Science.gov

Sample records for abnormal barrier function

  1. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders.

    PubMed

    Elias, Peter M; Williams, Mary L; Feingold, Kenneth R

    2012-01-01

    Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a "best attempt" by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite accumulation and deficiency of pathway product (ie, cholesterol). We validated this therapeutic approach in two CHILD syndrome patients who failed to improve with topical cholesterol alone, but cleared with dual treatment with cholesterol plus lovastatin. In theory, the ichthyoses in other inherited lipid metabolic disorders could be treated analogously. This pathogenesis (pathway)-driven approach possesses several inherent advantages: (1) it is mechanism-specific for each disorder; (2) it is inherently safe, because natural lipids and/or approved drugs often are utilized; and (3) it should be inexpensive, and therefore it could be used widely in the developing world. PMID:22507046

  2. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model.

    PubMed Central

    Ghadially, R; Brown, B E; Sequeira-Martin, S M; Feingold, K R; Elias, P M

    1995-01-01

    Aged epidermis displays altered drug permeability, increased susceptibility to irritant contact dermatitis, and often severe xerosis, suggesting compromise of the aged epidermal barrier. To delineate the functional, structural, and lipid biochemical basis of epidermal aging, we compared barrier function in young (20-30 yr) vs aged (> 80 yr) human subjects, and in a murine model. Baseline transepidermal water loss in both aged humans and senescent mice was subnormal. However, the aged barrier was perturbed more readily with either acetone or tape stripping (18 +/- 2 strippings vs 31 +/- 5 strippings in aged vs young human subjects, respectively). Moreover, after either acetone treatment or tape stripping, the barrier recovered more slowly in aged than in young human subjects (50 and 80% recovery at 24 and 72 h, respectively, in young subjects vs 15% recovery at 24 h in aged subjects), followed by a further delay over the next 6 d. Similar differences in barrier recovery were seen in senescent vs young mice. Although the total lipid content was decreased in the stratum corneum of aged mice (approximately 30%), the distribution of ceramides (including ceramide 1), cholesterol, and free fatty acids was unchanged. Moreover, a normal complement of esterified, very long-chain fatty acids was present. Finally, stratum corneum lamellar bilayers displayed normal substructure and dimensions, but were focally decreased in number, with decreased secretion of lamellar body contents. Thus, assessment of barrier function in aged epidermis under basal conditions is misleading, since both barrier integrity and barrier repair are markedly abnormal. These functional changes can be attributed to a global deficiency in all key stratum corneum lipids, resulting in decreased lamellar bilayers in the stratum corneum interstices. This constellation of findings may explain the increased susceptibility of intrinsically aged skin to exogenous and environmental insults. Images PMID:7738193

  3. Ichthyosis in Sjögren-Larsson syndrome reflects defective barrier function due to abnormal lamellar body structure and secretion.

    PubMed

    Rizzo, William B; S'Aulis, Dana; Jennings, M Anitia; Crumrine, Debra A; Williams, Mary L; Elias, Peter M

    2010-08-01

    Sjögren-Larsson syndrome is a genetic disease characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene coding for fatty aldehyde dehydrogenase, an enzyme necessary for oxidation of fatty aldehydes and fatty alcohols. We investigated the cutaneous abnormalities in 9 patients with Sjögren-Larsson syndrome to better understand how the enzymatic deficiency results in epidermal dysfunction. Histochemical staining for aldehyde oxidizing activity was profoundly reduced in the epidermis. Colloidal lanthanum perfusion studies showed abnormal movement of tracer into the extracellular spaces of the stratum corneum consistent with a leaky water barrier. The barrier defect could be attributed to the presence of abnormal lamellar bodies, many with disrupted limiting membranes or lacking lamellar contents. Entombed lamellar bodies were present in the cytoplasm of corneocytes suggesting blockade of lamellar body secretion. At the stratum granulosum-stratum corneum interface, non-lamellar material displaced or replaced secreted lamellar membranes, and in the stratum corneum, the number of lamellar bilayers declined and lamellar membrane organization was disrupted by foci of lamellar/non-lamellar phase separation. These studies demonstrate the presence of a permeability barrier abnormality in Sjögren-Larsson syndrome, which localizes to the stratum corneum interstices and can be attributed to abnormalities in lamellar body formation and secretion. PMID:20049467

  4. Information barrier functional requirements

    SciTech Connect

    MacArthur, D.; Whiteson, R.

    1998-12-31

    for the purpose of this paper, the authors have used the term functional requirement to indicate a required task rather than the recommended method for accomplishing this task. The creation of effective information barrier technology will proceed as a series of steps: (1) IB conceptual Description; (2) IB Functional Requirements (this document--ongoing); (3) IB hardware and software specification; (4) IB hardware and software construction; and (5) IB implementation. This functional requirements document is not intended to supplant or supersede the conceptual description; rather, these functional requirements are intended to be used along with the earlier description to help generate hardware and software requirements.

  5. Evaluation of abnormal liver function tests

    PubMed Central

    Limdi, J; Hyde, G

    2003-01-01

    Interpretation of abnormalities in liver function tests is a common problem faced by clinicians. This has become more common with the introduction of automated routine laboratory testing. Not all persons with one or more abnormalities in these tests actually have liver disease. The various biochemical tests, their pathophysiology, and an approach to the interpretation of abnormal liver function tests are discussed in this review. PMID:12840117

  6. FILAGGRIN DEFICIENCY CONFERS A PARACELLULAR BARRIER ABNORMALITY THAT REDUCES INFLAMMATORY THRESHOLDS TO IRRITANTS AND HAPTENS

    PubMed Central

    Scharschmidt, Tiffany C.; Man, Mao-Qiang; Hatano, Yutaka; Crumrine, Debra; Gunathilake, Roshan; Sundberg, John P.; Silva, Kathleen A.; Mauro, Theodora M.; Hupe, Melanie; Cho, Soyun; Wu, Yan; Celli, Anna; Schmuth, Matthias; Feingold, Kenneth R.; Elias, Peter M.

    2010-01-01

    Background Mutations in filaggrin (FLG) are associated with atopic dermatitis (AD), and are presumed to provoke a barrier abnormality. Yet, additional acquired stressors may be necessary, since the same mutations can result in a non-inflammatory disorder, ichthyosis vulgaris. Objective We examined here whether FLG deficiency alone suffices to produce a barrier abnormality; the basis for the putative abnormality; and its pro-inflammatory consequences. Methods Using the flaky-tail (ft/ft) mouse, which lacks processed flg due to a frame-shift mutation in profilaggrin that mimics some mutations in human AD, we assessed whether FLG deficiency provokes a barrier abnormality; further localized the defect; identified its subcellular basis; and assessed thresholds to irritant and hapten-induced dermatitis. Results Flaky-tail mice exhibit low-grade inflammation, with increased bidirectional, paracellular permeability of water-soluble xenobiotes due to impaired lamellar body secretion and altered stratum corneum extracellular membranes. This barrier abnormality correlates with reduced inflammatory thresholds to both topical irritants and haptens. Moreover, when exposed repeatedly to topical haptens, at doses that produce no inflammation in +/+ mice, ft/ft mice develop a severe AD-like dermatosis, with a further deterioration in barrier function and features of a th2 immunophenotype (increased CRTH + inflammation, elevated serum IgE levels, and reduced antimicrobial peptide [mBD3] expression). Conclusions FLG deficiency alone provokes a paracellular barrier abnormality in mice that reduces inflammatory thresholds to topical irritants/haptens, likely accounting for enhanced antigen penetration in FLG-associated AD. PMID:19733297

  7. Abnormalities of lung function in hay fever.

    PubMed Central

    Morgan, E J; Hall, D R

    1976-01-01

    Twenty subjects with symptoms of hay fever were studied to see whether abnormalities could be detected in the function of small airways. The investigations included dynamic compliance at varying respiratory frequencies, closing capacity, residual volume, transfer factor, and maximal expiratory flow-volume curves. The tests were repeated in the winter when symptoms had resolved. Frequency dependence of compliance was found in eight subjects with symptoms (40%), closing capacities being abnormal in only two instances. Conventional pulmonary function tests, including expiratory flow rates at mid vital capacity, were within the predicted range of all subjects. When tests were repeated in the winter, frequency dependence of compliance was no longer present in subjects whose symptoms had resolved. The study suggests that reversible small airway abnormalities are present in a significant proportion of subjects with symptoms of hay fever and that such abnormalities are best detected by the measurement of dynamic compliance at varying respiratory frequencies. PMID:769243

  8. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease

    PubMed Central

    Chistiakov, Dimitry A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2015-01-01

    Endothelial cells (ECs) form a unique barrier between the vascular lumen and the vascular wall. In addition, the endothelium is highly metabolically active. In cardiovascular disease such as atherosclerosis and hypertension, normal endothelial function could be severely disturbed leading to endothelial dysfunction that then could progress to complete and irreversible loss of EC functionality and contribute to entire vascular dysfunction. Proatherogenic stimuli such as diabetes, dyslipidemia, and oxidative stress could initiate endothelial dysfunction and in turn vascular dysfunction and lead to the development of atherosclerotic arterial disease, a background for multiple cardiovascular disorders including coronary artery disease, acute coronary syndrome, stroke, and thrombosis. Intercellular junctions between ECs mediate the barrier function. Proinflammatory stimuli destabilize the junctions causing the disruption of the endothelial barrier and increased junctional permeability. This facilitates transendothelial migration of immune cells to the arterial intima and induction of vascular inflammation. Proatherogenic stimuli attack endothelial microtubule function that is regulated by acetylation of tubulin, an essential microtubular constituent. Chemical modification of tubulin caused by cardiometabolic risk factors and oxidative stress leads to reorganization of endothelial microtubules. These changes destabilize vascular integrity and increase permeability, which finally results in increasing cardiovascular risk. PMID:26696899

  9. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  10. Evaluation of abnormal liver function tests.

    PubMed

    Agrawal, Swastik; Dhiman, Radha K; Limdi, Jimmy K

    2016-04-01

    Incidentally detected abnormality in liver function tests is a common situation encountered by physicians across all disciplines. Many of these patients do not have primary liver disease as most of the commonly performed markers are not specific for the liver and are affected by myriad factors unrelated to liver disease. Also, many of these tests like liver enzyme levels do not measure the function of the liver, but are markers of liver injury, which is broadly of two types: hepatocellular and cholestatic. A combination of a careful history and clinical examination along with interpretation of pattern of liver test abnormalities can often identify type and aetiology of liver disease, allowing for a targeted investigation approach. Severity of liver injury is best assessed by composite scores like the Model for End Stage Liver Disease rather than any single parameter. In this review, we discuss the interpretation of the routinely performed liver tests along with the indications and utility of quantitative tests. PMID:26842972

  11. Use of dynamic contrast-enhanced MRI to measure subtle blood-brain barrier abnormalities.

    PubMed

    Armitage, Paul A; Farrall, Andrew J; Carpenter, Trevor K; Doubal, Fergus N; Wardlaw, Joanna M

    2011-04-01

    There is growing interest in investigating the role of subtle changes in blood-brain barrier (BBB) function in common neurological disorders and the possible use of imaging techniques to assess these abnormalities. Some studies have used dynamic contrast-enhanced MR imaging (DCE-MRI) and these have demonstrated much smaller signal changes than obtained from more traditional applications of the technique, such as in intracranial tumors and multiple sclerosis. In this work, preliminary results are presented from a DCE-MRI study of patients with mild stroke classified according to the extent of visible underlying white matter abnormalities. These data are used to estimate typical signal enhancement profiles in different tissue types and by degrees of white matter abnormality. The effect of scanner noise, drift and different intrinsic tissue properties on signal enhancement data is also investigated and the likely implications for interpreting the enhancement profiles are discussed. No significant differences in average signal enhancement or contrast agent concentration were observed between patients with different degrees of white matter abnormality, although there was a trend towards greater signal enhancement with more abnormal white matter. Furthermore, the results suggest that many of the factors considered introduce uncertainty of a similar magnitude to expected effect sizes, making it unclear whether differences in signal enhancement are truly reflective of an underlying BBB abnormality or due to an unrelated effect. As the ultimate aim is to achieve a reliable quantification of BBB function in subtle disorders, this study highlights the factors which may influence signal enhancement and suggests that further work is required to address the challenging problems of quantifying contrast agent concentration in healthy and diseased living human tissue and of establishing a suitable model to enable quantification of relevant physiological parameters. Meanwhile, it is essential that future studies use an appropriate control group to minimize these influences. PMID:21030178

  12. Sebaceous Gland, Hair Shaft, and Epidermal Barrier Abnormalities in Keratosis Pilaris with and without Filaggrin Deficiency

    PubMed Central

    Gruber, Robert; Sugarman, Jeffrey L.; Crumrine, Debra; Hupe, Melanie; Mauro, Theodora M.; Mauldin, Elizabeth A.; Thyssen, Jacob P.; Brandner, Johanna M.; Hennies, Hans-Christian; Schmuth, Matthias; Elias, Peter M.

    2016-01-01

    Although keratosis pilaris (KP) is common, its etiopathogenesis remains unknown. KP is associated clinically with ichthyosis vulgaris and atopic dermatitis and molecular genetically with filaggrin-null mutations. In 20 KP patients and 20 matched controls, we assessed the filaggrin and claudin 1 genotypes, the phenotypes by dermatoscopy, and the morphology by light and transmission electron microscopy. Thirty-five percent of KP patients displayed filaggrin mutations, demonstrating that filaggrin mutations only partially account for the KP phenotype. Major histologic and dermatoscopic findings of KP were hyperkeratosis, hypergranulosis, mild T helper cell type 1-dominant lymphocytic inflammation, plugging of follicular orifices, striking absence of sebaceous glands, and hair shaft abnormalities in KP lesions but not in unaffected skin sites. Changes in barrier function and abnormal paracellular permeability were found in both interfollicular and follicular stratum corneum of lesional KP, which correlated ultrastructurally with impaired extracellular lamellar bilayer maturation and organization. All these features were independent of filaggrin genotype. Moreover, ultrastructure of corneodesmosomes and tight junctions appeared normal, immunohistochemistry for claudin 1 showed no reduction in protein amounts, and molecular analysis of claudin 1 was unremarkable. Our findings suggest that absence of sebaceous glands is an early step in KP pathogenesis, resulting in downstream hair shaft and epithelial barrier abnormalities. PMID:25660180

  13. Sebaceous gland, hair shaft, and epidermal barrier abnormalities in keratosis pilaris with and without filaggrin deficiency.

    PubMed

    Gruber, Robert; Sugarman, Jeffrey L; Crumrine, Debra; Hupe, Melanie; Mauro, Theodora M; Mauldin, Elizabeth A; Thyssen, Jacob P; Brandner, Johanna M; Hennies, Hans-Christian; Schmuth, Matthias; Elias, Peter M

    2015-04-01

    Although keratosis pilaris (KP) is common, its etiopathogenesis remains unknown. KP is associated clinically with ichthyosis vulgaris and atopic dermatitis and molecular genetically with filaggrin-null mutations. In 20 KP patients and 20 matched controls, we assessed the filaggrin and claudin 1 genotypes, the phenotypes by dermatoscopy, and the morphology by light and transmission electron microscopy. Thirty-five percent of KP patients displayed filaggrin mutations, demonstrating that filaggrin mutations only partially account for the KP phenotype. Major histologic and dermatoscopic findings of KP were hyperkeratosis, hypergranulosis, mild T helper cell type 1-dominant lymphocytic inflammation, plugging of follicular orifices, striking absence of sebaceous glands, and hair shaft abnormalities in KP lesions but not in unaffected skin sites. Changes in barrier function and abnormal paracellular permeability were found in both interfollicular and follicular stratum corneum of lesional KP, which correlated ultrastructurally with impaired extracellular lamellar bilayer maturation and organization. All these features were independent of filaggrin genotype. Moreover, ultrastructure of corneodesmosomes and tight junctions appeared normal, immunohistochemistry for claudin 1 showed no reduction in protein amounts, and molecular analysis of claudin 1 was unremarkable. Our findings suggest that absence of sebaceous glands is an early step in KP pathogenesis, resulting in downstream hair shaft and epithelial barrier abnormalities. PMID:25660180

  14. Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism

    PubMed Central

    Elias, Peter M.; Williams, Mary L.; Holleran, Walter M.; Jiang, Yan J.; Schmuth, Matthias

    2010-01-01

    Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality “drives” pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO4) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO4 as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to β-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation. PMID:18245815

  15. Patient Barriers to Follow-Up Care for Breast and Cervical Cancer Abnormalities

    PubMed Central

    Darnell, Julie S.; Cho, Young I.; Stolley, Melinda R.; Markossian, Talar W.; Calhoun, Elizabeth A.

    2013-01-01

    Abstract Background Women with breast or cervical cancer abnormalities can experience barriers to timely follow-up care, resulting in delays in cancer diagnosis. Patient navigation programs that identify and remove barriers to ensure timely receipt of care are proliferating nationally. The study used a systematic framework to describe barriers, including differences between African American and Latina women; to determine recurrence of barriers; and to examine factors associated with barriers to follow-up care. Methods Data originated from 250 women in the intervention arm of the Chicago Patient Navigation Research Program (PNRP). The women had abnormal cancer screening findings and navigator encounters. Women were recruited from a community health center and a publicly owned medical center. After describing proportions of African American and Latina women experiencing particular barriers, logistic regression was used to explore associations between patient characteristics, such as race/ethnicity, and type of barriers. Results The most frequent barriers occurred at the intrapersonal level (e.g., insurance issues and fear), while institutional-level barriers such as system problems with scheduling care were the most commonly recurring over time (29%). The majority of barriers (58%) were reported in the first navigator encounter. Latinas (81%) reported barriers more often than African American women (19%). Differences in race/ethnicity and employment status were associated with types of barriers. Compared to African American women, Latinas were more likely to report an intrapersonal level barrier. Unemployed women were more likely to report an institutional level barrier. Conclusion In a sample of highly vulnerable women, there is no single characteristic (e.g., uninsured) that predicts what kinds of barriers a woman is likely to have. Nevertheless, navigators appear able to easily resolve intrapersonal-level barriers, but ongoing navigation is needed to address system-level barriers. Patient navigation programs can adopt the PNRP barriers framework to assist their efforts in assuring timely follow-up care. PMID:23672296

  16. Functional Neuroimaging Abnormalities in Psychosis Spectrum Youth

    PubMed Central

    Wolf, Daniel H.; Satterthwaite, Theodore D.; Calkins, Monica E.; Ruparel, Kosha; Elliott, Mark A.; Hopson, Ryan D.; Jackson, Chad; Prabhakaran, Karthik; Bilker, Warren B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.

    2015-01-01

    Importance The continuum view of the psychosis spectrum (PS) implies that in population-based samples, PS symptoms should be associated with neural abnormalities similar to those found in help-seeking clinical-risk individuals and in schizophrenia. Functional neuroimaging has not previously been applied in large population-based PS samples, and can help understand the neural architecture of psychosis more broadly, and identify brain phenotypes beyond symptomatology that are associated with the extended psychosis phenotype. Objective To examine the categorical and dimensional relationships of PS symptoms to prefrontal hypoactivation during working memory and to amygdala hyperactivation during threat emotion processing. Design The Philadelphia Neurodevelopmental Cohort (PNC) is a genotyped prospectively accrued population-based sample of nearly 10,000 youths, who received a structured psychiatric evaluation and a computerized neurocognitive battery. A subsample of 1,445 subjects underwent neuroimaging including functional magnetic resonance imaging (fMRI) tasks examined here. Setting The PNC is a collaboration between The Children’s Hospital of Philadelphia and the Hospital of the University of Pennsylvania. Participants Youths ages 11–22 years identified through structured interview as having psychosis-spectrum features (PS, n=260), and typically developing comparison subjects without significant psychopathology (TD, n=220). Main Outcomes and Measures Two fMRI paradigms were utilized, a fractal n-back working memory task probing executive system function, and an emotion identification task probing amygdala responses to threatening faces. Results In the n-back task, PS showed reduced activation in executive control circuitry, which correlated with cognitive deficits. During emotion identification, PS demonstrated elevated amygdala responses to threatening facial expressions, which correlated with positive symptom severity. Conclusions and Relevance The pattern of functional abnormalities observed in PS participants is similar to that previously found in schizophrenia and help-seeking risk samples. Specific circuit dysfunction during cognitive and emotion-processing tasks is present early in the development of psychopathology, and here cannot be attributed to chronic illness or medication confounds. Hypoactivation in executive circuitry and limbic hyperactivation to threat could reflect partly independent risk factors for psychosis-spectrum symptoms; the former relating to cognitive deficits that increase risk for developing psychotic symptoms, the latter contributing directly to positive psychotic symptoms. PMID:25785510

  17. Wet Work and Barrier Function.

    PubMed

    Fartasch, Manigé

    2016-01-01

    Wet work defined as unprotected exposure to humid environments/water; high frequencies of hand washing procedures or prolonged glove occlusion is believed to cause irritant contact dermatitis in a variety of occupations. This review considers the recent studies on wet-work exposure and focuses on its influence on barrier function. There are different methods to study the effect of wet work on barrier function. On the one hand, occupational cohorts at risk can be monitored prospectively by skin bioengineering technology and clinical visual scoring systems; on the other hand, experimental test procedures with defined application of water, occlusion and detergents are performed in healthy volunteers. Both epidemiological studies and the results of experimental procedures are compared and discussed. A variety of epidemiological studies analyze occupational cohorts at risk. The measurement of transepidermal water loss, an indicator of the integrity of the epidermal barrier, and clinical inspection of the skin have shown that especially the frequencies of hand washing and water contact/contact to aqueous mixtures seem to be the main factors for the occurrence of barrier alterations. On the other hand, in a single cross-sectional study, prolonged glove wearing (e.g. occlusion for 6 h per shift in clean-room workers) without exposure to additional hazardous substances seemed not to affect the skin negatively. But regarding the effect of occlusion, there is experimental evidence that previously occluded skin challenged with sodium lauryl sulfate leads to an increased susceptibility to the irritant with an aggravation of the irritant reaction. These findings might have relevance for the real-life situation in so far as after occupational glove wearing, the skin is more susceptible to potential hazards to the skin even during leisure hours. PMID:26844906

  18. Executive function abnormalities in pathological gamblers

    PubMed Central

    2008-01-01

    Background Pathological gambling (PG) is an impulse control disorder characterized by persistent and maladaptive gambling behaviors with disruptive consequences for familial, occupational and social functions. The pathophysiology of PG is still unclear, but it is hypothesized that it might include environmental factors coupled with a genetic vulnerability and dysfunctions of different neurotransmitters and selected brain areas. Our study aimed to evaluate a group of patients suffering from PG by means of some neuropsychological tests in order to explore the brain areas related to the disorder. Methods Twenty outpatients (15 men, 5 women), with a diagnosis of PG according to DSM-IV criteria, were included in the study and evaluated with a battery of neuropsychological tests: the Wisconsin Card Sorting Test (WCST), the Wechsler Memory Scale revised (WMS-R) and the Verbal Associative Fluency Test (FAS). The results obtained in the patients were compared with normative values of matched healthy control subjects. Results The PG patients showed alterations at the WCST only, in particular they had a great difficulty in finding alternative methods of problem-solving and showed a decrease, rather than an increase, in efficiency, as they progressed through the consecutive phases of the test. The mean scores of the other tests were within the normal range. Conclusion Our findings showed that patients affected by PG, in spite of normal intellectual, linguistic and visual-spatial abilities, had abnormalities emerging from the WCST, in particular they could not learn from their mistakes and look for alternative solutions. Our results would seem to confirm an altered functioning of the prefrontal areas which might provoke a sort of cognitive "rigidity" that might predispose to the development of impulsive and/or compulsive behaviors, such as those typical of PG. PMID:18371193

  19. Skin Barrier Function and Allergens.

    PubMed

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization (CS) and allergy following increased penetration of potential allergens. However, the relationship between common dermatoses such as psoriasis, atopic dermatitis (AD) and irritant contact dermatitis (ICD) and the development of contact allergy (CA) is complex, and depends on immunologic responses and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due to increased levels of Th17 cells and its associated cytokines. As for AD, a positive association to CS has been established in epidemiological studies, but is still unresolved. Experimental studies show, however, an inverse relationship between AD and CS. The opposing and antagonistic influences of Th1 (CS) and Th2 (AD) have been proposed as an explanation. Finally, there is convincing evidence that exposure to irritants increases the risk of CS, and patients with ICD are, therefore, at great risk of developing CA. Skin irritation leads to the release of IL-1 and TNF-α, which affects the function of antigen-presenting cells and promotes their migration to local lymph nodes, thus increasing the probability of CS and ultimately the development of CA. PMID:26844901

  20. Multiple Barriers Delay Care Among Women with Abnormal Cancer Screening Despite Patient Navigation

    PubMed Central

    Freund, Karen M.; Bak, Sharon M.; Heeren, Timothy C.; Chen, Clara A.; Battaglia, Tracy A.

    2015-01-01

    Abstract Background: While there is widespread dissemination of patient navigation programs in an effort to reduce delays in cancer care, little is known about the impact of barriers to care on timely outcomes. Methods: We conducted a secondary analysis of the Boston Patient Navigation Research Program (PNRP) to examine the effect that the presence of barriers had on time to diagnostic resolution of abnormal breast or cervical cancer screening tests. We used multivariable Cox proportional hazards regression with time to diagnostic resolution as the outcome to examine the effect of the number of barriers, controlling for demographic covariates and clustered by patients' primary navigator. Results: There were 1481 women who received navigation; mean age was 39 years; 32% were White, 27% Black, and 31% Hispanic; 28% had private health insurance; and 38% did not speak English. Overall, half (n=745, 50%) had documentation of one or more barriers to care. Women with barriers were more likely to be older, non-White, non-English language speakers, and on public or no health insurance compared with women without barriers. In multivariable analyses, we found less timely diagnostic resolution as the number of barriers increased (one barrier, adjusted hazard ratio [aHR] 0.81 [95% CI 0.56–1.17], p=0.26; two barriers, aHR 0.55 [95% CI 0.37–0.81], p=0.0025; three or more barriers, aHR 0.31 [95% CI 0.21–0.46], p<0.0001)]. Conclusion: Within a patient navigation program proven to reduce delays in care, we found that navigated patients with documented barriers to care experience less timely resolution of abnormal cancer screening tests. PMID:25513858

  1. Vision function abnormalities in Alzheimer disease.

    PubMed

    Tzekov, Radouil; Mullan, Michael

    2014-01-01

    Alzheimer disease (AD) is a progressive, age-related debilitating condition that is a growing public health problem in the developed world. Visual system abnormalities in AD were recognized in the early 1970s, but were initially considered to be of strictly cortical origin. Studies in the past 20 years reveal that all parts of the visual system may be affected, including the optic nerve and the retina. Some aspects of this involvement are still not well understood and are the subjects of intensive research. We summarize and focus on findings that may be of more practical interest to the ophthalmologist. PMID:24309127

  2. Myelodysplastic syndromes: pathogenesis, functional abnormalities, and clinical implications.

    PubMed Central

    Jacobs, A

    1985-01-01

    The myelodysplastic syndromes represent a preleukaemic state in which a clonal abnormality of haemopoietic stem cell is characterised by a variety of phenotypic manifestations with varying degrees of ineffective haemopoiesis. This state probably develops as a sequence of events in which the earliest stages may be difficult to detect by conventional pathological techniques. The process is characterised by genetic changes leading to abnormal control of cell proliferation and differentiation. Expansion of an abnormal clone may be related to independence from normal growth factors, insensitivity to normal inhibitory factors, suppression of normal clonal growth, or changes in the immunological or nutritional condition of the host. The haematological picture is of peripheral blood cytopenias: a cellular bone marrow, and functional abnormalities of erythroid, myeloid, and megakaryocytic cells. In most cases marrow cells have an abnormal DNA content, often with disturbances of the cell cycle: an abnormal karyotype is common in premalignant clones. Growth abnormalities of erythroid or granulocyte-macrophage progenitors are common in marrow cultures, and lineage specific surface membrane markers indicate aberrations of differentiation. Progression of the disorder may occur through clonal expansion or through clonal evolution with a greater degree of malignancy. Current attempts to influence abnormal growth and differentiation have had only limited success. Clinical recognition of the syndrome depends on an acute awareness of the signs combined with the identification of clonal and functional abnormalities. PMID:2999194

  3. Absence of Glial α-Dystrobrevin Causes Abnormalities of the Blood-Brain Barrier and Progressive Brain Edema*

    PubMed Central

    Lien, Chun Fu; Mohanta, Sarajo Kumar; Frontczak-Baniewicz, Malgorzata; Swinny, Jerome D.; Zablocka, Barbara; Górecki, Dariusz C.

    2012-01-01

    The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction. PMID:23043099

  4. Barrier function of airway tract epithelium

    PubMed Central

    Ganesan, Shyamala; Comstock, Adam T; Sajjan, Uma S

    2013-01-01

    Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases. PMID:24665407

  5. Blood cells and endothelial barrier function

    PubMed Central

    Rodrigues, Stephen F; Granger, D Neil

    2015-01-01

    Abstract The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction. PMID:25838983

  6. Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2008-01-01

    Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…

  7. Reevaluation of the non-lesional dry skin in atopic dermatitis by acute barrier disruption: an abnormal permeability barrier homeostasis with defective processing to generate ceramide.

    PubMed

    Sugiura, Ayumi; Nomura, Tsuyoshi; Mizuno, Atsuko; Imokawa, Genji

    2014-07-01

    Atopic dermatitis is characterized by disruption of the cutaneous barrier due to reduced ceramide levels even in non-lesional dry skin. Following further acute barrier disruption by repeated tape strippings, we re-characterized the non-lesional dry skin of subjects with atopic dermatitis, which shows significantly reduced levels of barrier function and ceramide but not of beta-glucocerebrosidase activity. For the first time, we report an abnormal trans-epidermal water loss homeostasis in which delayed recovery kinetics of trans-epidermal water loss occurred on the first day during the 4 days after acute barrier disruption compared with healthy control skin. Interestingly, whereas the higher ceramide level in the stratum corneum of healthy control skin was further significantly up-regulated at 4 days post-tape stripping, the lower ceramide level in the stratum corneum of subjects with atopic dermatitis was not significantly changed. In a parallel study, whereas beta-glucocerebrosidase activity at 4 days post-tape stripping was significantly up-regulated in healthy control skin compared with before tape stripping, the level of that activity remained substantially unchanged in atopic dermatitis. These findings indicate that subjects with atopic dermatitis have a defect in sphingolipid-metabolic processing that generates ceramide in the interface between the stratum corneum and the epidermis. The results also support the notion that the continued disruption of barrier function in atopic dermatitis non-lesional skin is associated with the impaired homeostasis of a ceramide-generating process, which underscores an atopy-specific inflammation-triggered ceramide deficiency that is distinct from other types of dermatitis. PMID:24271939

  8. Functional brain networks and abnormal connectivity in the movement disorders

    PubMed Central

    Poston, Kathleen L.; Eidelberg, David

    2012-01-01

    Clinical manifestations of movement disorders, such as Parkinson’s disease (PD) and dystonia, arise from neurophysiological changes within the cortico-striato-pallidothalamocortical (CSPTC) and cerebello-thalamo-cortical (CbTC) circuits. Neuroimaging techniques that probe connectivity within these circuits can be used to understand how these disorders develop as well as identify potential targets for medical and surgical therapies. Indeed, network analysis of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has identified abnormal metabolic networks associated with the cardinal motor symptoms of PD, such as akinesia and tremor, as well as PD-related cognitive dysfunction. More recent task-based and resting state functional magnetic resonance imaging studies have reproduced several of the altered connectivity patterns identified in these abnormal PD-related networks. A similar network analysis approach in dystonia revealed abnormal disease related metabolic patterns in both manifesting and non-manifesting carriers of dystonia mutations. Other multimodal imaging approaches using magnetic resonance diffusion tensor imaging in patients with primary genetic dystonia suggest abnormal connectivity within the CbTC circuits mediate the clinical manifestations of this inherited neurodevelopmental disorder. Ongoing developments in functional imaging and future studies in early patients are likely to enhance our understanding of these movement disorders and guide novel targets for future therapies. PMID:22206967

  9. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  10. Permanent isolation surface barrier: Functional performance

    SciTech Connect

    Wing, N.R.

    1993-10-01

    This document presents the functional performance parameters for permanent isolation surface barriers. Permanent isolation surface barriers have been proposed for use at the Hanford Site (and elsewhere) to isolate and dispose of certain types of waste in place. Much of the waste that would be disposed of using in-place isolation techniques is located in subsurface structures, such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via transport pathways, such as water infiltration, biointrusion, wind and water erosion, human interference, and/or gaseous release.

  11. Novel regulators of endothelial barrier function.

    PubMed

    Mehta, Dolly; Ravindran, Krishnan; Kuebler, Wolfgang M

    2014-12-15

    Endothelial barrier function is an essential and tightly regulated process that ensures proper compartmentalization of the vascular and interstitial space, while allowing for the diffusive exchange of small molecules and the controlled trafficking of macromolecules and immune cells. Failure to control endothelial barrier integrity results in excessive leakage of fluid and proteins from the vasculature that can rapidly become fatal in scenarios such as sepsis or the acute respiratory distress syndrome. Here, we highlight recent advances in our understanding on the regulation of endothelial permeability, with a specific focus on the endothelial glycocalyx and endothelial scaffolds, regulatory intracellular signaling cascades, as well as triggers and mediators that either disrupt or enhance endothelial barrier integrity, and provide our perspective as to areas of seeming controversy and knowledge gaps, respectively. PMID:25381026

  12. Novel regulators of endothelial barrier function

    PubMed Central

    Ravindran, Krishnan; Kuebler, Wolfgang M.

    2014-01-01

    Endothelial barrier function is an essential and tightly regulated process that ensures proper compartmentalization of the vascular and interstitial space, while allowing for the diffusive exchange of small molecules and the controlled trafficking of macromolecules and immune cells. Failure to control endothelial barrier integrity results in excessive leakage of fluid and proteins from the vasculature that can rapidly become fatal in scenarios such as sepsis or the acute respiratory distress syndrome. Here, we highlight recent advances in our understanding on the regulation of endothelial permeability, with a specific focus on the endothelial glycocalyx and endothelial scaffolds, regulatory intracellular signaling cascades, as well as triggers and mediators that either disrupt or enhance endothelial barrier integrity, and provide our perspective as to areas of seeming controversy and knowledge gaps, respectively. PMID:25381026

  13. Solar UV radiation reduces the barrier function of human skin

    PubMed Central

    Biniek, Krysta; Levi, Kemal; Dauskardt, Reinhold H.

    2012-01-01

    The ubiquitous presence of solar UV radiation in human life is essential for vitamin D production but also leads to skin photoaging, damage, and malignancies. Photoaging and skin cancer have been extensively studied, but the effects of UV on the critical mechanical barrier function of the outermost layer of the epidermis, the stratum corneum (SC), are not understood. The SC is the first line of defense against environmental exposures like solar UV radiation, and its effects on UV targets within the SC and subsequent alterations in the mechanical properties and related barrier function are unclear. Alteration of the SCs mechanical properties can lead to severe macroscopic skin damage such as chapping and cracking and associated inflammation, infection, scarring, and abnormal desquamation. Here, we show that UV exposure has dramatic effects on cell cohesion and mechanical integrity that are related to its effects on the SCs intercellular components, including intercellular lipids and corneodesmosomes. We found that, although the keratin-controlled stiffness remained surprisingly constant with UV exposure, the intercellular strength, strain, and cohesion decreased markedly. We further show that solar UV radiation poses a double threat to skin by both increasing the biomechanical driving force for damage while simultaneously decreasing the skins natural ability to resist, compromising the critical barrier function of the skin. PMID:23027968

  14. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing. PMID:26830769

  15. Abnormalities of vascular structure and function in pediatric hypertension.

    PubMed

    Urbina, Elaine M

    2016-07-01

    Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage. PMID:26275663

  16. Caffeine improves barrier function in male skin.

    PubMed

    Brandner, J M; Behne, M J; Huesing, B; Moll, I

    2006-10-01

    The influence of androgens, especially testosterone and its effector dihydrotestosterone, results in a constitutive disadvantage for male skin, e.g. reduced viability of hair at the scalp and reduced epidermal permeability barrier repair capacity. Dihydrotestosterone can act, among others, as an adenyl cyclase inhibitor. Caffeine on the other hand is an inexpensive and (in regular doses) harmless substance used in various cosmetic products, which can act as a phosphodiesterase inhibitor. To prove the hypothesis that caffeine as a phosphodiesterase inhibitor is able to override testosterone-induced effects on barrier function, we performed a double-blind placebo controlled study with healthy volunteers. In this study, 0.5% caffeine in a hydroxyethylcellulose gel preparation (HEC) was applied on one forearm, HEC without caffeine on the other forearm of male and female volunteers for 7 days and transepidermal water loss (TEWL) was measured before and at the end of the treatment period. Basal TEWL did not differ significantly between male and female subjects but the application of caffeine significantly reduced TEWL in male skin compared with female skin. We conclude that caffeine is beneficial for barrier function in male skin. PMID:18489298

  17. Anatomical and functional brain abnormalities in unmedicated major depressive disorder

    PubMed Central

    Yang, Xiao; Ma, Xiaojuan; Li, Mingli; Liu, Ye; Zhang, Jian; Huang, Bin; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong

    2015-01-01

    Background Using magnetic resonance imaging (MRI) and resting-state functional magnetic resonance imaging (rsfMRI) to explore the mechanism of brain structure and function in unmedicated patients with major depressive disorder (MDD). Patients and methods Fifty patients with MDD and 50 matched healthy control participants free of psychotropic medication underwent high-resolution structural and rsfMRI scanning. Optimized diffeomorphic anatomical registration through exponentiated lie algebra and the Data Processing Assistant for rsfMRI were used to find potential differences in gray-matter volume (GMV) and regional homogeneity (ReHo) between the two groups. A Pearson correlation model was used to analyze associations of morphometric and functional changes with clinical symptoms. Results Compared to healthy controls, patients with MDD showed significant GMV increase in the left posterior cingulate gyrus and GMV decrease in the left lingual gyrus (P<0.001, uncorrected). In ReHo analysis, values were significantly increased in the left precuneus and decreased in the left putamen (P<0.001, uncorrected) in patients with MDD compared to healthy controls. There was no overlap between anatomical and functional changes. Linear correlation suggested no significant correlation between mean GMV values within regions with anatomical abnormality and ReHo values in regions with functional abnormality in the patient group. These changes were not significantly correlated with symptom severity. Conclusion Our study suggests a dissociation pattern of brain regions with anatomical and functional alterations in unmedicated patients with MDD, especially with regard to GMV and ReHo. PMID:26425096

  18. Targeted skin overexpression of the mineralocorticoid receptor in mice causes epidermal atrophy, premature skin barrier formation, eye abnormalities, and alopecia.

    PubMed

    Sainte Marie, Yannis; Toulon, Antoine; Paus, Ralf; Maubec, Eve; Cherfa, Aicha; Grossin, Maggy; Descamps, Vincent; Clemessy, Maud; Gasc, Jean-Marie; Peuchmaur, Michel; Glick, Adam; Farman, Nicolette; Jaisser, Frederic

    2007-09-01

    The mineralocorticoid receptor (MR) is a transcription factor of the nuclear receptor family, activation of which by aldosterone enhances salt reabsorption in the kidney. The MR is also expressed in nonclassical aldosterone target cells (brain, heart, and skin), in which its functions are incompletely understood. To explore the functional importance of MR in mammalian skin, we have generated a conditional doxycycline-inducible model of MR overexpression, resulting in double-transgenic (DT) mice [keratin 5-tTa/tetO-human MR (hMR)], targeting the human MR specifically to keratinocytes of the epidermis and hair follicle (HF). Expression of hMR throughout gestation resulted in early postnatal death that could be prevented by antagonizing MR signaling. DT mice exhibited premature epidermal barrier formation at embryonic day 16.5, reduced HF density and epidermal atrophy, increased keratinocyte apoptosis at embryonic day 18.5, and premature eye opening. When hMR expression was initiated after birth to overcome mortality, DT mice developed progressive alopecia and HF cysts, starting 4 months after hMR induction, preceded by dystrophy and cycling abnormalities of pelage HF. In contrast, interfollicular epidermis, vibrissae, and footpad sweat glands in DT mice were normal. This new mouse model reveals novel biological roles of MR signaling and offers an instructive tool for dissecting nonclassical functions of MR signaling in epidermal, hair follicle, and ocular physiology. PMID:17675581

  19. Vitamin D Enhances Corneal Epithelial Barrier Function

    PubMed Central

    Yin, Zhaohong; Pintea, Victorina; Lin, Yanping; Hammock, Bruce D.

    2011-01-01

    Purpose. The purpose of this study was to determine whether 25-hydroxyvitamin D3 (25(OH)D3) and/or its active metabolite, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), can enhance corneal epithelial barrier function. The authors also determined if corneas contain mRNA for the vitamin D receptor (VDR) and 1α-hydroxylase, the enzyme required to convert 25(OH)D3 to 1,25(OH)2D3, and measured vitamin D metabolite concentrations in aqueous and vitreous humor. Methods. RT-PCR was used to examine mouse, rabbit, and human corneal epithelial VDR and 1α-hydroxylase mRNA. Vitamin D metabolites were measured using a selective vitamin D derivatizing agent and mass spectroscopy. Barrier function experiments were performed by measuring inulin permeability (IP) and/or transepithelial resistance (TER) in control, 25(OH)D3-, and 1,25(OH)2D3-treated human and rabbit corneal epithelial monolayers cultured on permeable inserts. Ca2+ was removed, then reintroduced to the culture medium while IP and TER readings were taken. Occludin levels were examined using Western blotting. Results. All corneal samples were positive for both VDR and 1α-hydroxylase mRNA. All vitamin D metabolites except for unhydroxylated vitamin D3 were detected in aqueous and vitreous humor. Epithelial cells showed increased TER, decreased IP, and increased occludin levels when cultured with 25(OH)D3 and 1,25(OH)2D3. Conclusions. We conclude that corneas contain mRNA for VDR and 1α-hydroxylase as well as significant vitamin D concentrations. 25(OH)D3 and its active metabolite 1,25(OH)2D3, both enhance corneal epithelial barrier function. PMID:21715350

  20. Glucocorticoid blockade reverses psychological stress-induced abnormalities in epidermal structure and function.

    PubMed

    Choi, Eung-Ho; Demerjian, Marianne; Crumrine, Debra; Brown, Barbara E; Mauro, Theodora; Elias, Peter M; Feingold, Kenneth R

    2006-12-01

    Many cutaneous disorders are adversely affected by psychological stress (PS), but the responsible mechanisms are poorly understood. Recent studies have demonstrated that PS decreases epidermal proliferation and differentiation, impairs permeability barrier homeostasis, and decreases stratum corneum integrity. PS also increases the production of endogenous glucocorticoids (GC), and both systemic and topical GC cause adverse effects on epidermal structure and function similar to those observed with PS. We therefore hypothesized that increased endogenous GC in PS mediates its adverse cutaneous effects. To test this hypothesis, we used two independent approaches, administering either RU-486, a GC receptor antagonist that inhibits GC action, or antalarmin, a corticotropin-releasing hormone (CRH) receptor antagonist that prevents increased GC production in the face of PS. Inhibition of either GC action or production prevents the PS-induced decline in epidermal cell proliferation and differentiation, impairment in permeability barrier homeostasis, and decrease in stratum corneum (SC) integrity. Moreover, the pathophysiological basis for the abnormality in permeability barrier homeostasis; i.e., decreased lamellar body production and secretion, is restored toward normal by inhibition of GC action. Similarly, the mechanistic basis for the decrease in SC integrity, i.e., a reduction in corneodesmosomes, is also normalized by inhibition of GC action. Thus many of the adverse effects of PS on epidermal structure and function can be attributed to increased endogenous GC and conversely, approaches that either reduce GC production or action might benefit cutaneous disorders that are provoked or exacerbated by PS. PMID:16857896

  1. Gastric barrier function and toxic damage.

    PubMed

    Niv, Yaron; Bani?, Marko

    2014-01-01

    Gastric epithelium is the first significant barrier between the inner body and the potentially toxic material in the lumen. Nutrients affect gastric barrier continuously--alcohol, coffee, spices, salted food, etc. Also, very potent noxious agents are widely prescribed drugs--nonsteroidal anti-inflammatory drugs (NSAIDs), aspirin and selective serotonin reuptake inhibitors. Helicobacter pylori is a well-known and well-investigated pathogen associated with serious gastric damage and gastric carcinoma. For its defense and maintenance of homeostasis and integrity, except acid secretion and maintenance of low luminal pH, gastric mucosa also has a specific structure, and its function is influenced by different control mechanisms. These include control of mucosal blood flow, control of mucus and bicarbonate secretion, constant cell renewal, and neuronal and hormonal control of defense mechanisms. These mechanisms are mediated by prostaglandins, nitric oxide, growth factors, heat-shock proteins and a neuropeptide called calcitonin gene-related protein. Adrenal glucocorticoids and the central nervous system also play an important role in regulating gastro-protection, especially hypothalamus and the dorsal vagal complex. Gastric mucosa is also an important component of the body's immune system and gut-associated lymphoid tissue which serves as the initiation site for antigen-specific humoral and cell-mediated immune response. Treatment options for gastric barrier dysfunction and damage due to aforementioned noxious agents are guided by the nature of damage and our understanding of the pathophysiological mechanisms involved. Currently, management is guideline driven and depends upon eradication treatment in patients infected with H. pylori and treatment or prevention of aspirin or NSAID ulceration. PMID:24732189

  2. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function.

    PubMed Central

    Holleran, W M; Takagi, Y; Menon, G K; Legler, G; Feingold, K R; Elias, P M

    1993-01-01

    The interstices of the mammalian stratum corneum contain lipids in a system of continuous membrane bilayers critical for the epidermal permeability barrier. During the transition from inner to outer stratum corneum, the content of polar lipids including glucosylceramides, decreases while ceramide content increases. We investigated whether inhibition of glucosylceramide hydrolysis would alter epidermal permeability barrier function. Daily topical applications of bromoconduritol B epoxide (BrCBE) to intact murine skin selectively inhibited beta-glucocerebrosidase, increased glucosylceramide content of stratum corneum with ceramide content remaining largely unchanged, and caused a progressive, reversible decrease in barrier function. Histochemistry of inhibitor-treated epidermis revealed persistence of periodic acid-Schiff-positive staining in stratum corneum cell membranes, consistent with retention of hexose moieties. Electron microscopy of inhibitor-treated samples revealed no evidence of toxicity or changes in the epidermal lipid delivery system. However, immature membrane structures persisted in the intercellular spaces throughout the stratum corneum, with reappearance of mature membrane structures progressing outward from the lower stratum corneum upon termination of BrCBE. Finally, the induced barrier abnormality was not reversed by coapplications of ceramide. These data demonstrate that glucosylceramide hydrolysis is important in the formation of the epidermal permeability barrier, and suggest that accumulation of glucosylceramides in stratum corneum intercellular membrane domains leads to abnormal barrier function. Images PMID:8473508

  3. Molecular aspects of tight junction barrier function

    PubMed Central

    Liang, Guo Hua; Weber, Christopher R.

    2014-01-01

    In complex multicellular organisms, epithelia lining body cavities regulate absorption and secretion of ions, organic molecules, and water. Proper function of epithelia depends on apically and basolaterally situated ion channels as well as tight junctions which seal the apical intercellular space. Without tight junctions, transepithelial concentration gradients of ions and nutrients would be dissipated through the paracellular space. Elevated tight junction permeability is a feature of many diseases of multiple organs, including the gastrointestinal tract [1,2,3*,4*], kidney [5,6], and lungs [7,8]. In the intestines, epithelial barrier dysfunction is a major contributor to diarrhea and malnutrition and is associated with significant morbidity and mortality worldwide. PMID:25128899

  4. Using FLIM in the study of permeability barrier function of aged and young skin

    NASA Astrophysics Data System (ADS)

    Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.

    2006-02-01

    Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.

  5. Artificial nutrition and intestinal mucosal barrier functionality.

    PubMed

    Anastasilakis, Chrysostomos D; Ioannidis, Orestis; Gkiomisi, Athina I; Botsios, Dimitrios

    2013-01-01

    The gastrointestinal tract has a major role in digestion and absorption of nutrients while playing a leading role in defense of the body. It forms a shield against the invasion of various microorganisms or their products (e.g. antigens, toxins) and therefore it is important to establish its integrity and functionality. That depends on the route of administration and the composition of the artificial nutrition. This study concentrates on the influences of different kinds of artificial nutrition in the functionality of the intestinal mucosal barriers. It seems that full macromolecular solutions of enteral nutrition ensure an adequate mucous immune response, while a lack of nutritional stimulus in the lumen leads rapidly to a dysfunction of gastric-associated lymphatic tissue and mucosal immune system. This dysfunction renders the patients susceptible to infections in distant organs, hospital pneumonia, and multiorgan failure of non-infectious etiology. In patients with indication of total parenteral nutrition administration, addition of bombesin or glutamine preserves mucosal immune response and may limit the adverse effects. PMID:24247113

  6. Morphological and functional platelet abnormalities in Berkeley sickle cell mice.

    PubMed

    Shet, Arun S; Hoffmann, Thomas J; Jirouskova, Marketa; Janczak, Christin A; Stevens, Jacqueline R M; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A; Cynober, Therese; Coller, Barry S

    2008-01-01

    Berkeley sickle cell mice are used as animal models of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37+/-3.2 vs. 27+/-1.4, mean+/-SD; p<0.001), in association with moderate thrombocytopenia (505+/-49 x 10(3)/microl vs. 1151+/-162 x 10(3)/microl; p<0.001). Despite having marked splenomegaly, SS mice had elevated levels of Howell-Jolly bodies and "pocked" erythrocytes (p<0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5+/-1% vs. 1+/-1%; p<0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease. PMID:18374611

  7. Topical Corticosteroid Application and the Structural and Functional Integrity of the Epidermal Barrier

    PubMed Central

    Cash, Kimberly

    2013-01-01

    Topical corticosteroids are a very important part of the treatment of many skin disorders, especially eczematous dermatoses. When utilized properly and judiciously these agents often achieve excellent results in clearing or markedly improving many dermatological disorders. As some studies have shown, topical corticosteroids, despite their ability to decrease inflammation through several mechanisms, induce abnormalities in lipid synthesis and intercellular bilayer structure in the stratum corneum, which appear to prolong epidermal barrier recovery. These adverse effects may contribute to eariier eczematous flaring if measures to provide barrier repair are not undertaken. In addition, although topical corticosteroids are applied only to sites affected by the skin eruption, the incorporation of “barrier friendly” excipients into the vehicle that improve stratum corneum permeability barrier function and integrity is very rational. PMID:24307921

  8. Barrier function and microbiotic dysbiosis in atopic dermatitis

    PubMed Central

    Seite, Sophie; Bieber, Thomas

    2015-01-01

    Atopic dermatitis (AD) or atopic eczema is the common inflammatory skin disorder, the prevalence of which has considerably increased during the last 30 years. It affects 15%–30% of children and 2%–10% of adults. AD characteristically alternates between periods of exacerbation or flares and periods of remission, which may be therapeutically induced or spontaneous. Current knowledge about AD includes abnormalities of the skin barrier (physical and chemical), the immune barrier, and more recently, the microbial barrier or microbiota. There is growing evidence for a tight relationship between them. To obtain satisfactory control of this condition, the clinical strategy to manage AD involves prescribing both anti-inflammatory medications and dermocosmetic products. The role of the physician is therefore to advise the patient with regard to hygiene measures aimed to help to improve these three barriers or to prevent any further deterioration. PMID:26396539

  9. The Therapeutic Function of the Instructor in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Halgin, Richard P.

    1982-01-01

    Describes three main types of therapeutic problems which college instructors of abnormal psychology courses may encounter with their students. Students may seek the instructor's assistance in helping a relative or acquaintance or for self-help. Often a student may not seek help but may display pathological behavior. (AM)

  10. Is Abnormal Urine Protein/Osmolality Ratio Associated with Abnormal Renal Function in Patients Receiving Tenofovir Disoproxil Fumarate?

    PubMed Central

    Marcelin, Jasmine R.; Berg, Melody L.; Tan, Eugene M.; Amer, Hatem; Cummins, Nathan W.; Rizza, Stacey A.

    2016-01-01

    Background Risk factors for and optimal surveillance of renal dysfunction in patients on tenofovir disoproxil fumarate (TDF) remain unclear. We investigated whether a urine protein-osmolality (P/O) ratio would be associated with renal dysfunction in HIV-infected persons on TDF. Methods This retrospective, single-center study investigated the relationship between parameters of renal function (estimated glomerular filtration rate (eGFR) and P/O-ratio) and risk factors for development of kidney dysfunction. Subjects were HIV-infected adults receiving TDF with at least one urinalysis and serum creatinine performed between 2010 and 2013. Regression analyses were used to analyze risk factors associated with abnormal P/O-ratio and abnormal eGFR during TDF therapy. Results Patients were predominately male (81%); (65%) were Caucasian. Mean age was 45.1(±11.8) years; median [IQR] TDF duration was 3.3 years. [1.5–7.6]. Median CD4+ T cell count and HIV viral load were 451 cells/μL [267.5–721.5] and 62 copies/mL [0–40,150], respectively. Abnormal P/O-ratio was not associated with low eGFR. 68% of subjects had an abnormal P/O-ratio and 9% had low eGFR. Duration of TDF use, age, diabetes and hypertension were associated with renal dysfunction in this study. After adjustment for age, subjects on TDF > 5 years had almost a four-fold increased likelihood of having an abnormal P/O-ratio than subjects on TDF for < 1yr (OR 3.9; 95% CI 1.2–14.0; p = 0.024). Conclusion Abnormal P/O-ratio is common in HIV-infected patients on TDF but was not significantly associated with low eGFR, suggesting that abnormal P/O-ratio may be a very early biomarker of decreased renal function in HIV infected patients. PMID:26872144

  11. The role of sphingosine-1-phosphate in endothelial barrier function

    PubMed Central

    Wilkerson, Brent A.; Argraves, Kelley M.

    2014-01-01

    Loss of endothelial barrier function is implicated in the etiology of metastasis, atherosclerosis, sepsis and many other diseases. Studies suggest that sphingosine-1-phosphate (S1P), particularly HDL-bound S1P (HDL–S1P) is essential for endothelial barrier homeostasis and that HDL–S1P may be protective against loss of endothelial barrier function in disease. This review summarizes evidence providing mechanistic insights into how S1P maintains endothelial barrier function, highlighting the recent findings that implicate the major S1P carrier, HDL, in the maintenance of the persistent S1P-signaling needed to maintain endothelial barrier function. We review the mechanisms proposed for HDL maintenance of persistent S1P-signaling, the evidence supporting these mechanisms and the remaining fundamental questions. PMID:25009123

  12. Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis

    PubMed Central

    Groschwitz, Katherine R.; Hogan, Simon P.

    2014-01-01

    The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier permitting the absorption of nutrients, electrolytes and water, while maintaining an effective defense against intraluminal toxins, antigens and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mechanically link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form three adhesive complexes: desmosomes, adherens junctions and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an association between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review, we summarize the evolving understanding of the molecular composition and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the impact of exogenous factors on intestinal barrier function. Finally, we summarize clinical and experimental evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases including food allergy, inflammatory bowel diseases and celiac disease. PMID:19560575

  13. Epithelial Cell Shedding and Barrier Function

    PubMed Central

    Williams, J. M.; Duckworth, C. A.; Burkitt, M. D.; Watson, A. J. M.; Campbell, B. J.

    2015-01-01

    The intestinal epithelium is a critical component of the gut barrier. Composed of a single layer of intestinal epithelial cells (IECs) held together by tight junctions, this delicate structure prevents the transfer of harmful microorganisms, antigens, and toxins from the gut lumen into the circulation. The equilibrium between the rate of apoptosis and shedding of senescent epithelial cells at the villus tip, and the generation of new cells in the crypt, is key to maintaining tissue homeostasis. However, in both localized and systemic inflammation, this balance may be disturbed as a result of pathological IEC shedding. Shedding of IECs from the epithelial monolayer may cause transient gaps or microerosions in the epithelial barrier, resulting in increased intestinal permeability. Although pathological IEC shedding has been observed in mouse models of inflammation and human intestinal conditions such as inflammatory bowel disease, understanding of the underlying mechanisms remains limited. This process may also be an important contributor to systemic and intestinal inflammatory diseases and gut barrier dysfunction in domestic animal species. This review aims to summarize current knowledge about intestinal epithelial cell shedding, its significance in gut barrier dysfunction and host-microbial interactions, and where research in this field is directed. PMID:25428410

  14. Abnormal ventilation scans in middle-aged smokers. Comparison with tests of overall lung function

    SciTech Connect

    Barter, S.J.; Cunningham, D.A.; Lavender, J.P.; Gibellino, F.; Connellan, S.J.; Pride, N.B.

    1985-07-01

    The uniformity of regional ventilation during tidal breathing has been assessed using continuous inhalation of krypton-81m in 43 male, lifelong nonsmokers and 46 male, current cigarette smokers (mean daily consumption 24.1 cigarettes/day) between 44 and 61 yr of age and with mild or no respiratory symptoms. All subjects had normal chest radiographs. The results of the ventilation scans were compared with tests of overall lung function (spirometry, maximal expiratory flow-volume curves, and single-breath N2 test). Diffuse abnormalities of the ventilation scan were found in 19 (41%) of the 46 smokers but in none of the nonsmokers. Focal abnormalities were found in 7 smokers and 3 nonsmokers. Smokers showed the expected abnormalities in overall lung function (reduced FEV1 and VC, increased single-breath N2 slope, and closing volume), but in individual smokers there was only a weak relation between the severity of abnormality of overall lung function and an abnormal ventilation scan. Abnormal scans could be found when overall lung function was normal and were not invariably found when significant abnormalities in FEV1/VC or N2 slope were present. There was no relation between the presence of chronic expectoration and an abnormal scan. The prognostic significance of an abnormal ventilation scan in such smokers remains to be established.

  15. Psychological stress and epidermal barrier function.

    PubMed

    Orion, Edith; Wolf, Ronni

    2012-01-01

    The skin is the organ that acts as a barrier between the outer and inner environments of the body. It is thus exposed not only to a wide variety of physical, chemical, and thermal insults from the outside world but also to inner endogenous stimuli. Stress, once an abstract psychologic phenomenon, has taken research's center stage in recent years. The "mind-body connection" is now less of an obscure New Age term and more of an elaborate physiologic pathway by which bilateral communication occurs between body and brain. Dermatologists and dermatologic patients have long acknowledged the effect of stress on the skin and its capability to initiate, maintain, or exacerbate several skin diseases. Because disruption of epidermal barrier integrity may be important in the development of some common skin diseases, it is crucial to understand its vulnerability to psychologic stress. PMID:22507042

  16. The intestinal barrier function and its involvement in digestive disease.

    PubMed

    Salvo Romero, Eloísa; Alonso Cotoner, Carmen; Pardo Camacho, Cristina; Casado Bedmar, Maite; Vicario, María

    2015-11-01

    The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism. PMID:26541659

  17. Acute Modulations in Permeability Barrier Function Regulate Epidermal Cornification

    PubMed Central

    Demerjian, Marianne; Hachem, Jean-Pierre; Tschachler, Erwin; Denecker, Geertrui; Declercq, Wim; Vandenabeele, Peter; Mauro, Theodora; Hupe, Melanie; Crumrine, Debra; Roelandt, Truus; Houben, Evi; Elias, Peter M.; Feingold, Kenneth R.

    2008-01-01

    Stratum corneum comprises corneocytes, derived from outer stratum granulosum during terminal differentiation, embedded in a lipid-enriched extracellular matrix, secreted from epidermal lamellar bodies. Permeability barrier insults stimulate rapid secretion of preformed lamellar bodies from the outer stratum granulosum, regulated through modulations in ionic gradients and serine protease (SP)/protease-activated receptor type 2 (PAR2) signaling. Because corneocytes are also required for barrier function, we hypothesized that corneocyte formation could also be regulated by barrier function. Barrier abrogation by two unrelated methods initiated a wave of cornification, assessed as TdT-mediated dUTP nick end-labeling-positive cells in stratum granulosum and newly cornified cells by electron microscopy. Because cornification was blocked by occlusion, corneocytes formed specifically in response to barrier, rather than injury or cell replacement, requirements. SP inhibitors and hyperacidification (which decreases SP activity) blocked cornification after barrier disruption. Similarly, cornification was delayed in PAR2−/− mice. Although classical markers of apoptosis [poly(ADP-ribose)polymerase and caspase (Casp)-3] remained unchanged, barrier disruption activated Casp-14. Moreover, the pan-Casp inhibitor Z-VAD-FMK delayed cornification, and corneocytes were structurally aberrant in Casp14−/− mice. Thus, permeability barrier requirements coordinately drive both the generation of the stratum corneum lipid-enriched extracellular matrix and the transformation of granular cells into corneocytes, in an SP- and Casp-14-dependent manner, signaled by PAR2. PMID:18156206

  18. Basis for enhanced barrier function of pigmented skin.

    PubMed

    Man, Mao-Qiang; Lin, Tzu-Kai; Santiago, Juan L; Celli, Anna; Zhong, Lily; Huang, Zhi-Ming; Roelandt, Truus; Hupe, Melanie; Sundberg, John P; Silva, Kathleen A; Crumrine, Debra; Martin-Ezquerra, Gemma; Trullas, Carles; Sun, Richard; Wakefield, Joan S; Wei, Maria L; Feingold, Kenneth R; Mauro, Theodora M; Elias, Peter M

    2014-09-01

    Humans with darkly pigmented skin display superior permeability barrier function in comparison with humans with lightly pigmented skin. The reduced pH of the stratum corneum (SC) of darkly pigmented skin could account for enhanced function, because acidifying lightly pigmented human SC resets barrier function to darkly pigmented levels. In SKH1 (nonpigmented) versus SKH2/J (pigmented) hairless mice, we evaluated how a pigment-dependent reduction in pH could influence epidermal barrier function. Permeability barrier homeostasis is enhanced in SKH2/J versus SKH1 mice, correlating with a reduced pH in the lower SC that colocalizes with the extrusion of melanin granules. Darkly pigmented human epidermis also shows substantial melanin extrusion in the outer epidermis. Both acute barrier disruption and topical basic pH challenges accelerate reacidification of SKH2/J (but not SKH1) SC, while inducing melanin extrusion. SKH2/J mice also display enhanced expression of the SC acidifying enzyme, secretory phospholipase A2f (sPLA2f). Enhanced barrier function of SKH2/J mice could be attributed to enhanced activity of two acidic pH-dependent, ceramide-generating enzymes, β-glucocerebrosidase and acidic sphingomyelinase, leading to accelerated maturation of SC lamellar bilayers. Finally, organotypic cultures of darkly pigmented human keratinocytes display enhanced barrier function in comparison with lightly pigmented cultures. Together, these results suggest that the superior barrier function of pigmented epidermis can be largely attributed to the pH-lowering impact of melanin persistence/extrusion and enhanced sPLA2f expression. PMID:24732399

  19. BASIS FOR ENHANCED BARRIER FUNCTION OF PIGMENTED SKIN

    PubMed Central

    Man, Mao-Qiang; Lin, Tzu-Kai; Santiago, Juan Luis; Celli, Anna; Zhong, Lily; Huang, Zhi-Ming; Roelandt, Truus; Hupe, Melanie; Sundberg, John P.; Silva, Kathleen A.; Crumrine, Debra; Martin-Ezquerra, Gemma; Trullas, Carles; Sun, Richard; Wakefield, Joan S.; Wei, Maria L.; Feingold, Kenneth R.; Mauro, Theodora M.; Elias, Peter M.

    2014-01-01

    Humans with darkly-pigmented skin display superior permeability barrier function in comparison to humans with lightly-pigmented skin. The reduced pH of the stratum corneum (SC) of darkly-pigmented skin could account for enhanced function, because acidifying lightly-pigmented human SC resets barrier function to darkly-pigmented levels. In SKH1 (non-pigmented) vs. SKH2/J (pigmented) hairless mice, we evaluated how a pigment-dependent reduction in pH could influence epidermal barrier function. Permeability barrier homeostasis is enhanced in SKH2/J vs. SKH1 mice, correlating with a reduced pH in the lower SC that co-localizes with the extrusion of melanin granules. Darkly-pigmented human epidermis also shows substantial melanin extrusion in the outer epidermis. Both acute barrier disruption and topical basic pH challenges accelerate re-acidification of SKH2/J (but not SKH1) SC, while inducing melanin extrusion. SKH2/J mice also display enhanced expression of the SC acidifying enzyme, secretory phospholipase A2f (sPLA2f). Enhanced barrier function of SKH2/J mice could be attributed to enhanced activity of two acidic pH-dependent, ceramide-generating enzymes, β-glucocerebrosidase and acidic sphingomyelinase, leading to accelerated maturation of SC lamellar bilayers. Finally, organotypic cultures of darkly-pigmented-bearing human keratinocytes display enhanced barrier function in comparison to lightly-pigmented cultures. Together, these results suggest that the superior barrier function of pigmented epidermis can be largely attributed to the pH-lowering impact of melanin persistence/extrusion and enhanced sPLA2f expression. PMID:24732399

  20. Atopic dermatitis results in intrinsic barrier and immune abnormalities: Implications for contact dermatitis

    PubMed Central

    Gittler, Julia K.; Krueger, James G.; Guttman-Yassky, Emma

    2014-01-01

    Atopic dermatitis (AD), as well as irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD), are common skin diseases. These diseases are characterized by skin inflammation mediated by activated innate immunity or acquired immune mechanisms. Although AD, ICD, and ACD can be encountered in pure forms by allergists and dermatologists, patients with AD often present with increased frequency of ICD and ACD. Although a disturbed barrier alone could potentiate immune reactivity in patients with AD through increased antigen penetration, additional immune mechanisms might explain the increased susceptibility of atopic patients to ICD and ACD. This review discusses cellular pathways associated with increased skin inflammation in all 3 conditions and presents mechanisms that might contribute to the increased rate of ICD and ACD in patients with AD. PMID:22939651

  1. The effects of inflammatory cytokines on lymphatic endothelial barrier function.

    PubMed

    Cromer, Walter E; Zawieja, Scott D; Tharakan, Binu; Childs, Ed W; Newell, M Karen; Zawieja, David C

    2014-04-01

    Proper lymphatic function is necessary for the transport of fluids, macromolecules, antigens and immune cells out of the interstitium. The lymphatic endothelium plays important roles in the modulation of lymphatic contractile activity and lymph transport, but it's role as a barrier between the lymph and interstitial compartments is less well understood. Alterations in lymphatic function have long been associated with edema and inflammation although the integrity of the lymphatic endothelial barrier during inflammation is not well-defined. In this paper we evaluated the integrity of the lymphatic barrier in response to inflammatory stimuli commonly associated with increased blood endothelial permeability. We utilized in vitro assays of lymphatic endothelial cell (LEC) monolayer barrier function after treatment with different inflammatory cytokines and signaling molecules including TNF-α, IL-6, IL-1β, IFN-γ and LPS. Moderate increases in an index of monolayer barrier dysfunction were noted with all treatments (20-60 % increase) except IFN-γ which caused a greater than 2.5-fold increase. Cytokine-induced barrier dysfunction was blocked or reduced by the addition of LNAME, except for IL-1β and LPS treatments, suggesting a regulatory role for nitric oxide. The decreased LEC barrier was associated with modulation of both intercellular adhesion and intracellular cytoskeletal activation. Cytokine treatments reduced the expression of VE-cadherin and increased scavenging of β-catenin in the LECs and this was partially reversed by LNAME. Likewise the phosphorylation of myosin light chain 20 at the regulatory serine 19 site, which accompanied the elevated monolayer barrier dysfunction in response to cytokine treatment, was also blunted by LNAME application. This suggests that the lymphatic barrier is regulated during inflammation and that certain inflammatory signals may induce large increases in permeability. PMID:24141404

  2. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome.

    PubMed

    Vootla, Vamshidhar R; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome. PMID:26351414

  3. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome

    PubMed Central

    Vootla, Vamshidhar R.; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome. PMID:26351414

  4. Claudins and alveolar epithelial barrier function in the lung

    PubMed Central

    Frank, James A.

    2016-01-01

    The alveolar epithelium of the lung constitutes a unique interface with the outside environment. This thin barrier must maintain a surface for gas transfer while being continuously exposed to potentially hazardous environmental stimuli. Small differences in alveolar epithelial barrier properties could therefore have a large impact on disease susceptibility or outcome. Moreover, recent work has focused attention on the alveolar epithelium as central to several lung diseases, including acute lung injury and idiopathic pulmonary fibrosis. Although relatively little is known about the function and regulation of claudin tight junction proteins in the lung, new evidence suggests that environmental stimuli can influence claudin expression and alveolar barrier function in human disease. This review considers recent advances in the understanding of the role of claudins in the breakdown of the alveolar epithelial barrier in disease and in epithelial repair. PMID:22671604

  5. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus

    PubMed Central

    Zhang, Jiyong; Sadowska, Grazyna B.; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A.; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Stonestreet, Barbara S.

    2015-01-01

    Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti–IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti–IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti–IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.—Zhang, J., Sadowska, G. B., Chen, X., Park, S. Y., Kim, J.-E., Bodge, C. A., Cummings, E., Lim, Y.-P., Makeyev, O., Besio, W. G., Gaitanis, J., Banks, W. A., Stonestreet, B. S. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. PMID:25609424

  6. Regulation of the Intestinal Barrier Function by Host Defense Peptides

    PubMed Central

    Robinson, Kelsy; Deng, Zhuo; Hou, Yongqing; Zhang, Guolong

    2015-01-01

    Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity. PMID:26664984

  7. Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1

    PubMed Central

    Kuramoto, Nobuo; Takizawa, Toshihiro; Takizawa, Takami; Matsuki, Masato; Morioka, Hiroyuki; Robinson, John M.; Yamanishi, Kiyofumi

    2002-01-01

    Transglutaminase 1 (TGase 1) is one of the genes implicated in autosomal recessive congenital ichthyosis. Skin from TGase 1–/– mice, which die as neonates, lacks the normal insoluble cornified envelope and has impaired barrier function. Characterization of in situ dye permeability and transepidermal water loss revealed defects in the development of the skin permeability barrier in TGase 1–/– mice. In the stratum corneum of the skin, tongue, and forestomach, intercellular lipid lamellae were disorganized, and the corneocyte lipid envelope and cornified envelope were lacking. Neonatal TGase 1–/– mouse skin was taut and erythrodermic, but transplanted TGase 1–/– mouse skin resembled that seen in severe ichthyosis, with epidermal hyperplasia and marked hyperkeratosis. Abnormalities in those barrier structures remained, but transepidermal water loss was improved to control levels in the ichthyosiform skin. From these results, we conclude that TGase 1 is essential to the assembly and organization of the barrier structures in stratified squamous epithelia. We suggest that the ichthyosiform skin phenotype in TGase 1 deficiency develops the massive hyperkeratosis as a physical compensation for the defective cutaneous permeability barrier required for survival in a terrestrial environment. PMID:11805136

  8. A study on the quantitative evaluation of skin barrier function

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomomi; Kabetani, Yasuhiro; Kido, Michiko; Yamada, Kenji; Oikaze, Hirotoshi; Takechi, Yohei; Furuta, Tomotaka; Ishii, Shoichi; Katayama, Haruna; Jeong, Hieyong; Ohno, Yuko

    2015-03-01

    We propose a quantitative evaluation method of skin barrier function using Optical Coherence Microscopy system (OCM system) with coherency of near-infrared light. There are a lot of skin problems such as itching, irritation and so on. It has been recognized skin problems are caused by impairment of skin barrier function, which prevents damage from various external stimuli and loss of water. To evaluate skin barrier function, it is a common strategy that they observe skin surface and ask patients about their skin condition. The methods are subjective judgements and they are influenced by difference of experience of persons. Furthermore, microscopy has been used to observe inner structure of the skin in detail, and in vitro measurements like microscopy requires tissue sampling. On the other hand, it is necessary to assess objectively skin barrier function by quantitative evaluation method. In addition, non-invasive and nondestructive measuring method and examination changes over time are needed. Therefore, in vivo measurements are crucial for evaluating skin barrier function. In this study, we evaluate changes of stratum corneum structure which is important for evaluating skin barrier function by comparing water-penetrated skin with normal skin using a system with coherency of near-infrared light. Proposed method can obtain in vivo 3D images of inner structure of body tissue, which is non-invasive and non-destructive measuring method. We formulate changes of skin ultrastructure after water penetration. Finally, we evaluate the limit of performance of the OCM system in this work in order to discuss how to improve the OCM system.

  9. Abnormal Amygdala Resting-State Functional Connectivity in Adolescent Depression

    PubMed Central

    Cullen, Kathryn R.; Westlund, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A.; Houri, Alaa; Eberly, Lynn E.; Lim, Kelvin O.

    2015-01-01

    Importance Major depressive disorder (MDD) frequently emerges during adolescence and can lead to persistent illness, disability and suicide. The maturational changes that take place in the brain during adolescence underscore the importance of examining neurobiological mechanisms during this time period of early illness. However, neural mechanisms of depression in adolescents have been understudied. Prior research has implicated the amygdala in emotion processing in mood disorders, and adult depression studies have suggested amygdala-frontal connectivity deficits. Resting-state functional magnetic resonance imaging (rsfMRI) is an advanced tool that can be used to probe neural networks and identify brain-behavior relationships. Objective To examine amygdala resting-state functional connectivity (RSFC) in adolescents with and without MDD using rsfMRI, and to examine how amygdala RSFC relates to a broad range of symptom dimensions. Design Cross-sectional rsfMRI study. Setting Depression research program at an academic medical center. Participants 41 girls and boys aged 12–19 years with MDD and 29 healthy adolescents (frequency matched on age and sex) with no psychiatric diagnoses. Main Outcome Measure Using a whole-brain functional connectivity approach, we examined correlation of spontaneous fluctuation of blood-oxygen-level-dependent (BOLD) signal of each voxel in the whole brain with that of the amygdala. Results Adolescents with MDD showed lower positive RSFC between amygdala and hippocampus, parahippocampus and brain stem; this connectivity was inversely correlated with general depression, dysphoria, and lassitude, and positively correlated with well-being. Patients also showed greater (positive) amygdala-precuneus RSFC (in contrast to negative amygdala-precuneus RSFC in controls.) Conclusion Impaired amygdala-hippocampal/brainstem and amygdala-precuneus RSFC has not previously been highlighted in depression and may be unique to adolescent MDD. These circuits are important for different aspects of memory and self-processing, and of modulation of physiological responses to emotion. The findings suggest potential mechanisms underlying both mood and vegetative symptomatology, potentially via impaired processing of memories and visceral signals that spontaneously arise during rest, contributing to the persistent symptoms experienced by adolescents with depression. PMID:25133665

  10. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. PMID:26456104

  11. Associations between Circadian Activity Rhythms and Functional Brain Abnormalities among Euthymic Bipolar Patients: A Preliminary Study

    PubMed Central

    McKenna, Benjamin S.; Drummond, Sean P. A.; Eyler, Lisa T.

    2014-01-01

    Background Working memory and underlying functional brain deficits have been observed in euthymic bipolar disorder (BD) patients, though there is heterogeneity in the degree of deficits. Sleep/circadian rhythm abnormalities are thought to be a core component of BD and may explain some of the heterogeneity in functional abnormalities. This preliminary study examined associations between sleep/circadian rhythm abnormalities and functional magnetic resonance imaging (fMRI) brain response on a working memory task among BD patients. Methods Fourteen euthymic medicated BD patients wore an actigraph for seven days before undergoing fMRI with a working memory task. Two matched healthy comparison (HC) groups were used (14 in each sample). One group completed the actigraphy portion and one completed the fMRI portion of the study. Circadian activity rhythm and sleep variables were calculated and compared between BD and HC participants. Variables that significantly differed were used to examine the association between activity rhythms/sleep abnormalities and fMRI working memory brain response in anatomically defined regions. Results Sleep efficiency and the rhythm robustness, mesor, and amplitude-to-width ratio were significantly abnormal in BD patients. Individual variability in all the sleep/circadian variables was significantly associated with the degree of abnormality of brain response in the dorsolateral prefrontal cortex and supramarginal gyri. Limitations Small sample size and multiple comparison groups limit the interpretability of these findings. Conclusions BD patients have abnormal activity rhythms and sleep efficiency, which are associated with abnormal working memory brain response. These preliminary findings support the notion that the sleep/circadian system is important in the functional brain deficits among BD patients. PMID:24856561

  12. Abnormal GABAergic function and negative affect in schizophrenia.

    PubMed

    Taylor, Stephan F; Demeter, Elise; Phan, K Luan; Tso, Ivy F; Welsh, Robert C

    2014-03-01

    Deficits in the ?-aminobutyric acid (GABA) system have been reported in postmortem studies of schizophrenia, and therapeutic interventions in schizophrenia often involve potentiation of GABA receptors (GABAR) to augment antipsychotic therapy and treat negative affect such as anxiety. To map GABAergic mechanisms associated with processing affect, we used a benzodiazepine challenge while subjects viewed salient visual stimuli. Fourteen stable, medicated schizophrenia/schizoaffective patients and 13 healthy comparison subjects underwent functional magnetic resonance imaging using the blood oxygenation level-dependent (BOLD) technique while they viewed salient emotional images. Subjects received intravenous lorazepam (LRZ; 0.01 mg/kg) or saline in a single-blinded, cross-over design (two sessions separated by 1-3 weeks). A predicted group by drug interaction was noted in the dorsal medial prefrontal cortex (dmPFC) as well as right superior frontal gyrus and left and right occipital regions, such that psychosis patients showed an increased BOLD signal to LRZ challenge, rather than the decreased signal exhibited by the comparison group. A main effect of reduced BOLD signal in bilateral occipital areas was noted across groups. Consistent with the role of the dmPFC in processing emotion, state negative affect positively correlated with the response to the LRZ challenge in the dmPFC for the patients and comparison subjects. The altered response to LRZ challenge is consistent with altered inhibition predicted by postmortem findings of altered GABAR in schizophrenia. These results also suggest that negative affect in schizophrenia/schizoaffective disorder is associated-directly or indirectly-with GABAergic function on a continuum with normal behavior. PMID:24154667

  13. TRPM2 channel regulates endothelial barrier function.

    PubMed

    Hecquet, Claudie M; Ahmmed, Gias U; Malik, Asrar B

    2010-01-01

    Oxidative [Au1]stress, through the production of oxygen metabolites such as hydrogen peroxide[Au2] (H(2)O(2)), increases vascular endothelial permeability and plays a crucial role in several lung diseases. The transient receptor potential (melastatin) 2 (TRPM2) is an oxidant-sensitive, nonselective cation channel that is widely expressed in mammalian tissues, including the vascular endothelium. We have demonstrated the involvement of TRPM2 in mediating oxidant-induced calcium entry and endothelial hyperpermeability in cultured pulmonary artery endothelial cells. Here, we provide evidence that neutrophil activation-dependent increase in endothelial permeability and neutrophil extravasation requires TRPM2 in cultured endothelial cells. In addition, protein kinase Calpha (PKCalpha) that rapidly colocalizes with the short (nonconducting) TRPM2 isoform after exposure to hydrogen peroxide positively regulates calcium entry through the functional TRPM2 channel. Thus, increase in lung microvessel permeability and neutrophil sequestration depends on the activation of endothelial TRPM2 by neutrophilic oxidants and on PKCalpha regulation of TRPM2 channel activity. Manipulating TRPM2 function in the endothelium may represent a novel strategy aimed to prevent oxidative stress-related vascular dysfunction. PMID:20204729

  14. Disruption of the Blood–Aqueous Barrier and Lens Abnormalities in Mice Lacking Lysyl Oxidase-Like 1 (LOXL1)

    PubMed Central

    Wiggs, Janey L.; Pawlyk, Basil; Connolly, Edward; Adamian, Michael; Miller, Joan W.; Pasquale, Louis R.; Haddadin, Ramez I.; Grosskreutz, Cynthia L.; Rhee, Douglas J.; Li, Tiansen

    2014-01-01

    Purpose. Exfoliation syndrome (ES) is commonly associated with glaucoma, premature cataracts, and other ocular and systemic pathologies. LOXL1 gene variants are significantly associated with ES; however, the role of the protein in ES development remains unclear. The purpose of this study was to characterize the ocular phenotype in Loxl1−/− (null) mice. Methods. Loxl1 null mice and strain-matched controls (C57BL) were evaluated by clinical and histologic analyses. Results. Anterior segment histology showed a pronounced vesiculation of the anterior lens in the null mice. The lesions were subcapsular and in direct apposition with the posterior iris surface. Fluorescein angiography showed increased diffusion of fluorescein into the anterior chamber of the null mice compared with age-matched controls (P = 0.003, two-tailed, unequal variance t-test), suggesting compromise of the blood–aqueous barrier. Intraocular pressure measurements were within the normal range (16.5 ± 2.0 mm Hg) in null mice up to 1 year of age. Immunohistochemistry showed decreased elastin in the iris and ciliary body in the null mouse compared with controls. Conclusions. Elimination of LOXL1 in mice impairs the blood–aqueous humor barrier in the ocular anterior segment and causes lens abnormalities consistent with cataract formation, but does not result in deposition of macromolecular material or glaucoma. These results show that mice lacking LOXL1 have some ES features but that complete disease manifestation requires other factors that could be genetic and/or environmental. PMID:24425853

  15. Abnormal functional connectivity during visuospatial processing is associated with disrupted organisation of white matter in autism

    PubMed Central

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise

    2013-01-01

    Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425

  16. Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review

    PubMed Central

    Heringa, Sophie M; Bouvy, Willem H; van den Berg, Esther; Moll, Annette C; Jaap Kappelle, L; Jan Biessels, Geert

    2013-01-01

    Retinal microvascular changes can be visualized noninvasively and have been associated with cognitive decline and brain changes in relation to aging and vascular disease. We systematically reviewed studies, published between 1990 and November 2012, on the association between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities, in the context of aging and vascular risk factors. In cross-sectional studies (k=26), retinal microvascular changes were associated with the presence of dementia (range of odds ratios (ORs) 1.17;5.57), with modest decrements in cognitive functioning in nondemented people (effect sizes -0.25;0.03), and with brain imaging abnormalities, including atrophy and vascular lesions (ORs 0.94;2.95). Longitudinal studies were more sparse (k=9) and showed no consistent associations between retinal microvascular changes and dementia or cognitive dysfunctioning 3 to 15 years later (ORs and hazard ratios 0.77;1.55). However, there were indications of prospective associations with brain imaging abnormalities ((ORs) 0.81;3.19). In conclusion, particularly in cross-sectional studies there is a correlation between retinal microvascular changes and dementia, cognitive impairment, and brain imaging abnormalities. Associations are strongest for more severe retinal microvascular abnormalities. Retinal microvascular abnormalities may offer an important window on the brain for etiological studies. PMID:23591648

  17. Long-Term Renal Function in Living Kidney Donors who had Histological Abnormalities at Donation

    PubMed Central

    Fahmy, Lara M.; Massie, Allan B.; Muzaale, Abimereki D.; Bagnasco, Serena M.; Orandi, Babak J.; Alejo, Jennifer L.; Boyarsky, Brian J.; Anjum, Saad K.; Montgomery, Robert A.; Dagher, Nabil N.; Segev, Dorry L.

    2016-01-01

    Background Recent evidence suggests that living kidney donors are at an increased risk of end-stage renal disease. However, predicting which donors will have renal dysfunction remains challenging, particularly among those with no clinical evidence of disease at the time of donation. Although renal biopsies are not routinely performed as part of the donor evaluation process, they may yield valuable information that improves the ability to predict renal function in donors. Methods We used implantation protocol biopsies to evaluate the association between histological abnormalities in the donated kidney and postdonation renal function (estimated glomerular filtration rate, eGFR) of the remaining kidney in living kidney donors. Longitudinal analysis using mixed-effects linear regression was used to account for multiple eGFR measures per donor. Results Among 310 donors between 1997 and 2012, median (IQR) follow-up was 6.2 (2.5–8.7; maximum 14.0) years. In this cohort, the overall prevalence of histological abnormalities was 65.8% (19.7% abnormal glomerulosclerosis, 23.9% abnormal interstitial fibrosis and tubular atrophy (IFTA), 4.8% abnormal mesangial matrix increase, 32.0% abnormal arteriolar hyalinosis, and 32.9% abnormal vascular intimal thickening). IFTA was associated with a 5-mL/min/1.73m2 decrease of postdonation eGFR after adjusting for donor age at donation, sex, race, preoperative systolic blood pressure, preoperative eGFR, and time since donation (p<0.01). Conclusions In this single-center study, among healthy individuals cleared for living donation, IFTA was associated with decreased postdonation eGFR, while no other subclinical histological abnormalities provided additional information. PMID:24655963

  18. The Functional Requirements and Design Basis for Information Barriers

    SciTech Connect

    Fuller, James L.

    2012-05-01

    This report summarizes the results of the Information Barrier Working Group workshop held at Sandia National Laboratory in Albuquerque, NM, February 2-4, 1999. This workshop was convened to establish the functional requirements associated with warhead radiation signature information barriers, to identify the major design elements of any such system or approach, and to identify a design basis for each of these major elements. Such information forms the general design basis to be used in designing, fabricating, and evaluating the complete integrated systems developed for specific purposes.

  19. Abnormal intestinal permeability in Crohn's disease pathogenesis.

    PubMed

    Teshima, Christopher W; Dieleman, Levinus A; Meddings, Jon B

    2012-07-01

    Increased small intestinal permeability is a longstanding observation in both Crohn's disease patients and in their healthy, asymptomatic first-degree relatives. However, the significance of this compromised gut barrier function and its place in the pathogenesis of the disease remains poorly understood. The association between abnormal small intestinal permeability and a specific mutation in the NOD2 gene, which functions to modulate both innate and adaptive immune responses to intestinal bacteria, suggests a common, genetically determined pathway by which an abnormal gut barrier could result in chronic intestinal inflammation. Furthermore, rodent colitis models show that gut barrier defects precede the development of inflammatory changes. However, it remains possible that abnormal permeability is simply a consequence of mucosal inflammation. Further insight into whether abnormal barrier function is the cause or consequence of chronic intestinal inflammation will be crucial to understanding the role of intestinal permeability in the pathogenesis of Crohn's disease. PMID:22731729

  20. Typical diffusion behaviour in packaging polymers - application to functional barriers.

    PubMed

    Dole, Patrice; Feigenbaum, Alexandre E; De La Cruz, Carlos; Pastorelli, Sara; Paseiro, Perfecto; Hankemeier, Thomas; Voulzatis, Yiannis; Aucejo, Susana; Saillard, Philippe; Papaspyrides, Costas

    2006-02-01

    When plastics are collected for recycling, possibly contaminated articles might be recycled into food packaging, and thus the contaminants might subsequently migrate into the food. Multilayer functional barriers may be used to delay and to reduce such migration. The contribution of the work reported here is to establish reference values (at 40 degrees C) of diffusion coefficients and of activation energies to predict the functional barrier efficiency of a broad range of polymers (polyolefins, polystyrene, polyamide, PVC, PET, PVDC, [ethylene vinyl alcohol copolymer], polyacrylonitrile and [ethylene vinyl acetate copolymer]). Diffusion coefficients (D) and activation energies (Ea) were measured and were compiled together with literature data. This allowed identification of new trends for the log D=f(molecular weight) relationships. The slopes were a function of the barrier efficiency of the polymer and temperature. The apparent activation energy of diffusion displayed two domains of variation with molecular weight (M). For low M (gases), there was little variation of Ea. Focusing on larger molecules, high barrier polymers displayed a larger dependence of Ea with M. The apparent activation energy decreased with T. These results suggest a discontinuity between rubbery and glassy polymers. PMID:16449064

  1. Claudin clusters as determinants of epithelial barrier function.

    PubMed

    Markov, Alexander G; Aschenbach, Jörg R; Amasheh, Salah

    2015-01-01

    Claudins are tetraspan tight junction proteins which have been attributed to primarily determine epithelial barrier function in a wide variety of different organs and tissues. Among this protein family with currently 27 members, single claudins contribute in an organ- and tissue-specific manner to defined properties such as cation-, anion- or water-selective pore functions, sealing functions or ambiguous functions. As the size of tight junction strand particles visualized by freeze-fracture electron microscopy have a diameter of approximately 10 nm, multimeric assembly of tight junction proteins appears to be a basic principle for barrier formation. Moreover, expression patterns of different tissues showed that single claudins appear to specifically co-localize with other claudins, which indicates a cluster formation within tight junction strand particles with a fixed stoichiometry. This review provides a critical view on the current understanding of tight junction protein co-localization within strands. We analyze how tissue specific differences of claudin functions could be dependent on their specific partners for barrier formation. Furthermore, a model of claudin clusters as structural and functional units within tight junction strands is provided. PMID:25788154

  2. Detection of Cardiac Function Abnormality from MRI Images Using Normalized Wall Thickness Temporal Patterns

    PubMed Central

    Wael, Mai; Fahmy, Ahmed S.

    2016-01-01

    Purpose. To develop a method for identifying abnormal myocardial function based on studying the normalized wall motion pattern during the cardiac cycle. Methods. The temporal pattern of the normalized myocardial wall thickness is used as a feature vector to assess the cardiac wall motion abnormality. Principal component analysis is used to reduce the feature dimensionality and the maximum likelihood method is used to differentiate between normal and abnormal features. The proposed method was applied on a dataset of 27 cases from normal subjects and patients. Results. The developed method achieved 81.5%, 85%, and 88.5% accuracy for identifying abnormal contractility in the basal, midventricular, and apical slices, respectively. Conclusions. A novel feature vector, namely, the normalized wall thickness, has been introduced for detecting myocardial regional wall motion abnormality. The proposed method provides assessment of the regional myocardial contractility for each cardiac segment and slice; therefore, it could be a valuable tool for automatic and fast determination of regional wall motion abnormality from conventional cine MRI images. PMID:27034648

  3. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    SciTech Connect

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-11-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis.

  4. Involvement of Local Lamellipodia in Endothelial Barrier Function

    PubMed Central

    Breslin, Jerome W.; Zhang, Xun E.; Worthylake, Rebecca A.; Souza-Smith, Flavia M.

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and dominant negative Rac1 reduced barrier function and lamellipodia activity. Combined, these data suggest that local lamellipodia, driven by myosin II and Rac1, are important for dynamic changes in endothelial barrier integrity. PMID:25658915

  5. Involvement of local lamellipodia in endothelial barrier function.

    PubMed

    Breslin, Jerome W; Zhang, Xun E; Worthylake, Rebecca A; Souza-Smith, Flavia M

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and dominant negative Rac1 reduced barrier function and lamellipodia activity. Combined, these data suggest that local lamellipodia, driven by myosin II and Rac1, are important for dynamic changes in endothelial barrier integrity. PMID:25658915

  6. Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Tung, Kelly L.; Kaminsky, Olivia; McGough, James J.; Hanada, Grant; Loo, Sandra K.

    2014-01-01

    Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s Continuous Performance Test (CPT). Method: Our previous study found that ADHD adults had increased rightward EEG beta (16–21 Hz) asymmetry in inferior parietal brain regions during the CPT (p = 0.00001), and that this metric exhibited a lack of normal correlation (i.e., observed in controls) with beta asymmetry at temporal–parietal regions. We re-tested these effects in a new ADHD sample and with both new and old samples combined. We additionally examined: (a) EEG asymmetry in multiple frequency bands, (b) unilateral effects for all asymmetry findings, and (c) the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings by demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal–parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal–parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increase of attentional shifting and compensatory sustained/selective attention. PMID:25104941

  7. Epigenetic control of intestinal barrier function and inflammation in zebrafish

    PubMed Central

    Marjoram, Lindsay; Alvers, Ashley; Deerhake, M. Elizabeth; Bagwell, Jennifer; Mankiewicz, Jamie; Cocchiaro, Jordan L.; Beerman, Rebecca W.; Willer, Jason; Sumigray, Kaelyn D.; Katsanis, Nicholas; Rawls, John F.; Goll, Mary G.; Bagnat, Michel

    2015-01-01

    The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset. PMID:25730872

  8. Epigenetic control of intestinal barrier function and inflammation in zebrafish.

    PubMed

    Marjoram, Lindsay; Alvers, Ashley; Deerhake, M Elizabeth; Bagwell, Jennifer; Mankiewicz, Jamie; Cocchiaro, Jordan L; Beerman, Rebecca W; Willer, Jason; Sumigray, Kaelyn D; Katsanis, Nicholas; Tobin, David M; Rawls, John F; Goll, Mary G; Bagnat, Michel

    2015-03-01

    The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset. PMID:25730872

  9. Sodium butyrate protects the intestinal barrier function in peritonitic mice

    PubMed Central

    Han, Xiaofeng; Song, Huimin; Wang, Yunlei; Sheng, Yingmo; Chen, Jie

    2015-01-01

    Objective: Peritonitis is a commonly seen disease with high morbidity and mortality. It is prevalently considered that the impaired intestinal barrier during peritonitis is the access point of gut microbes into the blood system, and acts as the engine of the following systemic infection. In our previous study, we found that Sodium Butyrate (NaB) was protective on intestinal barrier function. In this study, we aim to evaluate the effects of NaB on overwhelming infection animal models of peritonitis. Methods: Mouse cecal ligation and puncture (CLP) model was used to study the effects of NaB on the intestinal barrier. Experimental animals were fed of NaB by gavage. Post-CLP mortality, gut permeability and intestinal histological alterations were studied. Results: Gastrointestinal NaB pharmacodynamics profiles after medication were studied. Measurements of NaB concentration in chyme showed significantly higher intestinal concentration of NaB in the NaB treated group than that of the control group. CLP-induced mortality was significantly decreased by oral NaB treatments. Gut permeability was largely increased after CLP, which was partially prevented by NaB feeding. Histological study showed that intestinal, especially ileal injury following peritonitis was substantially alleviated by NaB treatments. Moreover, tissue regeneration was also prompted by NaB. Conclusion: NaB has a potential protective effect on intestinal barrier function in peritonitis. PMID:26064302

  10. Functional brain network abnormalities during verbal working memory performance in adolescents and young adults with dyslexia.

    PubMed

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional neuroanatomy underlying cognitive dysfunction in dyslexia. In this study, functional magnetic resonance imaging and multivariate analytic techniques were used to investigate patterns of functional connectivity during a verbal WM task in individuals with dyslexia (n=12) and control subjects (n=13). Dyslexics were not significantly slower than controls; however, they were less accurate with increasing WM demand. Independent component analysis identified 18 independent components (ICs) among which two ICs were selected for further analyses. These ICs included functional networks which were positively correlated with the delay period of the activation task in both healthy controls and dyslexics. Connectivity abnormalities in dyslexics were detected within both networks of interest: within a "phonological" left-lateralized prefrontal network, increased functional connectivity was found in left prefrontal and inferior parietal regions. Within an "executive" bilateral frontoparietal network, dyslexics showed a decreased connectivity pattern comprising bilateral dorsolateral prefrontal and posterior parietal regions, while increased connectivity was found in the left angular gyrus, the left hippocampal cortex and the right thalamus. The functional connectivity strength in the latter regions was associated with WM task accuracy and with the numbers of errors during a spelling test. These data suggest functional connectivity abnormalities in two spatiotemporally dissociable brain networks underlying WM dysfunction in individuals with dyslexia. PMID:19782695

  11. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  12. Low yield of unselected testing in patients with acutely abnormal liver function tests

    PubMed Central

    Chadwick, Andrew

    2015-01-01

    Objectives To audit the diagnostic yield and cost implications of the use of a ‘liver screen’ for inpatients with abnormal liver function tests. Design We performed a retrospective audit of inpatients with abnormal liver function tests. We analysed all investigations ordered including biochemistry, immunology, virology and radiology. The final diagnosis was ascertained in each case, and the diagnostic yield and cost per positive diagnosis for each investigation were calculated. Setting St Thomas’ NHS Trust. Participants All inpatients investigated for abnormal liver function tests over a 12-month period. Main outcome measures We calculated the percentage of courses due to each diagnosis, the yield of each investigation and the cost per positive diagnosis for each investigation. Results A total of 308 patients were included, and a final diagnosis was made in 224 patients (73%) on the basis of both clinical data and investigations. There was considerable heterogeneity in the tests included in an acute liver screen. History and ultrasound yielded the most diagnoses (40% and 30%, respectively). The yield of autoimmune and metabolic screens was minimal. Conclusions Our results demonstrate the low yield of unselected testing in patients with abnormal liver function tests. A thorough history, ultrasound and testing for blood-borne viruses are the cornerstones of diagnosis. Specialist input should be sought before further testing. Prospective studies to evaluate the yield and cost-effectiveness of different testing strategies are needed. PMID:26770816

  13. Nucleophilic addition to olefins. 19. Abnormally high intrinsic barrier in the reaction of piperidine and morpholine with benzylideneacetylacetone

    SciTech Connect

    Bernasconi, C.F.; Kanavarioti, A.

    1986-11-26

    The title reaction leads to the formation of the zwitterionic Michael adduct T/sup +/-/ (PhCH(R/sub 2/NH/sup +/)C(COCH/sub 3/)/sub 2//sup -/) which is in rapid acid-base equilibrium with its anionic form T/sup -/ (PhCH(R/sub 2/N)C(COCH/sub 3/)/sub 2//sup -/). Rate (K/sub 1/, k/sub -1/) and equilibrium constants (K/sub 1/) for nucleophilic addition and the pK/sub a/ of the T/sup +/-/-adducts were determined in 50% Me/sub 2/SO-50% water at 20/sup 0/C. From an interpolation of the rate constants to K/sub 1/ = 1 an intrinsic rate constant, log k/sub 0/ = 0.3, was determined. This value deviates negatively by approximately 2.5 log units from a correlation of log k/sub 0/ for amine addition to five olefins of the type PhCH=CXY, with log k/sub 0/ for the deprotonation of the corresponding carbon acids CH/sub 2/XY. Two major factors are believed to contribute to this depressed intrinsic rate constant or enhanced intrinsic barrier: (1) steric inhibition of resonance in T/sup +/-/ with the steric effect developing ahead of C-N bond formation (this conclusion is supported by an X-ray crystallographic study of p-methoxybenzylideneacetylacetone which shows that steric hindrance to optimal ..pi..-overlap in the adduct T/sup+/-/ is already present in the substrate); (2) intramolecular hydrogen bonding in T/sup +/-/, which is inferred from abnormally high pK/sub a/ values and whose development lags behind C-N bond formation. These effects are shown to be manifestations of the Principle of Nonperfect Synchronization.

  14. Intestinal barrier function in neonatal foals: options for improvement.

    PubMed

    Vendrig, Johannes C; Fink-Gremmels, Johanna

    2012-07-01

    Gastrointestinal defence in the new-born is limited in comparison to adults, due to an immature epithelial barrier function and deficits in both innate and adaptive immune responses. Consequently, neonates (including foals) are at increased risk of disturbance to mucosal homeostasis during initial intestinal colonisation that may lead to excessive inflammation and bacterial translocation into the bloodstream, resulting in septicaemia. Bacterial recognition by Pattern Recognition Receptors (PRRs) and their downstream regulation of cytokine release have been shown to be pivotal for gastrointestinal mucosal homeostasis and the development of a functional intestinal barrier. Evidence suggests that selective PRR agonists limit the inflammatory responses and improve epithelial barrier function. Milk, and in particular colostrum, contain a broad array of oligosaccharides which seem to act as PRR agonists. This class of compounds forms a source for new dietary formulas that may orchestrate gut colonisation by the commensal flora in the early phase of life and so reduce the risks of inflammation and pathogen invasion. PMID:22377327

  15. Metabolic stress evokes decreases in epithelial barrier function.

    PubMed

    Lewis, Kimberley; McKay, Derek M

    2009-05-01

    The epithelial lining of the gastrointestinal tract is the major interface between the external world (e.g., the gut lumen) and the body, and as such the proper maintenance and regulation of epithelial barrier function is a key determinant of digestive health and host well-being. Many enteropathies are associated with increased gut permeability, including inflammatory bowel disease (IBD). Maintaining the barrier function of the epithelium, independent of whether paracellular or transcellular permeation pathways are considered, is an energy-dependent process. Here we present an overview of the impact that metabolic stress (e.g., reductions in epithelial ATP synthesis) can have on permeability characteristics of epithelial monolayers and show that metabolic stress in the presence of a commensal flora results in a significant loss of epithelial integrity, and that this increase in epithelial permeability can be enhanced by the presence of tumor necrosis factor-alpha (TNFalpha). We speculate that the combination of these factors in vivo would result in significant perturbations in epithelial barrier function that could be of pathophysiological significance and contribute to the initiation of IBD or the induction of disease relapses. PMID:19538324

  16. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia

    PubMed Central

    2013-01-01

    Background Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. Results In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Conclusions Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia. PMID:23575114

  17. Safety and yield of diagnostic ERCP in liver transplant patients with abnormal liver function tests.

    PubMed

    Ramesh, Jayapal; Reddy, Nipun; Kim, Hwasoon; Mnkemller, Klaus; Varadarajulu, Shyam; McGuire, Brendan; DuBay, Derek; Eckhoff, Devin; Wilcox, C Mel

    2014-01-01

    Background. Abnormal liver enzymes postorthotopic liver transplant (OLT) may indicate significant biliary pathology or organ rejection. There is very little known in the literature regarding the current role of diagnostic ERCP in this scenario. Aim. To review the utility of diagnostic ERCP in patients presenting with abnormal liver function tests in the setting of OLT. Methods. A retrospective review of diagnostic ERCPs in patients with OLT from 2002 to 2013 from a prospectively maintained, IRB approved database. Results. Of the 474 ERCPs performed in OLT patients, 210 (44.3%; 95% CI 39.8-48.8) were performed for abnormal liver function tests during the study period. Majority of patients were Caucasian (83.8%), male (62.4%) with median age of 55 years (IQR 48-62 years). Biliary cannulation was successful in 99.6% of cases and findings included stricture in 45 (21.4 %); biliary stones/sludge in 23 (11%); biliary dilation alone in 31 (14.8%); and normal in 91 (43.3%). Three (1.4%) patients developed mild, self-limiting pancreatitis; one patient (0.5%) developed cholangitis and two (1%) had postsphincterotomy bleeding. Multivariate analyses showed significant association between dilated ducts on imaging with a therapeutic outcome. Conclusion. Diagnostic ERCP in OLT patients presenting with liver function test abnormalities is safe and frequently therapeutic. PMID:25110455

  18. Safety and Yield of Diagnostic ERCP in Liver Transplant Patients with Abnormal Liver Function Tests

    PubMed Central

    Reddy, Nipun; Kim, Hwasoon; Mnkemller, Klaus; Varadarajulu, Shyam; McGuire, Brendan; Wilcox, C. Mel

    2014-01-01

    Background. Abnormal liver enzymes postorthotopic liver transplant (OLT) may indicate significant biliary pathology or organ rejection. There is very little known in the literature regarding the current role of diagnostic ERCP in this scenario. Aim. To review the utility of diagnostic ERCP in patients presenting with abnormal liver function tests in the setting of OLT. Methods. A retrospective review of diagnostic ERCPs in patients with OLT from 2002 to 2013 from a prospectively maintained, IRB approved database. Results. Of the 474 ERCPs performed in OLT patients, 210 (44.3%; 95% CI 39.848.8) were performed for abnormal liver function tests during the study period. Majority of patients were Caucasian (83.8%), male (62.4%) with median age of 55 years (IQR 4862 years). Biliary cannulation was successful in 99.6% of cases and findings included stricture in 45 (21.4 %); biliary stones/sludge in 23 (11%); biliary dilation alone in 31 (14.8%); and normal in 91 (43.3%). Three (1.4%) patients developed mild, self-limiting pancreatitis; one patient (0.5%) developed cholangitis and two (1%) had postsphincterotomy bleeding. Multivariate analyses showed significant association between dilated ducts on imaging with a therapeutic outcome. Conclusion. Diagnostic ERCP in OLT patients presenting with liver function test abnormalities is safe and frequently therapeutic. PMID:25110455

  19. Abnormal hippocampal structure and function in clinical anxiety and comorbid depression.

    PubMed

    Cha, Jiook; Greenberg, Tsafrir; Song, Inkyung; Blair Simpson, Helen; Posner, Jonathan; Mujica-Parodi, Lilianne R

    2016-05-01

    Given the high prevalence rates of comorbidity of anxiety and depressive disorders, identifying a common neural pathway to both disorders is important not only for better diagnosis and treatment, but also for a more complete conceptualization of each disease. Hippocampal abnormalities have been implicated in anxiety and depression, separately; however, it remains unknown whether these abnormalities are also implicated in their comorbidity. Here we address this question by testing 32 adults with generalized anxiety disorder (15 GAD only and 17 comorbid MDD) and 25 healthy controls (HC) using multimodal MRI (structure, diffusion and functional) and automated hippocampal segmentation. We demonstrate that (i) abnormal microstructure of the CA1 and CA2-3 is associated with GAD/MDD comorbidity and (ii) decreased anterior hippocampal reactivity in response to repetition of the threat cue is associated with GAD (with or without MDD comorbidity). In addition, mediation-structural equation modeling (SEM) reveals that our hippocampal and dimensional symptom data are best explained by a model describing a significant influence of abnormal hippocampal microstructure on both anxiety and depression-mediated through its impact on abnormal hippocampal threat processing. Collectively, our findings show a strong association between changes in hippocampal microstructure and threat processing, which together may present a common neural pathway to comorbidity of anxiety and depression. © 2016 Wiley Periodicals, Inc. PMID:26743454

  20. Intestinal barrier function and the brain-gut axis.

    PubMed

    Alonso, Carmen; Vicario, María; Pigrau, Marc; Lobo, Beatriz; Santos, Javier

    2014-01-01

    The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions. PMID:24997030

  1. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  2. Embryonic blood-cerebrospinal fluid barrier formation and function

    PubMed Central

    Bueno, David; Parvas, Maryam; Hermelo, Ismaïl; Garcia-Fernàndez, Jordi

    2014-01-01

    During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF). CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS). The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF) has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB) systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF. PMID:25389383

  3. The Effects of Anthrax Lethal Toxin on Host Barrier Function

    PubMed Central

    Xie, Tao; Auth, Roger D.; Frucht, David M.

    2011-01-01

    The pathological actions of anthrax toxin require the activities of its edema factor (EF) and lethal factor (LF) enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA). LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs), but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT) leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects. PMID:22069727

  4. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress

    PubMed Central

    Zareie, M; Johnson‐Henry, K; Jury, J; Yang, P‐C; Ngan, B‐Y; McKay, D M; Soderholm, J D; Perdue, M H; Sherman, P M

    2006-01-01

    Background and aim Chronic psychological stress, including water avoidance stress (WAS), induces intestinal mucosal barrier dysfunction and impairs mucosal defences against luminal bacteria. The aim of this study was to determine the ability of a defined probiotic regimen to prevent WAS induced intestinal pathophysiology. Methods Male rats were subjected to either WAS or sham stress for one hour per day for 10 consecutive days. Additional animals received seven days of Lactobacillus helveticus and L rhamnosus in the drinking water prior to stress and remained on these probiotics for the duration of the study. Rats were then sacrificed, intestinal segments assessed in Ussing chambers, and mesenteric lymph nodes cultured to determine bacterial translocation. Results All animals remained healthy for the duration of the study. Chronic WAS induced excess ion secretion (elevated baseline short circuit current) and barrier dysfunction (increased conductance) in both the ileum and colon, associated with increased bacterial adhesion and penetration into surface epithelial cells. Approximately 70% of rats subjected to WAS had bacterial translocation to mesenteric lymph nodes while there was no bacterial translocation in controls. Probiotic pretreatment alone had no effect on intestinal barrier function. However, WAS induced increased ileal short circuit current was reduced with probiotics whereas there was no impact on altered conductance. Pretreatment of animals with probiotics also completely abrogated WAS induced bacterial adhesion and prevented translocation of bacteria to mesenteric lymph nodes. Conclusion These findings indicate that probiotics can prevent chronic stress induced intestinal abnormalities and, thereby, exert beneficial effects in the intestinal tract. PMID:16638791

  5. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress.

    TOXLINE Toxicology Bibliographic Information

    Zareie M; Johnson-Henry K; Jury J; Yang PC; Ngan BY; McKay DM; Soderholm JD; Perdue MH; Sherman PM

    2006-11-01

    BACKGROUND AND AIMS: Chronic psychological stress, including water avoidance stress (WAS), induces intestinal mucosal barrier dysfunction and impairs mucosal defences against luminal bacteria. The aim of this study was to determine the ability of a defined probiotic regimen to prevent WAS induced intestinal pathophysiology.METHODS: Male rats were subjected to either WAS or sham stress for one hour per day for 10 consecutive days. Additional animals received seven days of Lactobacillus helveticus and L rhamnosus in the drinking water prior to stress and remained on these probiotics for the duration of the study. Rats were then sacrificed, intestinal segments assessed in Ussing chambers, and mesenteric lymph nodes cultured to determine bacterial translocation.RESULTS: All animals remained healthy for the duration of the study. Chronic WAS induced excess ion secretion (elevated baseline short circuit current) and barrier dysfunction (increased conductance) in both the ileum and colon, associated with increased bacterial adhesion and penetration into surface epithelial cells. Approximately 70% of rats subjected to WAS had bacterial translocation to mesenteric lymph nodes while there was no bacterial translocation in controls. Probiotic pretreatment alone had no effect on intestinal barrier function. However, WAS induced increased ileal short circuit current was reduced with probiotics whereas there was no impact on altered conductance. Pretreatment of animals with probiotics also completely abrogated WAS induced bacterial adhesion and prevented translocation of bacteria to mesenteric lymph nodes.CONCLUSION: These findings indicate that probiotics can prevent chronic stress induced intestinal abnormalities and, thereby, exert beneficial effects in the intestinal tract.

  6. Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD)

    PubMed Central

    Baruth, Joshua M.; Casanova, Manuel F.; Sears, Lonnie; Sokhadze, Estate

    2012-01-01

    It has been reported that individuals with autism spectrum disorder (ASD) have abnormal responses to the sensory environment. For these individuals sensory overload can impair functioning, raise physiological stress, and adversely affect social interaction. Early-stage (i.e. within 200ms of stimulus onset) auditory processing abnormalities have been widely examined in ASD using event-related potentials (ERP), while ERP studies investigating early-stage visual processing in ASD are less frequent. We wanted to test the hypothesis of early-stage visual processing abnormalities in ASD by investigating ERPs elicited in a visual oddball task using illusory figures. Our results indicate that individuals with ASD have abnormally large cortical responses to task irrelevant stimuli over both parieto-occipital and frontal regions-of-interest (ROI) during early stages of visual processing compared to the control group. Furthermore, ASD patients showed signs of an overall disruption in stimulus discrimination, and had a significantly higher rate of motor response errors. PMID:22563527

  7. Loss of Mpzl3 Function Causes Various Skin Abnormalities and Greatly Reduced Adipose Depots

    PubMed Central

    Leiva, Angel G.; Chen, Anne L.; Devarajan, Priyadharshini; Chen, Zhibin; Damanpour, Shadi; Hall, Jessica A.; Bianco, Antonio C.; Li, Jie; Badiavas, Evangelos V.; Zaias, Julia; Miteva, Mariya; Romanelli, Paolo; Nouri, Keyvan; Wikramanayake, Tongyu Cao

    2014-01-01

    The rough coat (rc) spontaneous mutation causes sebaceous gland hypertrophy, hair loss and extracutaneous abnormalities including growth retardation. The rc mice have a missense mutation in the predicted immunoglobulin protein Mpzl3. In this study, we generated Mpzl3 knockout mice to determine its functions in the skin. Homozygous Mpzl3 knockout mice showed unkempt and greasy hair coat and hair loss soon after birth. Histological analysis revealed severe sebaceous gland hypertrophy and increased dermal thickness, but did not detect significant changes in the hair cycle. Mpzl3 null mice frequently developed inflammatory skin lesions; however, the early onset skin abnormalities were not the results of immune defects. The abnormalities in the Mpzl3 knockout mice resemble closely those observed in the rc/rc mice, as well as mice heterozygous for both the rc and Mpzl3 knockout alleles, indicating that rc and Mpzl3 are allelic. Using a lacZ reporter gene, we detected Mpzl3 promoter activity in the companion layer and inner root sheath of the hair follicle, sebaceous gland, and epidermis. Loss of MPZL3 function also caused a striking reduction in cutaneous and overall adipose tissue. These data reveal a complex role for Mpzl3 in the control of skin development, hair growth and adipose cell functions. PMID:24531688

  8. Loss of Mpzl3 function causes various skin abnormalities and greatly reduced adipose depots.

    PubMed

    Leiva, Angel G; Chen, Anne L; Devarajan, Priyadharshini; Chen, Zhibin; Damanpour, Shadi; Hall, Jessica A; Bianco, Antonio C; Li, Jie; Badiavas, Evangelos V; Zaias, Julia; Miteva, Mariya; Romanelli, Paolo; Nouri, Keyvan; Wikramanayake, Tongyu Cao

    2014-07-01

    The rough coat (rc) spontaneous mutation causes sebaceous gland (SG) hypertrophy, hair loss, and extracutaneous abnormalities including growth retardation. The rc mice have a missense mutation in the predicted Ig protein Myelin Protein Zero-Like 3 (Mpzl3). In this study, we generated Mpzl3 knockout mice to determine its functions in the skin. Homozygous Mpzl3 knockout mice showed unkempt and greasy hair coat and hair loss soon after birth. Histological analysis revealed severe SG hypertrophy and increased dermal thickness, but did not detect significant changes in the hair cycle. Mpzl3-null mice frequently developed inflammatory skin lesions; however, the early-onset skin abnormalities were not the result of immune defects. The abnormalities in the Mpzl3 knockout mice closely resemble those observed in rc/rc mice, and in mice heterozygous for both the rc and Mpzl3 knockout alleles, indicating that rc and Mpzl3 are allelic. Using a lacZ reporter gene, we detected Mpzl3 promoter activity in the companion layer and inner root sheath of the hair follicle, SG, and epidermis. Loss of MPZL3 function also caused a striking reduction in cutaneous and overall adipose tissue. These data reveal a complex role for Mpzl3 in the control of skin development, hair growth, and adipose cell functions. PMID:24531688

  9. Multi-phase functionally graded materials for thermal barrier systems

    SciTech Connect

    Jackson, M.R.; Ritter, A.M.; Gigliotti, M.F.; Kaya, A.C.; Gallo, J.P.

    1996-12-31

    Jet engine and gas turbine hot section components can be protected from the 1,350--1,650 C combustion gases by thermal barrier coatings (TBCs). Metallic candidates for functionally graded material (FGM) coatings have been evaluated for potential use in bonding zirconia to a single crystal superalloy. Properties for four materials were studied for the low-expansion layer adjacent to the ceramic. Ingots were produced for these materials, and oxidation, expansion and modulus were determined. A finite element model was used to study effects of varying the FGM layers. Elastic modulus dominated stress generation, and a 20--25% reduction in thermal stress generated within the zirconia layer may be possible.

  10. Campylobacter infection in chickens modulates the intestinal epithelial barrier function.

    PubMed

    Awad, Wageha A; Molnár, Andor; Aschenbach, Jörg R; Ghareeb, Khaled; Khayal, Basel; Hess, Claudia; Liebhart, Dieter; Dublecz, Károly; Hess, Michael

    2015-02-01

    Asymptomatic carriage of Campylobacter jejuni is highly prevalent in chicken flocks. Thus, we investigated whether chronic Campylobacter carriage affects chicken intestinal functions despite the absence of clinical symptoms. An experiment was carried out in which commercial chickens were orally infected with C. jejuni (1 × 10(8) CFU/bird) at 14 days of life. Changes in ion transport and barrier function were assessed by short-circuit current (I(sc)) and transepithelial ion conductance (G(t)) in Ussing chambers. G(t) increased in cecum and colon of Campylobacter-infected chicken 7 d post-infection (DPI), whereas G t initially decreased in the jejunum at 7 DPI and increased thereafter at 14 DPI. The net charge transfer across the epithelium was reduced or tended to be reduced in all segments, as evidenced by a decreased I sc. Furthermore, the infection induced intestinal histomorphological changes, most prominently including a decrease in villus height, crypt depth and villus surface area in the jejunum at 7 DPI. Furthermore, body mass gain was decreased by Campylobacter carriage. This study demonstrates, for the first time, changes in the intestinal barrier function in Campylobacter-infected chickens and these changes were associated with a decrease in growth performance in otherwise healthy-appearing birds. PMID:24553586

  11. Connecting metabolism to intestinal barrier function: The role of leptin.

    PubMed

    Le Dréan, Gwenola; Segain, Jean-Pierre

    2014-01-01

    Structure and function of the intestinal epithelial barrier (IEB) are dependent upon the integrity of junctional protein structures sealing the apical surface between epithelial cells. Tight junctions (TJ) and the surrounding apical F-actin cytoskeleton are involved in the regulation of paracellular permeability. The regulation of actin cytoskeleton organization by RhoA/Rho-kinase (ROCK) pathway plays an important role in TJ assembly and function. There is mounting evidence that the adipocyte-derived hormone leptin exerts pleiotropic effects on the intestinal epithelium including nutrient absorption, epithelial growth, inflammation and injury. Leptin activates multiple cell signaling pathways in intestinal epithelial cells (IEC) that can explain these pleiotropic effects. However, these pathways are also involved in the primary role of leptin that is the regulation of energy and glucose metabolism homeostasis. In this commentary, we examine how the interplay between leptin signaling pathways that regulate cell metabolism could impact upon IEB function. PMID:25610758

  12. The role of sphingolipids in endothelial barrier function.

    PubMed

    Jernigan, Peter L; Makley, Amy T; Hoehn, Richard S; Edwards, Michael J; Pritts, Timothy A

    2015-06-01

    Sphingolipids are a ubiquitous family of essential lipids with an increasingly understood role as biologically active mediators in numerous physiologic and pathologic processes. Two particular sphingolipid species, sphingosine-1-phosphate and ceramide, and their metabolites interact both directly and indirectly with endothelial cells to regulate vascular permeability. Sphingosine-1-phosphate generally augments endothelial integrity while ceramide tends to promote vascular leak, and a tight balance between the two is necessary to maintain normal physiologic function. The mechanisms by which sphingolipids regulate endothelial barrier function are complex and occur through multiple different pathways, and disruptions or imbalances in these pathways have been implicated in a number of specific disease processes. With improved understanding of sphingolipid biology, endothelial function, and the interactions between the two, several targets for therapeutic intervention have emerged and there is immense potential for further advancement in this field. PMID:25867999

  13. Microheterogeneity of antithrombin III: effect of single amino acid substitutions and relationship with functional abnormalities.

    PubMed

    De Stefano, V; Leone, G; Mastrangelo, S; Lane, D A; Girolami, A; de Moerloose, P; Sas, G; Abildgaard, U; Blajchman, M; Rodeghiero, F

    1994-02-01

    Microheterogeneity of antithrombin III (AT-III) was investigated by crossed immunoelectrofocusing (CIEF) on eleven molecular variants. A normal pattern was found in five variants while two different abnormal CIEF patterns were found in the other four and two variants, respectively. Point mutations causing a major pI change (exceeding 4.0) of the amino acid substituted lead to alterations in the overall microheterogeneity. The variants thus substituted share a first type of abnormal CIEF pattern with alterations throughout the pH range, regardless of the location of the mutation (reactive site and adjacent regions or heparin binding region). Minor amino acid pI changes in these regions do not alter the AT-III overall microheterogeneity, whatever the resulting functional defect. However, if the mutation is placed in the region around positions 404 or 429, then even minor changes of the amino acid pI seem able to alter the overall charge, leading to a second type of abnormal CIEF pattern with the main alteration at pH 4.8-4.6. Neuraminidase treatment leads to disappearance of microheterogeneity except for the variants with the Arg393 to Cys substitution. Addition of thrombin induces CIEF modifications specifically related to the functional defect. A normal formation of thrombin-antithrombin complexes induces a shift towards the more acid pH range, whereas in the variants substituted at the reactive site the CIEF pattern is substantially unaffected by thrombin; variants substituted at positions 382-384 show a maximal thrombin-induced increase of the isoforms at pI 4.8-4.6. Therefore mutant antithrombins with different functional abnormalities but sharing a common CIEF pattern were well distinguished.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8180341

  14. Alzheimer's disease and blood-brain barrier function - Why have anti-β-amyloid therapies failed to prevent dementia progression?

    PubMed Central

    Pahnke, Jens; Walker, Lary C.; Scheffler, Katja; Krohn, Markus

    2009-01-01

    Proteopathies of the brain are defined by abnormal, disease-inducing protein deposition that leads to functional abrogation and death of neurons. Immunization trials targeting the removal of amyloid-β plaques in Alzheimer's disease have so far failed to stop the progression of dementia, despite autopsy findings of reduced plaque load. Here, we summarize current knowledge of the relationship between AD pathology and blood-brain barrier function, and propose that the activation of the excretion function of the blood-brain barrier might help to achieve better results in trials targeting the dissolution of cerebral amyloid-β aggregates. We further discuss a possible role of oligomers in limiting the efficacy of immunotherapy. PMID:19481107

  15. Abnormalities in personal space and parietal–frontal function in schizophrenia

    PubMed Central

    Holt, Daphne J.; Boeke, Emily A.; Coombs, Garth; DeCross, Stephanie N.; Cassidy, Brittany S.; Stufflebeam, Steven; Rauch, Scott L.; Tootell, Roger B.H.

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to “keep their distance” from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal–frontal network involved in monitoring the space immediately surrounding the body (“personal space”). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal–frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  16. Postnatal requirement of the epithelial sodium channel for maintenance of epidermal barrier function.

    PubMed

    Charles, Roch-Philippe; Guitard, Marjorie; Leyvraz, Céline; Breiden, Bernadette; Haftek, Marek; Haftek-Terreau, Zofia; Stehle, Jean-Christophe; Sandhoff, Konrad; Hummler, Edith

    2008-02-01

    In skin, the physiological consequence of an epithelial sodium channel (ENaC) deficiency is not obvious directly at birth. Nevertheless, within hours after birth, mice deficient for the alpha-subunit of the highly amiloride-sensitive epithelial sodium channel (alphaENaC/Scnn1a) suffer from a significant increased dehydration. This is characterized by a loss of body weight (by 6% in 6 h) and an increased transepidermal water loss, which is accompanied by a higher skin surface pH in 1-day-old pups. Although early and late differentiation markers, as well as tight junction protein distribution and function, seem unaffected, deficiency of alphaENaC severely disturbs the stratum corneum lipid composition with decreased ceramide and cholesterol levels, and increased pro-barrier lipids, whereas covalently bound lipids are drastically reduced. Ultrastructural analysis revealed morphological changes in the formation of intercellular lamellar lipids and the lamellar body secretion. Extracellular formation of the lamellar lipids proved to be abnormal in the knockouts. In conclusion, ENaC deficiency results in progressive dehydration and, consequently, weight loss due to severe impairment of lipid formation and secretion. Our data demonstrate that ENaC expression is required for the postnatal maintenance of the epidermal barrier function but not for its generation. PMID:18039670

  17. New Trends in Quantitative Assessment of the Corneal Barrier Function

    PubMed Central

    Guimerà, Anton; Illa, Xavi; Traver, Estefania; Herrero, Carmen; Maldonado, Miguel J.; Villa, Rosa

    2014-01-01

    The cornea is a very particular tissue due to its transparency and its barrier function as it has to resist against the daily insults of the external environment. In addition, maintenance of this barrier function is of crucial importance to ensure a correct corneal homeostasis. Here, the corneal epithelial permeability has been assessed in vivo by means of non-invasive tetrapolar impedance measurements, taking advantage of the huge impact of the ion fluxes in the passive electrical properties of living tissues. This has been possible by using a flexible sensor based in SU-8 photoresist. In this work, a further analysis focused on the validation of the presented sensor is performed by monitoring the healing process of corneas that were previously wounded. The obtained impedance measurements have been compared with the damaged area observed in corneal fluorescein staining images. The successful results confirm the feasibility of this novel method, as it represents a more sensitive in vivo and non-invasive test to assess low alterations of the epithelial permeability. Then, it could be used as an excellent complement to the fluorescein staining image evaluation. PMID:24841249

  18. Imaging Barriers to Diffusion by Pair Correlation Functions

    PubMed Central

    Digman, Michelle A.; Gratton, Enrico

    2009-01-01

    Abstract Molecular diffusion and transport are fundamental processes in physical, chemical, biochemical, and biological systems. However, current approaches to measure molecular transport in cells and tissues based on perturbation methods such as fluorescence recovery after photobleaching are invasive, fluctuation correlation methods are local, and single-particle tracking requires the observation of isolated particles for relatively long periods of time. We propose to detect molecular transport by measuring the time cross-correlation of fluctuations at a pair of locations in the sample. When the points are farther apart than two times the size of the point spread function, the maximum of the correlation is proportional to the average time a molecule takes to move from a specific location to another. We demonstrate the method by simulations, using beads in solution, and by measuring the diffusion of molecules in cellular membranes. The spatial pair cross-correlation method detects barriers to diffusion and heterogeneity of diffusion because the time of the correlation maximum is delayed in the presence of diffusion barriers. This noninvasive, sensitive technique follows the same molecule over a large area, thereby producing a map of molecular flow. It does not require isolated molecules, and thus many molecules can be labeled at the same time and within the point spread function. PMID:19619481

  19. Bile duct epithelial tight junctions and barrier function

    PubMed Central

    Rao, R.K.; Samak, G.

    2013-01-01

    Bile ducts play a crucial role in the formation and secretion of bile as well as excretion of circulating xenobiotic substances. In addition to its secretory and excretory functions, bile duct epithelium plays an important role in the formation of a barrier to the diffusion of toxic substances from bile into the hepatic interstitial tissue. Disruption of barrier function and toxic injury to liver cells appear to be involved in the pathogenesis of a variety of liver diseases such as primary sclerosing cholangitis, primary biliary cirrhosis and cholangiocarcinoma. Although the investigations into understanding the structure and regulation of tight junctions in gut, renal and endothelial tissues have expanded rapidly, very little is known about the structure and regulation of tight junctions in the bile duct epithelium. In this article we summarize the current understanding of physiology and pathophysiology of bile duct epithelium, the structure and regulation of tight junctions in canaliculi and bile duct epithelia and different mechanisms involved in the regulation of disruption and protection of bile duct epithelial tight junctions. This article will make a case for the need of future investigations toward our understanding of molecular organization and regulation of canalicular and bile duct epithelial tight junctions. PMID:24665411

  20. Roles for claudins in alveolar epithelial barrier function

    PubMed Central

    Overgaard, Christian E.; Mitchell, Leslie A.; Koval, Michael

    2012-01-01

    Terminal airspaces of the lung, alveoli, are sites of gas exchange which are sensitive to disrupted fluid balance. The alveolar epithelium is a heterogeneous monolayer of cells interconnected by tight junctions at sites of cell-cell contact. Paracellular permeability depends on claudin-family tight junction proteins. Of over a dozen alveolar claudins, cldn-3, cldn-4 and cldn-18 are the most highly expressed; other prominent alveolar claudins include cldn-5 and cldn-7. Cldn-3 is primarily expressed by type II alveolar epithelial cells whereas cldn-4 and cldn-18 are expressed throughout the alveolar epithelium. Lung diseases associated with pulmonary edema, such as alcoholic lung syndrome and acute lung injury affect alveolar claudin expression which is frequently associated with impaired fluid clearance due to increased alveolar leak. However, recent studies have identified a role for increased cldn-4 in protecting alveolar barrier function following injury. Thus, alveolar claudins are dynamically regulated, tailoring lung barrier function to control the air-liquid interface. PMID:22671603

  1. Retrospective analysis of lung function abnormalities of Bhopal gas tragedy affected population

    PubMed Central

    De, Sajal

    2012-01-01

    Background & objectives: A large numbers of subjects were exposed to the aerosol of methyl isocyanate (MIC) during Bhopal gas disaster and lung was one of the most commonly affected organs. The aim of the present study was to analyze retrospectively the lung function abnormalities among the surviving MIC exposed population (gas victims) and to compare it with the non-MIC exposed (non gas exposed) population. Methods: The spirometry data of both gas victims and non gas exposed population who attended the Bhopal Memorial Hospital & Research Centre for evaluation of their respiratory complaints from August 2001 to December 2009, were retrospectively evaluated and compared. Results: A total 4782 gas victims and 1190 non gas exposed individuals performed spirometry during the study period. Among the gas victims, obstructive pattern was the commonest (50.8%) spirometric abnormality followed by restrictive pattern (13.3%). The increased relative risk of developing restrictive abnormality among gas victims was observed in 20-29 yr age group only (adjusted relative risk: 2.94, P<0.001). Male gas victims were more affected by severe airflow obstruction than females and the overall increased relative risk (1.33 to 1.45, P<0.001) of developing obstructive pattern among gas victims was observed. Interpretation & conclusions: The present study showed that the relative risk for pulmonary function abnormalities in gas victims was significantly more among those who were young at the time of disaster. Increased smoking habit among gas victims might have played an additive effect on predominance of obstructive pattern in spirometry. PMID:22446861

  2. Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone

    PubMed Central

    Kraguljac, Nina Vanessa; White, David Matthew; Hadley, Jennifer Ann; Visscher, Kristina; Knight, David; ver Hoef, Lawrence; Falola, Blessing; Lahti, Adrienne Carol

    2015-01-01

    Objective To describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks. Material and methods 34 unmedicated patients with schizophrenia and 34 matched healthy controls were enrolled in this longitudinal study. We collected resting state functional MRI data with a 3T scanner at baseline and six weeks after they were started on risperidone. In addition, a group of 19 healthy controls were scanned twice six weeks apart. Four large scale networks, the dorsal attention network, executive control network, salience network, and default mode network were identified with seed based functional connectivity analyses. Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. Results In unmedicated patients with schizophrenia we found resting state connectivity to be increased in the dorsal attention network, executive control network, and salience network relative to control participants, but not the default mode network. Dysconnectivity was attenuated after six weeks of treatment only in the dorsal attention network. Baseline connectivity in this network was also related to clinical response at six weeks of treatment with risperidone. Conclusions Our results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity. PMID:26793436

  3. Breaking barriers. New insights into airway epithelial barrier function in health and disease.

    PubMed

    Rezaee, Fariba; Georas, Steve N

    2014-05-01

    Epithelial permeability is a hallmark of mucosal inflammation, but the molecular mechanisms involved remain poorly understood. A key component of the epithelial barrier is the apical junctional complex that forms between neighboring cells. Apical junctional complexes are made of tight junctions and adherens junctions and link to the cellular cytoskeleton via numerous adaptor proteins. Although the existence of tight and adherens junctions between epithelial cells has long been recognized, in recent years there have been significant advances in our understanding of the molecular regulation of junctional complex assembly and disassembly. Here we review the current thinking about the structure and function of the apical junctional complex in airway epithelial cells, emphasizing the translational aspects of relevance to cystic fibrosis and asthma. Most work to date has been conducted using cell culture models, but technical advancements in imaging techniques suggest that we are on the verge of important new breakthroughs in this area in physiological models of airway diseases. PMID:24467704

  4. Breaking Barriers. New Insights into Airway Epithelial Barrier Function in Health and Disease

    PubMed Central

    Rezaee, Fariba

    2014-01-01

    Epithelial permeability is a hallmark of mucosal inflammation, but the molecular mechanisms involved remain poorly understood. A key component of the epithelial barrier is the apical junctional complex that forms between neighboring cells. Apical junctional complexes are made of tight junctions and adherens junctions and link to the cellular cytoskeleton via numerous adaptor proteins. Although the existence of tight and adherens junctions between epithelial cells has long been recognized, in recent years there have been significant advances in our understanding of the molecular regulation of junctional complex assembly and disassembly. Here we review the current thinking about the structure and function of the apical junctional complex in airway epithelial cells, emphasizing the translational aspects of relevance to cystic fibrosis and asthma. Most work to date has been conducted using cell culture models, but technical advancements in imaging techniques suggest that we are on the verge of important new breakthroughs in this area in physiological models of airway diseases. PMID:24467704

  5. A broken filter: Prefrontal functional connectivity abnormalities in schizophrenia during working memory interference

    PubMed Central

    Anticevic, Alan; Repovs, Grega; Krystal, John H.; Barch, Deanna M.

    2013-01-01

    Characterizing working memory (WM) abnormalities represents a fundamental challenge in schizophrenia research given the impact of cognitive deficits on life outcome in patients. In prior work we demonstrated that dorsolateral prefrontal cortex (DLPFC) activation was related to successful distracter resistance during WM in healthy controls, but not in schizophrenia. Although understanding the impact of regional functional deficits is critical, functional connectivity abnormalities among nodes within WM networks may constitute a final common pathway for WM impairment. Therefore, this study tested the hypothesis that schizophrenia is associated with functional connectivity abnormalities within DLPFC networks during distraction conditions in WM. 28 patients and 24 controls completed a delayed non-verbal WM task that included transient visual distraction during the WM maintenance phase. We computed DLPFC whole-brain task-based functional connectivity (tb-fcMRI) specifically during the maintenance phase in the presence or absence of distraction. Results revealed that patients failed to modulate tb-fcMRI during distracter presentation in both cortical and sub-cortical regions. Specifically, controls demonstrated reductions in tb-fcMRI between DLPFC and the extended amygdala when distraction was present. Conversely, patients failed to demonstrate a change in coupling with the amygdala, but showed greater connectivity with medio-dorsal thalamus. While controls showed more positive coupling between DLPFC and other prefrontal cortical regions during distracter presentation, patients failed to exhibit such a modulation. Taken together, these findings support the notion that observed distracter resistance deficit involves a breakdown in coupling between DLPFC and distributed regions, encompassing both subcortical (thalamic/limbic) and control region connectivity. PMID:22863548

  6. Functional changes of intestinal mucosal barrier in surgically critical patients

    PubMed Central

    Guo, Yuan-yuan; Liu, Mu-lin; He, Xian-di; Jiang, Cong-qiao; Liu, Rui-lin

    2010-01-01

    BACKGROUND: The gut is capable of inducing multiple organ dysfunction syndrome (MODS). In the diagnosis and treatment of critical ill patients, doctors should pay particular attention to the protection or recovery of intestinal barrier function. However, no reliable diagnostic criteria are available clinically. This study aimed to assess the changes of intestinal mucosal barrier function in surgically critical ill patients as well as their significance. METHODS: Thirty-eight surgically critical ill patients were enrolled as a study group (APACHE II>8 scores), and 15 non-critical ill patients without intestinal dysfunction were selected as a control group (APACHE II<6). General information, symptoms, physical signs, and APACHE II scores of the patients were recorded. The patients in the study group were subdivided into an intestinal dysfunction group (n=26) and a non-intestinal dysfunction group (n=12). Three ml venous blood was collected from the control group on admission and the same volume of plasma was collected from the study group both on admission and in the period of recovery. The plasma concentrations of endotoxin, diamine oxidase (DAO), D-lactate, and intestinal fatty-acid binding protein (iFABP) were detected respectively. The data collected were analyzed by the SPSS 17.0 software for Windows. RESULTS: The levels of variables were significantly higher in the study group than in the control group (P<0.01). They were higher in the intestinal dysfunction group than in the non-intestinal dysfunction group (DAO P<0.05, endotoxin, D-lactate, iFABP P<0.01). In the non-intestinal dysfunction group compared with the control group, the level of endotoxin was not significant (P>0.05), but the levels of DAO, D-lactate and iFABP were statistically significant (P<0.05). The levels of variables in acute stage were higher than those in recovery stage (P<0.01). The death group showed higher levels of variables than the survival group (endotoxin and D-lactate P<0.01, DAO and iFABP P<0.05). CONCLUSION: The plasma concentrations of endotoxin, DAO, D-lactate, and intestinal fatty-acid binding protein (iFABP) could reflect a better function of the intestinal mucosa barrier in surgically critical ill patients. PMID:25214969

  7. Should We Look for Celiac Disease among all Patients with Liver Function Test Abnormalities?

    PubMed Central

    Emami, Mohammad Hassan; Hashemi, Marzieh; Kouhestani, Soheila; Taheri, Hajar; Karimi, Somayeh

    2012-01-01

    Background: Celiac disease (CD) has been found in up to 10% of the patients presenting with unexplained abnormal liver function tests (LFT). As there is no precise data from our country in this regard, we investigated the prevalence of CD in patients presenting with abnormal LFT. Methods: From 2003 to 2008, we measured IgA anti-tissue transglutaminase (t-TG) antibody (with ELISA technique) within the first-level screening steps for all patients presenting with abnormal LFT to three outpatient gastroenterology clinics in Isfahan, IRAN. All subjects with an IgA anti-tTG antibody value of >10 μ/ml (seropositive) were undergone upper gastrointestinal endoscopy and duodenal biopsy. Histopathological changes were assessed according to the Marsh classification. CD was defined as being seropositive with Marsh I or above in histopathology and having a good response to gluten free diet (GFD). Results: During the study, 224 patients were evaluated, out of which, 10 patients (4.4%) were seropositive for CD. Duodenal biopsies were performed in eight patients and revealed six (2.7%) cases of Marsh I or above (four Marsh IIIA, two Marsh I), all of them had good response to GFD. The overall prevalence of CD among patients with hypertransaminasemia, autoimmune hepatitis, and cryptogenic cirrhosis was determined as 10.7% (3/28), 3.4% (2/59), and 5.3% (1/19), respectively. Conclusion: Serological screening with IgA anti-tTG antibody test should be routinely performed in patients presenting with abnormal LFT and especially those with chronic liver diseases including hypertransaminasemia, autoimmune hepatitis, and cryptogenic cirrhosis. PMID:22448309

  8. Functional changes are associated with tracheal structural abnormalities in patients with acromegaly

    PubMed Central

    Camilo, Gustavo Bittencourt; Guimarães, Fernando Silva; Mogami, Roberto; Faria, Alvaro Camilo Dias; Melo, Pedro Lopes

    2016-01-01

    Introduction Although impaired pulmonary function and respiratory sleep disorders are described as responsible for increased mortality in acromegalic patients, little is known about the tracheal abnormalities in this group of patients. Thus, the objectives of this study were to describe the tracheal structural abnormalities and correlate these changes with the respiratory function and clinical data of acromegalic patients. Material and methods This is a cross-sectional study that was carried out at two university hospitals. Twenty acromegalic patients underwent spirometry, forced oscillation technique, and computed tomography (CT) assessments. Dyspnea and daytime sleepiness were assessed using the Modified Medical Research Council (MMRC) scale and the Epworth Sleepiness Scale (ESS), respectively. Forty matched subjects served as controls. Results The acromegalic patients exhibited larger median ratios between forced expiratory flow and forced inspiratory flow at 50% of the forced vital capacity (FEF50%/FIF50%) (2.05 vs. 1.06, p = 0.0001) compared with healthy volunteers. In the CT analysis, acromegalic patients exhibited larger median differences between their cervical and thoracic tracheal diameters (Δ tracheal diameters) (3 vs. 1 mm; p = 0.003). An association was found between FEF50%/FIF50% and the following variables: mean resistance (Rm), cervical tracheal diameter, and Δ tracheal diameters. Rm also exhibited a negative correlation with cervical tracheal diameter. Neither the MMRC scale nor the ESS exhibited any significant correlation with large airway obstruction (LAO) indices or with the measured tracheal diameters. Conclusions Acromegalic patients have tracheal structural abnormalities which are associated with functional indicators of LAO but not with clinical data. PMID:26925121

  9. Morphological and functional abnormalities of salience network in the early-stage of paranoid schizophrenia.

    PubMed

    Pu, Weidan; Li, Li; Zhang, Huiran; Ouyang, Xuan; Liu, Haihong; Zhao, Jingping; Li, Lingjiang; Xue, Zhimin; Xu, Ke; Tang, Haibo; Shan, Baoci; Liu, Zhening; Wang, Fei

    2012-10-01

    A salience network (SN), mainly composed of the anterior insula (AI) and anterior cingulate cortex (ACC), has been suggested to play an important role in salience attribution which has been proposed as central to the pathology of paranoid schizophrenia. The role of this SN in the pathophysiology of paranoid schizophrenia, however, still remains unclear. In the present study, voxel-based morphometry and resting-state functional connectivity analyses were combined to identify morphological and functional abnormalities in the proposed SN in the early-stage of paranoid schizophrenia (ESPS). Voxel-based morphometry and resting-state functional connectivity analyses were applied to 90 ESPS patients and 90 age- and sex-matched healthy controls (HC). Correlation analyses were performed to examine the relationships between various clinical variables and both gray matter morphology and functional connectivity within the SN in ESPS. Compared to the HC group, the ESPS group showed significantly reduced gray matter volume (GMV) in both bilateral AI and ACC. Moreover, significantly reduced functional connectivity within the SN sub-networks was identified in the ESPS group. These convergent morphological and functional deficits in SN were significantly associated with hallucinations. Additionally, illness duration correlated with reduced GMV in the left AI in ESPS. In conclusion, these findings provide convergent evidence for the morphological and functional abnormalities of the SN in ESPS. Moreover, the association of illness duration with the reduced GMV in the left AI suggests that the SN and the AI, in particular, may manifest progressive morphological changes that are especially important in the emergence of ESPS. PMID:22910405

  10. Matrix Hyaluronan-Activated CD44 Signaling Promotes Keratinocyte Activities and Improves Abnormal Epidermal Functions

    PubMed Central

    Bourguignon, Lilly Y.W.

    2015-01-01

    Hyaluronan (HA), a major component of the extracellular matrix, is enriched in skin tissues, particularly the epidermis. HA binds to a ubiquitous, abundant, and functionally important family of cell surface receptors, CD44. This article reviews the current evidence for HA/CD44-mediated activation of RhoGTPase signaling and calcium mobilization, leading to the regulation of keratinocyte activities and various epidermal functions. It further discusses the role of HA-mediated CD44 interactions with unique downstream effectors, such as RhoGTPases (RhoA and Rac1), Rho-kinase, protein kinase-Nγ, and phosphoinositide-specific phospholipases (phospholipases Cε and Cγ1) in coordinating certain intracellular signaling pathways, such as calcium mobilization, phosphatidylinositol 3-kinase–AKT activation, cortactin-actin binding, and actin-associated cytoskeleton reorganization; generating the onset of important keratinocyte activities, such as cell adhesion, proliferation, migration, and differentiation; and performing epidermal functions. Topical application of selective HA fragments (large versus small HA) to the skin of wild-type mice (but not CD44 knockout mice) improves keratinocyte-associated epidermal functions and accelerates permeability barrier recovery and skin wound healing. Consequently, specific HA fragment (large versus small HA)–mediated signaling events (through the CD44 receptor) are required for keratinocyte activities, which offer new HA-based therapeutic options for patients experiencing epidermal dysfunction and skin damage as well as aging-related skin diseases, such as epidermal thinning (atrophy), permeability barrier dysfunction, and chronic nonhealing wounds. PMID:24819962

  11. An abnormal resting-state functional brain network indicates progression towards Alzheimer's disease.

    PubMed

    Xiang, Jie; Guo, Hao; Cao, Rui; Liang, Hong; Chen, Junjie

    2013-10-25

    Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer's disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations (normal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer's disease) using the Alzheimer's Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer's disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the resting-state functional network gradually increased, while clustering coefficients gradually decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In addition, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzheimer's disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventually lead to diffuse brain injury and other cognitive impairments. PMID:25206600

  12. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum

    PubMed Central

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Bron, Esther E.; Osse, Robert Jan; de Koning, Inge; Jiskoot, Lize C.; Klein, Stefan; de Jong, Frank Jan; van der Lugt, Aad; van Swieten, John C.; Smits, Marion

    2016-01-01

    Purpose ‘Phenocopy’ frontotemporal dementia (phFTD) patients may clinically mimic the behavioral variant of FTD (bvFTD), but do not show functional decline or abnormalities upon visual inspection of routine neuroimaging. We aimed to identify abnormalities in gray matter (GM) volume and perfusion in phFTD and to assess whether phFTD belongs to the FTD spectrum. We compared phFTD patients with both healthy controls and bvFTD patients. Materials & methods Seven phFTD and 11 bvFTD patients, and 20 age-matched controls underwent structural T1-weighted magnetic resonance imaging (MRI) and 3D pseudo-continuous arterial spin labeling (pCASL) at 3T. Normalized GM (nGM) volumes and perfusion, corrected for partial volume effects, were quantified regionally as well as in the entire supratentorial cortex, and compared between groups taking into account potential confounding effects of gender and scanner. Results PhFTD patients showed cortical atrophy, most prominently in the right temporal lobe. Apart from this regional atrophy, GM volume was generally not different from either controls or from bvFTD. BvFTD however showed extensive frontotemporal atrophy. Perfusion was increased in the left prefrontal cortex compared to bvFTD and to a lesser extent to controls. Conclusion PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum. PMID:27222795

  13. Functional evaluation of an inherited abnormal fibrinogen: fibrinogen “Baltimore”

    PubMed Central

    Beck, Eugene A.; Shainoff, John R.; Vogel, Alfred; Jackson, Dudley P.

    1971-01-01

    The rate of clotting and the rate of development and degree of turbidity after addition of thrombin to plasma or purified fibrinogen from a patient with fibrinogen Baltimore was delayed when compared with normal, especially in the presence of low concentrations of thrombin. Optimal coagulation and development of translucent, rather than opaque, clots occurred at a lower pH with the abnormal fibrinogen than with normal. Development of turbidity during clotting of the abnormal plasma or fibrinogen was less than normal at each pH tested, but was maximal in both at approximately pH 6.4. The physical quality of clots formed from fibrinogen Baltimore was abnormal, as demonstrated by a decreased amplitude on thromboelastography. The morphologic appearance of fibrin strands formed from fibrinogen Baltimore by thrombin at pH 7.4 was abnormal when examined by phase contrast or electron microscopy, but those formed by thrombin at pH 6.4 or by thrombin and calcium chloride were similar to, though less compact, than normal fibrin. The periodicity of fibrin formed from fibrinogen Baltimore was similar to normal and was 231-233 Å. A study of the release of the fibrinopeptides from the patient's fibrinogen and its chromatographic subfractions verified the existence of both a normally behaving and a defective form of fibrinogen in the patient's plasma. The defective form differed from normal in three functionally different ways: (a) the rate of release of fibrinopeptides A and AP was slower than normal; (b) no visible clot formation accompanied either partial or complete release of the fibrinopeptides from the defective form in 0.3 M NaCl at pH 7.4; and (c) the defective component possessed a high proportion of phosphorylated, relative to nonphosphorylated, fibrinopeptide A, while the coagulable component contained very little of the phosphorylated peptide (AP). The high phosphate content of the defective component did not appear to be the cause of the abnormality, but may be the result of an associated metabolic or genetic phenomenon. Images PMID:5564395

  14. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma

    SciTech Connect

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Steen, V.D.; Uretsky, B.F.; Owens, G.R.; Rodnan, G.P.

    1984-01-19

    To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thallium defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury.

  15. The influence of artificial sealing on the capillary barrier's function.

    PubMed

    Trpkosová, Dagmar; Mls, Jirí

    2010-01-01

    Regulations for the sealing of landfill sites require two independent sealing components. To satisfy this requirement, the combined capillary barrier was developed using impermeable sheeting placed between the capillary layer and the capillary block of the traditional capillary barrier. In this study, a numerical model is introduced based on hydraulic characteristics obtained by means of measurements of samples of capillary barrier materials. To make a comparison possible, samples of a laboratory investigated barrier were measured. Two laboratory experiments with a simple and a combined capillary barrier were repeated using the developed numerical model and good agreement between computed and measured results was found. Subsequently, the model was used for investigating the effect of failure of the artificial sheeting on the capillary barrier's efficiency. The obtained results are presented and discussed. PMID:19853432

  16. Sleep Restriction Impairs Blood–Brain Barrier Function

    PubMed Central

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping

    2014-01-01

    The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

  17. Food Derived Bioactive Peptides and Intestinal Barrier Function

    PubMed Central

    Martínez-Augustin, Olga; Rivero-Gutiérrez, Belén; Mascaraque, Cristina; Sánchez de Medina, Fermín

    2014-01-01

    A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action. PMID:25501338

  18. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice

    PubMed Central

    Miranda-Angulo, Ana L.; Byerly, Mardi S.; Mesa, Janny; Wang, Hong; Blackshaw, Seth

    2013-01-01

    The wall of the ventral third ventricle is composed of two distinct cell populations: tanycytes and ependymal cells. Tanycytes regulate many aspects of hypothalamic physiology, but little is known about the transcriptional network that regulates their development and function. We observed that the retina and anterior neural fold homeobox transcription factor (Rax) is selectively expressed in hypothalamic tanycytes, and showed a complementary pattern of expression to markers of hypothalamic ependymal cells, such as Rarres2 (retinoic acid receptor responder). To determine whether Rax controls tanycyte differentiation and function, we generated Rax haploinsufficient mice and examined their cellular and molecular phenotype in adulthood. These mice appeared grossly normal, but careful examination revealed a thinning of the third ventricular wall and reduction of both tanycyte and ependymal markers. These experiments show that Rax is required for hypothalamic tanycyte and ependymal cell differentiation. Rax haploinsufficiency also resulted in the ectopic presence of ependymal cells in the α2 tanycytic zone, where few ependymal cells are normally found, suggesting that Rax is selectively required for α2 tanycyte differentiation. These changes in the ventricular wall were associated with reduced diffusion of Evans Blue tracer from the ventricle to the hypothalamic parenchyma, with no apparent repercussion on the gross anatomical or behavioral phenotype of these mice. In conclusion, we have provided evidence that Rax is required for the normal differentiation and patterning of hypothalamic tanycytes and ependymal cells, as well as for maintenance of the cerebrospinal fluid-hypothalamus barrier. PMID:23939786

  19. Abnormal functional connectivity of the amygdala is associated with depression in Parkinson's disease.

    PubMed

    Hu, Xiao; Song, Xiaopeng; Yuan, Yonggui; Li, Erfeng; Liu, Jiajia; Liu, Weiguo; Liu, Yijun

    2015-02-01

    Depressive symptoms are common in Parkinson's disease (PD), but the pathophysiology and neural basis underlying depression in PD is not well understood. Abnormal functional connectivity of the amygdala with various cortical and subcortical areas has been observed in major depressive disorder, indicating that dysfunction of the corticolimbic network may be involved in the pathogenesis of major depressive disorder. However, little is known about alterations of amygdala functional connectivity in depressed PD patients. In the present study, 20 depressed PD patients, 40 nondepressed PD patients, and 43 matched healthy controls underwent neuropsychological tests and resting-state functional MRI scanning. Between-group differences in amygdala functional connectivity network were examined using t tests. Compared to the nondepressed PD patients, depressed PD patients showed increased left amygdala functional connectivity with the bilateral mediodorsal thalamus, right amygdala functional connectivity with the left superior temporal gyrus, and left calcarine gyrus. Compared to the healthy controls, the depressed PD group also showed increased left amygdala functional connectivity with the bilateral mediodorsal thalamus, but decreased left amygdala functional connectivity with the left putamen, left inferior frontal gyrus, and the right cerebellum, as well as decreased right amygdala functional connectivity with the left inferior orbitofrontal gyrus, the left gyrus rectus, and the right putamen. The increased connectivity between limbic regions and decreased connectivity between the corticolimbic networks may reflect impaired high-order cortical regulatory effects on the emotion-related limbic areas, which may lead to mood dysregulation. Our study should advance the understanding of neural mechanisms underlying depression in PD. PMID:25545969

  20. Left-Hemispheric Microstructural Abnormalities in Children With High Functioning Autism Spectrum Disorder

    PubMed Central

    Peterson, Daniel; Mahajan, Rajneesh; Crocetti, Deana; Mejia, Amanda; Mostofsky, Stewart

    2014-01-01

    Current theories of the neurobiological basis of Autism Spectrum Disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used Diffusion Tensor Imaging to investigate the microstructural properties of the white matter that mediates inter-regional connectivity in 36 high-functioning children with ASD (HF-ASD), as compared to 37 controls. By employing an atlas-based analysis using LDDMM registration, a widespread, but left-lateralized pattern of abnormalities was revealed. The Mean Diffusivity (MD) of water in the white matter of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical white matter. Across diagnostic groups there was a significant effect of age on left hemisphere MD, with a similar reduction in MD during childhood in both TD and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination, and may reflect increased short-range cortico-cortical connections subsequent to early white matter overgrowth. These findings also highlight left hemispheric connectivity as relevant to the pathophysiology of ASD, and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread, and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD. PMID:25256103

  1. Abnormal Compartmentalization of Cartilage Matrix Components in Mice Lacking Collagen X: Implications for Function

    PubMed Central

    Kwan, Kin Ming; Pang, Michael K.M.; Zhou, Sheila; Cowan, Soot Keng; Kong, Richard Y.C.; Pfordte, Tim; Olsen, Bjorn R.; Sillence, David O.; Tam, Patrick P.L.; Cheah, Kathryn S.E.

    1997-01-01

    There are conflicting views on whether collagen X is a purely structural molecule, or regulates bone mineralization during endochondral ossification. Mutations in the human collagen α1(X) gene (COL10A1) in Schmid metaphyseal chondrodysplasia (SMCD) suggest a supportive role. But mouse collagen α1(X) gene (Col10a1) null mutants were previously reported to show no obvious phenotypic change. We have generated collagen X deficient mice, which shows that deficiency does have phenotypic consequences which partly resemble SMCD, such as abnormal trabecular bone architecture. In particular, the mutant mice develop coxa vara, a phenotypic change common in human SMCD. Other consequences of the mutation are reduction in thickness of growth plate resting zone and articular cartilage, altered bone content, and atypical distribution of matrix components within growth plate cartilage. We propose that collagen X plays a role in the normal distribution of matrix vesicles and proteoglycans within the growth plate matrix. Collagen X deficiency impacts on the supporting properties of the growth plate and the mineralization process, resulting in abnormal trabecular bone. This hypothesis would accommodate the previously conflicting views of the function of collagen X and of the molecular pathogenesis of SMCD. PMID:9015315

  2. Cognitive, neurophysiological, and functional correlates of proverb interpretation abnormalities in schizophrenia.

    PubMed

    Kiang, Michael; Light, Gregory A; Prugh, Jocelyn; Coulson, Seana; Braff, David L; Kutas, Marta

    2007-07-01

    A hallmark of schizophrenia is impaired proverb interpretation, which could be due to: (1) aberrant activation of disorganized semantic associations, or (2) working memory (WM) deficits. We assessed 18 schizophrenia patients and 18 normal control participants on proverb interpretation, and evaluated these two hypotheses by examining within patients the correlations of proverb interpretation with disorganized symptoms and auditory WM, respectively. Secondarily, we also explored the relationships between proverb interpretation and a spectrum of cognitive functions including auditory sensory-memory encoding (as indexed by the mismatch negativity (MMN) event-related brain potential (ERP)); executive function; and social/occupational function. As expected, schizophrenia patients produced less accurate and less abstract descriptions of proverbs than did controls. These proverb interpretation difficulties in patients were not significantly correlated with disorganization or other symptom factors, but were significantly correlated (p < .05) with WM impairment, as well as with impairments in sensory-memory encoding, executive function, and social/occupational function. These results offer no support for disorganized associations in abnormal proverb interpretation in schizophrenia, but implicate WM deficits, perhaps as a part of a syndrome related to generalized frontal cortical dysfunction. PMID:17521483

  3. Abnormal Functional Connectivity of Amygdala in Late-Onset Depression Was Associated with Cognitive Deficits

    PubMed Central

    Yue, Yingying; Yuan, Yonggui; Hou, Zhenghua; Jiang, Wenhao; Bai, Feng; Zhang, Zhijun

    2013-01-01

    Background Major depressive disorder (MDD) is associated with decreased function of cortico-limbic circuits, which play important roles in the pathogenesis of MDD. Abnormal functional connectivity (FC) with the amygdala, which is involved in cortico-limbic circuits, has also been observed in MDD. However, little is known about connectivity alterations in late-onset depression (LOD) or whether disrupted connectivity is correlated with cognitive impairment in LOD. Methods and Results A total of twenty-two LOD patients and twenty-two matched healthy controls (HC) underwent neuropsychological tests and resting state functional magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) and FC with bilateral amygdala seeds were used to analyze blood oxygen level-dependent fMRI data between two groups. Compared with HC, LOD patients showed decreased ReHo in the right middle frontal gyrus and left superior frontal gyrus. In the LOD group, the left amygdala had decreased FC with the right middle frontal gyrus and the left superior frontal gyrus in the amygdala positive network, and it had increased FC with the right post-central gyrus in the amygdala negative network. However, significantly reduced FC with the right amygdala was observed in the right middle occipital gyrus in the amygdala negative network. Further correlative analyses revealed that decreased FC between the amygdala and the right middle occipital gyrus was negatively correlated with the verbal fluency test (VFT, r = −0.485, P = 0.022) and the digit span test (DST, r = −0.561, P = 0.007). Conclusions Our findings of reduced activity of the prefrontal gyrus and abnormal FC with the bilateral amygdala may be key markers of cognitive dysfunction in LOD patients. PMID:24040385

  4. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    PubMed

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p < 0.05, corrected). In contrast, PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p < 0.05, corrected). Critically, these connectivity changes coincided with diminished grey matter volume within BLA and CMA subnuclei (p < 0.05, corrected), with CMA connectivity shifts additionally relating to more severe symptoms of PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets. Hum Brain Mapp 37:1120-1135, 2016. © 2016 Wiley Periodicals, Inc. PMID:26859310

  5. Abnormal intragastric distribution of food during gastric emptying in functional dyspepsia patients.

    PubMed Central

    Troncon, L E; Bennett, R J; Ahluwalia, N K; Thompson, D G

    1994-01-01

    Although delayed gastric emptying is found in some patients with functional dyspepsia, there seems to be little relation between rate of emptying and symptoms. This study examined the hypothesis that food maldistribution rather than gastric stasis may equate to symptoms in such patients and used scintigraphic techniques to quantify the partition of gastric contents between proximal and distal stomach during gastric emptying. Eleven patients with functional dyspepsia characterised by chronic severe postprandial bloating without organic abnormality, and 12 healthy volunteers, ingested a standard meal labelled with technetium-99M (99mTc). Serial images of the gastric area in anterior and posterior projections were taken for 90 minutes, regions of interest for proximal, distal, and total stomach were defined, and activity time curves were derived from the geometric means of anterior and posterior counts. Total emptying in patients (median: 46 minutes; range: 30-76) was not significantly different from controls (45 minutes; 28-58) and only three showed delayed gastric emptying. In controls, food remained predominantly in the proximal half of the stomach after ingestion and then redistributed to the distal half. In the patients, however, initial activity in the proximal half after ingestion (48%; 40-65) was significantly lower (p < 0.05) than in controls (60%; 39-73) and distributed more fully to the distal half of the stomach with a peak distal activity (56%; 34-58), which was consistently higher than in controls (36%; 33-42) (p < 0.05). It is concluded that this subgroup of functional dyspepsia patients show abnormal intragastric distribution of food, independent of gastric emptying rate. Images Figure 1 PMID:8150341

  6. Helping Homeless Families Overcome Barriers to Successful Functioning

    ERIC Educational Resources Information Center

    Swick, Kevin J.

    2005-01-01

    The author articulates key stressors in the lives of families who are homeless. These stresses often combine with barriers such as lack of job opportunities and/or insensitive professionals. Strategies for helping homeless families overcome these barriers and related issues are presented.

  7. Multispecies probiotic protects gut barrier function in experimental models

    PubMed Central

    Nébot-Vivinus, Mylene; Harkat, Cherryl; Bzioueche, Hanene; Cartier, Christel; Plichon-Dainese, Raffaella; Moussa, Lara; Eutamene, Helene; Pishvaie, Dorsa; Holowacz, Sophie; Seyrig, Christian; Piche, Thierry; Theodorou, Vassilia

    2014-01-01

    AIM: To investigate the effect of the probiotic combination Lactibiane Tolerance® (LT) on epithelial barrier function in vitro and in vivo. METHODS: The effect of the multispecies probiotic LT was assessed on several models of epithelial barrier function both in vitro (in basal and inflammatory conditions) and in vivo [visceral hypersensitivity induced by chronic stress or by colonic perfusion of a fecal supernatant (FSN) from patients with irritable bowel syndrome (IBS)]. In vitro, we measured the permeability of confluent T84 cell monolayers incubated with or without LT by evaluating the paracellular flux of macromolecules, in basal conditions and after stimulation with lipopolysaccharide (LPS) or with conditioned medium of colonic biopsies from IBS patients (IBS-CM). In vivo, male C57/Bl6 mice received orally NaCl or LT for 15 d and were submitted to water avoidance stress (WAS) before evaluating visceral sensitivity by measuring the myoelectrical activity of the abdominal muscle and the paracellular permeability with 51Cr-EDTA. Permeability and sensitivity were also measured after colonic instillation of FSN. Tight-junctions were assessed by immunoblotting and TLR-4 expression was evaluated by immunohistochemistry RESULTS: Incubation of T84 cell monolayers with LT in basal conditions had no significant effect on permeability (P > 0.05 vs culture medium). By contrast, addition of LT bacterial bodies (LT) completely prevented the LPS-induced increase in paracellular permeability (P < 0.01 vs LPS 10 ng/mL (LPS 10); P < 0.01 vs LPS 100 ng/mL (LPS 100), P > 0.05 vs culture medium). The effect was dose dependent as addition of 109 LT bacterial bodies induced a stronger decrease in absorbance than 106 LT (109 LT + LPS 10: -20.1% ± 13.4, P < 0.01 vs LPS 10; 106 LT + LPS 10: -11.6% ± 6.2, P < 0.01 vs LPS 10; 109 LT + LPS 100: -14.4% ± 5.5, P < 0.01 vs LPS 100; 106 LT + LPS 100: -11.6% ± 7.3, P < 0.05 vs LPS 100). Moreover, the increase in paracellular permeability induced by culturing T84 cells with conditioned medium of colonic biopsies from IBS patients (IBS-CM) was completely inhibited in the presence of 109 LT (P < 0.01 vs IBS-CM). LT also significantly prevented the epithelial disruption induced by intracolonic infusion of fecal supernatant from IBS patients (P < 0.01 vs IBS FSN) or water avoidance stress P < 0.01 vs WAS) in C57/Bl6 mice and increased the expression of occludin in vitro and in vivo, as assessed by immnunoblotting. The WAS-induced effect on visceral sensitivity was prevented by LT treatment since values obtained for all steps of colorectal distension were significantly (P < 0.01) different from the WAS group. Finally, LT down-regulated the response mediated through TLR-4 in vitro (decrease in tumor necrosis factor α secretion in response to LPS: -65.8% for 109 LT and -52.5% for 106 LT, P < 0.01 vs LPS) and in vivo (inhibition of WAS induced an increase in TLR-4 expression in the LT treated mice colon, P < 0.01 vs WAS). CONCLUSION: The probiotic LT mix prevented the disruption to the epithelial barrier induced by LPS, stress or colonic soluble factors from IBS patients and prevented visceral hypersensitivity. PMID:24944474

  8. Mapping the human blood-retinal barrier function.

    PubMed

    Bernardes, Rui; Dias, Jorge; Cunha-Vaz, José

    2005-01-01

    The aim of the work herein presented is to map blood-retinal barrier function by measuring retinal fluorescein leakage from the blood stream into the human vitreous using a confocal scanning laser ophthalmoscope (CSLO). Existing methods for the assessment of fluorescein leakage into the human vitreous are based on the qualitative evaluation of fluorescein angiographies (FA) and on volume measurements, as performed by the Fluorotron Master. A new procedure is presented capable of measuring fluorescein leakage into the vitreous while simultaneously imaging the retina. The present methodology computes the fluorescein leakage in a fully automated way, based on the three-dimensional fluorescence distribution in the human eye by using a single data acquisition. The processing includes signal filtering, volume alignment and profile deconvolution. The deconvolved profile obeys the established physical model. Representative cases shown are: a healthy eye; an eye with drusen from a nondiabetic person; a photocoagulated eye; and an eye with nonproliferative diabetic retinopathy. The results are in agreement with previous findings and go a step further by making possible its daily usage in a clinical setup based on currently available instrumentation. PMID:15651569

  9. Effect of microplasma irradiation on skin barrier function

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo; Tran, Nhat An; Blajan, Marius

    2015-09-01

    This study investigates the feasibility of atmospheric-pressure argon microplasma irradiation (AAMI) to promote drug delivery through skin. Yucatan micropig skin was used as a biological object for evaluation of in vitro percutaneous absorption. The changes in lipids, proteins and water content of the pig stratum corneum (SC) after AAMI were compared to those of a tape stripping test (TST) and plasma jet irradiation (PJI) using attenuated total reflection-Fourier transform infrared spectroscopy analysis. The significant reduction in the methylene stretching modes absorbance resulted in the disturbance in the SC lipids caused by AAMI was observed at 2850 and 2920 cm-1. Moreover, as the result of TST, trans-epidermal water loss (TEWL) after both AAMI and PJI were also increased, that could lead to a decrease of barrier function of SC, and could enhance the transdermal absorption of drugs. Under the conditions of this study, TEWL value of 5 minutes AAMI (35.92 +/- 3.48 g/m2h) was approximately the same as that value of 10 times TST (34.30 +/- 3.54 g/m2h), that makes the effect of these manipulations on the surfaces is considered to be at the same levels. Furthermore, unlike the obtained microscopic observation from PJI, there was no thermal damage observed on the skins after AAMI.

  10. The role of intestinal epithelial barrier function in the development of NEC

    PubMed Central

    Halpern, Melissa D; Denning, Patricia W

    2015-01-01

    The intestinal epithelial barrier plays an important role in maintaining host health. Breakdown of intestinal barrier function is known to play a role in many diseases such as infectious enteritis, idiopathic inflammatory bowel disease, and neonatal inflammatory bowel diseases. Recently, increasing research has demonstrated the importance of understanding how intestinal epithelial barrier function develops in the premature neonate in order to develop strategies to promote its maturation. Optimizing intestinal barrier function is thought to be key to preventing neonatal inflammatory bowel diseases such as necrotizing enterocolitis. In this review, we will first summarize the key components of the intestinal epithelial barrier, what is known about its development, and how this may explain NEC pathogenesis. Finally, we will review what therapeutic strategies may be used to promote optimal development of neonatal intestinal barrier function in order to reduce the incidence and severity of NEC. PMID:25927016

  11. The role of intestinal epithelial barrier function in the development of NEC.

    PubMed

    Halpern, Melissa D; Denning, Patricia W

    2015-01-01

    The intestinal epithelial barrier plays an important role in maintaining host health. Breakdown of intestinal barrier function is known to play a role in many diseases such as infectious enteritis, idiopathic inflammatory bowel disease, and neonatal inflammatory bowel diseases. Recently, increasing research has demonstrated the importance of understanding how intestinal epithelial barrier function develops in the premature neonate in order to develop strategies to promote its maturation. Optimizing intestinal barrier function is thought to be key to preventing neonatal inflammatory bowel diseases such as necrotizing enterocolitis. In this review, we will first summarize the key components of the intestinal epithelial barrier, what is known about its development, and how this may explain NEC pathogenesis. Finally, we will review what therapeutic strategies may be used to promote optimal development of neonatal intestinal barrier function in order to reduce the incidence and severity of NEC. PMID:25927016

  12. Abnormal recovery function of somatosensory evoked potentials in patients with primary insomnia.

    PubMed

    Huang, Zhaoyang; Zhan, Shuqin; Li, Ning; Ding, Yan; Wang, Yuping

    2012-08-15

    Neurobiological correlates underlying insomnia are poorly understood. The hyperarousal of the central nervous system indicates that cortical excitability may be abnormal in patients with insomnia. The purpose of the present study was to investigate changes in cortical excitability by examining the recovery function of median nerve somatosensory evoked potentials (SEPs) in patients with primary insomia (PI). We studied the recovery function of median nerve SEPs in 12 medication-naive PI patients and in 12 age- and sex-matched healthy subjects. SEPs in response to single stimulus and paired stimuli at interstimulus intervals (ISIs) of 20, 60, 100 and 150 ms were recorded. The recovery function of the cortical components of frontal P20 and parietal N20 showed significantly reduced suppression in PI patients as compared to healthy controls. In conclusion, this is the first study investigating changes in cortical excitability in PI patients by examining the recovery function of median nerve SEPs. The present study suggests that cortical excitability is increased in PI patients. Dysfunction of inhibitory GABAergic interneurons of the cerebral cortex might contribute to the increased cortical excitability in PI patients. PMID:22424903

  13. Resting state functional MRI reveals abnormal network connectivity in neurofibromatosis 1.

    PubMed

    Tomson, Steffie N; Schreiner, Matthew J; Narayan, Manjari; Rosser, Tena; Enrique, Nicole; Silva, Alcino J; Allen, Genevera I; Bookheimer, Susan Y; Bearden, Carrie E

    2015-11-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. PMID:26304096

  14. Abnormal striatal resting-state functional connectivity in adolescents with obsessive-compulsive disorder.

    PubMed

    Bernstein, Gail A; Mueller, Bryon A; Schreiner, Melinda Westlund; Campbell, Sarah M; Regan, Emily K; Nelson, Peter M; Houri, Alaa K; Lee, Susanne S; Zagoloff, Alexandra D; Lim, Kelvin O; Yacoub, Essa S; Cullen, Kathryn R

    2016-01-30

    Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC circuitry in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution. Fifteen adolescents with OCD and 13 age- and gender-matched healthy controls (ages 12-19) underwent R-fMRI on the 3T HCP scanner. Twenty-four minutes of resting-state scans (two consecutive 12-min scans) were acquired. We investigated functional connectivity of the striatum using a seed-based, whole brain approach with anatomically-defined seeds placed in the bilateral caudate, putamen, and nucleus accumbens. Adolescents with OCD compared with controls exhibited significantly lower functional connectivity between the left putamen and a single cluster of right-sided cortical areas including parts of the orbitofrontal cortex, inferior frontal gyrus, insula, and operculum. Preliminary findings suggest that impaired striatal connectivity in adolescents with OCD in part falls within the predicted CSTC network, and also involves impaired connections between a key CSTC network region (i.e., putamen) and key regions in the salience network (i.e., insula/operculum). The relevance of impaired putamen-insula/operculum connectivity in OCD is discussed. PMID:26674413

  15. Cerebral Correlates of Abnormal Emotion Conflict Processing in Euthymic Bipolar Patients: A Functional MRI Study

    PubMed Central

    Favre, Pauline; Polosan, Mircea; Pichat, Cédric; Bougerol, Thierry; Baciu, Monica

    2015-01-01

    Background Patients with bipolar disorder experience cognitive and emotional impairment that may persist even during the euthymic state of the disease. These persistent symptoms in bipolar patients (BP) may be characterized by disturbances of emotion regulation and related fronto-limbic brain circuitry. The present study aims to investigate the modulation of fronto-limbic activity and connectivity in BP by the processing of emotional conflict. Methods Fourteen euthymic BP and 13 matched healthy subjects (HS) underwent functional magnetic resonance imaging (fMRI) while performing a word-face emotional Stroop task designed to dissociate the monitoring/generation of emotional conflict from its resolution. Functional connectivity was determined by means of psychophysiological interaction (PPI) approach. Results Relative to HS, BP were slower to process incongruent stimuli, reflecting higher amount of behavioral interference during emotional Stroop. Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict. In addition, during conflict monitoring, BP showed abnormal positive connectivity between the right DLPFC and several regions of the default mode network. Conclusions Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict. Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention. PMID:26244883

  16. Skin Barrier Function and Its Importance at the Start of the Atopic March

    PubMed Central

    Hogan, Mary Beth; Peele, Kathy; Wilson, Nevin W.

    2012-01-01

    Atopic dermatitis can be due to a variety of causes from nonatopic triggers to food allergy. Control of egress of water and protection from ingress of irritants and allergens are key components of cutaneous barrier function. Current research suggests that a degraded barrier function of the skin allows the immune system inappropriate access to environmental allergens. Epidermal aeroallergen exposure may allow sensitization to allergen possibly initiating the atopic march. Further research into connections between epidermal barrier function and possible allergen sensitization will be important to undertake. Future clinical trials focused on skin barrier protection may be of value as a possible intervention in prevention of the initiation of the atopic march. PMID:22619686

  17. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study

    PubMed Central

    Slobounov, Semyon M.; Zhang, K.; Pennell, D.; Ray, W.; Johnson, B.; Sebastianelli, W.

    2010-01-01

    Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting. PMID:20039023

  18. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance.

    PubMed

    Doucet, Gaelle E; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is necessary to produce reductions in episodic memory recall. The latter, in particular, demonstrates the complex structure/function interactions at work when trying to understand cognition in TLE, suggesting that subtle network effects can emerge bearing specific relationships to hemisphere and the type of pathology. PMID:27171178

  19. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance

    PubMed Central

    Doucet, Gaelle E.; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I.

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is necessary to produce reductions in episodic memory recall. The latter, in particular, demonstrates the complex structure/function interactions at work when trying to understand cognition in TLE, suggesting that subtle network effects can emerge bearing specific relationships to hemisphere and the type of pathology. PMID:27171178

  20. White matter microstructure abnormalities and executive function in adolescents with prenatal cocaine exposure

    PubMed Central

    Lebel, Catherine; Warner, Tamara; Colby, John; Soderberg, Lindsay; Roussotte, Florence; Behnke, Marylou; Davis Eyler, Fonda; Sowell, Elizabeth R.

    2013-01-01

    Children with prenatal exposure to cocaine are at higher risk for negative behavioral function and attention difficulties, and have demonstrated brain diffusion abnormalities in frontal white matter regions. However, brain regions beyond frontal and callosal areas have not been investigated using diffusion tensor imaging (DTI). DTI data were collected on 42 youth aged 14–16 years; subjects were divided into three groups based on detailed exposure histories: those with prenatal exposure to cocaine but not alcohol (PCE, n=12), prenatal exposure to cocaine and alcohol (CAE, n=17), and controls (n=13). Tractography was performed and along-tract diffusion parameters were examined for group differences and correlations with executive function measures. In the right arcuate fasciculus and cingulum, the CAE group had higher fractional anisotropy (FA) and/or lower mean diffusivity (MD) than the other two groups. The PCE group demonstrated lower FA in the right arcuate and higher MD in the splenium of the corpus callosum than controls. Diffusion parameters in tracts with group differences correlated with measures of executive function. In conclusion, these diffusion differences in adolescents with prenatal cocaine exposure suggest localized, long-term structural brain alterations that may underlie attention and response inhibition difficulties. PMID:23769420

  1. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination.

    PubMed

    Kirk, John; Plumb, Jonnie; Mirakhur, Meenakshi; McQuaid, Stephen

    2003-10-01

    Blood-brain barrier (BBB) hyperpermeability in multiple sclerosis (MS) is associated with lesion pathogenesis and has been linked to pathology in microvascular tight junctions (TJs). This study quantifies the uneven distribution of TJ pathology and its association with BBB leakage. Frozen sections from plaque and normal-appearing white matter (NAWM) in 14 cases were studied together with white matter from six neurological and five normal controls. Using single and double immunofluorescence and confocal microscopy, the TJ-associated protein zonula occludens-1 (ZO-1) was examined across lesion types and tissue categories, and in relation to fibrinogen leakage. Confocal image data sets were analysed for 2198 MS and 1062 control vessels. Significant differences in the incidence of TJ abnormalities were detected between the different lesion types in MS and between MS and control white matter. These were frequent in oil-red O (ORO)(+) active plaques, affecting 42% of vessel segments, but less frequent in ORO(-) inactive plaques (23%), NAWM (13%), and normal (3.7%) and neurological controls (8%). A similar pattern was found irrespective of the vessel size, supporting a causal role for diffusible inflammatory mediators. In both NAWM and inactive lesions, dual labelling showed that vessels with the most TJ abnormality also showed most fibrinogen leakage. This was even more pronounced in active lesions, where 41% of vessels in the highest grade for TJ alteration showed severe leakage. It is concluded that disruption of TJs in MS, affecting both paracellular and transcellular paths, contributes to BBB leakage. TJ abnormality and BBB leakage in inactive lesions suggests either failure of TJ repair or a continuing pathological process. In NAWM, it suggests either pre-lesional change or secondary damage. Clinically inapparent TJ pathology has prognostic implications and should be considered when planning disease-modifying therapy. PMID:14517850

  2. Neutralizing Anti-Interleukin-1β Antibodies Modulate Fetal Blood-Brain Barrier Function after Ischemia

    PubMed Central

    Chen, Xiaodi; Sadowska, Grazyna B.; Zhang, Jiyong; Kim, Jeong-Eun; Cummings, Erin E.; Bodge, Courtney A.; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Threlkeld, Steven W.; Banks, William A.; Stonestreet, Barbara S.

    2014-01-01

    We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 minutes of carotid occlusion and 24 hours of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154 M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 minutes and 4 hours after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r = −0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus. PMID:25258170

  3. Neutralizing anti-interleukin-1β antibodies modulate fetal blood-brain barrier function after ischemia.

    PubMed

    Chen, Xiaodi; Sadowska, Grazyna B; Zhang, Jiyong; Kim, Jeong-Eun; Cummings, Erin E; Bodge, Courtney A; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Threlkeld, Steven W; Banks, William A; Stonestreet, Barbara S

    2015-01-01

    We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus. PMID:25258170

  4. Methamphetamine effects on blood-brain barrier structure and function

    PubMed Central

    Northrop, Nicole A.; Yamamoto, Bryan K.

    2015-01-01

    Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction. PMID:25788874

  5. Methamphetamine effects on blood-brain barrier structure and function.

    PubMed

    Northrop, Nicole A; Yamamoto, Bryan K

    2015-01-01

    Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction. PMID:25788874

  6. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis.

    PubMed

    Holtzer, Roee; Verghese, Joe; Allali, Gilles; Izzetoglu, Meltem; Wang, Cuiling; Mahoney, Jeannette R

    2016-03-01

    The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait abnormalities (NGA) would moderate associations between brain activations, gait and cognitive performance. Using functional near-infrared spectroscopy we assessed changes in oxygenated hemoglobin levels in the pre-frontal cortex (PFC) during normal walk and walk while talk (WWT) conditions in a large cohort of non-demented older adults (n = 236; age = 75.5 ± 6.49 years; female = 51.7 %). NGA were defined as central (due to brain diseases) or peripheral (neuropathic gait) following a standardized neurological examination protocol. Double dissociations between brain activations and behavior emerged as a function of NGA. Higher oxygenation levels during WWT were related to better cognitive performance (estimate = 0.145; p < 0.001) but slower gait velocity (estimate = -6.336, p < 0.05) among normals. In contrast, higher oxygenation levels during WWT among individuals with peripheral NGA were associated with worse cognitive performance (estimate = -0.355; p < 0.001) but faster gait velocity (estimate = 14.855; p < 0.05). Increased activation in the PFC during locomotion may have a compensatory function that is designed to support gait among individuals with peripheral NGA. PMID:26613725

  7. Abnormal Resting-State Connectivity at Functional MRI in Women with Premenstrual Syndrome

    PubMed Central

    Liu, Qing; Li, Rui; Zhou, Renlai; Li, Juan; Gu, Quan

    2015-01-01

    Objectives Premenstrual syndrome (PMS) refers to a series of cycling and relapsing physical, emotion and behavior syndromes that occur in the luteal phase and resolve soon after the onset of menses. Although PMS is widely recognized, its neural mechanism is still unclear. Design To address this question, we measured brain activity for women with PMS and women without PMS (control group) using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, the participants should complete the emotion scales (Beck Anxiety Inventory, BAI; Beck Depression Inventory, BDI, before the scanning) as well as the stress perception scale (Visual analog scale for stress, VAS, before and after the scanning). Results The results showed that compared with the control group, the PMS group had decreased connectivity in the middle frontal gyrus (MFG) and theparahippocampalgyrus (PHG), as well as increased connectivity in the left medial/superior temporal gyri (MTG/STG) and precentralgyrus within the default mode network (DMN); in addition, the PMS group had higher anxiety and depression scale scores, together with lower stress perception scores. Finally, there were significantly positive correlations between the stress perception scores and functional connectivity in the MFG and cuneus. The BDI scores in the PMS group were correlated negatively with the functional connectivity in the MFG and precuneus and correlated positively with the functional connectivity in the MTG. Conclusion These findings suggest that compared with normal women, women with PMS displayed abnormal stress sensitivity, which was reflected in the decreased and increased functional connectivity within the DMN, blunted stress perception and higher depression. PMID:26325510

  8. Cytoarchitectural and functional abnormalities of the inferior colliculus in sudden unexplained perinatal death.

    PubMed

    Lavezzi, Anna M; Pusiol, Teresa; Matturri, Luigi

    2015-02-01

    The inferior colliculus is a mesencephalic structure endowed with serotonergic fibers that plays an important role in the processing of acoustic information. The implication of the neuromodulator serotonin also in the aetiology of sudden unexplained fetal and infant death syndromes and the demonstration in these pathologies of developmental alterations of the superior olivary complex (SOC), a group of pontine nuclei likewise involved in hearing, prompted us to investigate whether the inferior colliculus may somehow contribute to the pathogenetic mechanism of unexplained perinatal death. Therefore, we performed in a wide set of fetuses and infants, aged from 33 gestational weeks to 7 postnatal months and died of both known and unknown cause, an in-depth anatomopathological analysis of the brainstem, particularly of the midbrain. Peculiar neuroanatomical and functional abnormalities of the inferior colliculus, such as hypoplasia/structural disarrangement and immunonegativity or poor positivity of serotonin, were exclusively found in sudden death victims, and not in controls. In addition, these alterations were frequently related to dysgenesis of connected structures, precisely the raphé nuclei and the superior olivary complex, and to nicotine absorption in pregnancy. We propose, on the basis of these results, the involvement of the inferior colliculus in more important functions than those related to hearing, as breathing and, more extensively, all the vital activities, and then in pathological conditions underlying a sudden death in vulnerable periods of the autonomic nervous system development, particularly associated to harmful risk factors as cigarette smoking. PMID:25674737

  9. Cytoarchitectural and Functional Abnormalities of the Inferior Colliculus in Sudden Unexplained Perinatal Death

    PubMed Central

    Lavezzi, Anna M.; Pusiol, Teresa; Matturri, Luigi

    2015-01-01

    Abstract The inferior colliculus is a mesencephalic structure endowed with serotonergic fibers that plays an important role in the processing of acoustic information. The implication of the neuromodulator serotonin also in the aetiology of sudden unexplained fetal and infant death syndromes and the demonstration in these pathologies of developmental alterations of the superior olivary complex (SOC), a group of pontine nuclei likewise involved in hearing, prompted us to investigate whether the inferior colliculus may somehow contribute to the pathogenetic mechanism of unexplained perinatal death. Therefore, we performed in a wide set of fetuses and infants, aged from 33 gestational weeks to 7 postnatal months and died of both known and unknown cause, an in-depth anatomopathological analysis of the brainstem, particularly of the midbrain. Peculiar neuroanatomical and functional abnormalities of the inferior colliculus, such as hypoplasia/structural disarrangement and immunonegativity or poor positivity of serotonin, were exclusively found in sudden death victims, and not in controls. In addition, these alterations were frequently related to dysgenesis of connected structures, precisely the raphé nuclei and the superior olivary complex, and to nicotine absorption in pregnancy. We propose, on the basis of these results, the involvement of the inferior colliculus in more important functions than those related to hearing, as breathing and, more extensively, all the vital activities, and then in pathological conditions underlying a sudden death in vulnerable periods of the autonomic nervous system development, particularly associated to harmful risk factors as cigarette smoking. PMID:25674737

  10. Diastolic abnormalities in systemic sclerosis: evidence for associated defective cardiac functional reserve.

    PubMed Central

    Valentini, G; Vitale, D F; Giunta, A; Maione, S; Gerundo, G; Arnese, M; Tirri, E; Pelaggi, N; Giacummo, A; Tirri, G; Condorelli, M

    1996-01-01

    OBJECTIVE: To investigate the pattern of diastolic abnormalities in patients with systemic sclerosis (SSc) and the relationship between impaired ventricular filling and systolic function. METHODS: Twenty four patients with SSc underwent M-mode and two dimensional echocardiography using echo-Doppler and gated blood pool cardiac angiography, both at rest and after exercise. RESULTS: An impaired diastolic relaxation of the left ventricle was detected in 10 of the 24 patients with SSc. Left ventricular ejection fraction at rest in these 10 patients with impaired ventricular filling did not differ from that in the remaining 14 patients, but eight of the 10 failed to increase their ejection fraction during exercise, compared with two of the 14 with normal ventricular filling (p = 0.003). CONCLUSION: Impaired relaxation of the left ventricle is a recently described feature of scleroderma heart disease. Diastolic dysfunction in SSc could depend on myocardial fibrosis or myocardial ischaemia, or both. It was found to be associated with a defective cardiac functional reserve. However, its prognostic significance remains to be clarified. PMID:8774164

  11. Abnormal diastolic function in patients with type 1 diabetes and early nephropathy.

    PubMed Central

    Sampson, M J; Chambers, J B; Sprigings, D C; Drury, P L

    1990-01-01

    Left ventricular diastolic function was assessed by pulsed Doppler echocardiography in non-diabetic controls (n = 11) and in patients with type 1 diabetes without microvascular disease (n = 16; diabetic controls), with microalbuminuria (n = 9), or with early persistent proteinuria (n = 11). The peak filling velocities during the early and atrial phases of left ventricular diastole and their ratio (E:A ratio) were measured. All patients with diabetes had a normal serum concentration of creatinine and exercise electrocardiogram. The mean E:A ratio was significantly lower in those with proteinuria than in the diabetic controls because of an increase in peak atrial filling velocity; most patients with proteinuria had an abnormal E:A ratio of less than 1.0. Multiple regression analysis showed that systolic blood pressure was the major determinant of both the peak filling velocity during the atrial phase of diastole and also left ventricular mass. Blood pressures were significantly higher in the proteinuria group than in the diabetic controls. Glycaemic control and autonomic function did not influence diastolic filling. The slightly raised blood pressures at the earliest stages of diabetic nephropathy are sufficient to alter left ventricular diastolic compliance--this may reflect early hypertensive heart disease. These data do not preclude a specific heart muscle disease related to diabetes, but suggest that these slightly raised blood pressures contribute significantly to left ventricular dysfunction in these patients, in whom the risk of cardiovascular disease is already greatly increased. Images PMID:2223305

  12. Abnormal bloodbrain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI???

    PubMed Central

    Cramer, S.P.; Simonsen, H.; Frederiksen, J.L.; Rostrup, E.; Larsson, H.B.W.

    2013-01-01

    Objectives To investigate whether bloodbrain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics. Methods Dynamic contrast-enhanced MRI was used to measure BBB permeability in 27 patients with MS and compared to 24 matched healthy controls. Results Permeability measured as Ktrans was significantly higher in periventricular normal appearing white matter (NAWM) and thalamic gray matter in MS patients when compared to healthy controls, with periventricular NAWM showing the most pronounced difference. Recent relapse coincided with significantly higher permeability in periventricular NAWM, thalamic gray matter, and MS lesions. Immunomodulatory treatment and recent relapse were significant predictors of permeability in MS lesions and periventricular NAWM. Our results suggest that after an MS relapse permeability gradually decreases, possibly an effect of immunomodulatory treatment. Conclusions Our results emphasize the importance of BBB pathology in MS, which we find to be most prominent in the periventricular NAWM, an area prone to development of MS lesions. Both the facts that recent relapse appears to cause widespread BBB disruption and that immunomodulatory treatment seems to attenuate this effect indicate that BBB permeability is intricately linked to the presence of MS relapse activity. This may reveal further insights into the pathophysiology of MS. PMID:24371801

  13. Adolescent Intermittent Alcohol Exposure: Persistence of Structural and Functional Hippocampal Abnormalities into Adulthood

    PubMed Central

    Risher, Mary-Louise; Fleming, Rebekah L.; Risher, Christopher; Miller, K. M.; Klein, Rebecca C.; Wills, Tiffany; Acheson, Shawn K.; Moore, Scott D.; Wilson, Wilkie A.; Eroglu, Cagla; Swartzwelder, H. S.

    2015-01-01

    Background Human adolescence is a crucial stage of neurological development during which ethanol (EtOH) consumption is often at its highest. Alcohol abuse during adolescence may render individuals at heightened risk for subsequent alcohol abuse disorders, cognitive dysfunction, or other neurological impairments by irreversibly altering long-term brain function. To test this possibility, we modeled adolescent alcohol abuse (i.e., intermittent EtOH exposure during adolescence [AIE]) in rats to determine whether adolescent exposure to alcohol leads to long-term structural and functional changes that are manifested in adult neuronal circuitry. Methods We specifically focused on hippocampal area CA1, a brain region associated with learning and memory. Using electrophysiological, immunohistochemical, and neuroanatomical approaches, we measured post-AIE changes in synaptic plasticity, dendritic spine morphology, and synaptic structure in adulthood. Results We found that AIE-pretreated adult rats manifest robust long-term potentiation, induced at stimulus intensities lower than those required in controls, suggesting a state of enhanced synaptic plasticity. Moreover, AIE resulted in an increased number of dendritic spines with characteristics typical of immaturity. Immunohistochemistry-based analysis of synaptic structures indicated a significant decrease in the number of co-localized pre- and postsynaptic puncta. This decrease is driven by an overall decrease in 2 postsynaptic density proteins, PSD-95 and SAP102. Conclusions Taken together, these findings reveal that repeated alcohol exposure during adolescence results in enduring structural and functional abnormalities in the hippocampus. These synaptic changes in the hippocampal circuits may help to explain learning-related behavioral changes in adult animals preexposed to AIE. PMID:25916839

  14. Abnormal thyroid function and hypercholesterolemia in a case of acute intermittent porphyria.

    PubMed

    Shiue, J W; Lee, F Y; Hsiao, K J; Tsai, Y T; Lee, S D; Wu, S J

    1989-07-01

    Acute intermittent porphyria is a genetic hepatic porphyria characterized by acute gastrointestinal and neurological symptoms, and accompanied by excess excretion of delta-aminolevulinic acid and porphobilinogen. Here, we report a case of acute intermittent porphyria with attacks of abdominal pain, an elevated serum thyroxine level, and hypercholesterolemia with an increased level of high-density lipoprotein-cholesterol concentration. The diagnosis of acute intermittent porphyria was confirmed by a high urinary excretion of porphobilinogen and a low level of erythrocyte hydroxymethylbilane synthase activity. After being treated with a high carbohydrate intake and propranolol, the patient improved gradually during the following 3 weeks. The patient remained asymptomatic during the 6-month follow-up period. The serum thyroxin and cholesterol levels returned to normal 6 months later. In conclusion, we suggest that for any patient who presents with unexplained abdominal pain, abnormal thyroid function and hypercholesterolemia, a simple Watson-Schwartz urine test should be performed for the screening of acute intermittent porphyria. If the Watson-Schwartz test is positive, the erythrocyte hydroxymethylbilane synthase activity should be determined to confirm the diagnosis of acute intermittent porphyria. PMID:2809566

  15. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation.

    PubMed

    Bardet, Claire; Courson, Frédéric; Wu, Yong; Khaddam, Mayssam; Salmon, Benjamin; Ribes, Sandy; Thumfart, Julia; Yamaguti, Paulo M; Rochefort, Gael Y; Figueres, Marie-Lucile; Breiderhoff, Tilman; Garcia-Castaño, Alejandro; Vallée, Benoit; Le Denmat, Dominique; Baroukh, Brigitte; Guilbert, Thomas; Schmitt, Alain; Massé, Jean-Marc; Bazin, Dominique; Lorenz, Georg; Morawietz, Maria; Hou, Jianghui; Carvalho-Lobato, Patricia; Manzanares, Maria Cristina; Fricain, Jean-Christophe; Talmud, Deborah; Demontis, Renato; Neves, Francisco; Zenaty, Delphine; Berdal, Ariane; Kiesow, Andreas; Petzold, Matthias; Menashi, Suzanne; Linglart, Agnes; Acevedo, Ana Carolina; Vargas-Poussou, Rosa; Müller, Dominik; Houillier, Pascal; Chaussain, Catherine

    2016-03-01

    Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients. © 2015 American Society for Bone and Mineral Research. PMID:26426912

  16. Role of Gut Barrier Function in the Pathogenesis of Nonalcoholic Fatty Liver Disease

    PubMed Central

    Dai, Xin; Wang, Bangmao

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease, and its incidence is increasing year by year. Many efforts have been made to investigate the pathogenesis of this disease. Since 1998 when Marshall proposed the conception of “gut-liver axis,” more and more researchers have paid close attention to the role of gut barrier function in the pathogenesis of NAFLD. The four aspects of gut barrier function, including physical, chemical, biological, and immunological barriers, are interrelated closely and related to NAFLD. In this paper, we present a summary of research findings on the relationship between gut barrier dysfunction and the development of NAFLD, aiming at illustrating the role of gut barrier function in the pathogenesis of this disease. PMID:25945084

  17. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  18. Hemodynamic response function abnormalities in schizophrenia during a multisensory detection task.

    PubMed

    Hanlon, Faith M; Shaff, Nicholas A; Dodd, Andrew B; Ling, Josef M; Bustillo, Juan R; Abbott, Christopher C; Stromberg, Shannon F; Abrams, Swala; Lin, Denise S; Mayer, Andrew R

    2016-02-01

    Functional magnetic resonance imaging (fMRI) of the blood oxygen level dependent (BOLD) response has commonly been used to investigate the neuropathology underlying cognitive and sensory deficits in patients with schizophrenia (SP) by examining the positive phase of the BOLD response, assuming a fixed shape for the hemodynamic response function (HRF). However, the individual phases (positive and post-stimulus undershoot (PSU)) of the HRF may be differentially affected by a variety of underlying pathologies. The current experiment used a multisensory detection task with a rapid event-related fMRI paradigm to investigate both the positive and PSU phases of the HRF in SP and healthy controls (HC). Behavioral results indicated no significant group differences during task performance. Analyses that examined the shape of the HRF indicated two distinct group differences. First, SP exhibited a reduced and/or prolonged PSU following normal task-related positive BOLD activation in secondary auditory and visual sensory areas relative to HC. Second, SP did not show task-induced deactivation in the anterior node of the default-mode network (aDMN) relative to HC. In contrast, when performing traditional analyses that focus on the positive phase, there were no group differences. Interestingly, the magnitude of the PSU in secondary auditory and visual areas was positively associated with the magnitude of task-induced deactivation within the aDMN, suggesting a possible common neural mechanism underlying both of these abnormalities (failure in neural inhibition). Results are consistent with recent views that separate neural processes underlie the two phases of the HRF and that they are differentially affected in SP. Hum Brain Mapp 37:745-755, 2016. © 2015 Wiley Periodicals, Inc. PMID:26598791

  19. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    PubMed Central

    Duchnik, Ewa; Maleszka, Romuald; Marchlewicz, Mariola

    2016-01-01

    The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function. PMID:26985171

  20. Comparison of the Transmembrane Mucins MUC1 and MUC16 in Epithelial Barrier Function

    PubMed Central

    Gipson, Ilene K.; Spurr-Michaud, Sandra; Tisdale, Ann; Menon, Balaraj B.

    2014-01-01

    Membrane-anchored mucins are present in the apical surface glycocalyx of mucosal epithelial cells, each mucosal epithelium having at least two of the mucins. The mucins have been ascribed barrier functions, but direct comparisons of their functions within the same epithelium have not been done. In an epithelial cell line that expresses the membrane-anchored mucins, MUC1 and MUC16, the mucins were independently and stably knocked down using shRNA. Barrier functions tested included dye penetrance, bacterial adherence and invasion, transepithelial resistance, tight junction formation, and apical surface size. Knockdown of MUC16 decreased all barrier functions tested, causing increased dye penetrance and bacterial invasion, decreased transepithelial resistance, surprisingly, disruption of tight junctions, and greater apical surface cell area. Knockdown of MUC1 did not decrease barrier function, in fact, barrier to dye penetrance and bacterial invasion increased significantly. These data suggest that barrier functions of membrane-anchored mucins vary in the context of other membrane mucins, and MUC16 provides a major barrier when present. PMID:24968021

  1. Cytoskeletal regulation of epithelial barrier function during inflammation.

    PubMed

    Ivanov, Andrei I; Parkos, Charles A; Nusrat, Asma

    2010-08-01

    Increased epithelial permeability is a common and important consequence of mucosal inflammation that results in perturbed body homeostasis and enhanced exposure to external pathogens. The integrity and barrier properties of epithelial layers are regulated by specialized adhesive plasma membrane structures known as intercellular junctions. It is generally believed that inflammatory stimuli increase transepithelial permeability by inducing junctional disassembly. This review highlights molecular events that lead to disruption of epithelial junctions during inflammation. We specifically focus on key mechanisms of junctional regulation that are dependent on reorganization of the perijunctional F-actin cytoskeleton. We discuss critical roles of myosin-II-dependent contractility and actin filament turnover in remodeling of the F-actin cytoskeleton that drive disruption of epithelial barriers under different inflammatory conditions. Finally, we highlight signaling pathways induced by inflammatory mediators that regulate reorganization of actin filaments and junctional disassembly in mucosal epithelia. PMID:20581053

  2. Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation

    PubMed Central

    Ivanov, Andrei I.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    Increased epithelial permeability is a common and important consequence of mucosal inflammation that results in perturbed body homeostasis and enhanced exposure to external pathogens. The integrity and barrier properties of epithelial layers are regulated by specialized adhesive plasma membrane structures known as intercellular junctions. It is generally believed that inflammatory stimuli increase transepithelial permeability by inducing junctional disassembly. This review highlights molecular events that lead to disruption of epithelial junctions during inflammation. We specifically focus on key mechanisms of junctional regulation that are dependent on reorganization of the perijunctional F-actin cytoskeleton. We discuss critical roles of myosin-II–dependent contractility and actin filament turnover in remodeling of the F-actin cytoskeleton that drive disruption of epithelial barriers under different inflammatory conditions. Finally, we highlight signaling pathways induced by inflammatory mediators that regulate reorganization of actin filaments and junctional disassembly in mucosal epithelia. PMID:20581053

  3. Abnormal Mitochondrial Function and Impaired Granulosa Cell Differentiation in Androgen Receptor Knockout Mice

    PubMed Central

    Wang, Ruey-Sheng; Chang, Heng-Yu; Kao, Shu-Huei; Kao, Cheng-Heng; Wu, Yi-Chen; Yeh, Shuyuan; Tzeng, Chii-Reuy; Chang, Chawnshang

    2015-01-01

    In the ovary, the paracrine interactions between the oocyte and surrounded granulosa cells are critical for optimal oocyte quality and embryonic development. Mice lacking the androgen receptor (AR−/−) were noted to have reduced fertility with abnormal ovarian function that might involve the promotion of preantral follicle growth and prevention of follicular atresia. However, the detailed mechanism of how AR in granulosa cells exerts its effects on oocyte quality is poorly understood. Comparing in vitro maturation rate of oocytes, we found oocytes collected from AR−/− mice have a significantly poor maturating rate with 60% reached metaphase II and 30% remained in germinal vesicle breakdown stage, whereas 95% of wild-type AR (AR+/+) oocytes had reached metaphase II. Interestingly, we found these AR−/− female mice also had an increased frequency of morphological alterations in the mitochondria of granulosa cells with reduced ATP generation (0.18 ± 0.02 vs. 0.29 ± 0.02 µM/mg protein; p < 0.05) and aberrant mitochondrial biogenesis. Mechanism dissection found loss of AR led to a significant decrease in the expression of peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1-β (PGC1-β) and its sequential downstream genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), in controlling mitochondrial biogenesis. These results indicate that AR may contribute to maintain oocyte quality and fertility via controlling the signals of PGC1-β-mediated mitochondrial biogenesis in granulosa cells. PMID:25941928

  4. Abnormal mitochondrial function and impaired granulosa cell differentiation in androgen receptor knockout mice.

    PubMed

    Wang, Ruey-Sheng; Chang, Heng-Yu; Kao, Shu-Huei; Kao, Cheng-Heng; Wu, Yi-Chen; Yeh, Shuyuan; Tzeng, Chii-Reuy; Chang, Chawnshang

    2015-01-01

    In the ovary, the paracrine interactions between the oocyte and surrounded granulosa cells are critical for optimal oocyte quality and embryonic development. Mice lacking the androgen receptor (AR⁻/⁻) were noted to have reduced fertility with abnormal ovarian function that might involve the promotion of preantral follicle growth and prevention of follicular atresia. However, the detailed mechanism of how AR in granulosa cells exerts its effects on oocyte quality is poorly understood. Comparing in vitro maturation rate of oocytes, we found oocytes collected from AR⁻/⁻ mice have a significantly poor maturating rate with 60% reached metaphase II and 30% remained in germinal vesicle breakdown stage, whereas 95% of wild-type AR (AR⁺/⁺) oocytes had reached metaphase II. Interestingly, we found these AR⁻/⁻ female mice also had an increased frequency of morphological alterations in the mitochondria of granulosa cells with reduced ATP generation (0.18 ± 0.02 vs. 0.29 ± 0.02 µM/mg protein; p < 0.05) and aberrant mitochondrial biogenesis. Mechanism dissection found loss of AR led to a significant decrease in the expression of peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1-β (PGC1-β) and its sequential downstream genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), in controlling mitochondrial biogenesis. These results indicate that AR may contribute to maintain oocyte quality and fertility via controlling the signals of PGC1-β-mediated mitochondrial biogenesis in granulosa cells. PMID:25941928

  5. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation

    PubMed Central

    Georas, Steve N.; Rezaee, Fariba

    2014-01-01

    Airway epithelial cells form a barrier to the outside world, and are at the frontline of mucosal immunity. Epithelial apical junctional complexes are multi-protein subunits that promote cell-cell adhesion and barrier integrity. Recent studies in the skin and GI tract suggest that disruption of cell-cell junctions is required to initiate epithelial immune responses, but how this applies to mucosal immunity in the lung is not clear. Increasing evidence indicates that defective epithelial barrier function is a feature of airway inflammation in asthma. One challenge in this area is that barrier function and junctional integrity are difficult to study in the intact lung, but innovative approaches should provide new knowledge in this area in the near future. In this article, we review the structure and function of epithelial apical junctional complexes, emphasizing how regulation of the epithelial barrier impacts innate and adaptive immunity. We discuss why defective epithelial barrier function may be linked to Th2 polarization in asthma, and propose a rheostat model of barrier dysfunction that implicates the size of inhaled allergen particles as an important factor influencing adaptive immunity. PMID:25085341

  6. Interleukin-13 promotes expression of Alix to compromise renal tubular epithelial barrier function.

    PubMed

    Xu, Chen; Sun, Guangdong; Yang, Jie; Sun, Qianmei; Tong, Zhaohui

    2015-05-01

    The epithelial barrier dysfunction plays a critical role in a number of kidney diseases. The mechanism is unclear. Alix is a protein involving in protein degradation in epithelial cells. This study aims to investigate that interleukin (IL)-13 inhibits Alix to compromise the kidney epithelial barrier function. In this study, the murine collecting duct cell line (M-1) was cultured in Transwell inserts to investigate the significance of Alix in compromising the epithelial barrier functions. T cell (Teff cells) proliferation assay was employed to assess the antigenicity of ovalbumin (OVA) that was transported across the M-1 monolayer barrier. The results showed that M-1 cells express Alix. Exposure to interleukin (IL)-13 markedly decreased the expression of Alix in M-1 cells, which compromised the M-1 monolayer barrier functions by showing the increases in the permeability to OVA. Over-expression of Alix abolished the IL-13-induced M-1 monolayer barrier dysfunction. Knockdown of Alix significantly increased M-1 monolayer permeability. The OVA collected from the Transwell basal chambers induced the OVA-specific T cell proliferation. We conclude that IL-13 compromises M-1 epithelial barrier functions via inhibiting Alix expression. PMID:25597757

  7. Erythropoietin protects intestinal epithelial barrier function and lowers the incidence of experimental neonatal necrotizing enterocolitis.

    PubMed

    Shiou, Sheng-Ru; Yu, Yueyue; Chen, Sangzi; Ciancio, Mae J; Petrof, Elaine O; Sun, Jun; Claud, Erika C

    2011-04-01

    The impermeant nature of the intestinal barrier is maintained by tight junctions (TJs) formed between adjacent intestinal epithelial cells. Disruption of TJs and loss of barrier function are associated with a number of gastrointestinal diseases, including neonatal necrotizing enterocolitis (NEC), the leading cause of death from gastrointestinal diseases in preterm infants. Human milk is protective against NEC, and the human milk factor erythropoietin (Epo) has been shown to protect endothelial cell-cell and blood-brain barriers. We hypothesized that Epo may also protect intestinal epithelial barriers, thereby lowering the incidence of NEC. Our data demonstrate that Epo protects enterocyte barrier function by supporting expression of the TJ protein ZO-1. As immaturity is a key factor in NEC, Epo regulation of ZO-1 in the human fetal immature H4 intestinal epithelial cell line was examined and demonstrated Epo-stimulated ZO-1 expression in a dose-dependent manner through the PI3K/Akt pathway. In a rat NEC model, oral administration of Epo lowered the incidence of NEC from 45 to 23% with statistical significance. In addition, Epo treatment protected intestinal barrier function and prevented loss of ZO-1 at the TJs in vivo. These effects were associated with elevated Akt phosphorylation in the intestine. This study reveals a novel role of Epo in the regulation of intestinal epithelial TJs and barrier function and suggests the possible use of enteral Epo as a therapeutic agent for gut diseases. PMID:21262973

  8. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  9. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  10. Barrier distribution functions for the system 6Li+64Ni and the effect of channel coupling

    NASA Astrophysics Data System (ADS)

    Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Pradhan, M. K.; Mukherjee, A.; Basu, P.; Pal, S.; Nanal, V.; Pillay, R. G.; Shrivastava, A.

    2015-03-01

    Background: The barrier distribution function is an important observable in low-energy nucleus-nucleus collisions because it carries the distinct signature of the channel-coupling effect that is dominant at low energies. It can be derived from the fusion excitation function as well as from the back-angle quasi-elastic excitation function. The barrier distribution functions derived from the two complimentary measurements, in general, appear to peak at an energy close to the Coulomb barrier for strongly bound systems. But for weakly bound projectiles, like 6Li, a relative shift is observed between the distributions. Purpose: The present work investigates the barrier distribution functions from fusion as well as from the back-angle quasi-elastic excitation function for the 6Li+64Ni system. The purpose is to look for the existence of a shift, if any, between the two measured distribution functions, as reported for 6Li collision with heavy targets. A detailed coupled-channel calculation to probe the behavior of the distribution functions and their relative shift has been attempted. Measurement: A simultaneous measurement of fusion and back-angle quasi-elastic excitation functions for the system 6Li+64Ni was performed. The fusion excitation function was measured for the energy range of 11 to 28 MeV while the quasi-elastic excitation function measurement extended from 11 to 20 MeV. The barrier distribution functions were subsequently extracted from both the excitation functions and compared. Results: A small shift of around 450 keV peak to peak is observed between the barrier distribution functions derived from the complementary measurements. Detailed coupled channel and coupled reaction channel calculations reproduced both the excitation functions and barrier distributions. The shift of about 550 keV resulted from the model predictions corroborate the experimentally observed value for 6Li+64Ni system. Conclusions: The coupling to inelastic channels are found to be sufficient to describe the fusion-barrier distribution. The positive Q -value one-proton and one-neutron stripping channels, leading to three-body final states, on the other hand, play dominant roles in reproducing the barrier distribution from the back-angle quasi-elastic excitation function.

  11. Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis.

    PubMed

    Nowarski, Roni; Jackson, Ruaidhrí; Gagliani, Nicola; de Zoete, Marcel R; Palm, Noah W; Bailis, Will; Low, Jun Siong; Harman, Christian C D; Graham, Morven; Elinav, Eran; Flavell, Richard A

    2015-12-01

    The intestinal mucosal barrier controlling the resident microbiome is dependent on a protective mucus layer generated by goblet cells, impairment of which is a hallmark of the inflammatory bowel disease, ulcerative colitis. Here, we show that IL-18 is critical in driving the pathologic breakdown of barrier integrity in a model of colitis. Deletion of Il18 or its receptor Il18r1 in intestinal epithelial cells (Δ/EC) conferred protection from colitis and mucosal damage in mice. In contrast, deletion of the IL-18 negative regulator Il18bp resulted in severe colitis associated with loss of mature goblet cells. Colitis and goblet cell loss were rescued in Il18bp(-/-);Il18r(Δ/EC) mice, demonstrating that colitis severity is controlled at the level of IL-18 signaling in intestinal epithelial cells. IL-18 inhibited goblet cell maturation by regulating the transcriptional program instructing goblet cell development. These results inform on the mechanism of goblet cell dysfunction that underlies the pathology of ulcerative colitis. PMID:26638073

  12. Congenital hypothyroidism in a kitten resulting in decreased IGF-I concentration and abnormal liver function tests.

    PubMed

    Quante, Saskia; Fracassi, Federico; Gorgas, Daniela; Kircher, Patrick R; Boretti, Felicitas S; Ohlerth, Stefanie; Reusch, Claudia E

    2010-06-01

    A 7-month-old male kitten was presented with chronic constipation and retarded growth. Clinical examination revealed disproportional dwarfism with mild skeletal abnormalities and a palpable thyroid gland. The presumptive diagnosis of congenital hypothyroidism was confirmed by low serum total thyroxine (tT(4)) concentration prior to and after the administration of thyroid stimulation hormone (TSH), increased endogenous TSH concentration and abnormal thyroid scintigraphic scan. The kitten had abnormal liver function tests and decreased insulin-like growth factor 1 (IGF-1) concentration, both of which returned to normal in correspondence with an improvement of the clinical signs after 6 weeks of thyroxine therapy. Congenital hypothyroidism is a rare disease that may present with considerable variation in clinical manifestation. In cases in which clinical signs are ambiguous, disorders such as portosystemic shunt and hyposomatotropism have to be taken into account as differential diagnosis. As hypothyroidism may be associated with abnormal liver function tests and low IGF-1 concentrations, test results have to be interpreted carefully. PMID:20223692

  13. Intestinal epithelial barrier function and tight junction proteins with heat and exercise.

    PubMed

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-03-15

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485

  14. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment.

    PubMed

    Vaziri, Nosratola D; Zhao, Ying-Yong; Pahl, Madeleine V

    2016-05-01

    Chronic kidney disease (CKD) results in systemic inflammation and oxidative stress which play a central role in CKD progression and its adverse consequences. Although many of the causes and consequences of oxidative stress and inflammation in CKD have been extensively explored, little attention had been paid to the intestine and its microbial flora as a potential source of these problems. Our recent studies have revealed significant disruption of the colonic, ileal, jejunal and gastric epithelial tight junction in different models of CKD in rats. Moreover, the disruption of the epithelial barrier structure and function found in uremic animals was replicated in cultured human colonocytes exposed to uremic human plasma in vitro We have further found significant changes in the composition and function of colonic bacterial flora in humans and animals with advanced CKD. Together, uremia-induced impairment of the intestinal epithelial barrier structure and function and changes in composition of the gut microbiome contribute to the systemic inflammation and uremic toxicity by accommodating the translocation of endotoxin, microbial fragments and other noxious luminal products in the circulation. In addition, colonic bacteria are the main source of several well-known pro-inflammatory uremic toxins such as indoxyl sulfate, p-cresol sulfate, trimethylamine-N-oxide and many as-yet unidentified retained compounds in end-stage renal disease patients. This review is intended to provide an overview of the effects of CKD on the gut microbiome and intestinal epithelial barrier structure and their role in the pathogenesis of systemic inflammation and uremic toxicity. In addition, potential interventions aimed at mitigating these abnormalities are briefly discussed. PMID:25883197

  15. Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts.

    PubMed

    Zou, Feng; Wu, Xinhuai; Zhai, Tianye; Lei, Yu; Shao, Yongcong; Jin, Xiao; Tan, Shuwen; Wu, Bing; Wang, Lubin; Yang, Zheng

    2015-11-01

    Functional neuroimaging studies suggest that abnormal brain functional connectivity may be the neural underpinning of addiction to illicit drugs and of relapse after successful cessation therapy. Aberrant brain networks have been demonstrated in addicted patients and in newly abstinent addicts. However, it is not known whether abnormal brain connectivity patterns persist after prolonged abstinence. In this cross-sectional study, whole-brain resting-state functional magnetic resonance images (8 min) were collected from 30 heroin-addicted individuals after a long period of abstinence (more than 3 years) and from 30 healthy controls. We first examined the group differences in the resting-state functional connectivity of the nucleus accumbens (NAc), a brain region implicated in relapse-related processes, including craving and reactivity to stress following acute and protracted withdrawal from heroin. We then examined the relation between the duration of abstinence and the altered NAc functional connectivity in the heroin group. We found that, compared with controls, heroin-dependent participants exhibited significantly greater functional connectivity between the right ventromedial prefrontal cortex and the NAc and weaker functional connectivity between the NAc and the left putamen, left precuneus, and supplementary motor area. However, with longer abstinence time, the strength of NAc functional connectivity with the left putamen increased. These results indicate that dysfunction of the NAc functional network is still present in long-term-abstinent heroin-dependent individuals. PMID:26280556

  16. Could tight junctions regulate the barrier function of the aged skin?

    PubMed

    Svoboda, Marek; Bílková, Zuzana; Muthný, Tomáš

    2016-03-01

    The skin is known to be the largest organ in human organism creating interface with outer environment. The skin provides protective barrier against pathogens, physical and chemical insults, and against uncontrolled loss of water. The barrier function was primarily attributed to the stratum corneum (SC) but recent studies confirmed that epidermal tight junctions (TJs) also play important role in maintaining barrier properties of the skin. Independent observations indicate that barrier function and its recovery is impaired in aged skin. However, trans-epidermal water loss (TEWL) values remains rather unchanged in elderly population. UV radiation as major factor of photoageing impairs TJ proteins, but TJs have great self-regenerative potential. Since it may be possible that TJs can compensate TEWL in elderly due to its regenerative and compensatory capabilities, important question remains to be answered: how are TJs regulated during skin ageing? This review provides an insight into TJs functioning as epidermal barrier and summarizes current knowledge about the impact of ageing on the barrier function of the skin and epidermal TJs. PMID:26639794

  17. The Drosophila blood-brain barrier: development and function of a glial endothelium

    PubMed Central

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells. PMID:25452710

  18. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    PubMed

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells. PMID:25452710

  19. Non-invasive assessment of barrier integrity and function of the human gut

    PubMed Central

    Grootjans, Joep; Thuijls, Geertje; Verdam, Froukje; Derikx, Joep PM; Lenaerts, Kaatje; Buurman, Wim A

    2010-01-01

    Over the past decades evidence has been accumulating that intestinal barrier integrity loss plays a key role in the development and perpetuation of a variety of disease states including inflammatory bowel disease and celiac disease, and is a key player in the onset of sepsis and multiple organ failure in situations of intestinal hypoperfusion, including trauma and major surgery. Insight into gut barrier integrity and function loss is important to improve our knowledge on disease etiology and pathophysiology and contributes to early detection and/or secondary prevention of disease. A variety of tests have been developed to assess intestinal epithelial cell damage, intestinal tight junction status and consequences of intestinal barrier integrity loss, i.e. increased intestinal permeability. This review discusses currently available methods for evaluating loss of human intestinal barrier integrity and function. PMID:21160852

  20. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    PubMed

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  1. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    PubMed Central

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  2. CEPP regimen (cyclophosphamide, etoposide, procarbazine and prednisone) as initial treatment for Hodgkin lymphoma patients presenting with severe abnormal liver function

    PubMed Central

    2014-01-01

    ABVD regimen (doxorubicin, bleomycin, vinblastine and dacarbazine) remains the most commonly used front-line therapy for Hodgkin lymphoma. However, atypical and extranodal presentations present challenges to initial therapy, especially in the presence of renal and liver failure. We hereby present two cases of young male patients with atypical presentation of Hodgkin lymphoma with severe abnormal liver function. Patients showed excellent response to cyclophosphamide, etoposide, procarbazine and prednisone (CEPP regimen). PMID:24991411

  3. Fission barriers in actinides in covariant density functional theory: The role of triaxiality

    SciTech Connect

    Abusara, H.; Afanasjev, A. V.; Ring, P.

    2010-10-15

    Relativistic mean-field theory allowing for triaxial deformations is applied for a systematic study of fission barriers in the actinide region. Different pairing schemes are studied in detail and it is shown that covariant density functional theory is able to describe fission barriers on a level of accuracy comparable with nonrelativistic calculations, even with the best phenomenological macroscopic+microscopic approaches. Triaxiality in the region of the first saddle plays a crucial role in achieving that.

  4. Antidiabetic drugs restore abnormal transport of amyloid-? across the blood-brain barrier and memory impairment in db/db mice.

    PubMed

    Chen, Fang; Dong, Rong Rong; Zhong, Kai Long; Ghosh, Arijit; Tang, Su Su; Long, Yan; Hu, Mei; Miao, Ming Xing; Liao, Jian Min; Sun, Hong Bing; Kong, Ling Yi; Hong, Hao

    2016-02-01

    Previous studies have shown significant changes in amyloid-? (A?) transport across the blood-brain barrier (BBB) under diabetic conditions with hypoinsulinemia, which is involved in diabetes-associated cognitive impairment. Present study employed db/db mice with hyperinsulinemia to investigate changes in A? transport across the BBB, hippocampal synaptic plasticity, and restorative effects of antidiabetic drugs. Our results showed that db/db mice exhibited similar changes in A? transport across the BBB to that of insulin-deficient mice. Chronic treatment of db/db mice with antidiabetic drugs such as metformin, glibenclamide and insulin glargine significantly decreased A? influx across the BBB determined by intra-arterial infusion of (125)I-A?1-40, and expression of the receptor for advanced glycation end products (RAGE) participating in A? influx. Insulin glargine, but not, metformin or glibenclamide increased A? efflux across the BBB determined by stereotaxic intra-cerebral infusion of (125)I-A?1-40, and expression of the low-density lipoprotein receptor related protein 1 (LRP1) participating in A? efflux. Moreover, treatment with these drugs significantly decreased hippocampal A?1-40 or A?1-42 and inhibited neuronal apoptosis. The drugs also ameliorated memory impairment confirmed by improved performance on behavioral tasks. However, insulin glargine or glibenclamide, but not metformin, restored hippocampal synaptic plasticity characterized by enhancing invivo long-term potentiation (LTP). Further study found that these three drugs significantly restrained NF-?B, but only insulin glargine enhanced peroxisome proliferator-activated receptor ? (PPAR?) activity at the BBB in db/db mice. Our data indicate that the antidiabetic drugs can partially restore abnormal A? transport across the BBB and memory impairment under diabetic context. PMID:26211973

  5. Dietary constituents are able to play a beneficial role in canine epidermal barrier function.

    PubMed

    Watson, Adrian L; Fray, Tim R; Bailey, Julie; Baker, Claire B; Beyer, Sally A; Markwell, Peter J

    2006-01-01

    Epidermal barrier function is a critical attribute of mammalian skin. The barrier is responsible for preventing skin-associated pathologies through controlling egress of water and preventing ingress of environmental agents. Maintaining the quality and integrity of the epidermal barrier is therefore of considerable importance. Structurally, the barrier is composed of two main parts, the corneocytes and the intercellular lamellar lipid. The epidermal lamellar lipid comprises mainly ceramides, sterols and fatty acids. Twenty-seven nutritional components were screened for their ability to upregulate epidermal lipid synthesis. Seven of the 27 nutritional components (pantothenate, choline, nicotinamide, histidine, proline, pyridoxine and inositol) were subsequently retested using an in vitro transepidermal diffusion experimental model, providing a functional assessment of barrier properties. Ultimately, the best performing five nutrients were fed to dogs at supplemented concentrations in a 12-week feeding study. Barrier function was measured using transepidermal water loss (TEWL). It was found that a combination of pantothenate, choline, nicotinamide, histidine and inositol, when fed at supplemented concentrations, was able to significantly reduce TEWL in dogs after 9 weeks. PMID:16364034

  6. Claudins: Control of Barrier Function and Regulation in Response to Oxidant Stress

    PubMed Central

    Overgaard, Christian E.; Daugherty, Brandy L.; Mitchell, Leslie A.

    2011-01-01

    Abstract Claudins are a family of nearly two dozen transmembrane proteins that are a key part of the tight junction barrier that regulates solute movement across polarized epithelia. Claudin family members interact with each other, as well as with other transmembrane tight junction proteins (such as occludin) and cytosolic scaffolding proteins (such as zonula occludens-1 (ZO-1)). Although the interplay between all of these different classes of proteins is critical for tight junction formation and function, claudin family proteins are directly responsible for forming the equivalent of paracellular ion selective channels (or pores) with specific permeability and thus are essential for barrier function. In this review, we summarize current progress in identifying structural elements of claudins that regulate their transport, assembly, and function. The effects of oxidant stress on claudins are also examined, with particular emphasis on lung epithelial barrier function and oxidant stress induced by chronic alcohol abuse. Antioxid. Redox Signal. 15, 1179–1193. PMID:21275791

  7. Associations Between Abnormal Rod-Mediated Dark Adaptation and Health and Functioning in Older Adults With Normal Macular Health

    PubMed Central

    Owsley, Cynthia; Huisingh, Carrie; Jackson, Gregory R.; Curcio, Christine A.; Szalai, Alexander J.; Dashti, Nassrin; Clark, Mark; Rookard, Kia; McCrory, Mark A.; Wright, Tyler T.; Callahan, Michael A.; Kline, Lanning B.; Witherspoon, C. Douglas; McGwin, Gerald

    2014-01-01

    Purpose. Delayed rod-mediated dark adaptation (DA) is characteristic of early age-related macular degeneration (AMD) and also can be observed in some older adults in normal macular health. We examine cross-sectional associations between rod-mediated DA and risk factors for AMD in older adults in normal macular health. Methods. The sample consisted of adults aged ≥60 years old in normal macular health per grading of fundus photos using an established disease classification system. Rod-mediated DA was measured psychophysically following a photobleach using a computer-automated dark adaptometer with targets centered at 5° on the inferior vertical meridian. The speed of DA was characterized by the rod-intercept value, with abnormal DA defined as rod-intercept ≥ 12.3 minutes. We assessed several health and functional characteristics that the literature has suggested increase AMD risk (e.g., smoking, alcohol use, inflammatory markers, apolipoproteins, low luminance visual acuity, chronic medical conditions, body mass, family history). Results. Among 381 participants (mean age, 68.5 years; SD, 5.5), 78% had normal and 22% had abnormal DA, with the prevalence of abnormal DA increasing with age. After age-adjustment, abnormal DA was associated with increased odds of elevated C-reactive protein (CRP), heavy use of or abstention from alcohol, high blood pressure, and drop in visual acuity under mesopic conditions. Conclusions. Despite having normal macular health according to accepted definitions of AMD presence, approximately one-quarter of older adults recruited from primary eye care clinics had abnormal DA, which was associated with known risk factors for AMD, including elevated CRP. PMID:24854857

  8. The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: insights from computational modeling.

    PubMed

    Spencer, Kevin M

    2009-01-01

    Schizophrenia is characterized by cortical circuit abnormalities, which might be reflected in gamma-frequency (30-100 Hz) oscillations in the electroencephalogram. Here we used a computational model of cortical circuitry to examine the effects that neural circuit abnormalities might have on gamma generation and network excitability. The model network consisted of 1000 leaky integrate-and-fire neurons with realistic connectivity patterns and proportions of neuron types [pyramidal cells (PCs), regular-spiking inhibitory interneurons, and fast-spiking interneurons (FSIs)]. The network produced a gamma oscillation when driven by noise input. We simulated reductions in: (1) recurrent excitatory inputs to PCs; (2) both excitatory and inhibitory inputs to PCs; (3) all possible connections between cells; (4) reduced inhibitory output from FSIs; and (5) reduced NMDA input to FSIs. Reducing all types of synaptic connectivity sharply reduced gamma power and phase synchrony. Network excitability was reduced when recurrent excitatory connections were deleted, but the network showed disinhibition effects when inhibitory connections were deleted. Reducing FSI output impaired gamma generation to a lesser degree than reducing synaptic connectivity, and increased network excitability. Reducing FSI NMDA input also increased network excitability, but increased gamma power. The results of this study suggest that a multimodal approach, combining non-invasive neurophysiological and structural measures, might be able to distinguish between different neural circuit abnormalities in schizophrenia patients. Computational modeling may help to bridge the gaps between post-mortem studies, animal models, and experimental data in humans, and facilitate the development of new therapies for schizophrenia and neuropsychiatric disorders in general. PMID:19876408

  9. Pediatric Patients with Vitiligo in Eastern China: Abnormalities in 145 Cases Based on Thyroid Function Tests and Immunological Findings

    PubMed Central

    Xianfeng, Cheng; Yuegen, Jiang; Zhiyu, Yin; Yan, Yang; Xuesi, Zeng; Fenglai, Wang; Ansheng, Li; Wei, Wang

    2015-01-01

    Background The aim of this study was to evaluate abnormalities in thyroid function according to tests and the humoral immune systems of patients from Eastern China with pediatric vitiligo. Material/Methods A total of 145 pediatric patients with vitiligo were investigated in this study, along with 59 children without autoimmune diseases as controls. Laboratory tests of thyroid function were conducted, and these tests examined free triiodothyronine (FT3), free thyroxine (FT4), thyroid stimulating hormone (TSH), thyroglobulin antibody (TG-Ab), thyroid peroxidase antibody (TPO-Ab), antinuclear antibodies (ANAs), immunoglobulins (IgA, IgM, and IgG), and complements (C3 and C4). Results A total of 63 patients (43.4%), including 39 boys (44.3%) and 24 girls (42.1%), displayed abnormalities in thyroid function according to the tests. This finding indicated that patients with vitiligo differed significantly from those in the control group (P<0.001), particularly in terms of FT3 and TSH abnormalities (P<0.05). However, these groups did not deviate significantly with respect to FT4, Tg-Ab, and TPO-Ab abnormalities (P>0.05). Thirteen patients (8.9%) and 1 (1.7%) control were positive for ANA. All 12 specific antibodies were detected in 8 patients. Anti-SSA/Ro-60 and anti-SSA/Ro-52 were the most prevalent antibodies, followed by anti-dsDNA and then by anti-SmD1 and CENB-P. The serum levels of IgA and IgG decreased more significantly in the vitiligo group than in the control group (P<0.001). However, no significant difference was observed in terms of IgM levels (P>0.05). C4 serum levels also decreased more significantly in the vitiligo group than in the control group (P=0.035). Conclusions Results suggest that the incidence of abnormalities in the thyroid functions of children and adolescents is significantly higher in those with vitiligo than that in those in the control group. In addition, immunological dysfunction is common in the vitiligo group. PMID:26496247

  10. Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years.

    PubMed

    Wang, Lubin; Zou, Feng; Zhai, Tianye; Lei, Yu; Tan, Shuwen; Jin, Xiao; Ye, Enmao; Shao, Yongcong; Yang, Yihong; Yang, Zheng

    2016-05-01

    Previous studies have suggested that heroin addiction is associated with structural and functional brain abnormalities. However, it is largely unknown whether these characteristics of brain abnormalities would be persistent or restored after long periods of abstinence. Considering the very high rates of relapse, we hypothesized that there may exist some latent neural vulnerabilities in abstinent heroin users. In this study, structural and resting-state functional magnetic resonance imaging data were collected from 30 former heroin-dependent (FHD) subjects who were drug free for more than 3 years and 30 non-addicted control (CN) volunteers. Voxel-based morphometry was used to identify possible gray matter volume differences between the FHD and CN groups. Alterations in resting-state functional connectivity in FHD were examined using brain areas with gray matter deficits as seed regions. Significantly reduced gray matter volume was observed in FHD in an area surrounding the parieto-occipital sulcus, which included the precuneus and cuneus. Functional connectivity analyses revealed that the FHD subjects showed reduced positive correlation within the default mode network and visual network and decreased negative correlation between the default mode network, visual network and task positive network. Moreover, the altered functional connectivity was correlated with self-reported impulsivity scores in the FHD subjects. Our findings suggest that disruption of large-scale brain systems is present in former heroin users even after multi-year abstinence, which could serve as system-level neural underpinnings for behavioral dysfunctions associated with addiction. PMID:25727574

  11. Stress-induced changes in skin barrier function in healthy women.

    PubMed

    Altemus, M; Rao, B; Dhabhar, F S; Ding, W; Granstein, R D

    2001-08-01

    Despite clear exacerbation of several skin disorders by stress, the effect of psychologic or exertional stress on human skin has not been well studied. We investigated the effect of three different stressors, psychologic interview stress, sleep deprivation, and exercise, on several dermatologic measures: transepidermal water loss, recovery of skin barrier function after tape stripping, and stratum corneum water content (skin conductance). We simultaneously measured the effects of stress on plasma levels of several stress-response hormones and cytokines, natural killer cell activity, and absolute numbers of peripheral blood leukocytes. Twenty-five women participated in a laboratory psychologic interview stress, 11 women participated in one night of sleep deprivation, and 10 women participated in a 3 d exercise protocol. The interview stress caused a delay in the recovery of skin barrier function, as well as increases in plasma cortisol, norepinephrine, interleukin-1beta and interleukin-10, tumor necrosis factor-alpha, and an increase in circulating natural killer cell activity and natural killer cell number. Sleep deprivation also decreased skin barrier function recovery and increased plasma interleukin-1beta, tumor necrosis factor-alpha, and natural killer cell activity. The exercise stress did not affect skin barrier function recovery, but caused an increase in natural killer cell activity and circulating numbers of both cytolytic T lymphocytes and helper T cells. In addition, cytokine responses to the interview stress were inversely correlated with changes in barrier function recovery. These results suggest that acute psychosocial and sleep deprivation stress disrupts skin barrier function homeostasis in women, and that this disruption may be related to stress-induced changes in cytokine secretion. PMID:11511309

  12. Neuroimaging abnormalities, neurocognitive function, and fatigue in patients with hepatitis C

    PubMed Central

    Castellon, Steven A.; Singer, Elyse J.; Nagarajan, Rajakumar; Sarma, Manoj K.; Smith, Jason; Thaler, Nicholas S.; Truong, Jonathan Hien; Schonfeld, Daniel; Thomas, M. Albert; Hinkin, Charles H.

    2015-01-01

    Objective: This study examined neurologic abnormalities (as measured by proton magnetic resonance spectroscopy imaging and diffusion tensor imaging), neurocognitive performance, and fatigue among a sample of adults with hepatitis C virus (HCV). We hypothesized that HCV+ individuals would demonstrate structural brain abnormalities and neurocognitive compromise consistent with frontostriatal dysfunction as well as increased fatigue compared to controls. Method: Participants were 76 individuals diagnosed with HCV and 20 controls who underwent a comprehensive neurocognitive evaluation and clinical assessments. A subset of the HCV+ participants (n = 29) and all controls underwent MRI. Results: Individuals diagnosed with chronic HCV infection demonstrated greater fractional anisotropy in the striatum as well as greater mean diffusivity in the fronto-occiptal fasciculus and external capsule compared to HCV− controls. HCV+ participants also demonstrated lower levels of N-acetylaspartate in bilateral parietal white matter and elevations in myo-inosital (mI) in bilateral frontal white matter compared to HCV− controls (all p values < 0.05). HCV+ participants also demonstrated significantly poorer neuropsychological performance, particularly in processing speed and verbal fluency. HCV+ patients reported higher levels of fatigue than controls, and fatigue was significantly correlated with diffusivity in the superior fronto-occipital fasciculus, elevations in mI in frontal white matter, and overall cognitive performance. Conclusions: Our results suggest that HCV-associated neurologic complications disrupt frontostriatal structures, which may result in increased fatigue and poorer cognitive performance, particularly in those cognitive domains regulated by frontostriatal regions. PMID:25610883

  13. Functional barrier in two-layer recycled PP films for food packaging applications

    NASA Astrophysics Data System (ADS)

    Scarfato, P.; Di Maio, L.; Milana, M. R.; Feliciani, R.; Denaro, M.; Incarnato, L.

    2014-05-01

    A preliminary study on bi-layer virgin/contaminated polypropylene co-extruded films was performed in order to evaluate the possibility to realize an effective functional barrier in PP-based multi-layer systems. In particular, the specific migration in 10% v/v aqueous ethanol of two surrogate contaminants (phenyl-cyclohexane and benzophenone) contained in the contaminated layer across the PP functional barrier was measured at different times and the results were compared with those obtained from a contaminated mono-layer polypropylene film. Moreover, the thermal and mechanical performances of the produced films were investigated.

  14. Yersinia enterocolitica Affects Intestinal Barrier Function in the Colon.

    PubMed

    Hering, Nina A; Fromm, Anja; Kikhney, Judith; Lee, In-Fah M; Moter, Annette; Schulzke, Jörg D; Bücker, Roland

    2016-04-01

    Infection with Yersinia enterocolitica causes acute diarrhea in early childhood. A mouse infection model presents new findings on pathological mechanisms in the colon. Symptoms involve diarrhea with watery feces and weight loss that have their functional correlates in decreased transepithelial electrical resistance and increased fluorescein permeability. Y. enterocolitica was present within the murine mucosa of both ileum and colon. Here, the bacterial insult was of focal nature and led to changes in tight junction protein expression and architecture. These findings are in concordance with observations from former cell culture studies and suggest a leak flux mechanism of diarrhea. PMID:26621910

  15. Thermoelastic Response of Functionally Graded Barriers Subjected to Shocks

    NASA Astrophysics Data System (ADS)

    Vieira Carneiro, C. A.; Rochinha, F. A.; Borges, L. M. S. Alves

    2008-02-01

    The development of Functionally Graded Materials (FGMs) for energy-absorbing applications requires understanding of stress waves propagation in these structures in order to optimize their resistance to failure. The advantage of using these materials is that they are able to withstand high temperature gradient environments while maintaining their structural integrity with superior resistance to interfacial failure. In this present work, it presents a model to solve the coupled thermomechanical problem subjected to thermal solicitations. An staggered algorithm, which does not upset the unconditional stability property characteristic of fully implicit schemes, is employed. Numerical simulations are presented involving one-dimensional configurations with FGM materials subjected to thermal shocks.

  16. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery.

    PubMed

    Heijink, I H; Brandenburg, S M; Postma, D S; van Oosterhout, A J M

    2012-02-01

    Cigarette smoking, the major cause of chronic obstructive pulmonary disease (COPD), induces aberrant airway epithelial structure and function. The underlying mechanisms are unresolved so far. We studied effects of cigarette smoke extract (CSE) on epithelial barrier function and wound regeneration in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) from COPD patients, nonsmokers and healthy smokers. We demonstrate that CSE rapidly and transiently impairs 16HBE barrier function, largely due to disruption of cell-cell contacts. CSE induced a similar, but stronger and more sustained, defect in PBECs. Application of the specific epidermal growth factor receptor (EGFR) inhibitor AG1478 showed that EGFR activation contributes to the CSE-induced defects in both 16HBE cells and PBECs. Furthermore, our data indicate that the endogenous protease calpain mediates these defects through tight junction protein degradation. CSE also delayed the reconstitution of 16HBE intercellular contacts during wound healing and attenuated PBEC barrier function upon wound regeneration. These findings were comparable between PBECs from smokers, healthy smokers and COPD patients. In conclusion, we demonstrate for the first time that CSE reduces epithelial integrity, probably by EGFR and calpain-dependent disruption of intercellular contacts. This may increase susceptibility to environmental insults, e.g. inhaled pathogens. Thus, EGFR may be a promising target for therapeutic strategies to improve mucosal barrier function in cigarette smoking-related disease. PMID:21778164

  17. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics

    PubMed Central

    Hering, Nina A; Fromm, Michael; Schulzke, Jörg-Dieter

    2012-01-01

    Intestinal barrier dysfunction is a main feature of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Leak flux diarrhoea and a facilitated uptake of noxious antigens are the two consequences resulting from an impaired epithelial barrier. Barrier perturbations in IBD comprise alterations in epithelial tight junctions (TJ), i.e. a reduced number of horizontal TJ strands and an altered TJ protein expression and subcellular distribution. Moreover, increased incidence of apoptotic events as well as erosions and ulcerations can add to that leakiness. These barrier defects are attributed to enhanced activity of pro-inflammatory cytokines like TNFα, INFγ, IL-1β and IL-13, which are highly expressed in the chronically inflamed intestine. Although the aetiology of IBD is far from being clear, chronic inflammation is believed to result from an inadequate immune response as a consequence of genetic predisposition as well as changes in, and altered responses to, the intestinal microbiota. On the other hand, an insufficient mucosal response to bacterial stimuli results in an insufficient immune response towards intestinal pathogens. However, detailed characterization of barrier defects offers the opportunity to consider and test therapeutic interventions. Beside cytokine antagonists, different plant compounds and probiotics have been shown to stabilize the barrier function by affecting TJ protein expression and distribution. PMID:22219336

  18. Functions of an engineered barrier system for a nuclear waste repository in basalt

    SciTech Connect

    Coons, W.E.; Moore, E.L.; Smith, M.J.; Kaser, J.D.

    1980-01-01

    Defined in this document are the functions of components selected for an engineered barrier system for a nuclear waste repository in basalt. The definitions provide a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five-component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed in terms of effective operation throughout the course of repository history, recognizing that the emplacement environment changes with time. While components of the system are mutually supporting, redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The operating philosophy of the conceptual engineered barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed. A method for system validation and qualification is also included which considers performance criteria proposed by external agencies in conjunction with site-specific models and risk assessment to define acceptable levels of system performance.

  19. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis. PMID:25354028

  20. Staphylococcal enterotoxin B suppresses Alix and compromises intestinal epithelial barrier functions

    PubMed Central

    2014-01-01

    Background The epithelial barrier dysfunction plays a critical role in the pathogenesis of a broad array of immune diseases. Alix protein is involved in the endolysosome system. This study aims to elucidate the role of Alix in the maintenance of epithelial barrier function. Results The results showed that Alix was detected in T84 cells at both mRNA and protein levels. Exposure to Staphylococcal enterotoxin B (SEB) markedly suppressed the expression of Alix in T84 cells, which could be blocked by knocking down the Toll like receptor 2. The exposure to SEB did not affect the TER, but markedly increased the permeability of T84 monolayers to OVA; the OVA passing through T84 monolayers still preserved the antigenicity manifesting inducing antigen specific T cells proliferation. Conclusions Alix protein plays a critical role in the maintenance of the barrier function of T84 monolayers. PMID:24712823

  1. ClC-2 regulation of intestinal barrier function: Translation of basic science to therapeutic target.

    PubMed

    Jin, Younggeon; Blikslager, Anthony T

    2015-01-01

    The ClC-2 chloride channel is a member of the voltage-gated chloride channel family. ClC-2 is involved in various physiological processes, including fluid transport and secretion, regulation of cell volume and pH, maintaining the membrane potential of the cell, cell-to-cell communication, and tissue homeostasis. Recently, our laboratory has accumulated evidence indicating a critical role of ClC-2 in the regulation of intestinal barrier function by altering inter-epithelial tight junction composition. This review will detail the role of ClC-2 in intestinal barrier function during intestinal disorders, including experimental ischemia/reperfusion injury and dextran sodium sulfate (DSS)-induced inflammatory bowel disease. Details of pharmacological manipulation of ClC-2 via prostone agonists will also be provided in an effort to show the potential therapeutic relevance of ClC-2 regulation, particularly during intestinal barrier disruption. PMID:26716076

  2. Liver Function Test Abnormalities in Depressed Patients Treated with Antidepressants: A Real-World Systematic Observational Study in Psychiatric Settings

    PubMed Central

    Verstuyft, Céline; Corruble, Emmanuelle; Perlemuter, Gabriel; Colle, Romain

    2016-01-01

    Background Concerning the risk of antidepressant induced liver injury, it is not clear whether psychiatrists perform a liver function test (LFT) and whether an increase in aminotransferase levels should contraindicate antidepressant treatment. Aim To evaluate LFT availability, the prevalence of LFT abnormalities and the probable cause of an altered LFT in patients with a major depressive episode (MDE) requiring an antidepressant drug. Methods We studied LFT evaluation in a real world psychiatric setting, in a sample of 321 consecutive patients with a current major depressive episode (MDE) requiring an antidepressant drug treatment, but without current alcohol or drug dependence or unstable medical disease. Results An LFT is performed in 36.1% (116/321) of depressed patients. One fifth of antidepressant-treated patients who had an LFT evaluation had abnormal results. The most frequent causes of LFT abnormalities were: NAFLD (nonalcoholic fatty liver disease) (7/321; 2.1%), acute alcohol consumption (4/321; 1.2%), antidepressant-induced liver injury (3/321; 0.9%), hepatitis C virus infection (2/321; 0.6%) and heart failure (1/321; 0.3%). The cause of LFT abnormalities was unknown in 32% of patients (8/25) due to the absence of etiological investigations. Conclusion These results demonstrate that an LFT is infrequently performed by psychiatrists in depressed patients requiring an antidepressant drug. Baseline LFT assessment and observations during the first six months of antidepressant treatment may be useful for detection of patients with pre-existing liver disease such as NAFLD, and early identification of cases of antidepressant-induced liver injury. An increase in aminotransferase levels may be related to an underlying liver disease, but does not contraindicate antidepressant treatment. PMID:27171561

  3. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  4. Zinc’s impact on intestinal barrier function and zinc trafficking during coccidial caccine challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the effects of Zn supplementation on intestinal barrier function and Zn trafficking, three dietary regimens were formulated: a basal corn/SBM diet formulated with a Zn-free vitamin/mineral premix (Basal), and two Zn regimens formulated to provide 90 mg/kg total dietary Zn from ...

  5. Abnormal resting-state functional connectivity of the left caudate nucleus in obsessive-compulsive disorder.

    PubMed

    Chen, Yunhui; Juhás, Michal; Greenshaw, Andrew J; Hu, Qiang; Meng, Xin; Cui, Hongsheng; Ding, Yongzhuo; Kang, Lu; Zhang, Yubo; Wang, Yuhua; Cui, Guangcheng; Li, Ping

    2016-06-01

    Altered brain activities in the cortico-striato-thalamocortical (CSTC) circuitry are implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, whether the underlying changes occur only within this circuitry or in large-scale networks is still not thoroughly understood. This study performed voxel-based functional connectivity analysis on resting-state functional magnetic resonance imaging (fMRI) data from thirty OCD patients and thirty healthy controls to investigate whole-brain intrinsic functional connectivity patterns in OCD. Relative to the healthy controls, OCD patients showed decreased functional connectivity within the CSTC circuitry but increased functional connectivity in other brain regions. Furthermore, decreased left caudate nucleus-thalamus connectivity within the CSTC circuitry was positively correlated with the illness duration of OCD. This study provides additional evidence that CSTC circuitry may play an essential role and alteration of large-scale brain networks may be involved in the pathophysiology of OCD. PMID:27143323

  6. Evidence for progressive brain abnormalities in early schizophrenia: a cross-sectional structural and functional connectivity study.

    PubMed

    Zhang, Fangfang; Qiu, Linlin; Yuan, Lili; Ma, Huijuan; Ye, Rong; Yu, Fengqiong; Hu, Panpan; Dong, Yi; Wang, Kai

    2014-10-01

    It has long been debated whether a progressive process is involved in schizophrenia. The aim of the current study was to determine whether a progressive process was involved in patients with early schizophrenia, who were drug naive or had received short-term minimal antipsychotic treatment to avoid the distortion through medication effects. Twenty-eight patients with schizophrenia with illness-duration of up to 3 years and twenty-six matched healthy controls were recruited. Structural and functional brain networks were examined based on diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI). The intergroup differences and correlation with illness duration in the patient group were surveyed. The schizophrenic patients showed lower fractional anisotropy (FA) values in the corpus callosum and corona radiata. Negative correlations of illness duration with FA values were observed in similar regions. During functional analysis, reduced functional connectivity between bilateral temporoparietal-junction (TPJ) and the posterior cingulate cortex (PCC) were found in the default mode network (DMN) in schizophrenic patients. In addition, the left TPJ showed gradually weaker functional connectivity with PCC and the medial prefrontal cortex (MPFC) in DMN as the duration of schizophrenia increased. The results suggested that early in the disease process patients have decreased connectivity in both structural and functional networks and that the weaker structural and functional connectivity negatively correlated with illness duration, which provided evidence for progressive brain abnormalities in early schizophrenia. PMID:25176348

  7. IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis

    PubMed Central

    Gerlach, Katharina; McKenzie, Andrew N; Neurath, Markus F; Weigmann, Benno

    2015-01-01

    As previous studies suggested that IL-9 may control intestinal barrier function, we tested the role of IL-9 in experimental T cell-mediated colitis induced by the hapten reagent 2,4,6-trinitrobenzenesulfonic acid (TNBS). The deficiency of IL-9 suppressed TNBS-induced colitis and led to lower numbers of PU.1 expressing T cells in the lamia propria, suggesting a regulatory role for Th9 cells in the experimental TNBS colitis model. Since IL-9 is known to functionally alter intestinal barrier function in colonic inflammation, we assessed the expression of tight junction molecules in intestinal epithelial cells of TNBS-inflamed mice. Therefore we made real-time PCR analyses for tight junction molecules in the inflamed colon from wild-type and IL-9 KO mice, immunofluorescent stainings and investigated the expression of junctional proteins directly in intestinal epithelial cells of TNBS-inflamed mice by Western blot studies. The results demonstrated that sealing proteins like occludin were up regulated in the colon of inflamed IL-9 KO mice. In contrast, the tight junction protein Claudin1 showed lower expression levels when IL-9 is absent. Surprisingly, the pore-forming molecule Claudin2 revealed equal expression in TNBS-treated wild-type and IL-9-deficient animals. These results illustrate the pleiotropic functions of IL-9 in changing intestinal permeability in experimental colitis. Thus, modulation of IL-9 function emerges as a new approach for regulating barrier function in intestinal inflammation. PMID:25838986

  8. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes.

    PubMed

    Kim, Jin Hee; Lee, Mee-Ri; Hong, Yun-Chul

    2016-05-01

    Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function. PMID:26922413

  9. Congenital Abnormalities

    MedlinePlus

    ... Life Family Life Family Life Medical Home Family Dynamics Media Work & Play Getting Involved in Your Community ... Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic material inherited from one generation ...

  10. Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function

    PubMed Central

    Moeser, Adam J.; Nighot, Prashant K.; Ryan, Kathleen A.; Simpson, Janet E.; Clarke, Lane L.; Blikslager, Anthony T.

    2008-01-01

    Ischemic injury induces breakdown of the intestinal barrier. Recent studies in porcine postischemic tissues indicate that inhibition of NHE2 results in enhanced recovery of barrier function in vitro via a process involving interepithelial tight junctions. To further study this process, recovery of barrier function was assessed in wild-type (NHE2+/+) and NHE2−/− mice in vivo and wild-type mice in vitro. Mice were subjected to complete mesenteric ischemia in vivo, after which barrier function was measured by blood-to-lumen mannitol clearance over a 3-h recovery period or measurement of transepithelial electrical resistance (TER) in Ussing chambers immediately following ischemia. Tissues were assessed for expression of select junctional proteins. Compared with NHE2+/+ mice, NHE2−/− mice had greater intestinal permeability during the postischemic recovery process. In contrast to prior porcine studies, pharmacological inhibition of NHE2 in postischemic tissues from wild-type mice also resulted in significant reductions in TER. Mucosa from NHE2−/− mice displayed a shift of occludin and claudin-1 expression to the Triton-X-soluble membrane fractions and showed disruption of occludin and claudin-1 localization patterns following injury. This was qualitatively and quantitatively recovered in NHE2+/+ mice compared with NHE2−/− mice by the end of the 3-h recovery period. Serine phosphorylation of occludin and claudin-1 was downregulated in NHE2−/− postischemia compared with wild-type mice. These data indicate an important role for NHE2 in recovery of barrier function in mice via a mechanism involving tight junctions. PMID:18719001

  11. Mechanical and non-mechanical functions of Dystrophin can prevent cardiac abnormalities in Drosophila.

    PubMed

    Taghli-Lamallem, Ouarda; Jagla, Krzysztof; Chamberlain, Jeffrey S; Bodmer, Rolf

    2014-01-01

    Dystrophin-deficiency causes cardiomyopathies and shortens the life expectancy of Duchenne and Becker muscular dystrophy patients. Restoring Dystrophin expression in the heart by gene transfer is a promising avenue to explore as a therapy. Truncated Dystrophin gene constructs have been engineered and shown to alleviate dystrophic skeletal muscle disease, but their potential in preventing the development of cardiomyopathy is not fully understood. In the present study, we found that either the mechanical or the signaling functions of Dystrophin were able to reduce the dilated heart phenotype of Dystrophin mutants in a Drosophila model. Our data suggest that Dystrophin retains some function in fly cardiomyocytes in the absence of a predicted mechanical link to the cytoskeleton. Interestingly, cardiac-specific manipulation of nitric oxide synthase expression also modulates cardiac function, which can in part be reversed by loss of Dystrophin function, further implying a signaling role of Dystrophin in the heart. These findings suggest that the signaling functions of Dystrophin protein are able to ameliorate the dilated cardiomyopathy, and thus might help to improve heart muscle function in micro-Dystrophin-based gene therapy approaches. PMID:24231130

  12. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development

    PubMed Central

    Velletri, T; Xie, N; Wang, Y; Huang, Y; Yang, Q; Chen, X; Chen, Q; Shou, P; Gan, Y; Cao, G; Melino, G; Shi, Y

    2015-01-01

    It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS.

  13. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development.

    PubMed

    Velletri, T; Xie, N; Wang, Y; Huang, Y; Yang, Q; Chen, X; Chen, Q; Shou, P; Gan, Y; Cao, G; Melino, G; Shi, Y

    2016-01-01

    It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS. PMID:26775693

  14. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development

    PubMed Central

    Velletri, T; Xie, N; Wang, Y; Huang, Y; Yang, Q; Chen, X; Chen, Q; Shou, P; Gan, Y; Cao, G; Melino, G; Shi, Y

    2016-01-01

    It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS. PMID:26775693

  15. Abnormal degree centrality in Alzheimer's disease patients with depression: A resting-state functional magnetic resonance imaging study.

    PubMed

    Guo, Zhongwei; Liu, Xiaozheng; Hou, Hongtao; Wei, Fuquan; Liu, Jian; Chen, Xingli

    2016-06-15

    Depression is common in Alzheimer's disease (AD) and occurs in AD patients with a prevalence of up to 40%. It reduces cognitive function and increases the burden on caregivers. Currently, there are very few medications that are useful for treating depression in AD patients. Therefore, understanding the brain abnormalities in AD patients with depression (D-AD) is crucial for developing effective interventions. The aim of this study was to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks at the voxel level in D-AD patients based on degree centrality (DC) as measured by resting-state functional magnetic resonance imaging (R-fMRI). Our study included 32 AD patients. All patients were evaluated using the Neuropsychiatric Inventory and Hamilton Depression Rating Scale and further divided into two groups: 15 D-AD patients and 17 non-depressed AD (nD-AD) patients. R-fMRI datasets were acquired from these D-AD and nD-AD patients. First, we performed a DC analysis to identify voxels that showed altered whole brain functional connectivity (FC) with other voxels. We then further investigated FC using the abnormal DC regions to examine in more detail the connectivity patterns of the identified DC changes. D-AD patients had lower DC values in the right middle frontal, precentral, and postcentral gyrus than nD-AD patients. Seed-based analysis revealed decreased connectivity between the precentral and postcentral gyrus to the supplementary motor area and middle cingulum. FC also decreased in the right middle frontal, precentral, and postcentral gyrus. Thus, AD patients with depression fit a 'network dysfunction model' distinct from major depressive disorder and AD. PMID:27079332

  16. Insulin?like growth factor I improves intestinal barrier function in cirrhotic rats

    PubMed Central

    Lorenzo?Ziga, V; Rodrguez?Ortigosa, C M; Bartol, R; Martnez?Chantar, M?L; Martnez?Peralta, L; Pardo, A; Ojanguren, I; Quiroga, J; Planas, R; Prieto, J

    2006-01-01

    Background and aims In liver cirrhosis, disruption of the intestinal barrier facilitates bacterial translocation and spontaneous bacterial peritonitis. Insulin?like growth factor I (IGF?I) is an anabolic hormone synthesised by hepatocytes that displays hepatoprotective activities and trophic effects on the intestine. The aim of this study was to investigate the effect of IGF?I on intestinal barrier function in cirrhotic rats. Methods In rats with carbon tetrachloride induced cirrhosis, we investigated the effect of IGF?I therapy on: (a) portal pressure; (b) intestinal histology and permeability to endotoxin and bacteria; (c) intestinal expression of cyclooxygenase 2 (COX?2) and tumour necrosis factor ? (TNF??), two factors that influence in a positive and negative manner, respectively, the integrity of the intestinal barrier; (d) intestinal permeability to 3H?mannitol in rats with bile duct ligation (BDL); and (e) transepithelial electrical resistance (TER) of polarised monolayers of rat small intestine epithelial cells. Results IGF?I therapy reduced liver collagen expression and portal pressure in cirrhotic rats, induced improvement in intestinal histology, and caused a reduction in bacterial translocation and endotoxaemia. These changes were associated with diminished TNF?? expression and elevated COX?2 levels in the intestine. IGF?I reduced intestinal permeability in BDL rats and enhanced barrier function of the monolayers of epithelial intestinal cells where lipopolysaccharide (LPS) caused a decrease in TER that was reversed by IGF?I. This effect of IGF?I was associated with upregulation of COX?2 in LPS treated enterocytes. Conclusions IGF?I enhances intestinal barrier function and reduces endotoxaemia and bacterial translocation in cirrhotic rats. IGF?I therapy might be useful in the prevention of spontaneous bacterial peritonitis in liver cirrhosis. PMID:16434425

  17. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus.

    PubMed

    Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S

    2012-12-13

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. PMID:22986172

  18. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus

    PubMed Central

    Chen, Xiaodi; Threlkeld, Steven W.; Cummings, Erin E.; Juan, Ilona; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Sadowska, Grazyna B.; Stonestreet, Barbara S.

    2012-01-01

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (Ki) and tight junction proteins by Western immunoblot in fetal sheep at 127 days-of-gestation without ischemia, and 4-, 24-, or 48-h after ischemia. The largest increase in Ki (P<0.05) was 4-h after ischemia. Occludin and claudin-5 expressions decreased at 4-h, but returned toward control levels 24- and 48-h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between Ki and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (Ki) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4-h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24- and 48- than 4-h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. PMID:22986172

  19. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  20. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal

  1. Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger's Syndrome

    ERIC Educational Resources Information Center

    McAlonan, Grainne M.; Suckling, John; Wong, Naikei; Cheung, Vinci; Lienenkaemper, Nina; Cheung, Charlton; Chua, Siew E.

    2008-01-01

    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance…

  2. Oculomotor executive function abnormalities with increased tic severity in Tourette syndrome

    PubMed Central

    Jeter, Cameron B.; Patel, Saumil S.; Morris, Jeffrey S.; Chuang, Alice Z.; Butler, Ian J.; Sereno, Anne B.

    2014-01-01

    Background Reports conflict as to whether Tourette Syndrome (TS) confers deficits in executive function. This study's aim was to evaluate executive function in youths with TS using oculomotor tasks while controlling for confounds of tic severity, age, medication and severity of comorbid disorders. Method Four saccade tasks requiring the executive functions of response generation, response inhibition, and working memory (prosaccade, antisaccade, 0-back and 1-back) were administered. Twenty youths with TS and low tic severity (TS-low), nineteen with TS and moderate tic severity (TS-moderate), and twenty-nine typically developing control subjects (Controls) completed the oculomotor tasks. Results There were small differences across groups in the prosaccade task. Controlling for any small sensorimotor differences, TS-moderate subjects had significantly higher error rates than Controls and TS-low subjects in the 0-back and 1-back tasks. In the 1-back task, these patients also took longer to respond than Controls or TS-low subjects. Conclusions In a highly controlled design, the findings demonstrate for the first time that increased tic severity in TS is associated with impaired response inhibition and impaired working memory and that these executive function deficits cannot be accounted for by differences in age, medication or comorbid symptom severity. PMID:25040172

  3. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  4. Post mTBI fatigue is associated with abnormal brain functional connectivity.

    PubMed

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants' fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject's fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  5. Post mTBI fatigue is associated with abnormal brain functional connectivity

    PubMed Central

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants’ fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject’s fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  6. Abnormal olfactory function demonstrated by manganese-enhanced MRI in mice with experimental neuropsychiatric lupus.

    PubMed

    Kivity, Shaye; Tsarfaty, Galia; Agmon-Levin, Nancy; Blank, Miri; Manor, David; Konen, Eli; Chapman, Joab; Reichlin, Morris; Wasson, Craig; Shoenfeld, Yehuda; Kushnir, Tammar

    2010-04-01

    Mice with experimental neuropsychiatric lupus (NPSLE), induced by anti-ribosomal-P antibodies, developed depression-like behavior and a diminished sense of smell. Manganese-enhanced MRI (MEMRI) allows in vivo mapping of functional neuronal connections in the brain, including the olfactory tract. The aim of this study was to analyze and describe, via the MEMRI technique, the effect of the anti-ribosomal-P injection on the olfactory pathway. Twenty mice were intra-cerebra-ventricular injected to the right hemisphere: 10 with human anti-ribosomal-P antibodies and 10 with human IgG antibodies (control). Depression was addressed by forced swimming test and smell function was evaluated by smelling different concentrations of menthol. MEMRI was used to investigate the olfactory system in these mice. Passive transfer of anti-ribosomal-P to mice resulted in a depression-like behavior, accompanied with a significant deficit in olfactory function. MEMRI of these mice demonstrated significant reduction (P < 0.001) in normalized manganese enhancement ratios of olfactory structures, compared to control mice. We concluded that an impaired olfactory neuronal function in mice with experimental depression, mediated by passive transfer of human-anti-ribosomal-P, can be demonstrated by MEMRI. PMID:20398010

  7. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  8. Functional connectivity abnormalities vary by amygdala subdivision and are associated with psychiatric symptoms in unilateral temporal epilepsy

    PubMed Central

    Doucet, Gaëlle E.; Skidmore, Christopher; Sharan, Ashwini D.; Sperling, Michael R.; Tracy, Joseph I.

    2013-01-01

    The amygdala has been described as a structure affected by mesial temporal lobe epilepsy (MTLE). Indeed, it is suggested that amygdala abnormalities are related to the co-morbid depression and anxiety reported in MTLE. In this context, we investigated the relation between functional connectivity (FC) emerging from this structure in fMRI and depression and anxiety levels reported in MTLE patients. We focused on resting-state BOLD activity and evaluated whether FC differences emerge from each of three amygdala subdivisions (laterobasal, centromedial and superficial) in left and right MTLE groups, compared with healthy controls. Results revealed significant differences between patient groups and controls. Specifically, the left MTLE group showed abnormal FC for the left-sided seeds only. Furthermore, regardless of the seed, we observed more reliable differences between the right MTLE group and controls. Further analysis of these results revealed correlations between these impaired connectivities and psychiatric symptoms in both MTLE groups. Opposite relations, however, were highlighted: the more depressed or anxious the right MTLE patients, the closer their FC values approached controls; whereas the less anxious the left MTLE patients, the closer their FC values were normative. These results highlight how MTLE alter FC emerging from the limbic system. Overall, our data demonstrate that right TLE has a more maladaptive impact on emotion-related networks, in ways specific to the amygdala region, and the emotion symptom involved, than left TLE. PMID:24036129

  9. Functional connectivity abnormalities vary by amygdala subdivision and are associated with psychiatric symptoms in unilateral temporal epilepsy.

    PubMed

    Doucet, Gaëlle E; Skidmore, Christopher; Sharan, Ashwini D; Sperling, Michael R; Tracy, Joseph I

    2013-11-01

    The amygdala has been described as a structure affected by mesial temporal lobe epilepsy (MTLE). Indeed, it is suggested that amygdala abnormalities are related to the co-morbid depression and anxiety reported in MTLE. In this context, we investigated the relation between functional connectivity (FC) emerging from this structure in fMRI and depression and anxiety levels reported in MTLE patients. We focused on resting-state BOLD activity and evaluated whether FC differences emerge from each of three amygdala subdivisions (laterobasal, centromedial and superficial) in left and right MTLE groups, compared with healthy controls. Results revealed significant differences between patient groups and controls. Specifically, the left MTLE group showed abnormal FC for the left-sided seeds only. Furthermore, regardless of the seed, we observed more reliable differences between the right MTLE group and controls. Further analysis of these results revealed correlations between these impaired connectivities and psychiatric symptoms in both MTLE groups. Opposite relations, however, were highlighted: the more depressed or anxious the right MTLE patients, the closer their FC values approached controls; whereas the less anxious the left MTLE patients, the closer their FC values were normative. These results highlight how MTLE alter FC emerging from the limbic system. Overall, our data demonstrate that right TLE has a more maladaptive impact on emotion-related networks, in ways specific to the amygdala region, and the emotion symptom involved, than left TLE. PMID:24036129

  10. What is the best strategy for investigating abnormal liver function tests in primary care? Implications from a prospective study

    PubMed Central

    Lilford, Richard J; Bentham, Louise M; Armstrong, Matthew J; Neuberger, James; Girling, Alan J

    2013-01-01

    Objective Evaluation of predictive value of liver function tests (LFTs) for the detection of liver-related disease in primary care. Design A prospective observational study. Setting 11 UK primary care practices. Participants Patients (n=1290) with an abnormal eight-panel LFT (but no previously diagnosed liver disease). Main outcome measures Patients were investigated by recording clinical features, and repeating LFTs, specific tests for individual liver diseases, and abdominal ultrasound scan. Patients were characterised as having: hepatocellular disease; biliary disease; tumours of the hepato-biliary system and none of the above. The relationship between LFT results and disease categories was evaluated by stepwise regression and logistic discrimination, with adjustment for demographic and clinical factors. True and False Positives generated by all possible LFT combinations were compared with a view towards optimising the choice of analytes in the routine LFT panel. Results Regression methods showed that alanine aminotransferase (ALT) was associated with hepatocellular disease (32 patients), while alkaline phosphatase (ALP) was associated with biliary disease (12 patients) and tumours of the hepatobiliary system (9 patients). A restricted panel of ALT and ALP was an efficient choice of analytes, comparing favourably with the complete panel of eight analytes, provided that 48 False Positives can be tolerated to obtain one additional True Positive. Repeating a complete panel in response to an abnormal reading is not the optimal strategy. Conclusions The LFT panel can be restricted to ALT and ALP when the purpose of testing is to exclude liver disease in primary care. PMID:23794594

  11. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice1

    PubMed Central

    Porter, A J; Pillidge, K; Tsai, Y C; Dudley, J A; Hunt, S P; Peirson, S N; Brown, L A; Stanford, S C

    2015-01-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: ‘Hom’) wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents (‘Het’, derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors. PMID:25558794

  12. Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction.

    PubMed

    Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H A; MacIver, Bryce; Zeidel, Mark; Yu, Weiqun

    2016-05-01

    Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg(-1)·day(-1) ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P < 0.05), indicating a contracted bladder and bladder overactivity. Consistently, significantly increased voiding frequency was observed in ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853

  13. PHD3 Stabilizes the Tight Junction Protein Occludin and Protects Intestinal Epithelial Barrier Function.

    PubMed

    Chen, Ying; Zhang, Hai-Sheng; Fong, Guo-Hua; Xi, Qiu-Lei; Wu, Guo-Hao; Bai, Chen-Guang; Ling, Zhi-Qiang; Fan, Li; Xu, Yi-Ming; Qin, Yan-Qing; Yuan, Tang-Long; Sun, Heng; Fang, Jing

    2015-08-14

    Prolyl hydroxylase domain proteins (PHDs) control cellular adaptation to hypoxia. PHDs are found involved in inflammatory bowel disease (IBD); however, the exact role of PHD3, a member of the PHD family, in IBD remains unknown. We show here that PHD3 plays a critical role in maintaining intestinal epithelial barrier function. We found that genetic ablation of Phd3 in intestinal epithelial cells led to spontaneous colitis in mice. Deletion of PHD3 decreases the level of tight junction protein occludin, leading to a failure of intestinal epithelial barrier function. Further studies indicate that PHD3 stabilizes occludin by preventing the interaction between the E3 ligase Itch and occludin, in a hydroxylase-independent manner. Examination of biopsy of human ulcerative colitis patients indicates that PHD3 is decreased with disease severity, indicating that PHD3 down-regulation is associated with progression of this disease. We show that PHD3 protects intestinal epithelial barrier function and reveal a hydroxylase-independent function of PHD3 in stabilizing occludin. These findings may help open avenues for developing a therapeutic strategy for IBD. PMID:26124271

  14. Microtubule dynamics and Rac-1 signaling independently regulate barrier function in lung epithelial cells.

    PubMed

    Lorenowicz, Magdalena J; Fernandez-Borja, Mar; van Stalborch, Anne-Marieke D; van Sterkenburg, Marian A J A; Hiemstra, Pieter S; Hordijk, Peter L

    2007-11-01

    Cadherin-mediated cell-cell adhesion controls the morphology and function of epithelial cells and is a critical component of the pathology of chronic inflammatory disorders. Dynamic interactions between cadherins and the actin cytoskeleton are required for stable cell-cell contact. Besides actin, microtubules also target intercellular, cadherin-based junctions and contribute to their formation and stability. Here, we studied the role of microtubules in conjunction with Rho-like GTPases in the regulation of lung epithelial barrier function using real-time monitoring of transepithelial electrical resistance. Unexpectedly, we found that disruption of microtubules promotes epithelial cell-cell adhesion. This increase in epithelial barrier function is accompanied by the accumulation of beta-catenin at cell-cell junctions, as detected by immunofluorescence. Moreover, we found that the increase in cell-cell contact, induced by microtubule depolymerization, requires signaling through a RhoA/Rho kinase pathway. The Rac-1 GTPase counteracts this pathway, because inhibition of Rac-1 signaling rapidly promotes epithelial barrier function, in a microtubule- and RhoA-independent fashion. Together, our data suggest that microtubule-RhoA-mediated signaling and Rac-1 control lung epithelial integrity through counteracting independent pathways. PMID:17827248

  15. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    PubMed

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-03-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon. PMID:26947111

  16. pH-Regulated Mechanisms Account for Pigment-Type Differences in Epidermal Barrier Function

    PubMed Central

    Gunathilake, Roshan; Schurer, Nanna Y.; Shoo, Brenda A.; Celli, Anna; Hachem, Jean-Pierre; Crumrine, Debra; Sirimanna, Ganga; Feingold, Kenneth R.; Mauro, Theodora M.; Elias, Peter M.

    2009-01-01

    To determine whether pigment type determines differences in epidermal function, we studied stratum corneum (SC) pH, permeability barrier homeostasis, and SC integrity in three geographically disparate populations with pigment type I–II versus IV–V skin (Fitzpatrick I–VI scale). Type IV–V subjects showed: (i) lower surface pH (≈0.5 U); (ii) enhanced SC integrity (transepidermal water loss change with sequential tape strippings); and (iii) more rapid barrier recovery than type I–II subjects. Enhanced barrier function could be ascribed to increased epidermal lipid content, increased lamellar body production, and reduced acidity, leading to enhanced lipid processing. Compromised SC integrity in type I–II subjects could be ascribed to increased serine protease activity, resulting in accelerated desmoglein-1 (DSG-1)/corneodesmosome degradation. In contrast, DSG-1-positive CDs persisted in type IV–V subjects, but due to enhanced cathepsin-D activity, SC thickness did not increase. Adjustment of pH of type I–II SC to type IV–V levels improved epidermal function. Finally, dendrites from type IV–V melanocytes were more acidic than those from type I–II subjects, and they transfer more melanosomes to the SC, suggesting that melanosome secretion could contribute to the more acidic pH of type IV–V skin. These studies show marked pigment-type differences in epidermal structure and function that are pH driven. PMID:19177137

  17. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    PubMed Central

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  18. Hydrophobicity of mucosal surface and its relationship to gut barrier function.

    PubMed

    Qin, Xiaofa; Caputo, Francis J; Xu, Da-Zhong; Deitch, Edwin A

    2008-03-01

    Loss of the gut barrier has been implicated in the pathogenesis of the multiple organ dysfunction syndrome, and, thus, understanding the intestinal barrier is of potential clinical importance. An important, but relatively neglected, component of the gut barrier is the unstirred mucus layer, which through its hydrophobic and other properties serves as an important barrier to bacterial and other factors within the gut lumen. Thus, the goal of this study was to establish a reproducible method of measuring mucosal hydrophobicity and test the hypothesis that conditions that decrease mucosal hydrophobicity are associated with increased gut permeability. Hydrophobicity was measured in various segments of normal gut by measuring the contact angle of an aqueous droplet placed on the mucosal surface using a commercial goniometer. Second, the effect of the mucolytic agent N-acetyl cysteine on mucosal hydrophobicity and gut permeability was measured, as was the effects of increasing periods of in vivo gut ischemia on these parameters. Gut ischemia was induced by superior mesenteric artery occlusion, and gut permeability was measured by the mucosal-to-serosal passage of fluoresceine isothiocyanate-dextran (4.3 kDa) (FD4) across the everted sacs of ileum. Intestinal mucosal hydrophobicity showed a gradual increase from the duodenum to the end of the ileum and remained at high level in the cecum, colon, and rectum. Both N-acetyl cysteine treatment and ischemia caused a dose-dependent decrease in mucosal hydrophobicity, which significantly correlated increased gut permeability. Mucosal hydrophobicity of the intestine can be reproducibly measured, and decreases in mucosal hydrophobicity closely correlate with increased gut permeability. These results suggest that mucosal hydrophobicity can be a reliable method of measuring the barrier function of the unstirred mucus layer and a useful parameter in evaluating the pathogenesis of gut barrier dysfunction. PMID:17693944

  19. Relation of HIV-I in bronchoalveolar lavage cells to abnormalities of lung function and to the presence of Pneumocystis pneumonia in HIV-I seropositive patients.

    PubMed Central

    Clarke, J. R.; Taylor, I. K.; Fleming, J.; Williamson, J. D.; Mitchell, D. M.

    1993-01-01

    BACKGROUND--HIV is present in bronchoalveolar lavage cells of some but not all HIV seropositive patients. Abnormalities of lung function have been described in such patients in the absence of clinically overt pneumonia or other respiratory infections. It is possible that the presence of HIV in alveolar macrophages could account for these abnormalities. It is also possible that the presence of HIV in alveolar macrophages contributes to immunosuppression and an increased incidence of opportunistic infections. METHODS--This was a prospective study of 157 HIV seropositive patients requiring diagnostic bronchoscopy for investigation of new respiratory symptoms, chest radiograph abnormality, or pneumonic illness. Presence of HIV in bronchoalveolar lavage cells obtained at diagnostic bronchoscopy was determined by polymerase chain reaction to detect proviral DNA and in vitro cocultivation to detect productive virus infection. With these two techniques the presence or absence of HIV in bronchoalveolar lavage was compared with the presence of abnormalities of lung function or presence of Pneumocystis pneumonia. RESULTS--HIV was detected in bronchoalveolar lavage cells in 65% of patients by means of the polymerase chain reaction and 59% with cocultivation. With both methods of detection there was no association between the presence or absence of HIV and the presence of Pneumocystis pneumonia; nor was there a relation between the presence of HIV and abnormalities of lung function. CONCLUSION--The presence of HIV in bronchoalveolar lavage cells does not predispose to an increased incidence of Pneumocystis pneumonia; nor does it contribute to abnormalities of lung function. PMID:8303627

  20. Detecting abnormalities in left ventricular function during exercise by respiratory measurement

    SciTech Connect

    Koike, A.; Itoh, H.; Taniguchi, K.; Hiroe, M. )

    1989-12-01

    The degree of exercise-induced cardiac dysfunction and its relation to the anaerobic threshold were evaluated in 23 patients with chronic heart disease. A symptom-limited exercise test was performed with a cycle ergometer with work rate increased by 1 W every 6 seconds. Left ventricular function, as reflected by ejection fraction, was continuously monitored with a computerized cadmium telluride detector after the intravenous injection of technetium-labeled red blood cells. The anaerobic threshold (mean, 727 {plus minus} 166 ml/min) was determined by the noninvasive measurement of respiratory gas exchange. As work rate rose, the left ventricular ejection fraction increased but reached a peak value at the anaerobic threshold and then fell below resting levels. Ejection fraction at rest, anaerobic threshold, and peak exercise were 41.4 {plus minus} 11.3%, 46.5 {plus minus} 12.0%, and 37.2 {plus minus} 11.0%, respectively. Stroke volume also increased from rest (54.6 {plus minus} 17.0 ml/beat) to the point of the anaerobic threshold (65.0 {plus minus} 21.2 ml/beat) and then decreased at peak exercise (52.4 {plus minus} 18.7 ml/beat). The slope of the plot of cardiac output versus work rate decreased above the anaerobic threshold. The anaerobic threshold occurred at the work rate above which left ventricular function decreased during exercise. Accurate determination of the anaerobic threshold provides an objective, noninvasive measure of the oxygen uptake above which exercise-induced deterioration in left ventricular function occurs in patients with chronic heart disease.

  1. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction. PMID:26441146

  2. Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function

    PubMed Central

    Bjursell, Magnus K.; Blom, Henk J.; Cayuela, Jordi Asin; Engvall, Martin L.; Lesko, Nicole; Balasubramaniam, Shanti; Brandberg, Göran; Halldin, Maria; Falkenberg, Maria; Jakobs, Cornelis; Smith, Desiree; Struys, Eduard; von Döbeln, Ulrika; Gustafsson, Claes M.; Lundeberg, Joakim; Wedell, Anna

    2011-01-01

    Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism. PMID:21963049

  3. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism.

    PubMed

    Groschwitz, Katherine R; Ahrens, Richard; Osterfeld, Heather; Gurish, Michael F; Han, Xiaonan; Abrink, Magnus; Finkelman, Fred D; Pejler, Gunnar; Hogan, Simon P

    2009-12-29

    Altered intestinal barrier function is postulated to be a central predisposing factor to intestinal diseases, including inflammatory bowel diseases and food allergies. However, the mechanisms involved in maintaining homeostatic intestinal barrier integrity remain undefined. In this study, we demonstrate that mice deficient in mast cells (Kit(W-sh/W-sh) [Wsh]) or mast cell chymase (Mcpt4(-/-)) have significantly decreased basal small intestinal permeability compared with wild-type (WT) mice. Altered intestinal barrier function was linked to decreased intestinal epithelial cell migration along the villus/crypt axis, altered intestinal morphology, and dysregulated claudin-3 crypt expression. Remarkably, engraftment of Wsh mice with WT but not Mcpt4(-/-) mast cells restored intestinal epithelial cell migration, morphology, and intestinal epithelial barrier function. Collectively, these findings identify a mechanism by which mast cells regulate homeostatic intestinal epithelial migration and barrier function. PMID:20018751

  4. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism

    PubMed Central

    Groschwitz, Katherine R.; Ahrens, Richard; Osterfeld, Heather; Gurish, Michael F.; Han, Xiaonan; Åbrink, Magnus; Finkelman, Fred D.; Pejler, Gunnar; Hogan, Simon P.

    2009-01-01

    Altered intestinal barrier function is postulated to be a central predisposing factor to intestinal diseases, including inflammatory bowel diseases and food allergies. However, the mechanisms involved in maintaining homeostatic intestinal barrier integrity remain undefined. In this study, we demonstrate that mice deficient in mast cells (KitW-sh/W-sh [Wsh]) or mast cell chymase (Mcpt4−/−) have significantly decreased basal small intestinal permeability compared with wild-type (WT) mice. Altered intestinal barrier function was linked to decreased intestinal epithelial cell migration along the villus/crypt axis, altered intestinal morphology, and dysregulated claudin-3 crypt expression. Remarkably, engraftment of Wsh mice with WT but not Mcpt4−/− mast cells restored intestinal epithelial cell migration, morphology, and intestinal epithelial barrier function. Collectively, these findings identify a mechanism by which mast cells regulate homeostatic intestinal epithelial migration and barrier function. PMID:20018751

  5. Bile salts disrupt human esophageal squamous epithelial barrier function by modulating tight junction proteins.

    PubMed

    Chen, Xin; Oshima, Tadayuki; Shan, Jing; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2012-07-15

    Reflux of acid and bile acids contributes to epithelial tissue injury in gastro-esophageal reflux disease. However, the influence of refluxed material on human esophageal stratified epithelial barrier function and tight junction (TJ) proteins has not been fully elucidated. Here, we investigated the influence of acid and bile acids on barrier function and TJ protein distribution using a newly developed air-liquid interface (ALI) in vitro culture model of stratified squamous epithelium based on primary human esophageal epithelial cells (HEECs). Under ALI conditions, HEECs formed distinct epithelial layers on Transwell inserts after 7 days of culture. The epithelial layers formed TJ, and the presence of claudin-1, claudin-4, and occludin were detected by immunofluorescent staining. The NP-40-insoluble fraction of these TJ proteins was significantly higher by day 7 of ALI culture. Exposure of HEECs to pH 2, and taurocholic acid (TCA) and glycocholic acid (GCA) at pH 3, but not pH 4, for 1 h decreased transepithelial electrical resistance (TEER) and increased paracellular permeability. Exposure of cell layers to GCA (pH 3) and TCA (pH 3) for 1 h also markedly reduced the insoluble fractions of claudin-1 and -4. We found that deoxycholic acid (pH 7.4 or 6, 1 h) and pepsin (pH 3, 24 h) significantly decreased TEER and increased permeability. Based on these findings, ALI-cultured HEECs represent a new in vitro model of human esophageal stratified epithelium and are suitable for studying esophageal epithelial barrier functions. Using this model, we demonstrated that acid, bile acids, and pepsin disrupt squamous epithelial barrier function partly by modulating TJ proteins. These results provide new insights into understanding the role of TJ proteins in esophagitis. PMID:22575221

  6. FOXF1 maintains endothelial barrier function and prevents edema after lung injury.

    PubMed

    Cai, Yuqi; Bolte, Craig; Le, Tien; Goda, Chinmayee; Xu, Yan; Kalin, Tanya V; Kalinichenko, Vladimir V

    2016-01-01

    Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of bothFoxf1alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a singleFoxf1allele made heterozygousPdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of theS1pr1promoter. Pharmacological administration of S1P to injuredPdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway. PMID:27095594

  7. Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice

    PubMed Central

    Fang, Yu; Chen, Hao; Hu, Yuhui; Djukic, Zorka; Tevebaugh, Whitney; Shaheen, Nicholas J.; Orlando, Roy C.; Hu, Jianguo

    2013-01-01

    The barrier function of the esophageal epithelium is a major defense against gastroesophageal reflux disease. Previous studies have shown that reflux damage is reflected in a decrease in transepithelial electrical resistance associated with tight junction alterations in the esophageal epithelium. To develop novel therapies, it is critical to understand the molecular mechanisms whereby contact with a refluxate impairs esophageal barrier function. In this study, surgical models of duodenal and mixed reflux were developed in mice. Mouse esophageal epithelium was analyzed by gene microarray. Gene set enrichment analysis showed upregulation of inflammation-related gene sets and the NF-κB pathway due to reflux. Significance analysis of microarrays revealed upregulation of NF-κB target genes. Overexpression of NF-κB subunits (p50 and p65) and NF-κB target genes (matrix metalloproteinases-3 and -9, IL-1β, IL-6, and IL-8) confirmed activation of the NF-κB pathway in the esophageal epithelium. In addition, real-time PCR, Western blotting, and immunohistochemical staining also showed downregulation and mislocalization of claudins-1 and -4. In a second animal experiment, treatment with an NF-κB inhibitor, BAY 11-7085 (20 mg·kg−1·day−1 ip for 10 days), counteracted the effects of duodenal and mixed reflux on epithelial resistance and NF-κB-regulated cytokines. We conclude that gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice and that targeting the NF-κB pathway may strengthen esophageal barrier function against reflux. PMID:23639809

  8. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation

    PubMed Central

    Chu, Ling-Yun; Wang, Yi-Fu; Cheng, Huei-Hsuan; Kuo, Cheng-Chin; Wu, Kenneth K.

    2016-01-01

    The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP) as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs) prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK. PMID:27002329

  9. Functional magnetic resonance imaging of the normal and abnormal visual system in early life.

    PubMed

    Born, A P; Miranda, M J; Rostrup, E; Toft, P B; Peitersen, B; Larsson, H B; Lou, H C

    2000-02-01

    Functional magnetic resonance imaging (fMRI) in young children may provide information about the development of the visual cortex, and may have predictive value for later visual performance. The purpose of this study was to evaluate the usefulness of fMRI for examining cerebral processing of vision in very young infants and in infants with brain damage. We examined 15 preterm infants, 12 children suspected of having a cerebral visual impairment and 10 children with a normal visual system, all of whom were either spontaneously asleep or sedated with chloral hydrate. Cortical response to stroboscopic light stimulation could be demonstrated in all technically acceptable data sets from children with a post-menstrual age (PMA) of > 41 weeks, but not in younger infants. Children < 60 weeks PMA showed either a blood oxygenation level-dependent (BOLD) signal increase or decrease, while all older children showed a signal decrease. The activated cortical volumes showed a linear relation to age for healthy children younger than 90 weeks PMA, but were small in children with visual impairment. In two children with unilateral damage to the optic radiations, activation was strongly asymmetrical with greatest activation on the healthy side. In future prospective studies, results from the period from birth to six months of age should be interpreted with caution, as inter-individual variation of cortical development may be confused with functional deficit. PMID:10774992

  10. Abnormal structure or function of the amygdala is a common component of neurodevelopmental disorders

    PubMed Central

    Schumann, Cynthia M.; Bauman, Melissa D.; Amaral, David G.

    2010-01-01

    The amygdala, perhaps more than any other brain region, has been implicated in numerous neuropsychiatric and neurodevelopmental disorders. It is part of a system initially evolved to detect dangers in the environment and modulate subsequent responses, which can profoundly influence human behavior. If its threshold is set too low, normally benign aspects of the environment are perceived as dangers, interactions are limited, and anxiety may arise. If set too high, risk taking increases and inappropriate sociality may occur. Given that many neurodevelopmental disorders involve too little or too much anxiety or too little of too much social interaction, it is not surprising that the amygdala has been implicated in many of them. In this chapter, we begin by providing a brief overview of the phylogeny, ontogeny, and function of the amygdala and then appraise data from neurodevelopmental disorders which suggest amygdala dysregulation. We focus on neurodevelopmental disorders where there is evidence of amygdala dysregulation from postmortem studies, structural MRI analyses or functional MRI. However, the results are often disparate and it is not totally clear whether this is due to inherent heterogeneity or differences in methodology. Nonetheless, the amygdala is a common site for neuropathology in neurodevelopmental disorders and is therefore a potential target for therapeutics to alleviate associated symptoms. PMID:20950634

  11. Structural and Functional Changes Associated with Normal and Abnormal Fundus Autofluorescence in Patients with Retinitis Pigmentosa

    PubMed Central

    Greenstein, Vivienne C.; Duncker, Tobias; Holopigian, Karen; Carr, Ronald E.; Greenberg, Jonathan; Tsang, Stephen H.; Hood, Donald C.

    2013-01-01

    Purpose To analyze the structure and visual function of regions bordering the hyperautofluorescent ring/arcs in retinitis pigmentosa (RP). Methods Twenty -one RP patients (21 eyes) with rings/arcs and 21 normals (21 eyes) were studied. Visual sensitivity in the central 10° was measured with microperimetry. Retinal structure was evaluated with spectral domain optical coherence tomography (SD-OCT). The distance from the fovea to disruption/loss of the inner outer segment (IS/OS) junction and thicknesses of the total receptor plus retinal pigment epithelial (RPE) complex (R+), and outer segment plus RPE complex (OS+) layers were measured. Results were compared to measurements of the distance from the fovea to the inner and outer borders of the ring/arc seen on fundus autofluorescence (FAF). Results Disruption/loss of the IS/OS junction occurred closer to the inner border of the ring/arc and it was closer to the fovea in 8 eyes. For 19 eyes, OS+ and R+ thicknesses were significantly decreased at locations closer to the fovea than the appearance of the inner border of hyperautofluorescence. Mean visual sensitivity was decreased inside, across and outside the ring/arc by 3.5 ± 3.8, 8.9 ± 4.8 and 17.0±2.4 dB respectively. Conclusions Structural and functional changes can occur inside the hyperfluorescent ring/arc in RP. PMID:21909055

  12. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism.

    PubMed

    Jaramillo, Thomas C; Speed, Haley E; Xuan, Zhong; Reimers, Jeremy M; Liu, Shunan; Powell, Craig M

    2016-03-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ∼0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4-9, a region implicated in ASD patients. We find that homozygous deletion of exons 4-9 (Shank3(e4-9) KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3(e4-9) heterozygous (HET) and Shank3(e4-9) KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3(e4-9) KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3(e4-9) KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3(e4-9) HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3(e4-9) KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3(e4-9) mutant mouse model of autism. Autism Res 2016, 9: 350-375. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26559786

  13. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses.

    PubMed

    Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland

    2016-02-01

    Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue. PMID:26449441

  14. Abnormal resting-state functional connectivity within the default mode network subregions in male patients with obstructive sleep apnea

    PubMed Central

    Li, Hai-Jun; Nie, Xiao; Gong, Hong-Han; Zhang, Wei; Nie, Si; Peng, De-Chang

    2016-01-01

    Background and objective Abnormal resting-state functional connectivity (rs-FC) between the central executive network and the default mode network (DMN) in patients with obstructive sleep apnea (OSA) has been reported. However, the effect of OSA on rs-FC within the DMN subregions remains uncertain. This study was designed to investigate whether the rs-FC within the DMN subregions was disrupted and determine its relationship with clinical symptoms in patients with OSA. Methods Forty male patients newly diagnosed with severe OSA and 40 male education- and age-matched good sleepers (GSs) underwent functional magnetic resonance imaging (fMRI) examinations and clinical and neuropsychologic assessments. Seed-based region of interest rs-FC method was used to analyze the connectivity between each pair of subregions within the DMN, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), hippocampus formation (HF), inferior parietal cortices (IPC), and medial temporal lobe (MTL). The abnormal rs-FC strength within the DMN subregions was correlated with clinical and neuropsychologic assessments using Pearson correlation analysis in patients with OSA. Results Compared with GSs, patients with OSA had significantly decreased rs-FC between the right HF and the PCC, MPFC, and left MTL. However, patients with OSA had significantly increased rs-FC between the MPFC and left and right IPC, and between the left IPC and right IPC. The rs-FC between the right HF and left MTL was positively correlated with rapid eye movement (r=0.335, P=0.035). The rs-FC between the PCC and right HF was negatively correlated with delayed memory (r=-0.338, P=0.033). Conclusion OSA selectively impairs the rs-FC between right HF and PCC, MPFC, and left MTL within the DMN subregions, and provides an imaging indicator for assessment of cognitive dysfunction in OSA patients. PMID:26855576

  15. Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism

    PubMed Central

    Christakou, A; Murphy, C M; Chantiluke, K; Cubillo, A I; Smith, A B; Giampietro, V; Daly, E; Ecker, C; Robertson, D; Murphy, D G; Rubia, K

    2013-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share behavioural-cognitive abnormalities in sustained attention. A key question is whether this shared cognitive phenotype is based on common or different underlying pathophysiologies. To elucidate this question, we compared 20 boys with ADHD to 20 age and IQ matched ASD and 20 healthy boys using functional magnetic resonance imaging (fMRI) during a parametrically modulated vigilance task with a progressively increasing load of sustained attention. ADHD and ASD boys had significantly reduced activation relative to controls in bilateral striato–thalamic regions, left dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex. Both groups also displayed significantly increased precuneus activation relative to controls. Precuneus was negatively correlated with the DLPFC activation, and progressively more deactivated with increasing attention load in controls, but not patients, suggesting problems with deactivation of a task-related default mode network in both disorders. However, left DLPFC underactivation was significantly more pronounced in ADHD relative to ASD boys, which furthermore was associated with sustained performance measures that were only impaired in ADHD patients. ASD boys, on the other hand, had disorder-specific enhanced cerebellar activation relative to both ADHD and control boys, presumably reflecting compensation. The findings show that ADHD and ASD boys have both shared and disorder-specific abnormalities in brain function during sustained attention. Shared deficits were in fronto–striato–parietal activation and default mode suppression. Differences were a more severe DLPFC dysfunction in ADHD and a disorder-specific fronto–striato–cerebellar dysregulation in ASD. PMID:22290121

  16. MYADM controls endothelial barrier function through ERM-dependent regulation of ICAM-1 expression.

    PubMed

    Aranda, Juan F; Reglero-Real, Natalia; Marcos-Ramiro, Beatriz; Ruiz-Sáenz, Ana; Fernández-Martín, Laura; Bernabé-Rubio, Miguel; Kremer, Leonor; Ridley, Anne J; Correas, Isabel; Alonso, Miguel A; Millán, Jaime

    2013-02-01

    The endothelium maintains a barrier between blood and tissue that becomes more permeable during inflammation. Membrane rafts are ordered assemblies of cholesterol, glycolipids, and proteins that modulate proinflammatory cell signaling and barrier function. In epithelial cells, the MAL family members MAL, MAL2, and myeloid-associated differentiation marker (MYADM) regulate the function and dynamics of ordered membrane domains. We analyzed the expression of these three proteins in human endothelial cells and found that only MYADM is expressed. MYADM was confined in ordered domains at the plasma membrane, where it partially colocalized with filamentous actin and cell-cell junctions. Small interfering RNA (siRNA)-mediated MYADM knockdown increased permeability, ICAM-1 expression, and leukocyte adhesion, all of which are features of an inflammatory response. Barrier function decrease in MYADM-silenced cells was dependent on ICAM-1 expression. Membrane domains and the underlying actin cytoskeleton can regulate each other and are connected by ezrin, radixin, and moesin (ERM) proteins. In endothelial cells, MYADM knockdown induced ERM activation. Triple-ERM knockdown partially inhibited ICAM-1 increase induced by MYADM siRNA. Importantly, ERM knockdown also reduced ICAM-1 expression in response to the proinflammatory cytokine tumor necrosis factor-α. MYADM therefore regulates the connection between the plasma membrane and the cortical cytoskeleton and so can control the endothelial inflammatory response. PMID:23264465

  17. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function

    PubMed Central

    Mitchell, Leslie A.; Overgaard, Christian E.; Ward, Christina; Margulies, Susan S.

    2011-01-01

    Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains. PMID:21515662

  18. Olopatadine ameliorates rat experimental cutaneous inflammation by improving skin barrier function.

    PubMed

    Tamura, Tadafumi; Matsubara, Masahiro; Amano, Toru; Chida, Michihiro

    2008-01-01

    Olopatadine hydrochloride (olopatadine) is an antiallergic agent with histamine H(1) receptor antagonistic action. We investigated the possible efficacies of olopatadine on the chronic inflammatory dermatitis and the impaired skin barrier functions induced by repeated application of oxazolone in rats. Oxazolone-sensitized rats were challenged with oxazolone applied to the ear every 3 days. Olopatadine was orally administered once daily (1 and 3 mg/kg/day). The effects of the drug were quantified by measurements of ear thickness, levels of cytokines in the lesioned ear and the number of scratching episodes. As parameters of skin barrier function, transepidermal water loss (TEWL) and hyaluronic acid (HA) levels in the lesioned ear were measured. The effect of olopatadine on the production of HA by cultured dermal fibroblasts was also measured. Repeated topical application of oxazolone to rat ears induced local inflammation that was exemplified by swelling. In inflamed ears, the amount of IFN gamma increased at both the protein and mRNA level, but IL-4 levels changed minimally. Olopatadine significantly decreased ear swelling and the number of scratching episodes. The drug also significantly inhibited the increase of IFN gamma and nerve growth factor production in inflamed ears. Olopatadine significantly inhibited the increase in TEWL and the decrease in HA in lesioned ears. Furthermore, the drug stimulated the production of HA by cultured dermal fibroblasts. These results suggest that olopatadine suppressed inflammation and scratching not only by inhibiting cytokine production, but also by repairing skin barrier function. PMID:17962722

  19. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression

    PubMed Central

    Watari, Akihiro; Hasegawa, Maki; Yagi, Kiyohito; Kondoh, Masuo

    2016-01-01

    Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine. PMID:26727128

  20. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression.

    PubMed

    Watari, Akihiro; Hasegawa, Maki; Yagi, Kiyohito; Kondoh, Masuo

    2016-01-01

    Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine. PMID:26727128

  1. AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function.

    PubMed

    Venkatesh, Deepak; Mruk, Dolores; Herter, Jan M; Cullere, Xavier; Chojnacka, Katarzyna; Cheng, C Yan; Mayadas, Tanya N

    2016-02-01

    The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis. PMID:26687990

  2. [Thyroid metastasis of lung cancer and abnormal thyroid function--a case report].

    PubMed

    Wirtz, G; Quoix, E; Grunenberger, F; Massard, G; Mennecier, B

    2009-02-01

    The thyroid gland is a very rare location of metastasis and the metastatic involvement of the thyroid is mostly asymptomatic. The authors report one of the first cases of pulmonary adenocarcinoma associated with painful metastatic involvement of the thyroid gland. Temporary hyperthyroidism was noted, followed, two months later, by clinically and biologically proven hypothyroidism with positive antithyroglobulin antibodies. The suspect goiter was detected by diffuse hyperfixation on 18-FDG PET Scan and the ultrasonography revealed two hypoechogenic nodules. The fine needle biopsy confirmed the metastatic origin of these nodules. The evolution after five cycles of chemotherapy by cisplatine and docetaxel was marked by a complete regression of the thyroid metastasis and an improvement in the thyroid function. PMID:19306781

  3. Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia.

    PubMed Central

    Gillies, Andrew; Willshaw, David; Li, Zhaoping

    2002-01-01

    The subthalamic nucleus (STN) and external globus pallidus (GP) form a recurrent excitatory-inhibitory interaction within the basal ganglia. Through a computational model of these interactions we show that, under the influence of appropriate external input, the two nuclei can be switched between states of high and low activity or can generate oscillations consisting of bursts of high-frequency activity repeated at a low rate. It is further demonstrated from the model that the generation of the repetitive bursting behaviour is favoured by increased inhibition of the GP, which is a condition indicated in Parkinson's disease. Paradoxically, increased striatal inhibition of the GP is predicted to cause an increase rather than a decrease in its mean firing rate. These behaviours, arising from a biologically inspired computational model of the STN-GP interaction, have important consequences for basal ganglia function and dysfunction. PMID:11916469

  4. Abnormal Amygdala Functional Connectivity Associated With Emotional Lability in Children With Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Hulvershorn, Leslie A.; Mennes, Maarten; Castellanos, F. Xavier; Di Martino, Adriana; Milham, Michael P.; Hummer, Tom A.; Roy, Amy Krain

    2014-01-01

    Objective A substantial proportion of children with attention-deficit/hyperactivity disorder (ADHD) also display emotion regulation deficits manifesting as chronic irritability, severe temper outbursts, and aggression. The amygdala is implicated in emotion regulation, but its connectivity and relation to emotion regulation in ADHD has yet to be explored. The purpose of this study was to examine the relationship between intrinsic functional connectivity (iFC) of amygdala circuits and emotion regulation deficits in youth with ADHD. Method Bilateral amygdala iFC was examined using functional magnetic resonance imaging in 63 children with ADHD, aged 6 to 13 years. First, we examined the relationship between amygdala IFC and parent ratings of emotional lability (EL) in children with ADHD. Second, we compared amygdala iFC across subgroups of children with ADHD and high EL (n = 18), ADHD and low EL (n = 20), and typically developing children (TDC), all with low EL (n = 19). Results Higher EL ratings were associated with greater positive iFC between the amygdala and rostral anterior cingulate cortex in youth with ADHD. EL scores were also negatively associated with iFC between bilateral amygdala and posterior insula/superior temporal gyrus. Patterns of amygdala-cortical iFC in ADHD participants with low EL were not different from the comparison group, and the effect sizes for these comparisons were smaller than those for the trend-level differences observed between the high-EL and TDC groups. Conclusions In children with ADHD and a range of EL, deficits in emotion regulation were associated with altered amygdalacortical iFC. When comparing groups that differed on ADHD status but not EL, differences in amygdala iFC were small and nonsignificant, highlighting the specificity of this finding to emotional deficits, independent of other ADHD symptoms. PMID:24565362

  5. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients

    PubMed Central

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince D.; Miller, Laura; Stevens, Michael C.; Sahl, Robert; O'Boyle, Jacqueline G.; Schultz, Robert T.; Pearlson, Godfrey D.

    2011-01-01

    Autism spectrum disorders (ASDs) are characterized by deficits in social and communication processes. Recent data suggest that altered functional connectivity (FC), i.e. synchronous brain activity, might contribute to these deficits. Of specific interest is the FC integrity of the default mode network (DMN), a network active during passive resting states and cognitive processes related to social deficits seen in ASD, e.g. Theory of Mind. We investigated the role of altered FC of default mode sub-networks (DM-SNs) in 16 patients with high-functioning ASD compared to 16 matched healthy controls of short resting fMRI scans using independent component analysis (ICA). ICA is a multivariate data-driven approach that identifies temporally coherent networks, providing a natural measure of FC. Results show that compared to controls, patients showed decreased FC between the precuneus and medial prefrontal cortex/anterior cingulate cortex, DMN core areas, and other DM-SNs areas. FC magnitude in these regions inversely correlated with the severity of patients' social and communication deficits as measured by the Autism Diagnostic Observational Schedule and the Social Responsiveness Scale. Importantly, supplemental analyses suggest that these results were independent of treatment status. These results support the hypothesis that DM-SNs under-connectivity contributes to the core deficits seen in ASD. Moreover, these data provide further support for the use of data-driven analysis with resting-state data for illuminating neural systems that differ between groups. This approach seems especially well suited for populations where compliance with and performance of active tasks might be a challenge, as it requires minimal cooperation. PMID:20621638

  6. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    SciTech Connect

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert; Volz, Cornelia; Jägle, Herbert; Liebisch, Gerhard; Utermöhlen, Olaf; Langmann, Thomas

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  7. Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    PubMed Central

    Donnan, Peter T; McLernon, David; Steinke, Douglas; Ryder, Stephen; Roderick, Paul; Sullivan, Frank M; Rosenberg, William; Dillon, John F

    2007-01-01

    Background Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs. Methods/Design A population-based retrospective cohort study will follow up all those who have had an incident liver function test (LFT) in primary care to subsequent liver disease or mortality over a period of 15 years (approx. 2.3 million tests in 99,000 people). The study is set in Primary Care in the region of Tayside, Scotland (pop approx. 429,000) between 1989 and 2003. The target population consists of patients with no recorded clinical signs or symptoms of liver disease and registered with a GP. The health technologies being assessed are LFTs, viral and auto-antibody tests, ultrasound, CT, MRI and liver biopsy. The study will utilise the Epidemiology of Liver Disease In Tayside (ELDIT) database to determine the outcomes of liver disease. These are based on hospital admission data (Scottish Morbidity Record 1), dispensed medication records, death certificates, and examination of medical records from Tayside hospitals. A sample of patients (n = 150) with recent initial ALF tests or invitation to biopsy will complete questionnaires to obtain quality of life data and anxiety measures. Cost-effectiveness and cost utility Markov model analyses will be performed from health service and patient perspectives using standard NHS costs. The findings will also be used to develop a computerised clinical decision support tool. Discussion The results of this study will be widely disseminated to primary care, as well as G.I. hospital specialists through publications and presentations at local and national meetings and the project website. This will facilitate optimal decision-making both for the benefit of the patient and the National Health Service. PMID:17437630

  8. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression

    PubMed Central

    Price, Joseph L.; Furey, Maura L.

    2008-01-01

    The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger “default system” of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies. PMID:18704495

  9. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression.

    PubMed

    Drevets, Wayne C; Price, Joseph L; Furey, Maura L

    2008-09-01

    The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger "default system" of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies. PMID:18704495

  10. Tspyl2 Loss-of-Function Causes Neurodevelopmental Brain and Behavior Abnormalities in Mice.

    PubMed

    Li, Qi; Chan, Siu Yuen; Wong, Kwun K; Wei, Ran; Leung, Yu On; Ding, Abby Y; Hui, Tomy C K; Cheung, Charlton; Chua, Siew E; Sham, Pak C; Wu, Ed X; McAlonan, Grainne M

    2016-07-01

    Testis specific protein, Y-encoded-like 2 (TSPYL2) regulates the expression of genes encoding glutamate receptors. Glutamate pathology is implicated in neurodevelopmental conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD) and schizophrenia. In line with this, a microduplication incorporating the TSPYL2 locus has been reported in people with ADHD. However, the role of Tspyl2 remains unclear. Therefore here we used a Tspyl2 loss-of-function mouse model to directly examine how this gene impacts upon behavior and brain anatomy. We hypothesized that Tspyl2 knockout (KO) would precipitate a phenotype relevant to neurodevelopmental conditions. In line with this prediction, we found that Tspyl2 KO mice were marginally more active, had significantly impaired prepulse inhibition, and were significantly more 'sensitive' to the dopamine agonist amphetamine. In addition, the lateral ventricles were significantly smaller in KO mice. These findings suggest that disrupting Tspyl2 gene expression leads to behavioral and brain morphological alterations that mirror a number of neurodevelopmental psychiatric traits. PMID:26826030

  11. Abnormal pituitary-gonadal axis may be responsible for rat decreased testicular function under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tan, Xin; Zhu, Bao-an; Qi, Meng-di; Ding, Su-ling

    Space flight and simulated microgravity lead to suppression of mammalian spermatogenesis and decreased plasma testosterone level. In order to explain the mechanism behind the depression, we used rat tail-suspended model to simulate weightless conditions. To prevent cryptorchidism caused by tail-suspension, some experimental animals received inguinal canal ligation. The results showed that mass of testis decreased significantly and seminiferous tubules became atrophied in rats after tail-suspension. The levels of plasma testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in tail-suspended rats with or without inguinal canal ligation decreased significantly compared with controls, and an increased level of plasma estradiol (E) was revealed in tail-suspended rats. The results indicate that besides the direct influence of fluid shift upon testis under short-term simulated microgravity, the pituitary function is also disturbed as a result of either immobilization stress or weight loss during tail-suspension treatment, which is responsible to some extent for the decreased testosterone secretion level and the atrophia of testis. The conversion of testosterone into E under simulated microgravity is another possible cause for the decline of plasma testosterone.

  12. Abnormal affective decision making revealed in adolescent binge drinkers using a functional magnetic resonance imaging study.

    PubMed

    Xiao, Lin; Bechara, Antoine; Gong, Qiyong; Huang, Xiaoqi; Li, Xiangrui; Xue, Gui; Wong, Savio; Lu, Zhong-Lin; Palmer, Paula; Wei, Yonglan; Jia, Yong; Johnson, C Anderson

    2013-06-01

    The goal of this study was to investigate the neural correlates of affective decision making, as measured by the Iowa Gambling Task (IGT), which are associated with adolescent binge drinking. Fourteen adolescent binge drinkers (16-18 years of age) and 14 age-matched adolescents who had never consumed alcohol--never drinkers--were recruited from local high schools in Chengdu, China. Questionnaires were used to assess academic performance, drinking experience, and urgency. Brain regions activated by the IGT performance were identified with functional magnetic resonance imaging. Results showed that, compared to never drinkers, binge drinkers performed worse on the IGT and showed higher activity in the subcomponents of the decision-making neural circuitry implicated in the execution of emotional and incentive-related behaviors, namely, the left amygdala and insula bilaterally. Moreover, measures of the severity of drinking problems in real life, as well as high urgency scores, were associated with increased activity within the insula, combined with decreased activity within the orbitofrontal cortex. These results suggest that hyperreactivity of a neural system implicated in the execution of emotional and incentive-related behaviors can be associated with socially undesirable behaviors, such as binge drinking, among adolescents. These findings have social implications because they potentially reveal underlying neural mechanisms for making poor decisions, which may increase an individual's risk and vulnerability for alcoholism. PMID:22486330

  13. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function.

    PubMed

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert; Volz, Cornelia; Jägle, Herbert; Liebisch, Gerhard; Utermöhlen, Olaf; Langmann, Thomas

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase(-/-) mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase(-/-) mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase(-/-) mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. PMID:26129774

  14. Probiotic-derived polyphosphate improves the intestinal barrier function through the caveolin-dependent endocytic pathway.

    PubMed

    Tanaka, Kazuyuki; Fujiya, Mikihiro; Konishi, Hiroaki; Ueno, Nobuhiro; Kashima, Shin; Sasajima, Junpei; Moriichi, Kentaro; Ikuta, Katsuya; Tanabe, Hiroki; Kohgo, Yutaka

    2015-11-20

    Probiotics exhibit beneficial functions for host homeostasis maintenance. We herein investigated the mechanism by which Lactobacillus brevis-derived poly P exhibited a beneficial function. Immunostaining indicated that poly P was captured in the plasma membrane via integrin β1 in Caco2/bbe cells. The uptake of poly P was reduced by the inhibition of integrin β1 as well as caveolin-1, a major component of lipid rafts. The function of poly P, including the induction of HSP27 and enhancement of the intestinal barrier function, was suppressed by the inhibition of caveolin-1, illustrating that the function of poly P was mediated by the endocytic pathway. High-throughput sequencing revealed that poly P induced tumor necrosis factor alpha-induced protein 3, which contributes to cytoprotection, including upregulation of the intestinal barrier function. The present study demonstrates a novel host-probiotic interaction through the uptake of bacterial substance into host cells, which is distinct from pattern recognition receptor pathways. PMID:26459590

  15. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria

    PubMed Central

    Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I.

    2015-01-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10–90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism. PMID:26484862

  16. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    PubMed

    Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I

    2015-10-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism. PMID:26484862

  17. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    PubMed

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act. PMID:25569333

  18. Spermidine Stimulates T Cell Protein-tyrosine Phosphatase-mediated Protection of Intestinal Epithelial Barrier Function*

    PubMed Central

    Penrose, Harrison M.; Marchelletta, Ronald R.; Krishnan, Moorthy; McCole, Declan F.

    2013-01-01

    The gene locus encoding protein-tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with inflammatory bowel disease. Expression of the PTPN2 gene product, T cell protein-tyrosine phosphatase (TCPTP), in intestinal epithelial cells has been shown to play an important role in the protection of epithelial barrier function during periods of inflammation by acting as a negative regulator of the proinflammatory cytokine IFN-γ. Therefore, agents that increase the activity of TCPTP are of general interest as modifiers of inflammatory signaling events. A previous study demonstrated that the small molecule spermidine is a selective activator of TCPTP in vitro. The aim of this study was to investigate whether activation of TCPTP by spermidine was capable of alleviating IFN-γ-induced, proinflammatory signaling and barrier dysfunction in human intestinal epithelial cells. Studies revealed that treatment of T84 and HT29/cl.19A colonocytes with spermidine increased both TCPTP protein levels and enzymatic activity, correlating with a decrease in the phosphorylation of the signal transducers and activators of transcription 1 and 3, downstream mediators of IFN-γ signaling, upon coadministration of spermidine to IFN-γ-treated cells. On a functional level, spermidine protected barrier function in the setting of inflammation, restricting the decrease in transepithelial electrical resistance and the increase in epithelial permeability induced by IFN-γ in coincubation experiments. These data implicate spermidine as a potential therapeutic agent to treat conditions associated with elevated IFN-γ signaling and a faulty mucosal barrier. PMID:24022492

  19. Skin barrier in rosacea*

    PubMed Central

    Addor, Flavia Alvim Sant'Anna

    2016-01-01

    Recent studies about the cutaneous barrier demonstrated consistent evidence that the stratum corneum is a metabolically active structure and also has adaptive functions, may play a regulatory role in the inflammatory response with activation of keratinocytes, angiogenesis and fibroplasia, whose intensity depends primarily on the intensity the stimulus. There are few studies investigating the abnormalities of the skin barrier in rosacea, but the existing data already show that there are changes resulting from inflammation, which can generate a vicious circle caused a prolongation of flare-ups and worsening of symptoms. This article aims to gather the most relevant literature data about the characteristics and effects of the state of the skin barrier in rosacea. PMID:26982780

  20. Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    PubMed Central

    Roussotte, Florence; Soderberg, Lindsay

    2010-01-01

    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse. PMID:20978945

  1. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  2. Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function.

    PubMed

    Chavez-Solano, Marbella; Ibarra-Sanchez, Alfredo; Treviño, Mario; Gonzalez-Espinosa, Claudia; Lamas, Monica

    2016-04-01

    Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing. PMID:26808221

  3. Prevalence of Abnormalities in Vestibular Function and Balance among HIV-Seropositive and HIV-Seronegative Women and Men

    PubMed Central

    Cohen, Helen S.; Cox, Christopher; Springer, Gayle; Hoffman, Howard J.; Young, Mary A.; Margolick, Joseph B.; Plankey, Michael W.

    2012-01-01

    Background Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART). Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. Methods Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. Results No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. Conclusion These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions. PMID:22675462

  4. Unique Functional Abnormalities in Youth with Combined Marijuana Use and Depression: An fMRI Study

    PubMed Central

    Ford, Kristen A.; Wammes, Michael; Neufeld, Richard W.; Mitchell, Derek; Théberge, Jean; Williamson, Peter; Osuch, Elizabeth A.

    2014-01-01

    Prior research has shown a relationship between early onset marijuana (MJ) use and depression; however, this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants [healthy controls (HC), patients with major depressive disorder (MDD), frequent MJ users, and the combination of MDD and MJ (MDD + MJ)]. For each participant, a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale), and each completed two 6-min fMRI scans of a passive music listening task. Data underwent pre-processing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15 MJ, 14 MDD + MJ). Two statistical analyses were performed using SPM8, an analysis of covariance with two factors (group × music type) and a whole brain, multiple regression analysis incorporating two predictors of interest [MJ use in past 28 days; and Beck Depression Inventory (BDI) score]. We identified a significant group × music type interaction. Post hoc comparisons showed that the preferred music had significantly greater activation in the MDD + MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ, or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward processing in ways that are absent with either frequent MJ use or MDD alone. This could help inform clinical recommendations for youth with MDD. PMID:25309462

  5. Throughput Enhancement Using Adaptive Delay Barrier Function over HSDPA System in Mixed Traffic Scenarios

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Seok

    In this paper, we consider a method to enhance the throughput of HSDPA systems in the mixed traffic scenario. A channel-dependent adaptive delay barrier (DB) function is proposed to maximize throughput of best-effort (BE) traffic while satisfying the delay latency of voice over internet protocol (VoIP) service. Simulations show that the proposed channel-adaptive DB function raises the throughput of BE traffic service by 30% compared to the conventional scheme, without degrading the capacity of VoIP service over HSDPA system.

  6. Cutaneous barrier function after cold exposure in hairless mice: a model to demonstrate how cold interferes with barrier homeostasis among workers in the fish-processing industry.

    PubMed

    Halkier-Sørensen, L; Menon, G K; Elias, P M; Thestrup-Pedersen, K; Feingold, K R

    1995-03-01

    Dry skin and eczema only seldomly occur in workers in the Danish fish-processing industry (FPI) during work, when their fingers and palms have a low skin surface temperature, low transepidermal water loss (TEWL), and a high capacitance. However, shortly after work, when the skin temperature has become normal, TEWL levels increase to above normal, and capacitance decreases to below normal, followed by the development of dry skin or chapping, which subsequently revert to normal over a period of hours. These observations suggest that workers in the FPI may have a defect in skin barrier function, which is, however, masked by a low skin temperature, resulting in misleadingly low TEWL levels during work. To test this hypothesis, we disrupted the permeability barrier in hairless mice with topical acetone, and exposed the treated skin to ice for 3.5 h. Although TEWL rates immediately after cold exposure were low, suggesting normal barrier recovery, TEWL increased to levels slightly above pre-cold exposure levels (i.e. levels just after the barrier was disrupted with acetone) when the skin temperature reverted to normal (> or = 15 min). The changes in TEWL were paralleled by equivalent changes in percutaneous penetration of the electron-dense tracer lanthanum nitrate. This indicates that cold masks a defective barrier, and inhibits barrier repair. After a few hours at ambient temperatures, normal barrier recovery was observed. Electron microscopy revealed empty or partially empty lamellar bodies during the first 30 min post-cold exposure. After 1 h the majority of nascent LBs displayed normal morphology. Moreover, histochemical studies showed a delayed reappearance of stratum corneum intercellular lipids following cold exposure. These results demonstrate that cold exposure prevents barrier recovery after acetone disruption, and provide an explanation for the occupational dermatosis observed in the fish-processing industry and related occupations. PMID:7718455

  7. Consumption of functional fermented milk containing borage oil, green tea and vitamin E enhances skin barrier function.

    PubMed

    Puch, Florence; Samson-Villeger, Sandrine; Guyonnet, Denis; Blachon, Jean-Luc; Rawlings, Anthony Vincent; Lassel, Taous

    2008-08-01

    As emerging studies show that skin functioning can be improved with orally imbibed ingredients, we decided to investigate a mixture of borage oil, catechins, vitamin E and probiotics, all known for their reported effects on epidermal function, in a fermented dairy product, for the first time. Gamma-linolenic acid (GLA) and catechins bioavailability and their effects on skin functionality have not been previously investigated from a fermented dairy product. Firstly, we assessed the bioavailability of GLA and catechins mixed in a fermented dairy matrix by measuring their levels in chylomicrons and plasma samples respectively. For the GLA contained in the dairy matrix, the area under the curve and time for maximal absorption were significantly different to the same kinetic parameters compared with absorption from the free oil indicating improved oral bioavailability. However, the overall absorption of catechins over the 6-h period was identical for both product forms. These results were sufficiently promising to warrant a 24 week skin nutrition intervention study in female volunteers having dry and sensitive skin. The product improved stratum corneum barrier function compared with a control product as early as 6 weeks after the consumption which continued throughout the rest of the study. The reduction in transepidermal water loss relative to control was maintained throughout the trial despite seasonal changes. Moreover, as a result of the enhanced bioavailability, a much greater effect on skin barrier function occurred than reported previously for the individual ingredients. Nevertheless, body mass index significantly influenced various outcome measurements of this study. PMID:18318715

  8. Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function.

    PubMed

    Gonzalez-Andrades, Miguel; Alonso-Pastor, Luis; Mauris, Jrme; Cruzat, Andrea; Dohlman, Claes H; Argeso, Pablo

    2016-01-01

    The repair of wounds through collective movement of epithelial cells is a fundamental process in multicellular organisms. In stratified epithelia such as the cornea and skin, healing occurs in three steps that include a latent, migratory, and reconstruction phases. Several simple and inexpensive assays have been developed to study the biology of cell migration in vitro. However, these assays are mostly based on monolayer systems that fail to reproduce the differentiation processes associated to multilayered systems. Here, we describe a straightforward in vitro wound assay to evaluate the healing and restoration of barrier function in stratified human corneal epithelial cells. In this assay, circular punch injuries lead to the collective migration of the epithelium as coherent sheets. The closure of the wound was associated with the restoration of the transcellular barrier and the re-establishment of apical intercellular junctions. Altogether, this new model of wound healing provides an important research tool to study the mechanisms leading to barrier function in stratified epithelia and may facilitate the development of future therapeutic applications. PMID:26759072

  9. Environmentally responsive and reversible regulation of epidermal barrier function by gammadelta T cells.

    PubMed

    Girardi, Michael; Lewis, Julia M; Filler, Renata B; Hayday, Adrian C; Tigelaar, Robert E

    2006-04-01

    The intraepithelial lymphocyte (IEL) network possibly composes the largest T-cell compartment in the body, but it is poorly understood. IELs show limited T-cell receptor (TCR) diversity and have been proposed to respond to generic stress signals rather than pathogen-specific antigens. Consistent with this, skin-resident TCRgammadelta+ cells, known as dendritic epidermal T cells (DETC), downregulate cutaneous inflammation, promote wound healing, and protect against cutaneous neoplasia. These pleiotropic effects collectively suggest that DETC (and IEL more generally) may contribute to epithelial maintenance and barrier function. The present studies test this hypothesis. Using skin surface impedance analysis to measure hydration status and transepidermal water loss, we show that the epidermal barrier is defective in gammadelta T-cell deficient mice. However, this does not represent a constitutive role of gammadelta cells, but rather one that is dependent on environmental challenge, consistent with the primary role for lymphocytes being the response of the host to its environment. Likewise, the importance of the physiologic DETC-associated TCR is demonstrated by showing that Vgamma5+ fetal thymocytes reconstitute the barrier function defect in TCRdelta-/- mice, while Vgamma5-/- mice also show environmentally responsive defects in cutaneous physiology. PMID:16439970

  10. Caspase-14 Expression Impairs Retinal Pigment Epithelium Barrier Function: Potential Role in Diabetic Macular Edema

    PubMed Central

    Megyerdi, Sylvia; El-Shafey, Sally; Choksi, Karishma; Kaddour-Djebbar, Ismail; Sheibani, Nader; Hsu, Stephen

    2014-01-01

    We recently showed that caspase-14 is a novel molecule in retina with potential role in accelerated vascular cell death during diabetic retinopathy (DR). Here, we evaluated whether caspase-14 is implicated in retinal pigment epithelial cells (RPE) dysfunction under hyperglycemia. The impact of high glucose (HG, 30 mM D-glucose) on caspase-14 expression in human RPE (ARPE-19) cells was tested, which showed significant increase in caspase-14 expression compared with normal glucose (5 mM D-glucose + 25 mM L-glucose). We also evaluated the impact of modulating caspase-14 expression on RPE cells barrier function, phagocytosis, and activation of other caspases using ARPE-19 cells transfected with caspase-14 plasmid or caspase-14 siRNA. We used FITC-dextran flux assay and electric cell substrate impedance sensing (ECIS) to test the changes in RPE cell barrier function. Similar to HG, caspase-14 expression in ARPE-19 cells increased FITC-dextran leakage through the confluent monolayer and decreased the transcellular electrical resistance (TER). These effects of HG were prevented by caspase-14 knockdown. Furthermore, caspase-14 knockdown prevented the HG-induced activation of caspase-1 and caspase-9, the only activated caspases by HG. Phagocytic activity was unaffected by caspase-14 expression. Our results suggest that caspase-14 contributes to RPE cell barrier disruption under hyperglycemic conditions and thus plays a role in the development of diabetic macular edema. PMID:25121097

  11. Hsa-miRNA-31 regulates epithelial cell barrier function by inhibiting TNFSF15 expression.

    PubMed

    Nan, X; Qin, S; Yuan, Z; Li, Y; Zhang, J; Li, C; Tan, X; Yan, Y

    2016-01-01

    Ulcerative colitis (UC) is characterized by epithelial barrier disruption and alterations in immune regulation but with the etiology unknown. MicroRNA-31 is the most consistent differentially expressed miRNA in ulcerative colitis tissue. The aim of this project is to study the important roles of miRNA-31 in regulation of intestinal epithelial barrier function. We found that expression of miRNA-31 is proportional to the proliferation of Caco2-BBE cells and overexpression of miRNA-31 can increase its trans-epithelial resistance (TER) by decreasing the transepithelial permeability. miRNA-31 can directly bind to the 3-UTR of TNFSF15, thereafter negatively regulating its expression in Caco2-BBE cells. BrdU and TUNEL analysis demonstrated that transfection of miRNA-31 stimulates proliferation or apoptosis-resistance. Taken together, these results revealed a novel mecha-nism underlying the regulation of epithelial barrier function by miRNA-31 during its regulation on proliferation of epithelial cells. PMID:27188743

  12. Instrumental noise estimates stabilize and quantify endothelial cell micro-impedance barrier function parameter estimates

    SciTech Connect

    English, Anthony E; Moy, Alan B; Kruse, Kara L; Ward, Richard C; Kirkpatrick, Stacy S; GoldmanM.D., Mitchell H

    2009-04-01

    A novel transcellular micro-impedance biosensor, referred to as the electric cell-substrate impedance sensor or ECIS, has become increasingly applied to the study and quantification of endothelial cell physiology. In principle, frequency dependent impedance measurements obtained from this sensor can be used to estimate the cell cell and cell matrix impedance components of endothelial cell barrier function based on simple geometric models. Few studies, however, have examined the numerical optimization of these barrier function parameters and established their error bounds. This study, therefore, illustrates the implementation of a multi-response Levenberg Marquardt algorithm that includes instrumental noise estimates and applies it to frequency dependent porcine pulmonary artery endothelial cell impedance measurements. The stability of cell cell, cell matrix and membrane impedance parameter estimates based on this approach is carefully examined, and several forms of parameter instability and refinement illustrated. Including frequency dependent noise variance estimates in the numerical optimization reduced the parameter value dependence on the frequency range of measured impedances. The increased stability provided by a multi-response non-linear fit over one-dimensional algorithms indicated that both real and imaginary data should be used in the parameter optimization. Error estimates based on single fits and Monte Carlo simulations showed that the model barrier parameters were often highly correlated with each other. Independently resolving the different parameters can, therefore, present a challenge to the experimentalist and demand the use of non-linear multivariate statistical methods when comparing different sets of parameters.

  13. Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function

    PubMed Central

    Gonzalez-Andrades, Miguel; Alonso-Pastor, Luis; Mauris, Jérôme; Cruzat, Andrea; Dohlman, Claes H.; Argüeso, Pablo

    2016-01-01

    The repair of wounds through collective movement of epithelial cells is a fundamental process in multicellular organisms. In stratified epithelia such as the cornea and skin, healing occurs in three steps that include a latent, migratory, and reconstruction phases. Several simple and inexpensive assays have been developed to study the biology of cell migration in vitro. However, these assays are mostly based on monolayer systems that fail to reproduce the differentiation processes associated to multilayered systems. Here, we describe a straightforward in vitro wound assay to evaluate the healing and restoration of barrier function in stratified human corneal epithelial cells. In this assay, circular punch injuries lead to the collective migration of the epithelium as coherent sheets. The closure of the wound was associated with the restoration of the transcellular barrier and the re-establishment of apical intercellular junctions. Altogether, this new model of wound healing provides an important research tool to study the mechanisms leading to barrier function in stratified epithelia and may facilitate the development of future therapeutic applications. PMID:26759072

  14. Influence of skin penetration enhancers on skin barrier function and skin protease activity.

    PubMed

    Mohammed, Diar; Hirata, Kazumasa; Hadgraft, Jonathan; Lane, Majella E

    2014-01-23

    In order to overcome the skin's excellent barrier function formulation scientists often employ skin penetration enhancers (SPEs) in topical and transdermal formulations. The effects of these compounds on skin health is still not well understood at the molecular level. The aim of the present work was to probe the effects of some common SPEs on desquamatory protease activity in healthy skin. The SPEs studied were isopropyl myristate (IPM), propylene glycol, (PG), propylene glycol laurate (PGL) and Transcutol™ (TC). Occluded infinite doses of each SPE were applied to human volunteers for 24 h. Transepidermal water loss (TEWL) measurements were taken before and after application of SPEs. Tape strips were collected from the treated sites to determine protein content and the activity of two desquamatory proteases kallikrein 5 (KLK5) and kallikrein 7 (KLK7). TEWL values were also measured after tape stripping. PG was found to elevate both TEWL values and KLK7 activity to a significant extent (p<0.05). No significant effects were observed for the other SPEs. The ability of PG to alter the skin barrier at the macroscopic level and the influence of the molecule on protease activity reported here may have implications for its use in topical formulations used for the management of impaired skin barrier function such as atopic eczema or psoriasis. PMID:24063883

  15. Fluticasone Induces Epithelial Injury and Alters Barrier Function in Normal Subjects

    PubMed Central

    MacRedmond, Ruth E.; Singhera, Gurpreet K.; Wadsworth, Samuel J.; Attridge, Susan; Bahzad, Mohammed; Williams, Kristy; Coxson, Harvey O.; White, Steven R.; Dorscheid, Delbert R.

    2014-01-01

    Objective The airway epithelium has a number of roles pivotal to the pathogenesis of asthma, including provision of a physical and immune barrier to the inhaled environment. Dysregulated injury and repair responses in asthma result in loss of airway epithelial integrity. Inhaled corticosteroids are a corner stone of asthma treatment. While effective in controlling asthma symptoms, they fail to prevent airway remodeling. Direct cytopathic effects on the airway epithelium may contribute to this. Methods This study examined the effects of a 4-week treatment regimen of inhaled fluticasone 500 μg twice daily in healthy human subjects. Induced sputum was collected for cell counts and markers of inflammation. Barrier function was examined by diethylenetriaminepentacetic acid (DTPA) clearance measured by nuclear scintillation scan, and albumin concentration in induced sputum. Results Steroid exposure resulted in epithelial injury as measured by a significant increase in the number of airway epithelial cells in induced sputum. There was no change in airway inflammation by induced sputum inflammatory cell counts or cytokine levels. Epithelial shedding was associated with an increase in barrier function, as measured by both a decrease in DTPA clearance and decreased albumin in induced sputum. This likely reflects the normal repair response. Conclusion Inhaled corticosteroids cause injury to normal airway epithelium. These effects warrant further evaluation in asthma, where the dysregulated repair response may contribute to airway remodeling. PMID:25324978

  16. Influence of lidocaine hydrochloride and penetration enhancers on the barrier function of human skin.

    PubMed

    Hirata, Kazumasa; Mohammed, Diar; Hadgraft, Jonathan; Lane, Majella E

    2014-12-30

    Skin penetration enhancers (SPEs) are commonly employed in pharmaceutical and personal care products. These compounds transiently alter the barrier properties of the skin and we have previously investigated the effects of specific SPEs on skin barrier function in vivo. In the present study the effects of incorporation of an active pharmaceutical ingredient (API), lidocaine hydrochloride (LID HCl) in the SPEs previously studied were investigated. Solutions of LID HCl were prepared and applied to the volar forearm of human subjects with occlusion for 24h. Subsequently, tape stripping and trans epidermal water loss (TEWL) measurements were conducted for treated and control sites. The activities of the desquamatory proteases, kallikrein 5 (KLK 5) and kallikrein 7 (KLK 7) and API content were also measured from the tape strips. The propylene glycol (PG) formulation increased TEWL significantly (p<0.05) compared with the other SPEs and a mixture of the SPEs. However, only the isopropyl myristate (IPM) solution altered protease activity with a significant observed increase in kallikrein 5 (KLK 5). Incorporation of LID HCl appeared to ameliorate the effects of some of the SPEs on TEWL measurements compared with our previous study. Overall uptake of LID HCl into skin from the various formulations correlated very well with changes in TEWL. The findings should have implications for the choice of SPEs in topical and transdermal formulations, particularly where the skin barrier function of patients is already impaired for example in atopic eczema or psoriasis. PMID:25305378

  17. Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function.

    PubMed

    Kim, Do-Hoon; Park, Woo Ram; Kim, Jeong Hwan; Cho, Eun Chul; An, Eun Jung; Kim, Jin-Woong; Oh, Seong-Geun

    2012-06-01

    The recovery of skin barrier functions was investigated with pseudo-ceramide-based lipid microparticles. The microparticles were prepared by using a fluid bed technique where lipid components (a pseudo-ceramide, cholesterol and a fatty acid) were coated on a sugar seed, and a polymer was subsequently coated on the lipid microparticles. The microparticles contained large amount of pseudo-ceramide, and the pseudo-ceramide was in the form of lamellar structures mixed with other lipid components. In addition, the microparticles were stably dispersed in aqueous media or emulsion systems without any disruption of the microparticles' structures, thereby supplying sufficient amount of the pseudo-ceramide to skins for improving skin barrier functions such as preventing water loss. Such a role of the microparticles was proven by evaluating in vivo the efficacy of the lipid microparticles in reducing a trans-epidermal water loss (TEWL) of impaired murine skins. As a result, the novel pseudo-ceramide-based lipid microparticles for barrier recovery may potentially be applied in the field of dermatology, cosmetics and pharmaceuticals. PMID:22361356

  18. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    PubMed Central

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G.; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention. PMID:25360097

  19. Functional, morphological and electrocardiographical abnormalities in patients with apical hypertrophic cardiomyopathy and apical aneurysm: correlation with cardiac MR

    PubMed Central

    Suwa, Kenichiro; Satoh, Hiroshi; Sano, Makoto; Nobuhara, Mamoru; Saitoh, Takeji; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Tawarahara, Kei; Ohtani, Hayato; Wakabayashi, Yasushi; Takase, Hiroyuki; Terada, Hajime; Takehara, Yasuo; Sakahara, Harumi; Hayashi, Hideharu

    2014-01-01

    Objective The prognosis of apical hypertrophic cardiomyopathy (APH) has been benign, but apical myocardial injury has prognostic importance. We studied functional, morphological and electrocardiographical abnormalities in patients with APH and with apical aneurysm and sought to find parameters that relate to apical myocardial injury. Methods Study design: a multicentre trans-sectional study. Patients: 45 patients with APH and 5 with apical aneurysm diagnosed with transthoracic echocardiography (TTE) in the database of Hamamatsu Circulation Forum. Measure: the apical contraction with cine-cardiac MR (CMR), the myocardial fibrotic scar with late gadolinium enhancement (LGE)-CMR, and QRS fragmentation (fQRS) defined when two ECG-leads exhibited RSR’s patterns. Results Cine-CMR revealed 27 patients with normal, 12 with hypokinetic and 11 with dyskinetic apical contraction. TTE misdiagnosed 11 (48%) patients with hypokinetic and dyskinetic contraction as those with normal contraction. Apical LGE was apparent in 10 (83%) and 11 (100%) patients with hypokinetic and dyskinetic contraction, whereas only in 11 patients (41%) with normal contraction (p<0.01). Patients with dyskinetic apical contraction had the lowest left ventricular ejection fraction, the highest prevalence of ventricular tachycardia, and the smallest ST depression and depth of negative T waves. The presence of fQRS was associated with impaired apical contraction and apical LGE (OR=8.32 and 8.61, p<0.05). Conclusions CMR is superior to TTE for analysing abnormalities of the apex in patients with APH and with apical aneurysm. The presence of fQRS can be a promising parameter for the early detection of apical myocardial injury. PMID:25332823

  20. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function.

    PubMed

    Benfeldt, E; Serup, J; Menné, T

    1999-04-01

    We have used microdialysis in the dermis for assessing penetration kinetics of salicylic acid (SA) in healthy volunteers (n = 18), following application on the volar aspect of the left forearm. Penetration was monitored at four locations: in normal (unmodified) skin and in skin with perturbed barrier function from (i) repeated tape stripping (ii) irritant dermatitis from 1 or 2% sodium lauryl sulphate (SLS) for 24 h and (iii) delipidization by acetone. The order of the treatments was randomized according to a latin square design. Epidermal barrier function and skin irritation were assessed in each location using evaporimetry and colorimetry. Transepidermal water loss (TEWL) values confirmed that both mild (acetone), moderate (1% SLS) and severe barrier damage (tape stripping and 2% SLS) had occurred. Microdialysis sampling with two parallel probes in the dermis was performed in each of the four treatment areas for every subject. SA (5% in ethanol) was applied in a chamber glued to the skin overlying the microdialysis probes and sampling was continued for 4 h. SA was detectable in all samples and measurable in all samples from penetration through perturbed skin. Comparing the SA penetration in barrier-perturbed skin with the penetration in unmodified skin in the same subject, the mean SA penetration increase was 2.2-fold in acetone-treated skin (P = 0.012), 46-fold in mild dermatitis and 146- and 157-fold in severe dermatitis and tape stripped skin, respectively (P < 0.001). The penetration of SA significantly correlated with the measurements of barrier perturbation by TEWL (P = 0.01) and erythema (P = 0.02) for each individual. Microdialysis sampling of SA penetration was more sensitive than non-invasive measuring techniques in detecting significant barrier perturbation in acetone-treated skin. A positive dose-response relationship for the percutaneous penetration of SA in response to increasing SLS pretreatment concentrations and thus the degree of irritant dermatitis was found. When analysing data by location on the forearm, a tendency towards an intraregional variation in the reactivity to barrier damage was found, with the most proximal location displaying higher reactivity scores than the most distal location in response to the same barrier perturbation procedures. The penetration of SA was not significantly different between locations. In conclusion, using microdialysis in the dermis to obtain real-time dermal pharmacokinetics in the target organ, this study demonstrates highly increased and differentiated cutaneous penetration of SA in barrier-perturbed skin. The measured drug penetration was demonstrated to correlate with non-invasive quantification of barrier damage. PMID:10233334

  1. Impaired function of the intestinal barrier in a novel sub-health rat model

    PubMed Central

    FENG, SISI; LIU, WEIDONG; ZUO, SHENGNAN; XIE, TINGYAN; DENG, HUI; ZHANG, QIUHUAN; ZHONG, BAIYUN

    2016-01-01

    Sub-health is a state featuring a deterioration in physiological function between health and illness, and the sub-health condition has surfaced as life-threatening in humans. The aim of the present study was to establish a sub-health model in rats, and investigate the function of the intestinal barrier in the sub-health rats and rats following intervention. To establish a sub-health model, the rats were subjected to a high-fat and sugar diet, motion restriction and chronic stress. Their serum glucose and triglyceride levels, immune function and adaptability were then measured. The levels of diamine oxidase and D-lactic acid in the plasma were analyzed as markers of the intestinal permeability. The protein and mRNA expression levels of anti-apoptotic YWHAZ in the colonic tissue was detected using immunohistochemical and reverse transcription-quantitative polymerase chain reaction analyses In the present study, the sub-health rat model was successfully established, and sub-health factors increased the intestinal permeability and reduced the expression of YWHAZ. Providing sub-health rats with normal living conditions did not improve the function of the intestinal barrier. In conclusion, the results of the present study demonstrated that intestinal disorders in the sub-health rat model may result from the damage caused by reduce intestinal barrier function as well as the decreased expression levels of YWHAZ. Additionally, rats in the sub-health condition did not recover following subsequent exposure to normal living conditions, suggesting that certain exercises or medical intervention may be necessary to improve sub-health symptoms. PMID:26957295

  2. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update

    PubMed Central

    Atluri, Venkata Subba Rao; Hidalgo, Melissa; Samikkannu, Thangavel; Kurapati, Kesava Rao Venkata; Jayant, Rahul Dev; Sagar, Vidya; Nair, Madhavan P. N.

    2015-01-01

    The blood-brain barrier (BBB) is a diffusion barrier that has an important role in maintaining a precisely regulated microenvironment protecting the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neurological diseases. Human Immunodeficiency Virus (HIV) infection in the Central Nervous System (CNS) is an early event even before the serodiagnosis for HIV positivity or the initiation of antiretroviral therapy (ART), resulting in neurological complications in many of the infected patients. Macrophages, microglia and astrocytes (in low levels) are the most productively/latently infected cell types within the CNS. In this brief review, we have discussed about the effect of HIV infection and viral proteins on the integrity and function of BBB, which may contribute to the progression of HIV associated neurocognitive disorders. PMID:26113810

  3. Diabetes, insulin-mediated glucose metabolism and Sertoli/blood-testis barrier function

    PubMed Central

    Alves, Marco G.; Martins, Ana D.; Cavaco, José E.; Socorro, Sílvia; Oliveira, Pedro F.

    2013-01-01

    Blood testis barrier (BTB) is one of the tightest blood-barriers controlling the entry of substances into the intratubular fluid. Diabetes Mellitus (DM) is an epidemic metabolic disease concurrent with falling fertility rates, which provokes severe detrimental BTB alterations. It induces testicular alterations, disrupting the metabolic cooperation between the cellular constituents of BTB, with dramatic consequences on sperm quality and fertility. As Sertoli cells are involved in the regulation of spermatogenesis, providing nutritional support for germ cells, any metabolic alteration in these cells derived from DM may be responsible for spermatogenesis disruption, playing a crucial role in fertility/subfertility associated with this pathology. These cells have a glucose sensing machinery that reacts to hormonal fluctuations and several mechanisms to counteract hyper/hypoglycemic events. The role of DM on Sertoli/BTB glucose metabolism dynamics and the metabolic molecular mechanisms through which DM and insulin deregulation alter its functioning, affecting male reproductive potential will be discussed. PMID:24665384

  4. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  5. Tesmilifene modifies brain endothelial functions and opens the blood-brain/blood-glioma barrier.

    PubMed

    Walter, Fruzsina R; Veszelka, Szilvia; Pásztói, Mária; Péterfi, Zoltán A; Tóth, András; Rákhely, Gábor; Cervenak, László; Ábrahám, Csongor S; Deli, Mária A

    2015-09-01

    Tesmilifene, a tamoxifen analog with antihistamine action, has chemopotentiating properties in experimental and clinical cancer studies. In our previous works, tesmilifene increased the permeability of the blood-brain barrier (BBB) in animal and culture models. Our aim was to investigate the effects of tesmilifene on brain microvessel permeability in the rat RG2 glioma model and to reveal its mode of action in brain endothelial cells. Tesmilifene significantly increased fluorescein extravasation in the glioma. Short-term treatment with tesmilifene reduced the resistance and increased the permeability for marker molecules in a rat triple co-culture BBB model. Tesmilifene also affected the barrier integrity in brain endothelial cells co-cultured with RG2 glioblastoma cells. Tesmilifene inhibited the activity of P-glycoprotein and multidrug resistance-associated protein-1 efflux pumps and down-regulated the mRNA expression of tight junction proteins, efflux pumps, solute carriers, and metabolic enzymes important for BBB functions. Among the possible signaling pathways that regulate BBB permeability, tesmilifene activated the early nuclear translocation of NFκB. The MAPK/ERK and PI3K/Akt kinase pathways were also involved. We demonstrate for the first time that tesmilifene increases permeability marker molecule extravasation in glioma and inhibits efflux pump activity in brain endothelial cells, which may have therapeutic relevance. Tesmilifene, a chemopotentiator in experimental and clinical cancer studies increases vascular permeability in RG2 glioma in rats and permeability for marker molecules in a culture model of the blood-brain barrier. Tesmilifene inhibits the activity of efflux pumps and down-regulates the mRNA expression of tight junction proteins, transporters, and metabolic enzymes important for the blood-brain barrier functions, which may have therapeutic relevance. PMID:26112237

  6. Assessment of Structural and Functional Abnormalities of the Myocardium and the Ascending Aorta in Fetus with Hypoplastic Left Heart Syndrome

    PubMed Central

    Jiang, Yan; Xu, Yali; Tang, Jinliang; Xia, Hongmei

    2016-01-01

    Aims. To detect anatomical and intrinsic histopathological features of the ascending aorta and left ventricular (LV) myocardium and evaluate right ventricular (RV) function in fetuses with hypoplastic left heart syndrome (HLHS). Methods. Twenty-five fetuses diagnosed with HLHS were followed up in the antenatal and postpartum periods. 12 necropsy heart specimens were analyzed for morphological and histological changes. Results. Prenatal echocardiography and pathologic anatomy displayed the typical characteristics of HLHS as a severe underdevelopment of the LV in the form of mitral stenosis or atresia or as aortic atresia or stenosis, with a decreased ratio of aortic diameter to pulmonary artery diameter (median of 0.49 with a range of 0.24 to 0.69, p ≤ 0.001) and a higher ratio of RV diameter to LV diameter (median of 2.44 with a range of 1.33 to 6.25, p ≤ 0.001). The RV volume, stroke volume, and cardiac output in HLHS fetuses were increased compared with the gestational age-matched normal controls (p < 0.01). Histological changes in the 12 HLHS specimens included LV myocardial fibrosis, aortic elastic fragmentation, and fibrosis. Conclusions. In addition to severe anatomical deformity, distinct histological abnormalities in the LV myocardium and aortic wall were identified in the fetuses with HLHS. RV function damage may be potentially exists. PMID:26981527

  7. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    PubMed

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. PMID:25736181

  8. Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes.

    PubMed

    Ghatak, Subhadip; Chan, Yuk Cheung; Khanna, Savita; Banerjee, Jaideep; Weist, Jessica; Roy, Sashwati; Sen, Chandan K

    2015-07-01

    Tissue injury transiently silences miRNA-dependent posttranscriptional gene silencing in its effort to unleash adult tissue repair. Once the wound is closed, miRNA biogenesis is induced averting neoplasia. In this work, we report that Dicer plays an important role in reestablishing the barrier function of the skin post-wounding via a miRNA-dependent mechanism. MicroRNA expression profiling of skin and wound-edge tissue revealed global upregulation of miRNAs following wound closure at day 14 post-wounding with significant induction of Dicer expression. Barrier function of the skin, as measured by trans-epidermal water loss, was compromised in keratinocyte-specific conditional (K14/Lox-Cre) Dicer-ablated mice because of malformed cornified epithelium lacking loricrin expression. Studies on human keratinocytes recognized that loricrin expression was inversely related to the expression of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Compared to healthy epidermis, wound-edge keratinocytes from Dicer-ablated skin epidermis revealed elevated p21(Waf1/Cip1) expression. Adenoviral and pharmacological suppression of p21(Waf1/Cip1) in keratinocyte-specific conditional Dicer-ablated mice improved wound healing indicating a role of Dicer in the suppression of p21(Waf1/Cip1). This work upholds p21(Waf1/Cip1) as a druggable target to restore barrier function of skin suffering from loss of Dicer function as would be expected in diabetes and other forms of oxidant insult. PMID:25896246

  9. Local Burn Injury Impairs Epithelial Permeability and Antimicrobial Peptide Barrier Function in Distal Unburned Skin*

    PubMed Central

    Plichta, Jennifer K.; Droho, Steve; Curtis, Brenda J.; Patel, Parita; Gamelli, Richard L.; Radek, Katherine A.

    2014-01-01

    Objectives Our objective was to characterize the mechanisms by which local burn injury compromises epithelial barrier function in burn margin, containing the elements necessary for healing of the burn site, and in distal unburned skin, which serves as potential donor tissue. Design Experimental mouse scald burn injury. Setting University Research Laboratory. Subjects C57/Bl6 Male mice, 8–12 weeks old. Interventions To confirm that dehydration was not contributing to our observed barrier defects, in some experiments mice received 1 mL of saline fluid immediately after burn, while a subgroup received an additional 0.5 mL at 4 hours and 1 mL at 24 hours following burn. We then assessed skin pH and transepidermal water loss every 12 hours on the burn wounds for 72 hours postburn. Measurements and Main Results Burn margin exhibited increased epidermal barrier permeability indicated by higher pH, greater transepidermal water loss, and reduced lipid synthesis enzyme expression and structural protein production up to 96 hours postburn. By contrast, antimicrobial peptide production and protease activity were elevated in burn margin. Skin extracts from burn margin did not exhibit changes in the ability to inhibit bacterial growth. However, distal unburned skin from burned mice also demonstrated an impaired response to barrier disruption, indicated by elevated transepidermal water loss and reduced lipid synthesis enzyme and structural protein expression up to 96 hours postburn. Furthermore, skin extracts from distal unburned skin exhibited greater protease activity and a reduced capacity to inhibit bacterial growth of several skin pathogens. Finally, we established that antimicrobial peptide levels were also altered in the lung and bladder, which are common sites of secondary infection in burn-injured patients. Conclusions These findings reveal several undefined deficiencies in epithelial barrier function at the burn margin, potential donor skin sites, and organs susceptible to secondary infection. These functional and biochemical data provide novel insights into the mechanisms for graft failure and secondary infection after burn injury. PMID:24717471

  10. Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea

    PubMed Central

    Vazquez-Roque, Maria I.; Smyrk, Thomas; Murray, Joseph A.; O'Neill, Jessica; Carlson, Paula; Lamsam, Jesse; Eckert, Deborah; Janzow, Denise; Burton, Duane; Ryks, Michael; Rhoten, Deborah; Zinsmeister, Alan R.

    2012-01-01

    Patients with irritable bowel syndrome (IBS) with diarrhea (IBS-D) carrying human leukocyte antigen (HLA)-DQ2/8 genotypes benefit from gluten withdrawal. Our objective was to compare gastrointestinal barrier function, mucosal inflammation, and transit in nonceliac IBS-D patients and assess association with HLA-DQ2/8 status. In 45 IBS-D patients who were naive to prior exclusion of dietary gluten, we measured small bowel (SB) and colonic mucosal permeability by cumulative urinary lactulose and mannitol excretion (0–2 h for SB and 8–24 h for colon), inflammation on duodenal and rectosigmoid mucosal biopsies (obtained in 28 of 45 patients), tight junction (TJ) protein mRNA and protein expression in SB and rectosigmoid mucosa, and gastrointestinal and colonic transit by validated scintigraphy. SB mucosal biopsies were stained with hematoxylin-eosin to assess villi and intraepithelial lymphocytes, and immunohistochemistry was used to assess CD3, CD8, tryptase, and zonula occludens 1 (ZO-1); colonic biopsy intraepithelial lymphocytes were quantitated. Associations of HLA-DQ were assessed using Wilcoxon's rank-sum test. Relative to healthy control data, we observed a significant increase in SB permeability (P < 0.001), a borderline increase in colonic permeability (P = 0.10), and a decrease in TJ mRNA expression in rectosigmoid mucosa in IBS-D. In HLA-DQ2/8-positive patients, ZO-1 protein expression in the rectosigmoid mucosa was reduced compared with that in HLA-DQ2/8-negative patients and colonic transit was slower than in HLA-DQ2/8-negative patients. No other associations with HLA genotype were identified. There is abnormal barrier function (increased SB permeability and reduced mRNA expression of TJ proteins) in IBS-D relative to health that may be, in part, related to immunogenotype, given reduced ZO-1 protein expression in rectosigmoid mucosa in HLA-DQ2/8-positive relative to HLA-DQ2/8-negative patients. PMID:23042942

  11. Autophagy Enhances Intestinal Epithelial Tight Junction Barrier Function by Targeting Claudin-2 Protein Degradation*

    PubMed Central

    Nighot, Prashant K.; Hu, Chien-An Andy; Ma, Thomas Y.

    2015-01-01

    Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2. PMID:25616664

  12. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams.

    PubMed

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-01-01

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity. PMID:27090223

  13. Regulation of epithelial apical junctions and barrier function by Galpha13.

    PubMed

    Donato, Rino; Wood, Stephen A; Saunders, Ian; Gundsambuu, Batjargal; Yan Mak, Kai; Abbott, Catherine A; Powell, Barry C

    2009-07-01

    The epithelial tight junction forms a barrier to paracellular solute movement. In this study we show that the heterotrimeric G-protein Galpha13 regulates the epithelial tight junction barrier. We generated MDCKII kidney epithelial cell lines in which the expression of an active Galpha13 mutant (Galpha13Q226L) could be induced. We demonstrated that Galpha13Q226L expression increased paracellular permeability and caused the disruption and redistribution of proteins comprising the tight junction and the adherens junction away from sites of cell contact and the appearance of basal stress fibers. The effects on the junctional proteins and the actin cytoskeleton were abrogated by the Rho kinase inhibitor Y27632 but not by the Src kinase inhibitor PP2. The Galpha13 mediated increase in permeability was also Src kinase independent but was partly dependent on Rho kinase signalling. Our data establish a link between Galpha13, Rho kinase signaling and epithelial barrier function and not only demonstrate that Galpha13 regulates epithelial apical junction properties but that it does so via signaling pathways that are distinct from the closely related protein Galpha12. PMID:19406171

  14. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    PubMed Central

    Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen

    2013-01-01

    Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055

  15. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams

    PubMed Central

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-01-01

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity. PMID:27090223

  16. Modulation of bronchial epithelial cell barrier function by in vitro ozone exposure

    SciTech Connect

    Yu, Xiao-Ying; Takahashi, Nobuyoshi; Croxton, T.L.; Spannhake, E.W.

    1994-12-01

    The epithelial cells lining the small, peripheral airways function as important targets for the action of inspired ozone. Loss of epithelial barrier integrity in these regions is a common element in ozone-induced airway inflammation. To investigate the direct effect of ozone on epithelial barrier function, canine bronchial epithelial (CBE) cells grown with an air interface were exposed for 3hr to 0.2, 0.5, or 0.8 ppm ozone or to air. Mannitol flux, used as an index of paracellular permeability, increased above air controls by 461%, 774%, and 1172% at the three ozone concentrations, respectively. Transcellular electrical resistance exhibited a dose-related decrease. The immediate effect of 0.8 ppm ozone on permeability was significantly inhibited by preincubation for 48 hr in the presence of 1 ng/ml vitamin E (33%) or 1 {mu}M vitamin A (34%). Responses to 0.5 ppm or 0.8 ppm were inhibited by pretreatment of the cells with 0.1 {mu}M of the actin polymerizing agent phalloidin (34% and 25% inhibition, respectively). The increases in permeability induced by 0.2 and 0.5 ppm ozone were attenuated by 54% and 22%, respectively, at 18 hr after exposure, whereas that to 0.8 ppm was further enhanced by 42% at this time. The effects of ozone are modulated by the availability of antioxidants to the cells and appear to be associated with cytoskeletal dysfunction in CBE cells. The data are consistent with a loss of barrier function linked to a direct oxidative effect of ozone on individual CBE cells and indicate that the reversible or progressive nature of this effect is dose dependent. 31 refs., 5 figs.

  17. Effects of cello-oligosaccharide on intestinal microbiota and epithelial barrier function of weanling pigs.

    PubMed

    Jiao, L F; Ke, Y L; Xiao, K; Song, Z H; Hu, C H; Shi, B

    2015-03-01

    A total of 144 piglets (Duroc × Landrace × Yorkshire; average initial weight of 6.13 kg weaned at 21 ± 1 d age) were allotted to 4 treatments for 2 wk, each of which had 6 pens with 6 pigs per pen. After the feeding experiment, 6 pigs per treatment were slaughtered to investigate the effects of cello-oligosaccharide (COS) on intestinal microbiota and epithelial barrier function. The COS was added to the basal diet at 0, 1.5, 3.0, and 4.5 g/kg diet at the expense of corn, respectively. Plasma -lactate, diamine oxidase (DAO), and the Ussing chamber technique were used to determine the intestinal barrier function. 16S rRNA-based methods were used for intestinal microbiota analysis. The results showed that incremental levels of COS had no effect ( > 0.05) on growth performance. Incremental levels of COS increased lactobacilli in jejunal and colonic contents ( < 0.05); decreased in jejunal contents ( < 0.05) and and in colonic contents ( < 0.05); reduced plasma DAO (linear, = 0.013, and quadratic, = 0.037); increased jejunal mucosa DAO (linear, = 0.003, and quadratic, = 0.008); decreased fluorescein isothiocyanate dextran 4 kDa flux of jejunum and colon ( < 0.05); and increased transepithelial electrical resistance (TER) in colon ( < 0.05), claudin-1 protein expression in jejunal mucosa (linear, = 0.001, and quadratic, = 0.003), and protein expressions of claudin-1 and zonula occludens-1 (ZO-1) in colonic mucosa linearly ( = 0.001 and = 0.001, respectively) and quadratically ( = 0.001 and = 0.002, respectively). The results indicated that the improved microbial ecosystem in the presence of COS might contribute to improvement in intestinal barrier function and tight junction proteins. Results also showed that the appropriate dietary COS supplementation level was 3.0 g/kg in weaned pig diets under our trial conditions. PMID:26020893

  18. A fast method to produce strong NFC films as a platform for barrier and functional materials.

    PubMed

    Osterberg, Monika; Vartiainen, Jari; Lucenius, Jessica; Hippi, Ulla; Seppälä, Jukka; Serimaa, Ritva; Laine, Janne

    2013-06-12

    In this study, we present a rapid method to prepare robust, solvent-resistant, nanofibrillated cellulose (NFC) films that can be further surface-modified for functionality. The oxygen, water vapor, and grease barrier properties of the films were measured, and in addition, mechanical properties in the dry and wet state and solvent resistance were evaluated. The pure unmodified NFC films were good barriers for oxygen gas and grease. At a relative humidity below 65%, oxygen permeability of the pure and unmodified NFC films was below 0.6 cm(3) μm m(-2) d(-1) kPa(-1), and no grease penetrated the film. However, the largest advantage of these films was their resistance to various solvents, such as water, methanol, toluene, and dimethylacetamide. Although they absorbed a substantial amount of solvent, the films could still be handled after 24 h of solvent soaking. Hot-pressing was introduced as a convenient method to not only increase the drying speed of the films but also enhance the robustness of the films. The wet strength of the films increased due to the pressing. Thus, they can be chemically or physically modified through adsorption or direct chemical reaction in both aqueous and organic solvents. Through these modifications, the properties of the film can be enhanced, introducing, for example, functionality, hydrophobicity, or bioactivity. Herein, a simple method using surface coating with wax to improve hydrophobicity and oxygen barrier properties at very high humidity is described. Through this modification, the oxygen permeability decreased further and was below 17 cm(3) μm m(-2) d(-1) kPa(-1) even at 97.4% RH, and the water vapor transmission rate decreased from 600 to 40 g/m(2) day. The wax treatment did not deteriorate the dry strength of the film. Possible reasons for the unique properties are discussed. The developed robust NFC films can be used as a generic, environmentally sustainable platform for functional materials. PMID:23635431

  19. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms.

    PubMed

    Chalubinski, Maciej; Wojdan, Katarzyna; Luczak, Emilia; Gorzelak, Paulina; Borowiec, Maciej; Gajewski, Adrian; Rudnicka, Karolina; Chmiela, Magdalena; Broncel, Marlena

    2015-10-01

    The vascular endothelium forms a barrier that controls flow of solutes and proteins and the entry of leukocytes into tissue. Injured tissue releases IL-33, which then alarms the immune system and attracts Th2 cells, thus increasing local concentration of IL-4. The aim of the study was to assess the influence of IL-33 and IL-4 on barrier functions of the human endothelium, expression of tight and adherent junction proteins, apoptosis and adhesive molecule surface expression in human endothelium in order to describe the mechanism of this effect. IL-33 and IL-4 decreased endothelial integrity and increased permeability. When added together, both cytokines lowered the endothelial integrity twice as much as used alone. This effect was accompanied by the down-regulation of occludin and VE-cadherin mRNA expression. Additionally, IL-4, but not IL-33, induced cell apoptosis. Both IL-33 and IL-4 showed the additive potency to down-regulate VE-cadherin mRNA expression. IL-33, unlike IL-4, increased the surface expression of ICAM-1, but not PECAM-1 in endothelial cells. Our results indicate that IL-33 may reversibly destabilize the endothelial barrier, thus accelerating the supply with immunomodulators and assisting leukocytes to reach wounded tissue. However, extended and less-controlled down-regulation of endothelial barrier, which may be a consequence of IL-33-initiated, but in fact IL-4-induced apoptosis of endothelial cells, may be deleterious and may eventually lead to the aggravation of inflammatory processes and the prolongation of tissue dysfunction. PMID:26231284

  20. Fibroblast Growth Factor-Peptide Improves Barrier Function and Proliferation in Human Keratinocytes After Radiation

    SciTech Connect

    Zhang Kunzhong; Tian Yeping; Yin Liangjie; Zhang Mei; Beck, Lisa A.; Zhang, Bingrong; Okunieff, Paul; Zhang Lurong; Vidyasagar, Sadasivan

    2011-09-01

    Purpose: Epidermal keratinocytes, which can be severely damaged after ionizing radiation (IR), are rapid turnover cells that function as a barrier, protecting the host from pathogenic invasion and fluid loss. We tested fibroblast growth factor-peptide (FGF-P), a small peptide derived from the receptor-binding domain of FGF-2, as a potential mitigator of radiation effects via proliferation and the barrier function of keratinocytes. Methods and Materials: Keratinocytes isolated from neonatal foreskin were grown on transwells. After being exposed to 0, 5, or 10 Gy IR, the cells were treated with a vehicle or FGF-P. The permeability of IR cells was assessed by using transepithelial electrical resistance (TEER) and a paracellular tracer flux of fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) with Ussing chambers. The cell proliferation was measured with yellow tetrazolium salt (MTT) and tritiated thymidine ([{sup 3}H]-TdR) assays. The phosphorylation of extracellular signal-regulated kinases (ERK) was measured in an enzyme-linked immunosorbent (ELISA)-like assay, and the proteins related to tight junctions (TJ) and adherens junctions (AJ) were examined with Western blotting. We used a mouse model to assess the ability of FGF-P to promote the healing of skin {beta} burns created with a strontium applicator. Results: We found (1) FGF-P reduced the permeability of irradiated keratinocytes, as evidenced by increased TEER and decreased diffusion of FITC-BSA, both associated with the regulation of different proteins and levels of TJ and AJ; and (2) FGF-P enhanced the proliferation of irradiated keratinocytes, as evidenced by increased MTT activity and [{sup 3}H]-TdR incorporation, which was associated with activation of the ERK pathway; and (3) FGF-P promoted the healing of skin {beta} burns. Conclusions: FGF-P enhances the barrier function, including up-regulation of TJ proteins, increases proliferation of human keratinocytes, and accelerates the healing of skin {beta} burns. FGF-P is a promising mitigator that improves the proliferation and barrier function of keratinocytes after IR.

  1. Mixed-species Biofilm Compromises Wound Healing by Disrupting Epidermal Barrier Function

    PubMed Central

    Sinha, Mithun; Ganesh, Kasturi; Chaney, Sarah; Mann, Ethan; Miller, Christina; Khanna, Savita; Bergdall, Valerie K.; Powell, Heather M.; Cook, Charles H.; Gordillo, Gayle M.; Wozniak, Daniel J.; Sen, Chandan K.

    2015-01-01

    In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishes the first chronic pre-clinical model of wound biofilm infection aimed at addressing long-term host response. Although biofilm infected wounds did not show marked differences in wound closure, the repaired skin demonstrated compromised barrier function. This observation is clinically significant because it leads to the notion that even if a biofilm infected wound is closed as observed visually, it may be complicated by the presence of failed skin which is likely to be infected and or further complicated post-closure. Study of underlying mechanisms recognized for the first time biofilm-inducible miR-146a and miR-106b in the host skin wound-edge tissue. These miRs silenced ZO-1 and ZO-2 to compromise tight junction function resulting in leaky skin as measured by transepidermal water loss. Intervention strategies aimed at inhibiting biofilm-inducible miRNAs may be productive in restoring barrier function of host skin. PMID:24771509

  2. Junctional adhesion molecule A promotes epithelial tight junction assembly to augment lung barrier function.

    PubMed

    Mitchell, Leslie A; Ward, Christina; Kwon, Mike; Mitchell, Patrick O; Quintero, David A; Nusrat, Asma; Parkos, Charles A; Koval, Michael

    2015-02-01

    Epithelial barrier function is maintained by tight junction proteins that control paracellular fluid flux. Among these proteins is junctional adhesion molecule A (JAM-A), an Ig fold transmembrane protein. To assess JAM-A function in the lung, we depleted JAM-A in primary alveolar epithelial cells using shRNA. In cultured cells, loss of JAM-A caused an approximately 30% decrease in transepithelial resistance, decreased expression of the tight junction scaffold protein zonula occludens 1, and disrupted junctional localization of the structural transmembrane protein claudin-18. Consistent with findings in other organs, loss of JAM-A decreased β1 integrin expression and impaired filamentous actin formation. Using a model of mild systemic endoxotemia induced by i.p. injection of lipopolysaccharide, we report that JAM-A(-/-) mice showed increased susceptibility to pulmonary edema. On injury, the enhanced susceptibility of JAM-A(-/-) mice to edema correlated with increased, transient disruption of claudin-18, zonula occludens 1, and zonula occludens 2 localization to lung tight junctions in situ along with a delay in up-regulation of claudin-4. In contrast, wild-type mice showed no change in lung tight junction morphologic features in response to mild systemic endotoxemia. These findings support a key role of JAM-A in promoting tight junction homeostasis and lung barrier function by coordinating interactions among claudins, the tight junction scaffold, and the cytoskeleton. PMID:25438062

  3. Junctional Adhesion Molecule A Promotes Epithelial Tight Junction Assembly to Augment Lung Barrier Function

    PubMed Central

    Mitchell, Leslie A.; Ward, Christina; Kwon, Mike; Mitchell, Patrick O.; Quintero, David A.; Nusrat, Asma; Parkos, Charles A.; Koval, Michael

    2016-01-01

    Epithelial barrier function is maintained by tight junction proteins that control paracellular fluid flux. Among these proteins is junctional adhesion molecule A (JAM-A), an Ig fold transmembrane protein. To assess JAM-A function in the lung, we depleted JAM-A in primary alveolar epithelial cells using shRNA. In cultured cells, loss of JAM-A caused an approximately 30% decrease in transepithelial resistance, decreased expression of the tight junction scaffold protein zonula occludens 1, and disrupted junctional localization of the structural transmembrane protein claudin-18. Consistent with findings in other organs, loss of JAM-A decreased β1 integrin expression and impaired filamentous actin formation. Using a model of mild systemic endoxotemia induced by i.p. injection of lipopolysaccharide, we report that JAM-A−/− mice showed increased susceptibility to pulmonary edema. On injury, the enhanced susceptibility of JAM-A−/− mice to edema correlated with increased, transient disruption of claudin-18, zonula occludens 1, and zonula occludens 2 localization to lung tight junctions in situ along with a delay in up-regulation of claudin-4. In contrast, wild-type mice showed no change in lung tight junction morphologic features in response to mild systemic endotoxemia. These findings support a key role of JAM-A in promoting tight junction homeostasis and lung barrier function by coordinating interactions among claudins, the tight junction scaffold, and the cytoskeleton. PMID:25438062

  4. Chromosome Abnormalities

    MedlinePlus

    ... of a condition caused by numerical abnormalities is Down syndrome, which is marked by mental retardation, learning difficulties, ... muscle tone (hypotonia) in infancy. An individual with Down syndrome has three copies of chromosome 21 rather than ...

  5. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  6. War experiences, general functioning and barriers to care among former child soldiers in Northern Uganda: the WAYS study

    PubMed Central

    Amone-P’Olak, Kennedy; Jones, Peter; Meiser-Stedman, Richard; Abbott, Rosemary; Ayella-Ataro, Paul Stephen; Amone, Jackson; Ovuga, Emilio

    2014-01-01

    Background Exposure to war is associated with considerable risks for long-term mental health problems (MHP) and poor functioning. Yet little is known about functioning and mental health service (MHS) use among former child soldiers (FCS). We assessed whether different categories of war experiences predict functioning and perceived need for, sources of and barriers to MHS among FCS. Methods Data were drawn from an on-going War-affected Youths (WAYS) cohort study of FCS in Uganda. Participants completed questionnaires about war experiences, functioning and perceived need for, sources of and barriers to MHS. Regression analyses and parametric tests were used to assess between-group differences. Results Deaths, material losses, threat to loved ones and sexual abuse significantly predicted poor functioning. FCS who received MHS function better than those who did not. Females reported more emotional and behavioural problems and needed MHS more than males. FCS who function poorly indicated more barriers to MHS than those who function well. Stigma, fear of family break-up and lack of health workers were identified as barriers to MHS. Conclusions Various war experiences affect functioning differently. A significant need for MHS exists amidst barriers to MHS. Nevertheless, FCS are interested in receiving MHS and believe it would benefit them. PMID:24408904

  7. Kruppel-like factor 2 protects against ischemic stroke by regulating endothelial blood brain barrier function

    PubMed Central

    Shi, Hong; Sheng, Baiyang; Zhang, Feng; Wu, Chunying; Zhang, Rongli; Zhu, Junqing; Xu, Kui; Kuang, Youzhi; Jameson, Stephen C.; Lin, Zhiyong; Wang, Yanming; Chen, Jun; Jain, Mukesh K.

    2013-01-01

    During an ischemic stroke normal brain endothelial function is perturbed, resulting in blood brain barrier (BBB) breakdown with subsequent infiltration of activated inflammatory blood cells, ultimately leading to neuronal cell death. Kruppel-like factor 2 (KLF2) is regulated by flow, is highly expressed in vascular endothelial cells (ECs), and serves as a key molecular switch regulating endothelial function and promoting vascular health. In this study we sought to determine the role of KLF2 in cerebrovascular function and the pathogenesis of ischemic stroke. Transient middle cerebral artery occlusion was performed in KLF2-deficient (KLF2−/−), KLF2 overexpressing (KLF2tg), and control mice, and stroke volume was analyzed. BBB function was assessed in vivo by real-time neuroimaging using positron emission tomography and Evan's blue dye assay. KLF2−/− mice exhibited significantly larger strokes and impairment in BBB function. In contrast, KLF2tg mice were protected against ischemic stroke and demonstrated preserved BBB function. In concordance, gain- and loss-of-function studies in primary brain microvascular ECs using transwell assays revealed KLF2 to be BBB protective. Mechanistically, KLF2 was demonstrated, both in vitro and in vivo, to regulate the critical BBB tight junction factor occludin. These data are first to identify endothelial KLF2 as a key regulator of the BBB and a novel neuroprotective factor in ischemic stroke. PMID:23335794

  8. Functional Characterisation of the Maturation of the Blood-Brain Barrier in Larval Zebrafish

    PubMed Central

    Fleming, Angeleen; Diekmann, Heike; Goldsmith, Paul

    2013-01-01

    Zebrafish are becoming increasingly popular as an organism in which to model human disease and to study the effects of small molecules on complex physiological and pathological processes. Since larvae are no more than a few millimetres in length, and can live in volumes as small as 100 microliters, they are particularly amenable to high-throughput and high content compound screening in 96 well plate format. There is a growing literature providing evidence that many compounds show similar pharmacological effects in zebrafish as they do in mammals, and in particular humans. However, a major question regarding their utility for small molecule screening for neurological conditions is whether a molecule will reach its target site within the central nervous system. Studies have shown that Claudin-5 and ZO-1, tight-junction proteins which are essential for blood-brain barrier (BBB) integrity in mammals, can be detected in some cerebral vessels in zebrafish from 3 days post-fertilisation (d.p.f.) onwards and this timing coincides with the retention of dyes, immunoreactive tracers and fluorescent markers within some but not all cerebral vessels. Whilst these findings demonstrate that features of a BBB are first present at 3 d.p.f., it is not clear how quickly the zebrafish BBB matures or how closely the barrier resembles that of mammals. Here, we have combined anatomical analysis by transmission electron microscopy, functional investigation using fluorescent markers and compound uptake using liquid chromatography/tandem mass spectrometry to demonstrate that maturation of the zebrafish BBB occurs between 3 d.p.f. and 10 d.p.f. and that this barrier shares both structural and functional similarities with that of mammals. PMID:24147021

  9. Modulation of bronchial epithelial cell barrier function by in vitro jet propulsion fuel 8 exposure.

    PubMed

    Robledo, R F; Barber, D S; Witten, M L

    1999-09-01

    The loss of epithelial barrier integrity in bronchial and bronchiolar airways may be an initiating factor in the observed onset of toxicant-induced lung injuries. Acute 1-h inhalation exposures to aerosolized jet propulsion fuel 8 (JP-8) have been shown to induce cellular and morphological indications of pulmonary toxicity that was associated with increased respiratory permeability to 99mTc-DTPA. To address the hypothesis that JP-8 jet fuel-induced lung injury is initiated through a disruption in the airway epithelial barrier function, paracellular mannitol flux of BEAS-2B human bronchial epithelial cells was measured. Incubation of confluent cell cultures with non-cytotoxic concentrations of JP-8 or n-tetradecane (C14), a primary constituent of JP-8, for a 1-h exposure period resulted in dose-dependent increases of paracellular flux. Following exposures of 0.17, 0.33, 0.50, or 0.67 mg/ml, mannitol flux increased above vehicle controls by 10, 14, 29, and 52%, respectively, during a 2-h incubation period immediately after each JP-8 exposure. C14 caused greater mannitol flux increases of 37, 42, 63, and 78%, respectively, following identical exposure conditions. The effect on transepithelial mannitol flux reached a maximum at 12 h and spontaneously reversed to control values over a 48-h recovery period, for both JP-8 and C14 exposure. These data indicate that non-cytotoxic exposures to JP-8 or C14 exert a noxious effect on bronchial epithelial barrier function that may preclude pathological lung injury. PMID:10496683

  10. Hypoxia-Inducible Factor 1–Dependent Induction of Intestinal Trefoil Factor Protects Barrier Function during Hypoxia

    PubMed Central

    Furuta, Glenn T.; Turner, Jerrold R.; Taylor, Cormac T.; Hershberg, Robert M.; Comerford, Katrina; Narravula, Sailaja; Podolsky, Daniel K.; Colgan, Sean P.

    2001-01-01

    Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during episodes of intestinal hypoxia. Initial studies examining T84 colonic epithelial cells revealed that barrier function is uniquely resistant to changes elicited by hypoxia. A search for intestinal-specific, barrier-protective factors revealed that the human intestinal trefoil factor (ITF) gene promoter bears a previously unappreciated binding site for hypoxia-inducible factor (HIF)-1. Hypoxia resulted in parallel induction of ITF mRNA and protein. Electrophoretic mobility shift assay analysis using ITF-specific, HIF-1 consensus motifs resulted in a hypoxia-inducible DNA binding activity, and loading cells with antisense oligonucleotides directed against the α chain of HIF-1 resulted in a loss of ITF hypoxia inducibility. Moreover, addition of anti-ITF antibody resulted in a loss of barrier function in epithelial cells exposed to hypoxia, and the addition of recombinant human ITF to vascular endothelial cells partially protected endothelial cells from hypoxia-elicited barrier disruption. Extensions of these studies in vivo revealed prominent hypoxia-elicited increases in intestinal permeability in ITF null mice. HIF-1–dependent induction of ITF may provide an adaptive link for maintenance of barrier function during hypoxia. PMID:11342587

  11. Alzheimer Disease in a Mouse Model: MR Imaging–guided Focused Ultrasound Targeted to the Hippocampus Opens the Blood-Brain Barrier and Improves Pathologic Abnormalities and Behavior

    PubMed Central

    Dubey, Sonam; Yeung, Sharon; Hough, Olivia; Eterman, Naomi; Aubert, Isabelle; Hynynen, Kullervo

    2014-01-01

    Purpose To validate whether repeated magnetic resonance (MR) imaging–guided focused ultrasound treatments targeted to the hippocampus, a brain structure relevant for Alzheimer disease (ADAlzheimer disease), could modulate pathologic abnormalities, plasticity, and behavior in a mouse model. Materials and Methods All animal procedures were approved by the Animal Care Committee and are in accordance with the Canadian Council on Animal Care. Seven-month-old transgenic (TgCRND8) (Tg) mice and their nontransgenic (non-Tg) littermates were entered in the study. Mice were treated weekly with MR imaging–guided focused ultrasound in the bilateral hippocampus (1.68 MHz, 10-msec bursts, 1-Hz burst repetition frequency, 120-second total duration). After 1 month, spatial memory was tested in the Y maze with the novel arm prior to sacrifice and immunohistochemical analysis. The data were compared by using unpaired t tests and analysis of variance with Tukey post hoc analysis. Results Untreated Tg mice spent 61% less time than untreated non-Tg mice exploring the novel arm of the Y maze because of spatial memory impairments (P < .05). Following MR imaging–guided focused ultrasound, Tg mice spent 99% more time exploring the novel arm, performing as well as their non-Tg littermates. Changes in behavior were correlated with a reduction of the number and size of amyloid plaques in the MR imaging–guided focused ultrasound–treated animals (P < .01). Further, after MR imaging–guided focused ultrasound treatment, there was a 250% increase in the number of newborn neurons in the hippocampus (P < .01). The newborn neurons had longer dendrites and more arborization after MR imaging–guided focused ultrasound, as well (P < .01). Conclusion Repeated MR imaging–guided focused ultrasound treatments led to spatial memory improvement in a Tg mouse model of ADAlzheimer disease. The behavior changes may be mediated by decreased amyloid pathologic abnormalities and increased neuronal plasticity. © RSNA, 2014 PMID:25222068

  12. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions

    PubMed Central

    2009-01-01

    Background Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. Results EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. Conclusion This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions. PMID:19883504

  13. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology

    PubMed Central

    Yu, Linda Chia-Hui; Wang, Jin-Town; Wei, Shu-Chen; Ni, Yen-Hsuan

    2012-01-01

    The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status. PMID:22368784

  14. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function. PMID:26966939

  15. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function

    PubMed Central

    Bode, Lars; Salvestrini, Camilla; Park, Pyong Woo; Li, Jin-Ping; Esko, Jeffrey D.; Yamaguchi, Yu; Murch, Simon; Freeze, Hudson H.

    2007-01-01

    Patients with protein-losing enteropathy (PLE) fail to maintain intestinal epithelial barrier function and develop an excessive and potentially fatal efflux of plasma proteins. PLE occurs in ostensibly unrelated diseases, but emerging commonalities in clinical observations recently led us to identify key players in PLE pathogenesis. These include elevated IFN-γ, TNF-α, venous hypertension, and the specific loss of heparan sulfate proteoglycans from the basolateral surface of intestinal epithelial cells during PLE episodes. Here we show that heparan sulfate and syndecan-1, the predominant intestinal epithelial heparan sulfate proteoglycan, are essential in maintaining intestinal epithelial barrier function. Heparan sulfate– or syndecan-1–deficient mice and mice with intestinal-specific loss of heparan sulfate had increased basal protein leakage and were far more susceptible to protein loss induced by combinations of IFN-γ, TNF-α, and increased venous pressure. Similarly, knockdown of syndecan-1 in human epithelial cells resulted in increased basal and cytokine-induced protein leakage. Clinical application of heparin has been known to alleviate PLE in some patients but its unknown mechanism and severe side effects due to its anticoagulant activity limit its usefulness. We demonstrate here that non-anticoagulant 2,3-de-O-sulfated heparin could prevent intestinal protein leakage in syndecan-deficient mice, suggesting that this may be a safe and effective therapy for PLE patients. PMID:18064305

  16. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers.

    PubMed

    Min, Kyoung Ah; Rosania, Gus R; Kim, Chong-Kook; Shin, Meong Cheol

    2016-03-01

    To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies. PMID:26746641

  17. Pulmonary function, smoking habits, and high resolution computed tomography (HRCT) early abnormalities of lung and pleural fibrosis in shipyard workers exposed to asbestos.

    PubMed

    Neri, S; Boraschi, P; Antonelli, A; Falaschi, F; Baschieri, L

    1996-11-01

    To evaluate the presence of asbestos-related pleural and parenchymal abnormalities and their correlation with pulmonary function and smoking habits, 119 asbestos-exposed asymptomatic workers (mean age, 46.2 years; mean duration of asbestos exposure, 8.6 years; mean latency time, 21.6 years) with normal standard P.A chest radiographs were submitted to HRCT, CO-diffusing capacity and pulmonary function tests. HRCT scans were normal only in 31 (26%) examined workers; 31 (26%) subjects showed both pleural and parenchymal involvement, and 50 (42%) and seven (6%) had exclusively pleural and parenchymal abnormalities, respectively. Based on CO-diffusing capacity and pulmonary function tests, no significant difference was demonstrated between workers with pleural lesions and subjects with normal pleura; however, lower values of FVC were observed in the nonsmoking workers with parenchymal abnormalities in comparison with nonsmoking subjects with normal parenchyma (78.2 vs. 89.7% of predicted values; p = 0.03 by student's two-tailed t test), and lower values of FEV1/FVC in the smokers with parenchymal lesions with respect to smokers with normal parenchyma (93.7 vs. 100.2% of predicted values; p = 0.005 by students' two-tailed t test). In conclusion, our results demonstrate that HRCT may detect early parenchymal abnormalities which correlate with exposure to asbestos and respiratory function impairment, including a reduction in obstructive indices in smokers occupationally exposed to asbestos, without any clinically evident disease. PMID:8909607

  18. Nrf2 deficiency impairs the barrier function of mouse esophageal epithelium

    PubMed Central

    Chen, Hao; Hu, Yuhui; Fang, Yu; Djukic, Zorka; Yamamoto, Masayuki; Shaheen, Nicholas J.; Orlando, Roy C.; Chen, Xiaoxin

    2013-01-01

    Objective As a major cellular defense mechanism, the Nrf2/Keap1 pathway regulates expression of genes involved in detoxification and stress response. Our previous study revealed activation of the Nrf2/Keap1 pathway at the maturation phase during mouse esophageal development, suggesting a potential function in epithelial defense. Here we hypothesize that Nrf2 is involved in the barrier function of esophageal epithelium, and plays a protective role against gastroesophageal reflux disease (GERD). Design Human esophageal biopsy samples, mouse surgical models and Nrf2-/- mice were used to assess the role of the Nrf2/Keap1 pathway in esophageal mucosal barrier function. Trans-epithelial electrical resistance (TEER) was measured with mini-Ussing chambers. Hematoxylin and eosin (HE) staining and transmission electron microscopy were used to examine cell morphology, while gene microarray, immunohistochemistry, Western blotting and ChIP analysis were used to assess the expression of pathway genes. Results Nrf2 was expressed in normal esophageal epithelium and activated in GERD of both humans and mice. Nrf2 deficiency and gastroesophageal reflux in mice, either alone or in combination, reduced TEER and increased intercellular space diameter in esophageal epithelium. Nrf2 target genes and gene sets associated with oxidoreductase activity, mitochondrial biogenesis and energy production were down-regulated in the esophageal epithelium of Nrf2-/- mice. Consistent with the antioxidative function of Nrf2, a DNA oxidative damage marker (8OHdG) dramatically increased in esophageal epithelial cells of Nrf2-/- mice compared with those of wild-type mice. Interestingly, ATP biogenesis, Cox IV (a mitochondrial protein) and Claudin-4 (Cldn4) expression were down-regulated in the esophageal epithelium of Nrf2-/- mice, suggesting that energy-dependent tight junction integrity was subject to Nrf2 regulation. ChIP analysis confirmed the binding of Nrf2 to Cldn4 promoter. Conclusion Nrf2 deficiency impairs esophageal barrier function through disrupting energy-dependent tight junction. Elucidating the role of this pathway in GERD has potential implications for the pathogenesis and therapy of the disease. PMID:23676441

  19. The Effects of Fire on the Function of the 200-BP-1 Engineered Surface Barrier

    SciTech Connect

    Ward, Anderson L.; Link, Steven O.; Hasan, Nazmul; Draper, Kathryn E.

    2009-09-01

    A critical unknown in use of barrier technology for long-term waste isolation is performance after a major disturbance especially when institutional controls are intact, but there are no resources to implement corrective actions. The objective of this study was to quantify the effects of wild fire on alterations the function of an engineered barrier. A controlled burn September 26, 2008 was used to remove all the vegetation from the north side of the barrier. Flame heights exceeded 9 m and temperatures ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above the surface. Post-fire analysis of soil properties show significant decreases in wettability, hydraulic conductivity, air entry pressure, organic matter, and porosity relative to pre-fire conditions whereas dry bulk density increased. Decreases in hydraulic conductivity and wettabilty immediately after the fire are implicated in a surface runoff event that occurred in January 2009, the first in 13 years. There was a significant increase in macro-nutrients, pH, and electrical conductivity. After one year, hydrophobicity has returned to pre-burn levels with only 16% of samples still showing signs of decreased wettability. Over the same period, hydraulic conductivity and air entry pressure returned to pre-burn levels at one third of the locations but remained identical to values recorded immediately after the fire at the other two thirds. Soil nutrients, pH, and electrical conductivity remain elevated after 1 year. Species composition on the burned surface changed markedly from prior years and relative to the unburned surface and two analog sites. An increase in the proportion of annuals and biennials is characteristic of burned surfaces that have become dominated by ruderal species. Greenhouse seedling emergence tests conducted to assess the seed bank of pre- and post-burn soils and of two analog sites at the McGee Ranch show no difference in the number of species emerging from soils collected before and after the fire. However, there were fewer species emerging from the seed bank on the side slopes and more species emerging from two analog sites. Leaf area index measures confirmed the substantial differences in plant communities after fire. Xylem pressure potential were considerably higher on the burned half of the barrier in September 2009 suggesting that not all the water in the soil profile will be removed before the fall rains begin. The results of this study are expected to contribute to a better understanding of barrier performance after major disturbances in a post-institutional control environment. Such an understanding is needed to enhance stakeholder acceptance regarding the long-term efficacy of engineered barriers. This study will also support improvements in the design of evapotranspiration (ET) and hybrid (ET + capacitive) barriers and the performance monitoring systems.

  20. RNase L Interacts with Filamin A To Regulate Actin Dynamics and Barrier Function for Viral Entry

    PubMed Central

    Siddiqui, Mohammad Adnan; Dayal, Shubham; Naji, Merna; Ezelle, Heather J.; Zeng, Chun; Zhou, Aimin; Hassel, Bret A.

    2014-01-01

    ABSTRACT The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents. PMID:25352621

  1. cAMP controls the restoration of endothelial barrier function after thrombin‐induced hyperpermeability via Rac1 activation

    PubMed Central

    Aslam, Muhammad; Tanislav, Christian; Troidl, Christian; Schulz, Rainer; Hamm, Christian; Gündüz, Dursun

    2014-01-01

    Abstract Inflammatory mediators like thrombin disrupt endothelial adherens junctions (AJs) and barrier integrity leading to oedema formation followed by resealing of AJs and a slow recovery of the barrier function. The molecular mechanisms of this process have not yet been fully delineated. The aim of the present study was to analyse the molecular mechanism of endothelial barrier recovery and thrombin was used as model inflammatory mediator. Thrombin caused a strong increase in endothelial permeability within 10 min accompanied by loss of Rac1 but not cdc42 activity, drop in cellular cAMP contents, and a strong activation of the endothelial contractile machinery mainly via RhoA/Rock signalling. Activation of RhoA/Rock signalling precedes and is dependent upon a rise in the cytosolic Ca2+ concentration. Inhibition of cytosolic Ca2+ rise but not MLCK or Rock enhances the recovery of endothelial barrier function. The cellular cAMP contents increased gradually during the barrier recovery phase (30–60 min after thrombin challenge) accompanied by an increase in Rac1 activity. Inhibition of Rac1 activity using a specific pharmacological inhibitor (NSC23766) abrogated the endothelial barrier recovery process, suggesting a Rac1‐dependent phenomenon. Likewise, inhibition of either adenylyl cyclase or the cAMP‐effectors PKA and Epac (with PKI and ESI‐09, respectively) caused an abrogation of Rac1 activation, resealing of endothelial AJs and recovery of endothelial barrier function. The data demonstrate that endothelial barrier recovery after thrombin challenge is regulated by Rac1 GTPase activation. This Rac1 activation is due to increased levels of cellular cAMP and activation of downstream signalling during the barrier recovery phase. PMID:25344477

  2. Influence of sportive activity on skin barrier function: a quantitative evaluation of 60 athletes.

    PubMed

    Luebberding, Stefanie; Kolbe, Lea; Kerscher, Martina

    2013-06-01

    While sports-related diseases are well documented in the literature, no study regarding the physiology of athlete's skin has been published yet. However, some evidence is given for impairment of the skin barrier due to sportive activity accompanied by an increase in sweating. In this explorative study, we investigated the effect of sportive activity on skin physiology, namely stratum corneum hydration, skin surface pH, and sebum content. A total of 60 healthy Caucasian volunteers (35 females, 25 males; mean 27.35 ± 4.09) were enrolled in this study. Measurements were done before and after 45 minutes of endurance cardio training at forehead, chest, forearm, and armpits. Hydration level, sebum secretion, and pH value of hydrolipid acid film were measured with worldwide-acknowledged biophysical measuring methods. Stratum corneum hydration significantly increased after sportive activity. The increase was about 51.9% at the forearm and 31.9% at the chest. Sebum content at the forehead significantly decreased during exercising, from 87.36 μg/cm2 to 62.41 μg/cm2. At all investigated body sites, measured values for skin surface pH increased after sportive activity. Highest pH value was measured in armpits (pH 5.64-5.98) and lowest at forearm (pH 4.75-4.93). Sportive activity is accompanied by significant changes of skin physiology that could stress the barrier function of the skin. Higher skin surface pH and hyperhydration of the stratum corneum as well as increased lipid content on the skin surface are probably caused by an increased sweat production. The impaired skin barrier may also be the reason for some reported sports-related dermatoses. PMID:23488867

  3. Advances in PET Imaging of P-Glycoprotein Function at the Blood-Brain Barrier

    PubMed Central

    2012-01-01

    Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders. PMID:23421673

  4. Protective effect of salvianolic acid B on NASH rat liver through restoring intestinal mucosal barrier function

    PubMed Central

    Wang, Ying-Chun; Jin, Qing-Mei; Kong, Wei-Zong; Chen, Juan

    2015-01-01

    Aim: To investigate the effect of Salvianolic acid B (Sal B) on the disease progress of NASH and change of intestinal barrier function. Methods: Sixty Sprague-Dawley (SD) rats were randomly divided into control group, model group and treated group, with the former given normal diet and the latter 2 groups rats fed high-fat diet. In treated group, rats were infused through the stomach with 1 mg/ml Sal B every day at a dose of 20 mL/kg body weight. All animals were killed at the 24th week and plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), endotoxin (ET) and diamine oxdase (DAO) were analyzed using the blood samples. The histopathology of liver was observed by H&E staining. The expression changes of tight junction protein occludin and ZO-1 were analyzed by immunocytochemistry. Ultrastructural morphology of small intestinal tissues was investigated by transmission electron microscopy. Results: Plasma levels of ALT, AST, TG, TC, ET and DAO were significantly higher in model group than those in both control group and group treated with Sal B. In model group, vacuolated swelling of the cytoplasm with aggregates of chronic inflammatory cells was observed in the liver tissue but not in Sal B-treated group. NAFLD Activity Score in the treated group was significantly lower than that in model group. Immunohistochemical staining showed that Sal B administration recovered the expression of occludin and ZO-1, which was downregulated in the model group. Transmission electron microscopy analysis demonstrated that cell surface microvilli and major intercellular junctional complex including tight junction, gap junction and adherens junction were restored in Sal B-treated group. Conclusion: Sal B exerted protective function against high-fat diet-induced liver damage by restoring healthy barrier function of intestine in NASH rat model. PMID:26191218

  5. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function

    PubMed Central

    Raleigh, David R.; Boe, Devin M.; Yu, Dan; Weber, Christopher R.; Marchiando, Amanda M.; Bradford, Emily M.; Wang, Yingmin; Wu, Licheng; Schneeberger, Eveline E.

    2011-01-01

    Although the C-terminal cytoplasmic tail of the tight junction protein occludin is heavily phosphorylated, the functional impact of most individual sites is undefined. Here, we show that inhibition of CK2-mediated occludin S408 phosphorylation elevates transepithelial resistance by reducing paracellular cation flux. This regulation requires occludin, claudin-1, claudin-2, and ZO-1. S408 dephosphorylation reduces occludin exchange, but increases exchange of ZO-1, claudin-1, and claudin-2, thereby causing the mobile fractions of these proteins to converge. Claudin-4 exchange is not affected. ZO-1 domains that mediate interactions with occludin and claudins are required for increases in claudin-2 exchange, suggesting assembly of a phosphorylation-sensitive protein complex. Consistent with this, binding of claudin-1 and claudin-2, but not claudin-4, to S408A occludin tail is increased relative to S408D. Finally, CK2 inhibition reversed IL-13–induced, claudin-2–dependent barrier loss. Thus, occludin S408 dephosphorylation regulates paracellular permeability by remodeling tight junction protein dynamic behavior and intermolecular interactions between occludin, ZO-1, and select claudins, and may have therapeutic potential in inflammation-associated barrier dysfunction. PMID:21536752

  6. The epidermal barrier function is dependent on the serine protease CAP1/Prss8

    PubMed Central

    Leyvraz, Céline; Charles, Roch-Philippe; Rubera, Isabelle; Guitard, Marjorie; Rotman, Samuel; Breiden, Bernadette; Sandhoff, Konrad; Hummler, Edith

    2005-01-01

    Serine proteases are proteolytic enzymes that are involved in the regulation of various physiological processes. We generated mice lacking the membrane-anchored channel-activating serine protease (CAP) 1 (also termed protease serine S1 family member 8 [Prss8] and prostasin) in skin, and these mice died within 60 h after birth. They presented a lower body weight and exhibited severe malformation of the stratum corneum (SC). This aberrant skin development was accompanied by an impaired skin barrier function, as evidenced by dehydration and skin permeability assay and transepidermal water loss measurements leading to rapid, fatal dehydration. Analysis of differentiation markers revealed no major alterations in CAP1/Prss8-deficient skin even though the epidermal deficiency of CAP1/Prss8 expression disturbs SC lipid composition, corneocyte morphogenesis, and the processing of profilaggrin. The examination of tight junction proteins revealed an absence of occludin, which did not prevent the diffusion of subcutaneously injected tracer (∼600 D) toward the skin surface. This study shows that CAP1/Prss8 expression in the epidermis is crucial for the epidermal permeability barrier and is, thereby, indispensable for postnatal survival. PMID:16061697

  7. Commensal Bacteria-Dependent Indole Production Enhances Epithelial Barrier Function in the Colon

    PubMed Central

    Shimada, Yosuke; Kinoshita, Makoto; Harada, Kazuo; Mizutani, Masafumi; Masahata, Kazunori; Kayama, Hisako; Takeda, Kiyoshi

    2013-01-01

    Microbiota have been shown to have a great influence on functions of intestinal epithelial cells (ECs). The role of indole as a quorum-sensing (QS) molecule mediating intercellular signals in bacteria has been well appreciated. However, it remains unknown whether indole has beneficial effects on maintaining intestinal barriers in vivo. In this study, we analyzed the effect of indole on ECs using a germ free (GF) mouse model. GF mice showed decreased expression of junctional complex molecules in colonic ECs. The feces of specific pathogen-free (SPF) mice contained a high amount of indole; however the amount was significantly decreased in the feces of GF mice by 27-fold. Oral administration of indole-containing capsules resulted in increased expression of both tight junction (TJ)- and adherens junction (AJ)-associated molecules in colonic ECs in GF mice. In accordance with the increased expression of these junctional complex molecules, GF mice given indole-containing capsules showed higher resistance to dextran sodium sulfate (DSS)-induced colitis. A similar protective effect of indole on DSS-induced epithelial damage was also observed in mice bred in SPF conditions. These findings highlight the beneficial role of indole in establishing an epithelial barrier in vivo. PMID:24278294

  8. Meprin A impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin

    PubMed Central

    Bao, Jialing; Yura, Renee E.; Matters, Gail L.; Bradley, S. Gaylen; Shi, Pan; Tian, Fang

    2013-01-01

    Meprin metalloproteases are highly expressed at the luminal interface of the intestine and kidney and in certain leukocytes. Meprins cleave a variety of substrates in vitro, including extracellular matrix proteins, adherens junction proteins, and cytokines, and have been implicated in a number of inflammatory diseases. The linkage between results in vitro and pathogenesis, however, has not been elucidated. The present study aimed to determine whether meprins are determinative factors in disrupting the barrier function of the epithelium. Active meprin A or meprin B applied to Madin-Darby canine kidney (MDCK) cell monolayers increased permeability to fluorescein isothiocyanate-dextran and disrupted immunostaining of the tight junction protein occludin but not claudin-4. Meprin A, but not meprin B, cleaved occludin in MDCK monolayers. Experiments with recombinant occludin demonstrated that meprin A cleaves the protein between Gly100 and Ser101 on the first extracellular loop. In vivo experiments demonstrated that meprin A infused into the mouse bladder increased the epithelium permeability to sodium fluorescein. Furthermore, monocytes from meprin knockout mice on a C57BL/6 background were less able to migrate through an MDCK monolayer than monocytes from their wild-type counterparts. These results demonstrate the capability of meprin A to disrupt epithelial barriers and implicate occludin as one of the important targets of meprin A that may modulate inflammation. PMID:23804454

  9. Perceived function of and barriers to condom use in Arusha and Kilimanjaro regions of Tanzania.

    PubMed

    Mnyika, K S; Kvåle, G; Klepp, K I

    1995-01-01

    This paper presents data from a population-based survey which assessed perceived function of and barriers to condom use among the adult population aged 15-54 years in the Arusha and Kilimanjaro regions in northern Tanzania. A structured questionnaire was used in data collection. A total of 1081 people participated in the study, representing a response rate of 67% of the eligible population from two urban and two semi-urban communities. Of the 1081 respondents, 69.9% knew what condoms were and of these 55.3% stated that condoms are used for contraception while 24.2% reported that condoms are used for prevention of AIDS/STD. Among those who knew about condoms, 11.2% stated that they disliked using condoms during sexual intercourse while 18.7% felt that condoms reduced sexual enjoyment. Furthermore, 34.1% of the respondents reported that they would not supply condoms to their sexually active children. Respondents who reported that condoms reduced sexual enjoyment as well as those who stated that they disliked using condoms were significantly less likely to use condoms than those who stated otherwise. These data indicated the underlying psychosocial barriers to condom use among the respondents and hence the need for further research and specific health education strategies to overcome them. Priority areas for intervention research are suggested. PMID:7578306

  10. Improvement of barrier function and stimulation of colonic epithelial anion secretion by Menoease Pills

    PubMed Central

    Zhu, Jin-Xia; Yang, Ning; Zhang, Gui-Hong; Tsang, Lai-Ling; Gou, Yu-Lin; Wong, Hau-Yan Connie; Chung, Yiu-Wa; Chan, Hsiao-Chang

    2004-01-01

    AIM: Menoease Pills (MP), a Chinese medicine-based new formula for postmenopausal women, has been shown to modulate the endocrine and immune systems[1]. The present study investigated the effects of MP and one of its active ingredients, ligustrazine, on epithelial barrier and ion transport function in a human colonic cell line, T84. METHODS: Colonic transepithelial electrophysiological characteristics and colonic anion secretion were studied using the short circuit current (ISC) technique. RT-PCR was used to examine the expression of cytoplasmic proteins associated with the tight junctions, ZO-1 (zonula occludens-1) and ZO-2 (zonula occludens-2). RESULTS: Pretreatment of T84 cells with MP (15 ?g/mL) for 72 h significantly increased basal potential difference, transepithelial resistance and basal ISC. RT-PCR results showed that the expressions of ZO-1 and ZO-2 were significantly increased after MP treatment, consistent with improved epithelial barrier function. Results of acute stimulation showed that apical addition of MP produced a concentration-dependent (10-5000 ?g/mL, EC50 = 293.9 ?g/mL) increase in ISC. MP-induced ISC was inhibited by basolateral treatment with bumetanide (100 ?mol/L), an inhibitor of the Na + -K + -2Cl- cotransporter, apical addition of Cl- channel blockers, diphenylamine-2, 2-dicarboxylic acid (1 mmol/L) or glibenclamide (1 mmol/L), but not 4, 4-diisothiocyanostilbene-2, 2-disulfonic acid or epithelial Na + channel blocker, amiloride. The effect of MP on ZO-1 and ZO-2 was mimicked by Ligustrazine and the ligustrazine-induced ISC was also blocked by basolateral application of bumetanide and apical addition of diphenylamine-2, 2'-dicarboxylic acid or glibenclamide, and reduced by a removal of extracellular Cl-. CONCLUSION: The results of the present study suggest that MP and ligustrazine may improve epithelial barrier function and exert a stimulatory effect on colonic anion secretion, indicating the potential use of MP and its active ingredients for improvement of GI tract host defense and alleviation of constipation often seen in the elderly. PMID:15300895

  11. Changes in blood-brain barrier function modify the neuroendocrine response to circulating substances.

    PubMed

    Jezová, D; Johansson, B B; Oprsalová, Z; Vigas, M

    1989-04-01

    It is known that various experimental, pathological and even physiological situations may be accompanied by transient increases in blood-brain barrier (BBB) permeability. The hypothesis that under such conditions the blood-borne substances can reach the active sites in the brain in concentrations high enough to influence central control of hormone release was verified in these studies. A suitable experimental model of BBB opening by protamine sulfate administration in conscious rats was introduced. Using this model it was shown that the dopaminergic blocker domperidone inhibited apomorphine-induced ACTH release if permeability of the BBB was increased, but not under normal conditions. It is suggested that the changes in BBB function can modify the neuroendocrine response also to other circulating substances and this may be an important, until now unconsidered phenomenon in neuroendocrine research. PMID:2541363

  12. Analytical gel filtration of dextran for the study of the glomerular barrier function.

    PubMed

    Hagel, L; Hartmann, A; Lund, K

    1993-07-01

    Analytical gel filtration was used for the study of molecular size distribution of clinical dextran in serum and urine for the purpose of evaluations of changes in the human glomerular barrier function. The column was calibrated in terms of solute size using a simple and accurate technique recently described. Only one sample of a dextran possessing a broad molecular mass distribution was necessary for the calibration procedure and the calculations were performed using an ordinary spreadsheet. The accuracy of the calibration, as evaluated by protein samples, is better than 95%. The simplicity makes the method suitable for use in laboratories not normally specializing in analytical gel filtration. Calibration in terms of size is preferably done with respect to viscosity radius to obtain relevant information about the permeability of dextran into porous membranes. PMID:7688752

  13. Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression

    PubMed Central

    BLAZER-YOST, BONNIE L.; BANGA, AMIRAJ; AMOS, ADAM; CHERNOFF, ELLEN; LAI, XIANYIN; LI, CHENG; MITRA, SOMENATH; WITZMANN, FRANK A.

    2011-01-01

    To assess effects of carbon nanoparticle (CNP) exposure on renal epithelial cells, fullerenes (C60), single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT) were incubated with a confluent renal epithelial line for 48 h. At low concentrations, CNP-treated cells exhibited significant decreases in transepithelial electrical resistance (TEER) but no changes in hormone-stimulated ion transport or CNP-induced toxicity or stress responses as measured by lactate dehydrogenase or cytokine release. The changes in TEER, manifested as an inverse relationship with CNP concentration, were mirrored by an inverse correlation between dose and changes in protein expression. Lower, more physiologically relevant, concentrations of CNP have the most profound effects on barrier cell function and protein expression. These results indicate an impact of CNPs on renal epithelial cells at concentrations lower than have been previously studied and suggest caution with regard to increasing CNP levels entering the food chain due to increasing environmental pollution. PMID:21067278

  14. RAPID COMMUNICATION: Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Carman, R. J.; Mildren, R. P.

    2000-10-01

    In modelling the plasma kinetics in dielectric barrier discharges (DBDs), the electron energy conservation equation is often included in the rate equation analysis (rather than utilizing the local-field approximation) with the assumption that the electron energy distribution function (EEDF) has a Maxwellian profile. We show that adopting a Maxwellian EEDF leads to a serious overestimate of the calculated ionization/excitation rate coefficients and the electron mobility for typical plasma conditions in a xenon DBD. Alternative EEDF profiles are trialed (Druyvesteyn, bi-Maxwellian and bi-Druyvesteyn) and benchmarked against EEDFs obtained from solving the steady-state Boltzmann equation. A bi-Druyvesteyn EEDF is shown to be more inherently accurate for modelling simulations of xenon DBDs.

  15. ADAM12 and ADAM17 are essential molecules for hypoxia-induced impairment of neural vascular barrier function.

    PubMed

    Cui, Dan; Arima, Mitsuru; Takubo, Keiyo; Kimura, Tokuhiro; Horiuchi, Keisuke; Minagawa, Takuya; Matsuda, Satoshi; Ikeda, Eiji

    2015-01-01

    Neural vascular barrier is essential for the life of multicellular organisms, and its impairment by tissue hypoxia is known to be a central of pathophysiology accelerating the progression of various intractable neural diseases. Therefore, the molecules involved in hypoxia-induced impairment of vascular barrier can be the targets to establish new therapies for intractable diseases. Here, we demonstrate that a disintegrin and metalloproteinases (ADAMs) 12 and 17 expressed in endothelial cells are the molecules responsible for the impairment of neural vascular barrier by hypoxia. Brain microvascular endothelial cells in vitro lost their barrier properties immediately after hypoxic stimulation through diminished localization of claudin-5, a tight junction molecule, on cell membranes. Hypoxic disappearance of claudin-5 from cell membranes and the consequent loss of barrier properties were completely suppressed by inhibition of the metalloproteinase activity which was found to be attributed to ADAM12 and ADAM17. Inhibition of either ADAM12 or ADAM17 was sufficient to rescue the in vivo neural vasculature under hypoxia from the loss of barrier function. This is the first report to specify the molecules which are responsible for hypoxia-induced impairment of neural vascular barrier and furthermore can be the targets of new therapeutic strategies for intractable neural diseases. PMID:26242473

  16. ADAM12 and ADAM17 are essential molecules for hypoxia-induced impairment of neural vascular barrier function

    PubMed Central

    Cui, Dan; Arima, Mitsuru; Takubo, Keiyo; Kimura, Tokuhiro; Horiuchi, Keisuke; Minagawa, Takuya; Matsuda, Satoshi; Ikeda, Eiji

    2015-01-01

    Neural vascular barrier is essential for the life of multicellular organisms, and its impairment by tissue hypoxia is known to be a central of pathophysiology accelerating the progression of various intractable neural diseases. Therefore, the molecules involved in hypoxia-induced impairment of vascular barrier can be the targets to establish new therapies for intractable diseases. Here, we demonstrate that a disintegrin and metalloproteinases (ADAMs) 12 and 17 expressed in endothelial cells are the molecules responsible for the impairment of neural vascular barrier by hypoxia. Brain microvascular endothelial cells in vitro lost their barrier properties immediately after hypoxic stimulation through diminished localization of claudin-5, a tight junction molecule, on cell membranes. Hypoxic disappearance of claudin-5 from cell membranes and the consequent loss of barrier properties were completely suppressed by inhibition of the metalloproteinase activity which was found to be attributed to ADAM12 and ADAM17. Inhibition of either ADAM12 or ADAM17 was sufficient to rescue the in vivo neural vasculature under hypoxia from the loss of barrier function. This is the first report to specify the molecules which are responsible for hypoxia-induced impairment of neural vascular barrier and furthermore can be the targets of new therapeutic strategies for intractable neural diseases. PMID:26242473

  17. Effect of Alemtuzumab on Intestinal Intraepithelial Lymphocytes and Intestinal Barrier Function in Cynomolgus Model

    PubMed Central

    Qu, Lin-Lin; Lyu, Ya-Qing; Jiang, Hai-Tao; Shan, Ting; Zhang, Jing-Bin; Li, Qiu-Rong; Li, Jie-Shou

    2015-01-01

    Background: Alemtuzumab has been used in organ transplantation and a variety of hematologic malignancies (especially for the treatment of B-cell chronic lymphocytic leukemia). However, serious infectious complications frequently occur after treatment. The reason for increased infections postalemtuzumab treatment is unknown at this stage. We explore the effect of alemtuzumab on intestinal intraepithelial lymphocytes (IELs) and intestinal barrier function in cynomolgus model to explain the reason of infection following alemtuzumab treatment. Methods: Twelve male cynomolguses were randomly assigned to either a treatment or control group. The treatment group received alemtuzumab (3 mg/kg, intravenous injection) while the control group received the same volume of physiological saline. Intestinal IELs were isolated from the control group and the treatment group (on day 9, 35, and 70 after treatment) for counting and flow cytometric analysis. Moreover, intestinal permeability was monitored by enzymatic spectrophotometric technique and enzyme-linked immunosorbent assay. Results: The numbers of IELs were decreased significantly on day 9 after treatment compared with the control group (0.35 ± 0.07 × 108 and 1.35 ± 0.09 × 108, respectively; P < 0.05) and were not fully restored until day 70 after treatment. There were significant differences among four groups considering IELs subtypes. In addition, the proportion of apoptotic IELs after alemtuzumab treatment was significantly higher than in the control group (22.01 ± 3.67 and 6.01 ± 1.42, respectively; P < 0.05). Moreover, the concentration of D-lactate and endotoxin was also increased significantly on day 9 after treatment. Conclusions: Alemtuzumab treatment depletes lymphocytes in the peripheral blood and intestine of cynomolgus model. The induction of apoptosis is an important mechanism of lymphocyte depletion after alemtuzumab treatment. Notably, intestinal barrier function may be disrupted after alemtuzumab treatment. PMID:25698204

  18. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote.

    PubMed

    Kuge, Tomoo; Greenwood-Van Meerveld, Beverley; Sokabe, Masahiro

    2006-07-24

    Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function. PMID:16643959

  19. Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets

    PubMed Central

    Jacobi, Sheila K; Moeser, Adam J; Blikslager, Anthony T; Rhoads, J Marc; Corl, Benjamin A; Harrell, Robert J; Odle, Jack

    2013-01-01

    AIM: To investigate the effect of protein-energy malnutrition on intestinal barrier function during rotavirus enteritis in a piglet model. METHODS: Newborn piglets were allotted at day 4 of age to the following treatments: (1) full-strength formula (FSF)/noninfected; (2) FSF/rotavirus infected; (3) half-strength formula (HSF)/noninfected; or (4) HSF/rotavirus infected. After one day of adjustment to the feeding rates, pigs were infected with rotavirus and acute effects on growth and diarrhea were monitored for 3 d and jejunal samples were collected for Ussing-chamber analyses. RESULTS: Piglets that were malnourished or infected had lower body weights on days 2 and 3 post-infection (P < 0.05). Three days post-infection, marked diarrhea and weight loss were accompanied by sharp reductions in villus height (59%) and lactase activity (91%) and increased crypt depth (21%) in infected compared with non-infected pigs (P < 0.05). Malnutrition also increased crypt depth (21%) compared to full-fed piglets. Villus:crypt ratio was reduced (67%) with viral infection. There was a trend for reduction in transepithelial electrical resistance with rotavirus infection and malnutrition (P = 0.1). 3H-mannitol flux was significantly increased (50%; P < 0.001) in rotavirus-infected piglets compared to non-infected piglets, but there was no effect of nutritional status. Furthermore, rotavirus infection reduced localization of the tight junction protein, occludin, in the cell membrane and increased localization in the cytosol. CONCLUSION: Overall, malnutrition had no additive effects to rotavirus infection on intestinal barrier function at day 3 post-infection in a neonatal piglet model. PMID:23964143

  20. Effect of barrier perturbation on cutaneous penetration of salicylic acid in hairless rats: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function.

    PubMed

    Benfeldt, E; Serup, J

    1999-09-01

    The penetration of topically applied drugs is altered in diseased or barrier-damaged skin. We used microdialysis in the dermis to measure salicylic acid (SA) penetration in hairless rats following application to normal (unmodified) skin (n = 11) or skin with perturbed barrier function from (1) tape-stripping (n = 5), (2) sodium lauryl sulphate (SLS) 2% for 24 h (n = 3) or (3) delipidization by acetone (n = 4). Prior to the experiment, transepidermal water loss (TEWL) and erythema were measured. Two microdialysis probes were inserted into the dermis on the side of the trunk and 5% SA in ethanol was applied in a chamber overlying the probes. Microdialysis sampling was continued for 4 h, followed by measurements of probe depth by ultrasound scanning. SA was detectable in all samples and rapidly increasing up to 130 min. Microdialysates collected between 80 and 200 min showed mean SA concentrations of 3 microg/ml in unmodified and acetone-treated skin, whereas mean SA concentrations were 280 microg/ml in SLS-pretreated skin and 530 microg/ml in tape-stripped skin (P < 0.001). The penetration of SA correlated with barrier perturbation measured by TEWL (P < 0.001) and erythema (P < 0.001). A correlation between dermal probe depth and SA concentration was found in unmodified skin (P = 0.04). Microdialysis sampling in anatomical regions remote from the dosed site excluded the possibility that SA levels measured were due to systemic absorption. Microdialysis sampling of cutaneous penetration was highly reproducible. Impaired barrier function, caused by irritant dermatitis or tape stripping, resulted in an 80- to 170-fold increase in the drug level in the dermis. This dramatic increase in drug penetration could be relevant to humans, in particular to topical treatment of skin diseases and to occupational toxicology. PMID:10541883

  1. MiR-34a regulates blood–tumor barrier function by targeting protein kinase Cε

    PubMed Central

    Zhao, Wei; Wang, Ping; Ma, Jun; Liu, Yun-Hui; Li, Zhen; Li, Zhi-Qing; Wang, Zhen-Hua; Chen, Liang-Yu; Xue, Yi-Xue

    2015-01-01

    MicroRNA-34a (miR-34a) functions to regulate protein expression at the posttranscriptional level by binding the 3′ UTR of target genes and regulates functions of vascular endothelial cells. However, the role of miR-34a in regulating blood–tumor barrier (BTB) permeability remains unknown. In this study, we show that miR-34a overexpression leads to significantly increased permeability of BTB, whereas miR-34a silencing reduces the permeability of the BTB. In addition, miR-34a overexpression significantly down-regulates the expression and distribution of tight junction–related proteins in glioma endothelial cells (GECs), paralleled by protein kinase Cε (PKCε) reduction. Moreover, luciferase reporter gene analysis shows that PKCε is the target gene of miR-34a. We also show that cotransfection of miR-34a and PKCε inversely coregulates BTB permeability and protein expression levels of tight junction–related proteins. Pretreatment of ψεRACK, a PKCε-specific activator, decreases BTB permeability in miR-34a–overexpressed GECs and up-regulates expression levels of tight junction proteins. In contrast, pretreatment of εV1-2, a specific PKCε inhibitor, gives opposite results. Collectively, our findings indicate that miR-34a regulates BTB function by targeting PKCε; after phosphorylation, PKCε is activated and contributes to regulation of the expression of tight junction–related proteins, ultimately altering BTB permeability. PMID:25788289

  2. Desmoglein-1 regulates esophageal epithelial barrier function and immune responses in eosinophilic esophagitis

    PubMed Central

    Sherrill, J D; KC, K; Wu, D; Djukic, Z; Caldwell, J M; Stucke, E M; Kemme, K A; Costello, M S; Mingler, M K; Blanchard, C; Collins, M H; Abonia, J P; Putnam, P E; Dellon, E S; Orlando, R C; Hogan, S P; Rothenb, M E

    2014-01-01

    The desmosomal cadherin desmoglein-1 (DSG1) is an essential intercellular adhesion molecule that is altered in various human cutaneous disorders; however, its regulation and function in allergic disease remains unexplored. Herein, we demonstrate a specific reduction in DSG1 in esophageal biopsies from patients with eosinophilic esophagitis (EoE), an emerging allergic disorder characterized by chronic inflammation within the esophageal mucosa. Further, we show that DSG1 gene silencing weakens esophageal epithelial integrity, and induces cell separation and impaired barrier function (IBF) despite high levels of desmoglein-3 (DSG3). Moreover, DSG1 deficiency induces transcriptional changes that partially overlap with the transcriptome of inflamed esophageal mucosa; notably, periostin, a multipotent pro-inflammatory extracellular matrix molecule, is the top induced overlapping gene. We further demonstrate that IBF is a pathological feature in EoE, which can be partially induced through the downregulation of DSG1 by interleukin-13 (IL-13). Taken together, these data identify a functional role for DSG1 and its dysregulation by IL-13 in the pathophysiology of EoE and suggest that the loss of DSG1 may potentiate allergic inflammation through the induction of pro-inflammatory mediators such as periostin. PMID:24220297

  3. Epididymal Hypo-Osmolality Induces Abnormal Sperm Morphology and Function in the Estrogen Receptor Alpha Knockout Mouse1

    PubMed Central

    Joseph, Avenel; Shur, Barry D.; Ko, CheMyong; Chambon, Pierre; Hess, Rex A.

    2010-01-01

    Estrogen receptor-alpha (ESR1) is highly expressed in the efferent ductules of all species studied as well as in the epididymal epithelium in mice and other select species. Male mice lacking ESR1 (Esr1KO) are infertile, but transplantation studies demonstrated that Esr1KO germ cells are capable of fertilization when placed in a wild-type reproductive tract. These results suggest that extratesticular regions, such as the efferent ductules and epididymis, are the major source of pathological changes in Esr1KO males. Previous studies have shown alterations in ion and fluid transporters in the efferent duct and epididymal epithelia of Esr1KO males, leading to misregulation of luminal fluid pH. To determine the effect of an altered epididymal milieu on Esr1KO sperm, we assayed sperm morphology in the different regions of the epididymis. Sperm recovered from the epididymis exhibited abnormal flagellar coiling and increased incidence of spontaneous acrosome reactions, both of which are consistent with exposure to abnormal epididymal fluid. Analysis of the epididymal fluid revealed that the osmolality of the Esr1KO fluid was reduced relative to wild type, consistent with prior reports of inappropriate fluid absorption from the efferent ductules. This, along with the finding that morphological defects increased with transit through the epididymal duct, suggests that the anomalies in sperm are a consequence of the abnormal luminal environment. Consistent with this, incubating Esr1KO sperm in a more wild-type-like osmotic environment significantly rescued the abnormal flagellar coiling. This work demonstrates that Esr1KO mice exhibit an abnormal fluid environment in the lumen of the efferent ducts and epididymis, precluding normal sperm maturation and instead resulting in progressive deterioration of sperm that contributes to infertility. PMID:20130266

  4. Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers

    PubMed Central

    LeSimple, Pierre; Liao, Jie; Robert, Renaud; Gruenert, Dieter C; Hanrahan, John W

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane glycoprotein which functions as an anion channel and influences diverse cellular processes. We studied its role in the development of epithelial tightness by expressing wild-type (WT-CFTR) or mutant (ΔF508-CFTR) CFTR in human airway epithelial cell monolayers cultured at the air–liquid interface. Green fluorescent protein (GFP)-tagged WT or ΔF508 constructs were expressed in the CF bronchial cell line CFBE41o− using adenoviruses, and the results were compared with those obtained using CFBE41o− lines stably complemented with wild-type or mutant CFTR. As predicted, GFP-WT-CFTR reached the apical membrane whereas GFP-ΔF508-CFTR was only detected intracellularly. Although CFTR expression would be expected to reduce transepithelial resistance (TER), expressing GFP-CFTR significantly increased the TER of CFBE41o− monolayers whilst GFP-ΔF508-CFTR had no effect. Similar results were obtained with cell lines stably overexpressing ΔF508-CFTR or WT-CFTR. Preincubating ΔF508-CFTR monolayers at 29°C reduced mannitol permeability and restored TER, and the effect on TER was reversible during temperature oscillations. Expression of GFP-ΔF508-CFTR or GFP-WT-CFTR in a cell line already containing endogenous WT-CFTR (Calu-3) did not alter TER. The CFTR- and temperature-dependence of TER were not affected by the CFTR inhibitor CFTRinh172 or low-chloride medium; therefore the effect of CFTR on barrier function was unrelated to its ion channel activity. Modulation of TER was blunted but not eliminated by genistein, implying the involvement of tyrosine phosphorylation and other mechanisms. Modulation of CFTR trafficking was correlated with an increase in tight junction depth. The results suggest that CFTR trafficking is required for the normal organisation and function of tight junctions. A reduction in barrier function caused by endoplasmic reticulum retention of ΔF508-CFTR may contribute to fluid hyperabsorption in CF airways. PMID:20156845

  5. Small mine size is associated with lung function abnormality and pneumoconiosis among underground coal miners in Kentucky, Virginia and West Virginia

    PubMed Central

    Blackley, David J; Halldin, Cara N; Wang, Mei Lin; Laney, A Scott

    2015-01-01

    Objectives To describe the prevalence of lung function abnormality and coal workers’ pneumoconiosis (CWP) by mine size among underground coal miners in Kentucky, Virginia and West Virginia. Methods During 2005–2012, 4491 miners completed spirometry and chest radiography as part of a health surveillance programme. Spirometry was interpreted according to American Thoracic Society and European Respiratory Society guidelines, and radiography per International Labour Office standards. Prevalence ratios (PR) were calculated for abnormal spirometry (obstructive, restrictive or mixed pattern using lower limits of normal derived from National Health and Nutrition Examination Survey (NHANES) III) and CWP among workers from small mines (≤50 miners) compared with those from large mines. Results Among 3771 eligible miners, those from small mines were more likely to have abnormal spirometry (18.5% vs 13.8%, p<0.01), CWP (10.8% vs 5.2%, p<0.01) and progressive massive fibrosis (2.4% vs 1.1%, p<0.01). In regression analysis, working in a small mine was associated with 37% higher prevalence of abnormal spirometry (PR 1.37, 95% CI 1.16 to 1.61) and 2.1 times higher prevalence of CWP (95% CI 1.68 to 2.70). Conclusions More than one in four of these miners had evidence of CWP, abnormal lung function or both. Although 96% of miners in the study have worked exclusively under dust regulations implemented following the 1969 Federal Coal Mine Safety and Health Act, we observed high rates of respiratory disease including severe cases. The current approach to dust control and provision of safe work conditions for central Appalachian underground coal miners is not adequate to protect them from adverse respiratory health effects. PMID:25052085

  6. Age and sensory processing abnormalities predict declines in encoding and recall of temporally manipulated speech in high-functioning adults with ASD.

    PubMed

    Mayer, Jennifer L; Heaton, Pamela F

    2014-02-01

    While temporal and perceptual processing abnormalities, identified in a number of electrophysiological and brain imaging studies of individuals with (ASD), are likely to impact on speech perception, surprisingly little is known about the behavioral outcomes of such abnormalities. It has been hypothesized that rapid temporal processing deficits may be linked to impaired language development through interference with acoustic information during speech perception. The present study aimed to investigate the impact of temporal changes on encoding and recall of speech, and the associated cognitive, clinical, and behavioral correlates in adults with ASD. Research carried out with typically developing (TD) adults has shown that word recall diminishes as the speed of speech increases, and it was predicted that the magnitude of this effect would be far greater in those with ASD because of a preexisting rapid temporal processing deficit. Nineteen high-functioning adults with ASD, and age- and intelligence-matched TD controls performed verbatim recall of temporally manipulated sentences. Reduced levels of word recall in response to increases in presentation speed were observed, and this effect was greater in the older participants in the ASD group than in the control group. This is the first study to show that both sensory abnormalities and aging impact on speech encoding in ASD. Auditory processing deficits in ASD may be indicative of an association with the sensory abnormalities and social and communication impairments characterizing the disorder. PMID:24106132

  7. Hyperammonemia enhances the function and expression of P-glycoprotein and Mrp2 at the blood-brain barrier through NF-κB.

    PubMed

    Zhang, Ji; Zhang, Mian; Sun, Binbin; Li, Ying; Xu, Ping; Liu, Can; Liu, Li; Liu, Xiaodong

    2014-12-01

    Ammonia is considered to be the main neurotoxin responsible for hepatic encephalopathy resulting from liver failure. Liver failure has been reported to alter expression and activity of P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2) at the blood-brain barrier (BBB). The aim of this study was to investigate whether ammonia is involved in abnormalities of expression and activity of P-gp and Mrp2 at the BBB. Hyperammonemic rats were developed by an intraperitoneal injection of ammonium acetate (NH4 Ac, 4.5 mmol/kg). Results showed that Mrp2 function markedly increased in cortex and hippocampus of rats at 6 h following NH4 Ac administration. Significant increase in function of P-gp was observed in hippocampus of rats. Meanwhile, such alterations were in line with the increase in mRNA and protein levels of P-gp and Mrp2. Significant increase in levels of nuclear amount of nuclear factor-κB (NF-κB) p65 was also observed. Primarily cultured rat brain microvessel endothelial cells (rBMECs) were used for in vitro study. Data indicated that 24 h exposure to ammonia significantly increased function and expression of P-gp and Mrp2 in rBMECs, accompanied with activation of NF-κB. Furthermore, such alterations induced by ammonia were reversed by NF-κB inhibitor. In conclusion, this study demonstrates that hyperammonemia increases the function and expression of P-gp and Mrp2 at the BBB via activating NF-κB pathway. Hyperammonemia, a proverbial main factor responsible for neurocognitive disorder and blood-brain barrier (BBB) dysfunction resulting from liver failure, could increase the expression and activity of P-glycoprotein and multidrug resistance-associated protein 2 (Mrp2) at the BBB both in vivo and in vitro. Furthermore, the NF-κB activation stimulated by hyperammonemia may be the potential mechanism underlying such abnormalities induced by hyperammonemia. PMID:25200138

  8. Protective effect of dexamethasone against hypoxia-induced disruption of barrier function in human corneal epithelial cells.

    PubMed

    Kimura, Kazuhiro; Teranishi, Shinichiro; Kawamoto, Koji; Nishida, Teruo

    2011-05-01

    The corneal epithelium functions as a barrier to protect the cornea from external agents such as infectious organisms and toxins and thereby contributes to corneal homeostasis. The barrier function of epithelia is dependent on the formation of tight and adherens junctions between adjacent epithelial cells. We have previously shown that hypoxia disrupts the barrier function of cultured human corneal epithelial (HCE) cells by affecting tight junctions. We have now examined the effect of dexamethasone on this barrier disruption induced by hypoxia in HCE cells. Measurement of transepithelial electrical resistance revealed that the hypoxia-induced decrease in the barrier function of HCE cells was inhibited by dexamethasone in a concentration-dependent manner. The hypoxia-induced loss of the tight junction protein ZO-1 from the borders of adjacent HCE cells (as revealed by immunofluorescence analysis) as well as the hypoxia-induced down-regulation of ZO-1 expression (as revealed by immunoblot analysis) were also inhibited by dexamethasone, whereas this drug had no effect on the expression or distribution of the tight junction protein occludin or of the adherens junction proteins E-cadherin and β-catenin. Moreover, dexamethasone attenuated the reorganization of the actin cytoskeleton, the formation of focal adhesions, and the up-regulation of myosin light chain kinase expression induced by hypoxia in HCE cells. Our results thus suggest that dexamethasone protects corneal epithelial cells from the hypoxia-induced disruption of barrier function by maintaining the distribution and expression of ZO-1 as well as the organization of the actin cytoskeleton. PMID:21354133

  9. Epidermal Barriers

    PubMed Central

    Natsuga, Ken

    2014-01-01

    The epidermis functions as a physical barrier to the external environment and works to prevent loss of water from the skin. Numerous factors have been implicated in the formation of epidermal barriers, such as cornified envelopes, corneocytes, lipids, junctional proteins, proteases, protease inhibitors, antimicrobial peptides, and transcription factors. This review illustrates human diseases (ichthyoses) and animal models in which the epidermal barrier is disrupted or dysfunctional at steady state owing to ablation of one or more of the above factors. These diseases and animal models help us to understand the complicated mechanisms of epidermal barrier formation and give further insights on epidermal development. PMID:24692192

  10. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions.

    PubMed

    Tunggal, Judith A; Helfrich, Iris; Schmitz, Annika; Schwarz, Heinz; Günzel, Dorothee; Fromm, Michael; Kemler, Rolf; Krieg, Thomas; Niessen, Carien M

    2005-03-23

    Cadherin adhesion molecules are key determinants of morphogenesis and tissue architecture. Nevertheless, the molecular mechanisms responsible for the morphogenetic contributions of cadherins remain poorly understood in vivo. Besides supporting cell-cell adhesion, cadherins can affect a wide range of cellular functions that include activation of cell signalling pathways, regulation of the cytoskeleton and control of cell polarity. To determine the role of E-cadherin in stratified epithelium of the epidermis, we have conditionally inactivated its gene in mice. Here we show that loss of E-cadherin in the epidermis in vivo results in perinatal death of mice due to the inability to retain a functional epidermal water barrier. Absence of E-cadherin leads to improper localization of key tight junctional proteins, resulting in permeable tight junctions and thus altered epidermal resistance. In addition, both Rac and activated atypical PKC, crucial for tight junction formation, are mislocalized. Surprisingly, our results indicate that E-cadherin is specifically required for tight junction, but not desmosome, formation and this appears to involve signalling rather than cell contact formation. PMID:15775979

  11. Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility

    PubMed Central

    Szulcek, Robert; Bogaard, Harm Jan; van Nieuw Amerongen, Geerten P.

    2014-01-01

    Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells. PMID:24747269

  12. Chronic hypoxia impairs extracellular nucleotide metabolism and barrier function in pulmonary artery vasa vasorum endothelial cells

    PubMed Central

    Helenius, Mikko; Kaczmarek, Elzbieta; Burns, Nana; Jalkanen, Sirpa; Stenmark, Kurt; Gerasimovskaya, Evgenia V.

    2014-01-01

    Vascular remodeling plays a pivotal role in a variety of pathophysiological conditions where hypoxia and inflammation are prominent features. Intravascular ATP, ADP and adenosine are known as important regulators of vascular tone, permeability and homeostasis, however contribution of purinergic signalling to endothelial cell growth and angiogenesis remains poorly understood. By using vasa vasorum endothelial cells (VVEC) isolated from pulmonary artery adventitia of control and chronically hypoxic neonatal calves, these studies were aimed to evaluate the effect of hypoxia on biochemical and functional properties of microvascular endothelial network at the sites of angiogenesis. In comparison with normoxic controls, VVEC from hypoxic animals are characterized by (1) drastically impaired nucleoside triphosphate diphos-phohydrolase-1 (NTPDase-1/CD39) and ecto-5′-nucleotidase/CD73 activities with respective increases in basal extracellular ATP and ADP levels (2) higher proliferative responses to low micromolar concentrations of ATP and ADP; and (3) enhanced permeability and disordered adenosinergic control of vascular barrier function (measured as a paracellular flux of 70 kDa fluorescein isothiocyanate-dextran). Together, these results suggest that unique pattern of purine-mediated angiogenic activation and enhanced leakiness of VVEC from chronically hypoxic vessels may be defined by disordered endothelial nucleotide homeostasis at sites of active neovascularization. PMID:21922294

  13. Macroglobulin complement-related encodes a protein required for septate junction organization and paracellular barrier function in Drosophila

    PubMed Central

    Hall, Sonia; Bone, Courtney; Oshima, Kenzi; Zhang, Liang; McGraw, Molly; Lucas, Bethany; Fehon, Richard G.; Ward, Robert E.

    2014-01-01

    Polarized epithelia play crucial roles as barriers to the outside environment and enable the formation of specialized compartments for organs to carry out essential functions. Barrier functions are mediated by cellular junctions that line the lateral plasma membrane between cells, principally tight junctions in vertebrates and septate junctions (SJs) in invertebrates. Over the last two decades, more than 20 genes have been identified that function in SJ biogenesis in Drosophila, including those that encode core structural components of the junction such as Neurexin IV, Coracle and several claudins, as well as proteins that facilitate the trafficking of SJ proteins during their assembly. Here we demonstrate that Macroglobulin complement-related (Mcr), a gene previously implicated in innate immunity, plays an essential role during embryonic development in SJ organization and function. We show that Mcr colocalizes with other SJ proteins in mature ectodermally derived epithelial cells, that it shows interdependence with other SJ proteins for SJ localization, and that Mcr mutant epithelia fail to form an effective paracellular barrier. Tissue-specific RNA interference further demonstrates that Mcr is required cell-autonomously for SJ organization. Finally, we show a unique interdependence between Mcr and Nrg for SJ localization that provides new insights into the organization of the SJ. Together, these studies demonstrate that Mcr is a core component of epithelial SJs and also highlight an interesting relationship between innate immunity and epithelial barrier functions. PMID:24496625

  14. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury

    PubMed Central

    Ksa, Anita; Csortos, Csilla; Verin, Alexander D

    2014-01-01

    Endothelial cells (EC) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened leading to increased vascular permeability. It is widely accepted that EC barrier integrity is critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal rearrangement, and EC contractile responses leading to disruption of intercellular contacts and EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC barrier dysfunction are currently under intense investigation and will be described and discussed in the current review. PMID:25838980

  15. An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin.

    PubMed

    Jung, Hea-Jin; Tatar, Angelica; Tu, Yiping; Nobumori, Chika; Yang, Shao H; Goulbourne, Chris N; Herrmann, Harald; Fong, Loren G; Young, Stephen G

    2014-12-01

    B-type lamins (lamins B1 and B2) have been considered to be essential for many crucial functions in the cell nucleus (e.g., DNA replication and mitotic spindle formation). However, this view has been challenged by the observation that an absence of both B-type lamins in keratinocytes had no effect on cell proliferation or the development of skin and hair. The latter findings raised the possibility that the functions of B-type lamins are subserved by lamins A and C. To explore that idea, we created mice lacking all nuclear lamins in keratinocytes. Those mice developed ichthyosis and a skin barrier defect, which led to death from dehydration within a few days after birth. Microscopy of nuclear-lamin-deficient skin revealed hyperkeratosis and a disordered stratum corneum with an accumulation of neutral lipid droplets; however, BrdU incorporation into keratinocytes was normal. Skin grafting experiments confirmed the stratum corneum abnormalities and normal BrdU uptake. Interestingly, the absence of nuclear lamins in keratinocytes resulted in an interspersion of nuclear/endoplasmic reticulum membranes with the chromatin. Thus, a key function of the nuclear lamina is to serve as a "fence" and prevent the incursion of cytoplasmic organelles into the nuclear chromatin. PMID:25312645

  16. Thyroid abnormalities.

    PubMed

    Weetman, Anthony P

    2014-09-01

    Thyroid abnormalities and nonthyroidal illness complicate human immunodeficiency virus (HIV) infection. Among the effects that result from HIV and other opportunistic infections, distinctive features of HIV infection include early lowering of reverse tri-iodothyromine (T3) levels, with normal free T3 levels. Later, some patients develop an isolated low free thyroxine level. After highly active antiretroviral therapy, the immune system reconstitutes in a way that leads to dysregulation of the autoimmune response and the appearance of Graves disease in 1% to 2% of patients. Opportunistic thyroid infections with unusual organisms are most commonly asymptomatic, but can lead to acute or subacute thyroiditis. PMID:25169567

  17. Study of the Wigner function at the device boundaries in one-dimensional single- and double-barrier structures

    SciTech Connect

    Savio, Andrea; Poncet, Alain

    2011-02-01

    In this work, we compute the Wigner distribution function on one-dimensional devices from wave functions generated by solving the Schroedinger equation. Our goal is to investigate certain issues that we encountered in implementing Wigner transport equation solvers, such as the large discrepancies observed between the boundary conditions and the solution in the neighborhood of the boundaries. By evaluating the Wigner function without solving the Wigner transport equation, we intend to ensure that the actual boundary conditions are consistent with those commonly applied in literature. We study both single- and double-barrier unbiased structures. We use simple potential profiles, so that we can compute the wave functions analytically for better accuracy. We vary a number of structure geometry, material, meshing, and numerical parameters, among which are the contact length, the barrier height, the number of incident wave functions, and the numerical precision used for the computations, and we observe how the Wigner function at the device boundaries is affected. For the double-barrier structures, we look at the density matrix function and we study a model for the device transmission spectrum which helps explain the lobelike artifacts that we observe on the Wigner function.

  18. Interrelations/cross talk between transcellular transport function and paracellular tight junctional properties in lung epithelial and endothelial barriers.

    PubMed

    Van Driessche, Willy; Kreindler, James L; Malik, Asrar B; Margulies, Susan; Lewis, Simon A; Kim, Kwang-Jin

    2007-09-01

    In this synopsis of a symposium at EB2007, we start with an overview of noise and impedance analyses that have been applied to various epithelial barriers. Noise analysis yields specific information about ion channels and their regulation in epithelial and endothelial barriers. Impedance analysis can yield information about apical and basolateral membrane conductances and paracellular conductance of both epithelial and endothelial barriers. Using a morphologically based model, impedance analysis has been used to assess changes in apical and basolateral membrane surface areas and dimensions of the lateral intercellular space. Impedance analysis of an in vitro airway epithelial barrier under normal, nucleotide-stimulated, and cigarette smoke-exposed conditions yielded information on how activation and inhibition of secretion occur in airway epithelial cells. Similarly, impedance analysis of primary rat alveolar epithelial cell monolayer model under control and EGTA exposure conditions indicate that EGTA causes decreases in resistances of tight junctional routes as well as apical and basolateral cell membranes without causing much change in cell capacitances. In a stretch-caused injury model of alveolar epithelium, transcellular ion transport function and paracellular permeability of solute transport appear to be differentially regulated. Finally, inhibition of caveolae-mediated transcytosis in lung endothelium led to disruption of paracellular routes, increasing the physical dimension and permeability of tight junctional region. These data together demonstrate the cross talk between transcellular and paracellular transport (function and routes) of lung epithelial and endothelial barriers. Mechanistic (e.g., signaling cascades) information on such cross talk remain to be determined. PMID:17601795

  19. Glycolysis-mediated control of blood-brain barrier development and function.

    PubMed

    Salmina, Alla B; Kuvacheva, Natalia V; Morgun, Andrey V; Komleva, Yulia K; Pozhilenkova, Elena A; Lopatina, Olga L; Gorina, Yana V; Taranushenko, Tatyana E; Petrova, Lyudmila L

    2015-07-01

    The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain. PMID:25900038

  20. The mitochondrial barriers segregate agonist-induced calcium-dependent functions in human airway epithelia.

    PubMed

    Ribeiro, Carla M Pedrosa; Paradiso, Anthony M; Livraghi, Alessandra; Boucher, Richard C

    2003-10-01

    In airway epithelia, purinergic receptor (P2Y2-R) stimulation of intracellular calcium (Ca2+i)-regulated ion transport is restricted to the membrane domain ipsilateral to receptor activation, implying compartmentalization of Ca2+i signaling. Because mitochondria can spatially restrict cellular Ca2+i signals, immunocytochemical, electron microscopic, and fluorescent studies of mitochondria localization were performed in human airway epithelia. Although concentrated at the apical domain, mitochondria were found distributed at both the apical and the basolateral poles and in close association with the endoplasmic reticulum. The role of mitochondria in locally restricting P2Y2-R-induced Ca2+i signals was investigated by measuring changes in mitochondrial Ca2+ (Ca2+m) in human airway epithelial monolayers. P2Y2-R activation induced Ca2+m accumulation in mitochondria confined to the domain ipsilateral to P2Y2-R stimulation, which was blocked by mitochondrial uncoupling with 1 microM CCCP and 2.5 microg/ml oligomycin. The role of mitochondria in restricting the cellular cross-talk between basolateral P2Y2-R-dependent Ca2+i mobilization and apical membrane Ca2+-activated Cl- secretion was investigated in studies simultaneously measuring Ca2+i and Cl- secretion in cystic fibrosis human airway epithelial monolayers. Activation of basolateral P2Y2-Rs produced similar increases in Ca2+i in monolayers without and with pretreatment with uncouplers, whereas Ca2+i-activated Cl- secretion was only efficiently triggered in mitochondria-uncoupled conditions. We conclude that (a) mitochondria function as a Ca2+i-buffering system in airway epithelia, compartmentalizing Ca2+i-dependent functions to the membrane ipsilateral to receptor stimulation; and (b) the mitochondria provide structural barriers that protect the airway epithelia against nonspecific activation of Ca2+i-modulated functions associated with Ca2+i signals emanating from the apical or the basolateral membrane domains. PMID:14517269

  1. Dissolution of lipids from mucus: A possible mechanism for prompt disruption of gut barrier function by alcohol

    PubMed Central

    Qin, Xiaofa; Deitch, Edwin A.

    2014-01-01

    Acute and/or chronic alcohol ingestion has been shown to exacerbate the morbidity and mortality rate associated with acute mechanical and/or thermal trauma. While alcohol ingestion can affect many organs and systems, clinical and preclinical studies indicate that alcohol ingestion can cause a leaky gut syndrome which in turn contributes to infection and systemic organ dysfunction. This study investigated the acute effect of alcohol on gut barrier function. Using an in vivo isolated gut sac model of nave male rats, each individual gut sac was injected with different concentrations (0, 5, 10, 20, and 40%, v/v) of alcohol. After different times of alcohol exposure, each isolated gut segment was harvested and intestinal permeability and mucosal surface hydrophobicity (a physiologic marker of mucus barrier function) were measured as well as luminal DNA, mucus, protein and free fatty acids. The results showed that alcohol caused dose-dependent and time-dependent increases in gut permeability and decreases in mucosal surface hydrophobicity, with significant changes to be observed 5 min after treatment with 10% alcohol. In addition, it is further found that these changes in permeability and hydrophobicity are more closely associated with increased intestinal luminal free fatty acids levels but not protein or DNA levels. These results suggest that alcohol may cause loss of gut barrier function by extracting and dissolving lipids from the mucus with a resultant decrease in mucosal surface hydrophobicity, which is a critical component of gut barrier function. PMID:25445722

  2. Influence of thermally-oxidized vegetable oils and animal fats on intestinal barrier function and immune variables in young pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the effect of feeding thermally-oxidized lipids on metabolic oxidative status, gut barrier function, and immune response of young pigs, 108 barrows (6.67 ± 0.03 kg BW) were assigned to 12 dietary treatments in a 4 × 3 factorial design in addition to a corn-soybean meal control diet. Main...

  3. Functional abnormalities of heparan sulfate in mucopolysaccharidosis-I are associated with defective biologic activity of FGF-2 on human multipotent progenitor cells.

    PubMed

    Pan, Chendong; Nelson, Matthew S; Reyes, Morayma; Koodie, Lisa; Brazil, Joseph J; Stephenson, Elliot J; Zhao, Robert C; Peters, Charles; Selleck, Scott B; Stringer, Sally E; Gupta, Pankaj

    2005-09-15

    In mucopolysaccharidosis-I (MPS-I), alpha-L-iduronidase deficiency leads to progressive heparan sulfate (HS) and dermatan sulfate (DS) glycosaminoglycan (GAG) accumulation. The functional consequences of these accumulated molecules are unknown. HS critically influences tissue morphogenesis by binding to and modulating the activity of several cytokines (eg, fibroblast growth factors [FGFs]) involved in developmental patterning. We recently isolated a multipotent progenitor cell from postnatal human bone marrow, which differentiates into cells of all 3 embryonic lineages. The availability of multipotent progenitor cells from healthy volunteers and patients with MPS-I (Hurler syndrome) provides a unique opportunity to directly examine the functional effects of abnormal HS on cytokine-mediated stem-cell proliferation and survival. We demonstrate here that abnormally sulfated HS in Hurler multipotent progenitor cells perturb critical FGF-2-FGFR1-HS interactions, resulting in defective FGF-2-induced proliferation and survival of Hurler multipotent progenitor cells. Both the mitogenic and survival-promoting activities of FGF-2 were restored by substitution of Hurler HS by normal HS. This perturbation of critical HS-cytokine receptor interactions may represent a mechanism by which accumulated HS contributes to the developmental pathophysiology of Hurler syndrome. Similar mechanisms may operate in the pathogenesis of other diseases where structurally abnormal GAGs accumulate. PMID:15947088

  4. Evidence of impaired myocardial perfusion and abnormal left ventricular function during exercise in patients with isolated systolic narrowing of the left anterior descending coronary artery

    SciTech Connect

    Ahmad, M.; Merry, S.L.; Haibach, H.

    1981-11-01

    Seven men ranging in age from 35 to 63 years with a chest pain syndrome and cineangiographically documented systolic narrowing of the left anterior descending coronary artery underwent thallium-201 myocardial scintigraphy and gated cardiac blood pool imaging. Grade II (50 to 75 percent) systolic coronary arterial constriction was present in three patients and grade III constriction (greater than 75 percent) in four. Three of the four patients with grade III constriction had an exercise-induced perfusion abnormality in the thallium-201 scintigram and impaired left ventricular ejection fraction response during exercise. (In two patients the left ventricular ejection fraction did not change and in one patient it decreased.) Each of the three patients with grade II constriction had normal thallium-201 perfusion and a normal increase in ejection fraction during exercise. These data provide evidence of abnormal myocardial perfusion and impaired left ventricular function during exercise in patients with high grade systolic coronary arterial narrowing.

  5. Evidence of impaired myocardial perfusion and abnormal left ventricular function during exercise in patients with isolated systolic narrowing of the left anterior descending coronary artery.

    PubMed

    Ahmad, M; Merry, S L; Haibach, H

    1981-11-01

    Seven men ranging in age from 35 to 63 years with a chest pain syndrome and cineangiographically documented systolic narrowing of the left anterior descending coronary artery underwent thallium-201 myocardial scintigraphy and gated cardiac blood pool imaging. Grade II (50 to 75 percent) systolic coronary arterial constriction was present in three patients and grade III constriction (greater than 75 percent) in four. Three of the four patients with grade III constriction had an exercise-induced perfusion abnormality in the thallium-201 scintigram and impaired left ventricular ejection fraction response during exercise. (In two patients the left ventricular ejection fraction did not change and in one patient it decreased.) Each of the three patients with grade II constriction had normal thallium-201 perfusion and a normal increase in ejection fraction during exercise. These data provide evidence of abnormal myocardial perfusion and impaired left ventricular function during exercise in patients with high grade systolic coronary arterial narrowing. PMID:7304430

  6. The Effects of Psychostimulant Drugs on Blood Brain Barrier Function and Neuroinflammation

    PubMed Central

    Kousik, Sharanya M.; Napier, T. Celeste; Carvey, Paul M.

    2012-01-01

    The blood brain barrier (BBB) is a highly dynamic interface between the central nervous system (CNS) and periphery. The BBB is comprised of a number of components and is part of the larger neuro(glio)vascular unit. Current literature suggests that psychostimulant drugs of abuse alter the function of the BBB which likely contributes to the neurotoxicities associated with these drugs. In both preclinical and clinical studies, psychostimulants including methamphetamine, MDMA, cocaine, and nicotine, produce BBB dysfunction through alterations in tight junction protein expression and conformation, increased glial activation, increased enzyme activation related to BBB cytoskeleton remodeling, and induction of neuroinflammatory pathways. These detrimental changes lead to increased permeability of the BBB and subsequent vulnerability of the brain to peripheral toxins. In fact, abuse of these psychostimulants, notably methamphetamine and cocaine, has been shown to increase the invasion of peripheral bacteria and viruses into the brain. Much work in this field has focused on the co-morbidity of psychostimulant abuse and human immunodeficiency virus (HIV) infection. As psychostimulants alter BBB permeability, it is likely that this BBB dysfunction results in increased penetration of the HIV virus into the brain thus increasing the risk of and severity of neuro AIDS. This review will provide an overview of the specific changes in components within the BBB associated with psychostimulant abuse as well as the implications of these changes in exacerbating the neuropathology associated with psychostimulant drugs and HIV co-morbidity. PMID:22754527

  7. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf

    NASA Astrophysics Data System (ADS)

    Alongi, Daniel M.; Patten, Nicole L.; McKinnon, David; Köstner, Nicole; Bourne, David G.; Brinkman, Richard

    2015-02-01

    Bacterioplankton and phytoplankton dynamics, pelagic respiration, virioplankton abundance, and the diversity of pelagic diazotrophs and other bacteria were examined in relation to water-column nutrients and vertical mixing across the southern Great Barrier Reef (GBR) shelf where sharp inshore to offshore gradients in water chemistry and hydrology prevail. A principal component analysis (PCA) revealed station groups clustered geographically, suggesting across-shelf differences in plankton function and structure driven by changes in mixing intensity, sediment resuspension, and the relative contributions of terrestrial, reef and oceanic nutrients. At most stations and sampling periods, microbial abundance and activities peaked both inshore and at channels between outer shelf reefs of the Pompey Reef complex. PCA also revealed that virioplankton numbers and biomass correlated with bacterioplankton numbers and production, and that bacterial growth and respiration correlated with net primary production, suggesting close virus-bacteria-phytoplankton interactions; all plankton groups correlated with particulate C, N, and P. Strong vertical mixing facilitates tight coupling of pelagic and benthic shelf processes as, on average, 37% and 56% of N and P demands of phytoplankton are derived from benthic nutrient regeneration and resuspension. These across-shelf planktonic trends mirror those of the benthic microbial community.

  8. Serum bile acid profiling reflects enterohepatic detoxification state and intestinal barrier function in inflammatory bowel disease

    PubMed Central

    Gnewuch, Carsten; Liebisch, Gerhard; Langmann, Thomas; Dieplinger, Benjamin; Mueller, Thomas; Haltmayer, Meinhard; Dieplinger, Hans; Zahn, Alexandra; Stremmel, Wolfgang; Rogler, Gerhard; Schmitz, Gerd

    2009-01-01

    AIM: To determine free and conjugated serum bile acid (BA) levels in inflammatory bowel disease (IBD) subgroups with defined clinical manifestations. METHODS: Comprehensive serum BA profiling was performed in 358 IBD patients and 310 healthy controls by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. RESULTS: Serum levels of hyodeoxycholic acid, the CYP3A4-mediated detoxification product of the secondary BA lithocholic acid (LCA), was increased significantly in Crohn’s disease (CD) and ulcerative colitis (UC), while most other serum BA species were decreased significantly. Total BA, total BA conjugate, and total BA glycoconjugate levels were decreased only in CD, whereas total unconjugated BA levels were decreased only in UC. In UC patients with hepatobiliary manifestations, the conjugated primary BAs glycocholic acid, taurocholic acid, and glycochenodeoxycholic acid were as significantly increased as the secondary BAs LCA, ursodeoxycholic acid, and tauroursodeoxycholic acid compared to UC patients without hepatobiliary manifestations. Finally, we found that in ileocecal resected CD patients, the unconjugated primary BAs, cholic acid and chenodeoxycholic acid, were increased significantly compared to controls and patients without surgical interventions. CONCLUSION: Serum BA profiling in IBD patients that indicates impaired intestinal barrier function and increased detoxification is suitable for advanced diagnostic characterization and differentiation of IBD subgroups with defined clinical manifestations. PMID:19575493

  9. Specific roles of threonine in intestinal mucosal integrity and barrier function.

    PubMed

    Mao, Xiangbing; Zeng, Xiangfang; Qiao, Shiyan; Wu, Guoyao; Li, Defa

    2011-01-01

    Threonine is the second or third limiting amino acid in swine or poultry diets. This nutrient plays a critical role in the maintenance of intestinal mucosal integrity and barrier function, which can be indicated by intestinal morphology, mucus production (number of goblet cells), transepithelial permeability, brush border enzyme activity, and growth performance. Dietary threonine restriction may decrease the production of digestive enzymes and increase mucosal paracellular permeability. A large proportion of dietary threonine is utilized for intestinal-mucosal protein synthesis, especially for mucin synthesis, and there is no oxidation of threonine by enterocytes. Because mucin proteins cannot be digested and reused, intestinal mucin secretion is a net loss of threonine from the body. Luminal threonine availability can influence synthesis of intestinal mucins and other proteins. Under pathological conditions, such as ileitis and sepsis, threonine requirement may be increased to maintain intestinal morphology and physiology. Collectively, knowledge about the role of threonine in mucin synthesis is critical for improving gut health under physiological and pathological conditions in animals and humans. PMID:21622125

  10. The blood-brain barrier: structure, function and therapeutic approaches to cross it.

    PubMed

    Tajes, Marta; Ramos-Fernández, Eva; Weng-Jiang, Xian; Bosch-Morató, Mònica; Guivernau, Biuse; Eraso-Pichot, Abel; Salvador, Bertrán; Fernàndez-Busquets, Xavier; Roquer, Jaume; Muñoz, Francisco J

    2014-08-01

    The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases. PMID:25046533

  11. The effects of heat on skin barrier function and in vivo dermal absorption.

    PubMed

    Oliveira, Gabriela; Leverett, Jesse C; Emamzadeh, Mandana; Lane, Majella E

    2014-04-10

    Enhanced delivery of ingredients across the stratum corneum (SC) is of great interest for improving the efficacy of topically applied formulations. Various methods for improving dermal penetration have been reported including galvanic devices and micro-needles. From a safety perspective it is important that such approaches do not compromise SC barrier function. This study investigates the influence of topically applied heat in vivo on the dermal uptake and penetration of a model active, allantoin from gel and lotion formulations. A custom designed device was used to deliver 42°C for 30s daily to human subjects after application of two formulations containing allantoin. The results were compared with sites treated with formulations containing no active and no heat, and a control site. In addition to penetration of allantoin, the integrity of the SC was monitored using trans-epidermal water loss (TEWL) measurements. The results showed that just 30s of 42°C topically applied heat was enough to cause significantly more penetration of allantoin from the lotion formulation compared with no application of heat. TEWL data indicated that the integrity of the skin was not compromised by the treatment. However, the application of heat did not promote enhanced penetration of the active from the gel formulation. Vehicle composition is therefore an important factor when considering thermal enhancement strategies for targeting actives to the skin. PMID:24445121

  12. Functional hypothalamic angiotensin II and catecholamine receptor systems inside and outside the blood-brain barrier.

    PubMed

    Gerstberger, R; Müller, A R; Simon-Oppermann, C

    1992-01-01

    To elucidate the contribution of various hormones and neuromodulators in the central nervous control of body fluid homeostasis, the saltwater-acclimated Pekin duck represents an ideal model due to the cytoarchitecture of its hypothalamus, and the marked systemic and hypothalamic sensitivity of its osmoregulatory system. Employing animal physiology, electrophysiology, histochemistry and receptor binding techniques, the role of angiotensin II (A II) and norepinephrine (NE) as both circulating hormones and neurotransmitters in central osmoregulation through interaction with neuronal targets inside and outside the blood-brain barrier (BBB) could be investigated. Application of both agents into the systemic circulation or into the cerebrospinal fluid of conscious animals, and the monitoring of hypothalamo-neurohypophyseal antidiuretic hormone ADH (= AVT) release, cardiovascular parameters such as mean arterial pressure (MAP) and avian salt gland function allowed to discriminate between actions of A II and NE at sites within or outside the BBB. Of the latter, the median eminence (ME), the subfornical organ (SFO) or the organum vasculosum laminae terminalis (OVLT) are of prime importance. Receptor autoradiography using radioiodinated ligands specific for A II, alpha 1-, alpha 2- and beta-receptors including the pharmacological characterization of these binding sites permit to establish a molecular correlate of the modulatory actions of both A II and NE. PMID:1410429

  13. NPC1 defect results in abnormal platelet formation and function: studies in Niemann-Pick disease type C1 patients and zebrafish.

    PubMed

    Louwette, Sophie; Régal, Luc; Wittevrongel, Christine; Thys, Chantal; Vandeweeghde, Gwenny; Decuyper, Elisa; Leemans, Peter; De Vos, Rita; Van Geet, Chris; Jaeken, Jaak; Freson, Kathleen

    2013-01-01

    Niemann-Pick type C is a lysosomal storage disease associated with mutations in NPC1 or NPC2, resulting in an accumulation of cholesterol in the endosomal-lysosomal system. Niemann-Pick type C has a clinical spectrum that ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease combined with remarkably, in some cases, hematological defects such as thrombocytopenia, anemia and petechial rash. A role of NPC1 in hematopoiesis was never shown. Here, we describe platelet function abnormalities in three unrelated patients with a proven genetic and biochemical NPC1 defect. Their platelets have reduced aggregations, P-selectin expression and ATP secretions that are compatible with the observed abnormal alpha and reduced dense granules as studied by electron microscopy and CD63 staining after platelet spreading. Their blood counts were normal. NPC1 expression was shown in platelets and megakaryocytes (MKs). In vitro differentiated MKs from NPC1 patients exhibit hyperproliferation of immature MKs with different CD63(+) granules and abnormal cellular accumulation of cholesterol as shown by filipin stainings. The role of NPC1 in megakaryopoiesis was further studied using zebrafish with GFP-labeled thrombocytes or DsRed-labeled erythrocytes. NPC1 depletion in zebrafish resulted in increased cell death in the brain and abnormal cellular accumulation of filipin. NPC1-depleted embryos presented with thrombocytopenia and mild anemia as studied by flow cytometry and real-time QPCR for specific blood cell markers. In conclusion, this is the first report, showing a role of NPC1 in platelet function and formation but further studies are needed to define how cholesterol storage interferes with these processes. PMID:23010472

  14. Chloride channel ClC-2 modulates tight junction barrier function via intracellular trafficking of occludin.

    PubMed

    Nighot, Prashant K; Blikslager, Anthony T

    2012-01-01

    Previously, we have demonstrated that the chloride channel ClC-2 modulates intestinal mucosal barrier function. In the present study, we investigated the role of ClC-2 in epithelial barrier development and maintenance in Caco-2 cells. During early monolayer formation, silencing of ClC-2 with small interfering (si)RNA led to a significant delay in the development of transepithelial resistance (TER) and disruption of occludin localization. Proteomic analysis employing liquid chromatography-mass spectrometry /mass spectrometry revealed association of ClC-2 with key proteins involved in intracellular trafficking, including caveolin-1 and Rab5. In ClC-2 siRNA-treated cells, occludin colocalization with caveolin-1 was diffuse and in the subapical region. Subapically distributed occludin in ClC-2 siRNA-treated cells showed marked colocalization with Rab5. To study the link between ClC-2 and trafficking of occludin in confluent epithelial monolayers, a Caco-2 cell clone expressing ClC-2 short hairpin (sh)RNA was established. Disruption of caveolae with methyl-β-cyclodextrin (MβCD) caused a marked drop in TER and profound redistribution of caveolin-1-occludin coimmunofluorescence in ClC-2 shRNA cells. In ClC-2 shRNA cells, focal aggregations of Rab5-occludin coimmunofluorescence were present within the cytoplasm. Wortmannin caused an acute fall in TER in ClC-2 shRNA cells and subapical, diffuse redistribution of Rab5-occludin coimmunofluorescence in ClC-2 shRNA cells. An endocytosis and recycling assay for occludin revealed higher basal rate of endocytosis of occludin in ClC-2 shRNA cells. Wortmannin significantly reduced the rate of recycling of occludin in ClC-2 shRNA cells. These data clearly indicate that ClC-2 plays an important role in the modulation of tight junctions by influencing caveolar trafficking of the tight junction protein occludin. PMID:21956164

  15. Architecture design of the multi-functional wavelet-based ECG microprocessor for realtime detection of abnormal cardiac events.

    PubMed

    Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee

    2012-01-01

    Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved. PMID:23366919

  16. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of sonic hedgehog?

    SciTech Connect

    Kelley, R.I.; Roessler, E.; Muenke, M.

    1996-12-30

    The RAH/Smith-Lemli-Opitz syndrome (RAH/SLOS) is an autosomal recessive malformation syndrome associated with increased levels of 7-dehydrocholesterol (7-DHC) and a defect of cholesterol biosynthesis at the level of 3{beta}-hydroxy-steroid-{Delta}{sup 7}-reductase (7-DHC reductase). Because rats exposed to inhibitors of 7-DHC reductase during development have a high frequency of holoprosencephaly (HPE), we have undertaken a search for biochemical evidence of RSH/SLOS and other possible defects of sterol metabolism among patients with various forms of HPE. We describe 4 patients, one with semilobar HPE and three others with less complete forms of the HPE sequence, in whom we have made a biochemical diagnosis of RAH/SLOS. The clinical and biochemical spectrum of these and other patients with RAH/SLOS suggests a role of abnormal sterol metabolism in the pathogenesis of their malformations. The association of HPE and RAH/SLOS is discussed in light of the recent discoveries that mutations in the embryonic patterning gene, Sonic Hedgehog (SHH), can cause HPE in humans and that the sonic hedgehog protein product undergoes autoproteolysis to form a cholesterol-modified active product. These clinical, biochemical, and molecular studies suggest that HPE and other malformations in SLOS may be caused by incomplete or abnormal modification of the sonic hedgehog protein and, possibly, other patterning proteins of the hedgehog class, a hypothesis testable in somatic cell systems. 37 refs., 1 fig.

  17. High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway

    PubMed Central

    HUANG, WUFENG; ZHAO, HAIJIN; DONG, HANGMING; WU, YUE; YAO, LIHONG; ZOU, FEI; CAI, SHAOXI

    2016-01-01

    Recent studies have indicated that high-mobility group box 1 protein (HMGB1) and the receptor for advanced glycation end-products (RAGE) contribute to the pathogenesis of asthma. However, whether the activation of the HMGB1/RAGE axis mediates airway epithelial barrier dysfunction remains unknown. Thus, the aim of this study was to examine the effects of HMGB1 and its synergistic action with interleukin (IL)-1β on airway epithelial barrier properties. We evaluated the effects of recombinant human HMGB1 alone or in combination with IL-1β on ionic and macromolecular barrier permeability, by culturing air-liquid interface 16HBE cells with HMGB1 to mimic the differentiated epithelium. Western blot analysis and immunofluorescence staining were utilized to examine the level and structure of major junction proteins, namely E-cadherin, β-catenin, occludin and claudin-1. Furthermore, we examined the effects of RAGE neutralizing antibodies and mitogen-activated protein kinase (MAPK) inhibitors on epithelial barrier properties in order to elucidate the mechanisms involved. HMGB1 increased FITC-dextran permeability, but suppressed epithelial resistance in a dose-and time-dependent manner. HMGB1-mediated barrier hyperpermeability was accompanied by a disruption of cell-cell contacts, the selective downregulation of occludin and claudin-1, and the redistribution of E-cadherin and β-catenin. HMGB1 in synergy with IL-1β induced a similar, but greater barrier hyperpermeability and induced the disruption of junction proteins. Furthermore, HMGB1 elicited the activation of the RAGE/extracellular signal-related kinase (ERK)1/2 signaling pathway, which correlated with barrier dysfunction in the 16HBE cells. Anti-RAGE antibody and the ERK1/2 inhibitor, U0126, attenuated the HMGB1-mediated changes in barrier permeability, restored the expression levels of occludin and claudin-1 and pevented the redistribution of E-cadherin and β-catenin. Taken together, the findings of our study demonstrate that HMGB1 is capable of inducing potent effects on epithelial barrier function and that RAGE/ERK1/2 is a key signaling pathway involved in the crosstalk between formations of junction proteins and epithelial barrier dysfunction. PMID:27035254

  18. Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells

    PubMed Central

    Bálint, Zoltán; Zabini, Diana; Konya, Viktoria; Nagaraj, Chandran; Végh, Attila G.; Váró, György; Wilhelm, Imola; Fazakas, Csilla; Krizbai, István A.; Heinemann, Akos; Olschewski, Horst; Olschewski, Andrea

    2013-01-01

    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes. PMID:23755110

  19. Double-stranded RNA attenuates the barrier function of human pulmonary artery endothelial cells.

    PubMed

    Bálint, Zoltán; Zabini, Diana; Konya, Viktoria; Nagaraj, Chandran; Végh, Attila G; Váró, György; Wilhelm, Imola; Fazakas, Csilla; Krizbai, István A; Heinemann, Akos; Olschewski, Horst; Olschewski, Andrea

    2014-01-01

    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca(2+)) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca(2+) signaling in hPAECs by inhibiting the sarco-endoplasmic Ca(2+)-ATPase (SERCA) which is involved in the regulation of the intracellular Ca(2+) homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes. PMID:23755110

  20. Health Sensing Functions in Thermal Barrier Coatings Incorporating Rare-Earth-Doped Luminescent Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Singh, J.; Wolfe, D. E.

    2004-01-01

    Great effort has been directed towards developing techniques to monitor the health of thermal barrier coatings (TBCs) that would detect the approach of safety-threatening conditions. An unconventional approach is presented here where health sensing functionality is integrated into the TBC itself by the incorporation of rare-earth-doped luminescent sublayers to monitor erosion as well as whether the TBC is maintaining the underlying substrate at a sufficiently low temperature. Erosion indication is demonstrated in electron-beam physical vapor deposited (EB-PVD) TBCs consisting of 7wt% yttria-stabilized zirconia (7YSZ) with europium-doped and terbium-doped sublayers. Multiple ingot deposition produced sharp boundaries between the doped sublayers without interrupting the columnar growth of the TBC. The TBC-coated specimens were subjected to alumina particle jet erosion, and the erosion depth was then indicated under ultraviolet illumination that excited easily visible luminescence characteristic of sublayer that was exposed by erosion. In addition, temperature measurements from a bottom-lying europium-doped sublayer in a TBC produced by multiple ingot EB-PVD were accomplished by measuring the temperature-dependent decay time from the 606 nm wavelength emission excited in that sublayer with a 532 nm wavelength laser that was selected for its close match to one of the europium excitation wavelengths as well as being at a wavelength where the TBC is relatively transparent. It is proposed the low dopant levels and absence of interruption of the TBC columnar growth allow the addition of the erosion and temperature sensing functions with minimal effects on TBC performance.

  1. MicroRNAs Control Intestinal Epithelial Differentiation, Architecture, and Barrier Function

    PubMed Central

    McKenna, Lindsay B.; Schug, Jonathan; Friedman, Joshua R.; McKenna, Jaime B; Kaestner, Klaus H.

    2011-01-01

    Background and Aims While the importance of miRNA for the development and maintenance of several tissues is well established, its role in the intestine is unknown. Our aims were to determine the entire miRNA expression profile of the mammalian small intestine in a quantitative manner and to determine the contribution of miRNAs to intestinal development and homeostasis using genetic means. Methods We determined the complete miRNA transcriptome of the mouse intestinal epithelium using ultra-high throughput sequencing. We employed gene ablation of Dicer1 to generate mice deficient for all miRNAs in the mouse intestine. Results miRNA abundance varies over a large dynamic range in the mammalian small intestine, from one read per million to 250,000. Of the 453 miRNA families identified, mmu-miR-192 and mmu-let-7 are the most highly expressed. Morphologically, the epithelium of Dicer1loxP/loxP; Villin-Cre mutants mice is disorganized in both the small and large intestine, with a four-fold decrease in goblet cells in the colon and a dramatic increase in apoptosis in the crypts of both the large and small intestine. Furthermore, intestinal barrier function is dependent on the presence of miRNAs, and consequently Dicer1 deficient mice display intestinal inflammation with lymphocyte and neutrophil infiltration. Conclusion We have identified all intestinal miRNAs and shown using gene ablation of Dicer1 that miRNAs play a vital role in the differentiation and function of the intestinal epithelium. PMID:20659473

  2. The blood-brain barrier and oncology: new insights into function and modulation.

    PubMed

    Bart, J; Groen, H J; Hendrikse, N H; van der Graaf, W T; Vaalburg, W; de Vries, E G

    2000-12-01

    The efficacy of chemotherapy for malignant primary or metastatic brain tumours is still poor. This is at least partly due to the presence of the blood-brain barrier (BBB). The functionality of the BBB can be explained by physicochemical features and efflux pump mechanisms. An overview of the literature is presented with emphasis on oncology. The BBB consists of capillary endothelial cells that lack fenestrations and are connected together with continuous tight junctions, with a high electrical resistance. Permeability of tight junctions can be increased in vitro by contraction of the cytoskeleton, caused by bradykinin agonists. Different efflux pumps are present in the BBB. Examples are P-glycoprotein (P-gp), organic anion transporters, (OAT) and multidrug-resistance-associated proteins (MRP)(1 and 3). These pumps act as a multi-specific efflux pump for various chemotherapeutic drugs. Experiments have shown that P-gp can be inhibited by different non-chemotherapeutic substrates such as cyclosporin A. The functionality in vivo of P-gp can be measured with positron emission tomography and [(11)C]-verapamil or with single photon emission computer tomography and(99m)Tc-sestamibi. MRP(1)and MRP(3)act as organic anion transporters that in vitro act as efflux pumps for substances that are conjugated or co-transported with glutathione and glucuronide, respectively. Methotrexate has been recently demonstrated to be transported by MRP(1)and MRP(3). Results of studies which demonstrate the clinical relevance and applicability of BBB modulators are eagerly awaited. PMID:11139374

  3. Enhancement of Tight Junctional Barrier Function by Micronutrients: Compound-Specific Effects on Permeability and Claudin Composition

    PubMed Central

    Mercado, Joanna; Valenzano, Mary Carmen; Jeffers, Cameron; Sedlak, Jason; Cugliari, Marina K.; Papanikolaou, Eleni; Clouse, Jacob; Miao, Jingya; Wertan, Nina E.; Mullin, James M.

    2013-01-01

    Amid an increasing number of reports in the literature concerning epithelial barrier enhancement by various nutrient compounds, there has never been a study performing side-by-side comparisons of these agents in a single epithelial model. We compare five nutrient compounds (previously reported in various epithelial models to enhance barrier function) regarding their ability to increase transepithelial electrical resistance (Rt) and decrease transepithelial mannitol permeability (Jm) across LLC-PK1 renal epithelial cell layers. The effects of these nutrients on the abundance of various tight junctional proteins are also compared. In the overall group of nutrients tested - zinc, indole, quercetin, butyrate and nicotine - only nicotine failed to improve barrier function by either parameter. Nicotine also was without effect on tight junctional proteins. Quercetin simultaneously increased Rt and decreased Jm. Zinc, butyrate and indole only exhibited statistically significant enhancement of Rt. Each of these four effective nutrient compounds had unique patterns of effects on the panel of tight junctional proteins studied. No two compounds produced the same pattern of effects. This unique pattern of effects on tight junctional complex composition by each compound establishes the chance for additive or even synergistic improvement of barrier function by combinations of compounds. A synergistic effect of the combination of quercetin and zinc on Rt is shown. PMID:24236048

  4. p18, a novel adaptor protein, regulates pulmonary endothelial barrier function via enhanced endocytic recycling of VE-cadherin.

    PubMed

    Chichger, Havovi; Duong, Huetran; Braza, Julie; Harrington, Elizabeth O

    2015-03-01

    Vascular permeability is a hallmark of several disease states including acute lung injury (ALI). Endocytosis of VE-cadherin, away from the interendothelial junction (IEJ), causes acute endothelial barrier permeability. A novel protein, p18, anchors to the endosome membrane and plays a role in late endosomal signaling via MAPK and mammalian target of rapamycin. However, the fate of the VE-cadherin-positive endosome has yet to be elucidated. We sought to elucidate a role for p18 in VE-cadherin trafficking and thus endothelial barrier function, in settings of ALI. Endothelial cell (EC) resistance, whole-cell ELISA, and filtration coefficient were studied in mice or lung ECs overexpressing wild-type or nonendosomal-binding mutant p18, using green fluorescent protein as a control. We demonstrate a protective role for the endocytic protein p18 in endothelial barrier function in settings of ALI in vitro and in vivo, through enhanced recycling of VE-cadherin-positive early endosomes to the IEJ. In settings of LPS-induced ALI, we show that Src tethered to the endosome tyrosine phosphorylates p18 concomitantly with VE-cadherin internalization and pulmonary edema formation. We conclude that p18 regulates pulmonary endothelial barrier function in vitro and in vivo, by enhancing recycling of VE-cadherin-positive endosomes to the IEJ. PMID:25404710

  5. Probability density functions of long-lived tracer observations from satellite in the subtropical barrier region: data intercomparison

    NASA Astrophysics Data System (ADS)

    Palazzi, E.; Fierli, F.; Stiller, G. P.; Urban, J.

    2011-10-01

    Past studies have shown that a clear relationship exists between the field of a passive tracer and the Probability Distribution Function (PDF) of tracer concentrations, which can be exploited to identify the position and variability of stratospheric barriers to isentropic mixing. In the present study, we focus on the dynamical barrier located in the subtropics. We calculate PDFs of the long-lived tracers nitrous oxide (N2O) and methane (CH4) from different satellite instruments: the Microwave Limb Sounder (MLS) on board Aura, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board Envisat, the Sub-Millimetre Radiometre (SMR) on board Odin and the Halogen Occultation Experiment (HALOE) on board UARS, overall covering the time period of 1992-2009. An analysis of the consistency among the different sets of data and their capability of identifying mixing regions and barrier-to-transport regions in the stratosphere and the subtropical barrier location is a prime aim of the present study. This is done looking at the morphological structure of the one- and two-dimensional PDFs of tracer concentrations measured by the different instruments. The latter differ in their spatial and temporal sampling and resolution, and there are some systematic differences in the determination of the subtropical barrier position that have been highlighted. However, the four satellite instruments offer an overall consistent picture of the subtropical barrier annual cycle. There is a strong seasonality consistently represented, characterized by the wintertime shift of the subtropical edge toward the summer hemisphere. However, the influence of the Quasi Biennial Oscillation (QBO) on isentropic transport and mixing, and by consequence, on the position of the subtropical barrier, is not equally represented in all satellite data using the methodology proposed.

  6. Probability density functions of long-lived tracer observations from satellite in the subtropical barrier region: data intercomparison

    NASA Astrophysics Data System (ADS)

    Palazzi, E.; Fierli, F.; Stiller, G. P.; Urban, J.

    2011-06-01

    Past studies have shown that a clear relationship exists between the field of a passive tracer and the Probability Distribution Function (PDF) of tracer concentrations, which can be exploited to identify the position and variability of stratospheric barriers to isentropic mixing. In the present study, we focus on the dynamical barrier located in the subtropics. We calculate PDFs of the long-lived tracers nitrous oxide (N2O) and methane (CH4) from different satellite instruments: the Microwave Limb Sounder (MLS) on board Aura, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board Envisat, the Sub-Millimetre Radiometre (SMR) on board Odin and the Halogen Occultation Experiment (HALOE) on board UARS, overall covering the time period of 1992-2009. An analysis of the consistency among the different sets of data and their capability of identifying mixing regions and barrier to transport regions in the stratosphere and the subtropical barrier location is a prime aim of the present study. This is done looking at the morphological structure of the one- and two-dimensional PDFs of tracer concentrations measured by the different instruments. The latter differ in their spatial and temporal sampling and resolution, and there are some systematic differences in the determination of the subtropical barrier position that have been highlighted. However, the four satellite instruments offer an overall consistent picture of the subtropical barrier annual cycle. There is a strong seasonality consistently represented, characterized by the wintertime shift of the subtropical edge toward the summer hemisphere. However, the influence of the Quasi Biennial Oscillation (QBO) on isentropic transport and mixing, and by consequence, on the position of the subtropical barrier, is not equally represented in all satellite data using the methodology proposed.

  7. Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects

    SciTech Connect

    Huber, Stefan E. E-mail: Michael.probst@uibk.ac.at; Mauracher, Andreas; Probst, Michael E-mail: Michael.probst@uibk.ac.at

    2013-12-15

    Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

  8. What can we learn from heavy-ion sub-barrier fusion excitation functions

    SciTech Connect

    Moehring, K.

    1984-06-01

    Over the last years, a large amount of heavy ion fusion data has been collected for energies around and well below the Coulomb barrier. As to their theoretical interpretation, the state of the art may be summarized as follows: for lighter systems, roughly Z/sub 1/Z/sub 2/ less than or equal to 80, a description of fusion as penetration through a one-dimensional, more or less standard potential barrier yields a satisfactory interpretation of the experimental data. For heavier systems such an attempt fails dramatically, underestimating the sub-barrier data by orders of magnitude. This problem is discussed. 15 references. (WHK)

  9. Comparative study of fusion barriers using Skyrme interactions and the energy density functional

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Torabi, F.

    2015-12-01

    Using different Skyrme interactions, we have carried out a comparative analysis of fusion barriers for a wide range of interacting nuclei in the framework of semiclassical Skyrme energy density formalism. The results of our calculations reveal that SVI, SII, and SIII Skyrme forces are able to reproduce the empirical values of barrier heights with higher accuracy than the other considered forces in this formalism. It is also shown that the calculated nucleus-nucleus potentials derived from such Skyrme interactions are able to explain the fusion cross sections at energies near and above the barrier.

  10. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function

    PubMed Central

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2014-01-01

    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. PMID:24372651

  11. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths.

    PubMed

    Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi

    2016-01-01

    The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species. PMID:25950737

  12. Abnormal calcium homeostasis in heart failure with preserved ejection fraction is related to both reduced contractile function and incomplete relaxation: an electromechanically detailed biophysical modeling study

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Heart failure with preserved ejection fraction (HFpEF) accounts for about 50% of heart failure cases. It has features of incomplete relaxation and increased stiffness of the left ventricle. Studies from clinical electrophysiology and animal experiments have found that HFpEF is associated with impaired calcium homeostasis, ion channel remodeling and concentric left ventricle hypertrophy (LVH). However, it is still unclear how the abnormal calcium homeostasis, ion channel and structural remodeling affect the electro-mechanical dynamics of the ventricles. In this study we have developed multiscale models of the human left ventricle from single cells to the 3D organ, which take into consideration HFpEF-induced changes in calcium handling, ion channel remodeling and concentric LVH. Our simulation results suggest that at the cellular level, HFpEF reduces the systolic calcium level resulting in a reduced systolic contractile force, but elevates the diastolic calcium level resulting in an abnormal residual diastolic force. In our simulations, these abnormal electro-mechanical features of the ventricular cells became more pronounced with the increase of the heart rate. However, at the 3D organ level, the ejection fraction of the left ventricle was maintained due to the concentric LVH. The simulation results of this study mirror clinically observed features of HFpEF and provide new insights toward the understanding of the cellular bases of impaired cardiac electromechanical functions in heart failure. PMID:25852567

  13. Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport.

    PubMed

    Friedman, Adam L; van 't Erve, Olaf M J; Li, Connie H; Robinson, Jeremy T; Jonker, Berend T

    2014-01-01

    The coupled imperatives for reduced heat dissipation and power consumption in high-density electronics have rekindled interest in devices based on tunnelling. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, layer uniformity, interface stability and electronic states that severely complicate fabrication and compromise performance. Two-dimensional materials such as graphene obviate these issues and offer a new paradigm for tunnel barriers. Here we demonstrate a homoepitaxial tunnel barrier structure in which graphene serves as both the tunnel barrier and the high-mobility transport channel. We fluorinate the top layer of a graphene bilayer to decouple it from the bottom layer, so that it serves as a single-monolayer tunnel barrier for both charge and spin injection into the lower graphene channel. We demonstrate high spin injection efficiency with a tunnelling spin polarization >60%, lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the Hanle effect. PMID:24445349

  14. Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function

    PubMed Central

    Yu, Ting-Xi; Wang, Peng-Yuan; Rao, Jaladanki N.; Zou, Tongtong; Liu, Lan; Xiao, Lan; Gorospe, Myriam; Wang, Jian-Ying

    2011-01-01

    Occludin is a transmembrane tight junction (TJ) protein that plays an important role in TJ assembly and regulation of the epithelial barrier function, but the mechanisms underlying its post-transcriptional regulation are unknown. The RNA-binding protein HuR modulates the stability and translation of many target mRNAs. Here, we investigated the role of HuR in the regulation of occludin expression and therefore in the intestinal epithelial barrier function. HuR bound the 3?-untranslated region of the occludin mRNA and enhanced occludin translation. HuR association with the occludin mRNA depended on Chk2-dependent HuR phosphorylation. Reduced HuR phosphorylation by Chk2 silencing or by reduction of Chk2 through polyamine depletion decreased HuR-binding to the occludin mRNA and repressed occludin translation, whereas Chk2 overexpression enhanced (HuR/occludin mRNA) association and stimulated occludin expression. In mice exposed to septic stress induced by cecal ligation and puncture, Chk2 levels in the intestinal mucosa decreased, associated with an inhibition of occludin expression and gut barrier dysfunction. These results indicate that HuR regulates occludin mRNA translation through Chk2-dependent HuR phosphorylation and that this influence is crucial for maintenance of the epithelial barrier integrity in the intestinal tract. PMID:21745814

  15. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  16. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  17. Endomicroscopic and Transcriptomic Analysis of Impaired Barrier Function and Malabsorption in Environmental Enteropathy

    PubMed Central

    Kelly, Paul; Besa, Ellen; Zyambo, Kanekwa; Louis-Auguste, John; Lees, James; Banda, Themba; Soko, Rose; Banda, Rosemary; Amadi, Beatrice; Watson, Alastair

    2016-01-01

    Introduction Environmental enteropathy (EE) is associated with growth failure, micronutrient malabsorption and impaired responses to oral vaccines. We set out to define cellular mechanisms of impaired barrier function in EE and explore protective mechanisms. Methods We studied 49 adults with environmental enteropathy in Lusaka, Zambia using confocal laser endomicroscopy (CLE); histology, immunohistochemistry and mRNA sequencing of small intestinal biopsies; and correlated these with plasma lipopolysaccharide (LPS) and a zinc uptake test. Results CLE images (median 134 for each study) showed virtually ubiquitous small intestinal damage. Epithelial defects, imaged by histology and claudin 4 immunostaining, were predominantly seen at the tips of villi and corresponded with leakage imaged in vivo by CLE. In multivariate analysis, circulating log-transformed LPS was correlated with cell shedding events (β = 0.83; P = 0.035) and with serum glucagon-like peptide-2 (β = -0.13; P = 0.007). Zinc uptake from a test dose of 25mg was attenuated in 30/47 (64%) individuals and in multivariate analysis was reduced by HIV, but positively correlated with GLP-2 (β = 2.72; P = 0.03). There was a U-shaped relationship between circulating LPS and villus surface area. Transcriptomic analysis identified 23 differentially expressed genes in severe enteropathy, including protective peptides and proteins. Conclusions Confocal endomicroscopy, claudin 4 immunostaining and histology identify epithelial defects which are probably sites of bacterial translocation, in the presence of which increased epithelial surface area increases the burden of translocation. GLP 2 and other protective peptides may play an important role in mucosal protection in EE. PMID:27050312

  18. Enteral Nutrient Deprivation in Patients Leads to a Loss of Intestinal Epithelial Barrier Function

    PubMed Central

    Ralls, Matthew W.; Demehri, Farokh R.; Feng, Yongjia; Woods Ignatoski, Kathleen M.; Teitelbaum, Daniel H.

    2014-01-01

    Objective To investigate the effect of nutrient withdrawal on human intestinal epithelial barrier function (EBF). We hypothesized that unfed mucosa results in decreased EBF. This was tested in a series of surgical small intestinal resection specimens. Design Small bowel specifically excluding inflamed tissue, was obtained from pediatric patients (aged 2 days to 19 years) undergoing intestinal resection. EBF was assessed in Ussing chambers for transepithelial resistance (TER) and passage of FITC-Dextran (4kD). Tight junction and adherence junction proteins were imaged with immunofluorescence staining. Expression of Toll like receptors (TLR) and inflammatory cytokines were measured in loop ileostomy takedowns in a second group of patients. Results Because TER increased with patient age (p<0.01), results were stratified into infant versus teenage groups. Fed bowel had significantly greater TER versus unfed bowel (p<0.05) in both age populations. Loss of EBF was also observed by an increase in FITC-Dextran permeation in nutrient-deprived segments (p<0.05). Immunofluorescence staining showed marked declines in intensity of ZO-1, occludin, Ecadherin and Claudin-4 in unfed intestinal segments, as well as a loss of structural formation of tight junctions. Analysis of cytokine and TLR expression showed significant increases in TNF-α and TLR4 in unfed segments of bowel compared to fed segments from the same individual. Conclusion EBF declined in unfed segments of human small bowel. This work represents the first direct examination of EBF from small bowel derived from nutrient-deprived humans and may explain the increased infectious complications seen in patients not receiving enteral feeds. PMID:25704423

  19. Relationships (II) of International Classification of High-resolution Computed Tomography for Occupational and Environmental R