies in electron transport, reactive oxygen species are also produced, which damage mitochondrial proteins and nucleic ...
Neurodegenerative diseases are featured by progressive dysfunction and death of cells in selected areas in the nervous system, determining clinical presentation. Neuronal loss is associated with conformational changes in proteins that result in extra- and intra-cellular accumulation of misfolded proteins, representing the hallmarks of many neurodegenerative disorders, summarized as ...
In the hallmark neuritic dystrophy of Alzheimer's disease (AD), autophagic vacuoles containing incompletely digested proteins selectively accumulate in focal axonal swellings, reflecting defects in both axonal transport and autophagy. Here, we investigated the possibility that impaired lysosomal proteolysis could be a basis for both of these defects leading to neuritic ...
Impaired selective turnover of p62 by autophagy causes severe liver injury accompanied by the formation of p62-positive inclusions and upregulation of detoxifying enzymes. These phenotypes correspond closely to the pathological conditions seen in human liver diseases, including alcoholic hepatitis and hepatocellular carcinoma. However, the molecular mechanisms and ...
SummaryAutophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy is known to contribute to the killing of intracellular microbes including Mycobacterium tuberculosis, although the molecular ...
Purpose: Accumulation and precipitation of abnormal proteins are associated with many age-related diseases. The ubiquitin-proteasome pathway (UPP) is one of the protein quality control mechanisms that selectively degrade damaged or obsolete proteins. The other arm of the protein quality control me...
Technology Transfer Automated Retrieval System (TEKTRAN)
Heart failure is a progressive disease, leading to reduced quality of life and premature death. Adverse ventricular remodeling involves changes in the balance between cardiomyocyte protein synthesis and degradation, forcing these myocytes in equilibrium between life and death. In this context, autophagy has been recognized to play a role in the pathophysiology of heart ...
BackgroundChronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.Methodology ...
BackgroundWhile it is accepted that a majority of invasive breast cancer progresses from a ductal carcinoma in situ (DCIS) precursor stage, very little is known about the factors that promote survival of DCIS neoplastic cells within the hypoxic, nutrient deprived intraductal microenvironment.Methodology and Principal FindingsWe examined the hypothesis that fresh human DCIS lesions contain ...
The ubiquitin-proteasome and lysosome-autophagy pathways are the two major intracellular protein degradation systems that work cooperatively to maintain homeostasis. Proteasome inhibitors (PIs) have clinical activity in hematological tumors, and inhibitors of autophagy are also being evaluated as potential antitumor therapies. In the ...
Suppression of macroautophagy, due to mutations or through processes linked to aging, results in the accumulation of cytoplasmic substrates that are normally eliminated by the pathway. This is a significant problem in long-lived cells like neurons, where pathway defects can result in the accumulation of aggregates containing ubiquitinated proteins. The p62/Ref(2)P family of ...
Mitochondria perform multiple functions critical to the maintenance of cellular homoeostasis and their dysfunction leads to disease. Several lines of evidence suggest the presence of a MAD (mitochondria-associated degradation) pathway that regulates mitochondrial protein quality control. Internal mitochondrial proteins may be retrotranslocated to the OMM (outer mitochondrial membrane), multiple E3 ...
Autophagy, the process by which proteins and organelles are sequestered in autophagosomal vesicles and delivered to the lysosome/vacuole for degradation, provides a primary route for turnover of stable and defective cellular proteins. Defects in this system are linked with numerous human diseases. While conserved protein kinase, lipid kinase, and ...
Two main mechanisms of protein turnover exist in eukaryotic cells: the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Autophagy is an emerging important constituent of many physiological and pathological processes, such as response to nutrient deficiency, programmed cell death and innate immune response. In mammalian ...
Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic ...
Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, ...
p62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar ...
The regulated degeneration of axons or dendrites (pruning) and neuronal apoptosis are widely used during development to determine the specificity of neuronal connections. Pruning and apoptosis often share similar mechanisms; for example, developmental dendrite pruning of Drosophila class IV dendritic arborization (da) neurons is induced by local caspase activation triggered by ...
Protein quality control (PQC) degradation protects the cell by preventing the toxic accumulation of misfolded proteins. In eukaryotes, PQC degradation is primarily achieved by ubiquitin ligases that attach ubiquitin to misfolded proteins for proteasome degradation. To function effectively, PQC ubiquitin ligases must distinguish ...
Dopamine at 100-500 microM has toxic effects on human SH-SY5Y neuroblastoma cells, manifested as apoptotic cell loss and strong autophagy. The molecular mechanisms and types of dopamine-induced cell death are not yet well known. Their identification is important in the study of neurodegenerative diseases that specifically involve dopaminergic neurons. We looked for changes in ...
Intraneuronal amyloid-? (A?) may contribute to extracellular plaque deposition, the characteristic pathology of Alzheimer's disease (AD). The E3-ubiquitin ligase parkin ubiquitinates intracellular proteins and induces mitophagy. We previously demonstrated that parkin reduces A? levels in lentiviral models of intracellular A?. Here we used a triple ...
Protein quality control (PQC) depends on elegant collaboration between molecular chaperones and targeted proteolysis in the cell. The latter is primarily carried out by the ubiquitin-proteasome system, but recent advances in this area of research suggest a supplementary role for the autophagy-lysosomal pathway in PQC-related proteolysis. The ...
Members of the transforming growth factor-beta (TGF-beta) family, including TGF-beta, activin and bone morphogenetic proteins (BMPs), are multifunctional proteins that regulate a wide variety of cellular responses, such as proliferation, differentiation, migration and apoptosis. Alterations in their downstream signaling pathways are associated with a range of human diseases like cancer. TGF-beta ...
Recently, sporadic links have been published between mitochondria - membrane-confined organelles - and the cytosolic ubiquitin-proteasome system (UPS) for removal of cellular proteins. For example, Fzo1, a mitochondrial outer membrane mitofusin was shown to be ubiquitinated by a ubiquitin ligase, Cdc53(MDM30), and degraded by the ...
Congenital muscular dystrophy caused by laminin ?2 chain deficiency (also known as MDC1A) is a severe and incapacitating disease, characterized by massive muscle wasting. The ubiquitin-proteasome system plays a major role in muscle wasting and we recently demonstrated that increased proteasomal activity is a feature of MDC1A. The autophagy-lysosome pathway ...
Hirano bodies are actin-rich inclusions reported most frequently in the hippocampus in association with a variety of conditions including neurodegenerative diseases and aging. We have developed a model system for formation of Hirano bodies in Dictyostelium and cultured mammalian cells to permit detailed studies of the dynamics of these structures in living cells. Model Hirano bodies are frequently ...
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin-fold proteins Autophagy-related (ATG)-8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and ...
Damage to mitochondria can lead to the depolarization of the inner mitochondrial membrane, thereby sensitizing impaired mitochondria for selective elimination by autophagy. However, fusion of uncoupled mitochondria with polarized mitochondria can compensate for damage, reverse membrane depolarization, and obviate mitophagy. Parkin, an E3 ubiquitin ligase ...
Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and large inclusion body ...
There is a reciprocal change in the expression of two members of the BAG (Bcl-2-associated athanogen) family, BAG1 and BAG3, during cellular aging and under acute stress ("BAG1-BAG3-switch"). BAG3 was recently described as a mediator of a novel macroautophagy pathway that uses the specificity of heat shock protein 70 (HSP70) to misfolded proteins and also involves other protein partners, such as ...
Mutations in the gene for the E3 ubiquitin ligase Parkin are the most prevalent cause of autosomal recessive Parkinson disease (PD), an incurable neurodegenerative disorder. Parkin surveys mitochondrial quality by translocating to depolarized mitochondria and inducing their selective macroautophagic removal (mitophagy). We recently reported that Parkin interacts with Ambra1 ...
The heart is constantly under stress and cardiomyocytes face enormous challenges to correctly fold nascent polypeptides and keep mature proteins from denaturing. To meet the challenge, cardiomyocytes have developed multi-layered protein quality control (PQC) mechanisms which are carried out primarily by chaperones and ubiquitin-proteasome system mediated proteolysis. ...
The cellular turnover of proteins and organelles requires cooperation between the autophagic and the lysosomal degradation pathways. A crucial step in this process is the fusion of the autophagosome with the lysosome. In our study we demonstrate that in Lysosomal Storage Disorders (LSDs) accumulation of undegraded substrates in lysosomes, due to deficiency of specific lysosomal enzymes, impairs ...
Autophagic degradation of ubiquitinated protein aggregates is important for cell survival, but it is not known how the autophagic machinery recognizes such aggregates. In this study, we report that polymerization of the polyubiquitin-binding protein p62/SQSTM1 yields protein bodies that either reside free in the cytosol and nucleus or occur within autophagosomes and lysosomal ...
The autophagic pathway participates in many physiological and pathophysiological processes. Autophagy plays an important role, as part of the innate immune response, in the first line of defense against intruding pathogens. Recognition of pathogens by the autophagic machinery is mainly mediated by autophagic adaptors, proteins that simultaneously interact with specific cargos ...
Upon activation, NF-?B translocates into the nucleus and initiates many biological events. This NF-?B signaling is mainly induced by the protein kinase IKK?. Early in this signaling pathway, IKK? is phosphorylated for activation by several factors, such as pro-inflammatory cytokines and the Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1). In cells expressing Tax protein, IKK? is ...
Approximately one-third of cancer deaths are caused by cachexia, a severe form of skeletal muscle and adipose tissue wasting that affects men more than women. The heart also undergoes atrophy in cancer patients but the mechanisms and the basis for apparent sex differences are unclear. In a mouse colon-adenocarcinoma model, cancer causes a loss of cardiac mass due to a decrease in cardiac myocyte ...
Autophagy is an evolutionally conserved protein degradation pathway in eukaryotes. It plays essential roles during starvation, cellular differentiation, cell death, and aging by eliminating unwanted or unnecessary organelles and recycling the components for reuse. ATG8, a member of a novel ubiquitin-like protein family, is an essential component of the ...
SUMMARYATG12, an ubiquitin-like modifier required for macroautophagy, has a single known conjugation target, another autophagy regulator called ATG5. Here, we identify ATG3 as a substrate for ATG12 conjugation. ATG3 is the E2-like enzyme necessary for ATG8/LC3 lipidation during autophagy. ATG12-ATG3 complex formation requires ATG7 as ...
Protein degradation plays a central role in many cellular functions. Misfolded and damaged proteins are removed from the cells to avoid toxicity. Eukaryotic cells have two main routes for clearing misfolded or toxic proteins: the ubiquitin-proteasome and autophagy-lysosome pathways. The ubiquitin-proteasome system (UPS) is ubiquitously ...
BackgroundLewy body disease is a heterogeneous group of neurodegenerative disorders characterized by ?-synuclein accumulation that includes dementia with Lewy bodies (DLB) and Parkinson's Disease (PD). Recent evidence suggests that impairment of lysosomal pathways (i.e. autophagy) involved in ?-synuclein clearance might play an important role. For this reason, we sought to ...
Autophagy is an evolutionarily conserved process that is essential for cellular homeostasis and organismal viability in eukaryotes. However, the extent of its functions in higher-order processes of organismal physiology and behavior is still unknown. Here, we report that autophagy is essential for the maintenance of balance in mice and that its deficiency ...
Ubiquitin-specific proteases (UBPs) are a family of unique hydrolases that specifically remove polypeptides covalently linked via peptide or isopeptide bonds to the C-terminal glycine of ubiquitin. UBPs help regulate the ubiquitin/26S proteolytic pathway by generating free ubiquitin monomers from their initial ...
The purpose of semen quality evaluation is to predict the fertility potential of the sample in an objective, rapid and inexpensive manner. However, utilization of sperm quality biomarkers such as ubiquitin and lectin Arachis hypogaea agglutinin (PNA) for flow cytometric semen evaluation might eliminate the need for visual assessment by microscopy. Herein, we demonstrate a ...
Accumulation of dysfunctional Mitochondria has been implicated in the pathogenesis of Parkinson's disease (PD). Mutations in PTEN-induced kinase 1 (PINK1), which encodes a putative mitochondrial serine/threonine kinase, have been identified in early-onset forms of PD. Recent data showed that the loss of PINK1 function led to oxidative stress, mitochondrial damage and autophagic elimination of ...
The striated muscle-specific tripartite motif (TRIM) proteins TRIM63/MURF1, TRIM55/MURF2 and TRIM54/MURF3 can function as ubiquitin E3 ligases in ubiquitin-mediated muscle protein turnover. Despite their well-characterised roles in muscle atrophy, the dynamics of MURF expression in the development and early postnatal adaptation of striated muscle is ...
The ubiquitin-proteasome system has a central role in the degradation of intracellular proteins and regulates a variety of functions. Viruses belonging to several different families utilize or modulate the system for their advantage. Here we showed that the proteasome inhibitors MG132 and epoxomicin blocked a postentry step in vaccinia virus (VACV) replication. When proteasome ...
Inclusion body myopathy (IBM) associated with paget's disease of the bone (PDB) and fronto-temporal dementia (FTD) or IBMPFD, is a rare multisystem degenerative disorder due to mutations in valosin containing protein (VCP). VCP is a ubiquitously expressed protein that facilitates the degradation of proteins via the ubiquitin proteasome and autophagy ...
HDAC4 (histone deacetylase 4) belongs to class IIa of histone deacetylases, which groups important regulators of gene expression, controlling pleiotropic cellular functions. Here we show that, in addition to the well-defined nuclear/cytoplasmic shuttling, HDAC4 activity is modulated by the ubiquitin�proteasome system. Serum starvation elicits the ...
Macroautophagy sequesters superflous cytosol and organelles into double-membraned autophagosomes. Over 30 autophagy-related (ATG) genes have been identified without elucidating the molecular details of autophagosome biogenesis. All proposed models for autophagosome formation require membrane fusion events (Fig. 1). Previous studies assumed that the autophagic machinery ...
Aggresomes are dynamic structures formed when the ubiquitin-proteasome system is overwhelmed with aggregation-prone proteins. In this process, small protein aggregates are actively transported towards the microtubule-organizing center. A functional role for autophagy in the clearance of aggresomes has also been proposed. In the present work we investigated ...
To examine the functional significance and morphological characteristics of starvation-induced autophagy in the adult heart, we made green fluorescent protein-microtubule-associated protein 1-light chain 3 (LC3) transgenic mice starve for up to 3 days. Electron microscopy revealed round, homogenous, electron-dense lipid droplet-like vacuoles that initially appeared in ...
In response to changes in workload, the heart grows or shrinks. Indeed, the myocardium is capable of robust and rapid structural remodeling. In the setting of normal, physiological demand, the heart responds with hypertrophic growth of individual cardiac myocytes, a process that serves to maintain cardiac output and minimize wall stress. However, disease-related stresses, such as hypertension or ...
A single nucleotide polymorphism in Atg16L1, an autophagy-related gene (ATG), is a risk factor for Crohn disease, a major form of chronic inflammatory bowel disease. However, it is still unknown how the Atg16L1 variant contributes to disease development. The Atg16L1 protein possesses a C-terminal WD repeat domain whose function is entirely unknown, and the Crohn ...
Beclin 1 usually interacts with several autophagy-inhibitory proteins including the anti-apoptotic proteins from the Bcl-2 family (Bcl-2, Bcl-XL and Mcl-1) and the inositol-1,4,5 trisphosphate (IP 3) receptor, which interacts with Beclin 1 indirectly, via Bcl-2. Beclin 1 possesses a BH3 domain that usually interacts with a hydrophobic cleft, the BH3 receptor domain, contained ...
To examine the functional significance and detailed morphological characteristics of starvation-induced autophagy in the adult heart, we starved green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) transgenic mice for up to 3 days. Electron microscopy revealed that, after as little as 12 hours of starvation, round and homogenously electron-dense ...
Rationale: Recent studies suggest an important role of autophagy in protection against ?B-crystallin-based (CryAB(R120G)) desmin-related cardiomyopathies (DRC), but this has not been demonstrated in a different model of cardiac proteinopathy. Mechanisms underlying the response of cardiomyocytes to proteotoxic stress remain incompletely understood. Objective: Our first ...
Regulatory T cells (Tregs) play a critical role in maintaining immune tolerance to self-antigens, whose development and activation is controlled by the master regulator and transcription factor Foxp3. Foxp3 acts as transcription repressor and exerts its suppressing function via directly associating with and inhibiting the function of other transcriptional regulators. The gene transcription of ...
in which proteins and organelles are catab- olized in lysosomes to provide cells with amino acids,thedouble-membranevesiclethatcarries proteins and organelles destined for autophagy to the lysosome (Fig. 1). The authors first removed Atg5 of amino acids and energy, and the accumulation of abnormal proteins and organelles. In fact, Nakai et al
PurposeThe pathogenesis of age-related macular degeneration involves impaired protein degradation in retinal pigment epithelial (RPE) cells. The ubiquitin-proteasome pathway and the lysosomal pathway including autophagy are the major proteolytic systems in eukaryotic cells. Prior to proteolysis, heat shock proteins (HSPs) attempt to refold stress-induced ...