Science.gov

Sample records for abnormal basal ganglia

  1. Imaging basal ganglia function

    PubMed Central

    BROOKS, DAVID J.

    2000-01-01

    In this review, the value of functional imaging for providing insight into the role of the basal ganglia in motor control is reviewed. Brain activation findings in normal subjects and Parkinson's disease patients are examined and evidence supporting the existence for functionally independent distributed basal ganglia-frontal loops is presented. It is argued that the basal ganglia probably act to focus and filter cortical output, optimising the running of motor programs. PMID:10923986

  2. Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1?/? Mice

    PubMed Central

    Lim, Soo-Yeon; Mah, Won

    2015-01-01

    Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2–3 months old) and juvenile (4 weeks old) Git1?/? mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in Git1?/? mice. PMID:25997734

  3. Basal Ganglia Shapes Predict Social, Communication, and Motor Dysfunctions in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Qiu, Anqi; Adler, Marcy; Crocetti, Deana; Miller, Michael I.; Mostofsky, Stewart H.

    2010-01-01

    Objective: Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association…

  4. Mössbauer spectroscopy of Basal Ganglia

    SciTech Connect

    Miglierini, Marcel; Lan?ok, Adriana; Kopáni, Martin; Bo?a, Roman

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 ?m in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  5. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    PubMed Central

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/?). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/? mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/? mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  6. The expanding universe of disorders of the basal ganglia.

    PubMed

    Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J

    2014-08-01

    The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made. PMID:24954674

  7. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia.

    PubMed

    Beyeler, A; Kadiri, N; Navailles, S; Boujema, M Ben; Gonon, F; Moine, C Le; Gross, C; De Deurwaerdère, P

    2010-08-11

    Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete modifications in associative territories. PMID:20447448

  8. The Basal Ganglia-Circa 1982

    NASA Technical Reports Server (NTRS)

    Mehler, William R.

    1981-01-01

    Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement.

  9. Basal Ganglia Damage in Experimental Subarachnoid Hemorrhage.

    PubMed

    Zhang, Haining; Okubo, Shuichi; Hua, Ya; Keep, Richard F; Xi, Guohua

    2016-01-01

    Research suggests that early brain injury following subarachnoid hemorrhage (SAH) is a primary therapeutic target, and early SAH-induced basal ganglia injury is not well studied. The present study examined basal ganglia injury in a rat model of SAH. Adult male Sprague-Dawley rats (n?=?78) weighing 275-300 g underwent endovascular perforation to mimic aneurysmal SAH. Sham rats (n?=?12) underwent the same procedure but without perforation. Magnetic resonance imaging (T2 MRI) was performed at 24 h after SAH to measure ventricle volumes and brain T2 lesion. Hydrocephalus in SAH rats was defined as a ventricular volume greater than three standard deviations above that in shams. Western blotting and immunochemistry were utilized to assess basal ganglia damage. Sixty rats survived the SAH and 40 % of those animals had T2 lesions in the basal ganglia. Twenty-six SAH rats had hydrocephalus. Rats with hydrocephalus had higher incidence of basal ganglia lesion (69 vs. 18 % in rats without hydrocephalus; p?Basal ganglia neuronal injury was also determined by examining the levels of dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32). We found that rats with hydrocephalus had more severe basal ganglia injury with greater DARPP-32 depletion (DARPP-32/beta-actin: 0.38?±?0.32 vs. 0.86?±?0.45 in rats without hydrocephalus and 1.10?±?0.28 in sham, p?basal ganglia damage, which is associated with hydrocephalus development. PMID:26463938

  10. Altered Basal Ganglia Network Integration in Schizophrenia

    PubMed Central

    Duan, Mingjun; Chen, Xi; He, Hui; Jiang, Yuchao; Jiang, Sisi; Xie, Qiankun; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong

    2015-01-01

    The basal ganglia involve in a range of functions that are disturbed in schizophrenia patients. This study decomposed the resting-state data of 28 schizophrenia patients and 31 healthy controls with spatial independent component analysis and identified increased functional integration in the bilateral caudate nucleus in schizophrenia patients. Further, the caudate nucleus in patients showed altered functional connection with the prefrontal area and cerebellum. These results identified the importance of basal ganglia in schizophrenia patients. Clinical Trial Registration: Chinese Clinical Trial Registry. Registration number ChiCTR-RCS-14004878. PMID:26528167

  11. The Role of the Subthalamic Nucleus in the Basal Ganglia 

    E-print Network

    Gillies, Andrew J

    The basal ganglia are a collection of interconnected subcortical nuclei which have been implicated inmotor, cognitive and limbic functions. The subthalamic nucleus is the sole excitatory structure within the basal ganglia. ...

  12. Genetics Home Reference: Biotin-thiamine-responsive basal ganglia disease

    MedlinePLUS

    ... PubMed Recent literature OMIM Genetic disorder catalog Conditions > Biotin-thiamine-responsive basal ganglia disease On this page: ... names Glossary definitions Reviewed January 2014 What is biotin-thiamine-responsive basal ganglia disease? Biotin-thiamine-responsive ...

  13. Traumatic bilateral basal ganglia hematoma: A report of two cases

    PubMed Central

    Bhargava, Pranshu; Grewal, Sarvpreet Singh; Gupta, Bharat; Jain, Vikas; Sobti, Harman

    2012-01-01

    Traumatic Basal ganglia hemorrhage is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage, and review the literature in brief. Both cases were managed conservatively. PMID:23293672

  14. The Basal Ganglia and Adaptive Motor Control

    NASA Astrophysics Data System (ADS)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  15. A Search For Principles of Basal Ganglia Function

    E-print Network

    Anderson, Charles H.

    million neurons in humans. Dierent modes of basal ganglia dysfunction lead to Parkinson's disease and Huntington's disease, which have debilitating motor and cognitive symptoms. However, despite intensive study

  16. Mineralizing angiopathy with basal ganglia stroke in an infant

    PubMed Central

    Jain, Puneet; Kishore, Praveen; Bhasin, Jasjit Singh; Arya, Subhash Chand

    2015-01-01

    Basal ganglia stroke is known following trivial head trauma. Recently a distinct clinic-radiological entity termed ‘mineralizing angiopathy’ was described. We report an infant who developed basal ganglia stroke following trivial fall. His clinic-radiological features are described. PMID:26019426

  17. Working together: basal ganglia pathways in action selection.

    PubMed

    Friend, Danielle M; Kravitz, Alexxai V

    2014-06-01

    Jin, Tecuapetla, and Costa combined in vivo electrophysiology with optogenetic-identification to examine firing in multiple basal ganglia nuclei during rapid motor sequences. Their results support a model of basal ganglia function in which co-activation of the direct and indirect pathways facilitate appropriate, while inhibiting competing, motor programs. PMID:24816402

  18. Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder

    PubMed Central

    Womer, Fay Y.; Wang, Lei; Alpert, Kathryn; Smith, Matthew J.; Csernansky, John G.; Barch, Deanna; Mamah, Daniel

    2014-01-01

    In this study, we examined the morphology of the basal ganglia and thalamus in bipolar disorder (BP), schizophrenia-spectrum disorders (SCZ-S), and healthy controls (HC) with particular interest in differences related to the absence or presence of psychosis. Volumetric and shape analyses of the basal ganglia and thalamus were performed in 33 BP individuals [12 without history of psychotic features (NPBP) and 21 with history of psychotic features (PBP)], 32 SCZ-S individuals [28 with SCZ and 4 with schizoaffective disorder], and 27 HC using FreeSurfer-initiated large deformation diffeomorphic metric mapping. Significant volume differences were found in the caudate and globus pallidus, with volumes smallest in the NPBP group. Shape abnormalities showing inward deformation of superior regions of the caudate were observed in BP (and especially in NPBP) compared with HC. Shape differences were also found in the globus pallidus and putamen when comparing the BP and SCZ-S groups. No significant differences were seen in the nucleus accumbens and thalamus. In summary, structural abnormalities in the caudate and globus pallidus are present in BP and SCZ-S. Differences were more apparent in the NPBP subgroup. The findings herein highlight the potential importance of separately examining BP subgroups in neuroimaging studies. PMID:24957866

  19. Cooccurrence of Multiple Sclerosis and Idiopathic Basal Ganglia Calcification

    PubMed Central

    Abedini, M.; Karimi, N.; Tabrizi, N.

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of central nervous system that affects both white and gray matter. Idiopathic calcification of the basal ganglia is a rare neurodegenerative disorder of unknown cause that is characterized by sporadic or familial brain calcification. Concurrence of multiple sclerosis (MS) and idiopathic basal ganglia calcification (Fahr's disease) is very rare event. In this study, we describe a cooccurrence of idiopathic basal ganglia calcification with multiple sclerosis. The association between this disease and MS is unclear and also maybe probably coincidental. PMID:26351460

  20. The basal ganglia-circa 1982 - A review and commentary

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1981-01-01

    A review is presented of recent studies which utilize new anterograde and retrograde axon transport methods in order to improve knowledge of the projection of the basal ganglia and to clarify their sites of origin. These studies have thrown new light on certain topographic connectional relationships and have revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Also examined are the many new histochemical techniques that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in or interconnecting with the basal ganglia.

  1. Time representation in reinforcement learning models of the basal ganglia

    E-print Network

    Gershman, Samuel J.

    Reinforcement learning (RL) models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still ...

  2. Neural Representation of Time in Cortico-basal Ganglia Circuits

    E-print Network

    Jin, Dezhe Z.

    Encoding time is universally required for learning and structuring motor and cognitive actions, but how the brain keeps track of time is still not understood. We searched for time representations in cortico-basal ganglia ...

  3. Clinical manifestation and neuroimaging methods in diagnosing basal ganglia calcifications.

    PubMed

    Stenc Bradvica, Ivanka; Jan?uljak, Davor; Butkovi?-Soldo, Silva; Mihaljevi?, Ivan; Vladeti?, Mirjana; Bradvica, Mario

    2013-02-01

    The aim of this case study was to evaluate the clinical symptoms in patients with basal ganglia calcifications and compare the neuroimaging methods used in confirming this state. The clinical status and performed transcranial sonography of basal ganglia structures in patients with brain calcifications found by computed brain tomography was examined. In one of these patients DaTSCAN was performed. A large spectrum of different symptoms was found. Transcranial sonography of basal ganglia showed the hyperechogenicity of nucleus lenticularis in eight out of 10 patients. DaTSCAN, which was performed to one patient with parkinsonian signs and the hyperechogenicity of substantia nigra found by transcranial sonography, was normal. Transcranial sonography is a newly neuroimaging method which can contribute to diagnosing basal ganglia calcifications in patients with different neurological signs. Computed tomography of brain remains the most adequate technique in visualising calcifications. PMID:23348181

  4. Basal ganglia function, stuttering, sequencing, and repair in adult

    E-print Network

    Jarvis, Erich D.

    Basal ganglia function, stuttering, sequencing, and repair in adult songbirds Lubica Kubikova1 repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering singing. The timing of the recovery and stuttering suggest that immature recovering activity

  5. Cognitive-motor interactions of the basal ganglia in development

    PubMed Central

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214

  6. Cognitive-motor interactions of the basal ganglia in development.

    PubMed

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214

  7. CODING OF BEHAVIORAL SEQUENCES IN THE BASAL GANGLIA

    E-print Network

    Berridge, Kent

    and thoughts of obsessive-compulsive disorder,8 both of which are associated with pathology of the basal disorders of the basal ganglia strongly supports a motor function. However, close scrutiny suggests is disturbed by this disorder. Huntington's patients also have deficits in related high-level "ideomotor

  8. CODING OF BEHAVIORAL SEQUENCES IN THE BASAL GANGLIA

    E-print Network

    Berridge, Kent

    and thoughts of obsessive-compulsive disorder8 , both of which are associated with pathology of the basal disorders of the basal ganglia strongly supports a motor function. However, close scrutiny suggests is disturbed by this disorder. Huntington's patients also have deficits in related high-level "ideomotor

  9. Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic

    E-print Network

    Gluck, Mark

    and reversal. Amnesic subjects with selective hippocampal dam- age, Parkinson subjects with disrupted basalDistinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal Daphna have each, separately, been implicated as necessary for reversal learning--the ability to adaptively

  10. Neurotransmitters in the human and nonhuman primate basal ganglia.

    PubMed

    Haber, S N

    1986-01-01

    In recent years, a number of new molecules, particularly peptides, have been identified as putative neurotransmitters. The basal ganglia, is especially rich in a number of classical transmitter molecules, amino acids and neuropeptides considered to function in neurotransmission. These include: the well-described terminal fields in the striatum which originate from the brain stem and contain the monoamines, dopamine and serotonin; amino acid containing axons projecting from the cortex and thalamus; striatal cholinergic and peptide-positive interneurons; and amino acid and peptide containing projection neurons to the globus pallidus and substantia nigra. Two amino acids, glutamate and aspartate, are considered to provide excitatory input to the striatum while gamma aminobutyric acid is thought to mediate inhibitory output. Neuropeptides which are richly concentrated in the basal ganglia include, enkephalin, dynorphin, substance P, somatostatin, neuropeptide Y and cholincystokinease. Changes in many of these peptide levels have recently been associated with a number of basal ganglia disorders. PMID:2876974

  11. BASAL GANGLIA PATHOLOGY IN SCHIZOPHRENIA: DOPAMINE CONNECTIONS and ANOMALIES

    PubMed Central

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Roberts, Rosalinda C.

    2010-01-01

    Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in the brain and the target of antipsychotic drugs. In this review we will start with an overview of basal ganglia anatomy emphasizing dopamine circuitry. Then, we will review the major deficits in dopamine function in schizophrenia, emphasizing the role of excessive dopamine in the basal ganglia and the link to psychosis. PMID:20089137

  12. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation.

    PubMed

    Da Cunha, Claudio; Boschen, Suelen L; Gómez-A, Alexander; Ross, Erika K; Gibson, William S J; Min, Hoon-Ki; Lee, Kendall H; Blaha, Charles D

    2015-11-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. PMID:25684727

  13. Mephedrone alters basal ganglia and limbic neurotensin systems

    PubMed Central

    German, Christopher L.; Hoonakker, Amanda H.; Fleckenstein, Annette E.; Hanson, Glen R.

    2014-01-01

    Mephedrone (4-methylmethcathinone) is a synthetic cathinone designer drug that alters presynaptic dopamine (DA) activity like many psychostimulants. However, little is known about the postsynaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and postsynaptic D1-like and D2-like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone-induced increases in basal ganglia NT levels were mediated by D1-like receptors in the striatum and the substantia nigra by both D1-like and D2-like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self-administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption. PMID:24678634

  14. The Basal Ganglia Mahlon R. DeLong

    E-print Network

    Ulanovsky, Nachum

    the pyramidal system. Because they are so common, disorders of the basal ganglia have always been important in clinical neurology. Parkinson disease was the first disease of the nervous system to be identified of which play a major role in normal voluntary movement. Unlike most other components of the motor system

  15. Multidimensional Sequence Learning in Patients with Focal Basal Ganglia Lesions

    ERIC Educational Resources Information Center

    Shin, J.C.; Aparicio, P.; Ivry, R.B.

    2005-01-01

    Parkinson's patients have been found to be impaired in learning movement sequences. In the current study, patients with unilateral basal ganglia lesions due to stroke were tested on a serial reaction time task in which responses were based on the spatial location of each stimulus. The spatial locations either followed a fixed sequence or were…

  16. The role of the basal ganglia in reinforcement learning

    E-print Network

    (positive surprise). This signal is in accordance with a reinforcement error signal. However, the low tonicThe role of the basal ganglia in reinforcement learning Thesis submitted for the degree of "Doctor ............................................. 4 I. Formalism of the reinforcement learning problem ..................................... 4 II

  17. Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder

    E-print Network

    of psychosis. Volumetric and shape analyses of the basal ganglia and thalamus were performed in 33 BP such as psychosis. Neuroimaging studies, including those that directly compare BP and SCZ, indicate both overlapping elucidate underlying mechanisms of psychosis when these BP subgroups are compared with SCZ. However, studies

  18. Structural Findings in the Basal Ganglia in Genetically Determined and Idiopathic Parkinson's Disease

    E-print Network

    Gaser, Christian

    Structural Findings in the Basal Ganglia in Genetically Determined and Idiopathic Parkinson likely have an increased risk to develop Parkinson's disease (PD). We hypothesized BG morphological Key words: basal ganglia; magnetic resonance imaging; Parkinson's disease; Parkin mutation carriers

  19. Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism

    E-print Network

    Bar-Gad, Izhar

    Changes in basal ganglia processing of cortical input following magnetic stimulation Available online 31 July 2012 Keywords: Transcranial magnetic stimulation (TMS) Parkinson's disease Primate Basal ganglia Motor cortex Parkinsonism is associated with major changes in neuronal activity throughout

  20. The role of basal ganglia-forebrain circuitry in the vocal learning of songbirds

    E-print Network

    Andalman, Aaron Samuel

    2009-01-01

    The basal ganglia form the largest sub-cortical structure in the human brain and are implicated in numerous human diseases. In songbirds, as in mammals, basal ganglia-forebrain circuits are necessary for the learning and ...

  1. Functional Coupling Between Substantia Nigra and Basal Ganglia Homologues in Amphibians

    E-print Network

    Ryan, Michael J.

    Functional Coupling Between Substantia Nigra and Basal Ganglia Homologues in Amphibians Kim L. Hoke the existence of a homologue of the mam- malian substantia nigra­basal ganglia circuit in the amphibian brain proposed that homologous basal ganglia circuits may exist in both amphibians and mammals (reviewed

  2. Neuroscience and Biobehavioral Reviews 32 (2008) 219236 Basal ganglia and dopamine contributions

    E-print Network

    Gluck, Mark

    2008-01-01

    Neuroscience and Biobehavioral Reviews 32 (2008) 219­236 Review Basal ganglia and dopamine, indicating a role for the basal ganglia and related dopamine inputs in reward prediction and feedback studies of basal ganglia and dopamine contributions to learning in humans. Collectively, these studies

  3. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures

    PubMed Central

    Kotsenas, Amy L.; Britton, Jeffrey W.; McKeon, Andrew; Watson, Robert E.; Klein, Christopher J.; Boeve, Bradley F.; Lowe, Val; Ahlskog, J. Eric; Shin, Cheolsu; Boes, Christopher J.; Crum, Brian A.; Laughlin, Ruple S.; Pittock, Sean J.

    2015-01-01

    Objective: To characterize the clinical features and MRI abnormalities of leucine-rich glioma-inactivated 1 (LGI1)-autoantibody (Ab) faciobrachial dystonic seizures (FBDS). Methods: Forty-eight patients with LGI1-Ab encephalopathy were retrospectively identified by searching our clinical and serologic database from January 1, 2002, to June 1, 2015. Of these, 26 met inclusion criteria for this case series: LGI1-Ab seropositivity and FBDS. In a separate analysis of all 48 patients initially identified, the MRIs of patients with (n = 26) and without (n = 22) FBDS were compared by 2 neuroradiologists blinded to the clinical details. Results: The median age of the 26 included patients was 62.5 years (range 37–78); 65% were men. FBDS involved arm (26), face (22), and leg (12). Ten were previously diagnosed as psychogenic. Ictal EEGs were normal in 20 of 23 assessed. Basal ganglia T1 and T2 signal abnormalities were detected in 11 patients (42%), with excellent agreement between neuroradiologists (? scores of 0.86 and 0.93, respectively), and included T1 hyperintensity alone (2), T2 hyperintensity alone (1), or both (8). The T1 hyperintensities persisted longer than the T2 hyperintensities (median 11 weeks vs 1 week, p = 0.02). Improvement with immunotherapy (18/18) was more frequent than with antiepileptic medications (10/24). A separate analysis of all 48 patients initially identified with LGI1-Ab encephalopathy showed that basal ganglia MRI abnormalities were present in 11 of 26 with FBDS but not present in those without FBDS (0/22) (p < 0.001). In contrast, mesial temporal MRI abnormalities were less common among those with FBDS (42%) than those without (91%) (p < 0.001). Conclusions: Basal ganglia T1 hyperintensity is a clinically useful MRI biomarker of LGI1-Ab FBDS and suggests a basal ganglia localization. PMID:26468474

  4. Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.

    PubMed

    Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D

    2014-01-01

    A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations. PMID:25307086

  5. [Plexiform neurofibroma and basal ganglia anomaly in Watson syndrome].

    PubMed

    Weber, P; Kotthoff, S; Schuierer, G; Kurlemann, G

    1999-01-01

    A 4 year-old boy was referred for diagnostic reevaluation with known pulmonary valve stenosis. Physical examination revealed multiple cafe-au-lait spots, inguinal freckling and on the right side in supraclavicular region a softly, non-painful tumour. The boy showed a mild mental and language retardation. Ultrasound and MRT demonstrated supraclavicular a plexiform neurofibroma and intracranial increased intensity lesions in basal ganglia and mesencephalon. In our patient, we have diagnosed a Watson-Syndrome, the overlap and differences to neurofibromatosis type I is discussed. PMID:10412128

  6. A selective role for right insula—basal ganglia circuits in appetitive stimulus processing

    PubMed Central

    Vijayaraghavan, Lavanya; Adolphs, Ralph; Kennedy, Daniel P.; Cassell, Martin; Tranel, Daniel; Paradiso, Sergio

    2013-01-01

    Hemispheric lateralization of hedonic evaluation (‘liking’) and incentive motivation (‘wanting’) in neural networks connecting the basal ganglia and insula (BG-I) in humans was examined. Participants with brain damage restricted to the BG-I of the right (n = 5) or left (n = 5) hemisphere, and 26 healthy participants matched on age, sex and intelligence quotient were tested on positively and negatively valenced pictures drawn from varied stimulus categories (Vijayaraghavan et al., 2008). Liking was assessed with explicit ratings of pleasantness using a nine-point Likert scale. Wanting was quantified as the amount of work (via repeated keypresses) that participants expended to increase (approach) or decrease (withdraw) viewing time. Right-lesion patients showed abnormally low viewing times and liking ratings for positive images. For a subset of positive images depicting sexual content, right-lesion patients exhibited active withdrawal, while the other two groups approached such stimuli. These results suggest that the right basal ganglia–insula complex plays a greater role than the left in supporting hedonic evaluation and motivational approach to positively valenced stimuli. The finding that active avoidance of stimuli that were not ‘liked’ was spared in both right- and left-sided lesion subjects suggests that unilateral damage to insula/basal ganglia circuits may not be sufficient to affect general incentive motivation independent of preference. PMID:22798397

  7. Idiopathic Basal Ganglia Calcification Presented with Impulse Control Disorder

    PubMed Central

    Sahin, Cem; Levent, Mustafa; Akbaba, Gulhan; Kara, Bilge; Yeniceri, Emine Nese; Inanc, Betul Battaloglu

    2015-01-01

    Primary familial brain calcification (PFBC), also referred to as Idiopathic Basal Ganglia Calcification (IBGC) or “Fahr's disease,” is a clinical condition characterized by symmetric and bilateral calcification of globus pallidus and also basal ganglions, cerebellar nuclei, and other deep cortical structures. It could be accompanied by parathyroid disorder and other metabolic disturbances. The clinical features are dysfunction of the calcified anatomic localization. IBGC most commonly presents with mental damage, convulsion, parkinson-like clinical picture, and neuropsychiatric behavior disorders; however, presentation with impulse control disorder is not a frequent presentation. In the current report, a 43-year-old male patient who has been admitted to psychiatry policlinic with the complaints of aggressive behavior episodes and who has been diagnosed with impulse control disorder and IBGC was evaluated in the light of the literature. PMID:26246920

  8. Idiopathic Basal Ganglia Calcification Presented with Impulse Control Disorder.

    PubMed

    Sahin, Cem; Levent, Mustafa; Akbaba, Gulhan; Kara, Bilge; Yeniceri, Emine Nese; Inanc, Betul Battaloglu

    2015-01-01

    Primary familial brain calcification (PFBC), also referred to as Idiopathic Basal Ganglia Calcification (IBGC) or "Fahr's disease," is a clinical condition characterized by symmetric and bilateral calcification of globus pallidus and also basal ganglions, cerebellar nuclei, and other deep cortical structures. It could be accompanied by parathyroid disorder and other metabolic disturbances. The clinical features are dysfunction of the calcified anatomic localization. IBGC most commonly presents with mental damage, convulsion, parkinson-like clinical picture, and neuropsychiatric behavior disorders; however, presentation with impulse control disorder is not a frequent presentation. In the current report, a 43-year-old male patient who has been admitted to psychiatry policlinic with the complaints of aggressive behavior episodes and who has been diagnosed with impulse control disorder and IBGC was evaluated in the light of the literature. PMID:26246920

  9. Basal ganglia circuits for reward value-guided behavior.

    PubMed

    Hikosaka, Okihide; Kim, Hyoung F; Yasuda, Masaharu; Yamamoto, Shinya

    2014-01-01

    The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects. These signals are sent to the superior colliculus through different parts of the substantia nigra so that the animal looks preferentially at high-valued objects, but in different manners. Thus, relying on short-term value memories, the caudate head circuit allows the subject's gaze to move expectantly to recently valued objects. Relying on long-term value memories, the caudate tail circuit allows the subject's gaze to move automatically to previously valued objects. The basal ganglia also contain an equivalent parallel mechanism for action values. Such flexible-stable parallel mechanisms for object and action values create a highly adaptable system for decision making. PMID:25032497

  10. Multi-Neuronal Recordings in the Basal Ganglia in Normal and Dystonic Rats

    PubMed Central

    Baron, Mark S.; Chaniary, Kunal D.; Rice, Ann C.; Shapiro, Steven M.

    2011-01-01

    Classical rate-based pathway models are invaluable for conceptualizing direct/indirect basal ganglia pathways, but cannot account for many aspects of normal and abnormal motor control. To better understand the contribution of patterned basal ganglia signaling to normal and pathological motor control, we simultaneously recorded multi-neuronal and EMG activity in normal and dystonic rats. We used the jaundiced Gunn rat model of kernicterus as our experimental model of dystonia. Stainless steel head fixtures were implanted on the skulls and EMG wires were inserted into antagonistic hip muscles in nine dystonic and nine control rats. Under awake, head-restrained conditions, neuronal activity was collected from up to three microelectrodes inserted in the principal motor regions of the globus pallidus (GP), subthalamic nucleus, and entopeduncular nucleus (EP). In normal animals, most neurons discharged in regular or irregular patterns, without appreciable bursting. In contrast, in dystonic animals, neurons discharged in slow bursty or irregular, less bursty patterns. In normal rats, a subset of neurons showed brief discharge bursts coinciding with individual agonist or antagonist EMG bursts. In contrast, in dystonics, movement related discharges were characterized by more prolonged bursts which persist over multiple dystonic co-contraction epics. The pattern of movement related decreases in discharge activity however did not differ in dystonics compared to controls. In severely dystonic rats, exclusively, simultaneously recorded units often showed abnormally synchronized movement related pauses in GP and bursts in EP. In conclusion, our findings support that slow, abnormally patterned neuronal signaling is a fundamental pathophysiological feature of intrinsic basal ganglia nuclei in dystonia. Moreover, from our findings, we suggest that excessive movement related silencing of neuronal signaling in GP profoundly disinhibits EP and in turn contributes to sustained, unfocused dystonic muscle contractions. PMID:21941468

  11. Saccade learning with concurrent cortical and subcortical basal ganglia loops

    PubMed Central

    N'Guyen, Steve; Thurat, Charles; Girard, Benoît

    2014-01-01

    The Basal Ganglia (BG) is a central structure involved in multiple cortical and subcortical loops. Some of these loops are believed to be responsible for saccade target selection. We study here how the very specific structural relationships of these saccadic loops can affect the ability of learning spatial and feature-based tasks. We propose a model of saccade generation with reinforcement learning capabilities based on our previous BG and superior colliculus models. It is structured around the interactions of two parallel cortico-basal loops and one tecto-basal loop. The two cortical loops separately deal with spatial and non-spatial information to select targets in a concurrent way. The subcortical loop is used to make the final target selection leading to the production of the saccade. These different loops may work in concert or disturb each other regarding reward maximization. Interactions between these loops and their learning capabilities are tested on different saccade tasks. The results show the ability of this model to correctly learn basic target selection based on different criteria (spatial or not). Moreover the model reproduces and explains training dependent express saccades toward targets based on a spatial criterion. Finally, the model predicts that in absence of prefrontal control, the spatial loop should dominate. PMID:24795615

  12. Dynamical states of the cortico basal ganglia circuits Thesis submitted for the degree of

    E-print Network

    Dynamical states of the cortico ­ basal ganglia circuits Thesis submitted for the degree of "Doctor anatomical pathways of the cortico-basal ganglia-thalamic (CBT) circuit. The model explains the appearance that are synchronized across many neurons. These synchronized population bursts are absent from the BG of the same

  13. Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal

    ERIC Educational Resources Information Center

    Shohamy, Daphna; Myers, Catherine E.; Hopkins, Ramona O.; Sage, Jake; Gluck, Mark A.

    2009-01-01

    The hippocampus and the basal ganglia are thought to play fundamental and distinct roles in learning and memory, supporting two dissociable memory systems. Interestingly, however, the hippocampus and the basal ganglia have each, separately, been implicated as necessary for reversal learning--the ability to adaptively change a response when…

  14. Pathways for control of face and neck musculature by the basal ganglia and cerebellum.

    PubMed

    Pong, Milton; Horn, Kris M; Gibson, Alan R

    2008-08-01

    The basal ganglia are believed to influence movement via thalamo-cortical projections. However, the basal ganglia may also affect brainstem areas involved in movement control such as the red nucleus. The red nucleus receives input from the cerebellum and projects to motor neurons and premotor neurons in the contralateral brainstem and spinal cord. Are there pathways that allow output from the basal ganglia to influence processing in the red nucleus? This study uses the bidirectional tracer, WGA-HRP, to demonstrate that regions of the cat red nucleus receive input from the basal ganglia as well as from the cerebellum. Output from the entopeduncular nucleus, the feline equivalent of the internal segment of the globus pallidus, provides a modest direct input to the red nucleus as well as a more substantial indirect input via projections to the zona incerta and the fields of Forel. Regions of the red nucleus with input from the basal ganglia also receive input from the cerebellar dentate nucleus and lateral regions of interpositus. The regions of the red nucleus receiving basal gangliar input project to the contralateral facial nucleus and upper segments of the cervical spinal cord. Therefore, the red nucleus provides a junction where output from the basal ganglia can interact with output of the cerebellum for movement control of the head and face. The pathway may provide a substrate for a variety of movement disorders that are seen with diseases of the basal ganglia such as cervical dystonia and Parkinson's facies. PMID:18199482

  15. Automatic Evaluation of Speech Rhythm Instability and Acceleration in Dysarthrias Associated with Basal Ganglia Dysfunction

    PubMed Central

    Rusz, Jan; Hlavni?ka, Jan; ?mejla, Roman; R?ži?ka, Evžen

    2015-01-01

    Speech rhythm abnormalities are commonly present in patients with different neurodegenerative disorders. These alterations are hypothesized to be a consequence of disruption to the basal ganglia circuitry involving dysfunction of motor planning, programing, and execution, which can be detected by a syllable repetition paradigm. Therefore, the aim of the present study was to design a robust signal processing technique that allows the automatic detection of spectrally distinctive nuclei of syllable vocalizations and to determine speech features that represent rhythm instability (RI) and rhythm acceleration (RA). A further aim was to elucidate specific patterns of dysrhythmia across various neurodegenerative disorders that share disruption of basal ganglia function. Speech samples based on repetition of the syllable /pa/ at a self-determined steady pace were acquired from 109 subjects, including 22 with Parkinson’s disease (PD), 11 progressive supranuclear palsy (PSP), 9 multiple system atrophy (MSA), 24 ephedrone-induced parkinsonism (EP), 20 Huntington’s disease (HD), and 23 healthy controls. Subsequently, an algorithm for the automatic detection of syllables as well as features representing RI and RA were designed. The proposed detection algorithm was able to correctly identify syllables and remove erroneous detections due to excessive inspiration and non-speech sounds with a very high accuracy of 99.6%. Instability of vocal pace performance was observed in PSP, MSA, EP, and HD groups. Significantly increased pace acceleration was observed only in the PD group. Although not significant, a tendency for pace acceleration was observed also in the PSP and MSA groups. Our findings underline the crucial role of the basal ganglia in the execution and maintenance of automatic speech motor sequences. We envisage the current approach to become the first step toward the development of acoustic technologies allowing automated assessment of rhythm in dysarthrias. PMID:26258122

  16. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards.

    PubMed

    Kim, Hyoung F; Hikosaka, Okihide

    2015-07-01

    The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders. PMID:25981958

  17. Role of the Indirect Pathway of the Basal Ganglia in Perceptual Decision Making

    PubMed Central

    Wei, Wei; Rubin, Jonathan E.

    2015-01-01

    The basal ganglia (BG) play an important role in motor control, reinforcement learning, and perceptual decision making. Modeling and experimental evidence suggest that, in a speed–accuracy tradeoff, the corticostriatal pathway can adaptively adjust a decision threshold (the amount of information needed to make a choice). In this study, we go beyond the focus of previous works on the direct and hyperdirect pathways to examine the contribution of the indirect pathway of the BG system to decision making in a biophysically based spiking network model. We find that the mechanism of adjusting the decision threshold by plasticity of the corticostriatal connections is effective, provided that the indirect pathway counterbalances the direct pathway in their projections to the output nucleus. Furthermore, in our model, changes within basal ganglia connections similar to those that arise in parkinsonism give rise to strong beta oscillations. Specifically, beta oscillations are produced by an abnormal enhancement of the interactions between the subthalamic nucleus (STN) and the external segment of globus pallidus (GPe) in the indirect pathway, with an oscillation frequency that depends on the excitatory cortical input to the STN and the inhibitory input to the GPe from the striatum. In a parkinsonian state characterized by pronounced beta oscillations, the mean reaction time and range of threshold variation (a measure of behavioral flexibility) are significantly reduced compared with the normal state. Our work thus reveals a specific circuit mechanism for impairments of perceptual decision making associated with Parkinson's disease. PMID:25740532

  18. Encoding by response duration in the basal ganglia.

    PubMed

    Parush, Naama; Arkadir, David; Nevet, Alon; Morris, Genela; Tishby, Naftali; Nelken, Israel; Bergman, Hagai

    2008-12-01

    Several models have suggested that information transmission in the basal ganglia (BG) involves gating mechanisms, where neuronal activity modulates the extent of gate aperture and its duration. Here, we demonstrate that BG response duration is informative about a highly abstract stimulus feature and show that the duration of "gate opening" can indeed be used for information transmission through the BG. We analyzed recordings from three BG locations: the external part of the globus pallidus (GPe), the substantia nigra pars reticulata (SNr), and dopaminergic neurons from the substantia nigra pars compacta (SNc) during performance of a probabilistic visuomotor task. Most (>85%) of the neurons showed significant rate modulation following the appearance of cues predicting future reward. Trial-to-trial mutual information analysis revealed that response duration encoded reward prospects in many (42%) of the responsive SNr neurons, as well as in the SNc (26.9%), and the GPe (29.3%). Whereas the low-frequency discharge SNc neurons responded with only an increase in firing rate, SNr and GPe neurons with high-frequency tonic discharge responded with both increases and decreases. Conversely, many duration-informative neurons in SNr (68%) and GPe (50%) responded with a decreased rather than an increased rate. The response duration was more informative than the extreme (minimal or maximal) amplitude or spike count in responsive bins of duration-informative neurons. Thus response duration is not simply correlated with the discharge rate and can provide additional information to the target structures of the BG. PMID:18842956

  19. Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior

    PubMed Central

    Barter, Joseph W.; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A.; Bartholomew, Ryan A.

    2015-01-01

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860

  20. Observation of sonified movements engages a basal ganglia frontocortical network

    PubMed Central

    2013-01-01

    Background Producing sounds by a musical instrument can lead to audiomotor coupling, i.e. the joint activation of the auditory and motor system, even when only one modality is probed. The sonification of otherwise mute movements by sounds based on kinematic parameters of the movement has been shown to improve motor performance and perception of movements. Results Here we demonstrate in a group of healthy young non-athletes that congruently (sounds match visual movement kinematics) vs. incongruently (no match) sonified breaststroke movements of a human avatar lead to better perceptual judgement of small differences in movement velocity. Moreover, functional magnetic resonance imaging revealed enhanced activity in superior and medial posterior temporal regions including the superior temporal sulcus, known as an important multisensory integration site, as well as the insula bilaterally and the precentral gyrus on the right side. Functional connectivity analysis revealed pronounced connectivity of the STS with the basal ganglia and thalamus as well as frontal motor regions for the congruent stimuli. This was not seen to the same extent for the incongruent stimuli. Conclusions We conclude that sonification of movements amplifies the activity of the human action observation system including subcortical structures of the motor loop. Sonification may thus be an important method to enhance training and therapy effects in sports science and neurological rehabilitation. PMID:23496827

  1. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.

    PubMed

    Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf; Huang, Neng C; Poston, Kathleen L; Bronte-Stewart, Helen M; Schulte, Tilman

    2015-09-01

    Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  2. Modeling the role of the basal ganglia in motor control and motor programming

    E-print Network

    Mao, Zhi-Hong, 1972-

    2005-01-01

    The basal ganglia (BG) are a group of highly interconnected nuclei buried deep in the brain. They are involved in an important range of brain functions, including both lower-level movement control and higher-level cognitive ...

  3. A spiking neural network based on the basal ganglia functional anatomy.

    PubMed

    Baladron, Javier; Hamker, Fred H

    2015-07-01

    We introduce a spiking neural network of the basal ganglia capable of learning stimulus-action associations. We model learning in the three major basal ganglia pathways, direct, indirect and hyperdirect, by spike time dependent learning and considering the amount of dopamine available (reward). Moreover, we allow to learn a cortico-thalamic pathway that bypasses the basal ganglia. As a result the system develops new functionalities for the different basal ganglia pathways: The direct pathway selects actions by disinhibiting the thalamus, the hyperdirect one suppresses alternatives and the indirect pathway learns to inhibit common mistakes. Numerical experiments show that the system is capable of learning sets of either deterministic or stochastic rules. PMID:25863288

  4. The involvement of the primate frontal cortex-basal ganglia system in arbitrary visuomotor association learning

    E-print Network

    Machon, Michelle S

    2009-01-01

    It is the goal of this thesis to examine the frontal cortex-basal ganglia system during arbitrary visuomotor association learning, the forming of arbitrary links between visual stimuli and motor responses (e.g. red means ...

  5. A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors

    E-print Network

    Andalman, Aaron S.

    In songbirds, as in mammals, basal ganglia-forebrain circuits are necessary for the learning and production of complex motor behaviors; however, the precise role of these circuits remains unknown. It has recently been shown ...

  6. Extensive basal ganglia edema caused by a traumatic carotid-cavernous fistula: a rare presentation related to a basal vein of Rosenthal anatomical variation.

    PubMed

    Ract, Isabelle; Drier, Aurélie; Leclercq, Delphine; Sourour, Nader; Gabrieli, Joseph; Yger, Marion; Nouet, Aurélien; Dormont, Didier; Chiras, Jacques; Clarençon, Frédéric

    2014-07-01

    The authors report a very rare presentation of traumatic carotid-cavernous fistula (CCF) with extensive edema of the basal ganglia and brainstem because of an anatomical variation of the basal vein of Rosenthal (BVR). A 45-year-old woman was admitted to the authors' institution for left hemiparesis, dysarthria, and a comatose state caused by right orbital trauma from a thin metal rod. Brain MRI showed a right CCF and vasogenic edema of the right side of the brainstem, right temporal lobe, and basal ganglia. Digital subtraction angiography confirmed a high-flow direct CCF and revealed a hypoplastic second segment of the BVR responsible for the hypertension in inferior striate veins and venous congestion. Endovascular treatment was performed on an emergency basis. One month after treatment, the patient's symptoms and MRI signal abnormalities almost totally disappeared. Basal ganglia and brainstem venous congestion may occur in traumatic CCF in cases of a hypoplastic or agenetic second segment of the BVR and may provoke emergency treatment. PMID:24527815

  7. Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits

    PubMed Central

    Pappas, Samuel S.; Leventhal, Daniel K.; Albin, Roger L.; Dauer, William T.

    2014-01-01

    This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role—Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function. PMID:24947237

  8. Basal ganglia—thalamus and the “crowning enigma”

    PubMed Central

    Garcia-Munoz, Marianela; Arbuthnott, Gordon W.

    2015-01-01

    When Hubel (1982) referred to layer 1 of primary visual cortex as “… a ‘crowning mystery’ to keep area-17 physiologists busy for years to come …” he could have been talking about any cortical area. In the 80’s and 90’s there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1), the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU) input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory (S1) cortex before focusing on motor cortex. PMID:26582979

  9. Basal ganglia-thalamus and the "crowning enigma".

    PubMed

    Garcia-Munoz, Marianela; Arbuthnott, Gordon W

    2015-01-01

    When Hubel (1982) referred to layer 1 of primary visual cortex as "… a 'crowning mystery' to keep area-17 physiologists busy for years to come …" he could have been talking about any cortical area. In the 80's and 90's there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1), the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU) input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory (S1) cortex before focusing on motor cortex. PMID:26582979

  10. Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities

    PubMed Central

    Glatz, Andreas; Bastin, Mark E.; Kiker, Alexander J.; Deary, Ian J.; Wardlaw, Joanna M.; Valdés Hernández, Maria C.

    2015-01-01

    Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. PMID:25451469

  11. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages.

    PubMed

    Hirata, Haruna; Umemori, Juzoh; Yoshioka, Hiroki; Koide, Tsuyoshi; Watanabe, Kazutada; Shimoda, Yasushi

    2016-01-01

    Cell adhesion molecules play important roles in the development of the nervous system. Among the contactin-associated protein (Caspr; also known as Cntnap) family, which belongs to the neurexin superfamily of proteins, Caspr and Caspr2 are indispensable for the formation and maintenance of myelinated nerves. In contrast, a physiological role for Caspr3 remains to be elucidated. This study examines the expression and localization of Caspr3 in the mouse brain using newly generated Caspr3 antibodies. Caspr3 was expressed abundantly between the first and the second postnatal weeks. During this period, Caspr3 was localized especially to the basal ganglia, including the striatum, external segment of the globus pallidus, and substantia nigra, and no gross abnormalities were apparent in the basal ganglia of Caspr3 knockout mice. In the striatum, Caspr3 was expressed by a subpopulation of medium spiny neurons that constitute the direct and indirect pathways. Caspr3 immunostaining was observed as punctate around the cell bodies as well as in the soma. These Caspr3 signals did not, however, overlap with those of synaptic markers. Our findings suggest that Caspr3 may play an important role in basal ganglia development during early postnatal stages. © 2015 Wiley Periodicals, Inc. PMID:26389685

  12. Anhedonia is associated with reduced incentive cue related activation in the basal ganglia.

    PubMed

    Chung, Yu Sun; Barch, Deanna

    2015-12-01

    Research has shown that reward incentives improve cognitive control in motivationally salient situations. Much previous work in this domain has focused on incentive cue-related activity in a number of brain regions, including the dorsolateral prefrontal cortex (DLPFC) and striatum. However, the more sustained changes in functional brain activity during task contexts with incentives have been relatively less explored. Here, we examined both the cue-related and sustained effects of rewards (i.e., monetary incentives) on cognitive control, with a particular focus on the roles of the DLPFC and striatum, using a mixed state-item design. We investigated whether variability in a reward-related trait (i.e., anhedonia) would modulate the sustained and/or the cue-related transient aspects of motivated cognitive control. Twenty-seven healthy individuals performed a modified response conflict task (Padmala & Pessoa, Journal of Cognitive Neuroscience, 23, 3419-3432, 2011) during scanning, in which participants were asked to categorize images as either houses or buildings with either congruent or incongruent overlaid words. Participants performed a baseline condition without knowledge of monetary incentives, followed by reward blocks with monetary incentives on some cued trials (reward cues) for fast and correct responses. We replicated previous work by showing increases in both sustained activity during reward versus baseline blocks and transient. cue-related activity in bilateral DLPFC and the basal ganglia. Importantly, healthy individuals with higher anhedonia showed less of an increase in trial-by-trial activity as a function of reward in the lateral globus pallidus. Together, our results suggest that reduced hedonic experience may be related to abnormality of reward cue-related activity in the basal ganglia. PMID:26105776

  13. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia’s Role in Cognitive Coordination

    PubMed Central

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions by manipulating separately the selection of sources and destinations of information transfers. We suggest that such a mechanism provides an account for several cognitive functions of the basal ganglia. The model also incorporates a possible mechanism by which subsequent transfers of information control the release of dopamine. This signal is used to produce novel stimulus–response associations by internalizing transferred cortical representations in the striatum. We discuss how the model is related to production systems and cognitive architectures. A series of simulations is presented to illustrate how the model can perform simple stimulus–response tasks, develop automatic behaviors, and provide an account of impairments in Parkinson’s and Huntington’s diseases. PMID:20438237

  14. A direct GABAergic output from the basal ganglia to frontal cortex.

    PubMed

    Saunders, Arpiar; Oldenburg, Ian A; Berezovskii, Vladimir K; Johnson, Caroline A; Kingery, Nathan D; Elliott, Hunter L; Xie, Tiao; Gerfen, Charles R; Sabatini, Bernardo L

    2015-05-01

    The basal ganglia are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning. Current models postulate that the basal ganglia modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs, respectively). The basal ganglia thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the basal ganglia, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT(+) cells, which have been historically identified as an extension of the nucleus basalis, as well as ChAT(-) cells, release the inhibitory neurotransmitter GABA (?-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus, GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signalling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the basal ganglia to modulate frontal cortices. PMID:25739505

  15. Selection of cortical dynamics for motor behaviour by the basal ganglia.

    PubMed

    Mannella, Francesco; Baldassarre, Gianluca

    2015-12-01

    The basal ganglia and cortex are strongly implicated in the control of motor preparation and execution. Re-entrant loops between these two brain areas are thought to determine the selection of motor repertoires for instrumental action. The nature of neural encoding and processing in the motor cortex as well as the way in which selection by the basal ganglia acts on them is currently debated. The classic view of the motor cortex implementing a direct mapping of information from perception to muscular responses is challenged by proposals viewing it as a set of dynamical systems controlling muscles. Consequently, the common idea that a competition between relatively segregated cortico-striato-nigro-thalamo-cortical channels selects patterns of activity in the motor cortex is no more sufficient to explain how action selection works. Here, we contribute to develop the dynamical view of the basal ganglia-cortical system by proposing a computational model in which a thalamo-cortical dynamical neural reservoir is modulated by disinhibitory selection of the basal ganglia guided by top-down information, so that it responds with different dynamics to the same bottom-up input. The model shows how different motor trajectories can so be produced by controlling the same set of joint actuators. Furthermore, the model shows how the basal ganglia might modulate cortical dynamics by preserving coarse-grained spatiotemporal information throughout cortico-cortical pathways. PMID:26537483

  16. A review of pathologies associated with high T1W signal intensity in the basal ganglia on Magnetic Resonance Imaging

    PubMed Central

    Zaitout, Zahia; Romanowski, Charles; Karunasaagarar, Kavitasagary; Connolly, Daniel; Batty, Ruth

    2014-01-01

    Summary With several functions and a fundamental influence over cognition and motor functions, the basal ganglia are the cohesive centre of the brain. There are several conditions which affect the basal ganglia and these have various clinical and radiological manifestations. Nevertheless, on magnetic resonance imaging there is a limited differential diagnosis for those conditions presenting with T1 weighted spin echo hyperintensity within the central nervous system in general and the basal ganglia in particular. The aim of our review is to explore some of these basal ganglia pathologies and provide image illustrations. PMID:24900164

  17. A Computational Model of How the Basal Ganglia Produce Sequences

    E-print Network

    Berns, Gregory S.

    propose that a form of local working memory exists in the form of reciprocal connections between ganglia receive massive projections from the prefrontal cortex, suggesting a role in planning and cog Institute of Technology Journal of Cognitive Neuroscience 10:1, pp. 108­121 pathway is comprised of two GABA

  18. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    NASA Astrophysics Data System (ADS)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  19. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination

    ERIC Educational Resources Information Center

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions…

  20. Stuttering and the Basal Ganglia Circuits: A Critical Review of Possible Relations

    ERIC Educational Resources Information Center

    Alm, Per A.

    2004-01-01

    The possible relation between stuttering and the basal ganglia is discussed. Important clues to the pathophysiology of stuttering are given by conditions known to alleviate dysfluency, like the rhythm effect, chorus speech, and singing. Information regarding pharmacologic trials, lesion studies, brain imaging, genetics, and developmental changes…

  1. How may the basal ganglia contribute to auditory categorization and speech perception?

    PubMed Central

    Lim, Sung-Joo; Fiez, Julie A.; Holt, Lori L.

    2014-01-01

    Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood. PMID:25136291

  2. Effects of Focal Basal Ganglia Lesions on Timing and Force Control

    ERIC Educational Resources Information Center

    Aparicio, P.; Diedrichsen, J.; Ivry, R.B.

    2005-01-01

    Studies of basal ganglia dysfunction in humans have generally involved patients with degenerative disorders, notably Parkinson's disease. In many instances, the performance of these patients is compared to that of patients with focal lesions of other brain structures such as the cerebellum. In the present report, we studied the performance of…

  3. Bidirectional Plasticity in Striatonigral Synapses: A Switch to Balance Direct and Indirect Basal Ganglia Pathways

    ERIC Educational Resources Information Center

    Aceves, Jose J.; Rueda-Orozco, Pavel E.; Hernandez-Martinez, Ricardo; Galarraga, Elvira; Bargas, Jose

    2011-01-01

    There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral…

  4. Basal Ganglia Atrophy in Prodromal Huntington's Disease Is Detectable Over One Year Using Automated Segmentation

    E-print Network

    Aron, Adam

    Basal Ganglia Atrophy in Prodromal Huntington's Disease Is Detectable Over One Year Using Automated disorders. VC 2011 Movement Disorder Society Key Words: Huntington's disease; prodromal HD; lon- gitudinal that modify the course of Huntington's disease (HD).1 For example, methods such as RNA interfer- ence have

  5. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    PubMed Central

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  6. Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons

    PubMed Central

    Freeze, Benjamin S.; Kravitz, Alexxai V.; Hammack, Nora; Berke, Joshua D.

    2013-01-01

    The direct and indirect efferent pathways from striatum ultimately reconverge to influence basal ganglia output nuclei, which in turn regulate behavior via thalamocortical and brainstem motor circuits. However, the distinct contributions of these two efferent pathways in shaping basal ganglia output are not well understood. We investigated these processes using selective optogenetic control of the direct and indirect pathways, in combination with single-unit recording in the basal ganglia output nucleus substantia nigra pars reticulata (SNr) in mice. Optogenetic activation of striatal direct and indirect pathway projection neurons produced diverse cellular responses in SNr neurons, with stimulation of each pathway eliciting both excitations and inhibitions. Despite this response heterogeneity, the effectiveness of direct pathway stimulation in producing movement initiation correlated selectively with the subpopulation of inhibited SNr neurons. In contrast, effective indirect pathway-mediated motor suppression was most strongly influenced by excited SNr neurons. Our results support the theory that key basal ganglia output neurons serve as an inhibitory gate over motor output that can be opened or closed by striatal direct and indirect pathways, respectively. PMID:24259575

  7. Role of the Basal Ganglia in Category Learning: How Do Patients With Parkinson's Disease Learn?

    E-print Network

    Gluck, Mark

    Role of the Basal Ganglia in Category Learning: How Do Patients With Parkinson's Disease Learn? D showed that patients with Parkinson's disease exhibit different patterns of strategy use. Specifically of individuals with Parkinson's disease continued to rely on simple single-cue learning strategies throughout

  8. Differential contributions of basal ganglia and thalamus to song initiation, tempo, and structure.

    PubMed

    Chen, J R; Stepanek, L; Doupe, A J

    2014-01-01

    Basal ganglia-thalamocortical circuits are multistage loops critical to motor behavior, but the contributions of individual components to overall circuit function remain unclear. We addressed these issues in a songbird basal ganglia-thalamocortical circuit (the anterior forebrain pathway, AFP) specialized for singing and critical for vocal plasticity. The major known afferent to the AFP is the premotor cortical nucleus, HVC. Surprisingly, previous studies found that lesions of HVC alter song but do not eliminate the ability of the AFP to drive song production. We therefore used this AFP-driven song to investigate the role of basal ganglia and thalamus in vocal structure, tempo, and initiation. We found that lesions of the striatopallidal component (Area X) slowed song and simplified its acoustic structure. Elimination of the thalamic component (DLM) further simplified the acoustic structure of song and regularized its rhythm but also dramatically reduced song production. The acoustic structure changes imply that sequential stages of the AFP each add complexity to song, but the effects of DLM lesions on song initiation suggest that thalamus is a locus of additional inputs important to initiation. Together, our results highlight the cumulative contribution of stages of a basal ganglia-thalamocortical circuit to motor output along with distinct involvement of thalamus in song initiation or "gating." PMID:24174647

  9. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease?

    PubMed Central

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J.; Bain, Peter G.; Düzel, Emrah; Husain, Masud

    2013-01-01

    Background In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Methods Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. Results We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Conclusions Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. PMID:24025315

  10. The role of the basal ganglia in learning and memory: Insight from Parkinson's Karin Foerde

    E-print Network

    Ochsner, Kevin

    Review The role of the basal ganglia in learning and memory: Insight from Parkinson's disease Karin: Striatum Learning Dopamine Parkinson's disease Hippocampus a b s t r a c t It has long been known with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how

  11. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    ERIC Educational Resources Information Center

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many…

  12. The Differential Effects of Thalamus and Basal Ganglia on Facial Emotion Recognition

    ERIC Educational Resources Information Center

    Cheung, Crystal C. Y.; Lee, Tatia M. C.; Yip, James T. H.; King, Kristin E.; Li, Leonard S. W.

    2006-01-01

    This study examined if subcortical stroke was associated with impaired facial emotion recognition. Furthermore, the lateralization of the impairment and the differential profiles of facial emotion recognition deficits with localized thalamic or basal ganglia damage were also studied. Thirty-eight patients with subcortical strokes and 19 matched…

  13. Dissociation between medial temporal lobe and basal ganglia memory systems in schizophrenia

    E-print Network

    Gluck, Mark

    Dissociation between medial temporal lobe and basal ganglia memory systems in schizophrenia with schizophrenia. Acquired equivalence is a phenomenon in which prior training to treat two stimuli as equivalent generalization. Forty-three patients with DSM-IV schizophrenia and 28 matched healthy controls participated

  14. Interaction between basal ganglia and limbic circuits in learning and memory processes.

    PubMed

    Calabresi, Paolo; Picconi, Barbara; Tozzi, Alessandro; Ghiglieri, Veronica

    2016-01-01

    Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of ?-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes. PMID:26372625

  15. Neuroanatomical Correlates of Intelligence in Healthy Young Adults: The Role of Basal Ganglia Volume

    PubMed Central

    Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes

    2014-01-01

    Background In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. Methodology/Principal Findings We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r?=?0.372, p?=?0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r?=?0.507, p?=?0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r?=?0.306, p?=?0.04 and r?=?0.459, p?=?0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. Conclusions/Significance The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to cognitive performance. PMID:24699871

  16. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements

    PubMed Central

    Bednark, Jeffery G.; Campbell, Megan E. J.; Cunnington, Ross

    2015-01-01

    Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g., rhythm) and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis (MVPA), we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the supplementary motor area (SMA) and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia. PMID:26283945

  17. Decreased Basal Ganglia Activation in Subjects with Chronic Fatigue Syndrome: Association with Symptoms of Fatigue

    PubMed Central

    Miller, Andrew H.; Jones, James F.; Drake, Daniel F.; Tian, Hao; Unger, Elizabeth R.; Pagnoni, Giuseppe

    2014-01-01

    Reduced basal ganglia function has been associated with fatigue in neurologic disorders, as well as in patients exposed to chronic immune stimulation. Patients with chronic fatigue syndrome (CFS) have been shown to exhibit symptoms suggestive of decreased basal ganglia function including psychomotor slowing, which in turn was correlated with fatigue. In addition, CFS patients have been found to exhibit increased markers of immune activation. In order to directly test the hypothesis of decreased basal ganglia function in CFS, we used functional magnetic resonance imaging to examine neural activation in the basal ganglia to a reward-processing (monetary gambling) task in a community sample of 59 male and female subjects, including 18 patients diagnosed with CFS according to 1994 CDC criteria and 41 non-fatigued healthy controls. For each subject, the average effect of winning vs. losing during the gambling task in regions of interest (ROI) corresponding to the caudate nucleus, putamen, and globus pallidus was extracted for group comparisons and correlational analyses. Compared to non-fatigued controls, patients with CFS exhibited significantly decreased activation in the right caudate (p?=?0.01) and right globus pallidus (p?=?0.02). Decreased activation in the right globus pallidus was significantly correlated with increased mental fatigue (r2?=?0.49, p?=?0.001), general fatigue (r2?=?0.34, p?=?0.01) and reduced activity (r2?=?0.29, p?=?0.02) as measured by the Multidimensional Fatigue Inventory. No such relationships were found in control subjects. These data suggest that symptoms of fatigue in CFS subjects were associated with reduced responsivity of the basal ganglia, possibly involving the disruption of projections from the globus pallidus to thalamic and cortical networks. PMID:24858857

  18. Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat

    PubMed Central

    Sharott, Andrew; Magill, Peter J; Bolam, J Paul; Brown, Peter

    2005-01-01

    Population activity in cortico-basal ganglia circuits is synchronized at different frequencies according to brain state. However, the structures that are likely to drive the synchronization of activity in these circuits remain unclear. Furthermore, it is not known whether the direction of transmission of activity is fixed or dependent on brain state. We have used the directed transfer function (DTF) to investigate the direction in which coherent activity is effectively driven in cortico-basal ganglia circuits. Local field potentials (LFPs) were simultaneously recorded in the subthalamic nucleus (STN), globus pallidus (GP) and substantia nigra pars reticulata (SNr), together with the ipsilateral frontal electrocorticogram (ECoG) of anaesthetized rats. Directional analysis was performed on recordings made during robust cortical slow-wave activity (SWA) and ‘global activation’. During SWA, there was coherence at ?1 Hz between ECoG and basal ganglia LFPs, with much of the coherent activity directed from cortex to basal ganglia. There were similar coherent activities at ?1 Hz within the basal ganglia, with more activity directed from SNr to GP and STN, and from STN to GP rather than vice versa. During global activation, peaks in coherent activity were seen at higher frequencies (15–60 Hz), with most coherence also directed from cortex to basal ganglia. Within the basal ganglia, however, coherence was predominantly directed from GP to STN and SNr. Together, these results highlight a lead role for the cortex in activity relationships with the basal ganglia, and further suggest that the effective direction of coupling between basal ganglia nuclei is dynamically organized according to brain state, with activity relationships involving the GP displaying the greatest capacity to change. PMID:15550466

  19. A minimally invasive anterior skull base approach for evacuation of a basal ganglia hemorrhage.

    PubMed

    Ding, Dale; Przybylowski, Colin J; Starke, Robert M; Sterling Street, R; Tyree, Amber E; Webster Crowley, R; Liu, Kenneth C

    2015-11-01

    We describe the technical nuances of a minimally invasive anterior skull base approach for microsurgical evacuation of a large basal ganglia hematoma through an endoport. Patients who suffer from large spontaneous intracerebral hemorrhages (ICH) of the basal ganglia have a very poor prognosis. However, the benefit of surgery for the management of ICH is controversial. The development of endoport technology has allowed for minimally invasive access to subcortical lesions, and may offer unique advantages over conventional surgical techniques due to less disruption of the overlying cortex and white matter fiber tracts. A 77-year-old man presented with a hypertensive ICH of the right putamen, measuring 9cm in maximal diameter and 168cm(3) in volume. We planned an endoport trajectory through the long axis of the hematoma using frameless stereotactic neuronavigation. In order to access the optimal cortical entry point at the lateral aspect of the basal frontal lobe, a miniature modified orbitozygomatic skull base craniotomy was performed through an incision along the superior border of the right eyebrow. Using the BrainPath endoport system (NICO, Indianapolis, IN, USA), the putaminal hematoma was successfully evacuated, resulting in an 87% postoperative reduction in ICH volume. Thus, we show that, in appropriately selected cases, endoport-assisted microsurgery is safe and effective for the evacuation of large ICH. Furthermore, minimally invasive anterior skull base approaches can be employed to expand the therapeutic potential of endoport-assisted approaches to include subcortical lesions, such as hematomas of the basal ganglia. PMID:26142050

  20. Endoscopic Evacuation of Basal Ganglia Hemorrhage via Keyhole Approach Using an Adjustable Cannula in Comparison with Craniotomy

    PubMed Central

    Zhang, Heng-Zhu; Li, Yu-Ping; Yan, Zheng-cun; Wang, Xing-dong; She, Lei; Wang, Xiao-dong; Dong, Lun

    2014-01-01

    Neuroendoscopic (NE) surgery as a minimal invasive treatment for basal ganglia hemorrhage is a promising approach. The present study aims to evaluate the efficacy and safety of NE approach using an adjustable cannula to treat basal ganglia hemorrhage. In this study, we analysed the clinical and radiographic outcomes between NE group (21 cases) and craniotomy group (30 cases). The results indicated that NE surgery might be an effective and safe approach for basal ganglia haemorrhage, and it is also suggested that NE approach may improve good functional recovery. However, NE approach only suits the selected patient, and the usefulness of NE approach needs further randomized controlled trials (RCTs) to evaluate. PMID:24949476

  1. Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy

    PubMed Central

    Schroll, Henning; Hamker, Fred H.

    2013-01-01

    Over the past 15 years, computational models have had a considerable impact on basal-ganglia research. Most of these models implement multiple distinct basal-ganglia pathways and assume them to fulfill different functions. As there is now a multitude of different models, it has become complex to keep track of their various, sometimes just marginally different assumptions on pathway functions. Moreover, it has become a challenge to oversee to what extent individual assumptions are corroborated or challenged by empirical data. Focusing on computational, but also considering non-computational models, we review influential concepts of pathway functions and show to what extent they are compatible with or contradict each other. Moreover, we outline how empirical evidence favors or challenges specific model assumptions and propose experiments that allow testing assumptions against each other. PMID:24416002

  2. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease

    SciTech Connect

    Akiyama, H.; Harrop, R.; McGeer, P.L.; Peppard, R.; McGeer, E.G.

    1989-04-01

    We detected crossed cerebellar as well as uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease by positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose. We studied a series of 26 consecutive, clinically diagnosed Alzheimer cases, including 6 proven by later autopsy, and compared them with 9 age-matched controls. We calculated asymmetry indices (AIs) of cerebral metabolic rate for matched left-right regions of interest (ROIs) and determined the extent of diaschisis by correlative analyses. For the Alzheimer group, we found cerebellar AIs correlated negatively, and thalamic AIs positively, with those of the cerebral hemisphere and frontal, temporal, parietal, and angular cortices, while basal ganglia AIs correlated positively with frontal cortical AIs. The only significant correlation of AIs for normal subjects was between the thalamus and cerebral hemisphere. These data indicate that PET is a sensitive technique for detecting diaschisis.

  3. Balanced activity in basal ganglia projection pathways is critical for contraversive movements

    PubMed Central

    Tecuapetla, Fatuel; Matias, Sara; Dugue, Guillaume P.; Mainen, Zachary F.; Costa, Rui M.

    2014-01-01

    The basal ganglia, and the striatum in particular, have been implicated in the generation of contraversive movements. The striatum projects to downstream basal ganglia nuclei through two main circuits, originating in striatonigral and striatopallidal neurons, and different models postulate that the two pathways can work in opposition or synergistically. Here we show striatonigral and striatopallidal neurons are concurrently active during spontaneous contraversive movements. Furthermore, we show that unilateral optogenetic inhibition of either or both projection pathways disrupts contraversive movements. Consistently, simultaneous activation of both neuron types produces contraversive movements. Still, we also show that imbalanced activity between the pathways can result in opposing movements being driven by each projection pathway. These data show that balanced activity in both striatal projection pathways is critical for the generation of contraversive movements and highlights that imbalanced activity between the two projection pathways can result in opposing motor output. PMID:25002180

  4. The basal ganglia select the expected sensory input used for predictive coding

    PubMed Central

    Colder, Brian

    2015-01-01

    While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes “emulations” as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action’s associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding. PMID:26441627

  5. The basal ganglia select the expected sensory input used for predictive coding.

    PubMed

    Colder, Brian

    2015-01-01

    While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding. PMID:26441627

  6. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations

    NASA Astrophysics Data System (ADS)

    Brainard, Michael S.; Doupe, Allison J.

    2000-04-01

    Birdsong, like speech, is a learned vocal behaviour that relies greatly on hearing; in both songbirds and humans the removal of auditory feedback by deafening leads to a gradual deterioration of adult vocal production. Here we investigate the neural mechanisms that contribute to the processing of auditory feedback during the maintenance of song in adult zebra finches. We show that the deleterious effects on song production that normally follow deafening can be prevented by a second insult to the nervous system-the lesion of a basal ganglia-forebrain circuit. The results suggest that the removal of auditory feedback leads to the generation of an instructive signal that actively drives non-adaptive changes in song; they also suggest that this instructive signal is generated within (or conveyed through) the basal ganglia-forebrain pathway. Our findings provide evidence that cortical-basal ganglia circuits may participate in the evaluation of sensory feedback during calibration of motor performance, and demonstrate that damage to such circuits can have little effect on previously learned behaviour while conspicuously disrupting the capacity to adaptively modify that behaviour.

  7. Using point process models to determine the impact of visual cues on basal ganglia activity and behavior of Parkinson's patients

    E-print Network

    Brown, Emery N.

    Deep brain stimulation is an effective therapy for Parkinson's disease (PD) that has enabled microelectrode recordings from single-unit cells in the sub-thalamic nucleus (STN) of the basal ganglia. This rare data is important ...

  8. Competing basal ganglia pathways determine the difference between stopping and deciding not to go.

    PubMed

    Dunovan, Kyle; Lynch, Brighid; Molesworth, Tara; Verstynen, Timothy

    2015-01-01

    The architecture of corticobasal ganglia pathways allows for many routes to inhibit a planned action: the hyperdirect pathway performs fast action cancellation and the indirect pathway competitively constrains execution signals from the direct pathway. We present a novel model, principled off of basal ganglia circuitry, that differentiates control dynamics of reactive stopping from intrinsic no-go decisions. Using a nested diffusion model, we show how reactive braking depends on the state of an execution process. In contrast, no-go decisions are best captured by a failure of the execution process to reach the decision threshold due to increasing constraints on the drift rate. This model accounts for both behavioral and functional MRI (fMRI) responses during inhibitory control tasks better than alternative models. The advantage of this framework is that it allows for incorporating the effects of context in reactive and proactive control into a single unifying parameter, while distinguishing action cancellation from no-go decisions. PMID:26402462

  9. Increased volume and impaired function: the role of the basal ganglia in writer’s cramp

    PubMed Central

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Hefter, Harald; Hallett, Mark; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2015-01-01

    Introduction The pathophysiology of writer's cramp, a task-specific dystonia, remains unclear. The objective of this study was to investigate the basal ganglia circuit and the cerebellum during a complex motor sequence learning task carried out with the nonaffected hand in writer's cramp patients. Methods We applied structural and functional imaging in 22 writer's cramp patients and 28 matched controls using 3T MRI. With the asymptomatic left hand all participants learned a complex, sequential, five-element sequence-tapping task as accurately and quickly as possible. Functional imaging was measured during a repeated (15 times), fixed block design with tapping (30 sec) and rest (30 sec). Additionally, gray matter volume of the basal ganglia was analyzed using voxel-based morphometry (VBM). Results While behavior was comparable between groups, after small volume correction the anterior part of the right putamen and the left globus pallidus exhibited reduced blood oxygen level-dependent (BOLD) activity in patients during the sequential finger-tapping task. VBM analysis showed larger gray matter volume bilateral in the posterior part of the putamen and globus pallidus. There were no group differences in the cerebellum. Conclusion The results indicate an impairment of anterior basal ganglia loops involved in producing complex sequential movements of the unaffected hand. These findings are in line with previous reports of reduced neuronal activity in the globus pallidus internus. Higher gray matter volume of the putamen and globus pallidus may stem from elevated activity of the direct pathway, which could reflect a compensatory phenomenon or a primary predisposition, that is, endophenotypic trait. PMID:25642386

  10. Rhythmic Cortical Neurons Increase their Oscillations and Sculpt Basal Ganglia Signaling During Motor Learning

    PubMed Central

    Day, Nancy F.; Nick, Teresa A.

    2014-01-01

    The function and modulation of neural circuits underlying motor skill may involve rhythmic oscillations (Feller, 1999; Marder and Goaillard, 2006; Churchland et al., 2012). In the proposed pattern generator for birdsong, the cortical nucleus HVC, the frequency and power of oscillatory bursting during singing increases with development (Crandall et al., 2007; Day et al., 2009). We examined the maturation of cellular activity patterns that underlie these changes. Single unit ensemble recording combined with antidromic identification (Day et al., 2011) was used to study network development in anesthetized zebra finches. Autocovariance quantified oscillations within single units. A subset of neurons oscillated in the theta/alpha/mu/beta range (8–20 Hz), with greater power in adults compared to juveniles. Across the network, the normalized oscillatory power in the 8–20 Hz range was greater in adults than juveniles. In addition, the correlated activity between rhythmic neuron pairs increased with development. We next examined the functional impact of the oscillators on the output neurons of HVC. We found that the firing of oscillatory neurons negatively correlated with the activity of cortico-basal ganglia neurons (HVCXs), which project to Area X (the song basal ganglia). If groups of oscillators work together to tonically inhibit and precisely control the spike timing of adult HVCXs with coordinated release from inhibition, then the activity of HVCXs in juveniles should be decreased relative to adults due to uncorrelated, tonic inhibition. Consistent with this hypothesis, HVCXs had lower activity in juveniles. These data reveal network changes that shape cortical-to-basal ganglia signaling during motor learning. PMID:23776169

  11. Rhythmic cortical neurons increase their oscillations and sculpt basal ganglia signaling during motor learning.

    PubMed

    Day, Nancy F; Nick, Teresa A

    2013-10-01

    The function and modulation of neural circuits underlying motor skill may involve rhythmic oscillations (Feller, 1999; Marder and Goaillard, 2006; Churchland et al., 2012). In the proposed pattern generator for birdsong, the cortical nucleus HVC, the frequency and power of oscillatory bursting during singing increases with development (Crandall et al., 2007; Day et al., 2009). We examined the maturation of cellular activity patterns that underlie these changes. Single unit ensemble recording combined with antidromic identification (Day et al., 2011) was used to study network development in anesthetized zebra finches. Autocovariance quantified oscillations within single units. A subset of neurons oscillated in the theta/alpha/mu/beta range (8-20 Hz), with greater power in adults compared to juveniles. Across the network, the normalized oscillatory power in the 8-20 Hz range was greater in adults than juveniles. In addition, the correlated activity between rhythmic neuron pairs increased with development. We next examined the functional impact of the oscillators on the output neurons of HVC. We found that the firing of oscillatory neurons negatively correlated with the activity of cortico-basal ganglia neurons (HVC(X)s), which project to Area X (the song basal ganglia). If groups of oscillators work together to tonically inhibit and precisely control the spike timing of adult HVC(X)s with coordinated release from inhibition, then the activity of HVC(X)s in juveniles should be decreased relative to adults due to uncorrelated, tonic inhibition. Consistent with this hypothesis, HVC(X)s had lower activity in juveniles. These data reveal network changes that shape cortical-to-basal ganglia signaling during motor learning. PMID:23776169

  12. Models of basal ganglia and cerebellum for sensorimotor integration and predictive control

    NASA Astrophysics Data System (ADS)

    Jabri, Marwan A.; Huang, Jerry; Coenen, Olivier J. D.; Sejnowski, Terrence J.

    2000-10-01

    This paper presents a sensorimotor architecture integrating computational models of a cerebellum and a basal ganglia and operating on a microrobot. The computational models enable a microrobot to learn to track a moving object and anticipate future positions using a CCD camera. The architecture features pre-processing modules for coordinate transformation and instantaneous orientation extraction. Learning of motor control is implemented using predictive Hebbian reinforcement-learning algorithm in the basal ganglia model. Learning of sensory predictions makes use of a combination of long-term depression (LTD) and long-term potentiation (LTP) adaptation rules within the cerebellum model. The basal ganglia model uses the visual inputs to develop sensorimotor mapping for motor control, while the cerebellum module uses robot orientation and world- coordinate transformed inputs to predict the location of the moving object in a robot centered coordinate system. We propose several hypotheses about the functional role of cell populations in the cerebellum and argue that mossy fiber projections to the deep cerebellar nucleus (DCN) could play a coordinate transformation role and act as gain fields. We propose that such transformation could be learnt early in the brain development stages and could be guided by the activity of the climbing fibers. Proprioceptor mossy fibers projecting to the DCN and providing robot orientation with respect to a reference system could be involved in this case. Other mossy fibers carrying visual sensory input provide visual patterns to the granule cells. The combined activities of the granule and the Purkinje cells store spatial representations of the target patterns. The combinations of mossy and Purkinje projections to the DCN provide a prediction of the location of the moving target taking into consideration the robot orientation. Results of lesion simulations based on our model show degradations similar to those reported in cerebellar lesion studies on monkeys.

  13. Role of the basal ganglia in the control of sleep and wakefulness

    PubMed Central

    Lazarus, Michael; Chen, Jiang-Fan; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    The basal ganglia (BG) act as a cohesive functional unit that regulates motor function, habit formation, and reward/addictive behaviors; but the debate has only recently started on how the BG maintain wakefulness and suppress sleep to achieve all these fundamental functions of the BG. Neurotoxic lesioning, pharmacological approaches, and the behavioral analyses of genetically modified animals revealed that the striatum and globus pallidus are important for the control of sleep and wakefulness. Here, we discuss anatomical and molecular mechanisms for sleep-wake regulation in the BG and propose a plausible model in which the nucleus accumbens integrates behavioral processes with wakefulness through adenosine and dopamine receptors. PMID:23465424

  14. Enhancing Neuroplasticity in the Basal Ganglia: The Role of Exercise in Parkinson’s Disease

    PubMed Central

    Petzinger, Giselle M.; Fisher, Beth E.; Van Leeuwen, Jon-Eric; Vukovic, Marta; Akopian, Garnik; Meshul, Charlie K.; Holschneider, Daniel P.; Nacca, Angelo; Walsh, John P.; Jakowec, Michael W.

    2014-01-01

    Epidemiological and clinical trials have suggested that exercise is beneficial for patients with Parkinson’s disease (PD). However, the underlying mechanisms and potential for disease modification are currently unknown. This review presents current findings from our laboratories in patients with PD and animal models. The data indicate that alterations in both dopaminergic and glutamatergic neurotransmission, induced by activity-dependent (exercise) processes, may mitigate the cortically driven hyper-excitability in the basal ganglia normally observed in the parkinsonian state. These insights have potential to identify novel therapeutic treatments capable of reversing or delaying disease progression in PD. PMID:20187247

  15. Functional correlates of exaggerated oscillatory activity in basal ganglia output in hemiparkinsonian rats.

    PubMed

    Brazhnik, Elena; Novikov, Nikolay; McCoy, Alex J; Cruz, Ana V; Walters, Judith R

    2014-11-01

    Exaggerated beta range (13-30Hz) synchronized activity is observed in the basal ganglia of Parkinson's disease (PD) patients during implantation of deep brain stimulation electrodes and is thought to contribute to the motor symptoms of this disorder. To explore the translational potential of similar activity observed in a rat model of PD, local field potentials (LFPs) and spiking activity in basal ganglia output were characterized in rats with unilateral dopamine cell lesion during a range of behaviors. A circular treadmill was used to assess activity during walking; hemiparkinsonian rats could maintain a steady gait when oriented ipsiversive to the lesioned hemisphere, but were less effective at walking when oriented contraversive to lesion. Dramatic increases in substantia nigra pars reticulata (SNpr) LFP oscillatory activity and spike-LFP synchronization were observed within the beta/low gamma range (12-40Hz) in the lesioned hemisphere, relative to the non-lesioned hemisphere, with the dominant frequency of spike-LFP entrainment and LFP power varying with behavioral state. At 3weeks postlesion, the mean dominant entrainment frequency during ipsiversive treadmill walking and grooming was 34Hz. Other behaviors were associated with lower mean entrainment frequencies: 27-28Hz during alert non-walking and REM, 17Hz during rest and 21Hz during urethane anesthesia with sensory stimulation. SNpr spike-LFP entrainment frequency was stable during individual treadmill walking epochs, but increased gradually over weeks postlesion. In contrast, SNpr LFP power in the 25-40Hz range was greatest at the initiation of each walking epoch, and decreased during walking to stabilize by 6min at 49% of initial values. Power was further modulated in conjunction with the 1.5s stepping rhythm. Administration of l-dopa improved contraversive treadmill walking in correlation with a reduction in SNpr 25-40Hz LFP power and spike synchronization in the dopamine cell lesioned hemisphere. These effects were reversed by the serotonergic 1A agonist, 8-OH-DPAT. While the prominent spike-LFP phase locking observed during ongoing motor activity in the hemiparkinsonian rats occurs at frequencies intriguingly higher than in PD patients, the synchronized activity in the SNpr of this animal model has much in common with oscillatory activity recorded from the basal ganglia of the PD patients. Results support the potential of this model for providing insight into relationships between synchronization of basal ganglia output induced by loss of dopamine and motor symptoms in PD. PMID:25084518

  16. Projections of the basal ganglia to the zona incerta of the dog diencephalon.

    PubMed

    Chivileva, O G; Gorbachevskaya, A I

    2008-09-01

    Retrograde axonal transport of horseradish peroxidase was used to show that the projections of the globus pallidus, entopeduncular nucleus, substantia nigra, and pedunculopontine tegmental nucleus in dogs are directed to all segments of the zone incerta. The experiments reported here identified no topical features in the organization of these projections in dogs, as application of marker to different areas of the zona incerta yielded similar distributions of labeled neurons in the basal ganglia. No striatal projections to the zone incerta were found. PMID:18709459

  17. Identifying the Basal Ganglia Network Model Markers for Medication-Induced Impulsivity in Parkinson's Disease Patients

    PubMed Central

    Balasubramani, Pragathi Priyadharsini; Chakravarthy, V. Srinivasa; Ali, Manal; Ravindran, Balaraman; Moustafa, Ahmed A.

    2015-01-01

    Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its impairment in PD. The results presented here not only show that computational modelling can be used as a valuable tool for understanding and interpreting clinical data, but they also show that computational modeling has the potential to become an invaluable tool to predict the onset of behavioral changes during disease progression. PMID:26042675

  18. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia

    SciTech Connect

    Weiner, D.M. Howard Hughes Medical Inst., Bethesda, MD ); Levey, A.I. Johns Hopkins Univ., Baltimore, MD ); Brann, M.R. )

    1990-09-01

    Within the basal ganglia, acetylcholine and dopamine play a central role in the extrapyramidal control of motor function. The physiologic effects of these neurotransmitters are mediated by a diversity of receptor subtypes, several of which have now been cloned. Muscarinic acetylcholine receptors are encoded by five genes (m1-m5), and of the two known dopamine receptor subtypes (D1 and D2) the D2 receptor gene has been characterized. To gain insight into the physiological roles of each of these receptor subtypes, the authors prepared oligodeoxynucleotide probes to localize receptor subtype mRNAs within the rat striatum and substantia nigra by in situ hybridization histochemistry. Within the striatum, three muscarinic (m1, m2, m4) receptor mRNAs and the D2 receptor mRNA were detected. The m1 mRNA was expressed in most neurons; the m2 mRNA, in neurons which were both very large and rare; and the m4 and D2 mRNAs, in 40-50% of the neurons, one-third of which express both mRNAs. Within the substantia nigra, pars compacta, only the m5 and D2 mRNAs were detected, and most neurons expressed both mRNAs. These data provide anatomical evidence for the identity of the receptor subtypes which mediate the diverse effects of muscarinic and dopaminergic drugs on basal ganglia function.

  19. Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory

    PubMed Central

    Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J.; Düzel, Emrah

    2015-01-01

    The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. PMID:26420783

  20. Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory.

    PubMed

    Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J; Düzel, Emrah

    2015-12-01

    The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. PMID:26420783

  1. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    SciTech Connect

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A. )

    1991-02-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.

  2. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers.

    PubMed

    Toyomura, Akira; Fujii, Tetsunoshin; Kuriki, Shinya

    2015-04-01

    The neural mechanisms underlying stuttering are not well understood. It is known that stuttering appears when persons who stutter speak in a self-paced manner, but speech fluency is temporarily increased when they speak in unison with external trigger such as a metronome. This phenomenon is very similar to the behavioral improvement by external pacing in patients with Parkinson's disease. Recent imaging studies have also suggested that the basal ganglia are involved in the etiology of stuttering. In addition, previous studies have shown that the basal ganglia are involved in self-paced movement. Then, the present study focused on the basal ganglia and explored whether long-term speech-practice using external triggers can induce modification of the basal ganglia activity of stuttering speakers. Our study of functional magnetic resonance imaging revealed that stuttering speakers possessed significantly lower activity in the basal ganglia than fluent speakers before practice, especially when their speech was self-paced. After an 8-week speech practice of externally triggered speech using a metronome, the significant difference in activity between the two groups disappeared. The cerebellar vermis of stuttering speakers showed significantly decreased activity during the self-paced speech in the second compared to the first experiment. The speech fluency and naturalness of the stuttering speakers were also improved. These results suggest that stuttering is associated with defective motor control during self-paced speech, and that the basal ganglia and the cerebellum are involved in an improvement of speech fluency of stuttering by the use of external trigger. PMID:25595501

  3. Evolutionary and developmental contributions for understanding the organization of the basal ganglia.

    PubMed

    Medina, Loreta; Abellán, Antonio; Vicario, Alba; Desfilis, Ester

    2014-01-01

    Herein we take advantage of the evolutionary developmental biology approach in order to improve our understanding of both the functional organization and the evolution of the basal ganglia, with a particular focus on the globus pallidus. Therefore, we review data on the expression of developmental regulatory genes (that play key roles in patterning, regional specification and/or morphogenesis), gene function and fate mapping available in different vertebrate species, which are useful to (a) understand the embryonic origin and basic features of each neuron subtype of the basal ganglia (including neurotransmitter/neuropeptide expression and connectivity patterns); (b) identify the same (homologous) subpopulations in different species and the degree of variation or conservation throughout phylogeny, and (c) identify possible mechanisms that may explain the evolution of the basal ganglia. These data show that the globus pallidus of rodents contains two major subpopulations of GABAergic projection neurons: (1) neurons containing parvalbumin and neurotensin-related hexapetide (LANT6), with descending projections to the subthalamus and substantia nigra, which originate from progenitors expressing Nkx2.1, primarily located in the pallidal embryonic domain (medial ganglionic eminence), and (2) neurons containing preproenkephalin (and possibly calbindin), with ascending projections to the striatum, which appear to originate from progenitors expressing Islet1 in the striatal embryonic domain (lateral ganglionic eminence). Based on data on Nkx2.1, Islet1, LANT6 and proenkephalin, it appears that both cell types are also present in the globus pallidus/dorsal pallidum of chicken, frog and lungfish. In chicken, the globus pallidus also contains neurons expressing substance P (SP), perhaps originating in the striatal embryonic domain. In ray-finned and cartilaginous fishes, the pallidum contains at least the Nkx2.1 lineage cell population (likely representing the neurons containing LANT6). Based on the presence of neurons containing enkephalin or SP, it is possible that the pallidum of these animals also includes the Islet1 lineage cell subpopulation, and both neuron subtypes were likely present in the pallidum of the first jawed vertebrates. In contrast, lampreys (jawless fishes) appear to lack the pallidal embryonic domain and the Nkx2.1 lineage cell population that mainly characterize the pallidum in jawed vertebrates. In the absence of data in other jawless fishes, the ancestral condition in vertebrates remains to be elucidated. Perhaps, a major event in telencephalic evolution was the novel expression of Nkx2.1 in the subpallium, which has been related to Hedgehog expression and changes in the regulatory region of Nkx2.1. PMID:24776992

  4. Competing basal ganglia pathways determine the difference between stopping and deciding not to go

    PubMed Central

    Dunovan, Kyle; Lynch, Brighid; Molesworth, Tara; Verstynen, Timothy

    2015-01-01

    The architecture of corticobasal ganglia pathways allows for many routes to inhibit a planned action: the hyperdirect pathway performs fast action cancellation and the indirect pathway competitively constrains execution signals from the direct pathway. We present a novel model, principled off of basal ganglia circuitry, that differentiates control dynamics of reactive stopping from intrinsic no-go decisions. Using a nested diffusion model, we show how reactive braking depends on the state of an execution process. In contrast, no-go decisions are best captured by a failure of the execution process to reach the decision threshold due to increasing constraints on the drift rate. This model accounts for both behavioral and functional MRI (fMRI) responses during inhibitory control tasks better than alternative models. The advantage of this framework is that it allows for incorporating the effects of context in reactive and proactive control into a single unifying parameter, while distinguishing action cancellation from no-go decisions. DOI: http://dx.doi.org/10.7554/eLife.08723.001 PMID:26402462

  5. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry.

    PubMed

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-09-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders. PMID:25907747

  6. Impaired Frontal-Basal Ganglia Connectivity in Male Adolescents with Conduct Disorder

    PubMed Central

    Gao, Junling; Shi, Huqing; Wang, Xiang; Jiang, Yali; Ming, Qingsen; Gao, Yidian; Ma, Ren; Yao, Shuqiao

    2015-01-01

    Alack of inhibition control has been found in subjects with conduct disorder (CD), but the underlying neuropathophysiology remains poorly understood. The current study investigated the different mechanism of inhibition control in adolescent-onset CD males (n = 29) and well-matched healthy controls (HCs) (n = 40) when performing a GoStop task by functional magnetic resonance images. Effective connectivity (EC) within the inhibition control network was analyzed using a stochastic dynamic causality model. We found that EC within the inhibition control network was significantly different in the CD group when compared to the HCs. Exploratory relationship analysis revealed significant negative associations between EC between the IFG and striatum and behavioral scale scores in the CD group. These results suggest for the first time that the failure of inhibition control in subjects with CD might be associated with aberrant connectivity of the frontal–basal ganglia pathways, especially between the IFG and striatum. PMID:26658732

  7. GLIAL CELL SIGNALING. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways.

    PubMed

    Martín, R; Bajo-Grañeras, R; Moratalla, R; Perea, G; Araque, A

    2015-08-14

    Astrocytes are important regulatory elements in brain function. They respond to neurotransmitters and release gliotransmitters that modulate synaptic transmission. However, the cell- and synapse-specificity of the functional relationship between astrocytes and neurons in certain brain circuits remains unknown. In the dorsal striatum, which mainly comprises two intermingled subtypes (striatonigral and striatopallidal) of medium spiny neurons (MSNs) and synapses belonging to two neural circuits (the direct and indirect pathways of the basal ganglia), subpopulations of astrocytes selectively responded to specific MSN subtype activity. These subpopulations of astrocytes released glutamate that selectively activated N-methyl-d-aspartate receptors in homotypic, but not heterotypic, MSNs. Likewise, astrocyte subpopulations selectively regulated homotypic synapses through metabotropic glutamate receptor activation. Therefore, bidirectional astrocyte-neuron signaling selectively occurs between specific subpopulations of astrocytes, neurons, and synapses. PMID:26273054

  8. The role of exercise in facilitating basal ganglia function in Parkinson’s disease

    PubMed Central

    Petzinger, Giselle M; Fisher, Beth E; Akopian, Garnik; Holschneider, Daniel P; Wood, Ruth; Walsh, John P; Lund, Brett; Meshul, Charles; Vuckovic, Marta; Jakowec, Michael W

    2012-01-01

    SUMMARY Epidemiological and clinical studies have suggested that exercise is beneficial for patients with Parkinson’s disease (PD). Through research in normal (noninjured) animals, neuroscientists have begun to understand the mechanisms in the brain by which behavioral training and exercise facilitates improvement in motor behavior through modulation of neuronal function and structure, called experience-dependent neuroplasticity. Recent studies are beginning to reveal molecules and downstream signaling pathways that are regulated during exercise and motor learning in animal models of PD and that are important in driving protective and/or adaptive changes in neuronal connections of the basal ganglia and related circuitry. These molecules include the neurotransmitters dopamine and glutamate (and their respective receptors) as well as neurotrophic factors (brain-derived neurotrophic factor). In parallel, human exercise studies have been important in revealing ‘proof of concept’ including examining the types and parameters of exercise that are important for behavioral/functional improvements and brain changes; the feasibility of incorporating and maintaining an exercise program in individuals with motor disability; and, importantly, the translation and investigation of exercise effects observed in animal studies to exercise effects on brain and behavior in individuals with PD. In this article we highlight findings from both animal and human exercise studies that provide insight into brain changes of the basal ganglia and its related circuitry and that support potentially key parameters of exercise that may lead to long-term benefit and disease modification in PD. In addition, we discuss the current and future impact on patient care and point out gaps in our knowledge where continuing research is needed. Elucidation of exercise parameters important in driving neuroplasticity, as well as the accompanying mechanisms that underlie experience-dependent neuroplasticity may also provide insights towards new therapeutic targets, including neurorestorative and/or neuroprotective agents, for individuals with PD and related neurodegenerative disorders. PMID:23805167

  9. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution

    PubMed Central

    Schmidt, A; Denier, N; Magon, S; Radue, E-W; Huber, C G; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-01-01

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy. PMID:25803496

  10. Basal Ganglia, Dopamine and Temporal Processing: Performance on Three Timing Tasks on and off Medication in Parkinson's Disease

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Malone, Tim J. L.; Dirnberger, Georg; Edwards, Mark; Jahanshahi, Marjan

    2008-01-01

    A pervasive hypothesis in the timing literature is that temporal processing in the milliseconds and seconds range engages the basal ganglia and is modulated by dopamine. This hypothesis was investigated by testing 12 patients with Parkinson's disease (PD), both "on" and "off" dopaminergic medication, and 20 healthy controls on three timing tasks.…

  11. Basal Ganglia Structures Differentially Contribute to Verbal Fluency: Evidence from Human Immunodeficiency Virus (HIV)-Infected Adults

    ERIC Educational Resources Information Center

    Thames, April D.; Foley, Jessica M.; Wright, Matthew J.; Panos, Stella E.; Ettenhofer, Mark; Ramezani, Amir; Streiff, Vanessa; El-Saden, Suzie; Goodwin, Scott; Bookheimer, Susan Y.; Hinkin, Charles H.

    2012-01-01

    Background: The basal ganglia (BG) are involved in executive language functions (i.e., verbal fluency) through their connections with cortical structures. The caudate and putamen receive separate inputs from prefrontal and premotor cortices, and may differentially contribute to verbal fluency performance. We examined BG integrity in relation to…

  12. Structural differences in basal ganglia of elite running versus martial arts athletes: a diffusion tensor imaging study.

    PubMed

    Chang, Yu-Kai; Tsai, Jack Han-Chao; Wang, Chun-Chih; Chang, Erik Chihhung

    2015-07-01

    The aim of this study was to use diffusion tensor imaging (DTI) to characterize and compare microscopic differences in white matter integrity in the basal ganglia between elite professional athletes specializing in running and martial arts. Thirty-three young adults with sport-related skills as elite professional runners (n = 11) or elite professional martial artists (n = 11) were recruited and compared with non-athletic and healthy controls (n = 11). All participants underwent health- and skill-related physical fitness assessments. Fractional anisotropy (FA) and mean diffusivity (MD), the primary indices derived from DTI, were computed for five regions of interest in the bilateral basal ganglia, including the caudate nucleus, putamen, globus pallidus internal segment (GPi), globus pallidus external segment (GPe), and subthalamic nucleus. Results revealed that both athletic groups demonstrated better physical fitness indices compared with their control counterparts, with the running group exhibiting the highest cardiovascular fitness and the martial arts group exhibiting the highest muscular endurance and flexibility. With respect to the basal ganglia, both athletic groups showed significantly lower FA and marginally higher MD values in the GPi compared with the healthy control group. These findings suggest that professional sport or motor skill training is associated with changes in white matter integrity in specific regions of the basal ganglia, although these positive changes did not appear to depend on the type of sport-related motor skill being practiced. PMID:25929552

  13. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.

    PubMed

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments. PMID:26640481

  14. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection

    PubMed Central

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments. PMID:26640481

  15. Evolution of the basal ganglia: new perspectives through a comparative approach

    PubMed Central

    SMEETS, WILHELMUS J. A. J.; MARÍN, OSCAR; GONZÁLEZ, AGUSTÍN

    2000-01-01

    The basal ganglia (BG) have received much attention during the last 3 decades mainly because of their clinical relevance. Our understanding of their structure, organisation and function in terms of chemoarchitecture, compartmentalisation, connections and receptor localisation has increased equally. Most of the research has been focused on the mammalian BG, but a considerable number of studies have been carried out in nonmammalian vertebrates, in particular reptiles and birds. The BG of the latter 2 classes of vertebrates, which together with mammals constitute the amniotic vertebrates, have been thoroughly studied by means of tract-tracing and immunohistochemical techniques. The terminology used for amniotic BG structures has frequently been adopted to indicate putative corresponding structures in the brain of anamniotes, i.e. amphibians and fishes, but data for such a comparison were, until recently, almost totally lacking. It has been proposed several times that the occurrence of well developed BG structures probably constitutes a landmark in the anamniote-amniote transition. However, our recent studies of connections, chemoarchitecture and development of the basal forebrain of amphibians have revealed that tetrapod vertebrates share a common pattern of BG organisation. This pattern includes the existence of dorsal and ventral striatopallidal systems, reciprocal connections between the striatopallidal complex and the diencephalic and mesencephalic basal plate (striatonigral and nigrostriatal projections), and descending pathways from the striatopallidal system to the midbrain tectum and reticular formation. The connectional similarities are paralleled by similarities in the distribution of chemical markers of striatal and pallidal structures such as dopamine, substance P and enkephalin, as well as by similarities in development and expression of homeobox genes. On the other hand, a major evolutionary trend is the progressive involvement of the cortex in the processing of the thalamic sensory information relayed to the BG of tetrapods. By using the comparative approach, new insights have been gained with respect to certain features of the BG of vertebrates in general, such as the segmental organisation of the midbrain dopaminergic cell groups, the occurrence of large numbers of dopaminergic cell bodies within the telencephalon itself and the variability in, among others, connectivity and chemoarchitecture. However, the intriguing question whether the basal forebrain organisation of nontetrapods differs essentially from that observed in tetrapods still needs to be answered. PMID:10923983

  16. Technical Integration of Hippocampus, Basal Ganglia and Physical Models for Spatial Navigation

    PubMed Central

    Fox, Charles; Humphries, Mark; Mitchinson, Ben; Kiss, Tamas; Somogyvari, Zoltan; Prescott, Tony

    2008-01-01

    Computational neuroscience is increasingly moving beyond modeling individual neurons or neural systems to consider the integration of multiple models, often constructed by different research groups. We report on our preliminary technical integration of recent hippocampal formation, basal ganglia and physical environment models, together with visualisation tools, as a case study in the use of Python across the modelling tool-chain. We do not present new modeling results here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a flexible platform, offering a significant reduction in development time, without a corresponding significant increase in execution time. We illustrate this by implementing a part of the model in various alternative languages and coding styles, and comparing their execution times. For very large-scale system integration, communication with other languages and parallel execution may be required, which we demonstrate using the BRAHMS framework's Python bindings. PMID:19333376

  17. Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training

    PubMed Central

    Li, Gujing; He, Hui; Huang, Mengting; Zhang, Xingxing; Lu, Jing; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong

    2015-01-01

    Studies have revealed that prolonged, specialized training combined with higher cognitive conditioning induces enhanced brain alternation. In particular, dancers with long-term dance experience exhibit superior motor control and integration with their sensorimotor networks. However, little is known about the functional connectivity patterns of spontaneous intrinsic activities in the sensorimotor network of dancers. Our study examined the functional connectivity density (FCD) of dancers with a mean period of over 10 years of dance training in contrast with a matched non-dancer group without formal dance training using resting-state fMRI scans. FCD was mapped and analyzed, and the functional connectivity (FC) analyses were then performed based on the difference of FCD. Compared to the non-dancers, the dancers exhibited significantly increased FCD in the precentral gyri, postcentral gyri and bilateral putamen. Furthermore, the results of the FC analysis revealed enhanced connections between the middle cingulate cortex and the bilateral putamen and between the precentral and the postcentral gyri. All findings indicated an enhanced functional integration in the cortico-basal ganglia loops that govern motor control and integration in dancers. These findings might reflect improved sensorimotor function for the dancers consequent to long-term dance training. PMID:26035693

  18. Eyes on MEGDEL: distinctive basal ganglia involvement in dystonia deafness syndrome.

    PubMed

    Wortmann, Saskia B; van Hasselt, Peter M; Bari?, Ivo; Burlina, Alberto; Darin, Niklas; Hörster, Friederike; Coker, Mahmut; Ucar, Sema Kalkan; Krumina, Zita; Naess, Karin; Ngu, Lock H; Pronicka, Ewa; Riordan, Gilian; Santer, Rene; Wassmer, Evangeline; Zschocke, Johannes; Schiff, Manuel; de Meirleir, Linda; Alowain, Mohammed A; Smeitink, Jan A M; Morava, Eva; Kozicz, Tamas; Wevers, Ron A; Wolf, Nicole I; Willemsen, Michel A

    2015-04-01

    Pediatric movement disorders are still a diagnostic challenge, as many patients remain without a (genetic) diagnosis. Magnetic resonance imaging (MRI) pattern recognition can lead to the diagnosis. MEGDEL syndrome (3-MethylGlutaconic aciduria, Deafness, Encephalopathy, Leigh-like syndrome MIM #614739) is a clinically and biochemically highly distinctive dystonia deafness syndrome accompanied by 3-methylglutaconic aciduria, severe developmental delay, and progressive spasticity. Mutations are found in SERAC1, encoding a phosphatidylglycerol remodeling enzyme essential for both mitochondrial function and intracellular cholesterol trafficking. Based on the homogenous phenotype, we hypothesized an accordingly characteristic MRI pattern. A total of 43 complete MRI studies of 30 patients were systematically reevaluated. All patients presented a distinctive brain MRI pattern with five characteristic disease stages affecting the basal ganglia, especially the putamen. In stage 1, T2 signal changes of the pallidum are present. In stage 2, swelling of the putamen and caudate nucleus is seen. The dorsal putamen contains an "eye" that shows no signal alteration and (thus) seems to be spared during this stage of the disease. It later increases, reflecting progressive putaminal involvement. This "eye" was found in all patients with MEGDEL syndrome during a specific age range, and has not been reported in other disorders, making it pathognomonic for MEDGEL and allowing diagnosis based on MRI findings. PMID:25642805

  19. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis.

    PubMed

    Yang, Shuangming; Wang, Jiang; Li, Shunan; Deng, Bin; Wei, Xile; Yu, Haitao; Li, Huiyan

    2015-11-01

    The basal ganglia (BG) comprise multiple subcortical nuclei, which are responsible for cognition and other functions. Developing a brain-machine interface (BMI) demands a suitable solution for the real-time implementation of a portable BG. In this study, we used a digital hardware implementation of a BG network containing 256 modified Izhikevich neurons and 2048 synapses to reliably reproduce the biological characteristics of BG on a single field programmable gate array (FPGA) core. We also highlighted the role of Parkinsonian analysis by considering neural dynamics in the design of the hardware-based architecture. Thus, we developed a multi-precision architecture based on a precise analysis using the FPGA-based platform with fixed-point arithmetic. The proposed embedding BG network can be applied to intelligent agents and neurorobotics, as well as in BMI projects with clinical applications. Although we only characterized the BG network with Izhikevich models, the proposed approach can also be extended to more complex neuron models and other types of functional networks. PMID:26318085

  20. Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways.

    PubMed

    Oldenburg, Ian A; Sabatini, Bernardo L

    2015-06-01

    Motor cortex, basal ganglia (BG), and thalamus are arranged in a recurrent loop whose activity guides motor actions. In the dominant model of the function of the BG and their role in Parkinson's disease, direct (dSPNs) and indirect (iSPNs) striatal projection neurons are proposed to oppositely modulate cortical activity via BG outputs to thalamus. Here, we test this model by determining how striatal activity modulates primary motor cortex in awake head-restrained mice. We find that, within 200 ms, dSPN and iSPN activation exert robust and opposite effects on the majority of cortical neurons. However, these effects are heterogeneous, with certain cortical neurons biphasically modulated by iSPN stimulation. Moreover, these striatal effects are diminished when the animal performs a motor action. Thus, the effects of dSPN and iSPN activity on cortex are at times antagonistic, consistent with classic models, whereas in other contexts these effects can be occluded or coactive. PMID:26050037

  1. Disconnection of a basal ganglia circuit in juvenile songbirds attenuates the spectral differentiation of song syllables.

    PubMed

    Elliott, Kevin C; Wu, Wei; Bertram, Richard; Johnson, Frank

    2014-06-01

    Similar to language acquisition by human infants, juvenile male zebra finches (Taeniopygia guttata) imitate an adult (tutor) song by transitioning from repetitive production of one or two undifferentiated protosyllables to the sequential production of a larger and spectrally heterogeneous set of syllables. The primary motor region that controls learned song is driven by a confluence of input from two premotor pathways: a posterior pathway that encodes the adult song syllables and an anterior pathway that includes a basal ganglia (BG)-thalamo-cortical circuit. Similar to mammalian motor-learning systems, the songbird BG circuit is thought to be necessary for shaping juvenile vocal behaviour (undifferentiated protosyllables) toward specific targets (the tutor's song syllables). Here, we tested the hypothesis that anterior pathway activity contributes to the process of protosyllable differentiation. Bilateral ablation of lateral magnocellular nucleus of the anterior nidopallium (LMAN) was used to disconnect BG circuitry at ages before protosyllable production and differentiation. Comparison to surgical controls revealed that protosyllables fail to differentiate in birds that received juvenile LMAN ablation--the adult songs of birds with >80% bilateral LMAN ablation consisted of only one or two syllables produced with the repetitive form and spectral structure that characterizes undifferentiated protosyllables in normal juveniles. Our findings support a role for BG circuitry in shaping juvenile vocal behaviour toward the acoustic structure of the tutor song and suggest that posterior pathway function remains in an immature "default" state when developmental interaction with the anterior pathway is reduced or eliminated. PMID:24218118

  2. A direct GABAergic output from the basal ganglia to frontal cortex

    PubMed Central

    Saunders, Arpiar; Oldenburg, Ian A.; Berezovskii, Vladimir K.; Johnson, Caroline A.; Kingery, Nathan D.; Elliott, Hunter L.; Xie, Tiao; Gerfen, Charles R.; Sabatini, Bernardo L.

    2014-01-01

    The basal ganglia (BG) are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning1. Current models postulate that the BG modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by the BG via direct (dSPNs) and indirect (iSPNs) pathway striatal projection neurons2–4. The BG thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems5. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the BG, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT+ cells, which have been historically identified as an extension of the nucleus basalis (NB), as well as ChAT? cells, release the inhibitory neurotransmitter GABA (?-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signaling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the BG to modulate frontal cortices. PMID:25739505

  3. Dopamine physiology in the basal ganglia of male zebra finches during social stimulation.

    PubMed

    Ihle, Eva C; van der Hart, Marieke; Jongsma, Minke; Tecott, Larry H; Doupe, Allison J

    2015-06-01

    Accumulating evidence suggests that dopamine (DA) is involved in altering neural activity and gene expression in a zebra finch cortical-basal ganglia circuit specialized for singing, upon the shift between solitary singing and singing as a part of courtship. Our objective here was to sample changes in the extracellular concentrations of DA in Area X of adult and juvenile birds, to test the hypothesis that DA levels would change similarly during presentation of a socially salient stimulus in both age groups. We used microdialysis to sample the extracellular milieu of Area X in awake, behaving adult and juvenile male zebra finches, and analysed the dialysate using high-performance liquid chromatography coupled with electrochemical detection. The extracellular levels of DA in Area X increased significantly during both female presentation to adult males and tutor presentation to juvenile males. DA levels were not correlated with the time spent singing. We also reverse-dialysed Area X with pharmacologic agents that act either on DA systems directly or on norepinephrine, and found that all of these agents significantly increased DA levels (3- to 10-fold) in Area X. These findings suggest that changes in extracellular DA levels can be stimulated similarly by very different social contexts (courtship and interaction with tutor), and influenced potently by dopaminergic and noradrenergic drugs. These results raise the possibility that the arousal level or attentional state of the subject (rather than singing behavior) is the common feature eliciting changes in extracellular DA concentration. PMID:25872575

  4. Presynaptic Inhibition in the Striatum of the Basal Ganglia Improves Pattern Classification and Thus Promotes Superior Goal Selection

    PubMed Central

    Schwab, David J.; Houk, James C.

    2015-01-01

    This review article takes a multidisciplinary approach to understand how presynaptic inhibition in the striatum of the basal ganglia (BG) contributes to pattern classification and the selection of goals that control behavior. It is a difficult problem both because it is multidimensional and because it is has complex system dynamics. We focus on the striatum because, as the main site for input to the BG, it gets to decide what goals are important to consider. PMID:26696840

  5. Microsurgical treatment assisted by intraoperative ultrasound localization: a controlled trial in patients with hypertensive basal ganglia hemorrhage.

    PubMed

    Miao, Zeng Li; Jiang, Li; Xu, Xing; Chen, Kai Lai; Lu, Xiao Jie

    2014-08-01

    This study investigated the clinical value of performing microsurgical treatment on hypertensive basal ganglia hemorrhage assisted by intraoperative ultrasound localization (IUL). A total of 107 patients with hypertensive basal ganglia hemorrhage were randomly separated into two groups for this controlled clinical trial. In the IUL group, 51 patients with hypertensive basal ganglia hemorrhage were operated on with the support of ultrasonic imaging; 56 patients underwent conventional microsurgery to evacuate the hemorrhage. The results of the two methods were evaluated according to the rate of hematoma evacuation, re-hemorrhage, mortality, complications, and activities of daily living (ADL). A greater quantity of the hemorrhage was removed from patients in the IUL group, with over 90% of masses being eliminated from the brain in 78.43% of these patients (40 out of 51 patients) compared with 60.71% of patients in the control group (34 out of 56 patients). The IUL group experienced a lower rate of re-hemorrhage after the operation (7.84%, 4 out of 51 patients) compared with the control group (17.86%, 10 out of 56 patients). A significant difference in the ADL score was recorded between the two groups, with ADL scores of the IUL group exceeding 60 (indicating good recovery) at 6 months after the operative procedure (P < 0.05). In conclusion, the microsurgical treatment of hypertensive basal ganglia hemorrhage assisted by IUL improved the precision of the operation. This procedure removed the hemorrhage and reduced the changes of re-occurrence, as well as elevated the quality of life of patients after the operation. PMID:24350736

  6. A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning.

    PubMed

    Chersi, Fabian; Mirolli, Marco; Pezzulo, Giovanni; Baldassarre, Gianluca

    2013-05-01

    Dual-system theories postulate that actions are supported either by a goal-directed or by a habit-driven response system. Neuroimaging and anatomo-functional studies have provided evidence that the prefrontal cortex plays a fundamental role in the first type of action control, while internal brain areas such as the basal ganglia are more active during habitual and overtrained responses. Additionally, it has been shown that areas of the cortex and the basal ganglia are connected through multiple parallel "channels", which are thought to function as an action selection mechanism resolving competitions between alternative options available in a given context. In this paper we propose a multi-layer network of spiking neurons that implements in detail the thalamo-cortical circuits that are believed to be involved in action learning and execution. A key feature of this model is that neurons are organized in small pools in the motor cortex and form independent loops with specific pools of the basal ganglia where inhibitory circuits implement a multistep selection mechanism. The described model has been validated utilizing it to control the actions of a virtual monkey that has to learn to turn on briefly flashing lights by pressing corresponding buttons on a board. When the animal is able to fluently execute the task the button-light associations are remapped so that it has to suppress its habitual behavior in order to execute goal-directed actions. The model nicely shows how sensory-motor associations for action sequences are formed at the cortico-basal ganglia level and how goal-directed decisions may override automatic motor responses. PMID:23266482

  7. The Basal Ganglia as a Structure of Vocal Sensory-Motor Integration and Modulation of Vocal Plasticity in Mammals: Behavioral and Experimental Evidence from Tadarida brasiliensis 

    E-print Network

    Tressler, Jedediah Tim

    2012-02-14

    degraded the bats abilities to produce natural sounding calls or make adaptive changes to the acoustic environment. These results have implications for research into the treatment of basal ganglia disorders such as Parkinson’s disease, providing an animal...

  8. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease

    PubMed Central

    Cagnan, Hayriye; Duff, Eugene Paul

    2015-01-01

    Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37–64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance-related pathological circuit interactions. PMID:25888552

  9. Clinico-radiological Characteristics of Spontaneous Basal Ganglia Hemorrhage, According to Regional Classification

    PubMed Central

    Kim, Do Young; Choo, Yeon Soo; Jang, E Wook; Chung, Joonho; Joo, Jin Yang

    2014-01-01

    Objective The clinico-radiologic features of the spontaneous basal ganglia hemorrhage (BGH) may often differ one from another, according to its regional location. Therefore, we attempted to classify the BGH into regional subgroups, and to extrapolate the distinct characteristics of each group of BGH. Materials and Methods A total of 103 BGHs were analyzed by retrospective review of medical records. BGH was classified according to four subgroups; anterior BGH; posterior BGH; lateral BGH; massive BGH. Results The most common BGH was the posterior BGH (56, 54.4%), followed by the lateral BGH (26, 25.2%), the massive BGH (12, 11.7%), and the anterior BGH (9, 8.7%). The shape of hemorrhage tended to be round in anterior, irregular in posterior, and ovoid in lateral BGH. A layered density of hematoma on initial computed tomography showed correlation with hematoma expansion (p = 0.016), which was observed more often in the postero-lateral group of BGH than in the anterior BGH group. Relatively better recovery from the initial insult was observed in the lateral BGH group than in the other regional BGH groups. The proportion of poor outcome (modified Rankin scale 4, 5, 6) was 100% in the massive, 41.1% in the posterior, 34.6% in the lateral, and 0% in the anterior BGH group. Conclusion We observed that BGH can be grouped according to its regional location and each group may have distinct characteristics. Thus, a more sophisticated clinical strategy tailored to each group of BGHs can be implemented. PMID:25340023

  10. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease.

    PubMed

    Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter

    2015-06-01

    Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance-related pathological circuit interactions. PMID:25888552

  11. A spiking Basal Ganglia model of synchrony, exploration and decision making

    PubMed Central

    Mandali, Alekhya; Rengaswamy, Maithreye; Chakravarthy, V. Srinivasa; Moustafa, Ahmed A.

    2015-01-01

    To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either “explore” or “exploit” or “not to take any action” for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior. PMID:26074761

  12. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    PubMed Central

    Plantinga, Birgit R.; Temel, Yasin; Roebroeck, Alard; Uluda?, Kâmil; Ivanov, Dimo; Kuijf, Mark L.; ter Haar Romenij, Bart M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target structures on routine clinical MR images, direct targeting of structures can be challenging. Non-clinical MR scanners with ultra-high magnetic field (7T or higher) have the potential to improve the quality of these images. This technology report provides an overview of the current possibilities of visualizing deep brain stimulation targets and their related structures with the aid of ultra-high field MRI. Reviewed studies showed improved resolution, contrast- and signal-to-noise ratios at ultra-high field. Sequences sensitive to magnetic susceptibility such as T2* and susceptibility weighted imaging and their maps in general showed the best visualization of target structures, including a separation between the subthalamic nucleus and the substantia nigra, the lamina pallidi medialis and lamina pallidi incompleta within the globus pallidus and substructures of the thalamus, including the ventral intermediate nucleus (Vim). This shows that the visibility, identification, and even subdivision of the small deep brain stimulation targets benefit from increased field strength. Although ultra-high field MR imaging is associated with increased risk of geometrical distortions, it has been shown that these distortions can be avoided or corrected to the extent where the effects are limited. The availability of ultra-high field MR scanners for humans seems to provide opportunities for a more accurate targeting for deep brain stimulation in patients with Parkinson's disease and related disorders. PMID:25414656

  13. Basal ganglia contribution to rule expectancy and temporal predictability in speech.

    PubMed

    Kotz, Sonja A; Schmidt-Kassow, Maren

    2015-07-01

    The current work set out to answer three questions: (1) Are reported syntactic deficits in patients with structural damage to the basal ganglia (BG) in the cortico-striato-thalamo-cortical systems (CSTCS) the result of a syntax specific computational deficit or are they potentially a consequence of a generalized timing deficit? (2) Do BG patients suffer from a simple beat perception deficit in speech comparable to the one reported in music? (3) Can regular speech meter (i.e., a pattern of beats induced by the regular alteration of stressed and unstressed syllable accents) ameliorate the computation of syntactically marked information by making speech events temporally predictable and salient? The latter 'remediation' hypothesis would predict that when speech events (i.e., those that are syntactically marked) are metrically aligned to the syllabic accent structure, the computation of syntactic information is facilitated or in the case of patients ameliorated. During continuous EEG measurement nineteen patients with focal BG lesions and matched healthy controls listened to metrically regular and syntactically well-formed sentences and metrically well-formed sentences that either violated syntactic expectancy, metrical expectancy, or both. While healthy controls showed an expected P600 response in the event-related brain potential (ERP) to all expectancy violations, BG patients showed overall comparable P600 responses to all, but the metrical expectancy violation. These results confirm that (1) BG patients suffer from a simple beat perception deficit in speech and (2) regular speech meter ameliorates the computation of syntactically marked information in the speech signal. We propose that a domain general sensorimotor cerebello-thalamo-cortical system (CTCS), involved in event-based temporal processing, engages in the remediation of dysfunctional cortico-striato-thalamo-cortical timing that affects the timely computation of linguistic (i.e., syntax) information in the speech signal. PMID:25863903

  14. Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds.

    PubMed

    Goldberg, Jesse H; Farries, Michael A; Fee, Michale S

    2012-09-01

    The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (?5 ms) pulse of inhibition that completely suppresses thalamic spiking. As a result, thalamic spikes are entrained to pallidal spikes with submillisecond precision. Second, we find that the number of thalamic spikes that discharge within a single pallidal interspike interval (ISI) depends linearly on the duration of that interval but does not depend on pallidal activity prior to the interval. In a detailed biophysical model, our results were not easily explained by the postinhibitory "rebound" mechanism previously observed in anesthetized birds and in brain slices, nor could most of our data be characterized as "gating" of excitatory transmission by inhibitory pallidal input. Instead, we propose a novel "entrainment" mechanism of pallidothalamic transmission that highlights the importance of an excitatory conductance that drives spiking, interacting with brief pulses of pallidal inhibition. Building on our recent finding that cortical inputs can drive syllable-locked rate modulations in thalamic neurons during singing, we report here that excitatory inputs affect thalamic spiking in two ways: by shortening the latency of a thalamic spike after a pallidal spike and by increasing thalamic firing rates within individual pallidal ISIs. We present a unifying biophysical model that can reproduce all known modes of pallidothalamic transmission--rebound, gating, and entrainment--depending on the amount of excitation the thalamic neuron receives. PMID:22673333

  15. Function of basal ganglia in bridging cognitive and motor modules to perform an action.

    PubMed

    Nagano-Saito, Atsuko; Martinu, Kristina; Monchi, Oury

    2014-01-01

    The basal ganglia (BG) are thought to be involved in the integration of multiple sources of information, and their dysfunction can lead to disorders such as Parkinson's disease (PD). PD patients show motor and cognitive dysfunction with specific impairments in the internal generation of motor actions and executive deficits, respectively. The role of the BG, then, would be to integrate information from several sources in order to make a decision on a resulting action adequate for the required task. Reanalyzing the data set from our previous study (Martinu et al., 2012), we investigated this hypothesis by applying a graph theory method to a series of fMRI data during the performance of self-initiated (SI) finger movement tasks obtained in healthy volunteers (HV) and early stage PD patients. Dorsally, connectivity strength between the medial prefrontal areas (mPFC) and cortical regions including the primary motor area (M1), the extrastriate visual cortex, and the associative cortex, was reduced in the PD patients. The connectivity strengths were positively correlated to activity in the striatum in both groups. Ventrally, all connectivity between the striatum, the thalamus, and the extrastriate visual cortex decreased in strength in the PD, as did the connectivity between the striatum and the ventrolateral PFC (VLPFC). Individual response time (RT) was negatively correlated to connectivity strength between the dorsolateral PFC (DLPFC) and the striatum and positively correlated to connectivity between the VLPFC and the striatum in the HV. These results indicate that the BG, with the mPFC and thalamus, are involved in integrating multiple sources of information from areas such as DLPFC, and VLPFC, connecting to M1, thereby determining a network that leads to the adequate decision and performance of the resulting action. PMID:25071432

  16. Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson's disease

    PubMed Central

    Haegelen, Claire; Coupé, Pierrick; Fonov, Vladimir; Guizard, Nicolas; Jannin, Pierre; Morandi, Xavier; Collins, D Louis

    2013-01-01

    Purpose Template-based segmentation techniques have been developed to facilitate the accurate targeting of deep brain structures in patients with movement disorders. Three template-based brain MRI segmentation techniques were compared to determine the best strategy for segmenting the deep brain structures of patients with Parkinson’s disease. Methods T1-weighted and T2-weighted magnetic resonance (MR) image templates were created by averaging MR images of 57 patients with Parkinson’s disease. Twenty-four deep brain structures were manually segmented on the templates. To validate the template-based segmentation, 14 of the 24 deep brain structures from the templates were manually segmented on 10 MR scans of Parkinson’s patients as a gold standard. We compared the manual segmentations with three methods of automated segmentation: two registration-based approaches, Automatic Nonlinear Image Matching and Anatomical Labelling -(ANIMAL) and Symmetric Image Normalization - (SyN), and one patch-label fusion technique. The automated labels were then compared with the manual labels using a Dice-kappa metric and center of gravity. A Friedman test was used to compare the Dice-kappa values and paired t-tests for the center of gravity. Results The Friedman test showed a significant difference between the three methods for both thalami (p < 0.05) and not for the subthalamic nuclei. Registration with ANIMAL was better than with SyN for the left thalamus, and was better than the patch-based method for the right thalamus. Conclusion Although template-based approaches are the most used techniques to segment basal ganglia by warping onto MR images, we found that the patch-based method provided similar results and was less-time consuming. Patch-based method may be preferable for the subthalamic nucleus segmentation in patients with Parkinson’s disease. PMID:22426551

  17. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions

    PubMed Central

    Bosch-Bouju, Clémentine; Hyland, Brian I.; Parr-Brownlie, Louise C.

    2013-01-01

    Motor thalamus (Mthal) is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG). The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarizes anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily “driven” by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new “super-integrator” theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum), which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs in the Mthal. PMID:24273509

  18. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    PubMed Central

    Qiu, Mei-Hong; Chen, Michael C.; Huang, Zhi-Li; Lu, Jun

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders. PMID:24723855

  19. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy

    PubMed Central

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-01-01

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive–compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1–8?Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative–limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative–limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology. PMID:22832400

  20. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    PubMed

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-01-01

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8?Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology. PMID:22832400

  1. Idiopathic basal ganglia calcification presenting as schizophrenia-like psychosis and obsessive-compulsive symptoms: A case report

    PubMed Central

    PAN, BING; LIU, WEIBO; CHEN, QIAOZHEN; ZHENG, LEILEI; BAO, YINGYING; LI, HUICHUN; YU, RISHENG

    2015-01-01

    Idiopathic basal ganglia calcification (IBGC) is a rare neurodegenerative disorder characterized by the deposition of calcium in the brain and variable combinations of movement disorders, gait impairment and neuropsychiatric symptoms. Few reports have described psychiatric manifestations as early symptoms of IBGC. The present study reports the case of a middle-aged man with schizophrenia-like psychosis and obsessive-compulsive symptoms as the first manifestations of IBGC. The response of the patient to olanzapine and fluoxetine suggests that low-dose olanzapine is effective and should be increased cautiously to avoid worsening parkinsonism and that fluoxetine is an effective drug for the treatment of obsessive-compulsive symptoms in IBGC.

  2. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood.

    PubMed

    Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-shan R

    2015-02-15

    The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. PMID:25514518

  3. A case of traumatic hematoma in the basal ganglia that showed deterioration after arrival at the hospital.

    PubMed

    Moriya, Takashi; Tagami, Rumi; Furukawa, Makoto; Sakurai, Atsushi; Kinoshita, Kosaku; Tanjoh, Katsuhisa

    2013-01-01

    A case of traumatic hematoma in the basal ganglia that showed deterioration after arrival at the hospital was reported. A 65-year-old man crashed into the wall while riding a motorcycle. His Glasgow coma scale was E3V4M6 and showed retrograde amnesia and slight right motor weakness. Because head CT in the secondary trauma survey showed subarachnoid hemorrhage in the right Sylvian fissure and multiple gliding contusions in the left frontal and parietal lobe, he was entered into the intensive care unit for diagnosis of diffuse brain injury. He showed complete muscle weakness of left upper and lower limbs 5 h after the accident. Head CT newly showed hematoma, 2 cm in diameter, in the right basal ganglia. The patient vomited following the CT scan, and so his consciousness suddenly deteriorated into a stupor. We performed head CT again. The hematoma had enlarged to 5 cm at the same lesion and partially expanded into midbrain. The patient died on the 13th day of trauma. Based on retrospective interpretation, we conclude that clinical examinations, follow-up CT scans and blood examinations should be performed frequently as part of ICU management for all TBI patients in the early phase after trauma. PMID:23564122

  4. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina of dorsal root ganglia.

    PubMed

    Bush, M S; Reid, A R; Allt, G

    1991-09-01

    Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves. PMID:1960538

  5. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    PubMed

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule. PMID:18495422

  6. INVOLVEMENT OF THE LIMBIC BASAL GANGLIA IN ETHANOL WITHDRAWAL CONVULSIVITY IN MICE IS INFLUENCED BY A CHROMOSOME 4 LOCUS

    PubMed Central

    Chen, Gang; Kozell, Laura B.; Hitzemann, Robert; Buck, Kari J.

    2011-01-01

    Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force that sustains ethanol (alcohol) use/abuse and may contribute to relapse in alcoholics. Although no animal model duplicates alcoholism, models for specific factors, like the withdrawal syndrome, are useful for identifying potential genetic and neural determinants of liability in humans. We generated congenic mice that confirm a quantitative trait locus (QTL) on chromosome 4 with a large effect on predisposition to alcohol withdrawal. Using c-Fos expression as a high-resolution marker of neuronal activation, congenic mice demonstrated significantly less neuronal activity associated with ethanol withdrawal than background strain mice in the substantia nigra pars reticulata (SNr), subthalamic nucleus (STN), rostromedial lateral globus pallidus, and ventral pallidum. Notably, neuronal activation in subregions of the basal ganglia associated with limbic function was more intense than in subregions associated with sensorimotor function. Bilateral lesions of caudolateral SNr attenuated withdrawal severity following acute and repeated ethanol exposures, whereas rostrolateral SNr and STN lesions did not reduce ethanol withdrawal severity. Caudolateral SNr lesions did not affect pentylenetetrazol-enhanced convulsions. Our results suggest that this QTL impacts ethanol withdrawal via basal ganglia circuitry associated with limbic function, and that the caudolateral SNr plays a critical role. These are the first analyses to elucidate circuitry by which a confirmed addiction-relevant QTL influences behavior. This mouse QTL is syntenic with human chromosome 9p. Given the growing body of evidence that a gene(s) on chromosome 9p influences alcoholism, our results can facilitate human research on alcohol dependence and withdrawal. PMID:18815268

  7. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model.

    PubMed

    Bechard, Allison R; Cacodcar, Nadia; King, Michael A; Lewis, Mark H

    2016-02-15

    Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g., autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. PMID:26620495

  8. Singing can improve speech function in aphasics associated with intact right basal ganglia and preserve right temporal glucose metabolism: Implications for singing therapy indication.

    PubMed

    Akanuma, Kyoko; Meguro, Kenichi; Satoh, Masayuki; Tashiro, Manabu; Itoh, Masatoshi

    2016-01-01

    Clinically, we know that some aphasic patients can sing well despite their speech disturbances. Herein, we report 10 patients with non-fluent aphasia, of which half of the patients improved their speech function after singing training. We studied ten patients with non-fluent aphasia complaining of difficulty finding words. All had lesions in the left basal ganglia or temporal lobe. They selected the melodies they knew well, but which they could not sing. We made a new lyric with a familiar melody using words they could not name. The singing training using these new lyrics was performed for 30 minutes once a week for 10 weeks. Before and after the training, their speech functions were assessed by language tests. At baseline, 6 of them received positron emission tomography to evaluate glucose metabolism. Five patients exhibited improvements after intervention; all but one exhibited intact right basal ganglia and left temporal lobes, but all exhibited left basal ganglia lesions. Among them, three subjects exhibited preserved glucose metabolism in the right temporal lobe. We considered that patients who exhibit intact right basal ganglia and left temporal lobes, together with preserved right hemispheric glucose metabolism, might be an indication of the effectiveness of singing therapy. PMID:25567372

  9. [Analysis of structural basis of information processing in basal ganglia: spatial organization of the thalamo-striatal projections in the dog brain].

    PubMed

    Gorbachevskaia, A I; Chivileva, O G

    2001-06-01

    Distribution of neurones labelled in a retrograde way, studied in functionally different dog's thalamic nuclei, elucidated anatomical aspects of functional heterogeneity of the basal ganglia and of integrative information processing, as well as the organization of adaptive behaviour mechanisms. PMID:11534213

  10. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice

    PubMed Central

    Hisatsune, Chihiro; Miyamoto, Hiroyuki; Hirono, Moritoshi; Yamaguchi, Naohide; Sugawara, Takeyuki; Ogawa, Naoko; Ebisui, Etsuko; Ohshima, Toshio; Yamada, Masahisa; Hensch, Takao K.; Hattori, Mitsuharu; Mikoshiba, Katsuhiko

    2013-01-01

    The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca2+ channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway. PMID:24109434

  11. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.

    PubMed

    Morita, Kenji; Kawaguchi, Yasuo

    2015-08-01

    There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward-prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal-ganglia influence on the dopamine neurons. Here we present a computational neural-circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up-regulate and down-regulate the dopamine neurons via the basal-ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward-prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward-prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward-reversal learning and punishment-avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter-temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed-circuit mechanistic understanding of appetitive/aversive learning. PMID:26095906

  12. The Allocation of Attention to Learning of Goal-Directed Actions: A Cognitive Neuroscience Framework Focusing on the Basal Ganglia

    PubMed Central

    Franz, E. A.

    2012-01-01

    The present paper builds on the idea that attention is largely in service of our actions. A framework and model which captures the allocation of attention for learning of goal-directed actions is proposed and developed. This framework highlights an evolutionary model based on the notion that rudimentary functions of the basal ganglia have become embedded into increasingly higher levels of networks which all contribute to adaptive learning. Supporting the proposed model, background literature is presented alongside key evidence based on experimental studies in the so-called “split-brain” (surgically divided cerebral hemispheres), and selected evidence from related areas of research. Although overlap with other existing findings and models is acknowledged, the proposed framework is an original synthesis of cognitive experimental findings with supporting evidence of a neural system and a carefully formulated model of attention. It is the hope that this new synthesis will be informative in fields of cognition and other fields of brain sciences and will lead to new avenues for experimentation across domains. PMID:23267335

  13. Aberrant white matter networks mediate cognitive impairment in patients with silent lacunar infarcts in basal ganglia territory.

    PubMed

    Tang, Jinfu; Zhong, Suyu; Chen, Yaojing; Chen, Kewei; Zhang, Junying; Gong, Gaolang; Fleisher, Adam S; He, Yong; Zhang, Zhanjun

    2015-09-01

    Silent lacunar infarcts, which are present in over 20% of healthy elderly individuals, are associated with subtle deficits in cognitive functions. However, it remains largely unclear how these silent brain infarcts lead to cognitive deficits and even dementia. Here, we used diffusion tensor imaging tractography and graph theory to examine the topological organization of white matter networks in 27 patients with silent lacunar infarcts in the basal ganglia territory and 30 healthy controls. A whole-brain white matter network was constructed for each subject, where the graph nodes represented brain regions and the edges represented interregional white matter tracts. Compared with the controls, the patients exhibited a significant reduction in local efficiency and global efficiency. In addition, a total of eighteen brain regions showed significantly reduced nodal efficiency in patients. Intriguingly, nodal efficiency-behavior associations were significantly different between the two groups. The present findings provide new aspects into our understanding of silent infarcts that even small lesions in subcortical brain regions may affect large-scale cortical white matter network, as such may be the link between subcortical silent infarcts and the associated cognitive impairments. Our findings highlight the need for network-level neuroimaging assessment and more medical care for individuals with silent subcortical infarcts. PMID:25873426

  14. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions

    PubMed Central

    Fee, Michale S.

    2012-01-01

    In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current “time” in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources. PMID:22754501

  15. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    PubMed

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  16. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    PubMed

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391

  17. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control

    PubMed Central

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391

  18. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson’s Disease

    PubMed Central

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  19. [Organization of the projections of the structures of the basal ganglia morpho-functional system to the individual substructures of the deep mesencephalic nucleus complex of dog brain].

    PubMed

    Gorbachevskaya, A I

    2012-01-01

    The method of retrograde axonal transport of horseradish peroxidase was used to study the organization of the projections of the morpho-functional system of the basal ganglia nuclei to the individual substructures of the of deep mesencephalic nucleus complex (DMNC) of dog brain (n = 9). It was found that the nucleus accumbens was the only striatum structure containing the neurons that sent projection fibers to the subcuneate nucleus. The projections of the output structures of the basal ganglia--pallidum, substantia nigra, zona incerta, pedunculopontine nucleus were more numerous in DMNC. It was demonstrated that not all DMNC substructures received projection fibers from the neurons of all the nuclei of the basal ganglia structures mentioned. Thus, the fibers from the neurons of the globus pallidus and the ventral pallidum innervated the cuneiform and the subcuneiform nuclei, while those from the entopeduncular nucleus projected to all the DMNC substructures. The projection fibers from the zona incerta neurons were directed to the subcuneate nucleus and to the deep mesencephalic nucleus, while those from the pedunculopontine nucleus projected to the cuneate and the subcuneate nuclei. The projections from the substantia nigra neurons were directed to all the substructures of DMNC. PMID:23659032

  20. Aberrant basal ganglia metabolism in fragile X syndrome: a magnetic resonance spectroscopy study

    PubMed Central

    2013-01-01

    Background The profile of cognitive and behavioral variation observed in individuals with fragile X syndrome (FXS), the most common known cause of inherited intellectual impairment, suggests aberrant functioning of specific brain systems. Research investigating animal models of FXS, characterized by limited or lack of fragile X mental retardation protein, (FMRP), has linked brain dysfunction to deficits in the cholinergic and glutamatergic systems. Thus, we sought to examine in vivo levels of neurometabolites related to cholinergic and glutamatergic functioning in males and females with FXS. Methods The study participants included 18 adolescents and young adults with FXS, and a comparison group of 18 individuals without FXS matched for age, sex and general intellectual functioning. Proton magnetic resonance spectroscopy (MRS) was used to assess neurometabolite levels in the caudate nucleus, a region known to be greatly enlarged and involved in abnormal brain circuitry in individuals with FXS. A general linear model framework was used to compare group differences in metabolite concentration. Results We observed a decrease in choline (P?=?0.027) and in glutamate?+?glutamine (P?=?0.032) in the caudate nucleus of individuals with FXS, relative to individuals in the comparison group. Conclusions This study provides evidence of metabolite differences in the caudate nucleus, a brain region of potential importance to our understanding of the neural deficits underlying FXS. These metabolic differences may be related to aberrant receptor signaling seen in animal models. Furthermore, identification of the specific neurometabolites involved in FXS dysfunction could provide critical biomarkers for the design and efficacy tracking of disease-specific pharmacological treatments. PMID:23981510

  1. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes.

    PubMed

    Schwartze, Michael; Keller, Peter E; Patel, Aniruddh D; Kotz, Sonja A

    2011-01-20

    The basal ganglia (BG) are part of extensive subcortico-cortical circuits that are involved in a variety of motor and non-motor cognitive functions. Accumulating evidence suggests that one specific function that engages the BG and associated cortico-striato-thalamo-cortical circuitry is temporal processing, i.e., the mechanisms that underlie the encoding, decoding and evaluation of temporal relations or temporal structure. In the current study we investigated the interplay of two processes that require precise representations of temporal structure, namely the perception of an auditory pacing signal and manual motor production by means of finger tapping in a sensorimotor synchronization task. Patients with focal lesions of the BG and healthy control participants were asked to align finger taps to tone sequences that either did or did not contain a tempo acceleration or tempo deceleration at a predefined position, and to continue tapping at the final tempo after the pacing sequence had ceased. Performance in this adaptive synchronization-continuation paradigm differed between the two groups. Selective damage to the BG affected the abilities to detect tempo changes and to perform attention-dependent error correction, particularly in response to tempo decelerations. An additional assessment of preferred spontaneous, i.e., unpaced but regular, production rates yielded more heterogeneous results in the patient group. Together these findings provide evidence for less efficient processing in the perception and the production of temporal structure in patients with focal BG lesions. The results also support the functional role of the BG system in attention-dependent temporal processing. PMID:20883725

  2. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity.

    PubMed

    Cotterill, R M

    2001-05-01

    It is suggested that the anatomical structures which mediate consciousness evolved as decisive embellishments to a (non-conscious) design strategy present even in the simplest unicellular organisms. Consciousness is thus not the pinnacle of a hierarchy whose base is the primitive reflex, because reflexes require a nervous system, which the single-celled creature does not possess. By postulating that consciousness is intimately connected to self-paced probing of the environment, also prominent in prokaryotic behavior, one can make mammalian neuroanatomy amenable to dramatically straightforward rationalization. Muscular contraction is the nervous system's only externally directed product, and the signaling routes which pass through the various brain components must ultimately converge on the motor areas. The function of several components is still debatable, so it might seem premature to analyze the global operation of the circuit these routes constitute. But such analysis produces a remarkably simple picture, and it sheds new light on the roles of the individual components. The underlying principle is conditionally permitted movement, some components being able to veto muscular contraction by denying the motor areas sufficient activation. This is true of the basal ganglia (BG) and the cerebellum (Cb), which act in tandem with the sensory cerebrum, and which can prevent the latter's signals to the motor areas from exceeding the threshold for overt movement. It is also true of the anterior cingulate, which appears to play a major role in directing attention. In mammals, the result can be mere thought, provided that a second lower threshold is exceeded. The veto functions of the BG and the Cb stem from inhibition, but the countermanding disinhibition develops at markedly different rates in those two key components. It develops rapidly in the BG, control being exercised by the amygdala, which itself is governed by various other brain regions. It develops over time in the Cb, thereby permitting previously executed movements that have proved advantageous. If cognition is linked to overt or covert movement, intelligence becomes the ability to consolidate individual motor elements into more complex patterns, and creativity is the outcome of a race-to-threshold process which centers on the motor areas. Amongst the ramifications of these ideas are aspects of cortical oscillations, phantom limb sensations, amyotrophic lateral sclerosis (ALS) the difficulty of self-tickling and mirror neurons. PMID:11250060

  3. Analysis of Small Ischemic Lesions in the Examinees of a Brain Dock and Neurological Examination of Animals Subjected to Cortical or Basal Ganglia Photothrombotic Infarction.

    PubMed

    Kuroiwa, Toshihiko; Tabata, Hitoshi; Xi, Guohua; Hua, Ya; Schallert, Timothy; Keep, Richard F

    2016-01-01

    We analyzed cases of small brain ischemic lesions found in examinees of a brain dock (neurological health screening center). Small cerebral infarction was found in 17 % of the examinees (733 cases). White matter lesions were found in 24 %. Infarctions were located in the cortex or subcortical white matter in 31 % and in the basal ganglia in 44 % of cases. Infratentorial infarction was found in 1.6 %. We have developed an animal model of small infarction in the cortex or basal ganglia induced by photothrombosis in rodents. Sprague-Dawley rats or Mongolian gerbils were anesthetized and photothrombotic infarction was induced in the left caudate nucleus or parietal cortex by light exposure via an optic fiber and intravenous Rose Bengal dye injection. Histological examination revealed development of a small spherical infarction surrounding the tip of the optic fiber. The lesion turned to a cyst by 6 weeks after lesioning. Neurological deficits were found in animals both with cortical and caudate infarction. Behavioral changes in an open field test differed with the lesion site. Neurological deficits were sustained longer in animals with larger infarctions. Thus, photothrombotic infarction is useful for analyzing location-dependent and size-dependent neurological and neuropathological changes after cerebral infarction. PMID:26463929

  4. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  5. Fos expression following activation of the ventral pallidum in normal rats and in a model of Parkinson's Disease: implications for limbic system and basal ganglia interactions.

    PubMed

    Turner, Michael S; Gray, Thackery S; Mickiewicz, Amanda L; Napier, T Celeste

    2008-09-01

    The circuit-related consequences of activating the ventral pallidum (VP) are not well known, and lacking in particular is how these effects are altered in various neuropathological states. To help to address these paucities, this study investigated the brain regions affected by VP activation by quantifying neurons that stain for Fos-like immunoreactivity (ir). Fos-ir was assessed after intra-pallidal injections of the excitatory amino acid agonist, NMDA, or the GABA(A) antagonist, bicuculline in normal rats and in those rendered Parkinsonian-like by lesioning dopaminergic neurons with the neurotoxin, 6-OHDA. We hypothesized that activation of the VP will alter the activity state of brain regions associated with both the basal ganglia and limbic system, and that this influence would be modified in the Parkinsonian state. Blocking tonically activated GABA(A) receptors with bicuculline (50 ng/0.5 microl) elevated Fos-ir in the VP to 423% above the contralateral, vehicle-injected side. Likewise, intra-VP NMDA (0.23 microg or 0.45 microg/0.5 microl), dose-dependently increased the number of pallidal neurons expressing Fos-ir by 224 and 526%, respectively. At higher NMDA doses, the density of Fos-ir neurons was not elevated above control levels. This inverted U-shaped profile was mirrored by a VP output structure, the medial subthalamic nucleus (mSTN). The mSTN showed a 289% increase in Fos-ir neurons with intra-VP injections of 0.45 microg NMDA, and this response was halved following intra-VP injections of 0.9 microg NMDA. Of the 12 other brain regions measured, three showed VP NMDA-induced enhancements in Fos-ir: the frontal cortex, entopeduncular nucleus and substantia nigra pars reticulata, all regions associated with the basal ganglia. In a second study, we evaluated the NMDA activation profile in a rat model of Parkinson's Disease (PD) which was created by a unilateral injection of 6-OHDA into the rostral substantia nigra pars compacta. Comparisons of responses to intra-VP NMDA between the hemispheres ipsilateral and contralateral to the lesion revealed that Fos-ir cells in the pedunculopontine nucleus was reduced by 62%, whereas Fos-ir for the basolateral amygdala and STN was reduced by 32 and 42%, respectively. These findings support the concept that the VP can influence both the basal ganglia and the limbic system, and that that the nature of this influence is modified in an animal model of PD. As the VP regulates motivation and cognition, adaptations in this system may contribute to the mood and mnemonic disorders that can accompany PD. PMID:18663473

  6. Analysis of the structural bases of information processing in the basal ganglia: the spatial organization of thalamocortical projections in the dog brain.

    PubMed

    Gorbachevskaya, A I; Chivileva, O G

    2003-02-01

    Analysis of the architectonics of the thalamic projection systems of the caudate nucleus, putamen, and nucleus accumbens using axonal transport of retrograde markers was performed to study the morphological substrate for information processing in the striatum of the dog brain. The striatal nuclei contained areas through which segregated conduction of motor (dorsal segments of the caudate nucleus and putamen) and limbic (medial segment of the nucleus accumbens) information could occur, along with areas (ventral segments of the caudate nucleus and putamen, lateral segment of the nucleus accumbens) in which convergent conduction of functionally diverse information processed in the thalamic nuclei could occur. These data make a significant contribution to our understanding of the anatomical aspects of both the functional heterogeneity of the basal ganglia and integrative information processing occurring within them, which underlies the mechanisms organizing adaptive behavior. PMID:12669787

  7. Altered Neuronal Firing Pattern of the Basal Ganglia Nucleus Plays a Role in Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    PubMed Central

    Li, Xiaoyu; Zhuang, Ping; Li, Yongjie

    2015-01-01

    Background: Levodopa therapy alleviates the symptoms of Parkinson’s disease (PD), but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID). Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1 ± 11.0 years; disease duration, 8.7 ± 5.6 years) were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr (1967) scores ranged from 2–4 and their UPDRS III scores were 28.5 ± 5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7 ± 1.6). Microelectrode recording was performed in the globus pallidus internus (GPi) and subthalamic nucleus (STN) during pallidotomy (n = 12) or STN deep brain stimulation (DBS; bilateral, n = 12; unilateral, n = 6). The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs) and the corresponding coefficient of variation (CV). Results: A total of 295 neurons were identified from the GPi (n = 12) and STN (n = 18). These included 26 (8.8%) highly grouped discharge, 30 (10.2%) low frequency firing, 78 (26.4%) rapid tonic discharge, 103 (34.9%) irregular activity, and 58 (19.7%) tremor-related activity. There were significant differences between the two groups (p < 0.05) for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID. PMID:26635583

  8. Age-related increases in basal ganglia glutamate are associated with TNF, reduced motivation and decreased psychomotor speed during IFN-alpha treatment: Preliminary findings.

    PubMed

    Haroon, Ebrahim; Felger, Jennifer C; Woolwine, Bobbi J; Chen, Xiangchuan; Parekh, Samir; Spivey, James R; Hu, Xiaoping P; Miller, Andrew H

    2015-05-01

    Inflammation-induced alterations in central nervous system (CNS) metabolism have focused on glutamate. At excessive concentrations, glutamate is toxic to glia and neurons, and inflammatory cytokines have been shown to influence glutamate turnover by blocking glutamate reuptake and increasing glutamate release. Increased glutamate has also been found in depression, a disorder associated with increased inflammation. Data by our group have shown increased glutamate as measured by magnetic resonance spectroscopy (MRS) in basal ganglia and dorsal anterior cingulate cortex of patients administered the inflammatory cytokine interferon (IFN)-alpha. Given data that increasing age is associated with an exaggerated CNS inflammatory response, we examined whether older age (>55years) would be associated with a greater IFN-alpha-induced increase in CNS glutamate. Using a longitudinal design, 31 patients with hepatitis C virus (HCV) underwent MRS, blood sampling for inflammatory markers, and behavioral assessments before (Visit 1) and after 4weeks (Visit 2) of either IFN-alpha (n=17) or no treatment (n=14). Older patients treated with IFN-alpha exhibited a significantly greater increase in glutamate from Visit 1 to Visit 2 as reflected by the glutamate/creatine ratio (Glu/Cr) in left basal ganglia compared to older controls and younger IFN-alpha-treated and untreated subjects. In addition, increased Glu/Cr in older but not younger IFN-alpha-treated and untreated patients was associated with increased tumor necrosis factor, reduced motivation as measured by the Multidimensional Fatigue Inventory and increased choice movement time on the Cambridge Neuropsychological Test Automated Battery. Taken together, these preliminary data support the notion that older age may interact with inflammation to exaggerate the effects of inflammatory stimuli on CNS glutamate and behavior. PMID:25500218

  9. Neurophysiological changes in the primate basal ganglia following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced

    E-print Network

    Bar-Gad, Izhar

    towards treatments that are aimed at reversing this abnormal activity, offering new hope for PD patients% of the population over age 65 and 5% of the population over age 85 (3). It is typically a disease of the middle to late years, beginning at a mean age of 50-60 years and progressing slowly, with mean lifespan

  10. Memory, Mood, Dopamine, and Serotonin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Lesioned Mouse Model of Basal Ganglia Injury

    PubMed Central

    Vu?kovi?, Marta G.; Wood, Ruth I.; Holschneider, Daniel P.; Abernathy, Avery; Togasaki, Daniel M.; Smith, Alexsandra; Petzinger, Giselle M.; Jakowec, Michael W.

    2012-01-01

    The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse serves as a model of basal ganglia injury and Parkinson’s disease. The present study investigated the effects of MPTP-induced lesioning on associative memory, conditioned fear, and affective behavior. Male C57BL/6 mice were administered saline or MPTP and separate groups were evaluated at either 7 or 30 days post-lesioning. In the social transmission of food preference test, mice showed a significant decrease in preference for familiar food 30 days post-MPTP compared to controls. Mice at both 7 and 30 days post-MPTP-lesioning had increased fear extinction compared to controls. HPLC analysis of tissues homogenates showed dopamine and serotonin were depleted in the striatum, frontal cortex, and amygdala. No changes in anxiety or depression were detected by the tail suspension, sucrose preference, light-dark preference, or hole-board tests. In conclusion, acute MPTP-lesioning regimen in mice causes impairments in associative memory and conditioned fear, no mood changes, and depletion of dopamine and serotonin throughout the brain. PMID:18718537

  11. Manganese-induced atypical parkinsonism is associated with altered Basal Ganglia activity and changes in tissue levels of monoamines in the rat.

    PubMed

    Bouabid, Safa; Delaville, Claire; De Deurwaerdère, Philippe; Lakhdar-Ghazal, Nouria; Benazzouz, Abdelhamid

    2014-01-01

    Manganese neurotoxicity is associated with motor and cognitive disturbances known as Manganism. However, the mechanisms underlying these deficits remain unknown. Here we investigated the effects of manganese intoxication on motor and non-motor parkinsonian-like deficits such as locomotor activity, motor coordination, anxiety and "depressive-like" behaviors. Then, we studied the impact of this intoxication on the neuronal activity, the globus pallidus (GP) and subthalamic nucleus (STN). At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, norepinephrine and serotonin) has been determined. The experiments were carried out in adult Sprague-Dawley rats, daily treated with MnCl2 (10 mg/kg/, i.p.) for 5 weeks. We show that manganese progressively reduced locomotor activity as well as motor coordination in parallel with the manifestation of anxiety and "depressive-like" behaviors. Electrophysiological results show that, while majority of GP and STN neurons discharged regularly in controls, manganese increased the number of GP and STN neurons discharging irregularly and/or with bursts. Biochemical results show that manganese significantly decreased tissue levels of norepinephrine and serotonin with increased metabolism of dopamine in the striatum. Our data provide evidence that manganese intoxication is associated with impaired neurotransmission of monoaminergic systems, which is at the origin of changes in basal ganglia neuronal activity and the manifestation of motor and non-motor deficits similar to those observed in atypical Parkinsonism. PMID:24896650

  12. Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry.

    PubMed

    Teicher, M H; Anderson, C M; Polcari, A; Glod, C A; Maas, L C; Renshaw, P F

    2000-04-01

    Attention-deficit/hyperactivity disorder is a highly heritable and prevalent neuropsychiatric disorder estimated to affect 6% of school-age children. Its clinical hallmarks are inattention, hyperactivity and impulsivity, which often respond substantially to treatment with methylphenidate or dextroamphetamine. Etiological theories suggest a deficit in corticostriatal circuits, particularly those components modulated by dopamine. We developed a new functional magnetic resonance imaging procedure (T2 relaxometry) to indirectly assess blood volume in the striatum (caudate and putamen) of boys 6-12 years of age in steady-state conditions. Boys with attention-deficit/hyperactivity disorder had higher T2 relaxation time measures in the putamen bilaterally than healthy control subjects. Relaxation times strongly correlated with the child's capacity to sit still and his accuracy in accomplishing a computerized attention task. Daily treatment with methylphenidate significantly changed the T2 relaxation times in the putamen of children with attention-deficit/hyperactivity disorder, although the magnitude and direction of the effect was strongly dependent on the child's unmedicated activity state. There was a similar but nonsignificant trend in the right caudate. T2 relaxation time measures in thalamus did not differ significantly between groups, and were not affected by methylphenidate. Attention-deficit/hyperactivity disorder symptoms may be closely tied to functional abnormalities in the putamen, which is mainly involved in the regulation of motor behavior. PMID:10742158

  13. Prior MDMA (Ecstasy) use is associated with increased basal ganglia–thalamocortical circuit activation during motor task performance in humans: An fMRI study

    PubMed Central

    Karageorgiou, John; Dietrich, Mary S.; Charboneau, Evonne J.; Woodward, Neil D.; Blackford, Jennifer U.; Salomon, Ronald M.; Cowan, Ronald L.

    2009-01-01

    MDMA (3,4-methylenedioxymethamphetamine; Ecstasy) is a popular recreational drug that produces long-lasting serotonin (5-HT) neurotoxicity consisting of reductions in markers for 5-HT axons. 5-HT innervates cortical and subcortical brain regions mediating motor function, predicting that MDMA users will have altered motor system neurophysiology. We used functional magnetic resonance imaging (fMRI) to assay motor task performance-associated brain activation changes in MDMA and non-MDMA users. 24 subjects (14 MDMA users and 10 controls) performed an event-related motor tapping task (1, 2 or 4 taps) during fMRI at 3 T. Motor regions of interest were used to measure percent signal change (PSC) and percent activated voxels (PAV) in bilateral motor cortex, sensory cortex, supplementary motor area (SMA), caudate, putamen, pallidum and thalamus. We used SPM5 to measure brain activation via three methods: T-maps, PSC and PAV. There was no statistically significant difference in reaction time between the two groups. For the Tap 4 condition, MDMA users had more activation than controls in the right SMA for T-score (p = 0.02), PSC (p = 0.04) and PAV (p = 0.03). Lifetime episodes of MDMA use were positively correlated with PSC for the Tap 4 condition on the right for putamen and pallidum; with PAV in the right motor and sensory cortex and bilateral thalamus. In conclusion, we found a group difference in the right SMA and positive dose–response association between lifetime exposure to MDMA and signal magnitude and extent in several brain regions. This evidence is consistent with MDMA-induced alterations in basal ganglia–thalamocortical circuit neurophysiology and is potentially secondary to neurotoxic effects on 5-HT signaling. Further studies examining behavioral correlates and the specific neurophysiological basis of the observed findings are warranted. PMID:19264142

  14. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    PubMed

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' ??=?0.008, ?(2) (9)?=?238.837, P?

  15. Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain.

    PubMed

    Joyce, J N; Janowsky, A; Neve, K A

    1991-06-01

    The distribution and pharmacology of the binding of [125I]epidepride, a substituted benzamide with high affinity and selectivity for dopamine (DA) D2 receptors in rat brain (Neve et al., J. Pharmacol. Exp. Ther. 252: 1108-1116, 1990), is described in human brain. Saturation analysis of the binding of [125I]epidepride to membranes derived from striatum and regions of cortex demonstrated similar Kd values (34 and 28-33 pM, respectively) but differing maximum density of binding site values (152 and 3-8 fmol/mg of protein, respectively). The pharmacological profile of binding in cortex was also similar to striatum (epidepride greater than spiperone greater than butaclamol = flupenthixol greater than clozapine) except that an additional low-affinity site, blocked by the alpha-2 adrenergic antagonist idazoxan, was present in cortex. Quantification by autoradiography also demonstrated the greatest binding in the basal ganglia, with the striatum exhibiting greater binding than the pallidal complex or midbrain regions. For the pallidum, binding in the external segment was higher than the internal segment. Within the midbrain the binding of [125I]epidepride correlated well with the known distribution of DA-containing cell bodies, with the substantia nigra (pars compacta and pars lateralis) and ventral tegmental area (A10) higher than area A8 and central gray. Binding in frontal and parietal cortex was highest in the internal layers (layers V and VI). Temporal cortex showed a 2-fold higher density of binding than other cortical regions and a trilaminar pattern; binding was greater in the external (layers I and II) and internal layers than in the middle layers (III and IV). This pattern changed in the parahippocampal complex. Within the lateral occipitotemporal cortex, binding was densest in layers I to III and very low in layers IV to VI, but binding was almost nonexistent in the adjacent entorhinal cortex. Within the hippocampal complex, binding was evident in the subiculum, CA3 and dentate gyrus and almost nonexistent in the presubiculum or other fields of the hippocampus. This pattern of binding in the parahippocampal gyrus is unique to human brain and represents sites of action for DA in limbic cortex. PMID:1828505

  16. A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making

    PubMed Central

    Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A.

    2015-01-01

    There is significant evidence that in addition to reward-punishment based decision making, the Basal Ganglia (BG) contributes to risk-based decision making (Balasubramani et al., 2014). Despite this evidence, little is known about the computational principles and neural correlates of risk computation in this subcortical system. We have previously proposed a reinforcement learning (RL)-based model of the BG that simulates the interactions between dopamine (DA) and serotonin (5HT) in a diverse set of experimental studies including reward, punishment and risk based decision making (Balasubramani et al., 2014). Starting with the classical idea that the activity of mesencephalic DA represents reward prediction error, the model posits that serotoninergic activity in the striatum controls risk-prediction error. Our prior model of the BG was an abstract model that did not incorporate anatomical and cellular-level data. In this work, we expand the earlier model into a detailed network model of the BG and demonstrate the joint contributions of DA-5HT in risk and reward-punishment sensitivity. At the core of the proposed network model is the following insight regarding cellular correlates of value and risk computation. Just as DA D1 receptor (D1R) expressing medium spiny neurons (MSNs) of the striatum were thought to be the neural substrates for value computation, we propose that DA D1R and D2R co-expressing MSNs are capable of computing risk. Though the existence of MSNs that co-express D1R and D2R are reported by various experimental studies, prior existing computational models did not include them. Ours is the first model that accounts for the computational possibilities of these co-expressing D1R-D2R MSNs, and describes how DA and 5HT mediate activity in these classes of neurons (D1R-, D2R-, D1R-D2R- MSNs). Starting from the assumption that 5HT modulates all MSNs, our study predicts significant modulatory effects of 5HT on D2R and co-expressing D1R-D2R MSNs which in turn explains the multifarious functions of 5HT in the BG. The experiments simulated in the present study relates 5HT to risk sensitivity and reward-punishment learning. Furthermore, our model is shown to capture reward-punishment and risk based decision making impairment in Parkinson's Disease (PD). The model predicts that optimizing 5HT levels along with DA medications might be essential for improving the patients' reward-punishment learning deficits. PMID:26136679

  17. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson’s disease

    PubMed Central

    2013-01-01

    Background It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson’s disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Results Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. Conclusions These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms. PMID:24308494

  18. Eyeblink Conditioning Deficits Indicate Timing and Cerebellar Abnormalities in Schizophrenia

    ERIC Educational Resources Information Center

    Brown, S.M.; Kieffaber, P.D.; Carroll, C.A.; Vohs, J.L.; Tracy, J.A.; Shekhar, A.; O'Donnell, B.F.; Steinmetz, J.E.; Hetrick, W.P.

    2005-01-01

    Accumulating evidence indicates that individuals with schizophrenia manifest abnormalities in structures (cerebellum and basal ganglia) and neurotransmitter systems (dopamine) linked to internal-timing processes. A single-cue tone delay eyeblink conditioning paradigm comprised of 100 learning and 50 extinction trials was used to examine cerebellar…

  19. Convergent evidence for abnormal striatal synaptic plasticity in dystonia

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes linking etiology to pathophysiology of the disease. PMID:20005952

  20. Neural code alterations and abnormal time patterns in Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo

    2015-04-01

    Objective. The neural code used by the basal ganglia is a current question in neuroscience, relevant for the understanding of the pathophysiology of Parkinson’s disease. While a rate code is known to participate in the communication between the basal ganglia and the motor thalamus/cortex, different lines of evidence have also favored the presence of complex time patterns in the discharge of the basal ganglia. To gain insight into the way the basal ganglia code information, we studied the activity of the globus pallidus pars interna (GPi), an output node of the circuit. Approach. We implemented the 6-hydroxydopamine model of Parkinsonism in Sprague-Dawley rats, and recorded the spontaneous discharge of single GPi neurons, in head-restrained conditions at full alertness. Analyzing the temporal structure function, we looked for characteristic scales in the neuronal discharge of the GPi. Main results. At a low-scale, we observed the presence of dynamic processes, which allow the transmission of time patterns. Conversely, at a middle-scale, stochastic processes force the use of a rate code. Regarding the time patterns transmitted, we measured the word length and found that it is increased in Parkinson’s disease. Furthermore, it showed a positive correlation with the frequency of discharge, indicating that an exacerbation of this abnormal time pattern length can be expected, as the dopamine depletion progresses. Significance. We conclude that a rate code and a time pattern code can co-exist in the basal ganglia at different temporal scales. However, their normal balance is progressively altered and replaced by pathological time patterns in Parkinson’s disease.

  1. White matter abnormalities in dystonia normalize after botulinum toxin treatment

    PubMed Central

    Blood, Anne J.; Tuch, David S.; Makris, Nikos; Makhlouf, Miriam L.; Sudarsky, Lewis R.; Sharma, Nutan

    2011-01-01

    The pathophysiology of dystonia is still poorly understood. We used diffusion tensor imaging to screen for white matter abnormalities in regions between the basal ganglia and the thalamus in cervical and hand dystonia patients. All patients exhibited an abnormal hemispheric asymmetry in a focal region between the pallidum and the thalamus. This asymmetry was absent 4 weeks after the same patients were treated with intramuscular botulinum toxin injections. These findings represent a new systems-level abnormality in dystonia, which may lead to new insights about the pathophysiology of movement disorders. More generally, these findings demonstrate central nervous system changes following peripheral reductions in muscle activity. This raises the possibility that we have observed activity-dependent white matter plasticity in the adult human brain. PMID:16951564

  2. Cerebral abnormalities: use of calculated T1 and T2 magnetic resonance images for diagnosis

    SciTech Connect

    Mills, C.M.; Crooks, L.E.; Kaufman, L.; Brant-Zawadzki, M.

    1984-01-01

    The potential clinical importance of T1 and T2 relaxation times in distinguishing normal and pathologic tissue with magnetic resonance (MR) is discussed and clinical examples of cerebral abnormalities are given. Five patients with cerebral infarction, 15 with multiple sclerosis, two with Wilson disease, and four with tumors were imaged. Hemorrhagic and ischemic cerebrovascular accidents were distinguished using the spin echo technique. In the patients with multiple sclerosis, lesions had prolonged T1 and T2 times, but the definition of plaque was limited by spatial resolution. No abnormalities in signal intensity were seen in the patient with Wilson disease who was no longer severly disabled; abnormal increased signal intensity in the basal ganglia was found in the second patient with Wilson disease. Four tumors produced abnormal T1 and T2 relaxation times but these values alone were not sufficient for tumor characterization.

  3. Extragenic bypass suppressors of mutations in the essential gene BLD2 promote assembly of basal bodies with abnormal microtubules in Chlamydomonas reinhardtii.

    PubMed Central

    Preble, A M; Giddings, T H; Dutcher, S K

    2001-01-01

    bld2-1 mutant Chlamydomonas reinhardtii strains assemble basal bodies with singlet microtubules; bld2-1 cells display flagellar assembly defects as well as positioning defects of the mitotic spindle and cleavage furrow. To further understand the role of the BLD2 gene, we have isolated three new bld2 alleles and three partially dominant extragenic suppressors, rgn1-1, rgn1-2, and rgn1-3. bld2 rgn1-1 strains have phenotypes intermediate between those of bld2 and wild-type strains with respect to flagellar number, microtubule rootlet organization, cleavage furrow positioning, and basal body structural phenotypes. Instead of the triplet microtubules of wild-type cells, bld2 rgn1-1 basal bodies have mixtures of no, singlet, doublet, and triplet microtubules. The bld2-4 allele was made by insertional mutagenesis and identified in a noncomplementation screen in a diploid strain. The bld2-4 allele has a lethal phenotype based on mitotic segregation in diploid strains and in haploid strains generated by meiotic recombination. The lethal phenotype in haploid strains is suppressed by rgn1-1; these suppressed strains have similar phenotypes to other bld2 rgn1-1 double mutants. It is likely that BLD2 is an essential gene that is needed for basal body assembly and function. PMID:11139500

  4. [Information analysis of spinal ganglia].

    PubMed

    Lobko, P I; Kovaleva, D V; Kovalchuk, I E; Pivchenko, P G; Rudenok, V V; Davydova, L A

    2000-01-01

    Information parameters (entropia and redundancy) of cervical and thoracic spinal ganglia of albino rat foetuses, mature animals (cat and dog) and human subjects were analysed. Information characteristics of spinal ganglia were shown to be level-specified and to depend on their functional peculiarities. Information parameters of thoracic spinal ganglia of man and different animals are specie specified and may be used in assessment of morphological structures as information systems. PMID:12629803

  5. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in treating neurodegenerative disorders.

  6. Genetics Home Reference: Familial idiopathic basal ganglia calcification

    MedlinePLUS

    ... the front of the brain are involved in reasoning, planning, judgment, and problem-solving. The regions of ... more about genetic testing , particularly the difference between clinical tests and research tests . To locate a healthcare ...

  7. ARCHIVAL REPORT Impaired Prefrontal-Basal Ganglia Functional

    E-print Network

    for two core features of schizophrenia, cognitive deficits and psychosis, respectively. However, there has to psychosis in schizophrenia remains unclear. We undertook this event-related functional magnetic resonance connectivity predicted the level of psychosis. Conclusions: These results suggest that functional impairments

  8. Stereotactic microdialysis of the basal ganglia in Parkinson's disease.

    PubMed

    Zsigmond, Peter; Dernroth, Nezirevi?; Kullman, Anita; Augustinsson, Lars-Erik; Dizdar, Nil

    2012-05-30

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficacious treatment in patients with advanced Parkinson's disease, yet the mechanisms of STN DBS are poorly understood. The aims of this study were to develop a useful method for studying neurotransmitter alterations during DBS and for the pharmacokinetics of L-dopa in brain tissue. Ten patients with Parkinson's disease participated, whereof two had no previous L-dopa medication. The electrodes and catheters were placed using MRI-guided stereotaxic targeting. Two microdialysis probes were placed, one in the right internal globus pallidus, and one in a brachial vein. The quadripolar deep brain electrodes were placed in the right STN. Microdialysates from brain tissue and blood were collected in 15-min fractions at baseline and during DBS. After stimulation new baseline fractions were taken and finally three fractions during continuous intravenous infusion of L-dopa. Clinical evaluation showed that both DBS and L-dopa infusion gave good relief of rigidity and tremor in all ten patients. During DBS the L-dopa levels in the brain increased in some of the patients but did not persist during the whole stimulation period. The concentration in brain increased substantially during intravenous L-dopa infusion. A number of catecholamines and their metabolites were analysed with high pressure liquid chromatography (HPLC). With our study we could show that this model is suitable for the monitoring of neurotransmitters and for pharmacokinetic studies in human brain, although we found that the sampling time was too short to follow the possible alterations in brain activity caused by DBS. PMID:22450238

  9. Synchronous Oscillations in the Basal-Ganglia-Cortical Network

    E-print Network

    (PD) are akinesia (poverty of spontaneous movements and difficulty in initiating a movement), bradykinesia (slowness of movement), muscle rigidity and a tremor of 4-7 Hz. The two major subtypes of their species ­ African green (vervet) monkeys tend toward tremor, while macaques do not. Recordings from

  10. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans.

    PubMed

    Herz, Damian M; Haagensen, Brian N; Christensen, Mark S; Madsen, Kristoffer H; Rowe, James B; Løkkegaard, Annemette; Siebner, Hartwig R

    2015-06-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy alleviates basal ganglia dysfunction in Parkinson's disease, it often elicits involuntary movements, referred to as levodopa-induced peak-of-dose dyskinesias. Here, we used a novel pharmacodynamic neuroimaging approach to identify the changes in cortico-basal ganglia connectivity that herald the emergence of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51-84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation of striato-cortical feedback connections from putamen to the pre-supplementary motor area (Pcorrected = 0.020) and primary motor cortex (Pcorrected = 0.044), but not feed-forward connections from the cortex to the putamen. Our results identify for the first time, aberrant dopaminergic modulation of striatal-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an aberrant reinforcement signal producing an abnormal motor drive that ultimately triggers involuntary movements. PMID:25882651

  11. Widespread abnormality of the ?-aminobutyric acid-ergic system in Tourette syndrome

    PubMed Central

    Bagic, Anto; Simmons, Janine M.; Mari, Zoltan; Bonne, Omer; Xu, Ben; Kazuba, Diane; Herscovitch, Peter; Carson, Richard E.; Murphy, Dennis L.; Drevets, Wayne C.; Hallett, Mark

    2012-01-01

    Dysfunction of the ?-aminobutyric acid-ergic system in Tourette syndrome may conceivably underlie the symptoms of motor disinhibition presenting as tics and psychiatric manifestations, such as attention deficit hyperactivity disorder and obsessive–compulsive disorder. The purpose of this study was to identify a possible dysfunction of the ?-aminobutyric acid-ergic system in Tourette patients, especially involving the basal ganglia-thalamo-cortical circuits and the cerebellum. We studied 11 patients with Tourette syndrome and 11 healthy controls. Positron emission tomography procedure: after injection of 20?mCi of [11C]flumazenil, dynamic emission images of the brain were acquired. Structural magnetic resonance imaging scans were obtained to provide an anatomical framework for the positron emission tomography data analysis. Images of binding potential were created using the two-step version of the simplified reference tissue model. The binding potential images then were spatially normalized, smoothed and compared between groups using statistical parametric mapping. We found decreased binding of GABAA receptors in Tourette patients bilaterally in the ventral striatum, globus pallidus, thalamus, amygdala and right insula. In addition, the GABAA receptor binding was increased in the bilateral substantia nigra, left periaqueductal grey, right posterior cingulate cortex and bilateral cerebellum. These results are consistent with the longstanding hypothesis that circuits involving the basal ganglia and thalamus are disinhibited in Tourette syndrome patients. In addition, the abnormalities in GABAA receptor binding in the insula and cerebellum appear particularly noteworthy based upon recent evidence implicating these structures in the generation of tics. PMID:22577221

  12. Bilateral large traumatic hemorrhage of the basal ganglion

    PubMed Central

    Pandey, Nityanand; Mahapatra, Ashok; Singh, Pankaj Kumar

    2014-01-01

    Traumatic bilateral basal ganglia bleed is extremely rare. It is defined as a hemorrhagic lesion located in the basal ganglia or neighboring structures such as the internal capsule and the thalamus. This report describes a 37-year-old man who had large bilateral basal ganglia hemorrhage (BGH) with subdural hematoma and traumatic subarachnoid hemorrhage. With regards to an etiology of bilateral hemorrhage of the basal ganglia, we could not disclose any possible cause except head injury in spite of full diagnostic work-up. Our final diagnosis was bilateral traumatic BGH (TBGH). The pathomechanism of such injuries is still not clear and it is proposed to be due to shear injury to the lenticulostriate and choroidal arteries. Rather than any features of the TBGH itself, duration of coma and/or associated temporal herniation predicted slower recovery and worse outcome. Bilateral TBGH is an extremely rare entity, compatible with a favorable recovery, if not associated with damage to other cortical and subcortical structures and occurring in isolation. TBGH can be considered as a marker of poor outcome rather than its cause. The BGHs seem to be hemorrhagic contusions resulting from a shearing injury, due to high velocity impact. PMID:25685230

  13. Basal cell carcinoma

    MedlinePLUS

    Basal cell skin cancer; Rodent ulcer; Skin cancer - basal cell; Cancer - skin - basal cell; Nonmelanoma skin cancer; Basal cell NMSC ... the skin together Curettage and electrodessication: Scraping away cancer cells and using electricity to kill any that remain; ...

  14. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    SciTech Connect

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-05-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities.

  15. Basal Cell Carcinoma (BCC)

    MedlinePLUS

    ... carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive than other types of basal ... to treat them early and with slightly more aggressive techniques. Excision – The basal cell carcinoma is cut ...

  16. Structural brain abnormalities in cervical dystonia

    PubMed Central

    2013-01-01

    Background Idiopathic cervical dystonia is characterized by involuntary spasms, tremors or jerks. It is not restricted to a disturbance in the basal ganglia system because non-conventional voxel-based MRI morphometry (VBM) and diffusion tensor imaging (DTI) have detected numerous regional changes in the brains of patients. In this study scans of 24 patients with cervical dystonia and 24 age-and sex-matched controls were analysed using VBM, DTI and magnetization transfer imaging (MTI) using a voxel-based approach and a region-of-interest analysis. Results were correlated with UDRS, TWSTRS and disease duration. Results We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia. Conclusions Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems. PMID:24131497

  17. Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions.

    PubMed

    Löscher, Wolfgang

    2010-01-01

    Circling or rotational behavior is the most studied indicator of cerebral asymmetry in the rat. In humans, disturbances in cerebral asymmetry are involved in the etiology of several psychiatric disorders, including schizophrenia, Tourette syndrome and attention-deficit hyperactivity disorder. Abnormal rotational behavior in rodents is indicative of either an imbalance of forebrain dopamine systems, particularly an imbalance of nigrostriatal function, or an inner ear disease affecting the vestibular (balance) system. Abnormally enhanced circling behavior has been described in several mutant rat and mouse strains both with and without defects of the vestibular system. However, the relationship between vestibular defects and lateralized circling in rodents is only incompletely understood. In this review, we describe and discuss various spontaneous mutations associated with abnormal circling behavior in different rat strains and their potential relevance to model specific brain dysfunctions. The circling rat mutants described in this review illustrate how genetic animal models may serve to study multifaceted brain functions and dysfunctions, including disorders of the basal ganglia and vestibular system. PMID:19607857

  18. [Walking abnormalities in children].

    PubMed

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional specialization of the cortex through the spinal stepping generator-fastigial nucleus-thalamus-cortex pathway. Early detection of locomotion failure and early adjustment of this condition through environmental factors can prevent the development of higher cortical dysfunction. PMID:21068458

  19. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  20. Nevoid Basal cell carcinoma syndrome: a case report and review.

    PubMed

    Bala Subramanyam, S; Naga Sujata, D; Sridhar, K; Pushpanjali, M

    2015-03-01

    Nevoid basal cell carcinoma syndrome, a rare autosomal dominant disorder, comprises of a number of abnormalities such as multiple nevoid basal cell carcinomas, skeletal abnormalities and multiple keratocystic odontogenic tumors. Diagnosis may be difficult because of the variability of expressivity and different ages of onset for different traits of this disorder. The dental clinician may be the first to encounter and identify this syndrome, when the multiple cysts like radiolucencies are discovered on panoramic view. This article reports a case of Nevoid basal cell carcinoma syndrome and provides an overview on diagnosis and management. PMID:25838663

  1. Abnormal High-Frequency Burst Firing of Cerebellar Neurons in Rapid-Onset Dystonia-Parkinsonism

    PubMed Central

    Fremont, Rachel; Calderon, D. Paola; Maleki, Sara

    2014-01-01

    Loss-of-function mutations in the ?3 isoform of the Na+/K+ ATPase (sodium pump) are responsible for rapid-onset dystonia parkinsonism (DYT12). Recently, a pharmacological model of DYT12 was generated implicating both the cerebellum and basal ganglia in the disorder. Notably, partially blocking sodium pumps in the cerebellum was necessary and sufficient for induction of dystonia. Thus, a key question that remains is how partially blocking sodium pumps in the cerebellum induces dystonia. In vivo recordings from dystonic mice revealed abnormal high-frequency bursting activity in neurons of the deep cerebellar nuclei (DCN), which comprise the bulk of cerebellar output. In the same mice, Purkinje cells, which provide strong inhibitory drive to DCN cells, also fired in a similarly erratic manner. In vitro studies demonstrated that Purkinje cells are highly sensitive to sodium pump dysfunction that alters the intrinsic pacemaking of these neurons, resulting in erratic burst firing similar to that identified in vivo. This abnormal firing abates when sodium pump function is restored and dystonia caused by partial block of sodium pumps can be similarly alleviated. These findings suggest that persistent high-frequency burst firing of cerebellar neurons caused by sodium pump dysfunction underlies dystonia in this model of DYT12. PMID:25164667

  2. Nail abnormalities

    MedlinePLUS

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  3. Chromosome Abnormalities

    MedlinePLUS

    ... of a condition caused by numerical abnormalities is Down syndrome, which is marked by mental retardation, learning difficulties, ... muscle tone (hypotonia) in infancy. An individual with Down syndrome has three copies of chromosome 21 rather than ...

  4. Congenital Abnormalities

    MedlinePLUS

    ... Ribbon Commands Skip to main content Turn off Animations Turn on Animations Our Sponsors Log in | Register Menu Log in | ... course of action. Additional Information Your Family Health History & Genetics Detecting Genetic Abnormalities Prenatal Genetic Counseling Children ...

  5. Craniofacial Abnormalities

    MedlinePLUS

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  6. Abnormal Pup 

    E-print Network

    Unknown

    2011-08-17

    samples, appropriate reference genes were needed that showed stable, non-fluctuating levels in both normal and abnormal kidney tissue and urine sediment in dogs. Tested genes included Glyceraldehyde 3- phosphate dehydrogenase (GAPDH), 40S ribosomal... into the pathogenesis and treatment of CKD in dogs. 3 CHAPTER I INTRODUCTION Primary glomerular diseases are a leading cause of chronic kidney disease (CKD) in both humans and animals. These disorders are characterized by abnormal structure and function...

  7. [Intraneuronal ganglia: value of diagnostic radiologic possibilities].

    PubMed

    Nägele, M; Lienemann, A; Hahn, D; Witt, T

    1988-03-01

    This report describes two cases of intraneuronal ganglia cysts with degeneration of the peroneal and suprascapular nerve. In addition to standard radiographs other diagnostic studies such as CT and MRI may be required to ascertain the extent of the lesion. Histopathologic information is derived from biopsy. PMID:2838215

  8. Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease

    PubMed Central

    Lee, Sungseok; Ives, Angela M.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent disease. HSV-1 and HSV-2 establish latency in both sensory and autonomic ganglia. Autonomic ganglia are more responsive than sensory ganglia to stimuli associated with recurrent disease in humans, such as stress and hormone fluctuations, suggesting that autonomic ganglia may play an important role in recurrent disease. We show that HSV-1 can reactivate from autonomic ganglia, independently from sensory ganglia, to cause recurrent ocular disease. We found no evidence that HSV-2 could reactivate from autonomic ganglia independently from sensory ganglia after ocular infection, but HSV-2 did replicate in both ganglia simultaneously to cause persistent disease. Thus, viral replication and reactivation in autonomic ganglia contribute to different clinical disease manifestations of HSV-1 and HSV-2 after ocular infection. PMID:26041294

  9. Basal forebrain neuronal inhibition enables rapid behavioral stopping.

    PubMed

    Mayse, Jeffrey D; Nelson, Geoffrey M; Avila, Irene; Gallagher, Michela; Lin, Shih-Chieh

    2015-10-01

    Cognitive inhibitory control, the ability to rapidly suppress responses inappropriate for the context, is essential for flexible and adaptive behavior. Although most studies on inhibitory control have focused on the fronto-basal-ganglia circuit, we found that rapid behavioral stopping is enabled by neuronal inhibition in the basal forebrain (BF). In rats performing the stop signal task, putative noncholinergic BF neurons with phasic bursting responses to the go signal were nearly completely inhibited by the stop signal. The onset of BF neuronal inhibition was tightly coupled with and temporally preceded the latency to stop, the stop signal reaction time. Artificial inhibition of BF activity in the absence of the stop signal was sufficient to reproduce rapid behavioral stopping. These results reveal a previously unknown subcortical mechanism of rapid inhibitory control by the BF, which provides bidirectional control over the speed of response generation and inhibition. PMID:26368943

  10. Structural Correlates of Efficient GABAergic Transmission in the Basal Ganglia-Thalamus Pathway

    PubMed Central

    Bodor, Ágnes L.; Giber, Kristóf; Rovó, Zita; Ulbert, István; Acsády, László

    2009-01-01

    Giant inhibitory terminals with multiple synapses, the counterparts of excitatory “detonator” or “driver” terminals, have not been described in the forebrain. Using three-dimensional reconstructions of electron microscopic images, we quantitatively characterize a GABAergic pathway that establishes synaptic contacts exclusively via multiple synapses. Axon terminals of the nigrothalamic pathway formed, on average, 8.5 synapses on large-diameter dendrites and somata of relay cells in the ventromedial nucleus of the rat thalamus. All synapses of a given terminal converged on a single postsynaptic element. The vast majority of the synapses established by a single terminal were not separated by astrocytic processes. Nigrothalamic terminals in the macaque monkey showed the same ultrastructural features both in qualitative and quantitative terms (the median number of synapse per target was also 8.5). The individual synapses were closely spaced in both species. The nearest-neighbor synaptic distances were 169 nm in the rat and 178 nm in the monkey. The average number of synapses within 0.75 ?m from any given synapse was 3.8 in the rat and 3.5 in the monkey. The arrangement of synapses described in this study creates favorable conditions for intersynaptic spillover of GABA among the multiple synapses of a single bouton, which can result in larger charge transfer. This could explain faithful and efficient GABAergic signal transmission in the nigrothalamic pathway in the healthy condition and during Parkinson’s disease. In addition, our structural data suggest that the rodent nigrothalamic pathway can be a valid model of the primate condition, when the mechanism of GABAergic transmission is studied. PMID:18354012

  11. Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway.

    PubMed

    Bodor, Agnes L; Giber, Kristóf; Rovó, Zita; Ulbert, István; Acsády, László

    2008-03-19

    Giant inhibitory terminals with multiple synapses, the counterparts of excitatory "detonator" or "driver" terminals, have not been described in the forebrain. Using three-dimensional reconstructions of electron microscopic images, we quantitatively characterize a GABAergic pathway that establishes synaptic contacts exclusively via multiple synapses. Axon terminals of the nigrothalamic pathway formed, on average, 8.5 synapses on large-diameter dendrites and somata of relay cells in the ventromedial nucleus of the rat thalamus. All synapses of a given terminal converged on a single postsynaptic element. The vast majority of the synapses established by a single terminal were not separated by astrocytic processes. Nigrothalamic terminals in the macaque monkey showed the same ultrastructural features both in qualitative and quantitative terms (the median number of synapse per target was also 8.5). The individual synapses were closely spaced in both species. The nearest-neighbor synaptic distances were 169 nm in the rat and 178 nm in the monkey. The average number of synapses within 0.75 microm from any given synapse was 3.8 in the rat and 3.5 in the monkey. The arrangement of synapses described in this study creates favorable conditions for intersynaptic spillover of GABA among the multiple synapses of a single bouton, which can result in larger charge transfer. This could explain faithful and efficient GABAergic signal transmission in the nigrothalamic pathway in the healthy condition and during Parkinson's disease. In addition, our structural data suggest that the rodent nigrothalamic pathway can be a valid model of the primate condition, when the mechanism of GABAergic transmission is studied. PMID:18354012

  12. The effects of cues on neurons in the basal ganglia in Parkinson's disease

    E-print Network

    Brown, Emery N.

    Visual cues open a unique window to the understanding of Parkinson's disease (PD). These cues can temporarily but dramatically improve PD motor symptoms. Although details are unclear, cues are believed to suppress pathological ...

  13. Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia

    E-print Network

    , com- monly used to explain the symptoms of Parkinsonism, views the interactions of the direct and indirect pathway as constant in time and explains the symptoms of Parkinson's disease in terms of changes- struction of dopaminergic neurons in Parkinson's disease and in animal models of parkinsonism. Key words

  14. Adenosine A2A Receptor in the Monkey Basal Ganglia: Ultrastructural Localization and Colocalization With

    E-print Network

    Hall, Randy A

    Department of Pharmacology, Emory University, Atlanta, Georgia 30322 3 Department of Neurology, Emory) is a potential drug target for the treatment of Parkinson's disease and other neurological disorders. In rodents effects in parkinsonism. J. Comp. Neurol. 520:570­589, 2012. VC 2011 Wiley Periodicals, Inc. INDEXING

  15. A Computational Model of Inhibitory Control in Frontal Cortex and Basal Ganglia

    ERIC Educational Resources Information Center

    Wiecki, Thomas V.; Frank, Michael J.

    2013-01-01

    Planning and executing volitional actions in the face of conflicting habitual responses is a critical aspect of human behavior. At the core of the interplay between these 2 control systems lies an override mechanism that can suppress the habitual action selection process and allow executive control to take over. Here, we construct a neural circuit…

  16. Error Correction, the Basal Ganglia, and the Cerebellum Ph.D. Dissertation

    E-print Network

    Shadmehr, Reza

    HUNTINGTON'S DISEASE BACKGROUND ..........................................................................2 SENSORIMOTOR PROCESSING IN HUNTINGTON'S DISEASE ...............................................4 CEREBELLAR ....................................................................................................12 CHAPTER 2 - HUNTINGTON'S DISEASE BEGINS AS A DYSFUNCTION IN ERROR FEEDBACK CONTROL

  17. Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments

    E-print Network

    Crittenden, Jill R.

    The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major ...

  18. Bilateral basal ganglia lesions after hypoglycemic coma in a 6-year-old child.

    PubMed

    Kara, Cengiz; Aydin, Omer Faruk; Aslan, Belma; Gürer, Y K Yavuz

    2007-02-01

    Imaging findings of brain damage due to neonatal hypoglycemia are known; however, the effect of childhood hypoglycemia on the brain has not been described well. The authors present the case of a 6-year-old girl who had seizures secondary to hypoglycemia followed up for 1 year as epilepsy. The patient had experienced a hypoglycemic coma attack about 1 year before. Brain magnetic resonance imaging showed atrophy of the cerebrum and cerebellum and bilateral symmetrically hyperintense lesions in the putamina. The patient was diagnosed with hypoglycemia due to hyperinsulinism. PMID:17621490

  19. Optical coherence tomography imaging of the basal ganglia: feasibility and brief review.

    PubMed

    Lopez, W O Contreras; Ângelos, J S; Martinez, R C R; Takimura, C K; Teixeira, M J; Lemos Neto, P A; Fonoff, E T

    2015-12-01

    Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures. PMID:26421868

  20. Hyporesponsive Reward Anticipation in the Basal Ganglia following Severe Institutional Deprivation Early in Life

    ERIC Educational Resources Information Center

    Mehta, Mitul A.; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C. R.; Sonuga-Barke, Edmund

    2010-01-01

    Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous…

  1. Protocadherin 17 regulates presynaptic assembly in topographic corticobasal Ganglia circuits.

    PubMed

    Hoshina, Naosuke; Tanimura, Asami; Yamasaki, Miwako; Inoue, Takeshi; Fukabori, Ryoji; Kuroda, Teiko; Yokoyama, Kazumasa; Tezuka, Tohru; Sagara, Hiroshi; Hirano, Shinji; Kiyonari, Hiroshi; Takada, Masahiko; Kobayashi, Kazuto; Watanabe, Masahiko; Kano, Masanobu; Nakazawa, Takanobu; Yamamoto, Tadashi

    2013-06-01

    Highly topographic organization of neural circuits exists for the regulation of various brain functions in corticobasal ganglia circuits. Although neural circuit-specific refinement during synapse development is essential for the execution of particular neural functions, the molecular and cellular mechanisms for synapse refinement are largely unknown. Here, we show that protocadherin 17 (PCDH17), one of the nonclustered ?2-protocadherin family members, is enriched along corticobasal ganglia synapses in a zone-specific manner during synaptogenesis and regulates presynaptic assembly in these synapses. PCDH17 deficiency in mice causes facilitated presynaptic vesicle accumulation and enhanced synaptic transmission efficacy in corticobasal ganglia circuits. Furthermore, PCDH17(-/-) mice exhibit antidepressant-like phenotypes that are known to be regulated by corticobasal ganglia circuits. Our findings demonstrate a critical role for PCDH17 in the synaptic development of specific corticobasal ganglia circuits and suggest the involvement of PCDH17 in such circuits in depressive behaviors. PMID:23684785

  2. Characterization of A-425619 at native TRPV1 receptors: a comparison between dorsal root ganglia and trigeminal ganglia.

    PubMed

    McDonald, Heath A; Neelands, Torben R; Kort, Michael; Han, Ping; Vos, Melissa H; Faltynek, Connie R; Moreland, Robert B; Puttfarcken, Pamela S

    2008-10-31

    1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea (A-425619), a novel, potent, and selective transient receptor potential type V1 (TRPV1) antagonist, attenuates pain associated with inflammation and tissue injury in rats. The purpose of this study was to extend the in vitro characterization of A-425619 to native TRPV1 receptors and to compare the pharmacological properties of TRPV1 receptors in the dorsal root ganglion with trigeminal ganglion neurons. A robust increase in intracellular Ca(2+) was elicited by a variety of TRPV1 agonists with similar rank order of potency between both cultures: resiniferatoxin>tinyatoxin>capsaicin>N-arachidonoyl-dopamine (NADA). A-425619 blocked the 500 nM capsaicin response in both dorsal root ganglion with trigeminal ganglion cultures with IC(50) values of 78 nM and 115 nM, respectively, whereas capsazepine was significantly less potent (dorsal root ganglia: IC(50)=2.63 microM; trigeminal ganglia: IC(50)=6.31 microM). Furthermore, A-425619 was more potent in blocking the 3 microM NADA-evoked response in both dorsal root ganglia (IC(50)=36 nM) and trigeminal ganglia (IC(50)=37 nM) than capsazepine (dorsal root ganglia, IC(50)=741 nM; trigeminal ganglia, IC(50)=708 nM). Electrophysiology studies showed that 100 nM A-425619 completely inhibited TRPV1-mediated acid activated currents in dorsal root ganglia and trigeminal ganglia neurons. In addition, A-425619 blocked capsaicin- and NADA-evoked calcitonin gene-related peptide (CGRP) release in both cultures more effectively than capsazepine. These data show that A-425619 is a potent TRPV1 antagonist at the native TRPV1 receptors, and suggest that the pharmacological profile for TRPV1 receptors on dorsal root ganglia and trigeminal ganglia is very similar. PMID:18755179

  3. UNMEDULLATED FIBERS ORIGINATING IN DORSAL ROOT GANGLIA

    PubMed Central

    Gasser, Herbert S.

    1950-01-01

    The compound action potential of the unmedullated fibers arising from dorsal root ganglia, as recorded in cat skin nerves after conduction of simultaneously initiated impulses, shows among its components a temporal dispersion corresponding to velocities between 2.3 and 0.7 M.P.S. The maximum representation of the component velocities is at about 1.2 M.P.S. On both sides of the maximum the representation falls off irregularly, in such a way that groupings in the distribution produce in the action potential a configuration in which successive features appear always in the same positions at a given conduction distance. Through this demonstration of a characteristic configuration the system of the unmedullated fibers is brought into analogy with that of the medullated fibers. The unmedullated fibers originating in the dorsal root ganglia have distinctive physiological properties, among which is a large positive potential which reaches its maximum immediately after the spike and decrements to half relaxation in about 50 msec., at 37°C. The positive phases of the unit potentials in the compound action potential, owing to their duration, sum to a much greater extent than the temporally dispersed spikes; and, since they have sizes such that one equivalent to 25 per cent of the spike height would not be at the limit, in the summation process the major portion of the compound action potential is caused to be written at a potential level positive to the starting base line. The position of the spikes in the sequence can be seen in the analyses in Section III. The course of the activity in unit fibers is subject to variation in ways affecting the positive potential. Preliminary descriptions, based on orienting experiments, of how these variations are conditioned are given in Section I. Two of the findings are particularly noteworthy. One is the high sensitivity of the dimensions of the postspike positivity to temperature in the range of temperatures at which skin nerves may be expected to function, even when the environmental temperatures of an animal are moderate. The other is the high sensitivity to conditioning by previous activity. The positivity is first decreased, then replaced by a negative potential of similar duration. Reasons have been given why it is inadvisable at the present time to call the postspike potential an after-potential. A comparison has been made of the properties of the unmedullated fibers arising from dorsal root ganglia with those of fibers arising from sympathetic ganglia. The differences are so great that, in the interest of precision in designation, a division of the C group of fibers into two subgroups is indicated. It is suggested that the two subgroups be named respectively d.r.C and s.C. Measurements have been made of the diameters of the d.r.C fibers in a saphenous nerve stained with silver. Graphs showing the number of fibers at each diameter are presented in Section II. In Section III there are shown constructions, from histological data, of the action potential as it would appear, after 3 cm. of conduction, with the correlation between diameter and velocity in strict linearity. The degree of fit between the constructed and recorded potentials can be seen in Fig. 18. PMID:15428610

  4. Anatomic study of human laryngeal ganglia: number and distribution.

    PubMed

    Maranillo, Eva; Vazquez, Teresa; Ibanez, Marta; Hurtado, Miguel; Pascual-Font, Aran; McHanwell, Stephen; Valderrama-Canales, Francisco; Sanudo, Jose

    2008-10-01

    We have studied 12 laryngeal nerves: six internal branches of the superior laryngeal nerve (ILN) and six recurrent laryngeal nerves (RLN) from three human adult larynges (two males and one female). After dissection of each individual laryngeal nerve using a surgical microscope, the nerves were preserved in 10% formalin, embedded in paraffin wax, serially sectioned transversely at a thickness of 10 microm and stained with hematoxylin and eosin. We found 2-4 ganglia associated with the ILN. At least two ganglia were always present (six out of six cases), the largest one being associated with the branch of the nerve innervating the vestibule and the smallest one associated with the branch innervating the aryepiglottic fold. Other ganglia were found associated with the branches for the glosso-epiglottic fold and vallecula (four out of six cases) and interarytenoid muscle (three out of six cases). The RLN showed from two to six ganglia, all of them located in its anterior terminal division. Two of the ganglia were located in the part of the nerve between the origin of the branches for the interarytenoid and lateral cricoarytenoid muscles (three out of six cases). The remaining ganglia were located close to or at the origin of the muscular branches innervating the intrinsic laryngeal muscles. The cytology of the ganglia reported suggests that they were all autonomic in nature, probably parasympathetic. PMID:18773473

  5. Perianal Basal Cell Carcinoma

    PubMed Central

    Bulur, Isil; Boyuk, Emine; Saracoglu, Zeynep Nurhan; Arik, Deniz

    2015-01-01

    Basal cell carcinoma (BCC) is the most common non-melanoma skin cancer. Exposure to ultraviolet light is an important risk factor for BCC development and the disorder therefore develops commonly on body areas that are more exposed to sunlight, such as the face and neck. It is uncommon in the closed area of the body and quite rare in the perianal and genital regions. Herein, we report a 34-year-old patient with perianal BCC who had no additional risk factors. PMID:25848349

  6. Human laryngeal ganglia contain both sympathetic and parasympathetic cell types.

    PubMed

    Ibanez, Marta; Valderrama-Canales, Francisco J; Maranillo, Eva; Vazquez, Teresa; Pascual-Font, Arán; McHanwell, Stephen; Sanudo, Jose

    2010-09-01

    The presence of ganglia associated with the laryngeal nerves is well documented. In man, these ganglia have been less well studied than in other species and, in particular, the cell types within these ganglia are less well characterized. Using a panel of antibodies to a variety of markers found in the paraganglion cells of other species, we were able to show the existence of at least two populations of cells within human laryngeal paraganglia. One population contained chromogranin and tyrosine hydroxylase representing a neurosecretory population possibly secreting dopamine. A second population of choline acetyltransferase positive cells would appear to have a putative parasympathetic function. Further work is needed to characterize these cell populations more fully before it will be possible to assign functions to these cell types but our results are consistent with the postulated functions of these ganglia as chemoreceptors, neurosecretory cells, and regulators of laryngeal mucus secretion. PMID:20821402

  7. Synaptic dimorphism in Onychophoran cephalic ganglia.

    PubMed

    Peña-Contreras, Z; Mendoza-Briceño, R V; Miranda-Contreras, L; Palacios-Prü, E L

    2007-03-01

    The taxonomic location of the Onychophora has been controversial because of their phenotypic and genotypic characteristics, related to both annelids and arthropods. We analyzed the ultrastructure of the neurons and their synapses in the cephalic ganglion of a poorly known invertebrate, the velvet worm Peripatus sedgwicki, from the mountainous region of El Valle, Mérida, Venezuela. Cephalic ganglia were dissected, fixed and processed for transmission electron microscopy. The animal has a high degree of neurobiological development, as evidenced by the presence of asymmetric (excitatory) and symmetric (inhibitory) synapses, as well as the existence of glial cell processes in a wide neuropile zone. The postsynaptic terminals were seen to contain subsynaptic cisterns formed by membranes of smooth endoplasmic reticulum beneath the postsynaptic density, whereas the presynaptic terminal showed numerous electron transparent synaptic vesicles. From the neurophylogenetic perspectives, the ultrastructural characteristics of the central nervous tissue of the Onychophora show important evolutionary acquirements, such as the presence of both excitatory and inhibitory synapses, indicating functional synaptic transmission, and the appearance of mature glial cells. PMID:18457135

  8. Nevoid basal cell carcinoma syndrome

    MedlinePLUS

    ... can lead to abnormal tooth development or jaw fractures Defects in the colored part (iris) or lens of the eye Head swelling due to fluid on the brain ( hydrocephalus) Rib abnormalities Tests that may be done include: Echocardiogram ...

  9. Basal Twinning of Hematite

    NASA Astrophysics Data System (ADS)

    Gonçalves, Fábio; Lagoeiro, Leonardo; Barbosa, Paola

    2013-04-01

    When two crystals share a plane, there is a twinning composition plane. The result is an intergrowth of two separate crystals in a symmetrical manner. Crystallographers classify twinned crystals by a number of twin laws. These twin laws are specific to the crystal system. The type of twinning can be a diagnostic tool in mineral identification and characterization. Many twin laws cannot be recognized in ordinary optical analysis. So, the advent of diffraction techniques to describe punctual crystallographic orientation facilitated the identification of many twinned crystals in rocks. Samples containing hematite of the Quadrilátero Ferrífero, Minas Gerais, Brazil, were analyzed by EBSD technique. Crystallographic orientation data were obtained from automatically indexed EBSD patterns collected on a JEOL JSM-5510. EBSD analysis was carried out on thin sections cut perpendicular to the foliation (XZ plane) and parallel to the stretching lineation (X-direction). Thin sections were polished before EBSD analysis. EBSD patterns were indexed using CHANNEL 5 software from HKL Technology, Oxford Instruments. The resulting data are presented in form of pole figures (upper hemisphere, equal angle, stereographic projection) and of colour-coded maps using Coincidence Site Lattice (? 3) and Twin Boundaries Components. Through electron backscatter diffraction analysis of hematite grains was possible to detect twin boundaries similar to Dauphiné twinning in quartz that is not described for hematite. Dauphiné twinning in trigonal ?-quartz consists of a 60° rotation around the c-axis resulting in a reversal of the crystallographic positive and negative forms (Frondel 1962). As both minerals show similar symmetry, the same mechanism can be described for hematite in this analysis. The basal twinning of hematite developed pervasively during the incipient stage of deformation. This paper investigates the relationships between this kind of twinning, deformation conditions and microstructural modifications in hematite grains. The results show that the presence of twins exerts an important role in the distribution of the intracrystalline plastic deformation in hematite, as well as in the activation of different sets of slip systems. We estimate that basal twin bands can be preferred sites for dynamic recrystallization.

  10. Expression and localization of aquaporin-4 in sensory ganglia.

    PubMed

    Kato, Jungo; Takai, Yoshiki; Hayashi, Mariko Kato; Kato, Yasuhiro; Tanaka, Manami; Sohma, Yoshiro; Abe, Yoichiro; Yasui, Masato

    2014-09-01

    Aquaporin-4 (AQP4) is a water channel protein that is predominantly expressed in astrocytes in the CNS. The rapid water flux through AQP4 may contribute to electrolyte/water homeostasis and may support neuronal activities in the CNS. On the other hand, little is known about the expression of AQP4 in the peripheral nervous system (PNS). Using AQP4(-/-) mice as a negative control, we demonstrated that AQP4 is also expressed in sensory ganglia, such as trigeminal ganglia and dorsal root ganglia in the PNS. Immunohistochemistry revealed that AQP4 is exclusively localized to satellite glial cells (SGCs) surrounding the cell bodies of the primary afferent sensory neurons in the sensory ganglia. Biochemical analyses revealed that the expression levels of AQP4 in sensory ganglia were considerably lower than those in astrocytes in the CNS. Consistently, behavioral analyses did not show any significant difference in terms of mechanical and cold sensitivity between wild type and AQP4(-/-) mice. Overall, although the pathophysiological relevance of AQP4 in somatosensory perception remains unclear, our findings provide new insight into the involvement of water homeostasis in the peripheral sensory system. PMID:25124666

  11. Abnormal Head Position

    MedlinePLUS

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  12. Basal cell nevus syndrome or Gorlin syndrome.

    PubMed

    Thalakoti, Srikanth; Geller, Thomas

    2015-01-01

    Basal cell nevus syndrome (BCNS) or Gorlin syndrome is a rare neurocutaneous syndrome sometimes known as the fifth phacomatosis, inherited in autosomal dominant fashion with complete penetrance and variable expressivity. Gorlin syndrome is characterized by development of multiple basal cell carcinomas (BCCs), jaw cysts, palmar or plantar pits, calcification of falx cerebri, various developmental skeletal abnormalities such as bifid rib, hemi- or bifid vertebra and predisposition to the development of various tumors. BCNS is caused by a mutation in the PTCH1 gene localized to 9q22.3. Its estimated prevalence varies between 1/55600 and 1/256000 with an equal male to female ratio. The medulloblastoma variant seen in Gorlin syndrome patients is of the desmoplastic type, characteristically presenting during the first 3 years of life. Therefore, children with desmoplastic medulloblastoma should be carefully screened for other features of BCNS. Radiation therapy for desmoplastic medulloblastoma should be avoided in BCNS patients as it may induce development of invasive BCCs and other tumors in the skin area exposed to radiation. This syndrome is a multisystem disorder so involvement of multiple specialists with a multimodal approach to detect and treat various manifestations at early stages will reduce the long-term sequelae and severity of the condition. Life expectancy is not significantly altered but morbidity from complications and cosmetic scarring can be substantial. PMID:26564075

  13. Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods

    PubMed Central

    Mayer, Georg; Harzsch, Steffen

    2007-01-01

    Background Onychophora (velvet worms) represent the most basal arthropod group and play a pivotal role in the current discussion on the evolution of nervous systems and segmentation in arthropods. Although there is a wealth of information on the immunolocalization of serotonin (5-hydroxytryptamine, 5-HT) in various euarthropods, as yet no comparable localization data are available for Onychophora. In order to understand how the onychophoran nervous system compares to that of other arthropods, we studied the distribution of serotonin-like immunoreactive neurons and histological characteristics of ventral nerve cords in Metaperipatus blainvillei (Onychophora, Peripatopsidae) and Epiperipatus biolleyi (Onychophora, Peripatidae). Results We demonstrate that paired leg nerves are the only segmental structures associated with the onychophoran nerve cord. Although the median commissures and peripheral nerves show a repeated pattern, their arrangement is independent from body segments characterized by the position of legs and associated structures. Moreover, the somata of serotonin-like immunoreactive neurons do not show any ordered arrangement in both species studied but are instead scattered throughout the entire length of each nerve cord. We observed neither a serially iterated nor a bilaterally symmetric pattern, which is in contrast to the strictly segmental arrangement of serotonergic neurons in other arthropods. Conclusion Our histological findings and immunolocalization experiments highlight the medullary organization of the onychophoran nerve cord and argue against segmental ganglia of the typical euarthropodan type being an ancestral feature of Onychophora. These results contradict a priori assumptions of segmental ganglia being an ancestral feature of arthropods and, thus, weaken the traditional Articulata hypothesis, which proposes a sistergroup relationship of Annelida and Arthropoda. PMID:17629937

  14. Evidence for Glutamate as a Neuroglial Transmitter within Sensory Ganglia

    PubMed Central

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T.; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold. PMID:23844184

  15. Tooth - abnormal shape

    MedlinePLUS

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  16. Urine - abnormal color

    MedlinePLUS

    The usual color of urine is straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. ... Abnormal urine color may be caused by infection, disease, medicines, or food you eat. Cloudy or milky urine is a sign ...

  17. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  18. Teachers Reflect Standards in Basals

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    Dozens of teachers and literacy specialists from across the country hunkered down in Baltimore at round tables, with laptops, pens, and paper, intent on rewriting the collections that wield tremendous influence over the way millions of U.S. children learn literacy skills: the big-name basal readers. Hailing from 18 school districts in 11 states,…

  19. Gene Therapy of the Peripheral Nervous System: Celiac Ganglia.

    PubMed

    Hammond, Bradley; Kreulen, David L

    2016-01-01

    Gene therapy has played an integral role in advancing our understanding of the central nervous system. However, gene therapy techniques have yet to be widely utilized in the peripheral nervous system. Critical targets for gene therapy within the PNS are the neurons in sympathetic ganglia, which are the final pathway to end organs. Thus they are the most specific targets for organ-specific neuron modification. This presents challenges because neurons are not viscerotopically organized within the ganglia and therefore cannot be targeted by their location. However, organ-specific neurons have been identified in sympathetic ganglia of some species and this offers an opportunity for targeting and transducing neurons by way of their target. In fact, alterations in sympathetic neurons have had pathological effects, and transducing organ-specific sympathetic neurons offer an exciting opportunity to selectively modify sympathetic pathology. In this chapter, we describe a method to virally transduce the celiac ganglion (CG), a prevertebral sympathetic ganglion that innervates abdominal organs, with AAV serotypes 1 and 6; thereby, providing a potential avenue to modulate specific subsets of neurons within the celiac ganglion. PMID:26611594

  20. The Effects of Exercise on Dopamine Neurotransmission in Parkinson’s Disease: Targeting Neuroplasticity to Modulate Basal Ganglia Circuitry

    PubMed Central

    Petzinger, G. M.; Holschneider, D.P.; Fisher, B. E.; McEwen, S.; Kintz, N.; Halliday, M.; Toy, W.; Walsh, J. W.; Beeler, J.; Jakowec, M. W.

    2015-01-01

    Animal studies have been instrumental in providing evidence for exercise-induced neuroplasticity of corticostriatal circuits that are profoundly affected in Parkinson’s disease. Exercise has been implicated in modulating dopamine and glutamate neurotransmission, altering synaptogenesis, and increasing cerebral blood flow. In addition, recent evidence supports that the type of exercise may have regional effects on brain circuitry, with skilled exercise differentially affecting frontal-striatal related circuits to a greater degree than pure aerobic exercise. Neuroplasticity in models of dopamine depletion will be reviewed with a focus on the influence of exercise on the dorsal lateral striatum and prefrontal related circuitry underlying motor and cognitive impairment in PD. Although clearly more research is needed to address major gaps in our knowledge, we hypothesize that the potential effects of exercise on inducing neuroplasticity in a circuit specific manner may occur through synergistic mechanisms that include the coupling of an increasing neuronal metabolic demand and increased blood flow. Elucidation of these mechanisms may provide important new targets for facilitating brain repair and modifying the course of disease in PD. PMID:26512345

  1. Impaired L1 and Executive Control after Left Basal Ganglia Damage in a Bilingual Basque-Spanish Person with Aphasia

    ERIC Educational Resources Information Center

    Adrover-Roig, Daniel; Galparsoro-Izagirre, Nekane; Marcotte, Karine; Ferre, Perrine; Wilson, Maximiliano A.; Ansaldo, Ana Ines

    2011-01-01

    Bilinguals must focus their attention to control competing languages. In bilingual aphasia, damage to the fronto-subcortical loop may lead to pathological language switching and mixing and the attrition of the more automatic language (usually L1). We present the case of JZ, a bilingual Basque-Spanish 53-year-old man who, after haematoma in the…

  2. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions

    E-print Network

    Fee, Michale S.

    In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action ...

  3. A novel mutation in TTC19 associated with isolated complex III deficiency, cerebellar hypoplasia, and bilateral basal ganglia lesions

    PubMed Central

    Melchionda, Laura; Damseh, Nadirah S.; Abu Libdeh, Bassam Y.; Nasca, Alessia; Elpeleg, Orly; Zanolini, Alice; Ghezzi, Daniele

    2014-01-01

    Isolated complex III (cIII) deficiency is a rare biochemical finding in mitochondrial disorders, mainly associated with mutations in mitochondrial DNA MTCYB gene, encoding cytochrome b, or in assembly factor genes (BCS1L, TTC19, UQCC2, and LYRM7), whereas mutations in nuclear genes encoding cIII structural subunits are extremely infrequent. We report here a patient, a 9 year old female born from first cousin related parents, with normal development till 18 months when she showed unsteady gait with frequent falling down, cognitive, and speech worsening. Her course deteriorated progressively. Brain MRI showed cerebellar vermis hypoplasia and bilateral lentiform nucleus high signal lesions. Now she is bed ridden with tetraparesis and severely impaired cognitive and language functions. Biochemical analysis revealed isolated cIII deficiency in muscle, and impaired respiration in fibroblasts. We identified a novel homozygous rearrangement in TTC19 (c.213_229dup), resulting in frameshift with creation of a premature termination codon (p.Gln77Argfs*30). Western blot analysis demonstrated the absence of TTC19 protein in patient’s fibroblasts, while Blue-Native Gel Electrophoresis analysis revealed the presence of cIII-specific assembly intermediates. Mutations in TTC19 have been rarely associated with mitochondrial disease to date, being described in about ten patients with heterogeneous clinical presentations, ranging from early onset encephalomyopathy to adult forms with cerebellar ataxia. Contrariwise, the biochemical defect was a common hallmark in TTC19 mutant patients, confirming the importance of TTC19 in cIII assembly/stability. Therefore, we suggest extending the TTC19 mutational screening to all patients with cIII deficiency, independently from their phenotypes. PMID:25452764

  4. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia.

    PubMed

    Moghaddam, B

    1993-05-01

    The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed. PMID:8097232

  5. Brain abnormalities in high-risk violent offenders and their association with psychopathic traits and criminal recidivism.

    PubMed

    Leutgeb, V; Leitner, M; Wabnegger, A; Klug, D; Scharmüller, W; Zussner, T; Schienle, A

    2015-11-12

    Measures of psychopathy have been proved to be valuable for risk assessment in violent criminals. However, the neuronal basis of psychopathy and its contribution to the prediction of criminal recidivism is still poorly understood. We compared structural imaging data from 40 male high-risk violent offenders and 37 non-delinquent healthy controls via voxel-based morphometry. Psychopathic traits and risk of violence recidivism were correlated with gray matter volume (GMV) of regions of interest previously shown relevant for criminal behavior. Relative to controls, criminals showed less GMV in the prefrontal cortex (PFC) and more GMV in cerebellar regions and basal ganglia structures. Within criminals, we found a negative correlation between prefrontal GMV and psychopathy. Additionally, there was a positive correlation between cerebellar GMV and psychopathy as well as risk of recidivism for violence. Moreover, GMVs of the basal ganglia and supplementary motor area (SMA) were positively correlated with anti-sociality. GMV of the amygdala was negatively correlated with dynamic risk for violence recidivism. In contrast, GMV of (para)limbic areas (orbitofrontal cortex, insula) was positively correlated with anti-sociality and risk of violence recidivism. The current investigation revealed that in violent offenders deviations in GMV of the PFC as well as areas involved in the motor component of impulse control (cerebellum, basal ganglia, SMA) are differentially related to psychopathic traits and the risk of violence recidivism. The results might be valuable for improving existing risk assessment tools. PMID:26362887

  6. MASTER Internship Joint estimation of neuronal activation and basal metabolism from functional

    E-print Network

    Dobigeon, Nicolas

    the vascular component of the vascular coupling but also the basal metabolic activity of the brain. Hence, f will be used as a reference to quantify functional and vascular deviance for patients with abnormal hemodynamics (e.g. stroke) or perfusion characteristic (e.g. dementia, tumors, epilepsy). Location

  7. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  8. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  9. Abnormal Uterine Bleeding

    MedlinePLUS

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  10. Abnormal Uterine Bleeding

    MedlinePLUS

    ... other than your normal monthly period. Having extremely heavy bleeding during your period can also be considered abnormal uterine bleeding. Very heavy bleeding during a period and/or bleeding that ...

  11. Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy.

    PubMed

    Hao, Le Thi; Duy, Phan Q; Jontes, James D; Beattie, Christine E

    2015-01-15

    Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival. PMID:25180019

  12. Discourse Types in Canadian Basal Reading Programs.

    ERIC Educational Resources Information Center

    Murphy, Sharon

    This study examined the authorship and discourse types of Canadian basal anthologies to determine whether the lingering centrality of the basal anthology in Canadian programs controls students and teachers by controlling language and reading. Each selection within five Canadian basal series (Gage Expressways II, Ginn Journeys, Holt Impressions,…

  13. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2754765

  14. Models of Abnormal Scarring

    PubMed Central

    Seo, Bommie F.; Lee, Jun Yong; Jung, Sung-No

    2013-01-01

    Keloids and hypertrophic scars are thick, raised dermal scars, caused by derailing of the normal scarring process. Extensive research on such abnormal scarring has been done; however, these being refractory disorders specific to humans, it has been difficult to establish a universal animal model. A wide variety of animal models have been used. These include the athymic mouse, rats, rabbits, and pigs. Although these models have provided valuable insight into abnormal scarring, there is currently still no ideal model. This paper reviews the models that have been developed. PMID:24078916

  15. Monitoring Temperature and Fan Speed Using Ganglia and Winbond Chips

    SciTech Connect

    McCaffrey, Cattie; /SLAC

    2006-09-27

    Effective monitoring is essential to keep a large group of machines, like the ones at Stanford Linear Accelerator Center (SLAC), up and running. SLAC currently uses Ganglia Monitoring System to observe about 2000 machines, analyzing metrics like CPU usage and I/O rate. However, metrics essential to machine hardware health, such as temperature and fan speed, are not being monitored. Many machines have a Winbond w83782d chip which monitors three temperatures, two of which come from dual CPUs, and returns the information when the sensor command is invoked. Ganglia also provides a feature, gmetric, that allows the users to monitor their own metrics and incorporate them into the monitoring system. The programming language Perl is chosen to implement a script that invokes the sensors command, extracts the temperature and fan speed information, and calls gmetric with the appropriate arguments. Two machines were used to test the script; the two CPUs on each machine run at about 65 Celsius, which is well within the operating temperature range (The maximum safe temperature range is 77-82 Celsius for the Pentium III processors being used). Installing the script on all machines with a Winbond w83782d chip allows the SLAC Scientific Computing and Computing Services group (SCCS) to better evaluate current cooling methods.

  16. Altered neuronal lineages in the facial ganglia of Hoxa2 mutant mice Xiu Yang a,1

    E-print Network

    ; Meis Introduction The sensory neurons of cranial nerve ganglia are mosaic populations that include Abstract Neurons of cranial sensory ganglia are derived from the neural crest and ectodermal placodes the neurogenic potential of at least some cranial neural crest cells. © 2007 Elsevier Inc. All rights reserved

  17. High fat diet and body weight have different effects on cannabinoid CB1 receptor expression in rat nodose ganglia

    PubMed Central

    Cluny, N.L.; Baraboi, E.D.; Mackie, K; Burdyga, G.; Richard, D.; Dockray, G.J.; Sharkey, K.A.

    2013-01-01

    Energy balance is regulated, in part, by orexigenic signaling pathways of the vagus nerve. Fasting-induced modifications in the expression of orexigenic signaling systems have been observed in vagal afferents of lean animals. Altered basal cannabinoid (CB)1 receptor expression in the nodose ganglia in obesity has been reported. Whether altered body weight or a high fat diet modifies independent or additive changes in CB1 expression is unknown. We investigated the expression of CB1 and orexin 1 receptor (OX-1R) in nodose ganglia of rats fed ad libitum or food deprived (24h), maintained on low or high fat diets (HFD), with differing body weights. Male Wistar rats were fed chow or HFD (diet-induced obese: DIO or diet-resistant: DR) or were body weight matched to the DR group but fed chow (wmDR). CB1 and OX-1R immunoreactivity were investigated and CB1 mRNA density was determined using in situ hybridization. CB1 immunoreactivity was measured in fasted rats after sulfated cholecystokinin octapeptide (CCK8s) administration. In chow rats, fasting did not modify the level of CB1 mRNA. More CB1 immunoreactive cells were measured in fed DIO, DR and wmDR rats than chow rats; levels increased after fasting in chow and wmDR rats but not in DIO or DR rats. In HFD fasted rats CCK8s did not reduce CB1 immunoreactivity. OX-1R immunoreactivity was modified by fasting only in DR rats. These data suggest that body weight contributes to the proportion of neurons expressing CB1 immunoreactivity in the nodose ganglion, while HFD blunts fasting-induced increases, and CCK-induced suppression of, CB1-immunoreactivity. PMID:24145047

  18. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  19. Photodynamic therapy for basal cell carcinoma.

    PubMed

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma. PMID:26550910

  20. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed. PMID:25903257

  1. Molecular analysis of neurogenic placode development in a basal ray-finned fish

    PubMed Central

    Modrell, Melinda S.; Buckley, David; Baker, Clare V.H.

    2014-01-01

    Neurogenic placodes are transient, thickened patches of embryonic vertebrate head ectoderm that give rise to the paired peripheral sense organs and most neurons in cranial sensory ganglia. We present the first analysis of gene expression during neurogenic placode development in a basal actinopterygian (ray-finned fish), the North American paddlefish (Polyodon spathula). Pax3 expression in the profundal placode confirms its homology with the ophthalmic trigeminal placode of amniotes. We report the conservation of expression of Pax2 and Pax8 in the otic and/or epibranchial placodes, Phox2b in epibranchial placode-derived neurons, Sox3 during epibranchial and lateral line placode development, and NeuroD in developing cranial sensory ganglia. We identify Sox3 as a novel marker for developing fields of electrosensory ampullary organs and for ampullary organs themselves. Sox3 is also the first molecular marker for actinopterygian ampullary organs. This is consistent with, though does not prove, a lateral line placode origin for actinopterygian ampullary organs. PMID:21381180

  2. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  3. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  4. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  5. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  6. Airway basal cells. The "smoking gun" of chronic obstructive pulmonary disease.

    PubMed

    Crystal, Ronald G

    2014-12-15

    The earliest abnormality in the lung associated with smoking is hyperplasia of airway basal cells, the stem/progenitor cells of the ciliated and secretory cells that are central to pulmonary host defense. Using cell biology and 'omics technologies to assess basal cells isolated from bronchoscopic brushings of nonsmokers, smokers, and smokers with chronic obstructive pulmonary disease (COPD), compelling evidence has been provided in support of the concept that airway basal cells are central to the pathogenesis of smoking-associated lung diseases. When confronted by the chronic stress of smoking, airway basal cells become disorderly, regress to a more primitive state, behave as dictated by their inheritance, are susceptible to acquired changes in their genome, lose the capacity to regenerate the epithelium, are responsible for the major changes in the airway that characterize COPD, and, with persistent stress, can undergo malignant transformation. Together, these observations led to the conclusion that accelerated loss of lung function in susceptible individuals begins with disordered airway basal cell biology (i.e., that airway basal cells are the "smoking gun" of COPD, a potential target for the development of therapies to prevent smoking-related lung disorders). PMID:25354273

  7. Readiness in the Basal Reader: An Update.

    ERIC Educational Resources Information Center

    Perkins, Pamela

    A study examined two 1989 basal reading series' (published by McGraw Hill and Holt) readiness/priming sequences in order to ascertain the theoretical bases of each and then compared the findings with those of an earlier study. All pages of the readiness/priming sequence student texts and workbooks of both basal reading series were analyzed using…

  8. Latent Herpes Simplex Virus 1 Infection Does Not Induce Apoptosis in Human Trigeminal Ganglia

    PubMed Central

    Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-01-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8+ T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. PMID:25762734

  9. Frequency and Abundance of Alphaherpesvirus DNA in Human Thoracic Sympathetic Ganglia

    PubMed Central

    Rempel, April; Huntington, Jonathon; Kim, Forrest; Choe, Alexander; Gilden, Don

    2014-01-01

    Alphaherpesvirus reactivation from thoracic sympathetic ganglia (TSG) and transaxonal spread to target organs cause human visceral disease. Yet alphaherpesvirus latency in TSG has not been well characterized. In this study, quantitative PCR detected varicella-zoster virus (VZV), herpes simplex virus 1 (HSV-1), and HSV-2 DNA in 117 fresh TSG obtained postmortem from 15 subjects. VZV DNA was found in 76 (65%) ganglia from all subjects, HSV-1 DNA was found in 5 (4%) ganglia from 3 subjects, and no HSV-2 was found. PMID:24789785

  10. Gray and white matter volume abnormalities in generalized anxiety disorder by categorical and dimensional characterization.

    PubMed

    Hilbert, Kevin; Pine, Daniel S; Muehlhan, Markus; Lueken, Ulrike; Steudte-Schmiedgen, Susann; Beesdo-Baum, Katja

    2015-12-30

    Increasing efforts have been made to investigate the underlying pathophysiology of generalized anxiety disorder (GAD), but only limited consistent information is available on gray (GM) and white matter (WM) volume changes in affected adults. Additionally, few studies employed dimensional approaches to GAD pathology. This study compares structural brain imaging data from n=19 GAD subjects and n=24 healthy comparison (HC) subjects, all medication-free and matched on age, sex and education. Separate categorical and dimensional models were employed using voxel-based morphometry for GM and WM. Significantly higher GM volumes were found in GAD subjects mainly in basal ganglia structures and less consistently in the superior temporal pole. For WM, GAD subjects showed significantly lower volumes in the dlPFC. Largely consistent findings in dimensional and categorical models point toward these structural alterations being reliable and of importance for GAD. While lower volume in the dlPFC could reflect impaired emotional processing and control over worry in GAD, basal ganglia alterations may be linked to disturbed gain and loss anticipation as implicated in previous functional GAD studies. As perturbations in anticipation processes are central to GAD, these areas may warrant greater attention in future studies. PMID:26490569

  11. Metastatic Basal Cell Carcinoma Accompanying Gorlin Syndrome

    PubMed Central

    Bilir, Yeliz; Gokce, Erkan; Ozturk, Banu; Deresoy, Faik Alev; Yuksekkaya, Ruken; Yaman, Emel

    2014-01-01

    Gorlin-Goltz syndrome or basal cell nevus syndrome is an autosomal dominant syndrome characterized by skeletal anomalies, numerous cysts observed in the jaw, and multiple basal cell carcinoma of the skin, which may be accompanied by falx cerebri calcification. Basal cell carcinoma is the most commonly skin tumor with slow clinical course and low metastatic potential. Its concomitance with Gorlin syndrome, resulting from a mutation in a tumor suppressor gene, may substantially change morbidity and mortality. A 66-year-old male patient with a history of recurrent basal cell carcinoma was presented with exophthalmus in the left eye and the lesions localized in the left lateral orbita and left zygomatic area. His physical examination revealed hearing loss, gapped teeth, highly arched palate, and frontal prominence. Left orbital mass, cystic masses at frontal and ethmoidal sinuses, and multiple pulmonary nodules were detected at CT scans. Basal cell carcinoma was diagnosed from biopsy of ethmoid sinus. Based on the clinical and typical radiological characteristics (falx cerebri calcification, bifid costa, and odontogenic cysts), the patient was diagnosed with metastatic skin basal cell carcinoma accompanied by Gorlin syndrome. Our case is a basal cell carcinoma with aggressive course accompanying a rarely seen syndrome. PMID:25506011

  12. The incidence of fibrosis in the vestibular ganglia in Menière's disease.

    PubMed

    Quijano, M L; Schuknecht, H F; Bradley, D H

    1988-01-01

    The vestibular ganglia in 11 temporal bones from subjects with known premortem unilateral Meniere's disease were studied for evidence of increased fibrosis. Tissue sections were treated with Gomori's trichrome stain and were examined independently by each of seven persons experienced in histological study. The averaged ratings for the amount of fibrous tissue in the vestibular ganglia showed no significant differences for ears with Meniere's disease, the opposite uninvolved ears, and the controls. PMID:3178559

  13. REVIEW ARTICLE The neglected constituent of the basal forebrain

    E-print Network

    Bruno, John P.

    REVIEW ARTICLE The neglected constituent of the basal forebrain corticopetal projection system and Neuroscience, 27 Townshend Hall, Columbus, OH 43210, USA Keywords: acetylcholine, basal forebrain, cognition, GABA, prefrontal cortex Abstract At least half of the basal forebrain neurons which project

  14. Basal Forebrain Glutamatergic Modulation of Cortical Acetylcholine Release

    E-print Network

    Bruno, John P.

    Basal Forebrain Glutamatergic Modulation of Cortical Acetylcholine Release JIM FADEL, MARTIN SARTER KEY WORDS acetylcholine; basal forebrain; cortex; microdialysis; glutamate recep- tors; kainate; NMDA ABSTRACT The mediation of cortical ACh release by basal forebrain glutamate receptors was studied in awake

  15. RESEARCH ARTICLE Open Access Basal forebrain activation controls contrast

    E-print Network

    RESEARCH ARTICLE Open Access Basal forebrain activation controls contrast sensitivity in primary,2* Abstract Background: The basal forebrain (BF) regulates cortical activity by the action of cholinergic Cholinergic neuromodulation is mediated by several basal forebrain (BF) structures including the nucleus

  16. Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung.

    PubMed

    Galvis, Laura A; Holik, Aliaksei Z; Short, Kieran M; Pasquet, Julie; Lun, Aaron T L; Blewitt, Marnie E; Smyth, Ian M; Ritchie, Matthew E; Asselin-Labat, Marie-Liesse

    2015-04-15

    Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression. PMID:25790853

  17. Basal constriction : shaping the vertebrate brain

    E-print Network

    Graeden, Ellie Graham

    2011-01-01

    Organs are primarily formed from epithelia, polarized sheets of cells with an apical surface facing a lumen and basal surface resting on the underlying extracellular matrix. Cells within a sheet are joined by junctions, ...

  18. Tektins as structural determinants in basal bodies.

    PubMed

    Stephens, R E; Lemieux, N A

    1998-01-01

    Tektins, present as three equimolar 47-55 kDa protein components, form highly insoluble protofilaments that are integral to the junctional region of outer doublet microtubules in cilia and flagella. To identify and quantify tektins in other compound microtubules such as centrioles or basal bodies, a rabbit antiserum was raised against tektin filaments isolated from Spisula solidissima (surf clam) sperm flagellar outer doublets and affinity-purified with nitrocellulose blot strips of tektins resolved by SDS- or SDS-urea-PAGE. These antibodies recognized analogous tektins in axonemes of organisms ranging from ctenophores to higher vertebrates. Quantitative immunoblotting established that outer doublet tektins occur in a 1:17 weight ratio to tubulin. Cilia and basal apparatuses were prepared from scallop gill epithelial cells; cilia and deciliated cells were prepared from rabbit trachea. Tektins were detected by immunoblotting in basal body-enriched preparations while tektins were localized to individual basal bodies by immunofluorescence. Supported by greater fluorescence in basal bodies than in adjacent axonemes in tracheal cells, analysis of basal apparatuses demonstrated both a proportionately greater ratio of tektin to tubulin (approximately 1:13) and two distinct solubility classes of tektins, consistent with tektins comprising the B-C junction of triplets in addition to the A-B junction as in doublets. PMID:9712267

  19. Removal of insect basal laminae using elastase.

    PubMed

    Levinson, G; Bradley, T J

    1984-01-01

    We have used the enzyme elastase to remove the basal lamina of epithelia from two insects: the upper Malpighian tubules of Rhodnius prolixus and imaginal discs of Drosophila melanogaster. Removal of the basal lamina was confirmed using scanning and transmission electron microscopy. Use of the technique on the Malphighian tubules of Rhodnius reveals for the first time the three-dimensional organization of the circumferential folds of the basal plasma membrane. Elastase is much more effective in removing the basal lamina than are the enzymes hyaluronidase, collagenase, and chymotrypsin, either alone or in combination. Following elastase treatment, cells of the Malpighian tubules dissociate with only mild mechanical agitation into single, viable cells. Treatment with elastase removes the basal laminae of imaginal discs of Drosophila and accelerates evagination as has been previously described for trypsin. To obtain single cell preparations from elastase-treated imaginal discs, mechanical stirring in Ringer low in Ca2+ was required. In addition to its usefulness in cell isolation, elastase treatment allows examination of the effect of removal of basal laminae on the physiology and development of insect epithelia. PMID:6431633

  20. abnormalities in infants and toddlers

    E-print Network

    Bellugi, Ursula

    , Akshoomoff 2000). Similarly, patients with fetal alcohol syndrome (FAS) have decreased cerebellar volumesCerebellar abnormalities in infants and toddlers with Williams syndrome Wendy Jones* PhD, The Salk-mail: jones@crl.ucsd.edu One commonly observed neuroanatomical abnormality in adults with Williams syndrome

  1. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  2. Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment

    PubMed Central

    Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul

    2010-01-01

    OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed. RESULTS Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins. CONCLUSIONS Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS. PMID:20103706

  3. Schwann cell basal lamina and nerve regeneration.

    PubMed

    Ide, C; Tohyama, K; Yokota, R; Nitatori, T; Onodera, S

    1983-12-12

    Nerve segments approximately 7 mm long were excised from the predegenerated sciatic nerves of mice, and treated 5 times by repetitive freezing and thawing to kill the Schwann cells. Such treated nerve segments were grafted into the original places so as to be in contact with the proximal stumps. The animals were sacrificed 1, 2, 3, 5, 7 and 10 days after the grafting. The grafts were examined by electron microscopy in the middle part of the graft, i.e. 3-4 mm distal to the proximal end and/or near the proximal and distal ends of the graft. In other instances, the predegenerated nerve segments were minced with a razor blade after repetitive freezing and thawing. Such minced nerves were placed in contact with the proximal stumps of the same nerves. The animals were sacrificed 10 days after the grafting. Within 1-2 days after grafting, the dead Schwann cells had disintegrated into fragments. They were then gradually phagocytosed by macrophages. The basal laminae of Schwann cells, which were not attacked by macrophages, remained as empty tubes (basal lamina scaffolds). In the grafts we examined, no Schwann cells survived the freezing and thawing process. The regenerating axons always grew out through such basal lamina scaffolds, being in contact with the inner surface of the basal lamina (i.e. the side originally facing the Schwann cell plasma membrane). No axons were found outside of the scaffolds. One to two days after grafting, the regenerating axons were not associated with Schwann cells, but after 5-7 days they were accompanied by Schwann cells which were presumed to be migrating along axons from the proximal stumps. Ten days after grafting, proliferating Schwann cells observed in the middle part of the grafts had begun to sort out axons. In the grafts of minced nerves, the fragmented basal laminae of the Schwann cells re-arranged themselves into thicker strands or small aggregations of basal laminae. The regenerating axons, without exception, attached to one side of such modified basal laminae. Collagen fibrils were in contact with the other side, indicating that these modified basal laminae had the same polarity in terms of cell attachment as seen in the ordinary basal laminae of the scaffolds.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6661636

  4. Type I IFN suppresses Cxcr2 driven neutrophil recruitment into the sensory ganglia during viral infection.

    PubMed

    Stock, Angus T; Smith, Jeffrey M; Carbone, Francis R

    2014-05-01

    Infection induces the expression of inflammatory chemokines that recruit immune cells to the site of inflammation. Whereas tissues such as the intestine and skin express unique chemokines during homeostasis, whether different tissues express distinct chemokine profiles during inflammation remains unclear. With this in mind, we performed a comprehensive screen of the chemokines expressed by two tissues (skin and sensory ganglia) infected with a common viral pathogen (herpes simplex virus type 1). After infection, the skin and ganglia showed marked differences in their expression of the family of Cxcr2 chemokine ligands. Specifically, Cxcl1/2/3, which in turn controlled neutrophil recruitment, was up-regulated in the skin but absent from the ganglia. Within the ganglia, Cxcl2 expression and subsequent neutrophil recruitment was inhibited by type I interferon (IFN). Using a combination of bone marrow chimeras and intracellular chemokine staining, we show that type I IFN acted by directly suppressing Cxcl2 expression by monocytes, abrogating their ability to recruit neutrophils to the ganglia. Overall, our findings describe a novel role for IFN in the direct, and selective, inhibition of Cxcr2 chemokine ligands, which results in the inhibition of neutrophil recruitment to neuronal tissue. PMID:24752295

  5. Position of Larval Tapeworms, Polypocephalus sp., in the Ganglia of Shrimp, Litopenaeus setiferus

    PubMed Central

    Carreon, Nadia; Faulkes, Zen

    2014-01-01

    Parasites that invade the nervous system of their hosts have perhaps the best potential to manipulate their host’s behavior, but how they manipulate the host, if they do at all, could depend on their position within the host’s nervous system. We hypothesize that parasites that live in the nervous system of their host will be randomly distributed if they exert their influence through non-specific effects (i.e., general pathology), but that their position in the nervous system will be non-random if they exert their influence by targeting specific neural circuits. We recorded the position of larval tapeworms, Polypocephalus sp., in the abdominal ganglia of white shrimp, Litopenaeus setiferus. Tapeworms are more common within ganglia than in the section of the nerve cord between ganglia, even though the nerve cord has a greater volume than the ganglia. The tapeworms are also more abundant in the periphery of the ganglia. Because most synaptic connections are within the central region of the ganglion, such positioning may represent a trade-off between controlling the nervous system and damaging it. PMID:24820854

  6. A Method of Nodose Ganglia Injection in Sprague-Dawley Rat

    PubMed Central

    Calik, Michael W.; Radulovacki, Miodrag; Carley, David W.

    2015-01-01

    Afferent signaling via the vagus nerve transmits important general visceral information to the central nervous system from many diverse receptors located in the organs of the abdomen and thorax. The vagus nerve communicates information from stimuli such as heart rate, blood pressure, bronchopulmonary irritation, and gastrointestinal distension to the nucleus of solitary tract of the medulla. The cell bodies of the vagus nerve are located in the nodose and petrosal ganglia, of which the majority are located in the former. The nodose ganglia contain a wealth of receptors for amino acids, monoamines, neuropeptides, and other neurochemicals that can modify afferent vagus nerve activity. Modifying vagal afferents through systemic peripheral drug treatments targeted at the receptors on nodose ganglia has the potential of treating diseases such as sleep apnea, gastroesophageal reflux disease, or chronic cough. The protocol here describes a method of injection neurochemicals directly into the nodose ganglion. Injecting neurochemicals directly into the nodose ganglia allows study of effects solely on cell bodies that modulate afferent nerve activity, and prevents the complication of involving the central nervous system as seen in systemic neurochemical treatment. Using readily available and inexpensive equipment, intranodose ganglia injections are easily done in anesthetized Sprague-Dawley rats. PMID:25490160

  7. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  8. [Patients with basal cell naevus syndrome should be offered an early multidisciplinary follow-up and treatment].

    PubMed

    Bay, Christiane; Ousager, Lilan Bomme; Jelsig, Anne Marie

    2015-07-13

    Basal cell naevus syndrome (Gorlin-Goltz syndrome) is a rare, autosomal dominantly inherited condition with a wide range of developmental and multiple organ-related anomalies. Cardinal features include multiple basal cell carcinomas, jaw cysts, palmoplantar pits and calcification of the falx cerebri. Other important clinical features are skeletal abnormalities and facial dysmorphism including macrocephaly. Germ-line mutations are found in PTCH1. Management of the syndrome requires a multidisciplinary approach, and in this article management guidelines are reviewed and discussed. PMID:26239960

  9. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  10. A Genome-Wide Screen to Identify Transcription Factors Expressed in Pelvic Ganglia of the Lower Urinary Tract

    PubMed Central

    Wiese, Carrie B.; Ireland, Sara; Fleming, Nicole L.; Yu, Jing; Valerius, M. Todd; Georgas, Kylie; Chiu, Han Sheng; Brennan, Jane; Armstrong, Jane; Little, Melissa H.; McMahon, Andrew P.; Southard-Smith, E. Michelle

    2012-01-01

    Relative positions of neurons within mature murine pelvic ganglia based on expression of neurotransmitters have been described. However the spatial organization of developing innervation in the murine urogenital tract (UGT) and the gene networks that regulate specification and maturation of neurons within the pelvic ganglia of the lower urinary tract (LUT) are unknown. We used whole-mount immunohistochemistry and histochemical stains to localize neural elements in 15.5?days post coitus (dpc) fetal mice. To identify potential regulatory factors expressed in pelvic ganglia, we surveyed expression patterns for known or probable transcription factors (TF) annotated in the mouse genome by screening a whole-mount in situ hybridization library of fetal UGTs. Of the 155 genes detected in pelvic ganglia, 88 encode TFs based on the presence of predicted DNA-binding domains. Neural crest (NC)-derived progenitors within the LUT were labeled by Sox10, a well-known regulator of NC development. Genes identified were categorized based on patterns of restricted expression in pelvic ganglia, pelvic ganglia and urethral epithelium, or pelvic ganglia and urethral mesenchyme. Gene expression patterns and the distribution of Sox10+, Phox2b+, Hu+, and PGP9.5+ cells within developing ganglia suggest previously unrecognized regional segregation of Sox10+ progenitors and differentiating neurons in early development of pelvic ganglia. Reverse transcription-PCR of pelvic ganglia RNA from fetal and post-natal stages demonstrated that multiple TFs maintain post-natal expression, although Pax3 is extinguished before weaning. Our analysis identifies multiple potential regulatory genes including TFs that may participate in segregation of discrete lineages within pelvic ganglia. The genes identified here are attractive candidate disease genes that may now be further investigated for their roles in malformation syndromes or in LUT dysfunction. PMID:22988430

  11. Effects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by l-DOPA

    E-print Network

    Lemaire, Nune

    A major physiologic sign in Parkinson disease is the occurrence of abnormal oscillations in cortico-basal ganglia circuits, which can be normalized by l-DOPA therapy. Under normal circumstances, oscillatory activity in ...

  12. Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission

    PubMed Central

    Omoto, Katsuhiro; Maruhama, Kotaro; Terayama, Ryuji; Yamamoto, Yumiko; Matsushita, Osamu; Sugimoto, Tomosada; Oguma, Keiji; Matsuka, Yoshizo

    2015-01-01

    Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A) to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE) reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG) was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission. PMID:26248078

  13. Exercises to Improve Gait Abnormalities

    MedlinePLUS

    ... Contents Exercises to Improve Gait Abnormalities Exercises Related Articles Exercise for People with Multiple Sclerosis - Series II Focus on Secondary Condition Prevention: Walking Program to Reduce Secondary Conditions in Adolescents with Autism Volkssport: The Foundations for a Lifetime ...

  14. Does varicella-zoster virus infection of the peripheral ganglia cause Chronic Fatigue Syndrome?

    PubMed

    Shapiro, Judith S

    2009-11-01

    This article posits that infection of the peripheral ganglia causes at least some cases of Chronic Fatigue Syndrome (CFS), with a neurotropic herpesvirus, particularly varicella-zoster virus (VZV), as the most likely cause of the infection. Virtually all CFS symptoms could be produced by an infection of the peripheral ganglia, with infection of the autonomic ganglia causing fatigue, postural hypotension, and sleep disturbances, and infection of the sensory ganglia causing sensory symptoms such as chronic pain. Furthermore, infections of the peripheral ganglia are known to cause long-term nerve dysfunction, which would help explain the chronic course of CFS. Herpesviruses have long been suspected as the cause of CFS; this theory has recently been supported by studies showing that administering antiherpes agents causes substantial improvement in some CFS patients. VZV is known to frequently reactivate in the peripheral ganglia of previously healthy adults and cause sudden, debilitating illness, making it a likely candidate as a cause of CFS. Moreover, many of the symptoms of CFS overlap with those of herpes zoster (shingles), with the exception that painful rash is not one of the symptoms of CFS. A model is therefore proposed in which CFS is one of the many manifestations of zoster sine herpete; that is, herpes zoster without rash. Furthermore, re-exposure to VZV in the form of chickenpox has become less common in the past few decades; without such re-exposure, immunity to VZV drops, which could explain the increased incidence of CFS. Co-infection with multiple herpesviruses is a possibility, as some CFS patients show signs of infection with other herpesviruses including Epstein-Barr, Cytomegalovirus, and HHV6. These three herpesviruses can attack immune cells, and may therefore promote neurotropic herpesvirus reactivation in the ganglia. The possibility of VZV as the causal agent in CFS has previously received almost no attention; the possibility that CFS involves infection of the peripheral ganglia has likewise been largely overlooked. This suggests that the search for a viral cause of CFS has been far from exhaustive. Several antiherpes drugs are available, as is a vaccine for VZV; more research into such agents as possible treatments for CFS is urgently needed. PMID:19520522

  15. Teaching Social Studies Using Basal Readers.

    ERIC Educational Resources Information Center

    Garcia, Jesus; Logan, John W.

    1983-01-01

    A lesson, "Harriet Tubman: A Most Successful Conductor," illustrates how to employ a basal reader in social studies instruction in the elementary grades. This approach offers students a relevant curriculum, greater opportunities for concept development, practice in skills areas, and activities that offer greater opportunity to master social…

  16. TEMPORAL VARIABILITY IN BASAL ISOPRENE EMISSION FACTOR

    EPA Science Inventory

    Seasonal variability in basal isoprene emission factor (micrograms C /g hr or nmol/ m2 sec, leaf temperature at 30 degrees C and photosynthetically active radiation (PAR) at 1000 micromol/ m2 sec) was studied during the 1998 growing season at Duke Forest in the North Carolina Pie...

  17. Basal Textbooks and the Social Studies

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2010-01-01

    Basal textbooks are rather popular for social studies teachers to use in the classroom setting. There are selected reasons for this occurring. They do provide beginning and new teachers a framework for ongoing lessons and units of study. The accompanying Manual provides suggestions for learning activities for learners to pursue. Evaluation…

  18. Abnormal Cervical Cancer Screening Test Results

    MedlinePLUS

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ187 GYNECOLOGIC PROBLEMS Abnormal Cervical Cancer Screening Test Results • What is cervical cancer screening? • What causes abnormal cervical cancer screening test ...

  19. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors

    PubMed Central

    Flegel, Caroline; Schöbel, Nicole; Altmüller, Janine; Becker, Christian; Tannapfel, Andrea; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues. PMID:26070209

  20. Molecular Cloning and Characterization of an L-Epinephrine Transporter from Sympathetic Ganglia of the Bullfrog,

    E-print Network

    Molecular Cloning and Characterization of an L-Epinephrine Transporter from Sympathetic Ganglia vertebrate neurons, particularly the sympathetic neurons of amphibians, L-NE is converted to L-epinephrine (L distinct L-Epi transporter (ET) in the vertebrate brain and peripheral nervous system, a trans- porter

  1. Retinal abnormalities in ?-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (?)-thalassemia (?-TM: ?-thalassemia major, ?-TI: ?-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with ?-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with ?-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  2. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  3. Basal Cell Carcinoma Arising within Seborrheic Keratosis.

    PubMed

    Bedir, Recep; Yurdakul, Cüneyt; Güçer, Hasan; Sehitoglu, Ibrahim

    2014-07-01

    Malignant tumour development within a seborrheic keratosis (SK) is extremely rare. Though the most commonly developed malignant tumour is the basal cell carcinoma (BCC), other tumour types have also been reported in literature. Herein, we will report a superficial type BCC case developed within SK localized in hairy skin of a 78-year-old female patient. In immunohistochemical evaluation, diffuse positive staining with CK19 and over-expression in p53 compared with non-neoplastic areas were determined in neoplastic basaloid islands. It is always not easy to differentiate especially superficial type BCC cases from non-neoplastic epithelium of SK with histopathological evaluation. As far as this reason we believe that in difficult differentiation of these 2 lesions, in order to show the differentiation in basal epithelium, immunohistochemical evaluation may be helpful. PMID:25177624

  4. Risk factors for basal cell carcinoma.

    PubMed

    Hogan, D J; To, T; Gran, L; Wong, D; Lane, P R

    1989-11-01

    Completed questionnaires regarding suspected risk factors for basal cell carcinoma (BCC) were completed by 538 basal cell carcinoma patients and 738 age-, sex-, and location-matched controls in Saskatchewan. Significant risk factors were identified using chi2 analyses. Relative risks were subsequently computed. The following relative risks were identified: occupation of farming, 1.29; prominent freckles in childhood, 1.23; family history of skin cancer, 1.22; sunburn, 1.19; Irish, Scottish, Welsh mother, 1.19; light skin color, 1.18; red/blond hair color, 1.16; and working outdoors more than 3 hours/day in winter, 1.13: The average age of cases of BCC with a family history of skin cancer was significantly lower than cases of BCC with no family history of skin cancer (63.86 vs. 67.02 years, p = 0.018). No association was noted between BCC and psoriasis. PMID:2583903

  5. Basal hydraulic conditions of Ice Stream B

    NASA Astrophysics Data System (ADS)

    Engelhardt, Hermann; Kamb, Barclay

    1993-07-01

    Fifteen boreholes have been drilled to the base of Ice Stream B in the vicinity of UpB Camp. The boreholes are spread over an area of about 500 x 1000 m. Several till cores were retrieved from the bottom of the 1000-m-deep holes. Laboratory tests using a simple shear box revealed a yield strength of basal till of 2 kPa. This agrees well with in-situ measurements using a shear vane. Since the average basal shear stress of Ice Stream B with a surface slope of 0.1 degree is about 20 kPa, the ice stream cannot be supported by till that weak. Additional support for this conclusion comes from the basal water pressure that has been measured in all boreholes as soon as the hot water drill reached bottom. In several boreholes, the water pressure has been continuously monitored; in two of them, over several years. The water pressure varies but stays within 1 bar of flotation where ice overburden pressure and water pressure are equal. The ratio of water and overburden pressure lies between 0.986 and 1.002. This is an extremely high value as compared to other fast-moving ice masses; e.g., Variegated Glacier in surge has a ratio of 0.8, and Columbia Glacier - a fast-moving tidewater glacier - has a ratio of 0.9. It implies that water flow under the glacier occurs in a thin film and not in conduits that would drain away water too rapidly. It also implies that basal sliding must be very effective. Water flow under the glacier was measured in a salt-injection experiment where a salt pulse was released at the bottom of a borehole while 60 m down-glacier, the electrical resistance was measured between two other boreholes. A flow velocity of 7 mm/s was obtained.

  6. Insulin pumps: Beyond basal-bolus.

    PubMed

    Millstein, Richard; Becerra, Nancy Mora; Shubrook, Jay H

    2015-12-01

    Insulin pumps are a major advance in diabetes management, making insulin dosing easier and more accurate and providing great flexibility, safety, and efficacy for people who need basal-bolus insulin therapy. They are the preferred treatment for people with type 1 diabetes and many with type 2 diabetes who require insulin. This article reviews the basics of how insulin pumps work, who benefits from a pump, and how to manage inpatients and outpatients on insulin pumps. PMID:26651892

  7. Basal hydraulic conditions of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Engelhardt, Hermann; Kamb, Barclay

    1993-01-01

    Fifteen boreholes have been drilled to the base of Ice Stream B in the vicinity of UpB Camp. The boreholes are spread over an area of about 500 x 1000 m. Several till cores were retrieved from the bottom of the 1000-m-deep holes. Laboratory tests using a simple shear box revealed a yield strength of basal till of 2 kPa. This agrees well with in-situ measurements using a shear vane. Since the average basal shear stress of Ice Stream B with a surface slope of 0.1 degree is about 20 kPa, the ice stream cannot be supported by till that weak. Additional support for this conclusion comes from the basal water pressure that has been measured in all boreholes as soon as the hot water drill reached bottom. In several boreholes, the water pressure has been continuously monitored; in two of them, over several years. The water pressure varies but stays within 1 bar of flotation where ice overburden pressure and water pressure are equal. The ratio of water and overburden pressure lies between 0.986 and 1.002. This is an extremely high value as compared to other fast-moving ice masses; e.g., Variegated Glacier in surge has a ratio of 0.8, and Columbia Glacier - a fast-moving tidewater glacier - has a ratio of 0.9. It implies that water flow under the glacier occurs in a thin film and not in conduits that would drain away water too rapidly. It also implies that basal sliding must be very effective. Water flow under the glacier was measured in a salt-injection experiment where a salt pulse was released at the bottom of a borehole while 60 m down-glacier, the electrical resistance was measured between two other boreholes. A flow velocity of 7 mm/s was obtained.

  8. Mammary Tumors Initiated by Constitutive Cdk2 Activation Contain an Invasive Basal-like Component1

    PubMed Central

    Corsino, Patrick E; Davis, Bradley J; Nörgaard, Peter H; Teoh Parker, Nicole N; Law, Mary; Dunn, William; Law, Brian K

    2008-01-01

    The basal-like subtype of breast cancer is associated with invasiveness, high rates of postsurgical recurrence, and poor prognosis. Aside from inactivation of the BRCA1 tumor-suppressor gene, little is known concerning the mechanisms that cause basal breast cancer or the mechanisms responsible for its invasiveness. Here, we show that the heterogeneous mouse mammary tumor virus-cyclin D1-Cdk2 (MMTV-D1K2) transgenic mouse mammary tumors contain regions of spindle-shaped cells expressing both luminal and myoepithelial markers. Cell lines cultured from these tumors exhibit the same luminal/myoepithelial mixed-lineage phenotype that is associated with human basal-like breast cancer and express a number of myoepithelial markers including cytokeratin 14, P-cadherin, ? smooth muscle actin, and nestin. The MMTV-D1K2 tumor-derived cell lines form highly invasive tumors when injected into mouse mammary glands. Invasion is associated with E-cadherin localization to the cytoplasm or loss of E-cadherin expression. Cytoplasmic E-cadherin correlates with lack of colony formation in vitro and ?-catenin and p120ctn localization to the cytoplasm. The data suggest that the invasiveness of these cell lines results from a combination of factors including mislocalization of E-cadherin, ?-catenin, and p120ctn to the cytoplasm. Nestin expression and E-cadherin mislocalization were also observed in human basal-like breast cancer cell lines, suggesting that these results are relevant to human tumors. Together, these results suggest that abnormal Cdk2 activation may contribute to the formation of basal-like breast cancers. PMID:18953433

  9. Neurofibrillary degeneration of cholinergic and noncholinergic neurons of the basal forebrain in Alzheimer's disease.

    PubMed

    Rasool, C G; Svendsen, C N; Selkoe, D J

    1986-10-01

    Two principal features of Alzheimer's disease (AD) are (1) the occurrence of neurofibrillary tangles (NFTs) and senile plaques, and (2) the loss of cortical cholinergic activity because of dysfunction of neurons in the basal forebrain cholinergic system. The relationship of these two abnormalities is an unresolved issue in the pathology of AD. We used polyclonal antibodies specific for paired helical filaments (PHFs), combined with acetylcholinesterase (AChE) histochemistry, to assess the cytoskeletal changes of cholinergic and noncholinergic neurons in the basal forebrain in AD. In both sporadic and familial AD, the nucleus basalis of Meynert (nbM) showed a marked decrease in AChE-positive (AChE+) perikarya and abundant immunoreactive NFTs. In double-labeling studies of the nbM, PHF reactivity was found both in surviving AChE+ neurons and in many AChE- NFTs that were not associated with microscopically recognizable cell structures. Some surviving AChE+ perikarya did not contain NFTs. Numerous NFTs and senile plaques were identified by PHF immunoreactivity in other basal forebrain areas, including subnuclei of the amygdala that showed low or absent AChE activity. We conclude that the dysfunction and death of cholinergic neurons in the nbM is associated with extensive NFT formation, including apparently residual NFTs in loci where nbM neurons once existed; and many noncholinergic neurons and neurites in the basal forebrain show NFT and senile plaque formation. The cytopathology of AD involves neurons of varying transmitter specificities, including cholinergic neurons in the basal forebrain. PMID:3539000

  10. Electrocardiograph abnormalities in intracerebral hemorrhage.

    PubMed

    Takeuchi, Satoru; Nagatani, Kimihiro; Otani, Naoki; Wada, Kojiro; Mori, Kentaro

    2015-12-01

    This study investigated the prevalence and type of electrocardiography (ECG) abnormalities, and their possible association with the clinical/radiological findings in 118 consecutive patients with non-traumatic, non-neoplastic intracerebral hemorrhage (ICH). ECG frequently demonstrates abnormalities in patients with ischemic stroke and subarachnoid hemorrhage, but little is known of ECG changes in ICH patients. Clinical and radiological information was retrospectively reviewed. ECG recordings that were obtained within 24hours of the initial hemorrhage were analyzed. Sixty-six patients (56%) had one or more ECG abnormalities. The most frequent was ST depression (24%), followed by left ventricular hypertrophy (20%), corrected QT interval (QTc) prolongation (19%), and T wave inversion (19%). The logistic regression analysis demonstrated the following: insular involvement was an independent predictive factor of ST depression (p<0.001; odds ratio OR 10.18; 95% confidence interval [CI] 2.84-36.57); insular involvement (p<0.001; OR 23.98; 95% CI 4.91-117.11) and presence of intraventricular hemorrhage (p<0.001; OR 8.72; 95% CI 2.69-28.29) were independent predictive factors of QTc prolongation; deep hematoma location (p<0.001; OR 19.12; 95% CI 3.82-95.81) and hematoma volume >30ml (p=0.001; OR 6.58; 95% CI 2.11-20.46) were independent predictive factors of T wave inversion. We demonstrate associations between ECG abnormalities and detailed characteristics of ICH. PMID:26365482

  11. Emergency Abnormal Conditions Emergency Evacuation

    E-print Network

    Davis, Lloyd M.

    1 Emergency Abnormal Conditions Emergency Evacuation a. In the event of an emergency situation it may be necessary to evacuate the building. Causes for evacuation may be fire, hazardous chemical evacuation alarm systems that include wall-mounted pull stations. Smoke and heat activated alarms are present

  12. [Developmental abnormalities and nevi of the scalp].

    PubMed

    Behle, V; Hamm, H

    2014-12-01

    Unusual congenital or early-onset skin lesions on the scalp often pose a diagnostic challenge particularly as the clinical evaluation may be hampered by dense hair growth. Thus, this paper provides a concise review on developmental abnormalities and nevi with exclusive or predominant scalp localization. Aplasia cutis congenita occurs as an isolated finding, in association with genetic syndromes, nevi and anomalies or as a consequence of intrauterine trauma and teratogens. A hairless area with a narrow surrounding rim of hypertrichosis (hair collar sign) may point to occult cranial dysraphism, especially if accompanied by further suggestive signs as port-wine stains, large hemangiomas, dimples, congenital dermoid cysts, and sinuses. Many diverse entities may hide behind cutis verticis gyrata with the primary essential form being rare and representing a diagnosis of exclusion. In contrast to former belief, benign adnexal tumors arise in a nevus sebaceus considerably more often than basal cell carcinomas and other malignant epithelial tumors. Provided that tumor development is not suspected, excision of a nevus sebaceus nevus is indicated primarily for aesthetic-psychosocial reasons. However, surgical treatment is considerably easier in small children. Nevus sebaceus may be a cutaneous marker for several complex syndromes whereas nevus psiloliparus presents almost always in connection with encephalocraniocutaneous lipomatosis. Congenital melanocytic nevi of the scalp tend toward clinical regression, so that surgical intervention in large lesions should be carefully considered. In contrast, the threshold for excision of blue nevi and other conspicuous melanocytic nevi on the scalp should be low, especially since they are difficult to monitor. PMID:25298254

  13. [A case of chronic methyl bromide intoxication showing symmetrical lesions in the basal ganglia and brain stem on magnetic resonance imaging].

    PubMed

    Ichikawa, H; Sakai, T; Horibe, Y; Kaga, E; Kawamura, M

    2001-07-01

    A 30-year-old man developed paresthesia in the feet, unstable gait and blepharoptosis subsequent to pharyngeal pain while working in a warehouse of imported fruit and vegetable fumigated with methyl bromide and cyanate. Neurological examination showed bilateral blepharoptosis, diplopia, ataxic gait and paresthesia below the inguinal region. The serum concentration of thiociane, a metabolite of cyanide, was within normal limits, but that of bromide was elevated (43.7 mg/l, normal: 3.7-8.6). Thus we diagnosed the patient as intoxication of methyl bromide. Magnetic resonance imaging of the brain (MRI) revealed bilateral symmetrical lesions of high signal intensity in the posterior region of the putamen, the subthalamic nuclei, the dorsal medulla oblongata corresponding to inferior cerebellar peduncles and vestibular nuclei, the inferior colliculi and the periaqueductal gray matter surrounding the oculomotor nucleus of the midbrain. As far as we know, this is the first report of MRI detected cerebral lesions in a case with intoxication of methyl bromide. PMID:11808354

  14. Auditory observation of infant-directed speech by mothers: experience-dependent interaction between language and emotion in the basal ganglia

    PubMed Central

    Matsuda, Yoshi-Taka; Ueno, Kenichi; Cheng, Kang; Konishi, Yukuo; Mazuka, Reiko; Okanoya, Kazuo

    2014-01-01

    Adults address infants with a special speech register known as infant-directed speech (IDS), which conveys both linguistic and emotional information through its characteristic lexicon and exaggerated prosody (e.g., higher pitched, slower, and hyperarticulated). Although caregivers are known to regulate the usage of IDS (linguistic and emotional components) depending on their child’s development, the underlying neural substrates of this flexible modification are largely unknown. Here, using an auditory observation method and functional magnetic resonance imaging (fMRI) of four different groups of females, we revealed the experience-dependent influence of the emotional component on linguistic processing in the right caudate nucleus when mothers process IDS: (1) non-mothers, who do not use IDS regularly, showed no significant difference between IDS and adult-directed speech (ADS); (2) mothers with preverbal infants, who primarily use the emotional component of IDS, showed the main effect of the emotional component of IDS; (3) mothers with toddlers at the two-word stage, who use both linguistic and emotional components of IDS, showed an interaction between the linguistic and emotional components of IDS; and (4) mothers with school-age children, who use ADS rather than IDS toward their children, showed a tendency toward the main effect of ADS. The task that was most comparable to the naturalistic categories of IDS (i.e., explicit-language and implicit-emotion processing) recruited the right caudate nucleus, but it was not recruited in the control, less naturalistic condition (explicit-emotion and implicit-language processing). Our results indicate that the right caudate nucleus processes experience-and task-dependent interactions between language and emotion in mothers’ IDS. PMID:25426054

  15. Astrocyte-derived nitric oxide in manganese neurotoxicity: from cellular and molecular mechanisms underlying selective neuronal vulnerability in the basal ganglia to potential therapeutic modalities 

    E-print Network

    Liu, Xuhong

    2007-04-25

    , and TRAM-1) PARP: poly (ADP-ribose) polymerase PAS: para-aminosalicylic acid PC12 cells: pheochromocytoma cells PD: Parkinson's disease PDZ domain: PSD-95 discs large/ZO-1 homology domain PEPCK: phosphoenolpyruvate carboxykinase PET... ............................................................. 44 II ASTROCYTE-DERIVED NITRIC OXIDE MODULATES NEURONAL DEGENERATION IN A MOUSE MODEL OF MANGANESE-INDUCED PARKINSONISM......................................................................................... 47...

  16. The Basal Ganglia within a Cognitive System in Birds and Christopher I. Petkov1,2 and Erich D. Jarvis3

    E-print Network

    Jarvis, Erich D.

    for Behavior and Evolution, Newcastle University, Newcastle upon Tyne, U.K. (3)Howard Hughes Medical Institute.D. Investigator, Howard Hughes Medical Institute Associate Professor Department of Neurobiology, Box 3209 Duke 08. Published in final edited form as: Behav Brain Sci. 2014 December ; 37(6): 568­604. doi:10.1017/S

  17. Disentangling the role of cortico-Basal Ganglia loops in top-down and bottom-up visual attention: an investigation of attention deficits in Parkinson disease.

    PubMed

    Tommasi, Giorgio; Fiorio, Mirta; Yelnik, Jérôme; Krack, Paul; Sala, Francesca; Schmitt, Emmanuelle; Fraix, Valérie; Bertolasi, Laura; Le Bas, Jean-François; Ricciardi, Giuseppe Kenneth; Fiaschi, Antonio; Theeuwes, Jan; Pollak, Pierre; Chelazzi, Leonardo

    2015-06-01

    It is solidly established that top-down (goal-driven) and bottom-up (stimulus-driven) attention mechanisms depend on distributed cortical networks, including prefrontal and frontoparietal regions. On the other hand, it is less clear whether the BG also contribute to one or the other of these mechanisms, or to both. The current study was principally undertaken to clarify this issue. Parkinson disease (PD), a neurodegenerative disorder primarily affecting the BG, has proven to be an effective model for investigating the contribution of the BG to different brain functions; therefore, we set out to investigate deficits of top-down and bottom-up attention in a selected cohort of PD patients. With this objective in mind, we compared the performance on three computerized tasks of two groups of 12 parkinsonian patients (assessed without any treatment), one otherwise pharmacologically treated and the other also surgically treated, with that of a group of controls. The main behavioral tool for our study was an attentional capture task, which enabled us to tap the competition between top-down and bottom-up mechanisms of visual attention. This task was suitably combined with a choice RT and a simple RT task to isolate any specific deficit of attention from deficits in motor response selection and initiation. In the two groups of patients, we found an equivalent increase of attentional capture but also comparable delays in target selection in the absence of any salient distractor (reflecting impaired top-down mechanisms) and movement initiation compared with controls. In contrast, motor response selection processes appeared to be prolonged only in the operated patients. Our results confirm that the BG are involved in both motor and cognitive domains. Specifically, damage to the BG, as it occurs in PD, leads to a distinct deficit of top-down control of visual attention, and this can account, albeit indirectly, for the enhancement of attentional capture, reflecting weakened ability of top-down mechanisms to antagonize bottom-up control. PMID:25514652

  18. The tonic/phasic model of dopamine system regulation: its relevance for understanding how stimulant abuse can alter basal ganglia function.

    PubMed

    Grace, A A

    1995-02-01

    The changes in dopamine system regulation occurring during stimulant administration are examined in relation to a new model of dopamine system function. This model is based on the presence of a tonic low level of extracellular dopamine that is released by the presynaptic action of corticostriatal afferents. In contrast, spike-dependent dopamine release results in a phasic, high concentration of dopamine in the synaptic cleft that is rapidly inactivated by reuptake. Tonic dopamine has the ability to down-modulate spike-dependent phasic dopamine release via stimulation of the very sensitive dopamine autoreceptors present on dopamine terminals. Stimulants are known to elicit locomotion and stimulate reward sites by releasing dopamine from terminals in the nucleus accumbens, which is followed by a rebound depression. It is proposed that the initial activating action of stimulants is caused by increasing the release of dopamine into the synaptic cleft to activate the phasic dopamine response. However, by interfering with dopamine uptake, stimulants also allow dopamine to escape the synaptic cleft, thereby depressing subsequent spike-dependent phasic dopamine release by increasing the tonic stimulation of the autoreceptor. In contrast, repeated stimulant administration is proposed to cause long-term sensitization by pharmacological disruption of a cascade of homeostatic compensatory processes. Upon drug withdrawal, the fast compensatory systems that were blocked by stimulants rapidly restore homeostasis to the system at a new steady-state level of interaction. As a consequence, the slowly changing but potentially more destabilizing compensatory responses are prevented from returning to their baseline conditions. This results in a permanent change in the responsivity of the system. Homeostatic systems are geared to compensate for unidimensional alterations in a system, and are capable of restoring function even after massive brain lesions or the continuous presence of stimulant drugs. However, the system did not evolve to deal effectively with repetitive introduction and withdrawal of drugs that disrupt dopamine system regulation. As a consequence, repeated insults to a biological system by application and withdrawal of drugs that interfere with its homeostatic regulation may be capable of inducing non-reversible changes in its response to exogenous and endogenous stimuli. PMID:7758401

  19. Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis

    PubMed Central

    Wu, Tong; Wang, Xudong; Li, Jing; Song, Xiuzhen; Wang, Ying; Wang, Yunfeng; Zhang, Lei; Li, Ziyao; Tian, Jiawei

    2015-01-01

    Breast cancer is a highly heterogeneous disease that is clinically classified into several subtypes. Among these subtypes, basal-like breast cancer largely overlaps with triple-negative breast cancer (TNBC), and these two groups are generally studied together as a single entity. Differences in the molecular makeup of breast cancers can result in different treatment strategies and prognoses for patients with different breast cancer subtypes. Compared with other subtypes, basal-like and other ER+ breast cancer subtypes exhibit marked differences in etiologic factors, clinical characteristics and therapeutic potential. Anthracycline drugs are typically used as the first-line clinical treatment for basal-like breast cancer subtypes. However, certain patients develop drug resistance following chemotherapy, which can lead to disease relapse and death. Even among patients with basal-like breast cancer, there can be significant molecular differences, and it is difficult to identify specific drug resistance proteins in any given patient using conventional variance testing methods. Therefore, we designed a new method for identifying drug resistance genes. Subgroups, personalized biomarkers, and therapy targets were identified using cluster analysis of differentially expressed genes. We found that basal-like breast cancer could be further divided into at least four distinct subgroups, including two groups at risk for drug resistance and two groups characterized by sensitivity to pharmacotherapy. Based on functional differences among these subgroups, we identified nine biomarkers related to drug resistance: SYK, LCK, GAB2, PAWR, PPARG, MDFI, ZAP70, CIITA and ACTA1. Finally, based on the deviation scores of the examined pathways, 16 pathways were shown to exhibit varying degrees of abnormality in the various subgroups, indicating that patients with different subtypes of basal-like breast cancer can be characterized by differences in the functional status of these pathways. Therefore, these nine differentially expressed genes and their associated functional pathways should provide the basis for novel personalized clinical treatments of basal-like breast cancer. PMID:26126114

  20. Abnormal Red Cell Structure and Function in Neuroacanthocytosis

    PubMed Central

    Cluitmans, Judith C. A.; Tomelleri, Carlo; Yapici, Zuhal; Dinkla, Sip; Bovee-Geurts, Petra; Chokkalingam, Venkatachalam; De Franceschi, Lucia; Brock, Roland; Bosman, Giel J. G. C. M.

    2015-01-01

    Background Panthothenate kinase-associated neurodegeneration (PKAN) belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA). This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation. Objective The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences. This could shed light on the etiology of the neurodegeneration. Methods We performed a qualitative and semi-quantitative morphological, immunofluorescent, biochemical and functional analysis of the red cells of several patients with PKAN and, for the first time, of the red cells of their family members. Results We show that the blood of patients with PKAN contains not only variable numbers of acanthocytes, but also a wide range of other misshapen red cells. Immunofluorescent and immunoblot analyses suggest an altered membrane organization, rather than quantitative changes in protein expression. Strikingly, these changes are not limited to the red blood cells of PKAN patients, but are also present in the red cells of heterozygous carriers without neurological problems. Furthermore, changes are not only present in acanthocytes, but also in other red cells, including discocytes. The patients’ cells, however, are more fragile, as observed in a spleen-mimicking device. Conclusion These morphological, molecular and functional characteristics of red cells in patients with PKAN and their family members offer new tools for diagnosis and present a window into the pathophysiology of neuroacanthocytosis. PMID:25933379

  1. Fractionation of a Basal Magma Ocean

    NASA Astrophysics Data System (ADS)

    Laneuville, M.; Hernlund, J. W.; Labrosse, S.

    2014-12-01

    Earth's magnetic field is thought to be sustained by dynamo action in a convecting metallic outer core since at least 3.45 Ga (Tarduno et al., 2010). Convection induces an isentropic temperature gradient that drains 13±3 TW of heat from the core by thermal conduction (de Koker et al., 2012; Pozzo et al., 2012; Gomi et al., 2013), and suggests that Earth's core has cooled by ˜1,000 K or more since Earth's formation (Gomi et al., 2013). However, models of Earth's initial thermal evolution following a giant-impact predict rapid cooling to the mantle melting temperature (e.g., Solomatov, 2007). In order to understand how the core could have retained enough heat to explain the age of the geodynamo, we relax a key assumption of the basal magma ocean model of (Labrosse et al., 2007) to allow for the possibility that the magma is stably stratified. Recent giant impact simulations suggest extensive core-mantle mixing (Saitoh and Makino, 2013), which could have produced such a large stratified magma layer at the core-mantle boundary. In the presence of a stable density gradient, heat transfer through the basal magma ocean occurs through conduction and therefore delays heat loss from the core. Partitioning of iron in the liquid phase upon crystallization changes the density profile and triggers convection in the upper part of the basal magma ocean. Our hypothesis suggests that early core cooling is dominated by the diffusion timescale through the basal magma ocean, and predicts a delayed onset of the geodynamo (i.e, during the late Headean/early Archean). This model can therefore be falsified if the existence of a geomagnetic field can be inferred from magnetization of inclusions in Hadean zircons. N. de Koker et al., Proc. Natl. Acad. Sci. 190, 4070-4073 (2012).H. Gomi et al., Phys. Earth Planet. Inter. 224, 88-103 (2013).S. Labrosse et al., Nature 450, 866-869 (2007).M. Pozzo et al., Nature 485, 355-358 (2012).T. Saitoh and J. Makino. Astrophys. J. 768, 44 (2013).V.S. Solomatov. In Treatise on Geophysics 9, 91-120. Elsevier (2007).J.A. Tarduno et al., Science 327, 1238-1240 (2010).

  2. High porosity of basal till at Burroughs glacier, southeastern Alaska

    SciTech Connect

    Ronnert, L.; Mickelson, D.M. )

    1992-09-01

    Debris-rich basal ice at Burroughs glacier, southeastern Alaska, has 60 vol% to 70 vol% debris. Recently deposited basal till exceeds 60 vol% sediment with 30% to almost 40% porosity. Where basal ice is very rich in debris, basal till is deposited through melt out with only slight compaction of the debris. Porosity this high in till is commonly associated with subglacially deforming and dilated sediment. However, the recently deposited basal melt-out till at Burroughs glacier has not been deformed after deposition, but has porosity values similar to tills elsewhere interpreted to be subglacially deforming and dilated in an unfrozen state. High porosity can occur in basal melt-out till deposited directly by basal melt out.

  3. Evolution of basal deuterostome nervous systems.

    PubMed

    Holland, Linda Z

    2015-02-15

    Understanding the evolution of deuterostome nervous systems has been complicated by the by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates. PMID:25696827

  4. Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia.

    PubMed

    Poulsen, Jeppe Nørgaard; Warwick, Rebekah; Duroux, Meg; Hanani, Menachem; Gazerani, Parisa

    2015-08-01

    Communications between satellite glial cells and neighboring neurons within sensory ganglia may contribute to neuropathic and inflammatory pain. To elucidate the role of satellite glial cells in chemotherapy-induced pain, we examined the effects of oxaliplatin on the gap junction-mediated coupling between these cells. We also examined whether the gap junction blocker, carbenoxolone, can reverse the coupling. Primary cultures of mice trigeminal ganglia, 24-48h after cell isolation, were used. Satellite glial cells were injected with Lucifer yellow in the presence or absence of oxaliplatin (60 ?M). In addition, the effect of carbenoxolone (100 ?M) on coupling, and the expression of connexin 43 proteins were evaluated. Dye coupling between adjacent satellite glial cells was significantly increased (2.3-fold, P<0.05) following a 2h incubation with oxaliplatin. Adding carbenoxolone to the oxaliplatin-treated cultures reversed oxaliplatin-evoked coupling to baseline (P<0.05). Immunostaining showed no difference between expression of connexin 43 in control and oxaliplatin-treated cultures. Our findings indicated that oxaliplatin-increased gap junction-mediated coupling between satellite glial cells in primary cultures of mouse trigeminal ganglia, and carbenoxolone reversed this effect. Hence, it is proposed that increased gap junction-mediated coupling was seen between satellite glial cells in TG. This observation together with our previous data obtained from a behavioral study suggests that this phenomenon might contribute to chemotherapy-induced nociception following oxaliplatin treatment. PMID:25999145

  5. Generation of New Neurons in Dorsal Root Ganglia in Adult Rats after Peripheral Nerve Crush Injury

    PubMed Central

    2015-01-01

    The evidence of neurons generated ex novo in sensory ganglia of adult animals is still debated. In the present study, we investigated, using high resolution light microscopy and stereological analysis, the changes in the number of neurons in dorsal root ganglia after 30 days from a crush lesion of the rat brachial plexus terminal branches. Results showed, as expected, a relevant hypertrophy of dorsal root ganglion neurons. In addition, we reported, for the first time in the literature, that neuronal hypertrophy was accompanied by massive neuronal hyperplasia leading to a 42% increase of the number of primary sensory neurons. Moreover, ultrastructural analyses on sensory neurons showed that there was not a relevant neuronal loss as a consequence of the nerve injury. The evidence of BrdU-immunopositive neurons and neural progenitors labeled with Ki67, nanog, nestin, and sox-2 confirmed the stereological evidence of posttraumatic neurogenesis in dorsal root ganglia. Analysis of morphological changes following axonal damage in addition to immunofluorescence characterization of cell phenotype suggested that the neuronal precursors which give rise to the newly generated neurons could be represented by satellite glial cells that actively proliferate after the lesion and are able to differentiate toward the neuronal lineage. PMID:25722894

  6. Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents

    PubMed Central

    Hanani, Menachem; Blum, Erez; Liu, Shuangmei; Peng, Lichao; Liang, Shangdong

    2014-01-01

    Neuropathic pain is a very common complication in diabetes mellitus (DM), and treatment for it is limited. As DM is becoming a global epidemic it is important to understand and treat this problem. The mechanisms of diabetic neuropathic pain are largely obscure. Recent studies have shown that glial cells are important for a variety of neuropathic pain types, and we investigated what are the changes that satellite glial cells (SGCs) in dorsal root ganglia undergo in a DM type 1 model, induced by streptozotocin (STZ) in mice and rats. We carried out immunohistochemical studies to learn about changes in the activation marker glial fibrillary acidic protein (GFAP) in SGCs. We found that after STZ-treatment the number of neurons surrounded with GFAP-positive SGCs in dorsal root ganglia increased 4-fold in mice and 5-fold in rats. Western blotting for GFAP, which was done only on rats because of the larger size of the ganglia, showed an increase of about 2-fold in STZ-treated rats, supporting the immunohistochemical results. These results indicate for the first time that SGCs are activated in rodent models of DM1. As SGC activation appears to contribute to chronic pain, these results suggest that SGCs may participate in the generation and maintenance of diabetic neuropathic pain, and can serve as a potential therapeutic target. PMID:25312986

  7. Basal area from photos.... Is it possible?

    NASA Astrophysics Data System (ADS)

    Sparrow, B.; Ward, B.; Armston, J.; Schaefer, M.; Thurgate, N.; van den Hengel, A.; Lowe, A.; Phinn, S. R.

    2013-12-01

    This paper describes collaborative work conducted between the Ausplots and AusCover facilities within Australia's Terrestrial Ecosystem Research Network (TERN) and the Australian Centre for Visual Technologies (ACVT) to develop new photopoint collection methodologies for use by terrestrial ecologists. These photopoints are being collected at Ausplots survey sites throughout rangeland environments across Australia along with a wide suite of environmental measures, including a range of soil, vegetation species and structure and genetics information, with currently around 270 sites out of 700 collected. These collections are intended to augment the ecological data collected at each site and provide a record of that time. Similar measures are also being collected at Auscover calibration and validation sites. Our photopoints incorporate three sets of overlapping photographs, each collected from exposure points at the vertices of an equilateral triangle with sides of 2.5 m located around the centre point of the field site. The photos from each exposure point typically overlap by 50% and at least one photo in each series include a calibration target mounted on a pole at the centre of the exposure points. These photographs are then processed to create a range of data products. Seamless photo panoramas are constructed for each field site and are stored with the relevant site data allowing ecologists utilising the ecological data to also include the environment in which that data were collected. Point clouds are also produced allowing a three dimensional view of the site and potentially allowing similar analysis, albeit at lower precision, to that of terrestrial Lidar systems. These three dimensional site reconstructions are used to measure stem diameters, and calculate basal area, which are summed for the site, providing a measure of basal area per hectare when the visible distance is taken into account. This method is potentially more accurate than rapid techniques such as the use of basal wedges/prisms and significantly quicker and cheaper than accurate measures such as measuring DBH for all stems or utilising a terrestrial Lidar. Given that the method allows rapid collection ( <30 minutes per site) of this information we anticipate that this method will be widely applicable. Validation of this photopoint method against field measures and terrestrial lidar that was acquired coincidently is progressing and we look forward to further tests to quantify the accuracy of these methods and to account of the effect of occlusion. We are working on automating the extraction of this information and delivering these products freely online. We also hope to investigate the feasibility of the automatic extraction of growth form of species in the photographs to assist with site structural assessment.

  8. Foot abnormalities of wild birds

    USGS Publications Warehouse

    Herman, C.M.; Locke, L.N.; Clark, G.M.

    1962-01-01

    The various foot abnormalities that occur in birds, including pox, scaly-leg, bumble-foot, ergotism and freezing are reviewed. In addition, our findings at the Patuxent Wildlife Research Center include pox from dove, mockingbird, cowbird, grackle and several species of sparrows. Scaly-leg has been particularly prevalent on icterids. Bumble foot has been observed in a whistling swan and in a group of captive woodcock. Ergotism is reported from a series of captive Canada geese from North Dakota. Several drug treatments recommended by others are presented.

  9. Cardiac abnormalities in birth asphyxia.

    PubMed

    Ranjit, M S

    2000-03-01

    Cardiac abnormalities in birth asphyxia were first recognised in 1970s. These include (i) transient tricuspid regurgitation which is the commonest cause of a systolic murmur in a newborn and tends to disappear without any treatment unless it is associated with transient myocardial ischemia or primary pulmonary hypertension of the new born (ii) transient mitral regurgitation which is much less common and is often a part of transient myocardial ischemia, at times with reduced left ventricular function and therefore, requires treatment in the form of inotropic and ventilatory support, (iii) transient myocardial ischemia (TMI) of the newborn. This should be suspected in any baby with asphyxia, respiratory distress and poor pulses especially if a murmur is audible. It is of five types (A to E) according to Rowe's classification. Type B is the most severe with respiratory distress, congestive heart failure and shock. Echocardiography helps to rule out critical left ventricular obstructive lesions like hypoplastic left heart syndrome or critical aortic stenosis. ECG is very important for diagnosis of TMI, and may show changes ranging from T wave inversion in one lead to a classical segmental infarction pattern with abnormal q waves. CPK-MB may rise and echocardiogram shows impaired left ventricular function, mitral and/or tricuspid regurgitation, and at times, wall motion abnormalities of left ventricle. Ejection fraction is often depressed and is a useful marker of severity and prognosis. Treatment includes fluid restriction, inotropic support, diuretics and ventilatory resistance if required, (v) persistent pulmonary hypertension of the new born (PPHN). Persistent hypoxia sometimes results in persistence of constricted fetal pulmonary vascular bed causing pulmonary arterial hypertension with consequent right to left shunt across patent ductus arteriosus and foramen ovale. This causes respiratory distress and cyanosis (sometimes differential). Clinical examination also reveals evidence of pulmonary arterial hypertension and right ventricular failure with systolic murmur of tricuspid and, at times, mitral regurgitation. Treatment consists of oxygen and general care for mild cases, ventilatory support, ECMO and nitric oxide for severe cases. Cardiac abnormalities in asphyxiated neonates are often underdiagnosed and require a high index of suspicion. ECG and Echo help in early recognition and hence better management of these cases. PMID:11129917

  10. Cardiac abnormalities in birth asphyxia.

    PubMed

    Ranjit, M S

    2000-07-01

    Cardiac abnormalities in birth asphyxia were first recognised in the 1970s. These include (i) transient tricuspid regurgitation which is the commonest cause of a systolic murmur in a newborn and tends to disappear without any treatment unless it is associated with transient myocardial ischemia or primary pulmonary hypertension of the newborn (ii) transient mitral regurgitation which is much less common and is often a part of transient myocardial ischemia, at times with reduced left ventricular function and, therefore, requires treatment in the form of inotropic and ventilatory support (iii) transient myocardial ischemia (TMI) of the newborn. This should be suspected in any baby with asphyxia, respiratory distress and poor pulses, especially if a murmur is audible. It is of five types (A to E) according to Rowe's classification. Type B is the most severe with respiratory distress, congestive heart failure and shock. Echocardiography helps to rule out critical left ventricular obstructive lesions like hypoplastic left heart syndrome or critical aortic stenosis. ECG is very important for diagnosis of TMI, and may show changes ranging from T wave inversion in one lead to a classical segmental infarction pattern with abnormal q waves. CPK-MB may rise and echocardiogram shows impaired left ventricular function, mitral and/or tricuspid regurgitation, and at times, wall motion abnormalities of left ventricle. Ejection fraction is often depressed and is a useful marker of severity and prognosis. Treatment includes fluid restriction, inotropic support, diuretics and ventilatory resistance if required (v) persistent pulmonary hypertension of the newborn (PPHN). Persistent hypoxia sometimes results in persistence of constricted fetal pulmonary vascular bed causing pulmonary arterial hypertension with consequent right to left shunt across patent ductus arteriosus and foramen ovale. This causes respiratory tension and right ventricular failure with systolic murmur of tricuspid, and at times, mitral regurgitation. Treatment consists of oxygen and general care for mild cases, ventilatory support, ECMO and nitric oxide for severe cases. Cardiac abnormalities in asphyxiated neonates are often underdiagnosed and require a high index of suspicion. ECG and Echo help in early recognition and hence better management of these cases. PMID:10957839

  11. Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons

    PubMed Central

    Estandian, Daniel; Xu, Min; Kwan, Alex C.; Lee, Seung-Hee; Harrison, Thomas C.; Feng, Guoping; Dan, Yang

    2014-01-01

    The basal forebrain provides the primary source of cholinergic input to the cortex, and it plays a crucial role in promoting wakefulness and arousal. However, whether rapid changes in basal forebrain neuron spiking in awake animals can dynamically influence sensory perception is unclear. Here we show that basal forebrain cholinergic neurons rapidly regulate cortical activity and visual perception in awake, behaving mice. Optogenetic activation of the cholinergic neurons or their V1 axon terminals improved performance of a visual discrimination task on a trial-by-trial basis. In V1, basal forebrain activation enhanced visual responses and desynchronized neuronal spiking, which could partly account for the behavioral improvement. Conversely, optogenetic basal forebrain inactivation decreased behavioral performance, synchronized cortical activity and impaired visual responses, indicating the importance of cholinergic activity in normal visual processing. These results underscore the causal role of basal forebrain cholinergic neurons in fast, bidirectional modulation of cortical processing and sensory perception. PMID:24162654

  12. The dermatoscopic universe of basal cell carcinoma

    PubMed Central

    Lallas, Aimilios; Apalla, Zoe; Argenziano, Giuseppe; Longo, Caterina; Moscarella, Elvira; Specchio, Francesca; Raucci, Margaritha; Zalaudek, Iris

    2014-01-01

    Following the first descriptions of the dermatoscopic pattern of basal cell carcinoma (BCC) that go back to the very early years of dermatoscopy, the list of dermatoscopic criteria associated with BCC has been several times updated and renewed. Up to date, dermatoscopy has been shown to enhance BCC detection, by facilitating its discrimination from other skin tumors and inflammatory skin diseases. Furthermore, upcoming evidence suggests that the method is also useful for the management of the tumor, since it provides valuable information about the histopathologic subtype, the presence of clinically undetectable pigmentation, the expansion of the tumor beyond clinically visible margins and the response to non-ablative treatments. In the current article, we provide a summary of the traditional and latest knowledge on the value of dermatoscopy for the diagnosis and management of BCC. PMID:25126452

  13. Burden of basal cell carcinoma in USA.

    PubMed

    Wu, Xinyuan; Elkin, Elena E; Marghoob, Ashfaq A

    2015-11-01

    Basal cell carcinoma (BCC) is the most common malignancy diagnosed in the USA and its incidence continues to increase. While BCC is still most prevalent in the older segments of the population, it is becoming ever more frequent in younger individuals. The costs of treatment and morbidity associated with BCCs place a heavy public health and economic burden on patients, their families and the American healthcare system and underscore the importance of efficient management and prevention efforts directed toward this malignancy. In this article, we address economic aspects of BCC using evidence from large-scale epidemiological studies. This information may help clinicians in developing better and more cost-effective methods for dealing with the most common cancer in America and in the world. PMID:26466906

  14. Radiation-induced basal cell carcinoma

    PubMed Central

    Zargari, Omid

    2015-01-01

    Background: The treatment of tinea capitis using radiotherapy was introduced at the beginning of the twentieth century. A variety of cancers including basal cell carcinoma (BCC) are seen years after this treatment. Objective: We sought to determine the clinical characteristics of BCCs among irradiated patients. Methods: The clinical records of all patients with BCC in a clinic in north of Iran were reviewed. Results: Of the 58 cases of BCC, 29 had positive history for radiotherapy in their childhood. Multiple BCCs were seen in 79.3% and 10.3% of patients with history and without history of radiotherapy, respectively. Conclusions: X-ray radiation is still a major etiologic factor in developing BCC in northern Iran. Patients with positive history for radiotherapy have higher rate of recurrence. PMID:26114066

  15. Abnormal norepinephrine metabolism in rat brain synaptosomes in phosphate depletion.

    PubMed

    Smogorzewski, M; Islam, A; Koureta, P; Massry, S G

    1993-01-01

    Abnormalities in the function of the central nervous system exist in phosphate depletion (PD). It is possible that this is due to an adverse effect of PD on the metabolism of neurotransmitters, such as norepinephrine (NE), in brain synaptosomes. We examined the effects of PD, produced by restriction of dietary phosphate intake on NE metabolism of brain synaptosomes. Synaptosomes from PD rats had significantly reduced NE content, uptake and release, elevated Km, but normal Vmax of tyrosine hydroxylase, normal Km and Vmax of monoamine oxidase, elevated resting levels of cytosolic calcium ([Ca2+]i), higher delta [Ca2+]i in response to KCl, higher delta [Ca2+]i/basal [Ca2+]i ratio, lower ATP content and reduced activity of Na(+)-K(+)-ATPase as compared to synaptosomes from pair-weighed rats. Treatment of PD rats with verapamil corrected all the synaptosomal derangements except for the elevated Km of tyrosine hydroxylase and NE content. Verapamil did not affect the metabolism of PW rats. The data demonstrate that PD causes significant derangements in NE metabolism of brain synaptosomes. Observations in the present study and in others indicate that these derangements in NE metabolism are due to the PD-induced abnormalities in the homeostasis of synaptosomal [Ca2+]i, ATP and phospholipids and in the activities of Na(+)-K(+)-ATPase and Ca(2+)-ATPase. PMID:8100685

  16. Skeletal ontogeny in basal scleractinian micrabaciid corals.

    PubMed

    Janiszewska, Katarzyna; Jaroszewicz, Jakub; Stolarski, Jaros?aw

    2013-03-01

    The skeletal ontogeny of the Micrabaciidae, one of two modern basal scleractinian lineages, is herein reconstructed based on serial micro-computed tomography sections and scanning electron micrographs. Similar to other scleractinians, skeletal growth of micrabaciids starts from the simultaneous formation of six primary septa. New septa of consecutive cycles arise between septa of the preceding cycles from unique wedge-shaped invaginations of the wall. The invagination of wall and formation of septa are accompanied by development of costae alternating in position with septa. During corallite growth, deepening invagination of the wall results in elevation of septa above the level of a horizontal base. The corallite wall is regularly perforated thus invaginated regions consist of pillars inclined downwardly and outwardly from the lower septal margins. Shortly after formation of septa (S2 and higher cycles) their upper margins bend and fuse with the neighboring members of a previous cycle, resulting in a unique septal pattern, formerly misinterpreted as "septal bifurcation." Septa as in other Scleractinia are hexamerally arranged in cycles. However, starting from the quaternaries, septa within single cycles do not appear simultaneously but are inserted in pairs and successively flank the members of a preceding cycle, invariably starting from those in the outermost parts of the septal system. In each pair, the septum adjacent to older septa arises first (e.g., the quinaries between S2 and S4 before quinaries between S3 and S4). Unique features of micrabaciid skeletal ontogeny are congruent with their basal position in scleractinian phylogeny, which was previously supported by microstructural and molecular data. PMID:23065665

  17. Basal bodies exhibit polarized positioning in zebrafish cone photoreceptors

    PubMed Central

    Ramsey, Michelle; Perkins, Brian D.

    2012-01-01

    The asymmetric positioning of basal bodies, and therefore cilia, is often critical for proper cilia function. This planar polarity is critical for motile cilia function but has not been extensively investigated for non-motile cilia or for sensory cilia such as vertebrate photoreceptors. Zebrafish photoreceptors form an organized mosaic ideal for investigating cilia positioning. We report that in the adult retina, the basal bodies of red, green-, and blue-sensitive cone photoreceptors localized asymmetrically on the cell edge nearest to the optic nerve. In contrast, no patterning was seen in the basal bodies of ultraviolet-sensitive cones or in rod photoreceptors. The asymmetric localization of basal bodies was consistent in all regions of the adult retina. Basal body patterning was unaffected in the cones of the XOPS-mCFP transgenic line, which lacks rod photoreceptors. Finally, the adult pattern was not seen in 7 day post fertilization (dpf) larvae as basal bodies were randomly distributed in all the photoreceptor subtypes. These results establish the asymmetrical localization of basal bodies in red-, green-, and blue-sensitive cones in adult zebrafish retinas but not in larvae. This pattern suggests an active cellular mechanism regulated the positioning of basal bodies after the transition to the adult mosaic and that rods do not seem to be necessary for the patterning of cone basal bodies. PMID:23171982

  18. Disorders caused by chromosome abnormalities

    PubMed Central

    Theisen, Aaron; Shaffer, Lisa G

    2010-01-01

    Many human genetic disorders result from unbalanced chromosome abnormalities, in which there is a net gain or loss of genetic material. Such imbalances often disrupt large numbers of dosage-sensitive, developmentally important genes and result in specific and complex phenotypes. Alternately, some chromosomal syndromes may be caused by a deletion or duplication of a single gene with pleiotropic effects. Traditionally, chromosome abnormalities were identified by visual inspection of the chromosomes under a microscope. The use of molecular cytogenetic technologies, such as fluorescence in situ hybridization and microarrays, has allowed for the identification of cryptic or submicroscopic imbalances, which are not visible under the light microscope. Microarrays have allowed for the identification of numerous new syndromes through a genotype-first approach in which patients with the same or overlapping genomic alterations are identified and then the phenotypes are described. Because many chromosomal alterations are large and encompass numerous genes, the ascertainment of individuals with overlapping deletions and varying clinical features may allow researchers to narrow the region in which to search for candidate genes. PMID:23776360

  19. [Phenomenology of abnormal body perceptions].

    PubMed

    Schäfer, M L

    1983-01-01

    The present paper deals with the problematic nature of the phenomenological grasping of the consciousness of the body and its pathological modifications. The reasoning is oriented by the doctrine of Husserl of the so-called sentiments as the fundamentals of the experience of the own body. This basic approach does not only seem to be basically for a psychology of the consciousness of the body, but also to give the theoretical-conceptual structure for a great number of psychopathological modifications. Subsequent to a criticism of the conventional use of the term 'hallucination of the body' we attempt to chart elements of a scheme of the abnormal consciousness of the body. PMID:6647887

  20. Abnormalities of the Erythrocyte Membrane

    PubMed Central

    Gallagher, Patrick G.

    2014-01-01

    Synopsis Primary abnormalities of the erythrocyte membrane, including the hereditary spherocytosis and hereditary elliptocytosis syndromes, are an important group of inherited hemolytic anemias. Classified by distinctive morphology on peripheral blood smear, these disorders are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Once considered routine, growing recognition of the longterm risks of splenectomy, including cardiovascular disease, thrombotic disorders, and pulmonary hypertension, as well as the emergence of penicillin-resistant pneumococci, a concern for infection in overwhelming postsplenectomy infection, have led to re-evaluation of the role of splenectomy. Current management guidelines acknowledge these important considerations when entertaining splenectomy and recommend detailed discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy. PMID:24237975

  1. [Morphological study of intra-laryngeal ganglia and their neurons in the cat].

    PubMed

    Shimazaki, T

    1993-12-01

    The distribution, number, projections and nature of ganglia and ganglionic neurons in the feline larynx were investigated morphologically. Six to eight large oval or spindle-shaped ganglia (including 50-80 ganglionic neurons per ganglion) in rostral portions of the paraglottic spaces, four to six small spindle-shaped ganglions (containing 5-25 ganglionic perikarya in each ganglion) dorsal to the posterior cricoarytenoid muscles and one to three small elliptical ganglia (having 15-25 ganglionic cells in each ganglion) around the inferior laryngeal nerves were observed in the larynx. Each ganglion was covered with a fibrous capsule and ganglionic neurons with a diameter of 25-30 microns totaled 600 to 800. Ganglionic neurons received projections from the dorsal motor nucleus of vagus, the superior cervical ganglion (SCG) and the nodose ganglion (NG) ipsilaterally. On the other hand, ganglionic neurons projected to SCG, NG, ipsilaterally and the laryngeal mucosa bilaterally with ipsilateral predominance. Ganglionic neurons showed acetylcholinesterase positive reactions, presumably parasympathetic. On immunocytochemistry, many vasoactive intestinal polypeptide (VIP)-immunoreactive (ir) neurons, and a few tyrosine hydroxylase (TH)-ir and substance P (SP)-ir cells were recognized in ganglions, but no calcitonin gene-related peptide (CGRP)-ir neurons were found. These VIP, TH, SP-ir neurons did not change after denervation of the ipsilateral superior and recurrent laryngeal nerves. Many VIP- and some TH-, SP-, CGRP-ir fibers were also observed around vessels and glandular cells. The present findings show that intra-laryngeal ganglionic neurons not only have an endogenic cholinergic nature, but are also involved in local sympathetic and sensory nervous systems. PMID:8295067

  2. Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon.

    PubMed

    Chen, Bao Nan; Sharrad, Dale F; Hibberd, Timothy J; Zagorodnyuk, Vladimir P; Costa, Marcello; Brookes, Simon J H

    2015-04-01

    Extrinsic nerves to the gut influence the absorption of water and electrolytes and expulsion of waste contents, largely via regulation of enteric neural circuits; they also contribute to control of blood flow. The distal colon is innervated by extrinsic sympathetic and parasympathetic efferent and spinal afferent neurons, via axons in colonic nerve trunks. In the present study, biotinamide tracing of colonic nerves was combined with immunohistochemical labeling for markers of sympathetic, parasympathetic, and spinal afferent neurons to quantify their relative contribution to the extrinsic innervation. Calcitonin gene-related peptide, vesicular acetylcholine transporter, and tyrosine hydroxylase, which selectively label spinal afferent, parasympathetic, and sympathetic axons, respectively, were detected immunohistochemically in 1?±?0.5% (n?=?7), 15?±?4.7% (n?=?6), and 24?±?4% (n?=?7) of biotinamide-labeled extrinsic axons in myenteric ganglia. Immunoreactivity for vasoactive intestinal polypeptide, nitric oxide synthase, somatostatin, and vesicular glutamate transporters 1 and 2 accounted for a combined maximum of 14% of biotinamide-labeled axons in myenteric ganglia. Thus, a maximum of 53% of biotinamide-labeled extrinsic axons in myenteric ganglia were labeled by antisera to one of these eight markers. Viscerofugal neurons were also labeled by biotinamide. They had distinct morphologies and spatial distributions that correlated closely with their immunoreactivity for nitric oxide synthase and choline acetyltransferase. As reported for the rectum, nearly half of all extrinsic nerve fibers to the distal colon lack the key immunohistochemical markers commonly used for their identification. Their abundance may therefore have been significantly underestimated in previous immunohistochemical studies. PMID:25380190

  3. Laboratory Validation of a Screening Model: Exploring the Interplay between Dissolution and Degradation Rates in Ganglia-Dominated Source Zones

    NASA Astrophysics Data System (ADS)

    Phelan, T. J.; Abriola, L. M.; Gibson, J. L.; Smits, K. M.; Christ, J.

    2013-12-01

    In-situ bioremediation is a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs). It is both economical and reasonably efficient for long-term management and closure of contaminated sites. A number of laboratory studies have demonstrated enhancement in chlorinated ethene dissolution rates due to the presence of dehalogenating microorganisms, which may lead to increased mass removal rates and shorter cleanup times. Previous modeling efforts have suggested this dissolution enhancement can be a factor of 10 or more when the contaminant is located in high saturation DNAPL pools. Yet, laboratory studies with DNAPL trapped as ganglia have suggested dissolution enhancement is often less than 10. This presentation investigates the interplay between dissolution and degradation rates in ganglia-contaminated source zones using a one-dimensional, simplified, steady-state, analytical solution to the advection-dispersion-reaction equation. A linear driving force model is employed to simulate ganglia dissolution. Degradation kinetics are approximated as zero- or first-order. Model predictions are independently compared to laboratory data available in the literature. Results indicate that dissolution enhancement predictions in ganglia-dominated source zones are often much less than those predicted assuming high saturation pools, suggesting that the presented model is a better tool for estimating bioenhanced dissolution in ganglia-contaminated regions. Furthermore, this screening model provides a remarkably good prediction of laboratory results and could provide practitioners with a useful tool for estimating the extent to which bioenhanced dissolution may aid in site closure strategies.

  4. Laboratory Assessment of a Screening Model: Exploring the Coupling between Dissolution and Degradation Rates in Ganglia-Dominated Source Zones

    NASA Astrophysics Data System (ADS)

    Phelan, T. J.; Abriola, L. M.; Gibson, J. L.; Smits, K. M.; Christ, J.

    2014-12-01

    In-situ bioremediation is a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs). It is both economical and reasonably efficient for long-term management and closure of contaminated sites. A number of laboratory studies have demonstrated enhancement in chlorinated ethene dissolution rates due to the presence of dehalogenating microorganisms, which may lead to increased mass removal rates and shorter cleanup times. Previous modeling efforts have suggested this dissolution enhancement can be a factor of 10 or more when the contaminant is located in high saturation DNAPL pools. Yet, laboratory studies with DNAPL trapped as ganglia have suggested dissolution enhancement is often less than 10. This presentation investigates the interplay between dissolution and degradation rates in ganglia-contaminated source zones using a one-dimensional, simplified, steady-state, analytical solution to the advection-dispersion-reaction equation. A linear driving force model is employed to simulate ganglia dissolution. Degradation kinetics are approximated as zero- or first-order. Model predictions are independently compared to laboratory data available in the literature. Results indicate that dissolution enhancement predictions in ganglia-dominated source zones are often much less than those predicted assuming high saturation pools, suggesting that the presented model is a better tool for estimating bioenhanced dissolution in ganglia-contaminated regions. Furthermore, this screening model provides a remarkably good prediction of laboratory results and could provide practitioners with a useful tool for estimating the extent to which bioenhanced dissolution may aid in site closure strategies.

  5. Segmentation of nerve bundles and ganglia in spine MRI using particle filters.

    PubMed

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741

  6. Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters

    PubMed Central

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741

  7. Redefinition and global estimation of basal ecosystem respiration rate

    E-print Network

    Chen, Jiquan

    Redefinition and global estimation of basal ecosystem respiration rate Wenping Yuan,1 Yiqi Luo,2] Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity

  8. [Squamous epithelial and basal cell carcinomas in naevus sebaceus (Jadassohn)].

    PubMed

    Smolin, T; Hundeiker, M

    1986-03-01

    Investigation of 181 nevi sebacei (Jadassohn) revealed the development of basal cell carcinoma in 21 cases, prickle-cell carcinoma in 1 patient. 2 basal cell carcinomas had been taken from different parts of the same systematized nevus. All these secondary tumors had developed in postpubertal patients. PMID:3962409

  9. The Place of Career Women in the Basals.

    ERIC Educational Resources Information Center

    Leondis, Mary T.

    A study analyzed two basal reading series to determine if they depicted realistically the role of the career woman as she exists in society. A list of female careers in the 1989 editions of Houghton-Mifflin and McGraw Hill reading basals for grades 1 to 6 was compared to the career categories of the "United States Bureau of Census, Statistical…

  10. Do Basal Readers Deskill Teachers? Reading Research Report No. 26.

    ERIC Educational Resources Information Center

    Baumann, James F.; Heubach, Kathleen M.

    A study evaluated the assertion that basal reading programs limit or control teachers' instructional decision making through a process referred to as "deskilling" by surveying elementary educators regarding their use of and opinions about basal reading programs. Responses from 553 of 1,000 randomly sampled International Reading Association members…

  11. New basal cell carcinoma susceptibility loci

    PubMed Central

    Stacey, Simon N.; Helgason, Hannes; Gudjonsson, Sigurjon A.; Thorleifsson, Gudmar; Zink, Florian; Sigurdsson, Asgeir; Kehr, Birte; Gudmundsson, Julius; Sulem, Patrick; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R.; Thorisdottir, Kristin; Ragnarsson, Rafn; Fuentelsaz, Victoria; Corredera, Cristina; Gilaberte, Yolanda; Grasa, Matilde; Planelles, Dolores; Sanmartin, Onofre; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Nexø, Bjørn A.; Tjønneland, Anne; Overvad, Kim; Jonasson, Jon G.; Tryggvadottir, Laufey; Johannsdottir, Hrefna; Kristinsdottir, Anna M.; Stefansson, Hreinn; Masson, Gisli; Magnusson, Olafur T.; Halldorsson, Bjarni V.; Kong, Augustine; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Vogel, Ulla; Kumar, Rajiv; Nagore, Eduardo; Mayordomo, José I.; Gudbjartsson, Daniel F.; Olafsson, Jon H.; Stefansson, Kari

    2015-01-01

    In an ongoing screen for DNA sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conduct a genome-wide association study (GWAS) of 24,988,228 SNPs and small indels detected through whole-genome sequencing of 2,636 Icelanders and imputed into 4,572 BCC patients and 266,358 controls. Here we show the discovery of four new BCC susceptibility loci: 2p24 MYCN (rs57244888[C], OR=0.76, P=4.7 × 10?12), 2q33 CASP8-ALS2CR12 (rs13014235[C], OR=1.15, P=1.5 × 10?9), 8q21 ZFHX4 (rs28727938[G], OR=0.70, P=3.5 × 10?12) and 10p14 GATA3 (rs73635312[A], OR=0.74, P=2.4 × 10?16). Fine mapping reveals that two variants correlated with rs73635312[A] occur in conserved binding sites for the GATA3 transcription factor. In addition, expression microarrays and RNA-seq show that rs13014235[C] and a related SNP rs700635[C] are associated with expression of CASP8 splice variants in which sequences from intron 8 are retained. PMID:25855136

  12. Giant basal cell carcinoma of the forehead: a case report.

    PubMed

    Rudi?, Milan; Kranjcec, Zoran; Lisica-Siki?, Natasa; Kovaci?, Marijan

    2012-03-01

    Giant basal cell carcinoma (GBCC) is defined as a tumor 5cm or greater in diameter. They present less than 1% of all basal cell carcinomas. We present a case of an 85-year-old male patient with a giant ulcerating tumor of the left forehead (measuring 7x6 cm). Under local anesthesia tumor was surgically excised. No involvement of the underlying periostal or bone structure was noted. Pathohystological exam revealed the giant basal cell carcinoma, with free surgical margins. Giant basal cell carcinomas are rare tumors and are usually result of a long duration and patient neglect. In comparison to the ordinary basal cell carcinoma these tumors have a higher metastatic potential. Surgical resection with negative surgical margin is the best possible treatment option. PMID:22816239

  13. Physiological implications of the abnormal absence of the parietal foramen in a late Permian cynodont (Therapsida)

    NASA Astrophysics Data System (ADS)

    Benoit, Julien; Abdala, Fernando; Van den Brandt, Marc J.; Manger, Paul R.; Rubidge, Bruce S.

    2015-12-01

    The third eye (pineal eye), an organ responsible for regulating exposure to sunlight in extant ectotherms, is located in an opening on the dorsal surface of the skull, the parietal foramen. The parietal foramen is absent in extant mammals but often observed in basal therapsids, the stem-group to true mammals. Here, we report the absence of the parietal foramen in a specimen of Cynosaurus suppostus, a Late Permian cynodont from South Africa (SA). Comparison with Procynosuchus delaharpeae, a contemporaneous non-mammalian cynodont from SA, demonstrates that the absence of this foramen is an abnormal condition for such a basal species. Because seasonality was marked during the Late Permian in SA, it is proposed that the third eye was functionally redundant in Cynosaurus, possibly due to the acquisition of better thermoregulation or the evolution of specialized cells in the lateral eyes to compensate for the role of the third eye.

  14. Physiological implications of the abnormal absence of the parietal foramen in a late Permian cynodont (Therapsida).

    PubMed

    Benoit, Julien; Abdala, Fernando; Van den Brandt, Marc J; Manger, Paul R; Rubidge, Bruce S

    2015-12-01

    The third eye (pineal eye), an organ responsible for regulating exposure to sunlight in extant ectotherms, is located in an opening on the dorsal surface of the skull, the parietal foramen. The parietal foramen is absent in extant mammals but often observed in basal therapsids, the stem-group to true mammals. Here, we report the absence of the parietal foramen in a specimen of Cynosaurus suppostus, a Late Permian cynodont from South Africa (SA). Comparison with Procynosuchus delaharpeae, a contemporaneous non-mammalian cynodont from SA, demonstrates that the absence of this foramen is an abnormal condition for such a basal species. Because seasonality was marked during the Late Permian in SA, it is proposed that the third eye was functionally redundant in Cynosaurus, possibly due to the acquisition of better thermoregulation or the evolution of specialized cells in the lateral eyes to compensate for the role of the third eye. PMID:26538062

  15. Radiologic atlas of pulmonary abnormalities in children

    SciTech Connect

    Singleton, E.B.; Wagner, M.L.; Dutton, R.V.

    1988-01-01

    This book is an atlas about thoracic abnormalities in infants and children. The authors include computed tomographic, digital subtraction angiographic, ultrasonographic, and a few magnetic resonance (MR) images. They recognize and discuss how changes in the medical treatment of premature infants and the management of infection and pediatric tumors have altered some of the appearances and considerations in these diseases. Oriented toward all aspects of pulmonary abnormalities, the book starts with radiographic techniques and then discusses the normal chest, the newborn, infections, tumors, and pulmonary vascular diseases. There is comprehensive treatment of mediastinal abnormalities and a discussion of airway abnormalities.

  16. Analysis of Basal Plane Bending and Basal Plane Dislocations in 4H-SiC Single Crystals

    NASA Astrophysics Data System (ADS)

    Ohtani, Noboru; Katsuno, Masakazu; Fujimoto, Tatsuo; Nakabayashi, Masashi; Tsuge, Hiroshi; Yashiro, Hirokatsu; Aigo, Takashi; Hirano, Hosei; Hoshino, Taizo; Ohashi, Wataru

    2009-06-01

    4H-SiC single crystals were grown by the physical vapor transport (PVT) growth method under different thermoelastic stress conditions, and the degree of basal plane bending in the crystals was characterized by the peak shift measurement of X-ray rocking curves. The results indicate that the degree of basal plane bending largely depends on the magnitude of the thermoelastic stresses imposed on the crystals during PVT growth. Quantitative analysis of basal plane bending revealed that the density of basal plane dislocations (BPDs) estimated from basal plane bending is much smaller than that obtained from defect-selective etching. It was also found that the BPD density is correlated with the threading screw dislocation (TSD) density in PVT-grown SiC crystals. These aspects of BPDs were discussed in terms of the BPD multiplication process triggered by the intersection of BPDs with a forest of TSDs extending along the c-axis.

  17. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Hutson, Thomas; Rau, Kristofer K.; Bunge, Mary Bartlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin; Rouchka, Eric C.; Moon, Lawrence; Petruska, Jeffrey C.

    2015-01-01

    Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the “spared dermatome” model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact (“naïve”) sensory ganglia. Data has been deposited into GEO (GSE72551). PMID:26697387

  18. Highly efficient method for gene delivery into mouse dorsal root ganglia neurons.

    PubMed

    Yu, Lingli; Reynaud, Florie; Falk, Julien; Spencer, Ambre; Ding, Yin-Di; Baumlé, Véronique; Lu, Ruisheng; Castellani, Valérie; Yuan, Chonggang; Rudkin, Brian B

    2015-01-01

    The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5-16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60-80%) and low toxicity (>60% survival) were achieved with robust differentiation in response to Nerve growth factor (NGF). Moreover, 3-50 times fewer cells are needed (6 × 10(4)) compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures. PMID:25698920

  19. A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation

    PubMed Central

    1985-01-01

    We have isolated a nucleus-basal body complex from Chlamydomonas reinhardtii. The complex is strongly immunoreactive to an antibody generated against a major protein constituent of isolated Tetraselmis striata flagellar roots (Salisbury, J. L., A. Baron, B. Surek, and M. Melkonian, J. Cell Biol., 99:962-970). Electrophoretic and immunoelectrophoretic analysis indicates that, like the Tetraselmis protein, the Chlamydomonas antigen consists of two acidic isoforms of approximately 20 kD. Indirect immunofluorescent staining of nucleus- basal body complexes reveals two major fibers in the connector region, one between each basal body and the nucleus. The nucleus is also strongly immunoreactive, with staining radiating around much of the nucleus from a region of greatest concentration at the connector pole. Calcium treatment causes shortening of the connector fibers and also movement of nuclear DNA towards the connector pole. Electron microscopic observation of negatively stained nucleus-basal body complexes reveals a cluster of approximately 6-nm filaments, suspected to represent the connector, between the basal bodies and nuclei. A mutant with a variable number of flagella, vfl-2-220, is defective with respect to the nucleus-basal body association. This observation encourages us to speculate that the nucleus-basal body union is important for accurate basal body localization within the cell and/or for accurate segregation of parental and daughter basal bodies at cell division. A physical association between nuclei and basal bodies or centrioles has been observed in a variety of algal, protozoan, and metazoan cells, although the nature of the association, in terms of both structure and function, has been obscure. We believe it likely that fibrous connectors homologous to those described here for Chlamydomonas are general features of centriole-bearing eucaryotic cells. PMID:4055898

  20. Semen abnormalities with SSRI antidepressants.

    PubMed

    2015-01-01

    Despite decades of widespread use, the adverse effect profile of "selective" serotonin reuptake inhibitor (SSRI) antidepressants has still not been fully elucidated. Studies in male animals have shown delayed sexual development and reduced fertility. Three prospective cohort studies conducted in over one hundred patients exposed to an SSRI for periods ranging from 5 weeks to 24 months found altered semen param-eters after as little as 3 months of exposure: reduced sperm concentration, reduced sperm motility, a higher percentage of abnormal spermatozoa, and increased levels of sperm DNA fragmentation. One clinical trial showed growth retardation in children considered depressed who were exposed to SSRls. SSRls may have endocrine disrupting properties. Dapoxetine is a short-acting serotonin reuptake inhibitor that is chemically related to fluoxetine and marketed in the European Union for men complaining of premature ejaculation. But the corresponding European summary of product characteristics does not mention any effects on fertility. In practice, based on the data available as of mid-2014, the effects of SSRI exposure on male fertility are unclear. However, it is a risk that should be taken into account and pointed out to male patients who would like to father a child or who are experiencing fertility problems. PMID:25729824

  1. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    PubMed Central

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  2. A basal stem cell signature identifies aggressive prostate cancer phenotypes.

    PubMed

    Smith, Bryan A; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Witte, Owen N

    2015-11-24

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  3. An Abnormal Psychology Community Based Interview Assignment

    ERIC Educational Resources Information Center

    White, Geoffry D.

    1977-01-01

    A course option in abnormal psychology involves students in interviewing and observing the activities of individuals in the off-campus community who are concerned with some aspect of abnormal psychology. The technique generates student interest in the field when they interview people about topics such as drug abuse, transsexualism, and abuse of…

  4. Immune Abnormalities in Patients with Autism.

    ERIC Educational Resources Information Center

    Warren, Reed P.; And Others

    1986-01-01

    A study of 31 autistic patients (3-28 years old) has revealed several immune-system abnormalities, including decreased numbers of T lymphocytes and an altered ratio of helper-to-suppressor T cells. Immune-system abnormalities may be directly related to underlying biologic processes of autism or an indirect reflection of the actual pathologic…

  5. Multiparametric tissue abnormality characterization using manifold regularization

    NASA Astrophysics Data System (ADS)

    Batmanghelich, Kayhan; Wu, Xiaoying; Zacharaki, Evangelia; Markowitz, Clyde E.; Davatzikos, Christos; Verma, Ragini

    2008-03-01

    Tissue abnormality characterization is a generalized segmentation problem which aims at determining a continuous score that can be assigned to the tissue which characterizes the extent of tissue deterioration, with completely healthy tissue being one end of the spectrum and fully abnormal tissue such as lesions, being on the other end. Our method is based on the assumptions that there is some tissue that is neither fully healthy or nor completely abnormal but lies in between the two in terms of abnormality; and that the voxel-wise score of tissue abnormality lies on a spatially and temporally smooth manifold of abnormality. Unlike in a pure classification problem which associates an independent label with each voxel without considering correlation with neighbors, or an absolute clustering problem which does not consider a priori knowledge of tissue type, we assume that diseased and healthy tissue lie on a manifold that encompasses the healthy tissue and diseased tissue, stretching from one to the other. We propose a semi-supervised method for determining such as abnormality manifold, using multi-parametric features incorporated into a support vector machine framework in combination with manifold regularization. We apply the framework towards the characterization of tissue abnormality to brains of multiple sclerosis patients.

  6. [CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH INFERTILITY].

    PubMed

    Pylyp, L Y; Spinenko, L O; Verhoglyad, N V; Kashevarova, O O; Zukin, V D

    2015-01-01

    To assess the frequency and structure of chromosomal abnormalities in patients with infertility, a retrospective analysis of cytogenetic studies of 3414 patients (1741 females and 1673 males), referred to the Clinic of reproductive medicine "Nadiya" from 2007 to 2012, was performed. Chromosomal abnormalities were detected in 2.37% patients: 2.79% in males and 1.95% in females. Balanced structural chromosomal abnormalities prevailed over numerical abnormalities and corresponded to 80.2% of all chromosomal abnormalities detected in the studied group. Sex chromosome abnormalities made up 23.5% of chromosomal pathology (19/81) and included gonosomal aneuploidies in 84% of cases (16/19) and structural abnormalities of chromosome Y in 16% of cases (3/19). The low level sex chromosome mosaicism was detected with the frequency of 0.55%. Our results highlight the importance of cytogenetic studies in patients seeking infertility treatment by assisted reproductive technologies, since an abnormal finding not only provide a firm diagnosis to couples with infertility, but also influences significantly the approach to infertility treatment in such patients. PMID:26214903

  7. A psittacosaurid-like basal neoceratopsian from the Upper Cretaceous of central China and its implications for basal ceratopsian evolution.

    PubMed

    Zheng, Wenjie; Jin, Xingsheng; Xu, Xing

    2015-01-01

    Psittacosauridae (parrot-beaked dinosaurs) represents the first major radiation of ceratopsians (horned dinosaurs). However, psittacosaurids are divergent from the general morphology found in other ceratopsians, and this has resulted in their uncertain systematic position among ceratopsians. Here we describe a new basal neoceratopsian dinosaur, Mosaiceratops azumai gen. et sp. nov. based on a partial semi-articulated skeleton recovered from the Upper Cretaceous Xiaguan Formation of Neixiang County, Henan Province, China. Although our phylogenetic analysis supports this taxon as the most basal neoceratopsian, Mosaiceratops exhibits many features previously considered unique to the Psittacosauridae among the basal Ceratopsia. These include a relatively highly positioned external naris, a proportionally large premaxilla, the nasal extending ventral to the external naris, slender postorbital and temporal bars, a large notch between the basal tubera, and the edentulous premaxilla. Thus, the discovery of Mosaiceratops reduces the morphological disparity between the Psittacosauridae and other basal ceratopsians. Character optimization suggests that basal neoceratopsians have re-evolved premaxillary teeth; a major reversal previously unknown in any dinosaur clade. The new specimen also highlights the mosaic nature of evolution among early ceratopsians and supports the phylogenetic hypothesis that the Psittacosauridae is a relatively derived clade, rather than the most basal group of the Ceratopsia. PMID:26388024

  8. A psittacosaurid-like basal neoceratopsian from the Upper Cretaceous of central China and its implications for basal ceratopsian evolution

    PubMed Central

    Zheng, Wenjie; Jin, Xingsheng; Xu, Xing

    2015-01-01

    Psittacosauridae (parrot-beaked dinosaurs) represents the first major radiation of ceratopsians (horned dinosaurs). However, psittacosaurids are divergent from the general morphology found in other ceratopsians, and this has resulted in their uncertain systematic position among ceratopsians. Here we describe a new basal neoceratopsian dinosaur, Mosaiceratops azumai gen. et sp. nov. based on a partial semi-articulated skeleton recovered from the Upper Cretaceous Xiaguan Formation of Neixiang County, Henan Province, China. Although our phylogenetic analysis supports this taxon as the most basal neoceratopsian, Mosaiceratops exhibits many features previously considered unique to the Psittacosauridae among the basal Ceratopsia. These include a relatively highly positioned external naris, a proportionally large premaxilla, the nasal extending ventral to the external naris, slender postorbital and temporal bars, a large notch between the basal tubera, and the edentulous premaxilla. Thus, the discovery of Mosaiceratops reduces the morphological disparity between the Psittacosauridae and other basal ceratopsians. Character optimization suggests that basal neoceratopsians have re-evolved premaxillary teeth; a major reversal previously unknown in any dinosaur clade. The new specimen also highlights the mosaic nature of evolution among early ceratopsians and supports the phylogenetic hypothesis that the Psittacosauridae is a relatively derived clade, rather than the most basal group of the Ceratopsia. PMID:26388024

  9. Development of non-catecholaminergic sympathetic neurons in para- and prevertebral ganglia of cats.

    PubMed

    Masliukov, Petr M; Emanuilov, Andrey I; Moiseev, Konstantin; Nozdrachev, Alexandr D; Dobrotvorskaya, Svetlana; Timmermans, Jean-Pierre

    2015-02-01

    Expression of vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT) and calcitonin gene-related peptide (CGRP) in the sympathetic ganglia was investigated by immunohistochemistry in the superior cervical ganglion (SCG), stellate ganglion (SG) and celiac ganglion (CG) from cats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old and 2-month-old). Non-catecholaminergic TH-negative VIP-immunoreactive (IR) and nNOS-IR sympathetic ganglionic neurons are present from the moment of birth. In all studied age groups, substantial populations of VIP-IR (up to 9.8%) and nNOS-IR cells (up to 8.3%) was found in the SG, with a much smaller population found in the SCG (<1%) and only few cells observed in the CG. The percentage of nNOS-IR and VIP-IR neurons in the CG and SCG did not significantly change during development. The proportion of nNOS-IR and VIP-IR neuron profiles in the SG increased in first 20 days of life from 2.3±0.15% to 8.3±0.56% and from 0.3±0.05% to 9.2±0.83%, respectively. In the SG, percentages of nNOS-IR sympathetic neurons colocalizing VIP increased in the first 20 days of life. ChAT-IR and CGRP-IR neurons were not observed in the sympathetic ganglia of newborn animals and did not appear until 10 days after birth. In the SG of newborn and 10-day-old kittens, the majority of NOS-IR neurons were calbindin (CB)-IR, whereas in the SCG and CG of cats of all age groups and in the SG of 30-day-old and older kittens, the vast majority of NOS-IR neurons lacked CB. We conclude that the development of various non-catecholaminergic neurons in different sympathetic ganglia has its own time dynamics and is concluded at the end of the second month of life. PMID:25490547

  10. Eastern Olympus Mons Basal Scarp: A Landslide Story?

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; McGovern, P. J.; Fournier, T.; Morgan, J. K.; Katz, O.

    2012-03-01

    Olympus Mons is surrounded by aureole deposit landforms that may be the result of catastrophic failures of the edifice. We examine the stability of the eastern basal scarp to evaluate a landslide mechanism for the formation of the aureole lobes.

  11. How Are Squamous and Basal Cell Skin Cancers Diagnosed?

    MedlinePLUS

    ... cancers staged? How are basal and squamous cell skin cancers diagnosed? Most skin cancers are brought to ... non-cancerous) without the need for a biopsy. Skin biopsy If the doctor thinks that a suspicious ...

  12. Nuclear morphometry and chromatin textural characteristics of basal cell carcinoma*

    PubMed Central

    Mendaçolli, Paola Jung; Brianezi, Gabrielli; Schmitt, Juliano Vilaverde; Marques, Mariângela Esther Alencar; Miot, Hélio Amante

    2015-01-01

    Histological subtypes of basal cell carcinoma have biological, evolutionary and distinct prognostic behavior. The analysis of characteristics of the nucleus can provide data on their cellular physiology and behavior. The authors of this study evaluated nuclear morphological parameters and textural patterns of chromatin from different subtypes of basal cell carcinoma: nodular (n=37), superficial (n=28) and sclerodermiform (n=28). The parameters were compared between neoplasms' subtypes and with unaffected adjacent basal epithelium. Nuclear area and diameter of sclerodermiform neoplasms were superior to the other subtypes. Chromatin's color intensity and fractal dimension were less intense in superficial subtypes. Nuclear roundness and chromatin's entropy presented lower values in tumors than in normal epithelium. There was significant correlation between morphological and textural variables of normal skin and tumors. Morphometric elements and textural chromatin's homogeneity of basal cell carcinomas may be related to evolutionary, biological and behavior particularities related to each histotype.

  13. Basal Anthropoids from Egypt and the Antiquity of Africa's Higher

    E-print Network

    Licciardi, Joseph M.

    Basal Anthropoids from Egypt and the Antiquity of Africa's Higher Primate Radiation Erik R, into a morphologically and behaviorally diverse parapithecoid clade of great antiquity. The early or early middle Eocene

  14. INTRODUCTION Recent phylogenetic studies have revealed a basal

    E-print Network

    Schuettpelz, Eric

    INTRODUCTION Recent phylogenetic studies have revealed a basal dichotomy within vascular plants, separating the lyco- phytes (less than 1% of extant vascular plants) from the euphyllophytes (Fig. 1 phylogeny depicting relationships of major vascular plant lineages. Topology summarizes the results

  15. The relation between dermoscopy and histopathology of basal cell carcinoma*

    PubMed Central

    Emiroglu, Nazan; Cengiz, Fatma Pelin; Kemeriz, Funda

    2015-01-01

    BACKGROUND: Basal cell carcinoma is the most frequent cancer in fair-skinned populations and dermoscopy is an important, non-invasive technique that aids in the diagnosis of Basal cell carcinoma. OBJECTIVES: The aim of this study was to evaluate the relationship between histopathological subtypes and dermoscopic features of Basal cell carcinoma. METHODS: This study included 98 patients with clinically and histopathologically confirmed Basal cell carcinomas. The dermoscopic features of the lesions from each patient were analyzed before the histopathological findings were evaluated. RESULTS: Dermoscopic structures were observed in all 98 patients and irregular vascularity was identified in 78 patients (79.6%). The most common vascular pattern was the presence of arborizing vessels (42 patients, 42.9%) followed by arborizing microvessels (21 patients, 21.4%) and short fine telangiectasias (SFTs; 15 patients, 15.3%). White streaks (38 patients, 38.8%), translucency (31 patients, 31.6%), a milky-pink to red background (42 patients, 42.9%), and erosion/ulceration (29 patients, 29.6%) were also observed. Pigmented islands were seen as blue-gray globules (7 patients, 7.1%) and blue-gray ovoid nests (42 patients, 42.9%). The pigment distribution pattern was maple leaf-like areas in 9 patients (9.2 %) and spoke wheel-like areas in 6 patients (6.1%). CONCLUSIONS: Basal cell carcinomas show a wide spectrum of dermoscopic features. Arborizing vessels were the most common dermoscopic findings in Basal cell carcinomas, while superficial Basal cell carcinomas displayed mainly milky-pink to red areas, and arborizing microvessels. The most common dermoscopic features of pigmented types were islands of pigment (blue-gray globules, blue-gray ovoid nests). In conclusion, dermoscopy can be used as a valuable tool for the diagnosis of Basal cell carcinomas and prediction of their histopathological subtypes. PMID:26131865

  16. Basal encephalocele associated with morning glory syndrome: case report.

    PubMed

    Minotto, Ivanete; Abdala, Nitamar; Miachon, Adriana Aparecida Siviero; Spinola e Castro, Angela Maria; Imamura, Paulo; Nogueira, Roberto Gomes

    2007-12-01

    The basal encephaloceles refer to rare entities and they correspond to herniation of brain tissue through defects of skull along the cribiform plate or the sphenoid bone. A rare morning glory syndrome, with characteristic retinal defect has been reported in association with basal encephaloceles. Hypophysis hormonal deficiencies may occur. We accounted for a pituitary dwarfism with delayed diagnosed transsphenoidal encephalocele associated with morning glory syndrome, showing the alterations found in retinography, computed tomography and magnetic resonance imaging. PMID:18094860

  17. Immunocytochemical localization of neuropeptide Y, serotonin, substance P and ?-endorphin in optic ganglia and brain of Metapenaeus ensis

    NASA Astrophysics Data System (ADS)

    Ye, Haihui; Wang, Guizhong; Jin, Zhuxing; Huang, Huiyang; Li, Shaojing

    2006-12-01

    By using immunocytochemistry method of Strept Avidin-Biotin-Complex, four kinds of antisera raised against rabbits were applied to observe the immunoreactive neurons and neuropils of serotonin (5-HT), neuropeptide Y (NPY), substance P (SP) and ?-Endorphin (?-Ep) in optic ganglia and brain of Metapenaeus ensis. The results showed that, the 5-HT-immunoreactive cells were located in all the four neuropils of optic ganglia. Immunoreactivity of 5-HT was detected in anterior medial protocerebrum neuropils (AMPN), and the inner and outer lateral beside olfactory lobe (OL) of deutocerebrum. The presence of NPY-immunoreactive cells was found in all the four neuropils of the optic ganglia. NPY-immunoreactivity occurred in the anterior median cell cluster, lateral cell cluster of protocerebrum, and cell cluster beside OL and AMPN. SP-immunoreactivity was found in medulla terminalis (MT) of optic ganglia, and lateral cell cluster of protocerebrum and posterior lateral cell cluster of tritocerebrum. ?-Ep-immunoreactive cells were in MT only. In conclusion, these specific distribution patterns of the four immunoreactive substances can be used as morphological clues for understanding their different neurophysiological functions.

  18. Localization of Molecular Correlates of Memory Consolidation to Buccal Ganglia Mechanoafferent Neurons after Learning that Food Is Inedible in "Aplysia"

    ERIC Educational Resources Information Center

    Levitan, David; Saada-Madar, Ravit; Teplinsky, Anastasiya; Susswein, Abraham J.

    2012-01-01

    Training paradigms affecting "Aplysia" withdrawal reflexes cause changes in gene expression leading to long-term memory formation in primary mechanoafferents that initiate withdrawal. Similar mechanoafferents are also found in the buccal ganglia that control feeding behavior, raising the possibility that these mechanoafferents are a locus of…

  19. [Adrenoreception characteristics of the neurons of the superior cervical and caudal mesenteric sympathetic ganglia of the cat].

    PubMed

    Komissarov, I V; Krivobok, G K

    1975-10-01

    Experiments were conducted on the supeior cervical and the caudal mesenteric sympathetic ganglia of a cat; it was shown that dophamine (DA), similarly to noradrenaline (NA) and adrenaline (A), depressed the cholinergic conduction. The activity of DA in the superior sympathetic ganglion was less than that of the NA and A 2- and 3-fold, respectively, and in the caudal mesenteric ganglia DA was 50 times more active than NA by the capacity to depress the cholinergic conduction. The effects of DA and NA in the superior cervical ganglia were eliminated by dyhydroergotamine, phentholamine and haloperidol, but not by tropaphen and chlorpormazine. In the caudal mesenteric ganglia the inhibitory effect of NA was decreased by phentholamine, dihydroergotamine and chlorpromazine, but not by haloperidol. On the contrary, haloperidol and chlorpromzine decreased the depressive effect of DA on the cholinergic conduction in the caudal mesenteric ganglion, whereas phentholamine, dihydroergotamine and deseryl proved to be ineffective. It is supposed that the manifestation of the dopaminergic mechanism of inhibition of cholinergic conduction in the caudal mesenteric sympathetic ganglion could underlie the dilatation of the mesenterial and renal vessels and its hypotensive action caused by DA. PMID:1227625

  20. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis

    PubMed Central

    Bao, Chenchang; Yang, Yanan; Huang, Huiyang; Ye, Haihui

    2015-01-01

    Neuropeptides play a critical role in regulating animal reproduction. In vertebrates, GnRH, GnIH and kisspeptin are the key neuropeptide hormones of the reproductive axis, however, the reproductive axis for invertebrates is vague. Knowledge on ovarian development of the mud crab, Scylla paramamosain, is critical for aquaculture and resources management of the commercially important species. This study employed Illumina sequencing, reverse transcription-polymerase chain reaction and quantitative real-time PCR techniques to identify neuropeptides that may be involved in ovarian development of S. paramamosain. A total of 32 neuropeptide transcripts from two dozen neuropeptide families, 100 distinct mature peptides were predicted from the transcriptome data of female S. paramamosain cerebral ganglia. Among them, two families, i.e. GSEFLamide and WXXXRamide, were first identified from the cerebral ganglia of crustaceans. Of these neuropeptides, 21 transcripts of interest were selected for further confirmation and all of them were detected in the cerebral ganglia, as well as in other nervous tissues and the ovary. Most of them also had differential expression in the cerebral ganglia during various vitellogenic stages, suggesting their likely involvement in regulating vitellogenesis and ovarian maturation. Overall, these findings provide an important basis for subsequent studies on peptide function in reproduction of S. paramamosain. PMID:26592767

  1. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis.

    PubMed

    Bao, Chenchang; Yang, Yanan; Huang, Huiyang; Ye, Haihui

    2015-01-01

    Neuropeptides play a critical role in regulating animal reproduction. In vertebrates, GnRH, GnIH and kisspeptin are the key neuropeptide hormones of the reproductive axis, however, the reproductive axis for invertebrates is vague. Knowledge on ovarian development of the mud crab, Scylla paramamosain, is critical for aquaculture and resources management of the commercially important species. This study employed Illumina sequencing, reverse transcription-polymerase chain reaction and quantitative real-time PCR techniques to identify neuropeptides that may be involved in ovarian development of S. paramamosain. A total of 32 neuropeptide transcripts from two dozen neuropeptide families, 100 distinct mature peptides were predicted from the transcriptome data of female S. paramamosain cerebral ganglia. Among them, two families, i.e. GSEFLamide and WXXXRamide, were first identified from the cerebral ganglia of crustaceans. Of these neuropeptides, 21 transcripts of interest were selected for further confirmation and all of them were detected in the cerebral ganglia, as well as in other nervous tissues and the ovary. Most of them also had differential expression in the cerebral ganglia during various vitellogenic stages, suggesting their likely involvement in regulating vitellogenesis and ovarian maturation. Overall, these findings provide an important basis for subsequent studies on peptide function in reproduction of S. paramamosain. PMID:26592767

  2. Analysis and diagnosis of basal cell carcinoma (BCC) via infrared imaging

    NASA Astrophysics Data System (ADS)

    Flores-Sahagun, J. H.; Vargas, J. V. C.; Mulinari-Brenner, F. A.

    2011-09-01

    In this work, a structured methodology is proposed and tested through infrared imaging temperature measurements of a healthy control group to establish expected normality ranges and of basal cell carcinoma patients (a type of skin cancer) previously diagnosed through biopsies of the affected regions. A method of conjugated gradients is proposed to compare measured dimensionless temperature difference values (? ?) between two symmetric regions of the patient's body, that takes into account the skin, the surrounding ambient and the individual core temperatures and doing so, the limitation of the results interpretation for different individuals become simple and nonsubjective. The range of normal temperatures in different regions of the body for seven healthy individuals was determined, and admitting that the human skin exhibits a unimodal normal distribution, the normal range for each region was considered to be the mean dimensionless temperature difference plus/minus twice the standard deviation of the measurements (??±2?) in order to represent 95% of the population. Eleven patients with previously diagnosed basal cell carcinoma through biopsies were examined with the method, which was capable of detecting skin abnormalities in all cases. Therefore, the conjugated gradients method was considered effective in the identification of the basal cell carcinoma through infrared imaging even with the use of a low optical resolution camera (160 × 120 pixels) and a thermal resolution of 0.1 °C. The method could also be used to scan a larger area around the lesion in order to detect the presence of other lesions still not perceptible in the clinical exam. However, it is necessary that a temperature differences mesh-like mapping of the healthy human body skin is produced, so that the comparison of the patient ? ? could be made with the exact region of such mapping in order to possibly make a more effective diagnosis. Finally, the infrared image analyzed through the conjugated gradients method could be useful in the definition of a better safety margin in the surgery for the removal of the lesion, both minimizing esthetics damage to the patient and possibly avoiding basal cell carcinoma recurrence.

  3. Innervation of the rat tympanic membrane from the superior cervical and glossopharyngeal ganglia.

    PubMed Central

    Tierney, S; Russell, J D; Walsh, M; Folan-Curran, J

    1993-01-01

    True Blue and Fluorogold were applied to the external surface of the tympanic membrane and middle ear mucosa of Sprague-Dawley rats and neurons in the superior cervical and glossopharyngeal ganglia were labelled with these retrograde tracer dyes. Dye absorption was poor from the tympanic membrane unless the keratinized layer was damaged with crystalline silver nitrate prior to dye application. Stained neurons were scattered throughout the superior cervical ganglion with no evidence of somatotopy. Several neurons in the glossopharyngeal ganglion stained with both dyes when these had been simultaneously applied to both sites in single animals. There was no evidence of dual staining of neurons in the superior cervical ganglion. Images Fig. 1 Fig. 2 Fig. 4 PMID:7693636

  4. Numerically abnormal chromosome constitutions in humans

    SciTech Connect

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  5. Right Liver Lobe Hypoplasia and Related Abnormalities

    PubMed Central

    Alicioglu, Banu

    2015-01-01

    Summary Background Hypoplasia and agenesis of the liver lobe is a rare abnormality. It is associated with biliary system abnormalities, high location of the right kidney, and right colon interposition. These patients are prone to gallstones, portal hypertension and possible surgical complications because of anatomical disturbance. Case Report Magnetic resonance imaging features of a rare case of hypoplasia of the right lobe of the liver in a sigmoid cancer patient are presented. Conclusions Hypoplasia of the right liver should not be confused with liver atrophy; indeed, associations with other coexistent abnormalities are also possible. Awareness and familiarity with these anomalies are necessary to avoid fatal surgical and interventional complications. PMID:26634012

  6. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    SciTech Connect

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-03-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects.

  7. Short-term diabetic hyperglycemia suppresses celiac ganglia neurotransmission, thereby impairing sympathetically mediated glucagon responses.

    PubMed

    Mundinger, Thomas O; Cooper, Ellis; Coleman, Michael P; Taborsky, Gerald J

    2015-08-01

    Short-term hyperglycemia suppresses superior cervical ganglia neurotransmission. If this ganglionic dysfunction also occurs in the islet sympathetic pathway, sympathetically mediated glucagon responses could be impaired. Our objectives were 1) to test for a suppressive effect of 7 days of streptozotocin (STZ) diabetes on celiac ganglia (CG) activation and on neurotransmitter and glucagon responses to preganglionic nerve stimulation, 2) to isolate the defect in the islet sympathetic pathway to the CG itself, and 3) to test for a protective effect of the WLD(S) mutation. We injected saline or nicotine in nondiabetic and STZ-diabetic rats and measured fos mRNA levels in whole CG. We electrically stimulated the preganglionic or postganglionic nerve trunk of the CG in nondiabetic and STZ-diabetic rats and measured portal venous norepinephrine and glucagon responses. We repeated the nicotine and preganglionic nerve stimulation studies in nondiabetic and STZ-diabetic WLD(S) rats. In STZ-diabetic rats, the CG fos response to nicotine was suppressed, and the norepinephrine and glucagon responses to preganglionic nerve stimulation were impaired. In contrast, the norepinephrine and glucagon responses to postganglionic nerve stimulation were normal. The CG fos response to nicotine, and the norepinephrine and glucagon responses to preganglionic nerve stimulation, were normal in STZ-diabetic WLD(S) rats. In conclusion, short-term hyperglycemia's suppressive effect on nicotinic acetylcholine receptors of the CG impairs sympathetically mediated glucagon responses. WLD(S) rats are protected from this dysfunction. The implication is that this CG dysfunction may contribute to the impaired glucagon response to insulin-induced hypoglycemia seen early in type 1 diabetes. PMID:26037249

  8. Functional expression of TRPV1 and TRPA1 in rat vestibular ganglia.

    PubMed

    Kamakura, Takefumi; Ishida, Yusuke; Nakamura, Yukiko; Yamada, Takahiro; Kitahara, Tadashi; Takimoto, Yasumitsu; Horii, Arata; Uno, Atsuhiko; Imai, Takao; Okazaki, Suzuyo; Inohara, Hidenori; Shimada, Shoichi

    2013-09-27

    Both TRPV1 and TRPA1 are non-selective cation channels. They are co-expressed, and interact in sensory neurons such as dorsal root ganglia (DRG) and trigeminal ganglia (TG), and are involved in nociception, being activated by nociceptive stimuli. Immunohistological localization of TRPV1 in vestibular ganglion (VG) neurons has been reported. Although TRPA1 is co-expressed with TRPV1 in DRG and TG neurons, it is unclear whether TRPA1 channels are expressed in VG neurons. Moreover, it is unknown whether TRPV1 and TRPA1 channels are functional in VG neurons. We investigated the expression of TRPV1 and TRPA1 in rat VG neurons by RT-PCR, in situ hybridization, immunohistochemistry, and Ca(2+) imaging experiments. Both TRPV1 and TRPA1 RT-PCR products were amplified from the mRNA of rat VG neurons. In situ hybridization experiments showed TRPV1 and TRPA1 mRNA expression in the majority of VG neurons. Immunohistochemistry experiments confirmed TRPV1 protein expression. In Ca(2+) imaging experiments, capsaicin, a TRPV1 agonist, induced a significant increase in intracellular calcium ion concentration ([Ca(2+)]i) in rat primary cultured VG neurons, which was almost completely blocked by capsazepine, a TRPV1-specific antagonist. Cinnamaldehyde, a TRPA1 agonist, also caused an increase in [Ca(2+)]i, which was completely inhibited by HC030031, a TRPA1-specific antagonist. Moreover, in some VG neurons, a [Ca(2+)]i increase was evoked by both capsaicin and cinnamaldehyde in the same neuron. In summary, our histological and physiological studies reveal that TRPV1 and TRPA1 are expressed in VG neurons. It is suggested that TRPV1 and TRPA1 in VG neurons might participate in vestibular function and/or dysfunction such as vertigo. PMID:23916509

  9. The role of TRPM2 in hydrogen peroxide-induced expression of inflammatory cytokine and chemokine in rat trigeminal ganglia.

    PubMed

    Chung, M-K; Asgar, J; Lee, J; Shim, M S; Dumler, C; Ro, J Y

    2015-06-25

    Trigeminal ganglia (TG) contain neuronal cell bodies surrounded by satellite glial cells. Although peripheral injury is well known to induce changes in gene expression within sensory ganglia, detailed mechanisms whereby peripheral injury leads to gene expression within sensory ganglia are not completely understood. Reactive oxygen species (ROS) are an important modulator of hyperalgesia, but the role of ROS generated within sensory ganglia is unclear. Since ROS are known to affect transcription processes, ROS generated within sensory ganglia could directly influence gene expression and induce cellular changes at the soma level. In this study, we hypothesized that peripheral inflammation leads to cytokine and chemokine production and ROS generation within TG and that transient receptor potential melastatin (TRPM2), a well known oxidative sensor, contributes to ROS-induced gene regulation within TG. The masseter injection of complete Freund's adjuvant (CFA) resulted in a significantly elevated level of ROS within TG of the inflamed side with a concurrent increase in cytokine expression in TG. Treatment of TG cultures with H2O2 significantly up-regulated mRNA and protein levels of cytokine/chemokine such as interleukin 6 (IL-6) and chemokine (C-X-C motif) ligand 2 (CXCL2). TRPM2 was expressed in both neurons and non-neuronal cells in TG, and pretreatment of TG cultures with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of TRPM2, or siRNA against TRPM2 attenuated H2O2-induced up-regulation of IL-6 and CXCL2. These results suggested that activation of TRPM2 could play an important role in the modulation of cytokine/chemokine expression within TG under oxidative stress and that such changes may contribute to amplification of nociceptive signals leading to pathological pain conditions. PMID:25849615

  10. Immunohistochemical localization of histamine H3 receptors in rodent skin, dorsal root ganglia, superior cervical ganglia, and spinal cord: potential antinociceptive targets.

    PubMed

    Cannon, Keri E; Chazot, Paul L; Hann, Victoria; Shenton, Fiona; Hough, Lindsay B; Rice, Frank L

    2007-05-01

    Activation of histamine H3 receptors (H3Rs) reduces inflammation and nociception, but the existence of H3Rs on peripheral innervation has never been demonstrated. Here we use antibodies to locate H3Rs in whisker pads, hairy and glabrous hind paw skin, dorsal root ganglia (DRGs), and spinal cords of rats, wild type mice, and H3R knockout (H3KO) mice. Although H3Rs have been hypothesized to be on C and sympathetic fibers, H3R-like immunoreactivity (H3R-LI) was only detected on presumptive periarterial A delta fibers and on A beta fibers that terminated in Meissner's corpuscles and as lanceolate endings around hair follicles. The H3R-positive periarterial fibers were thin-caliber and coexpressed immunoreactivity for calcitonin gene-related peptide (CGRP), substance P, acid sensing ion channel 3, and 200 kDa neurofilament protein (NF). H3R-LI was also detected on epidermal keratinocytes and Merkel cells, but not on Merkel endings, C fibers, any other A delta fibers, or sympathetic fibers. In DRGs, H3R-LI was preponderantly on medium to large neurons coexpressing NF-LI and mostly CGRP-LI. In dorsal horn, CGRP-positive fibers with and without H3R-LI ramified extensively in lamina II; many of the former formed a plexus in lamina V. Low levels of H3R-LI were also present on A beta fibers penetrating superficial and into deeper laminae. The distribution of H3R-LI was similar in rats and wild type mice, but was eliminated or strongly reduced in A delta fibers and A beta fibers, respectively, in H3KO mice. Taken with recently published behavioral results, the present findings suggest that periarterial, peptidergic, H3R-containing A delta fibers may be sources of high threshold mechanical nociception. PMID:17134835

  11. ICSN Data - Abnormal Result Technologies and Procedures

    Cancer.gov

    Skip to Main Content Search International Cancer Screening Network Sponsored by the National Cancer Institute Home | About ICSN | Collaborative Projects | Meetings | Cancer Sites | Publications | Contact Us Breast Cancer (Archived Tables): Home Abnormal

  12. Abnormal Glycoprotein Antibodies Possible Detection Biomarkers

    Cancer.gov

    Scientists have found that cancer patients produce antibodies that target abnormal glycoproteins (proteins with sugar molecules attached) made by their tumors. The result of this work suggests that antitumor antibodies in the blood may provide a fruitful

  13. Pinna abnormalities and low-set ears

    MedlinePLUS

    ... because they do not affect hearing. However, sometimes cosmetic surgery is recommended. Skin tags may be tied off, ... 5 years old. More severe abnormalities may require surgery for cosmetic reasons as well as for function. Surgery to ...

  14. 42 CFR 37.54 - Notification of abnormal radiographic findings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...abnormality of cardiac shape or size, tuberculosis, lung cancer, or any other significant abnormal findings other...abnormality of cardiac shape or size, tuberculosis, cancer, complicated pneumoconiosis, and any other...

  15. 42 CFR 37.54 - Notification of abnormal radiographic findings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...abnormality of cardiac shape or size, tuberculosis, lung cancer, or any other significant abnormal findings other...abnormality of cardiac shape or size, tuberculosis, cancer, complicated pneumoconiosis, and any other...

  16. Relationship of Gene Expression and Chromosomal Abnormalities in Colorectal Cancer

    E-print Network

    Domany, Eytan

    Relationship of Gene Expression and Chromosomal Abnormalities in Colorectal Cancer Dafna Tsafrir, 1 chromosomal abnormalities in colon cancer. However, the relationships between DNA copy number and gene. This implies that whereas specific chromosomal abnormalities may arise stochastically, the associated changes

  17. 21 CFR 864.7415 - Abnormal hemoglobin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Abnormal hemoglobin assay. 864.7415 Section 864.7415 Food...Packages § 864.7415 Abnormal hemoglobin assay. (a) Identification. An abnormal hemoglobin assay is a device consisting of the...

  18. Basal nonselective cation permeability in rat cardiac microvascular endothelial cells.

    PubMed

    Moccia, Francesco; Berra-Romani, Roberto; Baruffi, Silvana; Spaggiari, Santina; Adams, David J; Taglietti, Vanni; Tanzi, Franco

    2002-09-01

    The presence of a basal nonselective cation permeability was mainly investigated in primary cultures of rat cardiac microvascular endothelial cells (CMEC) by applying both the patch-clamp technique and Fura-2 microfluorimetry. With low EGTA in the pipette solution, the resting membrane potential of CMEC was -21.2 +/- 1.1 mV, and a Ca(2+)-activated Cl(-) conductance was present. When the intracellular Ca(2+) was buffered with high EGTA, the membrane potential decreased to 5.5 +/- 1.2 mV. In this condition, full or partial substitution of external Na(+) by NMDG(+) proportionally reduced the inward component of the basal I-V relationship. This current was dependent on extracellular monovalent cations with a permeability sequence of K(+) > Cs(+) > Na(+) > Li(+) and was inhibited by Ca(2+), La(3+), Gd(3+), and amiloride. The K(+)/Na(+) permeability ratio, determined using the Goldman-Hodgkin-Katz equation, was 2.01. The outward component of the basal I-V relationship was reduced when intracellular K(+) was replaced by NMDG(+), but was not sensitive to substitution by Cs(+). Finally, microfluorimetric experiments indicated the existence of a basal Ca(2+) entry pathway, inhibited by La(3+) and Gd(3+). The basal nonselective cation permeability in CMEC could be involved both in the control of myocardial ionic homeostasis, according to the model of the blood-heart barrier, and in the modulation of Ca(2+)-dependent processes. PMID:12204642

  19. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods

    PubMed Central

    2013-01-01

    Background Although molecular analyses have contributed to a better resolution of the animal tree of life, the phylogenetic position of tardigrades (water bears) is still controversial, as they have been united alternatively with nematodes, arthropods, onychophorans (velvet worms), or onychophorans plus arthropods. Depending on the hypothesis favoured, segmental ganglia in tardigrades and arthropods might either have evolved independently, or they might well be homologous, suggesting that they were either lost in onychophorans or are a synapomorphy of tardigrades and arthropods. To evaluate these alternatives, we analysed the organisation of the nervous system in three tardigrade species using antisera directed against tyrosinated and acetylated tubulin, the amine transmitter serotonin, and the invertebrate neuropeptides FMRFamide, allatostatin and perisulfakinin. In addition, we performed retrograde staining of nerves in the onychophoran Euperipatoides rowelli in order to compare the serial locations of motor neurons within the nervous system relative to the appendages they serve in arthropods, tardigrades and onychophorans. Results Contrary to a previous report from a Macrobiotus species, our immunocytochemical and electron microscopic data revealed contralateral fibres and bundles of neurites in each trunk ganglion of three tardigrade species, including Macrobiotus cf. harmsworthi, Paramacrobiotus richtersi and Hypsibius dujardini. Moreover, we identified additional, extra-ganglionic commissures in the interpedal regions bridging the paired longitudinal connectives. Within the ganglia we found serially repeated sets of serotonin- and RFamid-like immunoreactive neurons. Furthermore, our data show that the trunk ganglia of tardigrades, which include the somata of motor neurons, are shifted anteriorly with respect to each corresponding leg pair, whereas no such shift is evident in the arrangement of motor neurons in the onychophoran nerve cords. Conclusions Taken together, these data reveal three major correspondences between the segmental ganglia of tardigrades and arthropods, including (i) contralateral projections and commissures in each ganglion, (ii) segmentally repeated sets of immunoreactive neurons, and (iii) an anteriorly shifted (parasegmental) position of ganglia. These correspondences support the homology of segmental ganglia in tardigrades and arthropods, suggesting that these structures were either lost in Onychophora or, alternatively, evolved in the tardigrade/arthropod lineage. PMID:24152256

  20. Azo pigments and a basal cell carcinoma at the thumb.

    PubMed

    Engel, Eva; Ulrich, Heidi; Vasold, Rudolf; König, Burkhard; Landthaler, Michael; Süttinger, Rudolf; Bäumler, Wolfgang

    2008-01-01

    Basal cell carcinoma is the most common malignant neoplasm of the skin, whereas the localization at the nail unit is very rare. We report the case of a 58-year-old patient with a periungual basal cell carcinoma at the thumb. The specific feature of the reported case is the frequent exposure to fishing baits that the patient had stained with an unknown colorant. The use of chromatography, mass spectrometry and infrared spectroscopy revealed the colorant as the azo pigment Solvent Red 8. Solvent Red 8 is a widespread synthetic azo pigment that is applied to stain consumer products. Compounds such as Solvent Red 8 can be cleaved to carcinogenic amines under, for example, light exposure, in particular after incorporation into the human body. As a result of the frequent skin contact to this azo pigment, this hazard compound might have induced the basal cell carcinoma in our patient. PMID:18032904

  1. Immunohistochemical study of basal cell adenoma in the parotid gland.

    PubMed

    Hamano, H; Abiko, Y; Hashimoto, S; Inoue, T; Shimono, M; Takagi, T; Noma, H

    1990-02-01

    Basal cell adenoma of the parotid gland was studied with immunohistochemical methods. We observed cells in the tumor with positive reaction to polyclonal keratin, prekeratin, monoclonal PKK-1, polyclonal S-100 protein, monoclonal S-100 protein (alpha), secretory component, actin and laminin. However, no cells which stained positively with monoclonal KL-1, amylase, carcinoembryonic antigen, or epithelial membrane antigen were recognized. From these immunohistochemical results and our ultrastructural observations reported previously, we conclude that the cells constituting the basal cell adenoma are ductal, myoepithelial, and squamous cells but not secretory ones. It is also suggested that the origins of basal cell ademona as well as those of pleomorphic and clear cell adenoma are undifferentiated cells of intercalated duct. PMID:2133439

  2. Kinome expression profiling and prognosis of basal breast cancers

    PubMed Central

    2011-01-01

    Background Basal breast cancers (BCs) represent ~15% of BCs. Although overall poor, prognosis is heterogeneous. Identification of good- versus poor-prognosis patients is difficult or impossible using the standard histoclinical features and the recently defined prognostic gene expression signatures (GES). Kinases are often activated or overexpressed in cancers, and constitute targets for successful therapies. We sought to define a prognostic model of basal BCs based on kinome expression profiling. Methods DNA microarray-based gene expression and histoclinical data of 2515 early BCs from thirteen datasets were collected. We searched for a kinome-based GES associated with disease-free survival (DFS) in basal BCs of the learning set using a metagene-based approach. The signature was then tested in basal tumors of the independent validation set. Results A total of 591 samples were basal. We identified a 28-kinase metagene associated with DFS in the learning set (N = 73). This metagene was associated with immune response and particularly cytotoxic T-cell response. On multivariate analysis, a metagene-based predictor outperformed the classical prognostic factors, both in the learning and the validation (N = 518) sets, independently of the lymphocyte infiltrate. In the validation set, patients whose tumors overexpressed the metagene had a 78% 5-year DFS versus 54% for other patients (p = 1.62E-4, log-rank test). Conclusions Based on kinome expression, we identified a predictor that separated basal BCs into two subgroups of different prognosis. Tumors associated with higher activation of cytotoxic tumor-infiltrative lymphocytes harbored a better prognosis. Such classification should help tailor the treatment and develop new therapies based on immune response manipulation. PMID:21777462

  3. Peritraumatic Interventions for Stress Resilience

    E-print Network

    Plumb, Traci Nicole

    2015-01-01

    thalamocortical circuits: parallel substrates for motor,Parallel and integrative processing through the Basal Ganglia reward circuit:Parallel and integrative processing through the Basal Ganglia reward circuit:

  4. Isolation of basal and mucous cell populations from rabbit trachea

    SciTech Connect

    Chilton, B.S.; Kennedy, J.R.; Nicosia, S.V.

    1981-12-01

    The application of a unit gravity sedimentation procedure to monodispersed rabbit tracheal cells resulted in the isolation of enriched (2-fold to 2.5-fold) basal and mucous cell populations. Cellular integrity was confirmed by a trypan blue dye exclusion index of 93%, (3H) leucine incorporation, and ultrastructural analysis. Unit gravity sedimentation is an affective and rapid procedure for obtaining viable, homogeneous preparations of basal and mucous cells that may be used for in vitro studies of cellular proliferation, differentiation, and glycoprotein biosynthesis in respiratory mucous epithelia.

  5. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  6. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    PubMed Central

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

  7. Persistence of counter-regulatory abnormalities in insulin-dependent diabetes mellitus after pancreas transplantation.

    PubMed

    Battezzati, A; Luzi, L; Perseghin, G; Bianchi, E; Spotti, D; Secchi, A; Vergani, S; Di Carlo, V; Pozza, G

    1994-11-01

    Conventional insulin therapy does not correct the counter-regulatory abnormalities of insulin-dependent diabetes mellitus. Pancreas transplantation is an alternative therapy that restores the endogenous insulin secretion in diabetes. In this study, the effects of segmental pancreas transplantation on counter-regulation to mild hypoglycaemia were evaluated. Glucose kinetics and the counter-regulatory hormonal responses were assessed in eight insulin-dependent diabetics with end-stage renal failure who had received pancreas and kidney transplantation 1 year previously, seven diabetic uraemic subjects (candidates for combined transplantation), five patients with chronic uveitis on immunosuppressive therapy comparable to pancreas recipients and 10 normal subjects. Insulin (0.3 mU kg-1 min-1) was infused for 2 h to induce mild hypoglycaemia (plasma glucose 3.2-3.5 mmol l-1) and exogenous glucose was infused as required to prevent any glucose decrease below 3.1 mmol l-1. After transplantation, two of eight recipients had hypoglycaemic episodes reported in their medical records. During the study, hepatic glucose production was rapidly suppressed in the controls and in the patients on immunosuppression (-80 +/- 7 and -54 +/- 7%, P < 0.001 vs. basal), and rebounded to the baseline values within 1 h (-3 +/- 1 and -6 +/- 2%, P = NS vs. basal). The transplant recipients had similar suppression in the first hour (-88 +/- 8%, P < 0.001 vs. basal), but the suppression persisted in the second hour (-69 +/- 11%, P < 0.001 vs. basal) indicating a lack of glucose counter-regulatory response.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7890013

  8. Predictions of bioenhancement of nonaqueous phase liquid ganglia dissolution using first- and zero-order biokinetic models

    NASA Astrophysics Data System (ADS)

    Seagren, Eric A.; Becker, Jennifer G.

    2015-11-01

    The bioenhanced dissolution of nonaqueous phase liquid (NAPL) contaminants that occurs as a result of an increased concentration gradient is influenced by several factors, including the biokinetics. This is important because available data suggest that at typical NAPL source zone concentrations, descriptions of dissolution bioenhancement may require kinetic expressions ranging from first- to zero-order. In this work, an analytical model for the bioenhancement factor, E, is developed for NAPL ganglia dissolution with zero-order kinetics, and compared to a model for E with first-order kinetics. The models are analyzed and an illustrative example is provided to demonstrate the importance of using the correct biokinetics when estimating the potential magnitude of the bioenhancement of NAPL ganglia dissolution.

  9. The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultraffine titanium dioxide

    PubMed Central

    Kan, Hong; Wu, Zhongxin; Lin, Yen-Chang; Chen, Teh-Hsun; Cumpston, Jared L; Kashon, Michael L; Leonard, Steve; Munson, Albert E; Castranova, Vincent

    2015-01-01

    The inhalation of nanosized air pollutant particles is a recognised risk factor for cardiovascular disease; however, the link between occupational exposure to engineered nanoparticles and adverse cardiovascular events remains unclear. In the present study, the authors demonstrated that pulmonary exposure of rats to ultrafine titanium dioxide (UFTiO2) significantly increased heart rate and depressed diastolic function of the heart in response to isoproterenol. Moreover, pulmonary inhalation of UFTiO2 elevated mean and diastolic blood pressure in response to norepinephrine. Pretreatment of the rats ip with the transient receptor potential (TRP) channel blocker ruthenium red inhibited substance P synthesis in nodose ganglia and associated functional and biological changes in the cardiovascular system. In conclusion, the effects of pulmonary inhalation of UFTiO2 on cardiovascular function are most likely triggered by a lung-nodose ganglia-regulated pathway via the activation of TRP channels in the lung. PMID:23593933

  10. Structural characteristics of the recognition site for cholinergic ligands in the nicotinic acetylcholine receptor from squid optical ganglia

    SciTech Connect

    Plyashkevich, Yu.G.; Demushkin, V.P.

    1986-01-20

    The influence of chemical modification on the parameters of the binding of cholinergic ligands by the nicotinic acetylcholine receptor of squid optical ganglia was investigated. The presence of two subpopulations of recognition sites, differing in the composition of the groups contained in them, was detected. It was established with high probability that subpopulation I contains arginine and tyrosine residues and a carboxyl group while subpopulation II contains an amino group, a thyrosine residue, and a carboxyl group. Moreover, in both subpopulations there is an amino group important only for the binding of tubocurarin. On the basis of the results obtained, a model of the recognition sites for cholinergic ligands of the nicotinic acetylcholine receptor of squid optical ganglia is proposed.

  11. Alström Syndrome protein ALMS1 localizes to basal bodies of cochlear hair cells and regulates cilium-dependent planar cell polarity

    PubMed Central

    Jagger, Daniel; Collin, Gayle; Kelly, John; Towers, Emily; Nevill, Graham; Longo-Guess, Chantal; Benson, Jennifer; Halsey, Karin; Dolan, David; Marshall, Jan; Naggert, Jürgen; Forge, Andrew

    2011-01-01

    Alström Syndrome is a life-threatening disease characterized primarily by numerous metabolic abnormalities, retinal degeneration, cardiomyopathy, kidney and liver disease, and sensorineural hearing loss. The cellular localization of the affected protein, ALMS1, has suggested roles in ciliary function and/or ciliogenesis. We have investigated the role of ALMS1 in the cochlea and the pathogenesis of hearing loss in Alström Syndrome. In neonatal rat organ of Corti, ALMS1 was localized to the basal bodies of hair cells and supporting cells. ALMS1 was also evident at the basal bodies of differentiating fibrocytes and marginal cells in the lateral wall. Centriolar ALMS1 expression was retained into maturity. In Alms1-disrupted mice, which recapitulate the neurosensory deficits of human Alström Syndrome, cochleae displayed several cyto-architectural defects including abnormalities in the shape and orientation of hair cell stereociliary bundles. Developing hair cells were ciliated, suggesting that ciliogenesis was largely normal. In adult mice, in addition to bundle abnormalities, there was an accelerated loss of outer hair cells and the progressive appearance of large lesions in stria vascularis. Although the mice progressively lost distortion product otoacoustic emissions, suggesting defects in outer hair cell amplification, their endocochlear potentials were normal, indicating the strial atrophy did not affect its function. These results identify previously unrecognized cochlear histopathologies associated with this ciliopathy that (i) implicate ALMS1 in planar cell polarity signaling and (ii) suggest that the loss of outer hair cells causes the majority of the hearing loss in Alström Syndrome. PMID:21071598

  12. Chromosome abnormalities in South African mental retardates.

    PubMed

    Ally, F E; Grace, H J

    1979-04-28

    Standard and differential staining techniques were employed in this cytogenetic study of mentally retarded Whites at the Umgeni Waterfall Institution. All of the 512 patients were karyotyped and 57 were found to have chromosome abnormalities. Of these, 42 had trisomy-21; there were 3 subjects with 5p deletion (cri-du-chat) syndrome, 3 had supernumerary small marker chromosomes, and 2 had complex structural rearrangements. Gonosomal aneuploidies were less common than the autosomal defects and only 2 poly-X males and 1 poly-X female were identified. Long Y chromosomes were found in 11 males and 4 others had deleted Y chromosomes. One abnormal chromosome, a deletion of the terminal region of 11q, was missed in unbanded karyotypes. Banding is essential to the identification of structurally abnormal chromosomes. PMID:156963

  13. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  14. Advances in understanding paternally transmitted Chromosomal Abnormalities

    SciTech Connect

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  15. [Abnormal hemoglobins and thalassemias in Mexico].

    PubMed

    Ruiz-Reyes, G

    1998-01-01

    The distribution of abnormal hemoglobins in Mexico is derived from surveys and from the study of patients with hemolytic anemia. In aboriginal populations, more than 3,000 individuals have been studied: structural abnormal hemoglobins are virtually absent in Mexican Indians and the sporadic finding of hemoglobin S among them is due to admixture with Africans brought as slaves during the Spanish domination; two new variants of hemoglobin (Mexico and Chiapas) were found in aborigines. The surveys in hybrid groups in selected areas of the country show that in some West and East Coast communities there are different frequencies of Hb S heterozygous, and that a high prevalence of Hb S trait has been found in some communities similar to that in some African areas. In a group of 200 subjects of a town located along the Gulf of Mexico Coast, 6% of Hb S and 15% of thalassemia beta heterozygous is observed. In hospital surveys in two cities (Guadalajara and Puebla) several abnormalities of hemoglobin have been identified (C, SC, Riyadh, Baltimore, Tarrant, Fannin-Lubbock and Mexico). In the study of isolated cases, mainly of patients with hemolytic anemia, hemoglobins I-Philadelphia, G-San Jose and D-Los Angeles are seen. The thalassemias are the more frequent hemoglobin abnormalities in selected populations of our country. In a community of Italian ancestry a frequency of 1.3% of beta thalassemia trait is found. In our laboratory, 76% of the abnormalities are cases of beta thalassemia trait. Patients with Hb H disease, beta thalassemia (homozygous and heterozygous) and combinations of these abnormalities with hemoglobins S, Hb S + hereditary persistence of fetal hemoglobin (HPFH) and Hb E as well as families with delta-beta thalassemia, HPFH and Hb Lepore-Washington-Boston have been also detected. PMID:9658939

  16. Endocrine cells and nerve ganglia of the small intestine of the Opossum Didelphis aurita Wied-Neuwied, 1826 (Mammalia: Didelphidae).

    PubMed

    Freitas-Ribeiro, Gláucia M; Fonseca, Cláudio C; Sartori, Sirlene S R; Loures-Ribeiro, Alan; Neves, Clóvis A

    2012-09-01

    The nervous and endocrine systems jointly control intestinal movements, secretions of their glands and also participate of the processes of nutrient digestion and absorption. Therefore, the central objective of this study was to verify the existence of a possible relationship between the number of nervous cells and ganglia of the submucosal and myenteric plexuses and the number of endocrine cells in the small intestine of adult D. aurita. The utilized staining techniques were Grimelius, modified Masson-Fontana, direct immunoperoxidase and H-E. Argyrophillic, argentaffin and insulin immunoreactive endocrine cells do not numerically vary between the initial, mid and final regions of the duodenum, jejunum and ileum (P>0.05), except for argyrophillic cells in the jejunum (P>0.05). No numerical relationship has yet been verified between the number of nerve ganglia and endocrine cells, and also between nervous and endocrine cells. We recommended the use of new immunohistochemical techniques to confirm the numerical correlation between the nervous and endocrine systems in the small intestine. The morphology and distribution of endocrine cells and the nerve ganglia studied were similar to those encountered in eutherian mammals. PMID:22801379

  17. 3H-Nicotine in cat superior cervical and nodose ganglia after close-arterial injection in vivo

    PubMed Central

    Brown, D. A.; Hoffmann, P. C.; Roth, L. J.

    1969-01-01

    1. Concentrations of 3H-nicotine in the superior cervical and nodose ganglia of anaesthetized cats were measured after close-arterial injection. 2. Shortly after injection there was a higher concentration of 3H-nicotine in the superior cervical ganglion than in the nodose ganglion. Mean concentration ratios, superior cervical ganglion/nodose ganglion (S/N ratios) were: 2 min after injection, 1.60 ± 0.19; 4 min, 1.21 ± 0.19; 8 min, 0.92 ± 0.05. These ratios were independent of the dose of nicotine over the range 4 to 200 ?g in 0.2 ml. 3. There was no comparable difference in the concentrations of injected 14C-inulin or 3H2O in the two ganglia, or in total water content. 4. Procedures which reduced the pharmacological action of nicotine (pre-treatment with hexamethonium, admixture of 14C-inulin) tended to reduce the S/N ratio for nicotine. 5. Autoradiographs showed that nicotine entered the neurones of both superior cervical and nodose ganglia. 6. It was concluded that the higher concentration of nicotine in the superior cervical ganglion was probably related to its selective pharmacological action at this site, and may have been due to a greater intracellular retention of nicotine. ImagesFIG. 2.FIG. 3. PMID:5809733

  18. The early expression of VAChT and VIP in mouse sympathetic ganglia is not induced by cytokines acting through LIFRbeta or CNTFRalpha.

    PubMed

    Stanke, M; Geissen, M; Götz, R; Ernsberger, U; Rohrer, H

    2000-03-01

    Sympathetic ganglia consist of noradrenergic and cholinergic neurons. The cholinergic marker protein vesicular acetylcholine transporter (VAChT) and the neuropeptide vasoactive intestinal peptide (VIP), co-expressed in mature cholinergic sympathetic neurons, are first detectable during embryonic development of rat sympathetic ganglia. However, the subpopulation of cholinergic sympathetic neurons which innervates sweat glands in mammalian footpads starts to express VAChT and VIP during the first postnatal weeks, under the influence of sweat gland-derived signals. In vitro evidence suggests that the sweat gland-derived cholinergic differentiation factor belongs to a group of neuropoietic cytokines, including LIF, CNTF and CT-1, that act through a LIFRbeta-containing cytokine receptor. To investigate whether the embryonic expression of cholinergic properties is elicited by a related cytokine, the expression of VAChT and VIP was analyzed in stellate ganglia of mice deficient for the cytokine receptor subunits LIFRbeta or CNTFRalpha. The density of VAChT- and VIP-immunoreactive cells in stellate ganglia of new-born animals was not different in LIFRbeta(-/-) and CNTFRalpha(-/-) ganglia as compared to ganglia from wild-type mice. These results demonstrate that the early, embryonic expression of VAChT and VIP is not induced by cytokines acting through LIFRbeta- or CNTFRalpha-containing receptors. PMID:10704834

  19. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  20. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  1. Environmental trichlorfon and cluster of congenital abnormalities.

    PubMed

    Czeizel, A E; Elek, C; Gundy, S; Métneki, J; Nemes, E; Reis, A; Sperling, K; Tímár, L; Tusnády, G; Virágh, Z

    1993-02-27

    Of 15 live births in one Hungarian village in 1989-90, 11 (73%) were affected by congenital abnormalities and 6 were twins. Of the 11, 4 had Down syndrome. Likely causes of such clusters (known teratogenic factors, familial inheritance, consanguinity) were excluded. A case-control study and environmental investigations pointed the finger of suspicion at the excessive use of trichlorfon at local fish farms. The content of this chemical was very high in fish (100 mg/kg) and several pregnant women, including all mothers of babies with Down syndrome, had consumed contaminated fish in the critical period for the congenital abnormalities observed. PMID:8094783

  2. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection.

    PubMed

    Li, Shiying; Xue, Chengbin; Yuan, Ying; Zhang, Ruirui; Wang, Yaxian; Wang, Yongjun; Yu, Bin; Liu, Jie; Ding, Fei; Yang, Yuming; Gu, Xiaosong

    2015-01-01

    Following peripheral nerve injury, transcriptional responses are orchestrated to regulate the expression of numerous genes in the lesioned nerve, thus activating the intrinsic regeneration program. To better understand the molecular regulation of peripheral nerve regeneration, we aimed at investigating the transcriptional landscape of dorsal root ganglia (DRGs) after sciatic nerve transection in rats. The cDNA microarray analysis was used to identify thousands of genes that were differentially expressed at different time points post nerve injury (PNI). The results from Euclidean distance matrix, principal component analysis, and hierarchical clustering indicated that 2 nodal transitions in temporal gene expressions could segregate 3 distinct transcriptional phases within the period of 14?d PNI. The 3 phases were designated as "a stress response phase", "a pre-regeneration phase", and "a regeneration phase", respectively, by referring to morphological observation of post-nerve-injury changes. The gene ontology (GO) analysis revealed the distinct features of biological process, cellular component, and molecular function at each transcriptional phase. Moreover, Ingenuity Pathway Analysis suggested that differentially expressed genes, mainly transcription factors and genes associated with neurite/axon growth, might be integrated into regulatory networks to mediate the regulation of peripheral nerve regeneration in a highly cooperative manner. PMID:26576491

  3. Mu-opioid receptor (MOR) expression in the human spiral ganglia

    PubMed Central

    Nguyen, Kimanh D.; Mowlds, Donald; Lopez, Ivan A.; Hosokawa, Seiji; Ishiyama, Akira; Ishiyama, Gail

    2015-01-01

    Opioid peptides and their receptors have been localized to the inner ear of the rat and guinea pig mammalian models. The expression of mu opioid receptor (MOR) in the human and mouse cochlea is not yet known. We present MOR protein localization by immunohistochemistry and mRNA expression by in situ hybridization in the human and mouse spiral ganglia (SG) and organ of Corti. In the human most of the (SG) neurons were immunoreactive; a subset was non-immunoreactive. In situ hybridization revealed a similar labeling pattern across the neurons of the SG. A similar distribution MOR pattern was demonstrated in the mouse SG. In the mouse organ of Corti MOR was expressed in inner and outer hair cells. Fibers underneath the inner hair cells were also MOR immunoreactive. These results are consistent with a role of MOR in neuro-modulation of the auditory periphery. The present results show that the expression of MORs is well-conserved across multiple mammalian species, indicative of an important role in auditory processing. PMID:25278190

  4. Sildenafil attenuates inflammation and oxidative stress in pelvic ganglia neurons after bilateral cavernosal nerve damage.

    PubMed

    Garcia, Leah A; Hlaing, Su M; Gutierrez, Richard A; Sanchez, Maria D; Kovanecz, Istvan; Artaza, Jorge N; Ferrini, Monica G

    2014-01-01

    Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG). Functional re-innervation of target organs depends on the capacity of the neurons to survive and switch towards a regenerative phenotype. PDE5 inhibitors (PDE5i) have been successfully used in promoting the recovery of erectile function after cavernosal nerve damage (BCNR) by up-regulating the expression of neurotrophic factors in MPG. However, little is known about the effects of PDE5i on markers of neuronal damage and oxidative stress after BCNR. This study aimed to investigate the changes in gene and protein expression profiles of inflammatory, anti-inflammatory cytokines and oxidative stress related-pathways in MPG neurons after BCNR and subsequent treatment with sildenafil. Our results showed that BCNR in Fisher-344 rats promoted up-regulation of cytokines (interleukin- 1 (IL-1) ?, IL-6, IL-10, transforming growth factor ? 1 (TGF?1), and oxidative stress factors (Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, Myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), TNF receptor superfamily member 5 (CD40) that were normalized by sildenafil treatment given in the drinking water. In summary, PDE5i can attenuate the production of damaging factors and can up-regulate the expression of beneficial factors in the MPG that may ameliorate neuropathic pain, promote neuroprotection, and favor nerve regeneration. PMID:25264738

  5. Real-time control of walking using recordings from dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Holinski, B. J.; Everaert, D. G.; Mushahwar, V. K.; Stein, R. B.

    2013-10-01

    Objective. The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Main results. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

  6. NUCLEOSIDE PHOSPHATASE AND CHOLINESTERASE ACTIVITIES IN DORSAL ROOT GANGLIA AND PERIPHERAL NERVE

    PubMed Central

    Novikoff, Alex B.; Quintana, Nelson; Villaverde, Humberto; Forschirm, Regina

    1966-01-01

    In dorsal root ganglia and peripheral nerve of the rat and other species, nucleoside phosphatase and unspecific cholinesterase reaction products are found in the plasma membranes and spaces between them at two sites: (1) Schwann cell-axon interfaces and mesaxons of unmyelinated fibers, and (2) sheath cell-perikaryon interfaces and interfaces between adjacent sheath cells. Acetylcholinesterase reaction product is found in the perikaryon (within the endoplasmic reticulum) and the axon (axoplasmic surface). Nucleoside phosphatase reaction product is also found in the numerous vacuoles at the surface of perineurium cells, ganglion sheath cells, and cells surrounding some ganglion blood vessels. Nucleoside phosphatase activities in the sections fail to respond, in the manner described for "transport ATPase," to diisopropylphosphofluoridate, sodium and potassium ions, and ouabain. Nucleoside diphosphates are hydrolyzed more slowly than triphosphates in unmyelinated fibers, and are not hydrolyzed at the perikaryon surface. Nucleoside monophosphates are either not hydrolyzed or hydrolyzed very slowly. In contrast to these localizations, which are believed to demonstrate sites of enzyme activity, it is considered likely that diffusion artifacts account for the nucleoside phosphatase reaction product frequently found along the outer surfaces of myelinated fibers and within vacuoles at the Schwann cell surfaces of these fibers. The diffuse reaction product seen in basement membranes of ganglion and nerve may also be artifact. PMID:4225492

  7. EFFECTS OF THALLIUM SALTS ON NEURONAL MITOCHONDRIA IN ORGANOTYPIC CORD-GANGLIA-MUSCLE COMBINATION CULTURES

    PubMed Central

    Spencer, Peter S.; Peterson, Edith R.; Madrid A., Ricardo; Raine, Cedric S.

    1973-01-01

    A functionally coupled organotypic complex of cultured dorsal root ganglia, spinal cord peripheral nerve, and muscle has been employed in an experimental approach to the investigation of the neurotoxic effects of thallium. Selected cultures, grown for up to 12 wk in vitro, were exposed to thallous salts for periods ranging up to 4 days. Cytopathic effects were first detected after 2 h of exposure with the appearance of considerably enlarged mitochondria in axons of peripheral nerve fibers. With time, the matrix space of these mitochondria became progressively swollen, transforming the organelle into an axonal vacuole bounded by the original outer mitochondrial membrane. Coalescence of adjacent axonal vacuoles produced massive internal axon compartments, the membranes of which were shown by electron microprobe mass spectrometry to have an affinity for thallium. Other axoplasmic components were displaced within a distended but intact axolemma. The resultant fiber swelling caused myelin retraction from nodes of Ranvier but no degeneration. Impulses could still propagate along the nerve fibers throughout the time course of the experiment. Comparable, but less severe changes were seen in dorsal root ganglion neurons and in central nerve fibers. Other cell types showed no mitochondrial change. It is uncertain how these findings relate to the neurotoxic effects of thallium in vivo, but a sensitivity of the nerve cell and especially its axon to thallous salts is indicated. PMID:4125375

  8. Culture of dissociated sensory neurons from dorsal root ganglia of postnatal and adult rats.

    PubMed

    Owen, Davina E; Egerton, Julie

    2012-01-01

    The development of new therapeutics for management of pain is likely to become much more mechanism based, and therefore, we need a more thorough understanding of the different pain development pathways. The afferent fibers of sensory neurons, with their cell bodies in the dorsal root ganglia (DRG), are thought to be key in pain mechanisms. DRG neurons can be prepared from embryonic, postnatal, or adult tissue. Embryonic preparations have the advantage of higher cell yields and greater proportion of neurons, but they are dependent on neurotrophins for the first week of culture. In contrast, dissociated postnatal and adult DRG sensory neurons offer the possibility to study mature neurons that may better resemble the in vivo characteristics of these cells. Here, we describe the dissociation of DRG sensory neurons from postnatal and adult rats. DRG are dissected and dissociated using a prolonged trypsin/collagenase treatment, followed by mechanical separation of the neurons. We have routinely prepared them for electrophysiological studies by the methods outlined in this chapter and describe some of the pitfalls that we have encountered, with hints of how to overcome them. PMID:22367811

  9. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection

    PubMed Central

    Li, Shiying; Xue, Chengbin; Yuan, Ying; Zhang, Ruirui; Wang, Yaxian; Wang, Yongjun; Yu, Bin; Liu, Jie; Ding, Fei; Yang, Yuming; Gu, Xiaosong

    2015-01-01

    Following peripheral nerve injury, transcriptional responses are orchestrated to regulate the expression of numerous genes in the lesioned nerve, thus activating the intrinsic regeneration program. To better understand the molecular regulation of peripheral nerve regeneration, we aimed at investigating the transcriptional landscape of dorsal root ganglia (DRGs) after sciatic nerve transection in rats. The cDNA microarray analysis was used to identify thousands of genes that were differentially expressed at different time points post nerve injury (PNI). The results from Euclidean distance matrix, principal component analysis, and hierarchical clustering indicated that 2 nodal transitions in temporal gene expressions could segregate 3 distinct transcriptional phases within the period of 14?d PNI. The 3 phases were designated as “a stress response phase”, “a pre-regeneration phase”, and “a regeneration phase”, respectively, by referring to morphological observation of post-nerve-injury changes. The gene ontology (GO) analysis revealed the distinct features of biological process, cellular component, and molecular function at each transcriptional phase. Moreover, Ingenuity Pathway Analysis suggested that differentially expressed genes, mainly transcription factors and genes associated with neurite/axon growth, might be integrated into regulatory networks to mediate the regulation of peripheral nerve regeneration in a highly cooperative manner. PMID:26576491

  10. Basal melt rates beneath Whillans Ice Stream, West Antarctica

    E-print Network

    Beem, Lucas H.; Jezek, Ken C.; van der Veen, Cornelis J.

    2010-08-05

    . Downstream of the onset of shear crevasses, strong basal melt (20–50 mm a?1) is concentrated beneath the relatively narrow shear margins. Farther upstream, melt rates are consistently 3–7 mm a?1 across the width of the ice stream. We show that the transition...

  11. Repeatability of basal metabolism in breeding female kittiwakes Rissa tridactyla

    E-print Network

    Bech, Claus

    of more than one day. Keywords: adaptive evolution; endotherms; metabolic rate; repeatability 1 metabolism of a resting, post-absorptive, endothermic organism which involves no thermoregulatory costsRepeatability of basal metabolism in breeding female kittiwakes Rissa tridactyla Claus Bech1

  12. Complete morphologies of basal forebrain cholinergic neurons in the mouse

    PubMed Central

    Wu, Hao; Williams, John; Nathans, Jeremy

    2014-01-01

    The basal forebrain cholinergic system modulates neuronal excitability and vascular tone throughout the cerebral cortex and hippocampus. This system is severely affected in Alzheimer's disease (AD), and drug treatment to enhance cholinergic signaling is widely used as symptomatic therapy in AD. Defining the full morphologies of individual basal forebrain cholinergic neurons has, until now, been technically beyond reach due to their large axon arbor sizes. Using genetically-directed sparse labeling, we have characterized the complete morphologies of basal forebrain cholinergic neurons in the mouse. Individual arbors were observed to span multiple cortical columns, and to have >1000 branch points and total axon lengths up to 50 cm. In an AD model, cholinergic axons were slowly lost and there was an accumulation of axon-derived material in discrete puncta. Calculations based on published morphometric data indicate that basal forebrain cholinergic neurons in humans have a mean axon length of ?100 meters. DOI: http://dx.doi.org/10.7554/eLife.02444.001 PMID:24894464

  13. CREB expression mediates amyloid ?-induced basal BDNF downregulation.

    PubMed

    Rosa, Elyse; Fahnestock, Margaret

    2015-08-01

    In Alzheimer's disease, accumulation of amyloid-? (A?) is associated with loss of brain-derived neurotrophic factor (BDNF), synapses, and memory. Previous work demonstrated that A? decreases activity-induced BDNF transcription by regulating cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation. However, the specific mechanism by which A? reduces basal BDNF expression remains unclear. Differentiated, unstimulated human neuroblastoma (SH-SY5Y) cells treated with oligomeric A? exhibited significantly reduced CREB messenger RNA compared with controls. Phosphorylated and total CREB proteins were decreased in both the cytoplasm and nucleus of A?-treated cells. However, neither pCREB129 nor pCREB133 levels were altered relative to total CREB levels. The protein kinase A activator forskolin increased pCREB133 levels and prevented A?-induced basal BDNF loss when administered before A? but did not rescue BDNF expression when administered later. These data demonstrate a new mechanism for A?-induced BDNF downregulation: in the absence of cell stimulation, A? downregulates basal BDNF levels via A?-induced CREB transcriptional downregulation, not changes in CREB phosphorylation. Thus, A? reduces basal and activity-induced BDNF expression by different mechanisms. PMID:26025137

  14. Basal Dynamics of p53 Reveal Transcriptionally Attenuated Pulses

    E-print Network

    Lahav, Galit

    Basal Dynamics of p53 Reveal Transcriptionally Attenuated Pulses in Cycling Cells Alexander Loewer.05.031 SUMMARY The tumor suppressor p53 is activated by stress and leads to cellular outcomes such as apoptosis- cycle arrest or apoptosis may be unfavorable. How does the p53 pathway achieve the right balance between

  15. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations

    PubMed Central

    Kim, Tae; Thankachan, Stephen; McKenna, James T.; McNally, James M.; Yang, Chun; Choi, Jee Hyun; Chen, Lichao; Kocsis, Bernat; Deisseroth, Karl; Strecker, Robert E.; Basheer, Radhika; McCarley, Robert W.

    2015-01-01

    Cortical gamma band oscillations (GBO, 30–80 Hz, typically ?40 Hz) are involved in higher cognitive functions such as feature binding, attention, and working memory. GBO abnormalities are a feature of several neuropsychiatric disorders associated with dysfunction of cortical fast-spiking interneurons containing the calcium-binding protein parvalbumin (PV). GBO vary according to the state of arousal, are modulated by attention, and are correlated with conscious awareness. However, the subcortical cell types underlying the state-dependent control of GBO are not well understood. Here we tested the role of one cell type in the wakefulness-promoting basal forebrain (BF) region, cortically projecting GABAergic neurons containing PV, whose virally transduced fibers we found apposed cortical PV interneurons involved in generating GBO. Optogenetic stimulation of BF PV neurons in mice preferentially increased cortical GBO power by entraining a cortical oscillator with a resonant frequency of ?40 Hz, as revealed by analysis of both rhythmic and nonrhythmic BF PV stimulation. Selective saporin lesions of BF cholinergic neurons did not alter the enhancement of cortical GBO power induced by BF PV stimulation. Importantly, bilateral optogenetic inhibition of BF PV neurons decreased the power of the 40-Hz auditory steady-state response, a read-out of the ability of the cortex to generate GBO used in clinical studies. Our results are surprising and novel in indicating that this presumptively inhibitory BF PV input controls cortical GBO, likely by synchronizing the activity of cortical PV interneurons. BF PV neurons may represent a previously unidentified therapeutic target to treat disorders involving abnormal GBO, such as schizophrenia. PMID:25733878

  16. Neuroendocrine abnormalities in patients with traumatic brain injury

    NASA Technical Reports Server (NTRS)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture. Increased intracranial pressure, which releases vasopressin by altering normal hypothalamic anatomy, may represent a unique type of stress to neuroendocrine systems and may contribute to adrenal secretion by a mechanism that requires intact brainstem function. Endocrine function should be monitored in brain-injured patients with basilar skull fractures and protracted posttraumatic amnesia, and patients with SIADH or DI should be closely monitored for other endocrine abnormalities.

  17. Eastern Olympus Mons Basal Scarp: Potential for active slope mobilization?

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; McGovern, P. J.; Fournier, T.; Katz, O.; Morgan, J. K.

    2011-12-01

    The volcanic edifice of Olympus Mons is surrounded by presumed mass-movement landforms known as the aureole deposits. It has been suggested that the aureole deposits are the result of a catastrophic failure of the volcanic edifice. Tantalizingly, a topographic examination of the Eastern flank of Olympus Mons suggests that a large failure may have been captured. The flank exhibits a ~ 80 km near-continuous extensional fracture, bounded on either side by radial tear faults, that cut both the scarp face, and the more recent lava flows that have modified the basal scarp. Observed along fault offsets are on the order of 100 m. A compressional toe, parallel and downslope to the extensional fracture, may be linked and the result of downslope movement of the flank. If so, then a significant portion of the outer edge of the Eastern basal scarp may define a coherent zone of slope instability, or failure. Using digital elevation models derived from HRSC data, several transects along the basal scarp slope face are analyzed to better understand and quantify the stability of each section of the eastern slope, and examine potential failure conditions and mechanisms. Slope stability analysis is used to determine the likelihood of the Eastern basal scarp experiencing a catastrophic failure along the entire fault trace. This result may indicate an active failure process that can lead to an aureole type deposit. If this failure were to occur, a simple case of a curvilinear slip surface connecting the up-slope extensional and down-slope compressional fault traces produces an estimate for the potential mobile landslide volume on the order of 1000 cubic km, or ~ 5-10% of the volume previously estimated for the aureole lobe off of the east flank of Olympus Mons. Preliminary results from topography show that numerous smaller-scale localized slope failures that are emplaced upon young lava flows have occurred along this section of the basal scarp, suggesting significant instability and a strong potential for failure.

  18. Calving fluxes and basal melt rates of Antarctic ice shelves.

    PubMed

    Depoorter, M A; Bamber, J L; Griggs, J A; Lenaerts, J T M; Ligtenberg, S R M; van den Broeke, M R; Moholdt, G

    2013-10-01

    Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000?gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-shelf base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321?±?144?gigatonnes per year and a total basal mass balance of -1,454?±?174?gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing. PMID:24037377

  19. Basal jawed vertebrate phylogenomics using transcriptomic data from Solexa sequencing.

    PubMed

    Chen, Ming; Zou, Ming; Yang, Lei; He, Shunping

    2012-01-01

    The traditionally accepted relationships among basal jawed vertebrates have been challenged by some molecular phylogenetic analyses based on mitochondrial sequences. Those studies split extant gnathostomes into two monophyletic groups: tetrapods and piscine branch, including Chondrichthyes, Actinopterygii and sarcopterygian fishes. Lungfish and bichir are found in a basal position on the piscine branch. Based on transcriptomes of an armored bichir (Polypterus delhezi) and an African lungfish (Protopterus sp.) we generated, expressed sequences and whole genome sequences available from public databases, we obtained 111 genes to reconstruct the phylogenetic tree of basal jawed vertebrates and estimated their times of divergence. Our phylogenomic study supports the traditional relationship. We found that gnathostomes are divided into Chondrichthyes and the Osteichthyes, both with 100% support values (posterior probabilities and bootstrap values). Chimaeras were found to have a basal position among cartilaginous fishes with a 100% support value. Osteichthyes were divided into Actinopterygii and Sarcopterygii with 100% support value. Lungfish and tetrapods form a monophyletic group with 100% posterior probability. Bichir and two teleost species form a monophyletic group with 100% support value. The previous tree, based on mitochondrial data, was significantly rejected by an approximately unbiased test (AU test, p = 0). The time of divergence between lungfish and tetrapods was estimated to be 391.8 Ma and the divergence of bichir from pufferfish and medaka was estimated to be 330.6 Ma. These estimates closely match the fossil record. In conclusion, our phylogenomic study successfully resolved the relationship of basal jawed vertebrates based on transtriptomes, EST and whole genome sequences. PMID:22558409

  20. Emergency Abnormal Conditions 1. Bomb Threat

    E-print Network

    Davis, Lloyd M.

    1 Emergency Abnormal Conditions 1. Bomb Threat a. Bomb threats usually occur by telephone. b. Try OR PACKAGE OR MOVE IT IN ANY WAY! #12;UNIVERSITY OF TENNESSEE SPACE INSTITUTE BOMB THREAT CALL FORM: ___________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ QUESTIONS TO ASK THE CALLER CONCERNING THE BOMB Who are you

  1. Teaching Abnormal Psychology in a Multimedia Classroom.

    ERIC Educational Resources Information Center

    Brewster, JoAnne

    1996-01-01

    Examines the techniques used in teaching an abnormal psychology class in a multimedia environment with two computers and a variety of audiovisual equipment. Students respond anonymously to various questions via keypads mounted on their desks, then immediately view and discuss summaries of their responses. (MJP)

  2. Schizophrenogenic Parenting in Abnormal Psychology Textbooks.

    ERIC Educational Resources Information Center

    Wahl, Otto F.

    1989-01-01

    Considers the treatment of family causation of schizophrenia in undergraduate abnormal psychology textbooks. Reviews texts published only after 1986. Points out a number of implications for psychologists which arise from the inclusion in these texts of the idea that parents cause schizophrenia, not the least of which is the potential for…

  3. Motor Control Abnormalities in Parkinson's Disease

    E-print Network

    Motor Control Abnormalities in Parkinson's Disease Pietro Mazzoni, Britne Shabbott, and Juan Camilo York 10032 Correspondence: pm125@columbia.edu The primary manifestations of Parkinson's disease control processes. In the case of Parkinson's disease, movement slowness, for example, would be explained

  4. Sensory Abnormalities in Autism: A Brief Report

    ERIC Educational Resources Information Center

    Klintwall Lars; Holm, Anette; Eriksson, Mats; Carlsson, Lotta Hoglund; Olsson, Martina Barnevik; Hedvall, Asa; Gillberg, Christopher; Fernell, Elisabeth

    2011-01-01

    Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents…

  5. First-Trimester Detection of Surface Abnormalities

    PubMed Central

    Rousian, Melek; Koning, Anton H. J.; Bonsel, Gouke J.; Eggink, Alex J.; Cornette, Jérôme M. J.; Schoonderwaldt, Ernst M.; Husen-Ebbinge, Margreet; Teunissen, Katinka K.; van der Spek, Peter J.; Steegers, Eric A. P.; Exalto, Niek

    2014-01-01

    The aim was to determine the diagnostic performance of 3-dimensional virtual reality ultrasound (3D_VR_US) and conventional 2- and 3-dimensional ultrasound (2D/3D_US) for first-trimester detection of structural abnormalities. Forty-eight first trimester cases (gold standard available, 22 normal, 26 abnormal) were evaluated offline using both techniques by 5 experienced, blinded sonographers. In each case, we analyzed whether each organ category was correctly indicated as normal or abnormal and whether the specific diagnosis was correctly made. Sensitivity in terms of normal or abnormal was comparable for both techniques (P = .24). The general sensitivity for specific diagnoses was 62.6% using 3D_VR_US and 52.2% using 2D/3D_US (P = .075). The 3D_VR_US more often correctly diagnosed skeleton/limb malformations (36.7% vs 10%; P = .013). Mean evaluation time in 3D_VR_US was 4:24 minutes and in 2D/3D_US 2:53 minutes (P < .001). General diagnostic performance of 3D_VR_US and 2D/3D_US apparently is comparable. Malformations of skeleton and limbs are more often detected using 3D_VR_US. Evaluation time is longer in 3D_VR_US. PMID:24440996

  6. Psychology Faculty Perceptions of Abnormal Psychology Textbooks

    ERIC Educational Resources Information Center

    Rapport, Zachary

    2011-01-01

    The problem. The purpose of the current study was to investigate the perceptions and opinions of psychology professors regarding the accuracy and inclusiveness of abnormal psychology textbooks. It sought answers from psychology professors to the following questions: (1) What are the expectations of the psychology faculty at a private university of…

  7. Dynamic Abnormal Grain Growth in Refractory Metals

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  8. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  9. Abnormal interhemispheric connectivity in male psychopathic offenders

    PubMed Central

    Hoppenbrouwers, Sylco S.; De Jesus, Danilo R.; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J.; Schutter, Dennis J.L.G.

    2014-01-01

    Background Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. Methods We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. Results We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. Limitations The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. Conclusion To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders. PMID:23937798

  10. PSY 350 Abnormal Psychology Spring 2008

    E-print Network

    Gallo, Linda C.

    disorders, dissociative and somatoform disorders, mood disorders, substance abuse and dependence, eating of major behavior disorders. A sampling of the specific topics will include: stress and health, #12;anxiety disorders, gender and sexuality, psychotic disorders, personality disorders, abnormal behavior in childhood

  11. Abnormal behaviors detection using particle motion model

    NASA Astrophysics Data System (ADS)

    Chen, Yutao; Zhang, Hong; Cheng, Feiyang; Yuan, Ding; You, Yuhu

    2015-03-01

    Human abnormal behaviors detection is one of the most challenging tasks in the video surveillance for the public security control. Interaction Energy Potential model is an effective and competitive method published recently to detect abnormal behaviors, but their model of abnormal behaviors is not accurate enough, so it has some limitations. In order to solve this problem, we propose a novel Particle Motion model. Firstly, we extract the foreground to improve the accuracy of interest points detection since the complex background usually degrade the effectiveness of interest points detection largely. Secondly, we detect the interest points using the graphics features. Here, the movement of each human target can be represented by the movements of detected interest points of the target. Then, we track these interest points in videos to record their positions and velocities. In this way, the velocity angles, position angles and distance between each two points can be calculated. Finally, we proposed a Particle Motion model to calculate the eigenvalue of each frame. An adaptive threshold method is proposed to detect abnormal behaviors. Experimental results on the BEHAVE dataset and online videos show that our method could detect fight and robbery events effectively and has a promising performance.

  12. Detecting Abnormal Machine Characteristics in Cloud Infrastructures

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.

    2011-01-01

    In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.

  13. p73 regulates basal and starvation-induced liver metabolism in vivo.

    PubMed

    He, Zhaoyue; Agostini, Massimiliano; Liu, He; Melino, Gerry; Simon, Hans-Uwe

    2015-10-20

    As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate the metabolic effect of p73, here, we compared the global metabolic profile of livers from p73 knockout and wild-type mice under both control and starvation conditions. Our results show that the depletion of all p73 isoforms cause altered lysine metabolism and glycolysis, distinct patterns for glutathione synthesis and Krebs cycle, as well as an elevated pentose phosphate pathway and abnormal lipid accumulation. These results indicate that p73 regulates basal and starvation-induced fuel metabolism in the liver, a finding that is likely to be highly relevant for metabolism-associated disorders, such as diabetes and cancer. PMID:26375672

  14. Abnormal effect of conjugated molecules on the fluid-solid phase transition of N 2 and CO adsorbed on graphite

    NASA Astrophysics Data System (ADS)

    Asada, Hiromu; Kataoka, Satoshi; Takemura, Kimiyosi; Shimada, Makoto; Ikeda, Akari; Hamada, Nozomi

    1999-12-01

    Adsorption isotherm measurements were carried out for N 2 on the basal plane of graphite held at a temperature 77 K and preplated with n-alkanes or conjugated species such as mono-substituted benzenes, anthracene, 9,10-dimethylanthracene, and phthalocyanine copper. The isotherm step arising from the fluid-solid phase transition has been found to be abnormally depressed by the conjugated species, whereas the n-alkanes have no effect on the phase behavior of N 2. A similar phase transition for CO has also been found to be depressed by preadsorbed phthalocyanine copper. It is suggested that a small amount of these conjugated species dissolved in N 2 and CO locally induce the 3× 3 commensurate structure of N 2 and CO to increase the molecular density in the fluid phase and, therefore, to depress abnormally the fluid-solid phase transition of N 2 and CO.

  15. Sub-nanomolar concentrations of ciguatoxin-1 excite preganglionic terminals in guinea pig sympathetic ganglia.

    PubMed

    Hamblin, P A; McLachlan, E M; Lewis, R J

    1995-08-01

    The actions of low concentrations of ciguatoxin-1 (CTX-1, 0.2-0.8 nM) in guinea-pig sympathetic ganglia have been analysed using intracellular recording techniques in vitro. The effects of CTX-1 were graded with concentration but sensitivity varied markedly between neurones in the same preparation. Other than an initial transient (approximately 10 min) depolarization of some ganglion cells accompanied by an increase in input resistance, passive electrical properties did not significantly differ from controls. Amplitude and threshold of action potentials evoked by depolarizing current and threshold, latency and form of the initial responses to nerve stimulation were also not affected. Exposure to CTX-1 generated marked increases in the frequency of spontaneous excitatory synaptic potentials which often occurred in bursts (15-66 Hz) of similar amplitudes. Single stimuli to incoming nerves produced repetitive synaptic responses arising from preganglionic, but not from peripheral afferent, axons. Following brief (< 5 min) exposure to CTX-1, these effects declined over 30 min but, after longer exposure (> 15 min), they persisted for several hours despite continuous washing. All activity generated by CTX-1 was significantly reduced or abolished by d-tubocurarine (10(-5)-10(-4) M), hexamethonium (10(-5) M), tetrodotoxin (10(-7)-10(-6) M), omega-conotoxin (10(-7) M), reduced Ca2+ (0.1 mM)/raised Mg2+ (10 mM), raised Ca2+ (6 mM) or raised Mg2+ (25 mM). The data suggest that CTX-1 activates preganglionic axons by modifying the voltage sensitivity of a subpopulation of Na+ channels. Effects on these unmyelinated axons occur at much lower concentrations than have been reported to affect myelinated ones. Many of the symptoms of ciguatera poisoning might be explained by activity in autonomic and perhaps other unmyelinated nerve terminals. PMID:7477449

  16. Endogenous reactive oxygen species modulates voltage-gated sodium channels in dorsal root ganglia of rats

    PubMed Central

    Wang, Han-Jun; Li, Yu-Long; Zhang, Li-Bin; Zucker, Irving H.; Gao, Lie; Zimmerman, Matthew C.

    2011-01-01

    We recently reported that reactive oxygen species (ROS) plays an excitatory role in modulation of the exercise pressor reflex (EPR) in normal rats. In this study, we further tested two independent hypotheses: 1) ROS interacts with EPR-related ionotropic receptors such as the purinergic receptors (P2) and transient receptor potential vanilloid 1 receptors (TRPV1) to indirectly modulate the EPR function; 2) ROS directly affects excitability of muscle afferents by modulating the voltage-gated sodium (Nav) channels. To test the first hypothesis, we performed animal experiments to investigate the effect of the SOD mimetic 4-hydroxy-2,2,6,6-tetramethyl piperidine 1-oxyl (Tempol) on the pressor response to hindlimb intra-arterial (IA) injection of either ?,?-methylene ATP (a P2X agonist) or capsaicin (a TRPV1 agonist) in decerebrate rats. To test the second hypothesis, we used the patch-clamp technique to determine the effect of ROS on Nav channels on the soma of muscle afferents. We also performed local microinjection of a sodium channel blocker, tetrodotoxin (TTX), into ipsilateral L4/L5 dorsal root ganglia (DRGs) to investigate whether the blockade of Nav channels by TTX affects the EPR function. We found that Tempol did not affect the pressor response to injection of either capsaicin or ?,?-methylene ATP but significantly decreased the Nav current in small and medium-sized 1,1?-dioctadecyl-3,3,3?,3?-tetramethylindocarbocyanine perchlorate (DiI)-labeled DRG neurons. A membrane-permeant superoxide dismutase, polyethylene glycol (PEG)-SOD, had an effect on the Nav current in these neurons similar to that of Tempol. Microinjection of TTX into L4/L5 DRGs dramatically attenuated the pressor response to static contraction induced by electrical stimulation of L4/L5 ventral roots. These data suggest that ROS modulates the EPR by affecting the activity of the Nav channels on muscle afferents. PMID:21292836

  17. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study

    PubMed Central

    Sundt, Danielle; Gamper, Nikita

    2015-01-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na+ channels. A model containing only fast voltage-gated Na+ and delayed-rectifier K+ channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca2+-dependent K+ current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na+-K+ pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca2+-dependent K+ current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. PMID:26334005

  18. Expression of nestin in superior cervical ganglia of rats is influenced by gender and gonadectomy.

    PubMed

    Filipovi?, Natalija; Mašek, Tomislav; Grkovi?, Ivica

    2015-01-01

    Neurons and glia arise from neural progenitor cells that express nestin. Although substantial changes in neuronal development were observed during the postnatal period, data concerning dynamics of nestin expression in the superior cervical ganglia (SCG) of rat during that period are lacking. It is known that gonadectomy and steroid hormones influence the development of neurons in the SCG during the postnatal period, but there are no data on how they influence the persistence of nestin expression in the SCG cells. The dynamics of nestin expression in the SCG in rats of three age groups, as well as the influence of gender and gonadectomy, was investigated. Three groups of male rats were sacrificed at 2, 3 and 6 months of age. Additional groups of male and female Sprague-Dawley rats were gonadectomized at the age of 2 months. After 30 days, they were sacrificed and SCGs were harvested and processed immunohistochemically. Immunoreactivity for nestin in the SCG was observed in satellite glia, based on their expression of s100. The proportion of neurons that were encircled with nestin-immunoreactive satellite cells (nestin encircled neurons, NEN) decreased between second and third month of age (p<0.05). The proportion of NEN was greater in the NPY+ than in the NPY- subpopulation. The proportion of NEN in the SCG of female rats was significantly higher (p<0.05) than that of both, the male rats and ovariectomised groups. The percentage of these neurons was significantly higher (p<0.05) in orchidectomised, in comparison to male rats. Results show the existence of nestin-immunoreactive satellite cells in the SCG of adult rats. A substantial decrease of nestin expression in SCG cells of rats, after the onset of sexual maturation, was observed. This decrease showed significant sex-dependence and was dramatically influenced by gonadal activity. PMID:25483346

  19. An ATP-sensitive K(+) conductance in dissociated neurones from adult rat intracardiac ganglia.

    PubMed

    Hogg, R C; Adams, D J

    2001-08-01

    1. An ATP-sensitive K(+) (K(ATP)) conductance has been identified using the perforated patch recording configuration in a population (52%) of dissociated neurones from adult rat intracardiac ganglia. The presence of the sulphonylurea receptor in approximately half of the intracardiac neurones was confirmed by labelling with fluorescent glibenclamide-BODIPY. 2. Under current clamp conditions in physiological solutions, levcromakalim (10 microM) evoked a hyperpolarization, which was inhibited by the sulphonylurea drugs glibenclamide and tolbutamide. 3. Under voltage clamp conditions in symmetrical (140 mM) K(+) solutions, bath application of levcromakalim evoked an inward current with a density of 8 pA pF(-1) at -50 mV and a slope conductance of approximately 9 nS, which reversed close to the potassium equilibrium potential (E(K)). Cell dialysis with an ATP-free intracellular solution also evoked an inward current, which was inhibited by tolbutamide. 4. Bath application of either glibenclamide (10 microM) or tolbutamide (100 microM) depolarized adult intracardiac neurones by 3-5 mV, suggesting that a K(ATP) conductance is activated under resting conditions and contributes to the resting membrane potential. 5. Activation of a membrane current by levcromakalim was concentration dependent with an EC(50) of 1.6 microM. Inhibition of the levcromakalim-activated current by glibenclamide was also concentration dependent with an IC(50) of 55 nM. 6. Metabolic inhibition with 2,4-dinitrophenol and iodoacetic acid or superfusion with hypoxic solution (P(O2) approximately 16 mmHg) also activated a membrane current. These currents exhibited similar I-V characteristics to the levcromakalim-induced current and were inhibited by glibenclamide. 7. Activation of K(ATP) channels in mammalian intracardiac neurones may contribute to changes in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion. PMID:11483702

  20. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    PubMed Central

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ? 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  1. Recurrent peripheral odontogenic fibroma associated with basal cell budding.

    PubMed

    Sreeja, C; Vezhavendan, N; Shabana, F; Vijayalakshmi, D; Devi, M; Arunakiry, N

    2014-07-01

    Peripheral odontogenic fibroma (POdF) is a rare benign odontogenic neoplasm. It represents the soft tissue counterpart of central odontogenic fibroma. The embryonic source of POdF has been suggested by many as arising from the rest of dental lamina that has persisted in the gingiva following its disintegration. It presents clinically as a firm, slow growing and sessile gingival mass, which is difficult to distinguish with more common inflammatory lesions. Very few cases of recurrence have been documented. It has been stated that histological budding of basal cell layer of the surface squamous epithelium is associated with higher recurrence and the presence of calcification in direct apposition to the epithelial rest is associated with lower recurrence. Hereby, we present a case which histologically exhibited budding of the basal cell layer, which could have been the reason for its recurrence. PMID:25210375

  2. Recurrent peripheral odontogenic fibroma associated with basal cell budding

    PubMed Central

    Sreeja, C.; Vezhavendan, N.; Shabana, F.; Vijayalakshmi, D.; Devi, M.; Arunakiry, N.

    2014-01-01

    Peripheral odontogenic fibroma (POdF) is a rare benign odontogenic neoplasm. It represents the soft tissue counterpart of central odontogenic fibroma. The embryonic source of POdF has been suggested by many as arising from the rest of dental lamina that has persisted in the gingiva following its disintegration. It presents clinically as a firm, slow growing and sessile gingival mass, which is difficult to distinguish with more common inflammatory lesions. Very few cases of recurrence have been documented. It has been stated that histological budding of basal cell layer of the surface squamous epithelium is associated with higher recurrence and the presence of calcification in direct apposition to the epithelial rest is associated with lower recurrence. Hereby, we present a case which histologically exhibited budding of the basal cell layer, which could have been the reason for its recurrence. PMID:25210375

  3. Advances in the management of basal cell carcinoma

    PubMed Central

    Carucci, John A.

    2015-01-01

    Basal cell carcinoma (BCC), a malignant neoplasm derived from non-keratinizing cells that originate in the basal layer of the epidermis, is the most common cancer in humans. Several factors such as anatomic location, histologic features, primary or recurrent tumors, and patient characteristics influence the choice of treatment modality for BCC. Mohs micrographic surgery (MMS) facilitates optimal margin control and conservation of normal tissue for the management of BCC; however, other treatment modalities may also be implemented in the correct clinical scenario. Other treatment modalities that will be reviewed include simple excision, electrodesiccation and curettage, cryotherapy, topical immunotherapy and chemotherapy, photodynamic therapy, and radiation therapy. In addition, targeted molecular therapeutic options for the treatment of advanced or metastatic BCC will be discussed in this informal review based on recent literature obtained by using PubMed with relevant search terms. PMID:26097726

  4. [Surgical vs nonsurgical treatment of basal cell carcinoma].

    PubMed

    Aguayo-Leiva, I R; Ríos-Buceta, L; Jaén-Olasolo, P

    2010-10-01

    Numerous therapeutic options are now available for the treatment of basal cell carcinoma. However, few randomized controlled trials with 5-year follow-up have compared the effectiveness of the different treatments. Such a comparison is difficult, probably because efficacy depends on several factors: those related to the tumor, the patient, the technique, and the dermatologist's experience. We first describe the available therapeutic options, including certain innovative treatments. We have divided them into 2 main groups-surgical and nonsurgical-and focus on the indications, advantages, and disadvantages of each one, as well as on the cure and recurrence rates. Then, based on the evidence reviewed, we attempt to provide an outline of the therapeutic strategies recommended in basal cell carcinoma, and the approach to be used in specific situations. We also describe our own experience. PMID:20965011

  5. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate.

    PubMed

    Petros, Timothy J; Bultje, Ronald S; Ross, M Elizabeth; Fishell, Gord; Anderson, Stewart A

    2015-11-10

    Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination. PMID:26526999

  6. Does age matter? Behavioral and neuro-anatomical effects of neonatal and adult basal forebrain cholinergic lesions.

    PubMed

    De Bartolo, Paola; Cutuli, Debora; Ricceri, Laura; Gelfo, Francesca; Foti, Francesca; Laricchiuta, Daniela; Scattoni, Maria Luisa; Calamandrei, Gemma; Petrosini, Laura

    2010-01-01

    The "cholinergic hypothesis" of dementia posits that the progressive loss of basal forebrain cholinergic neurons and the consequent decrease of acetylcholine levels in the deafferented projection sites are correlated with degree of cognitive decline in dementia. It has also been proposed that early dysfunction of the basal forebrain (BF) cholinergic system may be a risk factor for subsequent cognitive decline and possibly dementia. To characterize how age when BF cholinergic system is lesioned affects behavioral performances and morphology of neocortical neurons, seven-day-old rats were bilaterally i.c.v. injected with 192 IgG-saporin. In adulthood, these animals were subjected to spatial and associative tests. Subsequently, the morphology of parietal pyramidal neurons was assessed. The same behavioral and morphological evaluations were made in 80-day-old rats tested three weeks after bilateral i.c.v. injections of 192 IgG-saporin. The behavioral consequences of both cholinergic depletions were markedly similar. While both groups of lesioned animals exhibited very subtle deficits in the Morris water maze, they were significantly impaired in spatial discrimination in the open field and the radial maze. Paralleling behavioral data, the results of the morphological analysis revealed comparable increases in number and density of spines in apical and basal dendrites in layer-III parietal pyramidal neurons following both neonatal and adult cholinergic depletions. The present results demonstrate that the consequences of abnormal maturation of the cholinergic system are not substantially different from those evoked by cholinergic dysfunction in adulthood and provide a developmental psychobiological perspective of the neuronal foundations of the impaired cognitive functions. PMID:20164586

  7. Early-onset acral basal cell carcinomas in Gorlin syndrome.

    PubMed

    Torrelo, A; Vicente, A; Navarro, L; Planaguma, M; Bueno, E; González-Sarmiento, R; Hernández-Martín, A; Noguera-Morel, L; Requena, L; Colmenero, I; Parareda, A; González-Enseñat, M A; Happle, R

    2014-11-01

    Two patients are reported in whom early-onset, distal papules with a histopathological diagnosis of basal cell carcinoma were the first manifestation of Gorlin syndrome (GS). These lesions showed no progression and remained stable through follow-up. Two different PTCH1 gene mutations were detected in the two patients, and thus a phenotype-genotype correlation of this manifestation of GS was not possible. PMID:24837096

  8. Molecular biology of basal and squamous cell carcinomas.

    PubMed

    Emmert, Steffen; Schön, Michael P; Haenssle, Holger A

    2014-01-01

    The prevalent keratinocyte-derived neoplasms of the skin are basal cell carcinoma and squamous cell carcinoma. Both so called nonmelanoma skin cancers comprise the most common cancers in humans by far. Common risk factors for both tumor entities include sun-exposure, DNA repair deficiencies leading to chromosomal instability, or immunosuppression. Yet, fundamental differences in the development of the two different entities have been and are currently unveiled. The constitutive activation of the sonic hedgehog signaling pathway by acquired mutations in the PTCH and SMO genes appears to represent the early basal cell carcinoma developmental determinant. Although other signaling pathways are also affected, small hedgehog inhibitory molecules evolve as the most promising basal cell carcinoma treatment options systemically as well as topically in current clinical trials. For squamous cell carcinoma development mutations in the p53 gene, especially UV-induced mutations, have been identified as early events. Yet, other signaling pathways including epidermal growth factor receptor, RAS, Fyn, or p16INK4a signaling may play significant roles in squamous cell carcinoma development. The improved understanding of the molecular events leading to different tumor entities by de-differentiation of the same cell type have begun to pave the way for modulating new molecular targets therapeutically with small molecules. PMID:25207369

  9. Ancestral Vascular Lumen Formation via Basal Cell Surfaces

    PubMed Central

    Ku?era, Tomáš; Strili?, Boris; Regener, Kathrin; Schubert, Michael; Laudet, Vincent; Lammert, Eckhard

    2009-01-01

    The cardiovascular system of bilaterians developed from a common ancestor. However, no endothelial cells exist in invertebrates demonstrating that primitive cardiovascular tubes do not require this vertebrate-specific cell type in order to form. This raises the question of how cardiovascular tubes form in invertebrates? Here we discovered that in the invertebrate cephalochordate amphioxus, the basement membranes of endoderm and mesoderm line the lumen of the major vessels, namely aorta and heart. During amphioxus development a laminin-containing extracellular matrix (ECM) was found to fill the space between the basal cell surfaces of endoderm and mesoderm along their anterior-posterior (A-P) axes. Blood cells appear in this ECM-filled tubular space, coincident with the development of a vascular lumen. To get insight into the underlying cellular mechanism, we induced vessels in vitro with a cell polarity similar to the vessels of amphioxus. We show that basal cell surfaces can form a vascular lumen filled with ECM, and that phagocytotic blood cells can clear this luminal ECM to generate a patent vascular lumen. Therefore, our experiments suggest a mechanism of blood vessel formation via basal cell surfaces in amphioxus and possibly in other invertebrates that do not have any endothelial cells. In addition, a comparison between amphioxus and mouse shows that endothelial cells physically separate the basement membranes from the vascular lumen, suggesting that endothelial cells create cardiovascular tubes with a cell polarity of epithelial tubes in vertebrates and mammals. PMID:19125185

  10. Chromosomal abnormalities in a psychiatric population

    SciTech Connect

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W.

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  11. Oculomotor abnormalities in Dyssynergia cerebellaris myoclonica.

    PubMed

    Wiest, G; Mueller, C; Wessely, P; Steinhoff, N; Trattnig, S; Deecke, L

    1995-01-01

    In 1921 Ramsay-Hunt first described the syndrome of dyssynergia cerebellaris myoclonica (DCM), characterized by the clinical triad of action myoclonus, progressive ataxia and epilepsy with cognitive impairment, subsequently also referred to as the "Ramsay-Hunt syndrome". The cause of the symptoms of this rare degenerative syndrome (incidence: 500,000) is the impairment of a regulatory mechanism between nucleus dentatus, nucleus ruber and the bulbar olive. We present two sisters, aged 29 and 30 years, who were investigated for oculomotor abnormalities. The patients were diagnosed as having DCM according to clinical symptomatology, which was confirmed by neurophysiological and radiological findings. In both cases saccadic velocity was markedly reduced, whereas saccadic latency showed a significant increase. In addition, smooth pursuit eye-movements were abnormal and presented reduced gain. These findings suggest that pontine areas and the vestibulocerebellum also seem to be affected in DCM. PMID:8749170

  12. Félix Voisin and the genesis of abnormals.

    PubMed

    Doron, Claude-Olivier

    2015-12-01

    This article traces the genealogy of the category of 'abnormals' in psychiatry. It focuses on the French alienist Felix Voisin (1794-1872) who played a decisive role in the creation of alienist knowledge and institutions for problem children, criminals, idiots and lunatics. After a presentation of the category of 'abnormals' as understood at the end of the nineteenth century, I identify in the works of Voisin a key moment in the concept's evolution. I show how, based on concepts borrowed from phrenology and applied first to idiocy, Voisin allows alienism to establish links between the medico-legal (including penitentiary) and medical-educational fields (including difficult childhood). I stress the extent to which this enterprise is related to Voisin's humanism, which claimed to remodel pedagogy and the right to punish on the anthropological particularities of individuals, in order to improve them. PMID:26574056

  13. Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production

    PubMed Central

    Nord, Joshua A.; Barabas, Marie-Elizabeth A.; Stucky, Cheryl L.; Ebert, Allison D.

    2014-01-01

    Spinal muscular atrophy is a genetic disorder caused by deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Though motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMA?7 mouse spinal cord and from SMA induced pluripotent stem cells (iPSCs) exhibit morphological and cellular changes indicative of activation prior to overt motor neuron loss. Furthermore, our in vitro studies show mis regulation of basal calcium and decreased response to ATP stimulation indicating abnormal astrocyte function. Together, these data show for the first time early disruptions in astrocytes that may contribute to SMA disease pathology. PMID:23839956

  14. The Basal Onaping Intrusion — The Missing Roof Rocks of the Sudbury Igneous Complex?

    NASA Astrophysics Data System (ADS)

    Anders, D.; Osinski, G. R.; Grieve, R. A. F.

    2015-09-01

    The Basal Onaping Intrusion is currently considered part of the Onaping Formation. This study provides petrographic and geochemical evidence that the Basal Onaping Intrusion are the roof rocks of the Sudbury Igneous Complex.

  15. What's New in Research and Treatment of Basal and Squamous Cell Skin Cancers?

    MedlinePLUS

    ... for basal and squamous cell skin cancers What’s new in research and treatment of basal and squamous ... become cancerous. Researchers are working to apply this new information to strategies for preventing and treating skin ...

  16. Varenicline and Abnormal Sleep Related Events

    PubMed Central

    Savage, Ruth L.; Zekarias, Alem; Caduff-Janosa, Pia

    2015-01-01

    Study Objectives: To assess adverse drug reaction reports of “abnormal sleep related events” associated with varenicline, a partial agonist to the ?4?2 subtype of nicotinic acetylcholine receptors on neurones, indicated for smoking cessation. Design: Twenty-seven reports of “abnormal sleep related events” often associated with abnormal dreams, nightmares, or somnambulism, which are known to be associated with varenicline use, were identified in the World Health Organisation (WHO) Global Individual Case Safety Reports Database. Original anonymous reports were obtained from the four national pharmacovigilance centers that submitted these reports and assessed for reaction description and causality. Measurements and Results: These 27 reports include 10 of aggressive activity occurring during sleep and seven of other sleep related harmful or potentially harmful activities, such as apparently deliberate self-harm, moving a child or a car, or lighting a stove or a cigarette. Assessment of these 17 reports of aggression or other actual or potential harm showed that nine patients recovered or were recovering on varenicline withdrawal and there were no consistent alternative explanations. Thirteen patients experienced single events, and two had multiple events. Frequency was not stated for the remaining two patients. Conclusions: The descriptions of the reports of aggression during sleep with violent dreaming are similar to those of rapid eye movement sleep behavior disorder and also nonrapid eye movement (NREM) sleep parasomnias in some adults. Patients who experience somnambulism or dreams of a violent nature while taking varenicline should be advised to consult their health providers. Consideration should be given to clarifying the term sleep disorders in varenicline product information and including sleep related harmful and potentially harmful events. Citation: Savage RL, Zekarias A, Caduff-Janosa P. Varenicline and abnormal sleep related events. SLEEP 2015;38(5):833–837. PMID:25409105

  17. Gastrointestinal abnormalities and involvement in systemic mastocytosis.

    PubMed

    Jensen, R T

    2000-06-01

    Recent studies have shown that involvement of the gastrointestinal tract is much more frequent than originally reported in patients with systemic mastocytosis. Seventy percent to 80% of patients with systemic mastocytosis are found to have gastrointestinal symptoms when a careful history is taken, and abnormalities in the gastrointestinal tract are frequently detected by endoscopic studies, functional studies of absorption, and barium studies. Because of the rarity of the disease, there are few prospective studies of gastrointestinal involvement, so the actual frequency of upper and lower gastrointestinal lesions is unknown. Furthermore, there have been no studies correlating endoscopic abnormalities of the lower gastrointestinal tract with the presence or absence of diarrhea, which is a frequent symptom (mean, 43% [range 14%-100%]). A review of gastric acid studies reveals that a proportion of patients develop gastric acid hypersecretion because of the hyperhistaminemia, which can result in ulcer disease that in turn can cause dyspeptic pain, small intestinal mucosal damage, and malabsorption. In some patients gastric acid hypersecretion in the range seen in Zollinger-Ellison syndrome can develop. A number of studies suggest that the prevalence of peptic ulcer disease has been underestimated in these patients and is certainly higher than the general population. The exact physiologic basis for the diarrhea or nondyspeptic abdominal pain remains largely unknown in these patients. Whereas some studies suggest small intestinal mucosal abnormalities are responsible for most cases of malabsorption not associated with gastric acid hypersecretion, this supposition also remains unproven. Hepatomegaly, portal hypertension, splenomegaly, and ascites occur frequently in patients with systemic mastocytosis, especially those with category II through IV disease. Whereas the histology of the liver and spleen and alterations in hepatic function studies have been well studied, the pathogenesis of each of these abnormalities has not been well studied, and almost all the information comes from a few well-studied case reports. PMID:10909042

  18. Abnormal calcium homeostasis in peripheral neuropathies.

    PubMed

    Fernyhough, Paul; Calcutt, Nigel A

    2010-02-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies. PMID:20034667

  19. Abnormal calcium homeostasis in peripheral neuropathies

    PubMed Central

    Fernyhough, Paul; Calcutt, Nigel A.

    2010-01-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neuron function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca 2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation with both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies. PMID:20034667

  20. Trading networks, abnormal motifs and stock manipulation

    E-print Network

    Jiang, Zhi-Qiang; Xiong, Xiong; Zhang, Wei; Zhang, Yong-Jie; Zhou, W -X

    2013-01-01

    We study trade-based manipulation of stock prices from the perspective of complex trading networks constructed by using detailed information of trades. A stock trading network consists of nodes and directed links, where every trader is a node and a link is formed from one trader to the other if the former sells shares to the latter. Specifically, three abnormal network motifs are investigated, which are found to be formed by a few traders, implying potential intention of price manipulation. We further investigate the dynamics of volatility, trading volume, average trade size and turnover around the transactions associated with the abnormal motifs for large, medium and small trades. It is found that these variables peak at the abnormal events and exhibit a power-law accumulation in the pre-event time period and a power-law relaxation in the post-event period. We also find that the cumulative excess returns are significantly positive after buyer-initiated suspicious trades and exhibit a mild price reversal afte...