Science.gov

Sample records for abnormal basal ganglia

  1. Role of movement in long-term basal ganglia changes: implications for abnormal motor responses

    PubMed Central

    Simola, Nicola; Morelli, Micaela; Frazzitta, Giuseppe; Frau, Lucia

    2013-01-01

    Abnormal involuntary movements (AIMs) and dyskinesias elicited by drugs that stimulate dopamine receptors in the basal ganglia are a major issue in the management of Parkinson’s disease (PD). Preclinical studies in dopamine-denervated animals have contributed to the modeling of these abnormal movements, but the precise neurochemical and functional mechanisms underlying these untoward effects are still elusive. It has recently been suggested that the performance of movement may itself promote the later emergence of drug-induced motor complications, by favoring the generation of aberrant motor memories in the dopamine-denervated basal ganglia. Our recent results from hemiparkinsonian rats subjected to the priming model of dopaminergic stimulation are in agreement with this. These results demonstrate that early performance of movement is crucial for the manifestation of sensitized rotational behavior, indicative of an abnormal motor response, and neurochemical modifications in selected striatal neurons following a dopaminergic challenge. Building on this evidence, this paper discusses the possible role of movement performance in drug-induced motor complications, with a look at the implications for PD management. PMID:24167489

  2. Imaging basal ganglia function

    PubMed Central

    BROOKS, DAVID J.

    2000-01-01

    In this review, the value of functional imaging for providing insight into the role of the basal ganglia in motor control is reviewed. Brain activation findings in normal subjects and Parkinson's disease patients are examined and evidence supporting the existence for functionally independent distributed basal ganglia-frontal loops is presented. It is argued that the basal ganglia probably act to focus and filter cortical output, optimising the running of motor programs. PMID:10923986

  3. Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1?/? Mice

    PubMed Central

    Lim, Soo-Yeon; Mah, Won

    2015-01-01

    Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2–3 months old) and juvenile (4 weeks old) Git1?/? mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in Git1?/? mice. PMID:25997734

  4. Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1(-/-) Mice.

    PubMed

    Lim, Soo-Yeon; Mah, Won

    2015-06-01

    Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2-3 months old) and juvenile (4 weeks old) Git1(-/-) mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in Git1(-/-) mice. PMID:25997734

  5. The basal ganglia communicate with the cerebellum.

    PubMed

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2010-05-01

    The basal ganglia and cerebellum are major subcortical structures that influence not only movement, but putatively also cognition and affect. Both structures receive input from and send output to the cerebral cortex. Thus, the basal ganglia and cerebellum form multisynaptic loops with the cerebral cortex. Basal ganglia and cerebellar loops have been assumed to be anatomically separate and to perform distinct functional operations. We investigated whether there is any direct route for basal ganglia output to influence cerebellar function that is independent of the cerebral cortex. We injected rabies virus (RV) into selected regions of the cerebellar cortex in cebus monkeys and used retrograde transneuronal transport of the virus to determine the origin of multisynaptic inputs to the injection sites. We found that the subthalamic nucleus of the basal ganglia has a substantial disynaptic projection to the cerebellar cortex. This pathway provides a means for both normal and abnormal signals from the basal ganglia to influence cerebellar function. We previously showed that the dentate nucleus of the cerebellum has a disynaptic projection to an input stage of basal ganglia processing, the striatum. Taken together these results provide the anatomical substrate for substantial two-way communication between the basal ganglia and cerebellum. Thus, the two subcortical structures may be linked together to form an integrated functional network. PMID:20404184

  6. [Anti-basal ganglia antibody].

    PubMed

    Hayashi, Masaharu

    2013-04-01

    Sydenham's chorea (SC) is a major manifestation of rheumatic fever, and the production of anti-basal ganglia antibodies (ABGA) has been proposed in SC. The pathogenesis is hypothesized as autoimmune targeting of the basal ganglia via molecular mimicry, triggered by streptococcal infection. The spectrum of diseases in which ABGA may be involved has been broadened to include other extrapyramidal movement disorders, such as tics, dystonia, and Parkinsonism, as well as other psychiatric disorders. The autoimmune hypothesis in the presence and absence of ABGA has been suggested in Tourette's syndrome (TS), early onset obsessive-compulsive disorders (OCD), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Recently, the relationship between ABGA and dopamine neurons in the basal ganglia has been examined, and autoantibodies against dopamine receptors were detected in the sera from patients with basal ganglia encephalitis. In Japan, the occurrence of subacute encephalitis, where patients suffer from episodes of altered behavior and involuntary movements, has increased. Immune-modulating treatments are effective, indicating the involvement of an autoimmune mechanism. We aimed to detect the anti-neuronal autoantibodies in such encephalitis, using immunohistochemical assessment of patient sera. The sera from patients showing involuntary movements had immunoreactivity for basal ganglia neurons. Further epitopes for ABGA will be investigated in basal ganglia disorders other than SC, TS, OCD, and PANDAS. PMID:23568985

  7. Basal ganglia echogenicity in tauopathies.

    PubMed

    Sadowski, Krzysztof; Serafin-Król, MaƂgorzata; Szlachta, Karol; Friedman, Andrzej

    2015-06-01

    Accumulating data confirm the usefulness of transcranial sonography (TCS) in the diagnosis of Parkinson's disease. The relevance of basal ganglia abnormalities depicted by TCS in atypical parkinsonian syndromes still needs further assessment. In the present study, 20 patients with progressive supranuclear palsy (PSP) and 13 patients with corticobasal syndrome (CBS) were studied with the use of transcranial sonography. Echogenicity of the substantia nigra (SN) and lenticular nucleus (LN) were assessed. 0/20 patients with PSP and 8/12 (66.6 %) patients with CBS were characterized with SN hyperechogenicity. LN hyperechogenicity was observed in 9/20 patients diagnosed with PSP and 0/11 of CBS patients. The combination of SN isoechogenicity and LN hyperechogenicity reached 100 % sensitivity and positive predictive value for the diagnosis of PSP. The results of this study point out that CBS has to be taken into consideration when SN hyperechogenicity is depicted in a patient with parkinsonian syndrome. Normal echogenicity of the SN coexisting with LN hyperechogenicity practically excludes CBS. PMID:25204278

  8. [Molecular mechanism of idiopathic basal ganglia calcification].

    PubMed

    Wang, Cheng; Xu, Xuan; Li, Lulu; Wang, Tao; Zhang, Min; Shen, Lu; Tang, Beisha; Liu, Jingyu

    2015-08-01

    Idiopathic basal ganglia calcification (IBGC), also known as Fahr’s disease, is an inheritable neurodegenerative syndrome characterized by mineral deposits in the basal ganglia and other brain regions. Patients with IBGC are often accompanied with movement disorders, cognitive impairment as well as psychiatric abnormalities. So far, no therapeutic drug has been developed for the treatment of IBGC. Recently, genetic studies have identified several genes associated with IBGC, including SLC20A2, PDGFRB, PDGFB, ISG15 and XPR1. Loss-of-function mutations in these genes have been associated with disturbance in phosphate homeostasis in brain regions, the dysfunction of blood-brain barrier as well as enhanced IFN-?/? immunity. In this review, we summarize the latest research progress in the studies on molecular genetics of IBGC, and discuss the molecular mechanisms underlying the pathophysiology of mutations of different genes. PMID:26353387

  9. Cortico-Basal Ganglia Circuit Function in Psychiatric Disease.

    PubMed

    Gunaydin, Lisa A; Kreitzer, Anatol C

    2016-02-10

    Circuit dysfunction models of psychiatric disease posit that pathological behavior results from abnormal patterns of electrical activity in specific cells and circuits in the brain. Many psychiatric disorders are associated with abnormal activity in the prefrontal cortex and in the basal ganglia, a set of subcortical nuclei implicated in cognitive and motor control. Here we discuss the role of the basal ganglia and connected prefrontal regions in the etiology and treatment of obsessive-compulsive disorder, anxiety, and depression, emphasizing mechanistic work in rodent behavioral models to dissect causal cortico-basal ganglia circuits underlying discrete behavioral symptom domains relevant to these complex disorders. PMID:26667072

  10. Basal Ganglia Shapes Predict Social, Communication, and Motor Dysfunctions in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Qiu, Anqi; Adler, Marcy; Crocetti, Deana; Miller, Michael I.; Mostofsky, Stewart H.

    2010-01-01

    Objective: Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association


  11. Basal Ganglia Shapes Predict Social, Communication, and Motor Dysfunctions in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Qiu, Anqi; Adler, Marcy; Crocetti, Deana; Miller, Michael I.; Mostofsky, Stewart H.

    2010-01-01

    Objective: Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association…

  12. The cerebellum communicates with the basal ganglia.

    PubMed

    Hoshi, Eiji; Tremblay, LĂ©on; FĂ©ger, Jean; Carras, Peter L; Strick, Peter L

    2005-11-01

    The cerebral cortex is interconnected with two major subcortical structures: the basal ganglia and the cerebellum. How and where cerebellar circuits interact with basal ganglia circuits has been a longstanding question. Using transneuronal transport of rabies virus in macaques, we found that a disynaptic pathway links an output stage of cerebellar processing, the dentate nucleus, with an input stage of basal ganglia processing, the striatum. PMID:16205719

  13. Basal ganglia lesions in children and adults.

    PubMed

    Bekiesinska-Figatowska, Monika; Mierzewska, Hanna; Jurkiewicz, El?bieta

    2013-05-01

    The term "basal ganglia" refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) - to a lesser degree - allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or - more frequently - bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic-ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive. PMID:23313708

  14. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    PubMed Central

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  15. The expanding universe of disorders of the basal ganglia.

    PubMed

    Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J

    2014-08-01

    The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made. PMID:24954674

  16. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia.

    PubMed

    Beyeler, A; Kadiri, N; Navailles, S; Boujema, M Ben; Gonon, F; Moine, C Le; Gross, C; De Deurwaerdère, P

    2010-08-11

    Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete modifications in associative territories. PMID:20447448

  17. The Basal Ganglia-Circa 1982

    NASA Technical Reports Server (NTRS)

    Mehler, William R.

    1981-01-01

    Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement.

  18. The Cerebellum and Basal Ganglia are Interconnected

    PubMed Central

    Strick, Peter L.

    2012-01-01

    The cerebellum and the basal ganglia are major subcortical nuclei that control multiple aspects of behavior largely through their interactions with the cerebral cortex. Discrete multisynaptic loops connect both the cerebellum and the basal ganglia with multiple areas of the cerebral cortex. Interactions between these loops have traditionally been thought to occur mainly at the level of the cerebral cortex. Here, we review a series of recent anatomical studies in nonhuman primates that challenge this perspective. We show that the anatomical substrate exists for substantial interactions between the cerebellum and the basal ganglia. Furthermore, we discuss how these pathways may provide a useful framework for understanding cerebellar contributions to the manifestation of two prototypical basal ganglia disorders, Parkinson’s disease and dystonia. PMID:20811947

  19. Synaptic organisation of the basal ganglia

    PubMed Central

    BOLAM, J. P.; HANLEY, J. J.; BOOTH, P. A. C.; BEVAN, M. D.

    2000-01-01

    The basal ganglia are a group of subcortical nuclei involved in a variety of processes including motor, cognitive and mnemonic functions. One of their major roles is to integrate sensorimotor, associative and limbic information in the production of context-dependent behaviours. These roles are exemplified by the clinical manifestations of neurological disorders of the basal ganglia. Recent advances in many fields, including pharmacology, anatomy, physiology and pathophysiology have provided converging data that have led to unifying hypotheses concerning the functional organisation of the basal ganglia in health and disease. The major input to the basal ganglia is derived from the cerebral cortex. Virtually the whole of the cortical mantle projects in a topographic manner onto the striatum, this cortical information is ‘processed’ within the striatum and passed via the so-called direct and indirect pathways to the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata. The basal ganglia influence behaviour by the projections of these output nuclei to the thalamus and thence back to the cortex, or to subcortical ‘premotor’ regions. Recent studies have demonstrated that the organisation of these pathways is more complex than previously suggested. Thus the cortical input to the basal ganglia, in addition to innervating the spiny projection neurons, also innervates GABA interneurons, which in turn provide a feed-forward inhibition of the spiny output neurons. Individual neurons of the globus pallidus innervate basal ganglia output nuclei as well as the subthalamic nucleus and substantia nigra pars compacta. About one quarter of them also innervate the striatum and are in a position to control the output of the striatum powerfully as they preferentially contact GABA interneurons. Neurons of the pallidal complex also provide an anatomical substrate, within the basal ganglia, for the synaptic integration of functionally diverse information derived from the cortex. It is concluded that the essential concept of the direct and indirect pathways of information flow through the basal ganglia remains intact but that the role of the indirect pathway is more complex than previously suggested and that neurons of the globus pallidus are in a position to control the activity of virtually the whole of the basal ganglia. PMID:10923985

  20. Basal Ganglia Damage in Experimental Subarachnoid Hemorrhage.

    PubMed

    Zhang, Haining; Okubo, Shuichi; Hua, Ya; Keep, Richard F; Xi, Guohua

    2016-01-01

    Research suggests that early brain injury following subarachnoid hemorrhage (SAH) is a primary therapeutic target, and early SAH-induced basal ganglia injury is not well studied. The present study examined basal ganglia injury in a rat model of SAH. Adult male Sprague-Dawley rats (n?=?78) weighing 275-300 g underwent endovascular perforation to mimic aneurysmal SAH. Sham rats (n?=?12) underwent the same procedure but without perforation. Magnetic resonance imaging (T2 MRI) was performed at 24 h after SAH to measure ventricle volumes and brain T2 lesion. Hydrocephalus in SAH rats was defined as a ventricular volume greater than three standard deviations above that in shams. Western blotting and immunochemistry were utilized to assess basal ganglia damage. Sixty rats survived the SAH and 40 % of those animals had T2 lesions in the basal ganglia. Twenty-six SAH rats had hydrocephalus. Rats with hydrocephalus had higher incidence of basal ganglia lesion (69 vs. 18 % in rats without hydrocephalus; p?Basal ganglia neuronal injury was also determined by examining the levels of dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32). We found that rats with hydrocephalus had more severe basal ganglia injury with greater DARPP-32 depletion (DARPP-32/beta-actin: 0.38?±?0.32 vs. 0.86?±?0.45 in rats without hydrocephalus and 1.10?±?0.28 in sham, p?basal ganglia damage, which is associated with hydrocephalus development. PMID:26463938

  1. Extrastriatal Dopaminergic Circuits of the Basal Ganglia

    PubMed Central

    Rommelfanger, Karen S.; Wichmann, Thomas

    2010-01-01

    The basal ganglia are comprised of the striatum, the external and internal segment of the globus pallidus (GPe and GPi, respectively), the subthalamic nucleus (STN), and the substantia nigra pars compacta and reticulata (SNc and SNr, respectively). Dopamine has long been identified as an important modulator of basal ganglia function in the striatum, and disturbances of striatal dopaminergic transmission have been implicated in diseases such as Parkinson's disease (PD), addiction and attention deficit hyperactivity disorder. However, recent evidence suggests that dopamine may also modulate basal ganglia function at sites outside of the striatum, and that changes in dopaminergic transmission at these sites may contribute to the symptoms of PD and other neuropsychiatric disorders. This review summarizes the current knowledge of the anatomy, functional effects and behavioral consequences of the dopaminergic innervation to the GPe, GPi, STN, and SNr. Further insights into the dopaminergic modulation of basal ganglia function at extrastriatal sites may provide us with opportunities to develop new and more specific strategies for treating disorders of basal ganglia dysfunction. PMID:21103009

  2. Psychosis revealing familial idiopathic basal ganglia calcification.

    PubMed

    Nicolas, Gaël; Guillin, Olivier; Borden, Alaina; Bioux, Sandrine; Lefaucheur, Romain; Hannequin, Didier

    2013-01-01

    We describe the case of a 39-year-old woman presenting with auditory hallucinations and delusions responsive to antipsychotic drugs. Computerized tomography scans revealed basal ganglia calcifications in the proband and in her two asymptomatic parents. Extensive etiological clinicobiological assessment allowed us to exclude known causes of brain calcifications and diagnose familial idiopathic basal ganglia calcification (IBGC). Neurological symptoms associated with psychiatric symptoms are common in IBGC. Nevertheless, purely psychiatric presentations, as demonstrated by the present case, are possible. However, a fortuitous association between asymptomatic IBGC and schizophrenia cannot be ruled out. Only brain imaging, followed by an extensive etiological assessment, allows for diagnosis of this rare disorder. PMID:23122487

  3. The connectome of the basal ganglia.

    PubMed

    Schmitt, Oliver; Eipert, Peter; Kettlitz, Richard; Leßmann, Felix; Wree, Andreas

    2016-03-01

    The basal ganglia of the laboratory rat consist of a few core regions that are specifically interconnected by efferents and afferents of the central nervous system. In nearly 800 reports of tract-tracing investigations the connectivity of the basal ganglia is documented. The readout of connectivity data and the collation of all the connections of these reports in a database allows to generate a connectome. The collation, curation and analysis of such a huge amount of connectivity data is a great challenge and has not been performed before (Bohland et al. PloS One 4:e7200, 2009) in large connectomics projects based on meta-analysis of tract-tracing studies. Here, the basal ganglia connectome of the rat has been generated and analyzed using the consistent cross-platform and generic framework neuroVIISAS. Several advances of this connectome meta-study have been made: the collation of laterality data, the network-analysis of connectivity strengths and the assignment of regions to a hierarchically organized terminology. The basal ganglia connectome offers differences in contralateral connectivity of motoric regions in contrast to other regions. A modularity analysis of the weighted and directed connectome produced a specific grouping of regions. This result indicates a correlation of structural and functional subsystems. As a new finding, significant reciprocal connections of specific network motifs in this connectome were detected. All three principal basal ganglia pathways (direct, indirect, hyperdirect) could be determined in the connectome. By identifying these pathways it was found that there exist many further equivalent pathways possessing the same length and mean connectivity weight as the principal pathways. Based on the connectome data it is unknown why an excitation pattern may prefer principal rather than other equivalent pathways. In addition to these new findings the local graph-theoretical features of regions of the connectome have been determined. By performing graph theoretical analyses it turns out that beside the caudate putamen further regions like the mesencephalic reticular formation, amygdaloid complex and ventral tegmental area are important nodes in the basal ganglia connectome. The connectome data of this meta-study of tract-tracing reports of the basal ganglia are available for further network studies, the integration into neocortical connectomes and further extensive investigations of the basal ganglia dynamics in population simulations. PMID:25432770

  4. Psychopharmacologic intervention after hemorrhagic basal ganglia damage.

    PubMed

    Al Owesie, Rafat Mohammed; Morton, Catherine Saino

    2012-11-15

    Traumatic brain injury (TBI) can result in cognitive and behavioral impairments such as poor attention, learning, memory and planning ability and uncontrolled crying that can be more persistent problems than the physical disabilities. Cognitive enhancers have been shown to improve cognitive and behavioral impairments in patients with hemorrhagic basal ganglia lesions as well as other forms of TBI. There is little research about the use of cognitive enhancers after hemorrhagic basal ganglia damage. We present a case of a 38 year old male who made significant recovery with the use of cognitive enhancers. PMID:22795553

  5. Altered Basal Ganglia Network Integration in Schizophrenia

    PubMed Central

    Duan, Mingjun; Chen, Xi; He, Hui; Jiang, Yuchao; Jiang, Sisi; Xie, Qiankun; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong

    2015-01-01

    The basal ganglia involve in a range of functions that are disturbed in schizophrenia patients. This study decomposed the resting-state data of 28 schizophrenia patients and 31 healthy controls with spatial independent component analysis and identified increased functional integration in the bilateral caudate nucleus in schizophrenia patients. Further, the caudate nucleus in patients showed altered functional connection with the prefrontal area and cerebellum. These results identified the importance of basal ganglia in schizophrenia patients. Clinical Trial Registration: Chinese Clinical Trial Registry. Registration number ChiCTR-RCS-14004878. PMID:26528167

  6. Magnetic resonance imaging findings in bilateral basal ganglia lesions.

    TOXLINE Toxicology Bibliographic Information

    Lim CC

    2009-09-01

    INTRODUCTION: Radiologists may encounter bilaterally symmetrical abnormalities of the basal ganglia on magnetic resonance imaging (MRI), typically in the context of diffuse systemic, toxic or metabolic diseases. A systematic approach and broad knowledge of pathology causing this uncommon group of conditions would be useful.MATERIALS AND METHODS: This review uses illustrative images to highlight metabolic conditions, such as Leigh's syndrome, citrullinaemia, hypoglycaemia or carbon monoxide poisoning, as well as other causes of bilateral basal ganglia lesions such as osmotic myelinolysis, deep cerebral venous thrombosis and Creutzfeldt-Jakob disease.RESULTS: Careful assessment of radiological findings outside the basal ganglia, such as involvement of the cortex, white matter, thalamus and pons, together with clinical correlation, may be helpful in narrowing the differential diagnosis, and directing further radiological, biochemical or genetic investigations. Recent advances in MR technology have resulted in newer techniques including diffusion-weighted (DW) MR imaging and MR spectroscopy (MRS); these may be helpful if appropriately used.CONCLUSIONS: Abnormal MRI findings in the basal ganglia should not be interpreted in isolation. A systematic approach including DW MR imaging, MRS, and a broad knowledge of diffuse systemic, toxic or metabolic diseases is helpful.

  7. Genetics Home Reference: Biotin-thiamine-responsive basal ganglia disease

    MedlinePLUS

    ... PubMed Recent literature OMIM Genetic disorder catalog Conditions > Biotin-thiamine-responsive basal ganglia disease On this page: ... names Glossary definitions Reviewed January 2014 What is biotin-thiamine-responsive basal ganglia disease? Biotin-thiamine-responsive ...

  8. Anatomical MRI study of basal ganglia in major depressive disorder.

    PubMed

    Lacerda, Acioly L T; Nicoletti, Mark A; Brambilla, Paolo; Sassi, Roberto B; Mallinger, Alan G; Frank, Ellen; Kupfer, David J; Keshavan, Matcheri S; Soares, Jair C

    2003-11-30

    The basal ganglia form a part of the brain neuroanatomic circuits that may be involved in mood regulation. Decreases in basal ganglia volumes have been previously reported in major depressive disorder patients in comparison to healthy controls. In this study, we measured caudate, putamen, and globus pallidus volumes in 25 patients with major depressive disorder (4 M; age+/-S.D.=41+/-11 years) and 48 healthy controls (29 M; age+/-S.D.=35+/-10 years), using high-resolution magnetic resonance imaging (MRI), in an attempt to replicate prior findings. Unlike most previous studies, we did not find significant differences between patient and control groups in basal ganglia volumetric measures. Nonetheless, there was a significant interaction between diagnosis and cerebral hemisphere, with MDD patients showing decreased asymmetry in globus pallidus volumes in comparison with healthy controls. Furthermore, in the patient group, left putamen volumes correlated inversely with length of illness, and left globus pallidus volume correlated directly with number of prior depressive episodes. These findings suggest that abnormalities in lateralization and possibly neurodegenerative changes in basal ganglia structures participate in the pathophysiology of major depressive disorder. PMID:14623065

  9. The Basal Ganglia and Adaptive Motor Control

    NASA Astrophysics Data System (ADS)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  10. Mössbauer spectroscopy of Basal Ganglia

    SciTech Connect

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 ÎŒm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  11. Cannabinoids and neuroprotection in basal ganglia disorders.

    PubMed

    Sagredo, Onintza; García-Arencibia, Moisés; de Lago, Eva; Finetti, Simone; Decio, Alessandra; Fernández-Ruiz, Javier

    2007-08-01

    Cannabinoids have been proposed as clinically promising neuroprotective molecules, as they are capable to reduce excitotoxicity, calcium influx, and oxidative injury. They are also able to decrease inflammation by acting on glial processes that regulate neuronal survival and to restore blood supply to injured area by reducing the vasoconstriction produced by several endothelium-derived factors. Through one or more of these processes, cannabinoids may provide neuroprotection in different neurodegenerative disorders including Parkinson's disease and Huntington's chorea, two chronic diseases that are originated as a consequence of the degeneration of specific nuclei of basal ganglia, resulting in a deterioration of the control of movement. Both diseases have been still scarcely explored at the clinical level for a possible application of cannabinoids to delay the progressive degeneration of the basal ganglia. However, the preclinical evidence seems to be solid and promising. There are two key mechanisms involved in the neuroprotection by cannabinoids in experimental models of these two disorders: first, a cannabinoid receptor-independent mechanism aimed at producing a decrease in the oxidative injury and second, an induction/upregulation of cannabinoid CB2 receptors, mainly in reactive microglia, that is capable to regulate the influence of these glial cells on neuronal homeostasis. Considering the relevance of these preclinical data and the lack of efficient neuroprotective strategies in both disorders, we urge the development of further studies that allow that the promising expectatives generated for these molecules progress from the present preclinical evidence till a real clinical application. PMID:17952653

  12. Basal ganglia correlates of fatigue in young adults.

    PubMed

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Kotozaki, Yuka; Shinada, Takamitsu; Maruyama, Tsukasa; Sekiguchi, Atsushi; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Magistro, Daniele; Sakaki, Kohei; Jeong, Hyeonjeong; Sasaki, Yukako; Kawashima, Ryuta

    2016-01-01

    Although the prevalence of chronic fatigue is approximately 20% in healthy individuals, there are no studies of brain structure that elucidate the neural correlates of fatigue outside of clinical subjects. We hypothesized that fatigue without evidence of disease might be related to changes in the basal ganglia and prefrontal cortex and be implicated in fatigue with disease. We aimed to identify the white matter structures of fatigue in young subjects without disease using magnetic resonance imaging (MRI). Healthy young adults (n = 883; 489 males and 394 females) were recruited. As expected, the degrees of fatigue and motivation were associated with larger mean diffusivity (MD) in the right putamen, pallidus and caudate. Furthermore, the degree of physical activity was associated with a larger MD only in the right putamen. Accordingly, motivation was the best candidate for widespread basal ganglia, whereas physical activity might be the best candidate for the putamen. A plausible mechanism of fatigue may involve abnormal function of the motor system, as well as areas of the dopaminergic system in the basal ganglia that are associated with motivation and reward. PMID:26893077

  13. Basal ganglia correlates of fatigue in young adults

    PubMed Central

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Kotozaki, Yuka; Shinada, Takamitsu; Maruyama, Tsukasa; Sekiguchi, Atsushi; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Magistro, Daniele; Sakaki, Kohei; Jeong, Hyeonjeong; Sasaki, Yukako; Kawashima, Ryuta

    2016-01-01

    Although the prevalence of chronic fatigue is approximately 20% in healthy individuals, there are no studies of brain structure that elucidate the neural correlates of fatigue outside of clinical subjects. We hypothesized that fatigue without evidence of disease might be related to changes in the basal ganglia and prefrontal cortex and be implicated in fatigue with disease. We aimed to identify the white matter structures of fatigue in young subjects without disease using magnetic resonance imaging (MRI). Healthy young adults (n = 883; 489 males and 394 females) were recruited. As expected, the degrees of fatigue and motivation were associated with larger mean diffusivity (MD) in the right putamen, pallidus and caudate. Furthermore, the degree of physical activity was associated with a larger MD only in the right putamen. Accordingly, motivation was the best candidate for widespread basal ganglia, whereas physical activity might be the best candidate for the putamen. A plausible mechanism of fatigue may involve abnormal function of the motor system, as well as areas of the dopaminergic system in the basal ganglia that are associated with motivation and reward. PMID:26893077

  14. Genetic heterogeneity in familial idiopathic basal ganglia calcification (Fahr disease).

    PubMed

    Oliveira, J R M; Spiteri, E; Sobrido, M J; Hopfer, S; Klepper, J; Voit, T; Gilbert, J; Wszolek, Z K; Calne, D B; Stoessl, A J; Hutton, M; Manyam, B V; Boller, F; Baquero, M; Geschwind, D H

    2004-12-14

    Familial idiopathic basal ganglia calcification (IBGC, Fahr disease) is an inherited neurologic condition characterized by basal ganglia and extra-basal ganglia brain calcifications, parkinsonism, and neuropsychiatric symptoms. The authors examined six families for linkage to the previously identified genetic locus (IBGC1) located on chromosome 14q. The authors found evidence against linkage to IBGC1 in five of the six families supporting previous preliminary studies demonstrating genetic heterogeneity in familial IBGC. PMID:15596772

  15. Mineralizing angiopathy with basal ganglia stroke in an infant

    PubMed Central

    Jain, Puneet; Kishore, Praveen; Bhasin, Jasjit Singh; Arya, Subhash Chand

    2015-01-01

    Basal ganglia stroke is known following trivial head trauma. Recently a distinct clinic-radiological entity termed ‘mineralizing angiopathy’ was described. We report an infant who developed basal ganglia stroke following trivial fall. His clinic-radiological features are described. PMID:26019426

  16. Basal Ganglia Mechanisms Underlying Precision Grip Force Control

    PubMed Central

    Prodoehl, Janey; Corcos, Daniel M.; Vaillancourt, David E.

    2009-01-01

    The classic grasping network has been well studied but thus far the focus has been on cortical regions in the control of grasping. Sub-cortically, specific nuclei of the basal ganglia have been shown to be important in different aspects of precision grip force control but these findings have not been well integrated. In this review we outline the evidence to support the hypothesis that key basal ganglia nuclei are involved in parameterizing specific properties of precision grip force. We review literature from different areas of human and animal work that converges to build a case for basal ganglia involvement in the control of precision gripping. Following on from literature showing anatomical connectivity between the basal ganglia nuclei and key nodes in the cortical grasping network, we suggest a conceptual framework for how the basal ganglia could function within the grasping network, particularly as it relates to the control of precision grip force. PMID:19428499

  17. Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder

    PubMed Central

    Womer, Fay Y.; Wang, Lei; Alpert, Kathryn; Smith, Matthew J.; Csernansky, John G.; Barch, Deanna; Mamah, Daniel

    2014-01-01

    In this study, we examined the morphology of the basal ganglia and thalamus in bipolar disorder (BP), schizophrenia-spectrum disorders (SCZ-S), and healthy controls (HC) with particular interest in differences related to the absence or presence of psychosis. Volumetric and shape analyses of the basal ganglia and thalamus were performed in 33 BP individuals [12 without history of psychotic features (NPBP) and 21 with history of psychotic features (PBP)], 32 SCZ-S individuals [28 with SCZ and 4 with schizoaffective disorder], and 27 HC using FreeSurfer-initiated large deformation diffeomorphic metric mapping. Significant volume differences were found in the caudate and globus pallidus, with volumes smallest in the NPBP group. Shape abnormalities showing inward deformation of superior regions of the caudate were observed in BP (and especially in NPBP) compared with HC. Shape differences were also found in the globus pallidus and putamen when comparing the BP and SCZ-S groups. No significant differences were seen in the nucleus accumbens and thalamus. In summary, structural abnormalities in the caudate and globus pallidus are present in BP and SCZ-S. Differences were more apparent in the NPBP subgroup. The findings herein highlight the potential importance of separately examining BP subgroups in neuroimaging studies. PMID:24957866

  18. The basal ganglia-circa 1982. A review and commentary.

    PubMed

    Mehler, W R

    1981-01-01

    Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's [88] proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's [72] more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement. PMID:6126156

  19. Basal ganglia intensity indices and diffusion weighted imaging in manganese-exposed welders

    PubMed Central

    Criswell, Susan R; Perlmutter, Joel S; Huang, John L; Golchin, Nima; Flores, Hubert P; Hobson, Angela; Aschner, Michael; Erikson, Keith M; Checkoway, Harvey; Racette, Brad A

    2013-01-01

    Objectives Manganese exposure leads to diffuse cerebral metal deposition with the highest concentration in the globus pallidus associated with increased T1-weighted MRI signal. T1 signal intensity in extra-pallidal basal ganglia (caudate and putamen) has not been studied in occupationally exposed workers. Diffusion weighted imaging is a non-invasive measure of neuronal damage and may provide a quantification of neurotoxicity associated with welding and manganese exposure. This study investigated extra-pallidal T1 basal ganglia signal intensity as a marker of manganese exposure and basal ganglia diffusion weighted imaging abnormalities as a potential marker of neurotoxicity. Methods A 3T MR case:control imaging study was performed on 18 welders and 18 age- and gender-matched controls. Basal ganglia regions of interest were identified for each subject. T1-weighted intensity indices and apparent diffusion coefficients were generated for each region. Results All regional indices were higher in welders than controls (p≀0.05). Combined basal ganglia (ρ=0.610), caudate (ρ=0.645), anterior (ρ=0.595) and posterior putamen (ρ=0.511) indices were more correlated with exposure than pallidal (ρ=0.484) index. Welder apparent diffusion coefficient values were lower than controls for globus pallidus (p=0.03) and anterior putamen (p=0.004). Conclusions Welders demonstrated elevated T1 indices throughout the basal ganglia. Combined basal ganglia, caudate and putamen indices were more correlated with exposure than pallidal index suggesting more inclusive basal ganglia sampling results in better exposure markers. Elevated indices were associated with diffusion weighted abnormalities in the pallidum and anterior putamen suggesting neurotoxicity in these regions. PMID:22447645

  20. Cooccurrence of Multiple Sclerosis and Idiopathic Basal Ganglia Calcification

    PubMed Central

    Abedini, M.; Karimi, N.; Tabrizi, N.

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of central nervous system that affects both white and gray matter. Idiopathic calcification of the basal ganglia is a rare neurodegenerative disorder of unknown cause that is characterized by sporadic or familial brain calcification. Concurrence of multiple sclerosis (MS) and idiopathic basal ganglia calcification (Fahr's disease) is very rare event. In this study, we describe a cooccurrence of idiopathic basal ganglia calcification with multiple sclerosis. The association between this disease and MS is unclear and also maybe probably coincidental. PMID:26351460

  1. The basal ganglia-circa 1982 - A review and commentary

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1981-01-01

    A review is presented of recent studies which utilize new anterograde and retrograde axon transport methods in order to improve knowledge of the projection of the basal ganglia and to clarify their sites of origin. These studies have thrown new light on certain topographic connectional relationships and have revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Also examined are the many new histochemical techniques that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in or interconnecting with the basal ganglia.

  2. Clinical manifestation and neuroimaging methods in diagnosing basal ganglia calcifications.

    PubMed

    Stenc Bradvica, Ivanka; Jan?uljak, Davor; Butkovi?-Soldo, Silva; Mihaljevi?, Ivan; Vladeti?, Mirjana; Bradvica, Mario

    2013-02-01

    The aim of this case study was to evaluate the clinical symptoms in patients with basal ganglia calcifications and compare the neuroimaging methods used in confirming this state. The clinical status and performed transcranial sonography of basal ganglia structures in patients with brain calcifications found by computed brain tomography was examined. In one of these patients DaTSCAN was performed. A large spectrum of different symptoms was found. Transcranial sonography of basal ganglia showed the hyperechogenicity of nucleus lenticularis in eight out of 10 patients. DaTSCAN, which was performed to one patient with parkinsonian signs and the hyperechogenicity of substantia nigra found by transcranial sonography, was normal. Transcranial sonography is a newly neuroimaging method which can contribute to diagnosing basal ganglia calcifications in patients with different neurological signs. Computed tomography of brain remains the most adequate technique in visualising calcifications. PMID:23348181

  3. Short latency cerebellar modulation of the basal ganglia

    PubMed Central

    Chen, Christopher H.; Fremont, Rachel; Arteaga-Bracho, Eduardo E.; Khodakhah, Kamran

    2014-01-01

    The graceful, purposeful motion of our body is an engineering feat which remains unparalleled in robotic devices using advanced artificial intelligence. Much of the information required for complex movements is generated by the cerebellum and the basal ganglia in conjunction with the cortex. Cerebellum and basal ganglia have been thought to communicate with each other only through slow multi-synaptic cortical loops, begging the question as to how they coordinate their outputs in real time. Here we show in mice that the cerebellum rapidly modulates the activity of the striatum via a disynaptic pathway. Under physiological conditions this short latency pathway is capable of facilitating optimal motor control by allowing the basal ganglia to incorporate time-sensitive cerebellar information and by guiding the sign of cortico-striatal plasticity. Conversely, under pathological condition this pathway relays aberrant cerebellar activity to the basal ganglia to cause dystonia. PMID:25402853

  4. Cognitive-motor interactions of the basal ganglia in development

    PubMed Central

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214

  5. Reassessing Models of Basal Ganglia Function and Dysfunction

    PubMed Central

    Nelson, Alexandra B.; Kreitzer, Anatol C.

    2015-01-01

    The basal ganglia are a series of interconnected subcortical nuclei. The function and dysfunction of these nuclei has been studied intensively as it pertains to motor control, but more recently our knowledge of these functions has broadened to include prominent roles in cognition and affective control. This review will summarize historical models of basal ganglia function, findings which have supported or conflicted with these models, and emphasize recent work in animals and humans directly testing the hypotheses generated by these models. PMID:25032493

  6. Cognitive-motor interactions of the basal ganglia in development.

    PubMed

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214

  7. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects

    PubMed Central

    Rubin, Jonathan E.; McIntyre, Cameron C.; Turner, Robert S.; Wichmann, Thomas

    2012-01-01

    The availability of suitable animal models and of the opportunity to record electrophysiologic data in movement disorder patients undergoing neurosurgical procedures has allowed researchers to investigate parkinsonism-related changes in neuronal firing patterns in the basal ganglia and associated areas of thalamus and cortex. These studies have shown that parkinsonism is associated with increased activity in the basal ganglia output nuclei, along with an increase in burst discharges, oscillatory firing, and synchronous firing patterns throughout the basal ganglia. Computational approaches have the potential to play an important role in the interpretation of these data. Such efforts can provide a formalized view of neuronal interactions in the network of connections between basal ganglia, thalamus and cortex, allow for the exploration of possible contributions of particular network components to parkinsonism, and potentially result in new conceptual frameworks and hypotheses that can be subjected to biological testing. It has proven very difficult, however, to integrate the wealth of the experimental findings into coherent models of the disease. In this review, we provide an overview of the abnormalities in neuronal activity that have been associated with parkinsonism. Subsequently, we discuss some particular efforts to model the pathophysiologic mechanisms that may link abnormal basal ganglia activity to the cardinal parkinsonian motor signs and may help explain the mechanisms underlying the therapeutic efficacy of deep brain stimulation for Parkinson’s disease. We emphasize the logical structure of these computational studies, making clear the assumptions from which they proceed and the consequences and predictions that follow from these assumptions. PMID:22805066

  8. The basal ganglia’s contributions to perceptual decision-making

    PubMed Central

    Ding, Long; Gold, Joshua I.

    2013-01-01

    Perceptual decision-making is a computationally demanding process that requires the brain to interpret incoming sensory information in the context of goals, expectations, preferences, and other factors. These integrative processes engage much of cortex but also require contributions from subcortical structures to affect behavior. Here we summarize recent evidence supporting specific computational roles of the basal ganglia in perceptual decision-making. These roles likely share common mechanisms with the basal ganglia’s other, more well-established functions in motor control, learning, and other aspects of cognition and thus can provide insights into the general roles of this important subcortical network in higher brain function. PMID:23972593

  9. Basal ganglia and Dopamine Contributions to Probabilistic Category Learning

    PubMed Central

    Shohamy, D.; Myers, C.E.; Kalanithi, J.; Gluck, M.A.

    2009-01-01

    Studies of the medial temporal lobe and basal ganglia memory systems have recently been extended towards understanding the neural systems contributing to category learning. The basal ganglia, in particular, have been linked to probabilistic category learning in humans. A separate parallel literature in systems neuroscience has emerged, indicating a role for the basal ganglia and related dopamine inputs in reward prediction and feedback processing. Here, we review behavioral, neuropsychological, functional neuroimaging, and computational studies of basal ganglia and dopamine contributions to learning in humans. Collectively, these studies implicate the basal ganglia in incremental, feedback-based learning that involves integrating information across multiple experiences. The medial temporal lobes, by contrast, contribute to rapid encoding of relations between stimuli and support flexible generalization of learning to novel contexts and stimuli. By breaking down our understanding of the cognitive and neural mechanisms contributing to different aspects of learning, recent studies are providing insight into how, and when, these different processes support learning, how they may interact with each other, and the consequence of different forms of learning for the representation of knowledge. PMID:18061261

  10. Developmental Venous Anomaly With Asymmetrical Basal Ganglia Calcification: Two Case Reports and Review of the Literature

    PubMed Central

    Sarp, Ali Firat; Batki, Ozan; Gelal, Mustafa Fazil

    2015-01-01

    Developmental venous anomaly (DVA) is a common lesion formerly known as venous angioma. DVAs drain normal brain parenchyma; however, parenchymal abnormalities surrounding DVAs have been reported. Unilateral putamen and caudate calcification in the drainage territory of DVAs has so far been reported in 7 cases, all with deep venous drainage. We present two additional cases of DVAs, one with superficial and the other one with deep venous drainage, associated with basal ganglia calcifications. We emphasize that DVAs should be in the differential diagnosis of unilateral basal ganglia calcifications. PMID:26557273

  11. Oscillations and the basal ganglia: Motor control and beyond

    PubMed Central

    Brittain, John-Stuart; Brown, Peter

    2016-01-01

    Oscillations form a ubiquitous feature of the central nervous system. Evidence is accruing from cortical and sub-cortical recordings that these rhythms may be functionally important, although the precise details of their roles remain unclear. The basal ganglia share this predilection for rhythmic activity which, as we see in Parkinson’s disease, becomes further enhanced in the dopamine depleted state. While certain cortical rhythms appear to penetrate the basal ganglia, others are transformed or blocked. Here, we discuss the functional association of oscillations in the basal ganglia and their relationship with cortical activity. We further explore the neural underpinnings of such oscillatory activity, including the important balance to be struck between facilitating information transmission and limiting information coding capacity. Finally, we introduce the notion that synchronised oscillatory activity can be broadly categorised as immutability promoting rhythms that reinforce incumbent processes, and mutability promoting rhythms that favour novel processing. PMID:23711535

  12. BASAL GANGLIA PATHOLOGY IN SCHIZOPHRENIA: DOPAMINE CONNECTIONS and ANOMALIES

    PubMed Central

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Roberts, Rosalinda C.

    2010-01-01

    Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in the brain and the target of antipsychotic drugs. In this review we will start with an overview of basal ganglia anatomy emphasizing dopamine circuitry. Then, we will review the major deficits in dopamine function in schizophrenia, emphasizing the role of excessive dopamine in the basal ganglia and the link to psychosis. PMID:20089137

  13. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation.

    PubMed

    Da Cunha, Claudio; Boschen, Suelen L; GĂłmez-A, Alexander; Ross, Erika K; Gibson, William S J; Min, Hoon-Ki; Lee, Kendall H; Blaha, Charles D

    2015-11-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. PMID:25684727

  14. Coupling in the cortico-basal ganglia circuit is aberrant in the ketamine model of schizophrenia.

    PubMed

    Cordon, Ivan; Nicolás, María Jesús; Arrieta, Sandra; Lopetegui, Eneko; López-Azcárate, Jon; Alegre, Manuel; Artieda, Julio; Valencia, Miguel

    2015-08-01

    Recent studies have suggested the implication of the basal ganglia in the pathogenesis of schizophrenia. To investigate this hypothesis, here we have used the ketamine model of schizophrenia to determine the oscillatory abnormalities induced in the rat motor circuit of the basal ganglia. The activity of free moving rats was recorded in different structures of the cortico-basal ganglia circuit before and after an injection of a subanesthesic dose of ketamine (10mg/kg). Spectral estimates of the oscillatory activity, phase-amplitude cross-frequency coupling interactions (CFC) and imaginary event-related coherence together with animals? behavior were analyzed. Oscillatory patterns in the cortico-basal ganglia circuit were highly altered by the effect of ketamine. CFC between the phases of low-frequency activities (delta, 1-4; theta 4-8Hz) and the amplitude of high-gamma (~80Hz) and high-frequency oscillations (HFO) (~150Hz) increased dramatically and correlated with the movement increment shown by the animals. Between-structure analyses revealed that ketamine had also a massive effect in the low-frequency mediated synchronization of the HFO's across the whole circuit. Our findings suggest that ketamine administration results in an aberrant hypersynchronization of the whole cortico-basal circuit where the tandem theta/HFO seems to act as the main actor in the hyperlocomotion shown by the animals. Here we stress the importance of the basal ganglia circuitry in the ketamine model of schizophrenia and leave the door open to further investigations devoted to elucidate to what extent these abnormalities also reflect the prominent neurophysiological deficits observed in schizophrenic patients. PMID:25910422

  15. Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.

    PubMed

    Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D

    2014-01-01

    A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations. PMID:25307086

  16. Cerebellar networks with the cerebral cortex and basal ganglia

    PubMed Central

    Bostan, Andreea C.; Dum, Richard P.; Strick, Peter L.

    2013-01-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent results from neuroanatomical, behavioral and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that the output from the cerebellum reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, indicating that the two subcortical structures are part of a densely interconnected network. Altogether, these results provide the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  17. Canceling actions involves a race between basal ganglia pathways

    PubMed Central

    Schmidt, Robert; Leventhal, Daniel K.; Mallet, Nicolas; Chen, Fujun; Berke, Joshua D.

    2013-01-01

    Salient cues can prompt the rapid interruption of planned actions. It has been proposed that fast, reactive behavioral inhibition involves specific basal ganglia pathways, and we tested this by comparing activity in multiple rat basal ganglia structures during performance of a stop-signal task. Subthalamic nucleus (STN) neurons showed low-latency responses to Stop cues, irrespective of whether actions were successfully canceled or not. By contrast, neurons downstream in the substantia nigra pars reticulata (SNr) responded to Stop cues only in trials with successful cancellation. Recordings and simulations together indicate that this sensorimotor gating arises from the relative timing of two distinct inputs to neurons in the SNr dorsolateral “core” subregion: cue-related excitation from STN and movement-related inhibition from striatum. Our results support race models of action cancellation, with successful stopping requiring Stop cue information to be transmitted from STN to SNr before increased striatal input creates a point of no return. PMID:23852117

  18. Basal ganglia circuits for reward value-guided behavior

    PubMed Central

    Hikosaka, Okihide; Kim, Hyoung F.; Yasuda, Masaharu; Yamamoto, Shinya

    2014-01-01

    The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects. These signals are sent to the superior colliculus through different parts of the substantia nigra, so that the animal looks preferentially at high-valued objects, but in different manners. Relying on short-term value memories, the caudate head circuit allows gaze to move expectantly to recently valued objects. Relying on long-term value memories, the caudate tail circuit allows gaze to move automatically to previously valued objects. The basal ganglia also contain an equivalent parallel mechanism for action values. Such flexible-stable parallel mechanisms for object and action values create a highly adaptable system for decision making. PMID:25032497

  19. Basal ganglia iron in tardive dyskinesia: an MRI study.

    PubMed

    Elkashef, A M; Egan, M F; Frank, J A; Hyde, T M; Lewis, B K; Wyatt, R J

    1994-01-01

    Alterations in brain iron could play an important role in the development of tardive dyskinesia in patients receiving neuroleptic medication. To test this hypothesis, magnetic resonance imaging scans of the brain were performed on 21 chronic schizophrenic patients. Ten patients met research diagnostic criteria for persistent tardive dyskinesia, and 11 were free of tardive dyskinesia. All patients had received long-term neuroleptic treatment and were on a stable neuroleptic dose for at least 3 months before scanning. The signal intensity of basal ganglia structures was obtained as a quantitative estimate of brain iron content. No difference was found in the signal intensity ratios between the two groups. This suggests that iron deposition in the basal ganglia, at least as assessed by this measure, does not play a role in the pathophysiology of tardive dyskinesia. PMID:8167198

  20. Centrality of Striatal Cholinergic Transmission in Basal Ganglia Function

    PubMed Central

    Bonsi, Paola; Cuomo, Dario; Martella, Giuseppina; Madeo, Graziella; Schirinzi, Tommaso; Puglisi, Francesca; Ponterio, Giulia; Pisani, Antonio

    2011-01-01

    Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction. Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson's disease and dystonia. Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders. PMID:21344017

  1. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures

    PubMed Central

    Kotsenas, Amy L.; Britton, Jeffrey W.; McKeon, Andrew; Watson, Robert E.; Klein, Christopher J.; Boeve, Bradley F.; Lowe, Val; Ahlskog, J. Eric; Shin, Cheolsu; Boes, Christopher J.; Crum, Brian A.; Laughlin, Ruple S.; Pittock, Sean J.

    2015-01-01

    Objective: To characterize the clinical features and MRI abnormalities of leucine-rich glioma-inactivated 1 (LGI1)-autoantibody (Ab) faciobrachial dystonic seizures (FBDS). Methods: Forty-eight patients with LGI1-Ab encephalopathy were retrospectively identified by searching our clinical and serologic database from January 1, 2002, to June 1, 2015. Of these, 26 met inclusion criteria for this case series: LGI1-Ab seropositivity and FBDS. In a separate analysis of all 48 patients initially identified, the MRIs of patients with (n = 26) and without (n = 22) FBDS were compared by 2 neuroradiologists blinded to the clinical details. Results: The median age of the 26 included patients was 62.5 years (range 37–78); 65% were men. FBDS involved arm (26), face (22), and leg (12). Ten were previously diagnosed as psychogenic. Ictal EEGs were normal in 20 of 23 assessed. Basal ganglia T1 and T2 signal abnormalities were detected in 11 patients (42%), with excellent agreement between neuroradiologists (Îș scores of 0.86 and 0.93, respectively), and included T1 hyperintensity alone (2), T2 hyperintensity alone (1), or both (8). The T1 hyperintensities persisted longer than the T2 hyperintensities (median 11 weeks vs 1 week, p = 0.02). Improvement with immunotherapy (18/18) was more frequent than with antiepileptic medications (10/24). A separate analysis of all 48 patients initially identified with LGI1-Ab encephalopathy showed that basal ganglia MRI abnormalities were present in 11 of 26 with FBDS but not present in those without FBDS (0/22) (p < 0.001). In contrast, mesial temporal MRI abnormalities were less common among those with FBDS (42%) than those without (91%) (p < 0.001). Conclusions: Basal ganglia T1 hyperintensity is a clinically useful MRI biomarker of LGI1-Ab FBDS and suggests a basal ganglia localization. PMID:26468474

  2. Proactive Selective Response Suppression Is Implemented via the Basal Ganglia

    PubMed Central

    Majid, D. S. Adnan; Cai, Weidong; Corey-Bloom, Jody

    2013-01-01

    In the welter of everyday life, people can stop particular response tendencies without affecting others. A key requirement for such selective suppression is that subjects know in advance which responses need stopping. We hypothesized that proactively setting up and implementing selective suppression relies on the basal ganglia and, specifically, regions consistent with the inhibitory indirect pathway for which there is scant functional evidence in humans. Consistent with this hypothesis, we show, first, that the degree of proactive motor suppression when preparing to stop selectively (indexed by transcranial magnetic stimulation) corresponds to striatal, pallidal, and frontal activation (indexed by functional MRI). Second, we demonstrate that greater striatal activation at the time of selective stopping correlates with greater behavioral selectivity. Third, we show that people with striatal and pallidal volume reductions (those with premanifest Huntington's disease) have both absent proactive motor suppression and impaired behavioral selectivity when stopping. Thus, stopping goals are used to proactively set up specific basal ganglia channels that may then be triggered to implement selective suppression. By linking this suppression to the striatum and pallidum, these results provide compelling functional evidence in humans of the basal ganglia's inhibitory indirect pathway. PMID:23946385

  3. Modulation of the basal ganglia dopaminergic system in a transgenic mouse exhibiting dystonia-like features

    PubMed Central

    Giannakopoulou, D.; Armata, I. A.; Mitsacos, A.; Shashidharan, P.; Giompres, P.

    2011-01-01

    Dystonia is a movement disorder characterized by involuntary excessive muscle activity and abnormal postures. There are data supporting the hypothesis that basal ganglia dysfunction, and specifically dopaminergic system dysfunction, plays a role in dystonia. In the present study, we used hyperkinetic transgenic mice generated as a model of DYT1 dystonia and compared the basal ganglia dopaminergic system between transgenic mice exhibiting hyperkinesia (affected) transgenic mice not showing movement abnormalities (unaffected), and non-transgenic littermates A decrease in the density of striatal D2 binding sites, measured by [3H]raclopride binding, and D2 mRNA expression in substantia nigra pars compacta (SNpc) was revealed in affected an unaffected transgenic mice when compared with non-transgenic. No difference in D1 receptor binding and DAT binding, measured by [3H]SCH23390 and [3H]WIN35428 binding, respectively, was found in striatum of transgenic animals. In SNpc, increased levels of DAT binding sites were observed in affected and unaffected animals compared to non-transgenic, whereas no change in DAT mRNA expression was found. Our results show selective neurochemical changes in the basal ganglia dopaminergic system, suggesting a possible involvement in the pathophysiology of dystonialike motor hyperactivity. PMID:21136125

  4. [Plexiform neurofibroma and basal ganglia anomaly in Watson syndrome].

    PubMed

    Weber, P; Kotthoff, S; Schuierer, G; Kurlemann, G

    1999-01-01

    A 4 year-old boy was referred for diagnostic reevaluation with known pulmonary valve stenosis. Physical examination revealed multiple cafe-au-lait spots, inguinal freckling and on the right side in supraclavicular region a softly, non-painful tumour. The boy showed a mild mental and language retardation. Ultrasound and MRT demonstrated supraclavicular a plexiform neurofibroma and intracranial increased intensity lesions in basal ganglia and mesencephalon. In our patient, we have diagnosed a Watson-Syndrome, the overlap and differences to neurofibromatosis type I is discussed. PMID:10412128

  5. Idiopathic Basal Ganglia Calcification Presented with Impulse Control Disorder

    PubMed Central

    Sahin, Cem; Levent, Mustafa; Akbaba, Gulhan; Kara, Bilge; Yeniceri, Emine Nese; Inanc, Betul Battaloglu

    2015-01-01

    Primary familial brain calcification (PFBC), also referred to as Idiopathic Basal Ganglia Calcification (IBGC) or “Fahr's disease,” is a clinical condition characterized by symmetric and bilateral calcification of globus pallidus and also basal ganglions, cerebellar nuclei, and other deep cortical structures. It could be accompanied by parathyroid disorder and other metabolic disturbances. The clinical features are dysfunction of the calcified anatomic localization. IBGC most commonly presents with mental damage, convulsion, parkinson-like clinical picture, and neuropsychiatric behavior disorders; however, presentation with impulse control disorder is not a frequent presentation. In the current report, a 43-year-old male patient who has been admitted to psychiatry policlinic with the complaints of aggressive behavior episodes and who has been diagnosed with impulse control disorder and IBGC was evaluated in the light of the literature. PMID:26246920

  6. Familial idiopathic basal ganglia calcification (Fahr’s disease)

    PubMed Central

    Mufaddel, Amir A.; Al-Hassani, Ghanem A.

    2014-01-01

    Familial idiopathic basal ganglia calcification (Fahr’s disease) is a rare neurodegenerative disorder characterized by symmetrical and bilateral calcification of the basal ganglia. Calcifications may also occur in other brain regions such as dentate nucleus, thalamus, and cerebral cortex. Both familial and non-familial cases of Fahr’s disease have been reported, predominantly with autosomal-dominant fashion. The disease has a wide range of clinical presentations, predominantly with neuropsychiatric features and movement disorders. Psychiatric features reported in the literature include: cognitive impairment, depression, hallucinations, delusions, manic symptoms, anxiety, schizophrenia-like psychosis, and personality change. Other clinical features include: Parkinsonism, ataxia, headache, seizures, vertigo, stroke-like events, orthostatic hypotension, tremor, dysarthria, and paresis. Fahr’s disease should be considered in the differential diagnosis of psychiatric symptoms, particularly when associated with movement disorder. The disease should be differentiated from other conditions that can cause intracranial calcification. No specific treatment is currently available. Further research is needed to bridge the gap existing in our current knowledge of the prevalence, etiology, symptoms, and treatment of Fahr’s disease. PMID:24983277

  7. Familial idiopathic basal ganglia calcification (Fahr`s disease).

    PubMed

    Mufaddel, Amir A; Al-Hassani, Ghanem A

    2014-07-01

    Familial idiopathic basal ganglia calcification (Fahr`s disease) is a rare neurodegenerative disorder characterized by symmetrical and bilateral calcification of the basal ganglia. Calcifications may also occur in other brain regions such as dentate nucleus, thalamus, and cerebral cortex. Both familial and non-familial cases of Fahr`s disease have been reported, predominantly with autosomal-dominant fashion. The disease has a wide range of clinical presentations, predominantly with neuropsychiatric features and movement disorders. Psychiatric features reported in the literature include: cognitive impairment, depression, hallucinations, delusions, manic symptoms, anxiety, schizophrenia-like psychosis, and personality change. Other clinical features include: Parkinsonism, ataxia, headache, seizures, vertigo, stroke-like events, orthostatic hypotension, tremor, dysarthria, and paresis. Fahr`s disease should be considered in the differential diagnosis of psychiatric symptoms, particularly when associated with movement disorder. The disease should be differentiated from other conditions that can cause intracranial calcification. No specific treatment is currently available. Further research is needed to bridge the gap existing in our current knowledge of the prevalence, etiology, symptoms, and treatment of Fahr`s disease. PMID:24983277

  8. The basal ganglia and cerebellum interact in the expression of dystonic movement

    PubMed Central

    Neychev, Vladimir K.; Fan, Xueliang; Mitev, V. I.; Hess, Ellen J.

    2008-01-01

    Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements or abnormal posturing. Traditional views place responsibility for dystonia with dysfunction of basal ganglia circuits, yet recent evidence has pointed towards cerebellar circuits as well. In the current studies we used two strategies to explore the hypothesis that the expression of dystonic movements depends on influences from a motor network that includes both the basal ganglia and cerebellum. The first strategy was to evaluate the consequences of subthreshold lesions of the striatum in two different animal models where dystonic movements are thought to originate from abnormal cerebellar function. The second strategy employed microdialysis to search for changes in striatal dopamine release in these two animal models where the cerebellum has been already implicated. One of the animal models involved tottering mice, which exhibit paroxysmal dystonia due to an inherited defect affecting calcium channels. In keeping with prior results implicating the cerebellum in this model, surgical removal of the cerebellum eliminated their dystonic attacks. In contrast, subclinical lesions of the striatum with either 6-hydroxydopamine (6OHDA) or quinolinic acid (QA) exaggerated their dystonic attacks. Microdialysis of the striatum revealed dystonic attacks in tottering mice to be associated with a significant reduction in extracellular striatal dopamine. The other animal model involved the induction of dystonia via pharmacological excitation of the cerebellar cortex by local application of kainic acid in normal mice. In this model the site of stimulation determines the origin of dystonia in the cerebellum. However, subclinical striatal lesions with either 6OHDA or QA again exaggerated their generalized dystonia. When dystonic movements were triggered by pharmacological stimulation of the cerebellum, microdialysis revealed significant reductions in striatal dopamine release. These results demonstrate important functional relationships between cerebellar and basal ganglia circuits in two different animal models of dystonia. They suggest that expression of dystonic movements depends on influences from both basal ganglia and cerebellum in both models. These results support the hypothesis that dystonia may result from disruption of a motor network involving both the basal ganglia and cerebellum, rather than isolated dysfunction of only one motor system. PMID:18669484

  9. Saccade learning with concurrent cortical and subcortical basal ganglia loops

    PubMed Central

    N'Guyen, Steve; Thurat, Charles; Girard, BenoĂźt

    2014-01-01

    The Basal Ganglia (BG) is a central structure involved in multiple cortical and subcortical loops. Some of these loops are believed to be responsible for saccade target selection. We study here how the very specific structural relationships of these saccadic loops can affect the ability of learning spatial and feature-based tasks. We propose a model of saccade generation with reinforcement learning capabilities based on our previous BG and superior colliculus models. It is structured around the interactions of two parallel cortico-basal loops and one tecto-basal loop. The two cortical loops separately deal with spatial and non-spatial information to select targets in a concurrent way. The subcortical loop is used to make the final target selection leading to the production of the saccade. These different loops may work in concert or disturb each other regarding reward maximization. Interactions between these loops and their learning capabilities are tested on different saccade tasks. The results show the ability of this model to correctly learn basic target selection based on different criteria (spatial or not). Moreover the model reproduces and explains training dependent express saccades toward targets based on a spatial criterion. Finally, the model predicts that in absence of prefrontal control, the spatial loop should dominate. PMID:24795615

  10. Basal ganglia output to the thalamus: still a paradox

    PubMed Central

    Farries, Michael A.; Fee, Michale S.

    2013-01-01

    The basal ganglia (BG) recipient thalamus controls motor output but it remains unclear how its activity is regulated. Several studies report that thalamic activation occurs via disinhibition during pauses in the firing of inhibitory pallidal inputs from the BG. Other studies indicate that thalamic spiking is triggered by pallidal inputs via post-inhibitory ‘rebound’ calcium spikes. Finally excitatory cortical inputs can drive thalamic activity, which becomes entrained, or time-locked, to pallidal spikes. We present a unifying framework where these seemingly distinct results arise from a continuum of thalamic firing ‘modes’ controlled by excitatory inputs. We provide a mechanistic explanation for paradoxical pallidothalamic coactivations observed during behavior and raise new questions of what information is integrated in the thalamus to control behavior. PMID:24188636

  11. Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal

    ERIC Educational Resources Information Center

    Shohamy, Daphna; Myers, Catherine E.; Hopkins, Ramona O.; Sage, Jake; Gluck, Mark A.

    2009-01-01

    The hippocampus and the basal ganglia are thought to play fundamental and distinct roles in learning and memory, supporting two dissociable memory systems. Interestingly, however, the hippocampus and the basal ganglia have each, separately, been implicated as necessary for reversal learning--the ability to adaptively change a response when…

  12. Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal

    ERIC Educational Resources Information Center

    Shohamy, Daphna; Myers, Catherine E.; Hopkins, Ramona O.; Sage, Jake; Gluck, Mark A.

    2009-01-01

    The hippocampus and the basal ganglia are thought to play fundamental and distinct roles in learning and memory, supporting two dissociable memory systems. Interestingly, however, the hippocampus and the basal ganglia have each, separately, been implicated as necessary for reversal learning--the ability to adaptively change a response when


  13. [Neurobiology of parkinsonism. I. Neural substrates an neurochemistry of the basal ganglia].

    PubMed

    Ponzoni, S; Garcia-Cairasco, N

    1995-09-01

    Movement disorders, in general, are characterized by a breakdown in the integrated coordination of posture and motion by multiple brain and muscular systems. In the expression of parkinsonism, in particular, critical and altered structures such as substantia nigra, appear to be related to the cortex-basal ganglia and thalamus-basal ganglia sub-circuits. PMID:8585835

  14. A selective role for right insula—basal ganglia circuits in appetitive stimulus processing

    PubMed Central

    Vijayaraghavan, Lavanya; Adolphs, Ralph; Kennedy, Daniel P.; Cassell, Martin; Tranel, Daniel; Paradiso, Sergio

    2013-01-01

    Hemispheric lateralization of hedonic evaluation (‘liking’) and incentive motivation (‘wanting’) in neural networks connecting the basal ganglia and insula (BG-I) in humans was examined. Participants with brain damage restricted to the BG-I of the right (n = 5) or left (n = 5) hemisphere, and 26 healthy participants matched on age, sex and intelligence quotient were tested on positively and negatively valenced pictures drawn from varied stimulus categories (Vijayaraghavan et al., 2008). Liking was assessed with explicit ratings of pleasantness using a nine-point Likert scale. Wanting was quantified as the amount of work (via repeated keypresses) that participants expended to increase (approach) or decrease (withdraw) viewing time. Right-lesion patients showed abnormally low viewing times and liking ratings for positive images. For a subset of positive images depicting sexual content, right-lesion patients exhibited active withdrawal, while the other two groups approached such stimuli. These results suggest that the right basal ganglia–insula complex plays a greater role than the left in supporting hedonic evaluation and motivational approach to positively valenced stimuli. The finding that active avoidance of stimuli that were not ‘liked’ was spared in both right- and left-sided lesion subjects suggests that unilateral damage to insula/basal ganglia circuits may not be sufficient to affect general incentive motivation independent of preference. PMID:22798397

  15. Pathways for control of face and neck musculature by the basal ganglia and cerebellum.

    PubMed

    Pong, Milton; Horn, Kris M; Gibson, Alan R

    2008-08-01

    The basal ganglia are believed to influence movement via thalamo-cortical projections. However, the basal ganglia may also affect brainstem areas involved in movement control such as the red nucleus. The red nucleus receives input from the cerebellum and projects to motor neurons and premotor neurons in the contralateral brainstem and spinal cord. Are there pathways that allow output from the basal ganglia to influence processing in the red nucleus? This study uses the bidirectional tracer, WGA-HRP, to demonstrate that regions of the cat red nucleus receive input from the basal ganglia as well as from the cerebellum. Output from the entopeduncular nucleus, the feline equivalent of the internal segment of the globus pallidus, provides a modest direct input to the red nucleus as well as a more substantial indirect input via projections to the zona incerta and the fields of Forel. Regions of the red nucleus with input from the basal ganglia also receive input from the cerebellar dentate nucleus and lateral regions of interpositus. The regions of the red nucleus receiving basal gangliar input project to the contralateral facial nucleus and upper segments of the cervical spinal cord. Therefore, the red nucleus provides a junction where output from the basal ganglia can interact with output of the cerebellum for movement control of the head and face. The pathway may provide a substrate for a variety of movement disorders that are seen with diseases of the basal ganglia such as cervical dystonia and Parkinson's facies. PMID:18199482

  16. Automatic Evaluation of Speech Rhythm Instability and Acceleration in Dysarthrias Associated with Basal Ganglia Dysfunction

    PubMed Central

    Rusz, Jan; Hlavni?ka, Jan; ?mejla, Roman; R?ži?ka, Evžen

    2015-01-01

    Speech rhythm abnormalities are commonly present in patients with different neurodegenerative disorders. These alterations are hypothesized to be a consequence of disruption to the basal ganglia circuitry involving dysfunction of motor planning, programing, and execution, which can be detected by a syllable repetition paradigm. Therefore, the aim of the present study was to design a robust signal processing technique that allows the automatic detection of spectrally distinctive nuclei of syllable vocalizations and to determine speech features that represent rhythm instability (RI) and rhythm acceleration (RA). A further aim was to elucidate specific patterns of dysrhythmia across various neurodegenerative disorders that share disruption of basal ganglia function. Speech samples based on repetition of the syllable /pa/ at a self-determined steady pace were acquired from 109 subjects, including 22 with Parkinson’s disease (PD), 11 progressive supranuclear palsy (PSP), 9 multiple system atrophy (MSA), 24 ephedrone-induced parkinsonism (EP), 20 Huntington’s disease (HD), and 23 healthy controls. Subsequently, an algorithm for the automatic detection of syllables as well as features representing RI and RA were designed. The proposed detection algorithm was able to correctly identify syllables and remove erroneous detections due to excessive inspiration and non-speech sounds with a very high accuracy of 99.6%. Instability of vocal pace performance was observed in PSP, MSA, EP, and HD groups. Significantly increased pace acceleration was observed only in the PD group. Although not significant, a tendency for pace acceleration was observed also in the PSP and MSA groups. Our findings underline the crucial role of the basal ganglia in the execution and maintenance of automatic speech motor sequences. We envisage the current approach to become the first step toward the development of acoustic technologies allowing automated assessment of rhythm in dysarthrias. PMID:26258122

  17. Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior

    PubMed Central

    Barter, Joseph W.; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A.; Bartholomew, Ryan A.

    2015-01-01

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860

  18. Basal ganglia neurons dynamically facilitate exploration during associative learning.

    PubMed

    Sheth, Sameer A; Abuelem, Tarek; Gale, John T; Eskandar, Emad N

    2011-03-30

    The basal ganglia (BG) appear to play a prominent role in associative learning, the process of pairing external stimuli with rewarding responses. Accumulating evidence suggests that the contributions of various BG components may be described within a reinforcement learning model, in which a broad repertoire of possible responses to environmental stimuli are evaluated before the most profitable one is chosen. The striatum receives diverse cortical inputs, providing a rich source of contextual information about environmental cues. It also receives projections from midbrain dopaminergic neurons, whose phasic activity reflects a reward prediction error signal. These coincident information streams are well suited for evaluating responses and biasing future actions toward the most profitable response. Still lacking in this model is a mechanistic description of how initial response variability is generated. To investigate this question, we recorded the activity of single neurons in the globus pallidus internus (GPi), the primary BG output nucleus, in nonhuman primates (Macaca mulatta) performing a motor associative learning task. A subset (29%) of GPi neurons showed learning-related effects, decreasing firing during the early stages of learning, then returning to higher baseline rates as associations were mastered. On a trial-by-trial basis, lower firing rates predicted exploratory behavior, whereas higher rates predicted an exploitive response. These results suggest that, during associative learning, BG output is initially permissive, allowing exploration of a variety of responses. Once a profitable response is identified, increased GPi activity suppresses alternative responses, sharpening the response profile and encouraging exploitation of the profitable learned behavior. PMID:21451026

  19. Humanized Foxp2 specifically affects cortico-basal ganglia circuits.

    PubMed

    Reimers-Kipping, S; Hevers, W; PÀÀbo, S; Enard, W

    2011-02-23

    It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution and influence aspects of speech and language. Recently it was shown that when these substitutions are introduced into the endogenous Foxp2 gene of mice, they increase dendrite length and long-term depression (LTD) in medium spiny neurons of the striatum. Here we investigated if these effects are found in other brain regions. We found that neurons in the cerebral cortex, the thalamus and the striatum have increased dendrite lengths in the humanized mice whereas neurons in the amygdala and the cerebellum do not. In agreement with previous work we found increased LTD in medium spiny neurons, but did not detect alterations of synaptic plasticity in Purkinje cells. We conclude that although Foxp2 is expressed in many brain regions and has multiple roles during mammalian development, the evolutionary changes that occurred in the protein in human ancestors specifically affect brain regions that are connected via cortico-basal ganglia circuits. PMID:21111790

  20. Basal ganglia outputs map instantaneous position coordinates during behavior.

    PubMed

    Barter, Joseph W; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A; Bartholomew, Ryan A; Yin, Henry H

    2015-02-11

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860

  1. Observation of sonified movements engages a basal ganglia frontocortical network

    PubMed Central

    2013-01-01

    Background Producing sounds by a musical instrument can lead to audiomotor coupling, i.e. the joint activation of the auditory and motor system, even when only one modality is probed. The sonification of otherwise mute movements by sounds based on kinematic parameters of the movement has been shown to improve motor performance and perception of movements. Results Here we demonstrate in a group of healthy young non-athletes that congruently (sounds match visual movement kinematics) vs. incongruently (no match) sonified breaststroke movements of a human avatar lead to better perceptual judgement of small differences in movement velocity. Moreover, functional magnetic resonance imaging revealed enhanced activity in superior and medial posterior temporal regions including the superior temporal sulcus, known as an important multisensory integration site, as well as the insula bilaterally and the precentral gyrus on the right side. Functional connectivity analysis revealed pronounced connectivity of the STS with the basal ganglia and thalamus as well as frontal motor regions for the congruent stimuli. This was not seen to the same extent for the incongruent stimuli. Conclusions We conclude that sonification of movements amplifies the activity of the human action observation system including subcortical structures of the motor loop. Sonification may thus be an important method to enhance training and therapy effects in sports science and neurological rehabilitation. PMID:23496827

  2. Origins of basal ganglia output signals in singing juvenile birds

    PubMed Central

    Pidoux, Morgane; Bollu, Tejapratap; Riccelli, Tori

    2014-01-01

    Across species, complex circuits inside the basal ganglia (BG) converge on pallidal output neurons that exhibit movement-locked firing patterns. Yet the origins of these firing patterns remain poorly understood. In songbirds during vocal babbling, BG output neurons homologous to those found in the primate internal pallidal segment are uniformly activated in the tens of milliseconds prior to syllable onsets. To test the origins of this remarkably homogenous BG output signal, we recorded from diverse upstream BG cell types during babbling. Prior to syllable onsets, at the same time that internal pallidal segment-like neurons were activated, putative medium spiny neurons, fast spiking and tonically active interneurons also exhibited transient rate increases. In contrast, pallidal neurons homologous to those found in primate external pallidal segment exhibited transient rate decreases. To test origins of these signals, we performed recordings following lesion of corticostriatal inputs from premotor nucleus HVC. HVC lesions largely abolished these syllable-locked signals. Altogether, these findings indicate a striking homogeneity of syllable timing signals in the songbird BG during babbling and are consistent with a role for the indirect and hyperdirect pathways in transforming cortical inputs into BG outputs during an exploratory behavior. PMID:25392171

  3. Basal Ganglia Contributions to Motor Control: A Vigorous Tutor

    PubMed Central

    Turner, Robert S.; Desmurget, Michel

    2010-01-01

    SUMMARY OF RECENT ADVANCES The roles of the basal ganglia (BG) in motor control are much debated. Many influential hypotheses have grown from studies in which output signals of the BG were not blocked, but pathologically-disturbed. A weakness of that approach is that the resulting behavioral impairments reflect degraded function of the BG per se mixed together with secondary dysfunctions of BG-recipient brain areas. To overcome that limitation, several studies have focused on the main skeletomotor output region of the BG, the globus pallidus internus (GPi). Using single-cell recording and inactivation protocols these studies provide consistent support for two hypotheses: the BG modulates movement performance (“vigor”) according to motivational factors (i.e., context-specific cost/reward functions) and the BG contributes to motor learning. Results from these studies also add to the problems that confront theories positing that the BG selects movement, inhibits unwanted motor responses, corrects errors online, or stores and produces well-learned motor skills. PMID:20850966

  4. Athymhormia and disorders of motivation in Basal Ganglia disease.

    PubMed

    Habib, Michel

    2004-01-01

    The author proposes a general model of human motivation as a separate function at the interface between emotion and action, which can be ascribed to subcortical circuits that are mainly centered on a subset of the basal ganglia and on their limbic connections. It is argued that the long-standing historical understatement of the notion of motivation in neurology is not only due to the complexity of the issue, which has proven hard to disentangle from other domains of dysfunction, but also to the persistence of some misleading conceptual orientations in the way neurologists have considered the brain mechanisms of goal-directed action, torn between a nonspecific "activation" view and an exclusively cognitive conception of motivation. How combining early clinical intuitions of some psychiatrists, careful clinical observations of neurological patients, and data derived from experimental studies in animals provide the basis for a coherent model of human motivation and its specific impairment in clinical neurology is explained. Clinical implications that can be drawn from such a model for some neuropsychiatric conditions are proposed. PMID:15616180

  5. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards.

    PubMed

    Kim, Hyoung F; Hikosaka, Okihide

    2015-07-01

    The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders. PMID:25981958

  6. Case study: acute basal ganglia enlargement and obsessive-compulsive symptoms in an adolescent boy.

    PubMed

    Giedd, J N; Rapoport, J L; Leonard, H L; Richter, D; Swedo, S E

    1996-07-01

    Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAs) may arise when antibodies directed against invading bacteria cross-react with basal ganglia structures, resulting in exacerbations of obsessive-compulsive disorder (OCD) or tic disorders. This is a report of severe worsening of obsessive-compulsive symptoms in an adolescent boy following infection with group A beta-hemolytic streptococci for whom serial magnetic resonance imaging scans of the brain were acquired to assess the relationship between basal ganglia size, symptom severity, and treatment with plasmapheresis. These data provide further support for basal ganglia-mediated dysfunction in OCD and the potential for immunological treatments in PANDAs patients. PMID:8768351

  7. Genetic screening and functional characterization of PDGFRB mutations associated with basal ganglia calcification of unknown etiology.

    PubMed

    Sanchez-Contreras, Monica; Baker, Matthew C; Finch, NiCole A; Nicholson, Alexandra; Wojtas, Aleksandra; Wszolek, Zbigniew K; Ross, Owen A; Dickson, Dennis W; Rademakers, Rosa

    2014-08-01

    Three causal genes for idiopathic basal ganglia calcification (IBGC) have been identified. Most recently, mutations in PDGFRB, encoding a member of the platelet-derived growth factor receptor family type ?, and PDGFB, encoding PDGF-B, the specific ligand of PDGFR?, were found implicating the PDGF-B/PDGFR? pathway in abnormal brain calcification. In this study, we aimed to identify and study mutations in PDGFRB and PDGFB in a series of 26 patients from the Mayo Clinic Florida Brain Bank with moderate to severe basal ganglia calcification (BCG) of unknown etiology. No mutations in PDGFB were found. However, we identified one mutation in PDGFRB, p.R695C located in the tyrosine kinase domain, in one BGC patient. We further studied the function of p.R695C mutant PDGFR? and two previously reported mutants, p.L658P and p.R987W PDGFR? in cell culture. We show that, in response to PDGF-BB stimulation, the p.L658P mutation completely suppresses PDGFR? autophosphorylation, whereas the p.R695C mutation results in partial loss of autophosphorylation. For the p.R987W mutation, our data suggest a different mechanism involving reduced protein levels. These genetic and functional studies provide the first insight into the pathogenic mechanisms associated with PDGFRB mutations and provide further support for a pathogenic role of PDGFRB mutations in BGC. PMID:24796542

  8. Genetic screening and functional characterization of PDGFRB mutations associated with Basal Ganglia Calcification of Unknown Etiology

    PubMed Central

    Sanchez-Contreras, Monica; Baker, Matthew C.; Finch, NiCole A.; Nicholson, Alexandra; Wojtas, Aleksandra; Wszolek, Zbigniew K.; Ross, Owen A.; Dickson, Dennis W.; Rademakers, Rosa

    2014-01-01

    Three causal genes for Idiopathic Basal Ganglia Calcification (IBGC) have been identified. Most recently, mutations in PDGFRB, encoding a member of the platelet-derived growth factor receptor family type ?, and PDGFB, encoding PDGF-B, the specific ligand of PDGFR?, were found implicating the PDGF-B/PDGFR? pathway in abnormal brain calcification. In this study we aimed to identify and study mutations in PDGFRB and PDGFB in a series of 26 patients from the Mayo Clinic Florida Brain Bank with moderate to severe basal ganglia calcification (BCG) of unknown etiology. No mutations in PDGFB were found. However, we identified one mutation in PDGFRB, p.R695C located in the tyrosine kinase domain, in one BGC patient. We further studied the function of p.R695C mutant PDGFR? and two previously reported mutants, p.L658P and p.R987W PDGFR? in cell culture. We show that, in response to PDGF-BB stimulation, the p.L658P mutation completely suppresses PDGFR? autophosphorylation whereas the p.R695C mutation results in partial loss of autophosphorylation. For the p.R987W mutation, our data suggest a different mechanism involving reduced protein levels. These genetic and functional studies provide the first insight into the pathogenic mechanisms associated with PDGFRB mutations and provide further support for a pathogenic role of PDGFRB mutations in BGC. PMID:24796542

  9. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    PubMed Central

    Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.

    2015-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson’s disease from healthy controls, and show great promise for differentiation between Parkinson’s disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson’s disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson’s disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. PMID:24954673

  10. Gait function in high-functioning autism and Asperger's disorder : evidence for basal-ganglia and cerebellar involvement?

    PubMed

    Rinehart, Nicole J; Tonge, Bruce J; Bradshaw, John L; Iansek, Robert; Enticott, Peter G; McGinley, Jenny

    2006-08-01

    Gait abnormalities have been widely reported in individuals with autism and Asperger's disorder. There is controversy as to whether the cerebellum or the basal-ganglia frontostriatal regions underpin these abnormalities. This is the first direct comparison of gait and upper-body postural features in autism and Asperger's disorder. Clinical and control groups were matched according to age, height, weight, performance, and full scale IQ. Consistent with Hallet's (1993) cerebellar-gait hypothesis, the autistic group showed significantly increased stride-length variability in their gait in comparison to control and Asperger's disorder participants. No quantitative gait deficits were found for the Asperger's disorder group. In support of Damasio and Maurer's (1982) basal-ganglia frontostriatal-gait hypothesis, both clinical groups were rated as showing abnormal arm posturing, however, only the Asperger's group were rated as significantly different from controls in terms of head and trunk posturing. While DSM-IV-TR suggests that Asperger's disorder, but not autism, is associated with motoric clumsiness, our data suggest that both clinical groups are uncoordinated and lacking in motor smoothness. Gait differences in autism and Asperger's disorder were suggested to reflect differential involvement of the cerebellum, with commonalities reflecting similar involvement of the basal-ganglia frontostriatal region. PMID:16554961

  11. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.

    PubMed

    Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf; Huang, Neng C; Poston, Kathleen L; Bronte-Stewart, Helen M; Schulte, Tilman

    2015-09-01

    Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  12. Quantitation of the human basal ganglia with Positron Emission Tomography

    SciTech Connect

    Bendriem, B.; Dewey, S.L.; Schlyer, D.J.; Wolf, A.P.; Volkow, N.D.

    1990-01-01

    The accurate measurement of the concentration of a radioisotope in small structures with PET requires a correction for quantitation loss due to the partial volume effect and the effect of scattered radiation. To evaluate errors associated with measures in the human basal ganglia (BG) we have built a unilateral model of the BG that we have inserted in a 20 cm cylinder. The recovery coefficient (RC = measured activity/true activity) for our BG phantom has been measured on a CTI tomograph (model 931-08/12) with different background concentrations (contrast) and at different axial locations in the gantry. The BG was visualized on 4 or 5 slices depending on its position in the gantry and on the contrast used. The RC was 0.75 with no background (contrast equal to 1.0). Increasing the relative radioactivity concentration in the background increased the RC from 0.75 to 2.00 when the contrast was {minus}0.7 (BG < Background). The RC was also affected by the size and the shape of the region of interest (ROI) used (RC from 0.75 to 0.67 with ROI size from 0.12 to 1.41 cm{sup 2}). These results show that accurate RC correction depends not only on the volume of the structure but also on its contrast with its surroundings as well as on the selection of the ROI. They also demonstrate that the higher the contrast the more sensitive to axial positioning PET measurements in the BG are. These data provide us with some information about the variability of PET measurements in small structure like the BG and we have proposed some strategies to improve the reproducibility. 18 refs., 3 figs., 5 tabs.

  13. Cognitive deficits in animal models of basal ganglia disorders.

    PubMed

    Brooks, Simon P; Dunnett, Stephen B

    2013-03-01

    The two most common neurological disorders of the basal ganglia are Parkinson's disease (PD) and Huntington's disease (HD). The most overt symptoms of these diseases are motoric, reflecting the loss of the striatal medium spiny neurons in HD and ascending substantia nigra dopaminergic cells in PD. However, both disease processes induce insidious psychiatric and cognitive syndromes that can manifest well in advance of the onset of motor deficits. These early deficits provide an opportunity for prophylactic therapeutic intervention in order to retard disease progression from the earliest possible point. In order to exploit this opportunity, animal models of HD and PD are being probed for the specific cognitive deficits represented in the disease states. At the neuronal level, these deficits are typically, but not exclusively, mediated by disruption of parallel corticostriatal loops that integrate motor information with sensory and higher order, "executive" cognitive functions. Dysfunction in these systems can be probed with sensitive behavioural tests that selectively probe these cognitive functions in mouse models with focal lesions of striatal or cortical regions, or of specific neurotransmitter systems. Typically these tests were designed and validated in rats. With the advent of genetically modified mouse models of disease, validated tests provide an opportunity to screen mouse models of disease for early onset cognitive deficits. This review seeks to draw together the literature on cognitive deficits in HD and PD, to determine the extent to which these deficits are represented in the current animal models of disease, and to evaluate the viability of selecting cognitive deficits as potential therapeutic targets. This article is part of a Special Issue entitled 'Animal Models'. PMID:22588013

  14. Cytokine Effects on the Basal Ganglia and Dopamine Function: the Subcortical Source of Inflammatory Malaise

    PubMed Central

    Felger, Jennifer C.; Miller, Andrew H.

    2012-01-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. PMID:23000204

  15. Basal Ganglia Subcircuits Distinctively Encode the Parsing and Concatenation of Action Sequences

    PubMed Central

    Jin, Xin; Tecuapetla, Fatuel; Costa, Rui M

    2014-01-01

    Chunking allows the brain to efficiently organize memories and actions. Although basal ganglia circuits have been implicated in action chunking, little is known about how individual elements are concatenated into a behavioral sequence at the neural level. Using a task where mice learn rapid action sequences, we uncovered neuronal activity encoding entire sequences as single actions in basal ganglia circuits. Besides start/stop activity signaling sequence parsing, we found neurons displaying inhibited or sustained activity throughout the execution of an entire sequence. This sustained activity covaried with the rate of execution of individual sequence elements, consistent with motor concatenation. Direct and indirect pathways of basal ganglia were concomitantly active during sequence initiation, but behaved differently during sequence performance, revealing a more complex functional organization of these circuits than previously postulated. These results have important implications for understanding the functional organization of basal ganglia during the learning and execution of action sequences. PMID:24464039

  16. A spiking neural network based on the basal ganglia functional anatomy.

    PubMed

    Baladron, Javier; Hamker, Fred H

    2015-07-01

    We introduce a spiking neural network of the basal ganglia capable of learning stimulus-action associations. We model learning in the three major basal ganglia pathways, direct, indirect and hyperdirect, by spike time dependent learning and considering the amount of dopamine available (reward). Moreover, we allow to learn a cortico-thalamic pathway that bypasses the basal ganglia. As a result the system develops new functionalities for the different basal ganglia pathways: The direct pathway selects actions by disinhibiting the thalamus, the hyperdirect one suppresses alternatives and the indirect pathway learns to inhibit common mistakes. Numerical experiments show that the system is capable of learning sets of either deterministic or stochastic rules. PMID:25863288

  17. Symmetric Basal Ganglia Lesion in a Diabetic Dialysis Patient: Recurrence and Pathogenesis

    PubMed Central

    2015-01-01

    This paper describes a diabetic dialysis patient presenting two episodes of symmetric basal ganglia lesions occurring 18 months apart, and discusses the MR imaging findings and the pathogenesis of this condition. PMID:25924173

  18. The evolutionary origin of the vertebrate basal ganglia and its role in action selection

    PubMed Central

    Grillner, Sten; Robertson, Brita; Stephenson-Jones, Marcus

    2013-01-01

    The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the cellular and synaptic properties and transmitters. We consider the role of the conserved basal ganglia circuitry for basic patterns of motor behaviour controlled via brainstem circuits. The output of the basal ganglia consists of tonically active GABAergic neurones, which target brainstem motor centres responsible for different patterns of behaviour, such as eye and locomotor movements, posture, and feeding. A prerequisite for activating or releasing a motor programme is that this GABAergic inhibition is temporarily reduced. This can be achieved through activation of GABAergic projection neurons from striatum, the input level of the basal ganglia, given an appropriate synaptic drive from cortex, thalamus and the dopamine system. The tonic inhibition of the motor centres at rest most likely serves to prevent the different motor programmes from becoming active when not intended. Striatal projection neurones are subdivided into one group with dopamine 1 receptors that provides increased excitability of the direct pathway that can initiate movements, while inhibitory dopamine 2 receptors are expressed on neurones that instead inhibit movements and are part of the ‘indirect loop’ in mammals as well as lamprey. We review the evidence showing that all basic features of the basal ganglia have been conserved throughout vertebrate phylogeny, and discuss these findings in relation to the role of the basal ganglia in selection of behaviour. PMID:23318875

  19. Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits

    PubMed Central

    Pappas, Samuel S.; Leventhal, Daniel K.; Albin, Roger L.; Dauer, William T.

    2014-01-01

    This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role—Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function. PMID:24947237

  20. Genetics Home Reference: Biotin-thiamine-responsive basal ganglia disease

    MedlinePLUS

    ... disability, and seizures. Severe cases may result in coma and become life-threatening. Typically, the neurological symptoms ... ganglia disease? ataxia ; autosomal ; autosomal recessive ; biotin ; cell ; coma ; deficiency ; disability ; dysphagia ; dystonia ; encephalopathy ; fever ; gene ; hemiparesis ; ...

  1. Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities

    PubMed Central

    Glatz, Andreas; Bastin, Mark E.; Kiker, Alexander J.; Deary, Ian J.; Wardlaw, Joanna M.; Valdés Hernåndez, Maria C.

    2015-01-01

    Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. PMID:25451469

  2. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia

    PubMed Central

    Humphries, Mark D.; Khamassi, Mehdi; Gurney, Kevin

    2012-01-01

    We continuously face the dilemma of choosing between actions that gather new information or actions that exploit existing knowledge. This “exploration-exploitation” trade-off depends on the environment: stability favors exploiting knowledge to maximize gains; volatility favors exploring new options and discovering new outcomes. Here we set out to reconcile recent evidence for dopamine’s involvement in the exploration-exploitation trade-off with the existing evidence for basal ganglia control of action selection, by testing the hypothesis that tonic dopamine in the striatum, the basal ganglia’s input nucleus, sets the current exploration-exploitation trade-off. We first advance the idea of interpreting the basal ganglia output as a probability distribution function for action selection. Using computational models of the full basal ganglia circuit, we showed that, under this interpretation, the actions of dopamine within the striatum change the basal ganglia’s output to favor the level of exploration or exploitation encoded in the probability distribution. We also found that our models predict striatal dopamine controls the exploration-exploitation trade-off if we instead read-out the probability distribution from the target nuclei of the basal ganglia, where their inhibitory input shapes the cortical input to these nuclei. Finally, by integrating the basal ganglia within a reinforcement learning model, we showed how dopamine’s effect on the exploration-exploitation trade-off could be measurable in a forced two-choice task. These simulations also showed how tonic dopamine can appear to affect learning while only directly altering the trade-off. Thus, our models support the hypothesis that changes in tonic dopamine within the striatum can alter the exploration-exploitation trade-off by modulating the output of the basal ganglia. PMID:22347155

  3. Selection of cortical dynamics for motor behaviour by the basal ganglia.

    PubMed

    Mannella, Francesco; Baldassarre, Gianluca

    2015-12-01

    The basal ganglia and cortex are strongly implicated in the control of motor preparation and execution. Re-entrant loops between these two brain areas are thought to determine the selection of motor repertoires for instrumental action. The nature of neural encoding and processing in the motor cortex as well as the way in which selection by the basal ganglia acts on them is currently debated. The classic view of the motor cortex implementing a direct mapping of information from perception to muscular responses is challenged by proposals viewing it as a set of dynamical systems controlling muscles. Consequently, the common idea that a competition between relatively segregated cortico-striato-nigro-thalamo-cortical channels selects patterns of activity in the motor cortex is no more sufficient to explain how action selection works. Here, we contribute to develop the dynamical view of the basal ganglia-cortical system by proposing a computational model in which a thalamo-cortical dynamical neural reservoir is modulated by disinhibitory selection of the basal ganglia guided by top-down information, so that it responds with different dynamics to the same bottom-up input. The model shows how different motor trajectories can so be produced by controlling the same set of joint actuators. Furthermore, the model shows how the basal ganglia might modulate cortical dynamics by preserving coarse-grained spatiotemporal information throughout cortico-cortical pathways. PMID:26537483

  4. A direct GABAergic output from the basal ganglia to frontal cortex.

    PubMed

    Saunders, Arpiar; Oldenburg, Ian A; Berezovskii, Vladimir K; Johnson, Caroline A; Kingery, Nathan D; Elliott, Hunter L; Xie, Tiao; Gerfen, Charles R; Sabatini, Bernardo L

    2015-05-01

    The basal ganglia are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning. Current models postulate that the basal ganglia modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs, respectively). The basal ganglia thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the basal ganglia, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT(+) cells, which have been historically identified as an extension of the nucleus basalis, as well as ChAT(-) cells, release the inhibitory neurotransmitter GABA (?-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus, GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signalling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the basal ganglia to modulate frontal cortices. PMID:25739505

  5. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages.

    PubMed

    Hirata, Haruna; Umemori, Juzoh; Yoshioka, Hiroki; Koide, Tsuyoshi; Watanabe, Kazutada; Shimoda, Yasushi

    2016-01-01

    Cell adhesion molecules play important roles in the development of the nervous system. Among the contactin-associated protein (Caspr; also known as Cntnap) family, which belongs to the neurexin superfamily of proteins, Caspr and Caspr2 are indispensable for the formation and maintenance of myelinated nerves. In contrast, a physiological role for Caspr3 remains to be elucidated. This study examines the expression and localization of Caspr3 in the mouse brain using newly generated Caspr3 antibodies. Caspr3 was expressed abundantly between the first and the second postnatal weeks. During this period, Caspr3 was localized especially to the basal ganglia, including the striatum, external segment of the globus pallidus, and substantia nigra, and no gross abnormalities were apparent in the basal ganglia of Caspr3 knockout mice. In the striatum, Caspr3 was expressed by a subpopulation of medium spiny neurons that constitute the direct and indirect pathways. Caspr3 immunostaining was observed as punctate around the cell bodies as well as in the soma. These Caspr3 signals did not, however, overlap with those of synaptic markers. Our findings suggest that Caspr3 may play an important role in basal ganglia development during early postnatal stages. © 2015 Wiley Periodicals, Inc. PMID:26389685

  6. A review of pathologies associated with high T1W signal intensity in the basal ganglia on Magnetic Resonance Imaging

    PubMed Central

    Zaitout, Zahia; Romanowski, Charles; Karunasaagarar, Kavitasagary; Connolly, Daniel; Batty, Ruth

    2014-01-01

    Summary With several functions and a fundamental influence over cognition and motor functions, the basal ganglia are the cohesive centre of the brain. There are several conditions which affect the basal ganglia and these have various clinical and radiological manifestations. Nevertheless, on magnetic resonance imaging there is a limited differential diagnosis for those conditions presenting with T1 weighted spin echo hyperintensity within the central nervous system in general and the basal ganglia in particular. The aim of our review is to explore some of these basal ganglia pathologies and provide image illustrations. PMID:24900164

  7. Thalamic Contributions to Basal Ganglia-Related Behavioral Switching and Reinforcement

    PubMed Central

    Smith, Yoland; Surmeier, D. James; Redgrave, Peter; Kimura, Minoru

    2011-01-01

    Although the existence of prominent connections between the intralaminar thalamic nuclei and the basal ganglia have long been established, the limited knowledge of the functional relevance of this network has considerably hampered progress in our understanding of the neural mechanisms by which the thalamostriatal system integrates and regulates the basal ganglia circuitry. In this brief commentary, we will address this gap of knowledge through a discussion of the key points of a symposium entitled “Thalamic Contributions to Basal Ganglia-Related Behavioral Switching and Reinforcement” that will be presented at the 2011 Society for Neuroscience meeting. Recent anatomical and physiological data that support the role of the thalamostriatal system in action selection, attentional shifting and reinforcement will be discussed. We will also address the possibility that degeneration of the thalamostriatal system could underlie some of the deficits in redirection of attention in response to salient stimuli seen in Parkinson’s disease. PMID:22072662

  8. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    NASA Astrophysics Data System (ADS)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  9. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease

    PubMed Central

    Redgrave, Peter; Rodriguez, Manuel; Smith, Yoland; Rodriguez-Oroz, Maria C.; Lehericy, Stephane; Bergman, Hagai; Agid, Yves; DeLong, Mahlon R.; Obeso, Jose A.

    2011-01-01

    Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson’s disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson’s disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action. PMID:20944662

  10. Hypofractionated Stereotactic Radiosurgery in a Large Bilateral Thalamic and Basal Ganglia Arteriovenous Malformation

    PubMed Central

    Nanda, Ashish; Litofsky, N. Scott

    2013-01-01

    Purpose. Arteriovenous malformations (AVMs) in the basal ganglia and thalamus have a more aggressive natural history with a higher morbidity and mortality than AVMs in other locations. Optimal treatment—complete obliteration without new neurological deficits—is often challenging. We present a patient with a large bilateral basal ganglia and thalamic AVM successfully treated with hypofractionated stereotactic radiosurgery (HFSRS) with intensity modulated radiotherapy (IMRT). Methods. The patient was treated with hypofractionated stereotactic radiosurgery to 30?Gy at margin in 5 fractions of 9 static fields with a minimultileaf collimator and intensity modulated radiotherapy. Results. At 10 months following treatment, digital subtraction angiography showed complete obliteration of the AVM. Conclusions. Large bilateral thalamic and basal ganglia AVMs can be successfully treated with complete obliteration by HFSRS with IMRT with relatively limited toxicity. Appropriate caution is recommended. PMID:24307961

  11. The role of the basal ganglia in beat perception: neuroimaging and neuropsychological investigations.

    PubMed

    Grahn, Jessica A

    2009-07-01

    Perception of musical rhythms is culturally universal. Despite this special status, relatively little is known about the neurobiology of rhythm perception, particularly with respect to beat processing. Findings are presented here from a series of studies that have specifically examined the neural basis of beat perception, using functional magnetic resonance imaging (fMRI) and studying patients with Parkinson's disease. fMRI data indicate that novel beat-based sequences robustly activate the basal ganglia when compared to irregular, nonbeat sequences. Furthermore, although most healthy participants find it much easier to discriminate changes in beat-based sequences compared to irregular sequences, Parkinson's disease patients fail to show the same degree of benefit. Taken together, these data suggest that the basal ganglia are performing a crucial function in beat processing. The results of an additional fMRI study indicate that the role of the basal ganglia is strongly linked to internal generation of the beat. Basal ganglia activity is greater when participants listen to rhythms in which internal generation of the beat is required, as opposed to rhythms with strongly externally cued beats. Functional connectivity between part of the basal ganglia (the putamen) and cortical motor areas (premotor and supplementary motor areas) is also higher during perception of beat rhythms compared to nonbeat rhythms. Increased connectivity between cortical motor and auditory areas is found in those with musical training. The findings from these converging methods strongly implicate the basal ganglia in processing a regular beat, particularly when internal generation of the beat is required. PMID:19673753

  12. Evolution of the basal ganglia: dual-output pathways conserved throughout vertebrate phylogeny.

    PubMed

    Stephenson-Jones, Marcus; Ericsson, Jesper; Robertson, Brita; Grillner, Sten

    2012-09-01

    The basal ganglia, including the striatum, globus pallidus interna and externa (GPe), subthalamic nucleus (STN), and substantia nigra pars compacta, are conserved throughout vertebrate phylogeny and have been suggested to form a common vertebrate mechanism for action selection. In mammals, this circuitry is further elaborated by the presence of a dual-output nucleus, the substantia nigra pars reticulata (SNr), and the presence of modulatory input from the cholinergic pedunculopontine nucleus (PPN). We sought to determine whether these additional components of the mammalian basal ganglia are also present in one of the phylogenetically oldest vertebrates, the lamprey. We show, by using immunohistochemistry, tract tracing, and whole-cell recordings, that homologs of the SNr and PPN are present in the lamprey. Thus the SNr receives direct projections from inwardly rectifying Îł-aminobutyric acid (GABA)-ergic striatal neurons expressing substance P, but it is also influenced by indirect basal ganglia projections from the STN and potentially the GPe. Moreover, GABAergic SNr projection neurons are tonically active and project to the thalamus and brainstem motor areas. The homolog of the PPN contains both cholinergic and GABAergic neurons and is connected with all the nuclei of the basal ganglia, supporting its proposed role as part of an extended basal ganglia. A separate group of cholinergic neurons dorsal to the PPN corresponds to the descending mesencephalic locomotor region. Our results suggest that dual-output nuclei are part of the ancestral basal ganglia and that the PPN appears to have coevolved as part of a mechanism for action selection common to all vertebrates. PMID:22351244

  13. Bilateral reversible basal ganglia changes associated with dystonia and hemifacial spasms in central nervous system lupus

    PubMed Central

    Christodoulou, Loucas; Siddiqui, Ata; D’Cruz, David; Andrews, Thomasin

    2015-01-01

    We report a 40-year-old woman with systemic lupus erythematosus (SLE) and associated inflammatory polyarthritis who presented with acute facial dystonic spasms. Her speech was also affected. An MRI brain showed bilateral symmetrical basal ganglia signal change on T2. This movement disorder was due to an acute manifestation of her lupus. Her symptoms resolved rapidly following treatment with (oral) steroids. Repeat MRI brain at 1 month showed complete resolution of the basal ganglia signal change. This is the first time that facial spasms and dystonia with corresponding MRI changes are reported as a presentation of lupus affecting the central nervous system (CNS lupus). PMID:26807375

  14. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification.

    PubMed

    Nicolas, Gaël; Pottier, Cyril; Charbonnier, Camille; Guyant-Maréchal, Lucie; Le Ber, Isabelle; Pariente, Jérémie; Labauge, Pierre; Ayrignac, Xavier; Defebvre, Luc; Maltête, David; Martinaud, Olivier; Lefaucheur, Romain; Guillin, Olivier; Wallon, David; Chaumette, Boris; Rondepierre, Philippe; Derache, Nathalie; Fromager, Guillaume; Schaeffer, Stéphane; Krystkowiak, Pierre; Verny, Christophe; Jurici, Snejana; Sauvée, Mathilde; Vérin, Marc; Lebouvier, Thibaud; Rouaud, Olivier; Thauvin-Robinet, Christel; Rousseau, Stéphane; Rovelet-Lecrux, Anne; Frebourg, Thierry; Campion, Dominique; Hannequin, Didier

    2013-11-01

    Idiopathic basal ganglia calcification is characterized by mineral deposits in the brain, an autosomal dominant pattern of inheritance in most cases and genetic heterogeneity. The first causal genes, SLC20A2 and PDGFRB, have recently been reported. Diagnosing idiopathic basal ganglia calcification necessitates the exclusion of other causes, including calcification related to normal ageing, for which no normative data exist. Our objectives were to diagnose accurately and then describe the clinical and radiological characteristics of idiopathic basal ganglia calcification. First, calcifications were evaluated using a visual rating scale on the computerized tomography scans of 600 consecutively hospitalized unselected controls. We determined an age-specific threshold in these control computerized tomography scans as the value of the 99th percentile of the total calcification score within three age categories: <40, 40-60, and >60 years. To study the phenotype of the disease, patients with basal ganglia calcification were recruited from several medical centres. Calcifications that rated below the age-specific threshold using the same scale were excluded, as were patients with differential diagnoses of idiopathic basal ganglia calcification, after an extensive aetiological assessment. Sanger sequencing of SLC20A2 and PDGFRB was performed. In total, 72 patients were diagnosed with idiopathic basal ganglia calcification, 25 of whom bore a mutation in either SLC20A2 (two families, four sporadic cases) or PDGFRB (one family, two sporadic cases). Five mutations were novel. Seventy-one per cent of the patients with idiopathic basal ganglia calcification were symptomatic (mean age of clinical onset: 39 ± 20 years; mean age at last evaluation: 55 ± 19 years). Among them, the most frequent signs were: cognitive impairment (58.8%), psychiatric symptoms (56.9%) and movement disorders (54.9%). Few clinical differences appeared between SLC20A2 and PDGFRB mutation carriers. Radiological analysis revealed that the total calcification scores correlated positively with age in controls and patients, but increased more rapidly with age in patients. The expected total calcification score was greater in SLC20A2 than PDGFRB mutation carriers, beyond the effect of the age alone. No patient with a PDGFRB mutation exhibited a cortical or a vermis calcification. The total calcification score was more severe in symptomatic versus asymptomatic individuals. We provide the first phenotypical description of a case series of patients with idiopathic basal ganglia calcification since the identification of the first causative genes. Clinical and radiological diversity is confirmed, whatever the genetic status. Quantification of calcification is correlated with the symptomatic status, but the location and the severity of the calcifications don't reflect the whole clinical diversity. Other biomarkers may be helpful in better predicting clinical expression. PMID:24065723

  15. Bidirectional Plasticity in Striatonigral Synapses: A Switch to Balance Direct and Indirect Basal Ganglia Pathways

    ERIC Educational Resources Information Center

    Aceves, Jose J.; Rueda-Orozco, Pavel E.; Hernandez-Martinez, Ricardo; Galarraga, Elvira; Bargas, Jose

    2011-01-01

    There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral…

  16. Effects of Focal Basal Ganglia Lesions on Timing and Force Control

    ERIC Educational Resources Information Center

    Aparicio, P.; Diedrichsen, J.; Ivry, R.B.

    2005-01-01

    Studies of basal ganglia dysfunction in humans have generally involved patients with degenerative disorders, notably Parkinson's disease. In many instances, the performance of these patients is compared to that of patients with focal lesions of other brain structures such as the cerebellum. In the present report, we studied the performance of…

  17. Stereotactic radiosurgery for deep intracranial arteriovenous malformations, part 2: Basal ganglia and thalamus arteriovenous malformations.

    PubMed

    Cohen-Inbar, Or; Ding, Dale; Sheehan, Jason P

    2016-02-01

    The aim of this review is to critically analyze the outcomes following stereotactic radiosurgery (SRS) for arteriovenous malformations (AVM) of the basal ganglia and thalamus. The management of these deep-seated lesions continues to challenge neurosurgeons. Basal ganglia and thalamic AVM show a higher risk of hemorrhage, and an associated devastating morbidity and mortality, as compared to AVM in more superficial locations. Any of the currently available treatment modalities may fail or result in iatrogenic neurologic deterioration. Recent evidence from A Randomized Trial of Unruptured Brain AVM (ARUBA) further deters aggressive approaches that carry a significant risk of treatment-related adverse events. Microsurgical resection, endovascular embolization and SRS all play a role in the treatment of AVM. SRS is an effective therapeutic option for AVM of the thalamus and basal ganglia that are deemed high risk for resection. SRS offers acceptable obliteration rates, with generally lower risks of hemorrhage occurring during the latency period compared to the AVM natural history. Considering that incompletely obliterated lesions still harbor the potential for rupture, additional treatments such as repeat SRS and microsurgical resection should be considered when complete obliteration is not achieved by an initial SRS procedure. Patients with AVM of the basal ganglia and thalamus require continued clinical and radiologic observation and follow-up after SRS, even after angiographic obliteration has been confirmed. PMID:26732284

  18. [Distinct roles of the direct and indirect pathways in the basal ganglia circuit mechanism].

    PubMed

    Morita, Makiko; Hikida, Takatoshi

    2015-11-01

    The basal ganglia are key neural substrates that control not only motor balance but also emotion, motivation, cognition, learning, and decision-making. Dysfunction of the basal ganglia leads to neurodegenerative diseases (e.g. Parkinson's disease and Huntington's disease) and psychiatric disorders (e.g. drug addiction, schizophrenia, and depression). In the basal ganglia circuit, there are two important pathways: the direct and indirect striatal pathways. Recently, new molecular techniques that activate or inactive selectively the direct or indirect pathway neurons have revealed the function of each pathway. Here we review the distinct roles of the direct and indirect striatal pathways in brain function and drug addiction. We have developed a reversible neurotransmission blocking technique, in which transmission of each pathway is selectively blocked by specific expression of transmission-blocking tetanus toxin, and revealed that the activation of D1 receptors in the direct pathway is critical for reward learning/cocaine addiction, and that the inactivation of D2 receptors is critical for aversive learning/learning flexibility. We propose a new circuit mechanism by which the dopaminergic input from the ventral tegmental area can switch the direct and indirect pathways in the nucleus accumbens. These basal ganglia circuit mechanisms will give us insights into the pathophysiology of mental diseases. PMID:26785520

  19. Differential contributions of basal ganglia and thalamus to song initiation, tempo, and structure.

    PubMed

    Chen, J R; Stepanek, L; Doupe, A J

    2014-01-01

    Basal ganglia-thalamocortical circuits are multistage loops critical to motor behavior, but the contributions of individual components to overall circuit function remain unclear. We addressed these issues in a songbird basal ganglia-thalamocortical circuit (the anterior forebrain pathway, AFP) specialized for singing and critical for vocal plasticity. The major known afferent to the AFP is the premotor cortical nucleus, HVC. Surprisingly, previous studies found that lesions of HVC alter song but do not eliminate the ability of the AFP to drive song production. We therefore used this AFP-driven song to investigate the role of basal ganglia and thalamus in vocal structure, tempo, and initiation. We found that lesions of the striatopallidal component (Area X) slowed song and simplified its acoustic structure. Elimination of the thalamic component (DLM) further simplified the acoustic structure of song and regularized its rhythm but also dramatically reduced song production. The acoustic structure changes imply that sequential stages of the AFP each add complexity to song, but the effects of DLM lesions on song initiation suggest that thalamus is a locus of additional inputs important to initiation. Together, our results highlight the cumulative contribution of stages of a basal ganglia-thalamocortical circuit to motor output along with distinct involvement of thalamus in song initiation or "gating." PMID:24174647

  20. Bidirectional Plasticity in Striatonigral Synapses: A Switch to Balance Direct and Indirect Basal Ganglia Pathways

    ERIC Educational Resources Information Center

    Aceves, Jose J.; Rueda-Orozco, Pavel E.; Hernandez-Martinez, Ricardo; Galarraga, Elvira; Bargas, Jose

    2011-01-01

    There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral


  1. Acute movement disorder with bilateral basal ganglia lesions in diabetic uremia

    PubMed Central

    Wali, Gurusidheshwar M.; Khanpet, Mallikarjun S.; Mali, Rajendra V.

    2011-01-01

    Acute movement disorder associated with symmetrical basal ganglia lesions occurring in the background of diabetic end stage renal disease is a recently described condition. It has distinct clinico-radiological features and is commonly described in Asian patients. We report the first Indian case report of this potentially reversible condition and discuss its various clinico-radiological aspects. PMID:22028539

  2. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    PubMed Central

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  3. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    ERIC Educational Resources Information Center

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many…

  4. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    ERIC Educational Resources Information Center

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many


  5. Visuo-Motor and Cognitive Procedural Learning in Children with Basal Ganglia Pathology

    ERIC Educational Resources Information Center

    Mayor-Dubois, C.; Maeder, P.; Zesiger, P.; Roulet-Perez, E.

    2010-01-01

    We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (less than 1 year old, n=9), later…

  6. [A Role of the Basal Ganglia in Processing of Complex Sounds and Auditory Attention].

    PubMed

    Silkis, I G

    2015-01-01

    A hypothetical mechanism is suggested for processing of complex sounds and auditory attention in parallel neuronal loops including various auditory cortical areas connected with parts of the medial geniculate body, inferior colliculus and basal ganglia. Release of dopamine in the striatum promotes bidirectional modulation of strong and weak inputs from the neocortex to striatal neurons giving rise to direct and indirect pathways through the basal ganglia. Subsequent synergistic disinhibition of one and inhibition of other groups of thalamic neurons by the basal ganglia result in the creation of contrasted neuronal representations of properties of auditory stimuli in related cortical areas. Contrasting is strengthened due to a simultaneous disinhibition of pedunculopontine nucleus and action at muscarine receptors on neurons in the medial geniculate body. It follows from this mechanism that involuntary attention to sound tone can enhance an early component of the responses of neurons in the primary auditory cortical area (50 msec) in the absence of dopamine due to a disinhibition of thalamic neurons via the direct pathway through the basal ganglia, whereas voluntary attention to complex sounds can enhance only those components of responses of neurones in secondary auditory cortical areas which latencies exceeds latencies of dopaminergic cells (i.e. after 100 msec). Various consequences of proposed mechanism are in agreement with known experimental data. PMID:26506644

  7. Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons

    PubMed Central

    Freeze, Benjamin S.; Kravitz, Alexxai V.; Hammack, Nora; Berke, Joshua D.

    2013-01-01

    The direct and indirect efferent pathways from striatum ultimately reconverge to influence basal ganglia output nuclei, which in turn regulate behavior via thalamocortical and brainstem motor circuits. However, the distinct contributions of these two efferent pathways in shaping basal ganglia output are not well understood. We investigated these processes using selective optogenetic control of the direct and indirect pathways, in combination with single-unit recording in the basal ganglia output nucleus substantia nigra pars reticulata (SNr) in mice. Optogenetic activation of striatal direct and indirect pathway projection neurons produced diverse cellular responses in SNr neurons, with stimulation of each pathway eliciting both excitations and inhibitions. Despite this response heterogeneity, the effectiveness of direct pathway stimulation in producing movement initiation correlated selectively with the subpopulation of inhibited SNr neurons. In contrast, effective indirect pathway-mediated motor suppression was most strongly influenced by excited SNr neurons. Our results support the theory that key basal ganglia output neurons serve as an inhibitory gate over motor output that can be opened or closed by striatal direct and indirect pathways, respectively. PMID:24259575

  8. Differential contributions of basal ganglia and thalamus to song initiation, tempo, and structure

    PubMed Central

    Chen, J. R.; Doupe, A. J.

    2013-01-01

    Basal ganglia-thalamocortical circuits are multistage loops critical to motor behavior, but the contributions of individual components to overall circuit function remain unclear. We addressed these issues in a songbird basal ganglia-thalamocortical circuit (the anterior forebrain pathway, AFP) specialized for singing and critical for vocal plasticity. The major known afferent to the AFP is the premotor cortical nucleus, HVC. Surprisingly, previous studies found that lesions of HVC alter song but do not eliminate the ability of the AFP to drive song production. We therefore used this AFP-driven song to investigate the role of basal ganglia and thalamus in vocal structure, tempo, and initiation. We found that lesions of the striatopallidal component (Area X) slowed song and simplified its acoustic structure. Elimination of the thalamic component (DLM) further simplified the acoustic structure of song and regularized its rhythm but also dramatically reduced song production. The acoustic structure changes imply that sequential stages of the AFP each add complexity to song, but the effects of DLM lesions on song initiation suggest that thalamus is a locus of additional inputs important to initiation. Together, our results highlight the cumulative contribution of stages of a basal ganglia-thalamocortical circuit to motor output along with distinct involvement of thalamus in song initiation or “gating.” PMID:24174647

  9. The disrupted basal ganglia and behavioural control: an integrative cross-domain perspective of spontaneous stereotypy.

    PubMed

    McBride, Sebastian D; Parker, Matthew O

    2015-01-01

    Spontaneous stereotypic behaviour (SB) is common in many captive animal species, as well as in humans with some severe psychiatric disorders, and is often cited as being related to general basal ganglia dysfunction. Despite this assertion, there is little in the literature examining SB specifically in terms of the basal ganglia mechanics. In this review, we attempt to fill this gap by offering an integrative, cross-domain perspective of SB by linking what we currently understand about the SB phenotype with the ever-growing literature on the anatomy and functionality of the basal ganglia. After outlining current models of SB from different theoretical perspectives, we offer a broad but detailed overview of normally functioning basal ganglia mechanics, and attempt to link this with current neurophysiological evidence related to spontaneous SB. Based on this we present an empirically derived theoretical framework, which proposes that SB is the result of a dysfunctional action selection system that may reflect dysregulation of excitatory (direct) and inhibitory (indirect and hyperdirect) pathways as well as alterations in mechanisms of behavioural switching. This approach also suggests behaviours that specifically become stereotypic may reflect inbuilt low selection threshold behavioural sequences associated with early development and the species-specific ethogram or, low threshold behavioural sequences that are the result of stress-induced dopamine exposure at the time of performance. PMID:25052167

  10. How may the basal ganglia contribute to auditory categorization and speech perception?

    PubMed Central

    Lim, Sung-Joo; Fiez, Julie A.; Holt, Lori L.

    2014-01-01

    Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood. PMID:25136291

  11. The Differential Effects of Thalamus and Basal Ganglia on Facial Emotion Recognition

    ERIC Educational Resources Information Center

    Cheung, Crystal C. Y.; Lee, Tatia M. C.; Yip, James T. H.; King, Kristin E.; Li, Leonard S. W.

    2006-01-01

    This study examined if subcortical stroke was associated with impaired facial emotion recognition. Furthermore, the lateralization of the impairment and the differential profiles of facial emotion recognition deficits with localized thalamic or basal ganglia damage were also studied. Thirty-eight patients with subcortical strokes and 19 matched…

  12. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination

    ERIC Educational Resources Information Center

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions…

  13. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination

    ERIC Educational Resources Information Center

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions


  14. Decreased Basal Ganglia Activation in Subjects with Chronic Fatigue Syndrome: Association with Symptoms of Fatigue

    PubMed Central

    Miller, Andrew H.; Jones, James F.; Drake, Daniel F.; Tian, Hao; Unger, Elizabeth R.; Pagnoni, Giuseppe

    2014-01-01

    Reduced basal ganglia function has been associated with fatigue in neurologic disorders, as well as in patients exposed to chronic immune stimulation. Patients with chronic fatigue syndrome (CFS) have been shown to exhibit symptoms suggestive of decreased basal ganglia function including psychomotor slowing, which in turn was correlated with fatigue. In addition, CFS patients have been found to exhibit increased markers of immune activation. In order to directly test the hypothesis of decreased basal ganglia function in CFS, we used functional magnetic resonance imaging to examine neural activation in the basal ganglia to a reward-processing (monetary gambling) task in a community sample of 59 male and female subjects, including 18 patients diagnosed with CFS according to 1994 CDC criteria and 41 non-fatigued healthy controls. For each subject, the average effect of winning vs. losing during the gambling task in regions of interest (ROI) corresponding to the caudate nucleus, putamen, and globus pallidus was extracted for group comparisons and correlational analyses. Compared to non-fatigued controls, patients with CFS exhibited significantly decreased activation in the right caudate (p = 0.01) and right globus pallidus (p = 0.02). Decreased activation in the right globus pallidus was significantly correlated with increased mental fatigue (r2 = 0.49, p = 0.001), general fatigue (r2 = 0.34, p = 0.01) and reduced activity (r2 = 0.29, p = 0.02) as measured by the Multidimensional Fatigue Inventory. No such relationships were found in control subjects. These data suggest that symptoms of fatigue in CFS subjects were associated with reduced responsivity of the basal ganglia, possibly involving the disruption of projections from the globus pallidus to thalamic and cortical networks. PMID:24858857

  15. Neuroanatomical Correlates of Intelligence in Healthy Young Adults: The Role of Basal Ganglia Volume

    PubMed Central

    Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes

    2014-01-01

    Background In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. Methodology/Principal Findings We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r?=?0.372, p?=?0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r?=?0.507, p?=?0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r?=?0.306, p?=?0.04 and r?=?0.459, p?=?0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. Conclusions/Significance The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to cognitive performance. PMID:24699871

  16. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements

    PubMed Central

    Bednark, Jeffery G.; Campbell, Megan E. J.; Cunnington, Ross

    2015-01-01

    Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g., rhythm) and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis (MVPA), we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the supplementary motor area (SMA) and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia. PMID:26283945

  17. Interaction between basal ganglia and limbic circuits in learning and memory processes.

    PubMed

    Calabresi, Paolo; Picconi, Barbara; Tozzi, Alessandro; Ghiglieri, Veronica

    2016-01-01

    Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of α-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes. PMID:26372625

  18. Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X

    PubMed Central

    Haesler, Sebastian; Rochefort, Christelle; Georgi, Benjamin; Licznerski, Pawel; Osten, Pavel; Scharff, Constance

    2007-01-01

    The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the striatum of the basal ganglia, which also express high levels of FOXP2. Since human speech and learned vocalizations in songbirds bear behavioral and neural parallels, songbirds provide a genuine model for investigating the basic principles of speech and its pathologies. In zebra finch Area X, a basal ganglia structure necessary for song learning, FoxP2 expression increases during the time when song learning occurs. Here, we used lentivirus-mediated RNA interference (RNAi) to reduce FoxP2 levels in Area X during song development. Knockdown of FoxP2 resulted in an incomplete and inaccurate imitation of tutor song. Inaccurate vocal imitation was already evident early during song ontogeny and persisted into adulthood. The acoustic structure and the duration of adult song syllables were abnormally variable, similar to word production in children with DVD. Our findings provide the first example of a functional gene analysis in songbirds and suggest that normal auditory-guided vocal motor learning requires FoxP2. PMID:18052609

  19. A minimally invasive anterior skull base approach for evacuation of a basal ganglia hemorrhage.

    PubMed

    Ding, Dale; Przybylowski, Colin J; Starke, Robert M; Sterling Street, R; Tyree, Amber E; Webster Crowley, R; Liu, Kenneth C

    2015-11-01

    We describe the technical nuances of a minimally invasive anterior skull base approach for microsurgical evacuation of a large basal ganglia hematoma through an endoport. Patients who suffer from large spontaneous intracerebral hemorrhages (ICH) of the basal ganglia have a very poor prognosis. However, the benefit of surgery for the management of ICH is controversial. The development of endoport technology has allowed for minimally invasive access to subcortical lesions, and may offer unique advantages over conventional surgical techniques due to less disruption of the overlying cortex and white matter fiber tracts. A 77-year-old man presented with a hypertensive ICH of the right putamen, measuring 9 cm in maximal diameter and 168 cm(3) in volume. We planned an endoport trajectory through the long axis of the hematoma using frameless stereotactic neuronavigation. In order to access the optimal cortical entry point at the lateral aspect of the basal frontal lobe, a miniature modified orbitozygomatic skull base craniotomy was performed through an incision along the superior border of the right eyebrow. Using the BrainPath endoport system (NICO, Indianapolis, IN, USA), the putaminal hematoma was successfully evacuated, resulting in an 87% postoperative reduction in ICH volume. Thus, we show that, in appropriately selected cases, endoport-assisted microsurgery is safe and effective for the evacuation of large ICH. Furthermore, minimally invasive anterior skull base approaches can be employed to expand the therapeutic potential of endoport-assisted approaches to include subcortical lesions, such as hematomas of the basal ganglia. PMID:26142050

  20. Endoscopic Evacuation of Basal Ganglia Hemorrhage via Keyhole Approach Using an Adjustable Cannula in Comparison with Craniotomy

    PubMed Central

    Zhang, Heng-Zhu; Li, Yu-Ping; Yan, Zheng-cun; Wang, Xing-dong; She, Lei; Wang, Xiao-dong; Dong, Lun

    2014-01-01

    Neuroendoscopic (NE) surgery as a minimal invasive treatment for basal ganglia hemorrhage is a promising approach. The present study aims to evaluate the efficacy and safety of NE approach using an adjustable cannula to treat basal ganglia hemorrhage. In this study, we analysed the clinical and radiographic outcomes between NE group (21 cases) and craniotomy group (30 cases). The results indicated that NE surgery might be an effective and safe approach for basal ganglia haemorrhage, and it is also suggested that NE approach may improve good functional recovery. However, NE approach only suits the selected patient, and the usefulness of NE approach needs further randomized controlled trials (RCTs) to evaluate. PMID:24949476

  1. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease

    SciTech Connect

    Akiyama, H.; Harrop, R.; McGeer, P.L.; Peppard, R.; McGeer, E.G.

    1989-04-01

    We detected crossed cerebellar as well as uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease by positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose. We studied a series of 26 consecutive, clinically diagnosed Alzheimer cases, including 6 proven by later autopsy, and compared them with 9 age-matched controls. We calculated asymmetry indices (AIs) of cerebral metabolic rate for matched left-right regions of interest (ROIs) and determined the extent of diaschisis by correlative analyses. For the Alzheimer group, we found cerebellar AIs correlated negatively, and thalamic AIs positively, with those of the cerebral hemisphere and frontal, temporal, parietal, and angular cortices, while basal ganglia AIs correlated positively with frontal cortical AIs. The only significant correlation of AIs for normal subjects was between the thalamus and cerebral hemisphere. These data indicate that PET is a sensitive technique for detecting diaschisis.

  2. Evidence for a causal inverse model in an avian cortico-basal ganglia circuit

    PubMed Central

    Giret, Nicolas; Kornfeld, Joergen; Ganguli, Surya; Hahnloser, Richard H. R.

    2014-01-01

    Learning by imitation is fundamental to both communication and social behavior and requires the conversion of complex, nonlinear sensory codes for perception into similarly complex motor codes for generating action. To understand the neural substrates underlying this conversion, we study sensorimotor transformations in songbird cortical output neurons of a basal-ganglia pathway involved in song learning. Despite the complexity of sensory and motor codes, we find a simple, temporally specific, causal correspondence between them. Sensory neural responses to song playback mirror motor-related activity recorded during singing, with a temporal offset of roughly 40 ms, in agreement with short feedback loop delays estimated using electrical and auditory stimulation. Such matching of mirroring offsets and loop delays is consistent with a recent Hebbian theory of motor learning and suggests that cortico-basal ganglia pathways could support motor control via causal inverse models that can invert the rich correspondence between motor exploration and sensory feedback. PMID:24711417

  3. Balanced activity in basal ganglia projection pathways is critical for contraversive movements

    PubMed Central

    Tecuapetla, Fatuel; Matias, Sara; Dugue, Guillaume P.; Mainen, Zachary F.; Costa, Rui M.

    2014-01-01

    The basal ganglia, and the striatum in particular, have been implicated in the generation of contraversive movements. The striatum projects to downstream basal ganglia nuclei through two main circuits, originating in striatonigral and striatopallidal neurons, and different models postulate that the two pathways can work in opposition or synergistically. Here we show striatonigral and striatopallidal neurons are concurrently active during spontaneous contraversive movements. Furthermore, we show that unilateral optogenetic inhibition of either or both projection pathways disrupts contraversive movements. Consistently, simultaneous activation of both neuron types produces contraversive movements. Still, we also show that imbalanced activity between the pathways can result in opposing movements being driven by each projection pathway. These data show that balanced activity in both striatal projection pathways is critical for the generation of contraversive movements and highlights that imbalanced activity between the two projection pathways can result in opposing motor output. PMID:25002180

  4. Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy

    PubMed Central

    Schroll, Henning; Hamker, Fred H.

    2013-01-01

    Over the past 15 years, computational models have had a considerable impact on basal-ganglia research. Most of these models implement multiple distinct basal-ganglia pathways and assume them to fulfill different functions. As there is now a multitude of different models, it has become complex to keep track of their various, sometimes just marginally different assumptions on pathway functions. Moreover, it has become a challenge to oversee to what extent individual assumptions are corroborated or challenged by empirical data. Focusing on computational, but also considering non-computational models, we review influential concepts of pathway functions and show to what extent they are compatible with or contradict each other. Moreover, we outline how empirical evidence favors or challenges specific model assumptions and propose experiments that allow testing assumptions against each other. PMID:24416002

  5. Metabolic and electrophysiological changes in the basal ganglia of transgenic Huntington's disease rats.

    PubMed

    Vlamings, Rinske; Benazzouz, Abdelhamid; Chetrit, Jonathan; Janssen, Marcus L F; Kozan, Ramazan; Visser-Vandewalle, Veerle; Steinbusch, Harry W M; von Hörsten, Stephan; Temel, Yasin

    2012-12-01

    Huntington's disease (HD) is characterized by neuronal loss in the striatum, ultimately leading to an 'imbalance' in the electrical activity of the basal ganglia-thalamocortical circuits. To restore this 'imbalance' in HD patients, which is held responsible for (some) of the motor symptoms, different basal ganglia nuclei have been targeted for surgical therapies, such as ablative surgery and deep brain stimulation. However, evidence to target brain nuclei for surgical therapies in HD is lacking. We reasoned that a neuronal and metabolic mapping of the basal ganglia nuclei could identify a functional substrate for therapeutic interventions. Therefore, the aim of the present study was to investigate the metabolic and neuronal activity of basal ganglia nuclei in a transgenic rat model of HD (tgHD). Subjects were 10-12 month old tgHD rats and wildtype littermates. We examined the striatum, globus pallidus, entopeduncular nucleus, the subthalamic nucleus and substantia nigra at different levels. First, we determined the overall neuronal activity at a supracellular level, by cytochrome oxidase histochemistry. Secondly, we determined the subcellular metabolic activity, by immunohistochemistry for peroxisome proliferator-activated receptor-γ transcription co-activator (PGC-1α), a key player in the mitochondrial machinery. Finally, we performed extracellular single unit recordings in the nuclei to determine the cellular activity. In tgHD rats, optical density analysis showed a significantly increased cytochrome oxidase levels in the globus pallidus and subthalamic nucleus when compared to controls. PGC-1α expression was only enhanced in the subthalamic nucleus and electrophysiological recordings revealed decreased firing frequency of the majority of the neurons in the globus pallidus and increased firing frequency of the majority of the neurons in the subthalamic nucleus. Altogether, our results suggest that the globus pallidus and subthalamic nucleus play a role in the neurobiology of HD and can be potential targets for therapeutic interventions. PMID:22813864

  6. Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement.

    PubMed

    Redgrave, P; Vautrelle, N; Reynolds, J N J

    2011-12-15

    Multifunctional agents with limited motor resources must decide what actions will best ensure their survival. Moreover, given that in an unpredictable world things don't always work out, considerable advantage is to be gained by learning from experience - instrumental behaviour that maximises reward and minimises punishment. In this review we will argue that the re-entrant looped architecture of the basal ganglia represents biological solutions to these fundamental behavioural problems of selection and reinforcement. A potential solution to the selection problem is provided for by selective disinhibition within the parallel loop architecture that connects the basal ganglia with external neural structures. The relay points within these loops permit the signals of a particular channel to be modified by external influences. In part, these influences have the capacity to modify overall selections so that the probability of re-selecting reinforced behaviours in the future is altered. This is the basic process of instrumental learning, which we suggest decomposes into two sub-problems for the agent: (i) learning which external events it causes to happen and learning precisely what it is doing that is causal; and (ii) having determined agency and discovered novel action-outcome routines, how best to exploit this knowledge to maximise future reward acquisitions. Considerations of connectional architecture and signal timing suggest that the short-latency, sensory-evoked dopamine response, which can modulate the re-entrant loop structure within the basal ganglia, is ideally suited to reinforce the determination of agency and the discovery of novel actions. Alternatively, recent studies showing that presence or absence of reward can selectively modulate the magnitude of signals in structures providing input signals to the basal ganglia, offer an alternative mechanism for biasing selection within the re-entrant loop architecture. We suggest that this mechanism may be better suited to ensure the prioritisation of inputs associated with reward. PMID:21821101

  7. SHAPE OF THE BASAL GANGLIA IN PREADOLESCENT CHILDREN IS ASSOCIATED WITH COGNITIVE PERFORMANCE

    PubMed Central

    Sandman, Curt A.; Head, Kevin; Muftuler, L. Tugan; Su, Lydia; Buss, Claudia; Davis, Elysia Poggi.

    2014-01-01

    Current studies support the belief that high levels of performance and intellectual abilities are associated with increased brain size or volume. With few exceptions, this conclusion is restricted to studies of post-adolescent subjects and to cerebral cortex. There is evidence that “bigger is better” may not pertain to children and further, that there are areas of the brain in which larger structures are associated with cognitive deficits. In 50 preadolescent children (21 girls) a structural survey of the brain (VBM) was conducted to determine and locate areas in which gray matter volume was associated with poor cognitive performance. Only increased gray matter volume in particular areas of the basal ganglia and specifically the putamen were significantly associated with poor performance on tests of memory, response speed and a general marker and subtests of intelligence. Based on the VBM findings, volumetric analysis of basal ganglia structures were performed using FSL/FIRST. However, no significant changes in total volume of putamen or other basal ganglia structures were detected with this analysis. The disagreement between measures of localized gray matter differences and volumetric analysis suggested that there might be local regional deformity rather than widespread volumetric changes of the putamen. Surface analysis with FSL/FIRST demonstrated that bilateral outward deformation of the putamen, but especially the left, was associated with poor performance on several cognitive tests. Expansion of the globus pallidus and caudate nucleus also was associated with poor performance. Moreover a significant association was detected between a reliable test of language-free intelligence and topographically distinct outward and inward deformation of the putamen. Expansion and contraction of the putamen as a predictor of intelligence may explain why this association was not observed with measures of total volume. These results suggest that deformity is a sensitive measure of function, and that distortion of the basal ganglia may be a neurophenotype for risk of developmental impairment. PMID:24844741

  8. Shape of the basal ganglia in preadolescent children is associated with cognitive performance.

    PubMed

    Sandman, Curt A; Head, Kevin; Muftuler, L Tugan; Su, Lydia; Buss, Claudia; Davis, Elysia Poggi

    2014-10-01

    Current studies support the belief that high levels of performance and intellectual abilities are associated with increased brain size or volume. With few exceptions, this conclusion is restricted to studies of post-adolescent subjects and to cerebral cortex. There is evidence that "bigger is better" may not pertain to children and further, that there are areas of the brain in which larger structures are associated with cognitive deficits. In 50 preadolescent children (21 girls) a structural survey of the brain (VBM) was conducted to determine and locate areas in which gray matter volume was associated with poor cognitive performance. Only increased gray matter volume in particular areas of the basal ganglia and specifically the putamen was significantly associated with poor performance on tests of memory, response speed and a general marker and subtests of intelligence. Based on the VBM findings, volumetric analysis of basal ganglia structures was performed using FSL/FIRST. However, no significant changes in total volume of putamen or other basal ganglia structures were detected with this analysis. The disagreement between measures of localized gray matter differences and volumetric analysis suggested that there might be local regional deformity rather than widespread volumetric changes of the putamen. Surface analysis with FSL/FIRST demonstrated that bilateral outward deformation of the putamen, but especially the left, was associated with poor performance on several cognitive tests. Expansion of the globus pallidus and caudate nucleus also was associated with poor performance. Moreover a significant association was detected between a reliable test of language-free intelligence and topographically distinct outward and inward deformation of the putamen. Expansion and contraction of the putamen as a predictor of intelligence may explain why this association was not observed with measures of total volume. These results suggest that deformity is a sensitive measure of function, and that distortion of the basal ganglia may be a neurophenotype for risk of developmental impairment. PMID:24844741

  9. Role of Basal Ganglia Circuits in Resisting Interference by Distracters: A swLORETA Study

    PubMed Central

    Bocquillon, Perrine; Bourriez, Jean-Louis; Palmero-Soler, Ernesto; Destée, Alain; Defebvre, Luc; Derambure, Philippe; Dujardin, Kathy

    2012-01-01

    Background The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of investigating the basal ganglia's contributions to attention is to examine the features of P300 components (i.e. amplitude, latency, and generators) in patients with basal ganglia damage (such as in Parkinson's disease (PD), in which attention is often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300 subcomponents. Methodology/Principal Findings In order to compare distracter- and target-elicited P300 components, high-density (128-channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were performed using SPM5Âź software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal (DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage. Conclusions/Significance Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention disorders. PMID:22470542

  10. The basal ganglia select the expected sensory input used for predictive coding

    PubMed Central

    Colder, Brian

    2015-01-01

    While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes “emulations” as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action’s associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding. PMID:26441627

  11. Responses of the Rat Basal Ganglia Neurotensin Systems to Low Doses of Methamphetamine

    PubMed Central

    Alburges, Mario E.; Hoonakker, Amanda J.; Cordova, Nathaniel M.; Robson, Christina M.; McFadden, Lisa M.; Martin, Amber L.; Hanson, Glen R.

    2014-01-01

    Rationale Administration of high doses of methamphetamine (METH) in a manner mimicking the bingeing patterns associated with abuse, reduces NT release and causes its accumulation and elevated NT levels in extrapyramidal structures by a D1 mechanism. The relevance of these findings to the therapeutic use of METH needs to be studied. Objectives The effect of low doses (comparable to that used for therapy) of METH on basal ganglia NT systems was examined and compared to high-dose and self-administration effects previously reported. Methods Rats were injected four times (2-h intervals) with either saline or low doses of METH (0.25, 0.50 or 1.00 mg/kg/s.c.). For the DA antagonist studies, animals were pretreated with a D1 (SCH23390) or D2 (eticlopride) antagonist 15 min prior to METH or saline treatments. Rats were sacrificed 5–48 h after last injection. Results METH at doses of 0.25 and 0.50, but not 1.00 mg/kg rapidly and briefly decreased NTLI concentration in all basal ganglia structures studied. In the posterior dorsal striatum, the reduction in NT level after low-dose METH appeared to be caused principally by D2 stimulation, but both D2 and D1 stimulation were required for the NT responses in the other basal ganglia regions. Conclusions A novel finding from the present study was that opposite to abuse-mimicking high doses of METH, the therapeutically relevant low-dose METH treatment reduced NT tissue levels likely reflecting an increase in NT release and a short-term depletion of the levels of this neuropeptide in basal ganglia structures. The possible significance is discussed. PMID:24522333

  12. Vocal learning, prosody, and basal ganglia: don't underestimate their complexity.

    PubMed

    Ravignani, Andrea; Martins, Mauricio; Fitch, W Tecumseh

    2014-12-01

    Ackermann et al.'s arguments in the target article need sharpening and rethinking at both mechanistic and evolutionary levels. First, the authors' evolutionary arguments are inconsistent with recent evidence concerning nonhuman animal rhythmic abilities. Second, prosodic intonation conveys much more complex linguistic information than mere emotional expression. Finally, human adults' basal ganglia have a considerably wider role in speech modulation than Ackermann et al. surmise. PMID:25514960

  13. Long-term depression at distinct glutamatergic synapses in the basal ganglia.

    PubMed

    Dupuis, Julien P; Bioulac, Bernard H; Baufreton, JĂ©rĂŽme

    2014-01-01

    Long-term adaptations of synaptic transmission are believed to be the cellular basis of information storage in the brain. In particular, long-term depression of excitatory neurotransmission has been under intense investigation since convergent lines of evidence support a crucial role for this process in learning and memory. Within the basal ganglia, a network of subcortical nuclei forming a key part of the extrapyramidal motor system, plasticity at excitatory synapses is essential to the regulation of motor, cognitive, and reward functions. The striatum, the main gateway of the basal ganglia, receives convergent excitatory inputs from cortical areas and transmits information to the network output structures and is a major site of activity-dependent plasticity. Indeed, long-term depression at cortico-striatal synapses modulates the transfer of information to basal ganglia output structures and affects voluntary movement execution. Cortico-striatal plasticity is thus considered as a cellular substrate for adaptive motor control. Downstream in this network, the subthalamic nucleus and substantia nigra nuclei also receive glutamatergic innervation from the cortex and the subthalamic nucleus, respectively. Although these connections have been less investigated, recent studies have started to unravel the molecular mechanisms that contribute to adjustments in the strength of cortico-subthalamic and subthalamo-nigral transmissions, revealing that adaptations at these synapses governing the output of the network could also contribute to motor planning and execution. Here, we review our current understanding of long-term depression mechanisms at basal ganglia glutamatergic synapses and emphasize the common and unique plastic features observed at successive levels of the network in healthy and pathological conditions. PMID:25046307

  14. [Depression and calcinosis of the basal ganglia: apropos of a case].

    PubMed

    Glück-Vanlaer, N; Fallet, A; Plas, J; Chevalier, J F

    1996-01-01

    Idiopathic basal ganglia calcifications is a heterogeneous entity characterized by the association of bilateral and symmetric calcifications of the basal ganglia and the dentae nuclei in the cerebellum, polymorphous neuropsychiatric symptomatology. It is rare, of unknown etiology and often hereditary. We report the case of a 48 years old man, who presented with melancholic depression which has been steadily worsening for more than a year and which had led to a serious suicide attempt. Clinical observation revealed apragmatism, affective dullness and impoverished spontaneous expression; the theme of incapacity predominated but guilt feelings were absent. Neurologic examination was normal except for extra-pyramidal signs. CT-scan revealed the presence of bilateral and extensive calcifications of caudate nuclei, lenticular nuclei and thalamus, which indicated a diagnosis of idiopathic basal ganglia calcification characterized by depression. Moreover, MRI revealed an hypersignal of the white periventricular substance. Phospho-calcic results and the parathormone dosage were normal. Psychometric tests showed that although intellectual capacity seemed to be intact, it was not utilised in practice. Unresponsive to antidepressants and sismotherapy, the patient is still the same one and a half year later, and needs to remain in an institution. Subsequent tests indicate that intellectual deterioration has begun. This case poses the problem of the relationship between depressive syndrome and basal ganglia lesions. We look at studies bearing on this subject and on other clinically similar syndromes (athymhormia, loss of psychic self-activation), in which the interruption or cortico-striato-pallido-thalamo-cortical circuits (particularly the limbic loop), is a physiopathologic mechanism currently invoked. PMID:8706622

  15. The Development of the Basal Ganglia in Capuchin Monkeys (Cebus apella)

    PubMed Central

    Phillips, Kimberley A.; Sobieski, Courtney A.; Gilbert, Valerie R.; Chiappini-Williamson, Christine; Sherwood, Chet C.; Strick, Peter L.

    2010-01-01

    The basal ganglia are subcortical structures involved in the planning, initiation and regulation of movement as well as a variety of non-motor, cognitive and affective functions. Capuchin monkeys share several important characteristics of development with humans, including a prolonged infancy and juvenile period, a long lifespan, and complex manipulative abilities. This makes capuchins important comparative models for understanding age-related neuroanatomical changes in these structures. Here we report developmental volumetric data on the three subdivisions of the basal ganglia, the caudate, putamen and globus pallidus in brown capuchin monkeys (Cebus apella). Based on a cross-sectional sample, we describe brain development in 28 brown capuchin monkeys (male n = 17, female n = 11; age range = 2 months – 20 years) using high-resolution structural MRI. We found that the raw volumes of the putamen and caudate varied significantly with age, decreasing in volume from birth through early adulthood. Notably, developmental changes did not differ between sexes. Because these observed developmental patterns are similar to humans, our results suggest that capuchin monkeys may be useful animal models for investigating neurodevelopmental disorders of the basal ganglia. PMID:20227397

  16. Evidence for Altered Basal Ganglia-Brainstem Connections in Cervical Dystonia

    PubMed Central

    Blood, Anne J.; Kuster, John K.; Woodman, Sandra C.; Kirlic, Namik; Makhlouf, Miriam L.; Multhaupt-Buell, Trisha J.; Makris, Nikos; Parent, Martin; Sudarsky, Lewis R.; Sjalander, Greta; Breiter, Henry

    2012-01-01

    Background There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia. Methodology/Principal Findings In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients. Conclusions/Significance These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia. PMID:22384048

  17. Brain tissue properties differentiate between motor and limbic basal ganglia circuits

    PubMed Central

    Accolla, Ettore A; Dukart, Juergen; Helms, Gunther; Weiskopf, Nikolaus; Kherif, Ferath; Lutti, Antoine; Chowdhury, Rumana; Hetzer, Stefan; Haynes, John-Dylan; Kühn, Andrea A; Draganski, Bogdan

    2014-01-01

    Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome. PMID:24777915

  18. A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors

    PubMed Central

    Andalman, Aaron S.; Fee, Michale S.

    2009-01-01

    In songbirds, as in mammals, basal ganglia-forebrain circuits are necessary for the learning and production of complex motor behaviors; however, the precise role of these circuits remains unknown. It has recently been shown that a basal ganglia-forebrain circuit in the songbird, which projects directly to vocal–motor circuitry, has a premotor function driving exploration necessary for vocal learning. It has also been hypothesized that this circuit, known as the anterior forebrain pathway (AFP), may generate an instructive signal that improves performance in the motor pathway. Here, we show that the output of the AFP directly implements a motor correction that reduces vocal errors. We use disruptive auditory feedback, contingent on song pitch, to induce learned changes in song structure over the course of hours and find that reversible inactivation of the output of the AFP produces an immediate regression of these learned changes. Thus, the AFP is involved in generating an error-reducing bias, which could increase the efficiency of vocal exploration and instruct synaptic changes in the motor pathway. We also find that learned changes in the song generated by the AFP are incorporated into the motor pathway within 1 day. Our observations support a view that basal ganglia-related circuits directly implement behavioral adaptations that minimize errors and subsequently stabilize these adaptations by training premotor cortical areas. PMID:19597157

  19. Independent circuits in the basal ganglia for the evaluation and selection of actions

    PubMed Central

    Stephenson-Jones, Marcus; Kardamakis, Andreas A.; Robertson, Brita; Grillner, Sten

    2013-01-01

    The basal ganglia are critical for selecting actions and evaluating their outcome. Although the circuitry for selection is well understood, how these nuclei evaluate the outcome of actions is unknown. Here, we show in lamprey that a separate evaluation circuit, which regulates the habenula-projecting globus pallidus (GPh) neurons, exists within the basal ganglia. The GPh neurons are glutamatergic and can drive the activity of the lateral habenula, which, in turn, provides an indirect inhibitory influence on midbrain dopamine neurons. We show that GPh neurons receive inhibitory input from the striosomal compartment of the striatum. The striosomal input can reduce the excitatory drive to the lateral habenula and, consequently, decrease the inhibition onto the dopaminergic system. Dopaminergic neurons, in turn, provide feedback that inhibits the GPh. In addition, GPh neurons receive direct projections from the pallium (cortex in mammals), which can increase the GPh activity to drive the lateral habenula to increase the inhibition of the neuromodulatory systems. This circuitry, thus, differs markedly from the “direct” and “indirect” pathways that regulate the pallidal (e.g., globus pallidus) output nuclei involved in the control of motion. Our results show that a distinct reward–evaluation circuit exists within the basal ganglia, in parallel to the direct and indirect pathways, which select actions. Our results suggest that these circuits are part of the fundamental blueprint that all vertebrates use to select actions and evaluate their outcome. PMID:24003130

  20. Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype–phenotype correlation

    PubMed Central

    Hamilton, Eline M.; Polder, Emiel; Vanderver, Adeline; Naidu, Sakkubai; Schiffmann, Raphael; Fisher, Kate; Raguž, Ana Boban; Blumkin, Luba; van Berkel, Carola G. M.; Waisfisz, Quinten; Simons, Cas; Taft, Ryan J.; Abbink, Truus E. M.; Wolf, Nicole I.

    2014-01-01

    Hypomyelination with atrophy of the basal ganglia and cerebellum is a rare leukoencephalopathy that was identified using magnetic resonance imaging in 2002. In 2013, whole exome sequencing of 11 patients with the disease revealed that they all had the same de novo mutation in TUBB4A, which encodes tubulin ?-4A. We investigated the mutation spectrum in a cohort of 42 patients and the relationship between genotype and phenotype. Patients were selected on the basis of clinical and magnetic resonance imaging abnormalities that are indicative of hypomyelination with atrophy of the basal ganglia and cerebellum. Genetic testing and a clinical inventory were performed, and sequential magnetic resonance images were evaluated using a standard protocol. The heterozygous TUBB4A mutation observed in the first 11 patients was the most common (25 patients). Additionally, 13 other heterozygous mutations were identified, located in different structural domains of tubulin ?-4A. We confirmed that the mutations were de novo in all but three patients. In two of these three cases we lacked parental DNA and in one the mutation was also found in the mother, most likely due to mosaicism. Patients showed a phenotypic continuum ranging from neonatal to childhood disease onset, normal to delayed early development and slow to more rapid neurological deterioration. Neurological symptomatology consisted of extrapyramidal movement abnormalities, spasticity, ataxia, cognitive deficit and sometimes epilepsy. Three patients died and the oldest living patient was 29 years of age. The patients’ magnetic resonance images showed an absent or disappearing putamen, variable cerebellar atrophy and highly variable cerebral atrophy. Apart from hypomyelination, myelin loss was evident in several cases. Three severely affected patients had similar, somewhat atypical magnetic resonance image abnormalities. The study results were strongly suggestive of a genotype–phenotype correlation. The 25 patients with the common c.745G>A mutation generally had a less rapidly progressive disease course than the 17 cases with other TUBB4A mutations. Overall, this work demonstrates that the distinctive magnetic resonance imaging pattern for hypomyelination with atrophy of the basal ganglia and cerebellum defines a homogeneous clinical phenotype of variable severity. Patients almost invariably have prominent extrapyramidal movement abnormalities, which are rarely seen in patients with hypomyelination of different origin. A dominant TUBB4A mutation is also associated with dystonia type 4, in which magnetic resonance images of the brain seem normal. It is highly likely that there is a disease continuum associated with TUBB4A mutations, of which hypomyelination with atrophy of the basal ganglia and cerebellum and dystonia type 4 are the extremes. This would indicate that extrapyramidal movement abnormalities constitute the core feature of the disease spectrum related to dominant TUBB4A mutations and that all other features are variable. PMID:24785942

  1. Competing basal ganglia pathways determine the difference between stopping and deciding not to go.

    PubMed

    Dunovan, Kyle; Lynch, Brighid; Molesworth, Tara; Verstynen, Timothy

    2015-01-01

    The architecture of corticobasal ganglia pathways allows for many routes to inhibit a planned action: the hyperdirect pathway performs fast action cancellation and the indirect pathway competitively constrains execution signals from the direct pathway. We present a novel model, principled off of basal ganglia circuitry, that differentiates control dynamics of reactive stopping from intrinsic no-go decisions. Using a nested diffusion model, we show how reactive braking depends on the state of an execution process. In contrast, no-go decisions are best captured by a failure of the execution process to reach the decision threshold due to increasing constraints on the drift rate. This model accounts for both behavioral and functional MRI (fMRI) responses during inhibitory control tasks better than alternative models. The advantage of this framework is that it allows for incorporating the effects of context in reactive and proactive control into a single unifying parameter, while distinguishing action cancellation from no-go decisions. PMID:26402462

  2. Processing of temporal information and the basal ganglia: new evidence from fMRI.

    PubMed

    Nenadic, Igor; Gaser, Christian; Volz, Hans-Peter; Rammsayer, Thomas; Häger, Frank; Sauer, Heinrich

    2003-01-01

    Temporal information processing is a fundamental brain function, which might include central timekeeping mechanisms independent of sensory modality. Psychopharmacological and patient studies suggest a crucial role of the basal ganglia in time estimation. In this study, functional magnetic resonance imaging (fMRI) was applied in 15 healthy right-handed male subjects performing an auditory time estimation task (duration discrimination of tone pairs in the range of 1,000-1,400 ms) and frequency discriminations (tone pairs differing in pitch, around 1,000 Hz) as an active control task. Task difficulty was constantly modulated by an adaptive algorithm (weighted up-down method) reacting on individual performance. Time estimation (vs rest condition) elicited a distinct pattern of cerebral activity, including the right medial and both left and right dorsolateral prefrontal cortices (DLPFC), thalamus, basal ganglia (caudate nucleus and putamen), left anterior cingulate cortex, and superior temporal auditory areas. Most activations showed lateralisation to the right hemisphere and were similar in the frequency discrimination task. Comparing time and frequency tasks, we isolated activation in the right putamen restricted to time estimation only. This result supports the notion of central processing of temporal information associated with basal ganglia activity. Temporal information processing in the brain might thus be a distributed process of interaction between modality-dependent sensory cortical function, the putamen (with a timing-specific function), and additional prefrontal cortical systems related to attention and memory. Further investigations are needed to delineate the differential contributions of the striatum and other areas to timing. PMID:12520413

  3. Association between a Novel Mutation in SLC20A2 and Familial Idiopathic Basal Ganglia Calcification

    PubMed Central

    Zhang, Yang; Guo, Xianan; Wu, Anhua

    2013-01-01

    Familial idiopathic basal ganglia calcification (FIBGC) is a rare, autosomal dominant disorder involving bilateral calcification of the basal ganglia. To identify gene mutations related to a Chinese FIBGC lineage, we evaluated available individuals in the family using CT scans. DNA was extracted from the peripheral blood of available family members, and both exonic and flanking intronic sequences of the SLC20A2 gene were amplified by PCR and then sequenced. Non-denaturing polyacrylamide gel electrophoresis (PAGE) was used to confirm the presence of mutations. Allele imbalances of the SLC20A2 gene or relative quantity of SLC20A2 transcripts were evaluated using qRT-PCR. A novel heterozygous single base-pair deletion (c.510delA) within the SLC20A2 gene was identified. This deletion mutation was found to co-segregate with basal ganglia calcification in all of the affected family members but was not detected in unaffected individuals or in 167 unrelated Han Chinese controls. The mutation will cause a frameshift, producing a truncated SLC20A2 protein with a premature termination codon, most likely leading to the complete loss of function of the SLC20A2 protein. This mutation may also lead to a reduction in SLC20A2 mRNA expression by approximately 30% in cells from affected individuals. In conclusion, we identified a novel mutation in SLC20A2 that is linked to FIBGC. In addition to the loss of function at the protein level, decreasing the expression of SLC20A2 mRNA may be another mechanism that can regulate SLC20A2 function in IBGC individuals. We propose that the regional expression pattern of SLC20A1 and SLC20A2 might explain the unique calcification pattern observed in FIBGC patients. PMID:23437308

  4. Prediction of the Location of the Pyramidal Tract in Patients with Thalamic or Basal Ganglia Tumors

    PubMed Central

    Xu, BaiNan

    2012-01-01

    Background Locating the pyramidal tract (PT) is difficult in patients with thalamic or basal ganglia tumors, especially when the surrounding anatomical structures cannot be identified using computed tomography or magnetic resonance images. Hence, we objected to find a way to predict the location of the PT in patients with thalamic and basal ganglia tumors Methodology/Principal Findings In 59 patents with thalamic or basal ganglia tumors, the PTs were constructed by with diffusion tensor imaging (DTI)-based fiber tracking (FT). In axial slices crossing the foramen of Monro, the tumor position was classified according to three lines. Line 1 was vertical and crossed the vertex point of the anterior limbs of the internal capsule. Lines 2 and line 3 were horizontal and crossed the foramen of Monro and joint of the middle and lateral thirds of the posterior limbs, respectively. Six (10.17%) patients were diagnosed with type 1 tumor, six (10.17%) with type 2, seven (11.86%) with type 3a, five (8.47%) with type 3b, 17 (28.81%) with type 4a, six (10.17%) with type 4b, three (5.08%) with type 5, and nine (15.25%) with type 6. In type 1 tumors, the PTs were located at the 12 o'clock position of the tumor, type 2 at six o'clock, type 3a between nine and 12 o'clock, type 3 between six and nine o'clock, type 4a between 12 and three o'clock, type 4b at three o'clock, type 5 between six and nine o'clock, and type 6 between three and six o'clock. Conclusions/Significance The position of the PT relative to the tumor could be determined according to the tumor location. These results could prove helpful in determining the location of the PT preoperatively. PMID:23155395

  5. Increased volume and impaired function: the role of the basal ganglia in writer’s cramp

    PubMed Central

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Hefter, Harald; Hallett, Mark; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2015-01-01

    Introduction The pathophysiology of writer's cramp, a task-specific dystonia, remains unclear. The objective of this study was to investigate the basal ganglia circuit and the cerebellum during a complex motor sequence learning task carried out with the nonaffected hand in writer's cramp patients. Methods We applied structural and functional imaging in 22 writer's cramp patients and 28 matched controls using 3T MRI. With the asymptomatic left hand all participants learned a complex, sequential, five-element sequence-tapping task as accurately and quickly as possible. Functional imaging was measured during a repeated (15 times), fixed block design with tapping (30 sec) and rest (30 sec). Additionally, gray matter volume of the basal ganglia was analyzed using voxel-based morphometry (VBM). Results While behavior was comparable between groups, after small volume correction the anterior part of the right putamen and the left globus pallidus exhibited reduced blood oxygen level-dependent (BOLD) activity in patients during the sequential finger-tapping task. VBM analysis showed larger gray matter volume bilateral in the posterior part of the putamen and globus pallidus. There were no group differences in the cerebellum. Conclusion The results indicate an impairment of anterior basal ganglia loops involved in producing complex sequential movements of the unaffected hand. These findings are in line with previous reports of reduced neuronal activity in the globus pallidus internus. Higher gray matter volume of the putamen and globus pallidus may stem from elevated activity of the direct pathway, which could reflect a compensatory phenomenon or a primary predisposition, that is, endophenotypic trait. PMID:25642386

  6. Rhythmic Cortical Neurons Increase their Oscillations and Sculpt Basal Ganglia Signaling During Motor Learning

    PubMed Central

    Day, Nancy F.; Nick, Teresa A.

    2014-01-01

    The function and modulation of neural circuits underlying motor skill may involve rhythmic oscillations (Feller, 1999; Marder and Goaillard, 2006; Churchland et al., 2012). In the proposed pattern generator for birdsong, the cortical nucleus HVC, the frequency and power of oscillatory bursting during singing increases with development (Crandall et al., 2007; Day et al., 2009). We examined the maturation of cellular activity patterns that underlie these changes. Single unit ensemble recording combined with antidromic identification (Day et al., 2011) was used to study network development in anesthetized zebra finches. Autocovariance quantified oscillations within single units. A subset of neurons oscillated in the theta/alpha/mu/beta range (8–20 Hz), with greater power in adults compared to juveniles. Across the network, the normalized oscillatory power in the 8–20 Hz range was greater in adults than juveniles. In addition, the correlated activity between rhythmic neuron pairs increased with development. We next examined the functional impact of the oscillators on the output neurons of HVC. We found that the firing of oscillatory neurons negatively correlated with the activity of cortico-basal ganglia neurons (HVCXs), which project to Area X (the song basal ganglia). If groups of oscillators work together to tonically inhibit and precisely control the spike timing of adult HVCXs with coordinated release from inhibition, then the activity of HVCXs in juveniles should be decreased relative to adults due to uncorrelated, tonic inhibition. Consistent with this hypothesis, HVCXs had lower activity in juveniles. These data reveal network changes that shape cortical-to-basal ganglia signaling during motor learning. PMID:23776169

  7. Association between a novel mutation in SLC20A2 and familial idiopathic basal ganglia calcification.

    PubMed

    Zhang, Yang; Guo, Xianan; Wu, Anhua

    2013-01-01

    Familial idiopathic basal ganglia calcification (FIBGC) is a rare, autosomal dominant disorder involving bilateral calcification of the basal ganglia. To identify gene mutations related to a Chinese FIBGC lineage, we evaluated available individuals in the family using CT scans. DNA was extracted from the peripheral blood of available family members, and both exonic and flanking intronic sequences of the SLC20A2 gene were amplified by PCR and then sequenced. Non-denaturing polyacrylamide gel electrophoresis (PAGE) was used to confirm the presence of mutations. Allele imbalances of the SLC20A2 gene or relative quantity of SLC20A2 transcripts were evaluated using qRT-PCR. A novel heterozygous single base-pair deletion (c.510delA) within the SLC20A2 gene was identified. This deletion mutation was found to co-segregate with basal ganglia calcification in all of the affected family members but was not detected in unaffected individuals or in 167 unrelated Han Chinese controls. The mutation will cause a frameshift, producing a truncated SLC20A2 protein with a premature termination codon, most likely leading to the complete loss of function of the SLC20A2 protein. This mutation may also lead to a reduction in SLC20A2 mRNA expression by approximately 30% in cells from affected individuals. In conclusion, we identified a novel mutation in SLC20A2 that is linked to FIBGC. In addition to the loss of function at the protein level, decreasing the expression of SLC20A2 mRNA may be another mechanism that can regulate SLC20A2 function in IBGC individuals. We propose that the regional expression pattern of SLC20A1 and SLC20A2 might explain the unique calcification pattern observed in FIBGC patients. PMID:23437308

  8. The basal ganglia in perceptual timing: timing performance in Multiple System Atrophy and Huntington's disease.

    PubMed

    Cope, Thomas E; Grube, Manon; Singh, Baldev; Burn, David J; Griffiths, Timothy D

    2014-01-01

    The timing of perceptual events depends on an anatomically and functionally connected network comprising basal ganglia, cerebellum, pre-frontal cortex and supplementary motor area. Recent studies demonstrate the cerebellum to be involved in absolute, duration-based timing, but not in relative timing based on a regular beat. Conversely, functional involvement of the striatum is observed in relative timing, but its role in absolute timing is unclear. This work tests the specific role of the basal ganglia in the perceptual timing of auditory events. It aims to distinguish the hypothesised unified model of time perception (Teki, Grube, & Griffiths, 2012), in which the striatum is a mandatory component for all timing tasks, from a modular system in which they subserve relative timing, with absolute timing processed by the cerebellum. Test groups comprised individuals with Multiple System Atrophy, a disorder in which similar pathology can produce clinical deficits associated with dysfunction of the cerebellum (MSA-C, n = 8) or striatum (MSA-P, n = 10), and early symptomatic Huntington's disease (HD, n = 14). Individuals with chronic autoimmune peripheral neuropathy (n = 11) acted as controls. Six adaptive tasks were carried out to assess perceptual thresholds for absolute timing through duration discrimination for sub- and supra-second time intervals, and relative timing through the detection of beat-based regularity and irregularity, detection of a delay within an isochronous sequence, and the discrimination of sequences with metrical structure. All three patient groups exhibited impairments in performance in comparison with the control group for all tasks, and severity of impairment was significantly correlated with disease progression. No differences were demonstrated between MSA-C and MSA-P, and the most severe impairments were observed in those with HD. The data support an obligatory role for the basal ganglia in all tested timing tasks, both absolute and relative, as predicted by the unified model. The results are not compatible with models of a brain timing network based upon independent modules. PMID:24135486

  9. Task-set switching deficits in early-stage Huntington's disease: implications for basal ganglia function.

    PubMed

    Aron, Adam R; Watkins, Laura; Sahakian, Barbara J; Monsell, Stephen; Barker, Roger A; Robbins, Trevor W

    2003-07-01

    Executive functions are likely mediated by interconnected circuits including frontal lobe and basal ganglia structures. We assessed the executive function of task switching in patients with early-stage Huntington's disease (HD), a neurodegenerative disease affecting the basal ganglia. In two experiments, the HD patients had greater difficulty when switching than when repeating a task than matched controls, and this was true even when scaling for the overall slowing of the patients. In the first experiment, HD patients had a switching deficit even in a "pure" condition where they had to switch, predictably, and with substantial preparation time, between stimuli having only one possible response, indicating a switching deficit different from that for patients with Parkinson's disease or frontal lobe trauma, and possibly relating to inadequate activation of stimulus-response links or "response set." In the more elaborate second experiment, we could not account for the switching deficit of the patients in terms of inadequate preparation in advance of a switch, deficient suppression of task-set processing from the preswitch trial, or impaired suppression of interference due to the presence of a competing task set. Instead, we found that part of the switching deficit was due to elevated reaction time and errors on switch trials for a repeated response (same button press as on preswitch trial) relative to an alternated response (different button press from preswitch trial). We argue that this elevated "repetition effect" for the HD patients is due to excessive inhibition of the just-performed response in advance of a switch. Alterations in the "response-setting" process alone (Experiment 1) and both the response-setting and "response inhibition" process (Experiment 2) probably arise from striatal pathology in HD, thus accounting for the task-switching deficits and showing how basal ganglia implemented response processes may underpin executive function. PMID:12965037

  10. Frontal lobes, basal ganglia, temporal lobes--three sites for schizophrenia?

    PubMed

    Buchsbaum, M S

    1990-01-01

    This special issue of the Schizophrenia Bulletin focuses on three brain areas hypothesized to play a role in the etiology of schizophrenia--the frontal lobes, the basal ganglia, and the temporal lobes. Contributors to the issue review evidence from brain-imaging, post-mortem, and psychopharmacological studies that support the involvement of each of these important brain areas in schizophrenia. It is concluded that theories emphasizing cortical/subcortical interconnections rather than a single brain area provide the greatest challenge, and also the greatest promise, to schizophrenia researchers. PMID:2287928

  11. Functional correlates of exaggerated oscillatory activity in basal ganglia output in hemiparkinsonian rats.

    PubMed

    Brazhnik, Elena; Novikov, Nikolay; McCoy, Alex J; Cruz, Ana V; Walters, Judith R

    2014-11-01

    Exaggerated beta range (13-30Hz) synchronized activity is observed in the basal ganglia of Parkinson's disease (PD) patients during implantation of deep brain stimulation electrodes and is thought to contribute to the motor symptoms of this disorder. To explore the translational potential of similar activity observed in a rat model of PD, local field potentials (LFPs) and spiking activity in basal ganglia output were characterized in rats with unilateral dopamine cell lesion during a range of behaviors. A circular treadmill was used to assess activity during walking; hemiparkinsonian rats could maintain a steady gait when oriented ipsiversive to the lesioned hemisphere, but were less effective at walking when oriented contraversive to lesion. Dramatic increases in substantia nigra pars reticulata (SNpr) LFP oscillatory activity and spike-LFP synchronization were observed within the beta/low gamma range (12-40Hz) in the lesioned hemisphere, relative to the non-lesioned hemisphere, with the dominant frequency of spike-LFP entrainment and LFP power varying with behavioral state. At 3weeks postlesion, the mean dominant entrainment frequency during ipsiversive treadmill walking and grooming was 34Hz. Other behaviors were associated with lower mean entrainment frequencies: 27-28Hz during alert non-walking and REM, 17Hz during rest and 21Hz during urethane anesthesia with sensory stimulation. SNpr spike-LFP entrainment frequency was stable during individual treadmill walking epochs, but increased gradually over weeks postlesion. In contrast, SNpr LFP power in the 25-40Hz range was greatest at the initiation of each walking epoch, and decreased during walking to stabilize by 6min at 49% of initial values. Power was further modulated in conjunction with the 1.5s stepping rhythm. Administration of l-dopa improved contraversive treadmill walking in correlation with a reduction in SNpr 25-40Hz LFP power and spike synchronization in the dopamine cell lesioned hemisphere. These effects were reversed by the serotonergic 1A agonist, 8-OH-DPAT. While the prominent spike-LFP phase locking observed during ongoing motor activity in the hemiparkinsonian rats occurs at frequencies intriguingly higher than in PD patients, the synchronized activity in the SNpr of this animal model has much in common with oscillatory activity recorded from the basal ganglia of the PD patients. Results support the potential of this model for providing insight into relationships between synchronization of basal ganglia output induced by loss of dopamine and motor symptoms in PD. PMID:25084518

  12. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis.

    PubMed

    Wang, Cheng; Li, Yulei; Shi, Lei; Ren, Jie; Patti, Monica; Wang, Tao; de Oliveira, Joăo R M; Sobrido, María-Jesús; Quintáns, Beatriz; Baquero, Miguel; Cui, Xiaoniu; Zhang, Xiang-Yang; Wang, Lianqing; Xu, Haibo; Wang, Junhan; Yao, Jing; Dai, Xiaohua; Liu, Juan; Zhang, Lu; Ma, Hongying; Gao, Yong; Ma, Xixiang; Feng, Shenglei; Liu, Mugen; Wang, Qing K; Forster, Ian C; Zhang, Xue; Liu, Jing-Yu

    2012-03-01

    Familial idiopathic basal ganglia calcification (IBGC) is a genetic condition with a wide spectrum of neuropsychiatric symptoms, including parkinsonism and dementia. Here, we identified mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), in IBGC-affected families of varied ancestry, and we observed significantly impaired phosphate transport activity for all assayed PiT2 mutants in Xenopus laevis oocytes. Our results implicate altered phosphate homeostasis in the etiology of IBGC. PMID:22327515

  13. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation

    PubMed Central

    Civier, Oren; Bullock, Daniel; Max, Ludo; Guenther, Frank H.

    2013-01-01

    A typical white-matter integrity and elevated dopamine levels have been reported for individuals who stutter. We investigated how such abnormalities may lead to speech dysfluencies due to their effects on a syllable-sequencing circuit that consists of basal ganglia (BG), thalamus, and left ventral premotor cortex (vPMC). “Neurally impaired” versions of the neurocomputational speech production model GODIVA were utilized to test two hypotheses: (1) that white-matter abnormalities disturb the circuit via corticostriatal projections carrying copies of executed motor commands, and (2) that dopaminergic abnormalities disturb the circuit via the striatum. Simulation results support both hypotheses: in both scenarios, the neural abnormalities delay readout of the next syllable’s motor program, leading to dysfluency. The results also account for brain imaging findings during dysfluent speech. It is concluded that each of the two abnormality types can cause stuttering moments, probably by affecting the same BG-thalamus-vPMC circuit. PMID:23872286

  14. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI.

    PubMed

    Lenglet, Christophe; Abosch, Aviva; Yacoub, Essa; De Martino, Federico; Sapiro, Guillermo; Harel, Noam

    2012-01-01

    Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD), essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS). Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR) and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI). This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric disorders, in individual human subjects. PMID:22235267

  15. Identifying the Basal Ganglia Network Model Markers for Medication-Induced Impulsivity in Parkinson's Disease Patients

    PubMed Central

    Balasubramani, Pragathi Priyadharsini; Chakravarthy, V. Srinivasa; Ali, Manal; Ravindran, Balaraman; Moustafa, Ahmed A.

    2015-01-01

    Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its impairment in PD. The results presented here not only show that computational modelling can be used as a valuable tool for understanding and interpreting clinical data, but they also show that computational modeling has the potential to become an invaluable tool to predict the onset of behavioral changes during disease progression. PMID:26042675

  16. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    PubMed Central

    Hsu, Sandy Chan; Sears, Renee L.; Lemos, Roberta R.; QuintĂĄns, Beatriz; Huang, Alden; Spiteri, Elizabeth; Nevarez, Lisette; Mamah, Catherine; Zatz, Mayana; Pierce, Kerrie D.; Fullerton, Janice M.; Adair, John C.; Berner, Jon E.; Bower, Matthew; Brodaty, Henry; Carmona, Olga; Dobricić, Valerija; Fogel, Brent L.; GarcĂ­a-Estevez, Daniel; Goldman, Jill; Goudreau, John L.; Hopfer, Suellen; Janković, Milena; JaumĂ , Serge; Jen, Joanna C.; Kirdlarp, Suppachok; Klepper, Joerg; Kostić, Vladimir; Lang, Anthony E.; Linglart, AgnĂšs; Maisenbacher, Melissa K.; Manyam, Bala V.; Mazzoni, Pietro; Miedzybrodzka, Zofia; Mitarnun, Witoon; Mitchell, Philip B.; Mueller, Jennifer; Novaković, Ivana; Paucar, Martin; Paulson, Henry; Simpson, Sheila A.; Svenningsson, Per; Tuite, Paul; Vitek, Jerrold; Wetchaphanphesat, Suppachok; Williams, Charles; Yang, Michele; Schofield, Peter R.; de Oliveira, JoĂŁo R. M.; Sobrido, MarĂ­a-JesĂșs

    2014-01-01

    Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient’s disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation. PMID:23334463

  17. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification.

    PubMed

    Hsu, Sandy Chan; Sears, Renee L; Lemos, Roberta R; QuintĂĄns, Beatriz; Huang, Alden; Spiteri, Elizabeth; Nevarez, Lisette; Mamah, Catherine; Zatz, Mayana; Pierce, Kerrie D; Fullerton, Janice M; Adair, John C; Berner, Jon E; Bower, Matthew; Brodaty, Henry; Carmona, Olga; Dobricić, Valerija; Fogel, Brent L; GarcĂ­a-Estevez, Daniel; Goldman, Jill; Goudreau, John L; Hopfer, Suellen; Janković, Milena; JaumĂ , Serge; Jen, Joanna C; Kirdlarp, Suppachok; Klepper, Joerg; Kostić, Vladimir; Lang, Anthony E; Linglart, AgnĂšs; Maisenbacher, Melissa K; Manyam, Bala V; Mazzoni, Pietro; Miedzybrodzka, Zofia; Mitarnun, Witoon; Mitchell, Philip B; Mueller, Jennifer; Novaković, Ivana; Paucar, Martin; Paulson, Henry; Simpson, Sheila A; Svenningsson, Per; Tuite, Paul; Vitek, Jerrold; Wetchaphanphesat, Suppachok; Williams, Charles; Yang, Michele; Schofield, Peter R; de Oliveira, JoĂŁo R M; Sobrido, MarĂ­a-JesĂșs; Geschwind, Daniel H; Coppola, Giovanni

    2013-02-01

    Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41% of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation. PMID:23334463

  18. Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory

    PubMed Central

    Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J.; Düzel, Emrah

    2015-01-01

    The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. PMID:26420783

  19. Mitochondrial Toxins in Basal Ganglia Disorders: From Animal Models to Therapeutic Strategies

    PubMed Central

    Bonsi, P; Cuomo, D; Martella, G; Sciamanna, G; Tolu, M; Calabresi, P; Bernardi, G; Pisani, A

    2006-01-01

    Current knowledge of the pathogenesis of basal ganglia disorders, such as Huntington’s disease (HD) and Parkinson’s disease (PD) appoints a central role to a dysfunction in mitochondrial metabolism. The development of animal models, based upon the use of mitochondrial toxins has been successfully introduced to reproduce human disease, leading to important acquisitions. Most notably, experimental evidence supports the existence, within basal ganglia, of a peculiar regional vulnerability to distinct mitochondrial toxins. MPTP and rotenone, both selective inhibitors of mitochondrial complex I have been extensively used to mimic PD. Accordingly, in human PD, a specific dysfunction of complex I activity was found in vulnerable dopaminergic neurons of the substantia nigra. Conversely, in HD a selective impairment of mitochondrial succinate dehydrogenase, key enzyme in complex II activity was found in medium spiny neurons of the caudate-putamen. The relevance of such finding is further demonstrated by the evidence that toxins able to primarily target mitochondrial complex II, such as malonic acid and 3-nitropropionic acid (3-NP), strikingly reproduce the main phenotypic and pathological features of HD. Despite the advances obtained from these experimental models, a deeper understanding of the molecular and cellular mechanisms underlying such neuronal vulnerability is lacking. The present review provides a brief survey of currently utilized animal models of mitochondrial intoxication, in attempt to address the cellular mechanisms triggered by energy metabolism failure and to identify potential therapeutic targets. PMID:18615133

  20. Retinoic Acid Functions as a Key GABAergic Differentiation Signal in the Basal Ganglia

    PubMed Central

    Chatzi, Christina; Brade, Thomas; Duester, Gregg

    2011-01-01

    Although retinoic acid (RA) has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE), where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3?/? embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain. PMID:21532733

  1. fMRI of cocaine self-administration in macaques reveals functional inhibition of basal ganglia.

    PubMed

    Mandeville, Joseph B; Choi, Ji-Kyung; Jarraya, Bechir; Rosen, Bruce R; Jenkins, Bruce G; Vanduffel, Wim

    2011-05-01

    Disparities in cocaine-induced neurochemical and metabolic responses between human beings and rodents motivate the use of non-human primates (NHP) to model consequences of repeated cocaine exposure in human subjects. To characterize the functional response to cocaine infusion in NHP brain, we employed contrast-enhanced fMRI during both non-contingent injection of drug and self-administration of cocaine in the magnet. Cocaine robustly decreased cerebral blood volume (CBV) throughout basal ganglia and motor/pre-motor cortex and produced subtle functional inhibition of prefrontal cortex. No brain regions exhibited significant elevation of CBV in response to cocaine challenge. Theses effects in NHP brain are opposite in sign to the cocaine-induced fMRI response in rats, but consistent with previous measurements in NHP based on glucose metabolism. Because the striatal ratio of D2 to D1 receptors is larger in human beings and NHP than rats, we hypothesize that the inhibitory effects of D2 receptor binding dominate the functional response in primates, whereas excitatory D1 receptor stimulation predominates in the rat. If the NHP accurately models the human response to cocaine, downregulation of D2 receptors in human cocaine-abusing populations can be expected to blunt cocaine-induced functional responses, contributing to the weak and variable fMRI responses reported in human basal ganglia following cocaine infusion. PMID:21307843

  2. Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory.

    PubMed

    Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J; Düzel, Emrah

    2015-12-01

    The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. PMID:26420783

  3. Microstructural Changes within the Basal Ganglia Differ between Parkinson Disease Subtypes

    PubMed Central

    Nagae, Lidia M.; Honce, Justin M.; Tanabe, Jody; Shelton, Erika; Sillau, Stefan H.; Berman, Brian D.

    2016-01-01

    Diffusion tensor imaging (DTI) of the substantia nigra has shown promise in detecting and quantifying neurodegeneration in Parkinson disease (PD). It remains unknown, however, whether differences in microstructural changes within the basal ganglia underlie PD motor subtypes. We investigated microstructural changes within the basal ganglia of mild to moderately affected PD patients using DTI and sought to determine if microstructural changes differ between the tremor dominant (TD) and postural instability/gait difficulty (PIGD) subtypes. Fractional anisotropy, mean diffusivity, radial, and axial diffusivity were obtained from bilateral caudate, putamen, globus pallidus, and substantia nigra of 21 PD patients (12 TD and 9 PIGD) and 20 age-matched healthy controls. T-tests and ANOVA methods were used to compare PD patients, subtypes, and controls, and Spearman correlations tested for relationships between DTI and clinical measures. We found our cohort of PD patients had reduced fractional anisotropy within the substantia nigra and increased mean and radial diffusivity within the substantia nigra and globus pallidus compared to controls, and that changes within those structures were largely driven by the PIGD subtype. Across all PD patients fractional anisotropy within the substantia nigra correlated with disease stage, while in PIGD patients increased diffusivity within the globus pallidus correlated with disease stage and motor severity. We conclude that PIGD patients have more severely affected microstructural changes within the substantia nigra compared to TD, and that microstructural changes within the globus pallidus may be particularly relevant for the manifestation of the PIGD subtype. PMID:26941615

  4. Increase of glucose consumption in basal ganglia, thalamus and frontal cortex of patients with spasmodic torticollis

    SciTech Connect

    Grassi, F.; Bressi, S.; Antoni, M.

    1994-05-01

    The pathophysiology of spasmodic torticollis, a focal dystonia involving neck muscles, is still unclear. Positron emission tomography (PET) studies showed either an increase as well as a decrease of regional cerebral metabolic rate of glucose (rCMRglu) in basal ganglia. In the present study, [18F]FDG and PET was used to measure rCMRglu in 10 patients with spasmodic torticollis (mean age 50.37 {plus_minus} 11.47) and 10 age matched controls. All cases with a short disease duration, were untreated. A factorial analysis of variance revealed a significant bilateral increase of glucose consumption in caudate nucleus and pallidum/putamen complex (p>0.004) and in the cerebellum (p>0.001). The rCMRglu increase in the motor/premotor cortex and in the thalamus reached a trend towards significance (p<0.05). These preliminary data show enhanced metabolism in basal ganglia and cerebellum as the functional correlate of focal dystonia. A recently proposed model suggests that dystonia would be the consequence of a putaminal hyperactivity, leading to the breakdown of the pallidal inhibitory control on thalamus and thalamo-cortical projections.

  5. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    SciTech Connect

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A. )

    1991-02-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.

  6. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia

    SciTech Connect

    Weiner, D.M. Howard Hughes Medical Inst., Bethesda, MD ); Levey, A.I. Johns Hopkins Univ., Baltimore, MD ); Brann, M.R. )

    1990-09-01

    Within the basal ganglia, acetylcholine and dopamine play a central role in the extrapyramidal control of motor function. The physiologic effects of these neurotransmitters are mediated by a diversity of receptor subtypes, several of which have now been cloned. Muscarinic acetylcholine receptors are encoded by five genes (m1-m5), and of the two known dopamine receptor subtypes (D1 and D2) the D2 receptor gene has been characterized. To gain insight into the physiological roles of each of these receptor subtypes, the authors prepared oligodeoxynucleotide probes to localize receptor subtype mRNAs within the rat striatum and substantia nigra by in situ hybridization histochemistry. Within the striatum, three muscarinic (m1, m2, m4) receptor mRNAs and the D2 receptor mRNA were detected. The m1 mRNA was expressed in most neurons; the m2 mRNA, in neurons which were both very large and rare; and the m4 and D2 mRNAs, in 40-50% of the neurons, one-third of which express both mRNAs. Within the substantia nigra, pars compacta, only the m5 and D2 mRNAs were detected, and most neurons expressed both mRNAs. These data provide anatomical evidence for the identity of the receptor subtypes which mediate the diverse effects of muscarinic and dopaminergic drugs on basal ganglia function.

  7. Cardiorespiratory fitness and its association with thalamic, hippocampal, and basal ganglia volumes in multiple sclerosis

    PubMed Central

    Motl, Robert W.; Pilutti, Lara A.; Hubbard, Elizabeth A.; Wetter, Nathan C.; Sosnoff, Jacob J.; Sutton, Bradley P.

    2015-01-01

    Background There is little known about cardiorespiratory fitness and its association with volumes of the thalamus, hippocampus, and basal ganglia in multiple sclerosis (MS). Such inquiry is important for identifying a possible behavioral approach (e.g., aerobic exercise training) that might change volumes of deep gray matter (DGM) structures associated with cognitive and motor functions in MS. Purpose This study examined the association between cardiorespiratory fitness and volumes of the thalamus, hippocampus, and basal ganglia in MS. Method We enrolled 35 persons with MS who underwent a maximal exercise test for measuring cardiorespiratory fitness as peak oxygen consumption (VO2peak) and brain MRI. Volumes of the thalamus, hippocampus, caudate, putamen, and pallidum were calculated from 3D T1-weighted structural brain images. We examined associations using partial (pr) correlations controlling for demographic and clinical variables. Results VO2peak was significantly associated with composite scaled volumes of the caudate(pr = .47, p < .01), putamen (pr = .44, p < .05), pallidum (pr = .40, p < .05), and hippocampus (pr = .42, p < .05), but not thalamus (pr = .31, p = .09), when controlling for sex, age, disability, and duration of MS. Conclusion Our results provide novel evidence that cardiorespiratory fitness is associated with volumes of DGM structures that are involved in motor and cognitive functions in MS. PMID:25844320

  8. Basal Ganglia Neuronal Activity during Scanning Eye Movements in Parkinson’s Disease

    PubMed Central

    Sieger, TomĂĄĆĄ; Bonnet, Cecilia; SerranovĂĄ, Tereza; Wild, Jiƙí; NovĂĄk, Daniel; RĆŻĆŸička, Filip; UrgoĆĄĂ­k, DuĆĄan; RĆŻĆŸička, EvĆŸen; Gaymard, Bertrand; Jech, Robert

    2013-01-01

    The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen ParkinsoƄs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control. PMID:24223158

  9. Using a hybrid neuron in physiologically inspired models of the basal ganglia.

    PubMed

    Thibeault, Corey M; Srinivasa, Narayan

    2013-01-01

    Our current understanding of the basal ganglia (BG) has facilitated the creation of computational models that have contributed novel theories, explored new functional anatomy and demonstrated results complementing physiological experiments. However, the utility of these models extends beyond these applications. Particularly in neuromorphic engineering, where the basal ganglia's role in computation is important for applications such as power efficient autonomous agents and model-based control strategies. The neurons used in existing computational models of the BG, however, are not amenable for many low-power hardware implementations. Motivated by a need for more hardware accessible networks, we replicate four published models of the BG, spanning single neuron and small networks, replacing the more computationally expensive neuron models with an Izhikevich hybrid neuron. This begins with a network modeling action-selection, where the basal activity levels and the ability to appropriately select the most salient input is reproduced. A Parkinson's disease model is then explored under normal conditions, Parkinsonian conditions and during subthalamic nucleus deep brain stimulation (DBS). The resulting network is capable of replicating the loss of thalamic relay capabilities in the Parkinsonian state and its return under DBS. This is also demonstrated using a network capable of action-selection. Finally, a study of correlation transfer under different patterns of Parkinsonian activity is presented. These networks successfully captured the significant results of the originals studies. This not only creates a foundation for neuromorphic hardware implementations but may also support the development of large-scale biophysical models. The former potentially providing a way of improving the efficacy of DBS and the latter allowing for the efficient simulation of larger more comprehensive networks. PMID:23847524

  10. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers.

    PubMed

    Toyomura, Akira; Fujii, Tetsunoshin; Kuriki, Shinya

    2015-04-01

    The neural mechanisms underlying stuttering are not well understood. It is known that stuttering appears when persons who stutter speak in a self-paced manner, but speech fluency is temporarily increased when they speak in unison with external trigger such as a metronome. This phenomenon is very similar to the behavioral improvement by external pacing in patients with Parkinson's disease. Recent imaging studies have also suggested that the basal ganglia are involved in the etiology of stuttering. In addition, previous studies have shown that the basal ganglia are involved in self-paced movement. Then, the present study focused on the basal ganglia and explored whether long-term speech-practice using external triggers can induce modification of the basal ganglia activity of stuttering speakers. Our study of functional magnetic resonance imaging revealed that stuttering speakers possessed significantly lower activity in the basal ganglia than fluent speakers before practice, especially when their speech was self-paced. After an 8-week speech practice of externally triggered speech using a metronome, the significant difference in activity between the two groups disappeared. The cerebellar vermis of stuttering speakers showed significantly decreased activity during the self-paced speech in the second compared to the first experiment. The speech fluency and naturalness of the stuttering speakers were also improved. These results suggest that stuttering is associated with defective motor control during self-paced speech, and that the basal ganglia and the cerebellum are involved in an improvement of speech fluency of stuttering by the use of external trigger. PMID:25595501

  11. INTRACRANIAL GERM CELL TUMORS WITH MTOR MUTATION ARE COMMON IN BASAL GANGLIA

    PubMed Central

    Nishikawa, Ryo; Fukuoka, Kohei; Ichimura, Koichi

    2014-01-01

    BACKGROUND: Intracranial germ cell tumors (iGCTs) are the second most common CNS tumors in patients under 14 years old in Japan. But, their molecular genetic profile is largely unknown. METHODS: We have analyzed a total of 198 germ cell tumors (GCTs) including 133 iGCTs (69 pure germinomas, 56 non-germinomatous GCTs and 8 metastatic tumors) as well as 65 testicular germ cell tumors (tGCTs) (39 seminomas and 26 non-seminoma GCTs) were collected from 13 centers participating in the Intracranial Germ Cell Tumor Consortium in Japan. Somatic mutations in all coding exons were investigated by whole exome sequencing (WES) using SureSelectXT Human All Exon v4 and a GAIIx or HiSeq 2000 system in 41 tumors and the matched normal DNAs. Targeted sequencing with a set of custom made PCR primers was performed using either an IonTorrent PGM or Proton System. The results were integrated with the patients' clinical information that was available for 124 iGCT patients. RESULTS: On average, 15.4 non-synonymous somatic mutations were observed in each tumor, ranging from 1 to 140 by WES in 41 iGCTs. MTOR was the second most frequently mutated in both iGCTs (9 cases, 7%) and tGCTs (6%). Collectively, the genes involved in the PI3K/MTOR pathway (e.g., MTOR, PTEN) were mutated in 13% of all GCTs. Clinical parameters of the 9 iGCTs with MTOR mutation were: median age of onset = 15 years old; 7 males and 2 females; 5 germinomas, 3 teratomas and one yolk sac tumor; 5 basal ganglia tumors, 2 pineal tumors, one neurohypophyseal tumor and a medulla oblongata tumor. Age, sex, histology and clinical behavior are within the scope of iGCT except for extraordinary high frequency of basal ganglia GCTs. CONCLUSIONS: iGCTs with MTOR mutation are frequent in iGCTs in basal ganglia. SECONDARY CATEGORY: Pediatrics.

  12. Competing basal ganglia pathways determine the difference between stopping and deciding not to go

    PubMed Central

    Dunovan, Kyle; Lynch, Brighid; Molesworth, Tara; Verstynen, Timothy

    2015-01-01

    The architecture of corticobasal ganglia pathways allows for many routes to inhibit a planned action: the hyperdirect pathway performs fast action cancellation and the indirect pathway competitively constrains execution signals from the direct pathway. We present a novel model, principled off of basal ganglia circuitry, that differentiates control dynamics of reactive stopping from intrinsic no-go decisions. Using a nested diffusion model, we show how reactive braking depends on the state of an execution process. In contrast, no-go decisions are best captured by a failure of the execution process to reach the decision threshold due to increasing constraints on the drift rate. This model accounts for both behavioral and functional MRI (fMRI) responses during inhibitory control tasks better than alternative models. The advantage of this framework is that it allows for incorporating the effects of context in reactive and proactive control into a single unifying parameter, while distinguishing action cancellation from no-go decisions. DOI: http://dx.doi.org/10.7554/eLife.08723.001 PMID:26402462

  13. Different susceptibility of medial temporal lobe and basal ganglia atrophy rates to vascular risk factors

    PubMed Central

    de Jong, Laura W.; Forsberg, Lars E.; Vidal, Jean-Sébastien; Sigurdsson, Sigurdur; Zijdenbos, Alex P.; Garcia, Melissa; Eiriksdottir, Gudny; Gudnason, Vilmundur; van Buchem, Mark A.; Launer, Lenore J.

    2013-01-01

    Atrophy of medial temporal lobe (MTL) and basal ganglia (BG) are characteristic of various neurodegenerative diseases in older people. In search of potentially modifiable factors that lead to atrophy in these structures, we studied the association of vascular risk factors to atrophy of MTL and BG in 368 non-demented men and women [b. 1907–1935] who participated in the Age, Gene/Environment, Susceptibility - Reykjavik Study. A fully automated segmentation pipeline estimated volumes of MTL and BG from whole brain MRI performed at baseline and 2.4 years later. Linear regression models showed higher systolic and diastolic blood pressures and the presence of Apo E ?4 were independently associated with increased atrophy of MTL but no association of vascular risk factors with atrophy of BG. The different susceptibility of MTL and BG atrophy to the presence of vascular risk factors suggests the relatively preserved perfusion of BG when vascular risk factors are present. PMID:23992618

  14. Impaired Frontal-Basal Ganglia Connectivity in Male Adolescents with Conduct Disorder

    PubMed Central

    Gao, Junling; Shi, Huqing; Wang, Xiang; Jiang, Yali; Ming, Qingsen; Gao, Yidian; Ma, Ren; Yao, Shuqiao

    2015-01-01

    Alack of inhibition control has been found in subjects with conduct disorder (CD), but the underlying neuropathophysiology remains poorly understood. The current study investigated the different mechanism of inhibition control in adolescent-onset CD males (n = 29) and well-matched healthy controls (HCs) (n = 40) when performing a GoStop task by functional magnetic resonance images. Effective connectivity (EC) within the inhibition control network was analyzed using a stochastic dynamic causality model. We found that EC within the inhibition control network was significantly different in the CD group when compared to the HCs. Exploratory relationship analysis revealed significant negative associations between EC between the IFG and striatum and behavioral scale scores in the CD group. These results suggest for the first time that the failure of inhibition control in subjects with CD might be associated with aberrant connectivity of the frontal–basal ganglia pathways, especially between the IFG and striatum. PMID:26658732

  15. Post-traumatic basal ganglia haemorrhage in a child with primary central nervous system lymphoma.

    PubMed

    Jankowski, Pawel P; Levy, Michael L; Crawford, John Ross

    2013-01-01

    Primary central nervous system lymphoma (PCNSL) is a rare tumour of childhood with 15-20 cases reported yearly in North America. We present a case of a 13-year-old boy diagnosed with PCNSL who presented more than one-and-a-half years post-treatment with high dose cytosine arabinoside and methotrexate with a right-sided basal ganglia haemorrhage on MRI following a concussion while playing organised football against medical advice. There was no evidence of an underlying vascular malformation or recurrent disease by MRI, cerebrospinal fluid analysis or positron emission tomography computed tomography (PET-CT). However, 6 months post-injury he presented with asymptomatic disease recurrence of the frontal lobe. Our case reports an unusual MRI pattern of post-traumatic injury in a child previously treated for PCNSL that would support a recommendation for the avoidance of contact sports in this population. PMID:23904430

  16. Basal Ganglia Circuits Underlying the Pathophysiology of Levodopa-Induced Dyskinesia

    PubMed Central

    Barroso-Chinea, Pedro; Bezard, Erwan

    2010-01-01

    Involuntary movements or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson's disease. Dyskinesia is, ultimately, experienced by the vast majority of the patients. Despite the importance of this problem, little was known about the cause of dyskinesia, a situation that has dramatically evolved in the last few years with a focus upon the molecular and signaling changes induced by chronic levodopa treatment. Departing from this, we here review the progress made in functional anatomy and neuroimaging that have had a tremendous impact on our understanding of the anatomo-functional organization of the basal ganglia in Parkinsonism and dyskinetic states, notably the demonstration that dyskinesia are linked to a pathological processing of limbic and cognitive information. PMID:20890450

  17. The basal ganglia is necessary for learning spectral, but not temporal, features of birdsong.

    PubMed

    Ali, Farhan; Otchy, Timothy M; Pehlevan, Cengiz; Fantana, Antoniu L; Burak, Yoram; Ölveczky, Bence P

    2013-10-16

    Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control-motor implementation and timing-are acquired, and whether the learning processes underlying them differ, is not well understood. To address this, we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal, structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analog nucleus reflected changes to temporal, but not spectral, structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill. PMID:24075977

  18. The highs and lows of beta activity in cortico-basal ganglia loops.

    PubMed

    Brittain, John-Stuart; Sharott, Andrew; Brown, Peter

    2014-06-01

    Oscillatory activity in the beta (13-30 Hz) frequency band is widespread in cortico-basal ganglia circuits, and becomes prominent in Parkinson's disease (PD). Here we develop the hypothesis that the degree of synchronization in this frequency band is a critical factor in gating computation across a population of neurons, with increases in beta band synchrony entailing a loss of information-coding space and hence computational capacity. Task and context drive this dynamic gating, so that for each state there will be an optimal level of network synchrony, and levels lower or higher than this will impair behavioural performance. Thus, both the pathological exaggeration of synchrony, as observed in PD, and the ability of interventions like deep brain stimulation (DBS) to excessively suppress synchrony can potentially lead to impairments in behavioural performance. Indeed, under physiological conditions, the manipulation of computational capacity by beta activity may itself present a mechanism of action selection and maintenance. PMID:24890470

  19. Dopamine D2 receptors regulate the anatomical balance of basal ganglia circuitry

    PubMed Central

    Cazorla, Maxime; de Carvalho, Fernanda Delmondes; Chohan, Muhammad O.; Shegda, Mariya; Chuhma, Nao; Rayport, Stephen; Ahmari, Susanne E.; Moore, Holly; Kellendonk, Christoph

    2013-01-01

    Summary Structural plasticity in the adult brain is essential for adaptive behavior. We have found a remarkable anatomical plasticity in the basal ganglia of adult mice that is regulated by dopamine D2 receptors (D2Rs). By modulating neuronal excitability, striatal D2Rs bi-directionally control the density of direct pathway collaterals in the globus pallidus that bridge the direct pathway with the functionally opposing indirect pathway. An increase in bridging collaterals is associated with enhanced inhibition of pallidal neurons in vivo and disrupted locomotor activation after optogenetic stimulation of the direct pathway. Remarkably, chronic blockade with haloperidol, an antipsychotic medication used to treat schizophrenia decreases the extent of bridging collaterals and rescues the locomotor imbalance. These findings identify a role for bridging collaterals in regulating the concerted balance of striatal output, and may have important implications for understanding schizophrenia, a disease involving excessive activation of striatal D2Rs that is treated with D2R blockers. PMID:24411738

  20. FROM REINFORCEMENT LEARNING MODELS OF THE BASAL GANGLIA TO THE PATHOPHYSIOLOGY OF PSYCHIATRIC AND NEUROLOGICAL DISORDERS

    PubMed Central

    Maia, Tiago V.; Frank, Michael J.

    2013-01-01

    Over the last decade and a half, reinforcement learning models have fostered an increasingly sophisticated understanding of the functions of dopamine and cortico-basal ganglia-thalamo-cortical (CBGTC) circuits. More recently, these models, and the insights that they afford, have started to be used to understand key aspects of several psychiatric and neurological disorders that involve disturbances of the dopaminergic system and CBGTC circuits. We review this approach and its existing and potential applications to Parkinson’s disease, Tourette’s syndrome, attention-deficit/hyperactivity disorder, addiction, schizophrenia, and preclinical animal models used to screen novel antipsychotic drugs. The approach’s proven explanatory and predictive power bodes well for the continued growth of computational psychiatry and computational neurology. PMID:21270784

  1. A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

    PubMed Central

    Goldberg, Jesse H.

    2012-01-01

    The pallido-recipient thalamus transmits information from the basal ganglia (BG) to the cortex and plays a critical role motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the BG, but the role of non-pallidal inputs, such as excitatory inputs from cortex, is unclear. We have recorded simultaneously from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a BG-recipient thalamic nucleus necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone, and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor ‘cortical’ nucleus also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals important for exploratory behavior and learning. PMID:22327474

  2. New Roles for the External Globus Pallidus in Basal Ganglia Circuits and Behavior

    PubMed Central

    Berke, Joshua D.; Bevan, Mark D.; Chan, C. Savio; Mallet, Nicolas; Morrow, Michelle M.; Schmidt, Robert

    2014-01-01

    The development of methodology to identify specific cell populations and circuits within the basal ganglia is rapidly transforming our ability to understand the function of this complex circuit. This mini-symposium highlights recent advances in delineating the organization and function of neural circuits in the external segment of the globus pallidus (GPe). Although long considered a homogeneous structure in the motor-suppressing “indirect-pathway,” the GPe consists of a number of distinct cell types and anatomical subdomains that contribute differentially to both motor and nonmotor features of behavior. Here, we integrate recent studies using techniques, such as viral tracing, transgenic mice, electrophysiology, and behavioral approaches, to create a revised framework for understanding how the GPe relates to behavior in both health and disease. PMID:25392486

  3. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways.

    PubMed

    Martín, R; Bajo-Grańeras, R; Moratalla, R; Perea, G; Araque, A

    2015-08-14

    Astrocytes are important regulatory elements in brain function. They respond to neurotransmitters and release gliotransmitters that modulate synaptic transmission. However, the cell- and synapse-specificity of the functional relationship between astrocytes and neurons in certain brain circuits remains unknown. In the dorsal striatum, which mainly comprises two intermingled subtypes (striatonigral and striatopallidal) of medium spiny neurons (MSNs) and synapses belonging to two neural circuits (the direct and indirect pathways of the basal ganglia), subpopulations of astrocytes selectively responded to specific MSN subtype activity. These subpopulations of astrocytes released glutamate that selectively activated N-methyl-d-aspartate receptors in homotypic, but not heterotypic, MSNs. Likewise, astrocyte subpopulations selectively regulated homotypic synapses through metabotropic glutamate receptor activation. Therefore, bidirectional astrocyte-neuron signaling selectively occurs between specific subpopulations of astrocytes, neurons, and synapses. PMID:26273054

  4. The basal ganglia is necessary for learning spectral, but not temporal features of birdsong

    PubMed Central

    Ali, Farhan; Fantana, Antoniu L.; Burak, Yoram; Ölveczky, Bence P.

    2013-01-01

    Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control - motor implementation and timing - are acquired, and whether the learning processes underlying them differ, is not well understood. To address this we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analogue nucleus reflected changes to temporal, but not spectral structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill. PMID:24075977

  5. Limb apraxia in patients with damage confined to the left basal ganglia and thalamus.

    PubMed Central

    De Renzi, E; Faglioni, P; Scarpa, M; Crisi, G

    1986-01-01

    Limb apraxia was investigated with standardised tests in 14 patients whose CT scan provided evidence of a vascular lesion confined to the left basal ganglia, or the thalamus, or both, and not involving the cortex or adjacent white matter. Five patients were severely impaired in imitating movements and pantomiming object use. Four of them also performed poorly when tested with real objects. In two patients the lesion was primarily thalamic and in three the lesion was primarily in the lenticular nucleus and the posterior limb of the internal capsule. Patients without apraxia generally had smaller injuries, but there were exceptions. Apraxia is currently conceived of as due to damage of cortical areas and their cortico-cortical connections, but the present data suggest that the model should be enlarged to include the deep nuclei and the pathways running through them. Images PMID:3760891

  6. [Consequences of lesions of the basal ganglia on cerebral metabolic activity: clinical implications].

    PubMed

    Baron, J C

    1994-01-01

    This brief overview summarises the literature regarding the effects of lesions of the basal ganglia (BG) on brain metabolism-an index of integrated synaptic activity. Interest in this field is because to show such effects may reveal the implication of neuron networks, damaged at the level of the BG, in the neuropsychological and behavioural expression of BG lesions. As an illustration of this, a parallel is drawn between the loss of psychic self-activation (also named "psychic akinesia" or "athymhormia") that follows bilateral lesions at variable sites of the prefrontal-striatal-pallidal-thalamic loop on one hand, and the mild prefrontal hypometabolism consistently observed in such cases. This paper also reviews the changes in brain metabolism found in progressive supranuclear palsy, Huntington's disease, Parkinson's disease, Wilson's disease and striato-nigral degeneration. PMID:7754297

  7. SLC20A2 and THAP1 deletion in familial basal ganglia calcification with dystonia

    PubMed Central

    Baker, Matt; Strongosky, Audrey J.; Sanchez-Contreras, Monica Y.; Yang, Shan; Ferguson, Will; Calne, Donald B.; Calne, Susan; Stoessl, A. Jon; Allanson, Judith E.; Broderick, Daniel F.; Hutton, Michael L.; Dickson, Dennis W.; Ross, Owen A.; Wszolek, Zbigniew K.; Rademakers, Rosa

    2013-01-01

    Idiopathic Basal Ganglia Calcification (IBGC) is characterized by bilateral calcification of the basal ganglia associated with a spectrum of neuropsychiatric and motor syndromes. In this study, we set out to determine the frequency of the recently identified IBGC gene SLC20A2 in 27 IBGC cases from the Mayo Clinic Florida Brain Bank using both Sanger sequencing and Taqman copy number analysis to cover the complete spectrum of possible mutations. We identified SLC20A2 pathogenic mutations in 2 of the 27 cases of IBGC (7%). Sequencing analysis identified a p.S113* nonsense mutation in SLC20A2 in one case. Taqman copy-number analysis of SLC20A2 further revealed a genomic deletion in a second case, which was part of a large previously reported Canadian IBGC family with dystonia. Subsequent whole-genome sequencing in this family revealed a 563,256 bp genomic deletion with precise breakpoints on chromosome 8 affecting multiple genes including SLC20A2 and the known dystonia related gene THAP1. The deletion co-segregated with disease in all family members. The deletion of THAP1 in addition to SLC20A2 in the Canadian IBGC family may contribute to the severe and early-onset dystonia in this family. The identification of a SLC20A2 genomic deletion in a familial form of IBGC demonstrates that reduced SLC20A2 in the absence of mutant protein is sufficient to cause neurodegeneration and that previously reported SLC20A2 mutation frequencies may be underestimated. PMID:24135862

  8. SLC20A2 and THAP1 deletion in familial basal ganglia calcification with dystonia.

    PubMed

    Baker, Matt; Strongosky, Audrey J; Sanchez-Contreras, Monica Y; Yang, Shan; Ferguson, Will; Calne, Donald B; Calne, Susan; Stoessl, A Jon; Allanson, Judith E; Broderick, Daniel F; Hutton, Michael L; Dickson, Dennis W; Ross, Owen A; Wszolek, Zbigniew K; Rademakers, Rosa

    2014-03-01

    Idiopathic basal ganglia calcification (IBGC) is characterized by bilateral calcification of the basal ganglia associated with a spectrum of neuropsychiatric and motor syndromes. In this study, we set out to determine the frequency of the recently identified IBGC gene SLC20A2 in 27 IBGC cases from the Mayo Clinic Florida Brain Bank using both Sanger sequencing and TaqMan copy number analysis to cover the complete spectrum of possible mutations. We identified SLC20A2 pathogenic mutations in two of the 27 cases of IBGC (7 %). Sequencing analysis identified a p.S113* nonsense mutation in SLC20A2 in one case. TaqMan copy number analysis of SLC20A2 further revealed a genomic deletion in a second case, which was part of a large previously reported Canadian IBGC family with dystonia. Subsequent whole-genome sequencing in this family revealed a 563,256-bp genomic deletion with precise breakpoints on chromosome 8 affecting multiple genes including SLC20A2 and the known dystonia-related gene THAP1. The deletion co-segregated with disease in all family members. The deletion of THAP1 in addition to SLC20A2 in the Canadian IBGC family may contribute to the severe and early onset dystonia in this family. The identification of an SLC20A2 genomic deletion in a familial form of IBGC demonstrates that reduced SLC20A2 in the absence of mutant protein is sufficient to cause neurodegeneration and that previously reported SLC20A2 mutation frequencies may be underestimated. PMID:24135862

  9. From experimentation to the surgical treatment of Parkinson's disease: prelude or suite in basal ganglia research?

    PubMed

    Gross, C E; Boraud, T; Guehl, D; Bioulac, B; Bezard, E

    1999-12-01

    Parkinson's disease remains one of the greatest challenges facing those who work in the field of neurological research. Although the development of levodopa treatment revolutionised management of this debilitating diseases, no effective long-term therapy has yet been found. With recent advances in the understanding of basal ganglia physiopathology and the experimental demonstration of the efficacy of certain surgical procedures, there is a renewed interest in the surgical approach. This paper provides a chronological overview of the history of parkinsonian surgery and discusses the principal surgical options at our disposal today. These take three main forms: ablation (thalamotomy, pallidotomy and subthalamotomy); cell graft and gene therapy (mainly in the striatum); and deep brain stimulation (of the thalamus, globus pallidus pars internalis and the subthalamic nucleus). Our knowledge of basal ganglia function and our conception of how motor information is processed by this network have evolved parallel to the development of surgical techniques. Recent results from both clinical and experimental studies underline the complexity of the physiopathological mechanisms which generate parkinsonian symptomatology and lead us to question our assumption that each class of clinical signs (tremor, akinesia, rigidity, levodopa-induced dyskinesias...) is produced by a specific and separate mechanism. In the same way, comparison of the electrophysiological and biochemical effects of the different techniques induced in brain function vary considerably. This complex world of interaction and interconnection is a labyrinth that we are still far from comprehending in its entirety. All the more reason, in consequence, for extending experimental investigation into the impact of any new therapy before proposing its clinical application. PMID:10515666

  10. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution

    PubMed Central

    Schmidt, A; Denier, N; Magon, S; Radue, E-W; Huber, C G; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-01-01

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy. PMID:25803496

  11. Brain Atrophy Correlates with Severe Enlarged Perivascular Spaces in Basal Ganglia among Lacunar Stroke Patients

    PubMed Central

    Zhang, Xiaoyu; Ding, Lingling; Yang, Lei; Qin, Wei; Yuan, Junliang; Li, Shujuan; Hu, Wenli

    2016-01-01

    Background Enlarged perivascular spaces (EPVS) correlate with cognitive impairment and incident dementia. However, etiologies for severe basal ganglia EPVS (BG-EPVS) are still unclear. Our aim was to investigate the independent risk factors for severe BG-EPVS in patients with acute lacunar stroke. Methods We prospectively identified patients with lacunar stroke (diameter on DWI ≀ 20mm) from Jan 2011 to May 2015. Patients with severe BG-EPVS were identified on T2 weighted MRI. Age (± 1 year) and sex matched controls were also recruited in the same population (two controls for one case). Vascular risk factors, clinical data, EPVS in centrum semiovale (rated 0 to 4), white matter hyperintensities (WMH) (by Fazekas scale), brain atrophy (rated 0 to 6) were compared between two groups. Logistic regression was performed to determine independent risk factors for severe BG-EPVS. Results During study period, 89 patients with severe BG-EPVS and 178 matched controls were included. Vascular risk factors did not differ between two groups. Patients with severe BG-EPVS had lower level of HbA1c and diastolic BP at admission, but presented with larger infarct size, more severe WMH (including total WMH, periventricular WMH and deep WMH) and brain atrophy. In logistic regression, brain atrophy (OR = 1.40; 95%CI 1.13, 1.73) and deep WMH (OR = 1.88; 95%CI 1.24, 2.83) were independent risk factors for severe BG-EPVS. Conclusions Brain atrophy and deep WMH are independent risk factors for severe BG-EPVS, supporting the hypothesis that brain atrophy may be associated with the development of EPVS in basal ganglia. PMID:26900696

  12. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution.

    PubMed

    Schmidt, A; Denier, N; Magon, S; Radue, E-W; Huber, C G; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-01-01

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy. PMID:25803496

  13. Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of L-Dopa-induced dyskinesias.

    PubMed

    Samadi, Pershia; Grégoire, Laurent; Morissette, Marc; Calon, Fréderic; Hadj Tahar, Abdallah; Bélanger, Nancy; Dridi, Mehdi; Bédard, Paul J; Di Paolo, Thérèse

    2008-02-01

    L-Dopa-induced dyskinesias (LIDs), the disabling abnormal involuntary movements induced by chronic use of L-Dopa, limit the quality of life in Parkinson's disease (PD) patients. Modulation of group II metabotropic glutamate receptors (mGluR2/3) in the basal ganglia, a brain region critically involved in motor control, is considered as an alternative approach in therapy of PD. In this study, receptor binding autoradiography of [3H]LY341495, a mGluR2/3 selective radioligand, was used to investigate possible changes in mGluR2/3 in the basal ganglia of L-Dopa-treated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys having developed LIDs compared to animals in which LIDs were prevented by adjunct treatments with CI-1041, a selective antagonist of the NR1A/2B subtype of NMDA receptor, or low doses of the dopamine D2 receptor agonist, cabergoline. Our study is the first to provide evidence of: (1) the similar localization of [3H]LY341495 specific binding to mGluR2/3 in the primate basal ganglia as compared to receptor distribution measured by immunohistochemistry in human and rat as well as this ligand binding in intact rat brain; (2) no change of [3H]LY341495 specific binding in basal ganglia after nigrostriatal denervation by MPTP; and (3) a widespread reduction of [(3)H]LY341495 specific binding to mGluR2/3 in the caudate nucleus (-17% to -31%), putamen (-12% to -45%) and globus pallidus (-56 to -59%) of non-dyskinetic animals treated with L-Dopa+cabergoline as compared to controls, MPTP monkeys treated with saline, L-Dopa alone (dyskinetic) or L-Dopa+CI-1041 (non-dyskinetic). This study is the first to propose a close interaction between mGluR2/3 and dopamine D2 receptors activation in the basal ganglia. PMID:18001807

  14. Mechanism of parkinsonian neuronal oscillations in the primate basal ganglia: some considerations based on our recent work

    PubMed Central

    Nambu, Atsushi; Tachibana, Yoshihisa

    2014-01-01

    Accumulating evidence suggests that abnormal neuronal oscillations in the basal ganglia (BG) contribute to the manifestation of parkinsonian symptoms. In this article, we would like to summarize our recent work on the mechanism underlying abnormal oscillations in the parkinsonian state and discuss its significance in pathophysiology of Parkinson’s disease. We recorded neuronal activity in the BG of parkinsonian monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Systemic administration of L-DOPA alleviated parkinsonian motor signs and decreased abnormal neuronal oscillations (8–15 Hz) in the internal (GPi) and external (GPe) segments of the globus pallidus and the subthalamic nucleus (STN). Inactivation of the STN by muscimol (GABAA receptor agonist) injection also ameliorated parkinsonian signs and suppressed GPi oscillations. The blockade of glutamatergic inputs to the STN by local microinjection of a mixture of 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (glutamatergic NMDA receptor antagonist) and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (glutamatergic AMPA/kainate receptor antagonist) suppressed neuronal oscillations in the STN. STN oscillations were also attenuated by the blockade of GABAergic neurotransmission from the GPe to the STN by muscimol inactivation of the GPe. These results suggest that cortical glutamatergic inputs to the STN and reciprocal GPe-STN interconnections are both important for the generation and amplification of the oscillatory activity of GPe and STN neurons in the parkinsonian state. The oscillatory activity in the STN is subsequently transmitted to the GPi and may contribute to manifestation of parkinsonian symptoms. PMID:24904309

  15. Structural differences in basal ganglia of elite running versus martial arts athletes: a diffusion tensor imaging study.

    PubMed

    Chang, Yu-Kai; Tsai, Jack Han-Chao; Wang, Chun-Chih; Chang, Erik Chihhung

    2015-07-01

    The aim of this study was to use diffusion tensor imaging (DTI) to characterize and compare microscopic differences in white matter integrity in the basal ganglia between elite professional athletes specializing in running and martial arts. Thirty-three young adults with sport-related skills as elite professional runners (n = 11) or elite professional martial artists (n = 11) were recruited and compared with non-athletic and healthy controls (n = 11). All participants underwent health- and skill-related physical fitness assessments. Fractional anisotropy (FA) and mean diffusivity (MD), the primary indices derived from DTI, were computed for five regions of interest in the bilateral basal ganglia, including the caudate nucleus, putamen, globus pallidus internal segment (GPi), globus pallidus external segment (GPe), and subthalamic nucleus. Results revealed that both athletic groups demonstrated better physical fitness indices compared with their control counterparts, with the running group exhibiting the highest cardiovascular fitness and the martial arts group exhibiting the highest muscular endurance and flexibility. With respect to the basal ganglia, both athletic groups showed significantly lower FA and marginally higher MD values in the GPi compared with the healthy control group. These findings suggest that professional sport or motor skill training is associated with changes in white matter integrity in specific regions of the basal ganglia, although these positive changes did not appear to depend on the type of sport-related motor skill being practiced. PMID:25929552

  16. Basal Ganglia Structures Differentially Contribute to Verbal Fluency: Evidence from Human Immunodeficiency Virus (HIV)-Infected Adults

    ERIC Educational Resources Information Center

    Thames, April D.; Foley, Jessica M.; Wright, Matthew J.; Panos, Stella E.; Ettenhofer, Mark; Ramezani, Amir; Streiff, Vanessa; El-Saden, Suzie; Goodwin, Scott; Bookheimer, Susan Y.; Hinkin, Charles H.

    2012-01-01

    Background: The basal ganglia (BG) are involved in executive language functions (i.e., verbal fluency) through their connections with cortical structures. The caudate and putamen receive separate inputs from prefrontal and premotor cortices, and may differentially contribute to verbal fluency performance. We examined BG integrity in relation to…

  17. Basal Ganglia, Dopamine and Temporal Processing: Performance on Three Timing Tasks on and off Medication in Parkinson's Disease

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Malone, Tim J. L.; Dirnberger, Georg; Edwards, Mark; Jahanshahi, Marjan

    2008-01-01

    A pervasive hypothesis in the timing literature is that temporal processing in the milliseconds and seconds range engages the basal ganglia and is modulated by dopamine. This hypothesis was investigated by testing 12 patients with Parkinson's disease (PD), both "on" and "off" dopaminergic medication, and 20 healthy controls on three timing tasks.…

  18. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection

    PubMed Central

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments. PMID:26640481

  19. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.

    PubMed

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments. PMID:26640481

  20. Evolution of the basal ganglia: new perspectives through a comparative approach

    PubMed Central

    SMEETS, WILHELMUS J. A. J.; MARÍN, OSCAR; GONZÁLEZ, AGUSTÍN

    2000-01-01

    The basal ganglia (BG) have received much attention during the last 3 decades mainly because of their clinical relevance. Our understanding of their structure, organisation and function in terms of chemoarchitecture, compartmentalisation, connections and receptor localisation has increased equally. Most of the research has been focused on the mammalian BG, but a considerable number of studies have been carried out in nonmammalian vertebrates, in particular reptiles and birds. The BG of the latter 2 classes of vertebrates, which together with mammals constitute the amniotic vertebrates, have been thoroughly studied by means of tract-tracing and immunohistochemical techniques. The terminology used for amniotic BG structures has frequently been adopted to indicate putative corresponding structures in the brain of anamniotes, i.e. amphibians and fishes, but data for such a comparison were, until recently, almost totally lacking. It has been proposed several times that the occurrence of well developed BG structures probably constitutes a landmark in the anamniote-amniote transition. However, our recent studies of connections, chemoarchitecture and development of the basal forebrain of amphibians have revealed that tetrapod vertebrates share a common pattern of BG organisation. This pattern includes the existence of dorsal and ventral striatopallidal systems, reciprocal connections between the striatopallidal complex and the diencephalic and mesencephalic basal plate (striatonigral and nigrostriatal projections), and descending pathways from the striatopallidal system to the midbrain tectum and reticular formation. The connectional similarities are paralleled by similarities in the distribution of chemical markers of striatal and pallidal structures such as dopamine, substance P and enkephalin, as well as by similarities in development and expression of homeobox genes. On the other hand, a major evolutionary trend is the progressive involvement of the cortex in the processing of the thalamic sensory information relayed to the BG of tetrapods. By using the comparative approach, new insights have been gained with respect to certain features of the BG of vertebrates in general, such as the segmental organisation of the midbrain dopaminergic cell groups, the occurrence of large numbers of dopaminergic cell bodies within the telencephalon itself and the variability in, among others, connectivity and chemoarchitecture. However, the intriguing question whether the basal forebrain organisation of nontetrapods differs essentially from that observed in tetrapods still needs to be answered. PMID:10923983

  1. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    PubMed

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG. PMID:26867734

  2. Dopamine transporter density of the basal ganglia assessed with [123I]IPT SPECT in drug-naive children with Tourette's disorder.

    PubMed

    Cheon, Keun-Ah; Ryu, Young-Hoon; Namkoong, Kee; Kim, Chan-Hyung; Kim, Jae-Jin; Lee, Jong Doo

    2004-01-15

    There is evidence that abnormalities in the dopaminergic system involving the dopamine transporter (DAT) are involved in the pathophysiology of Tourette's disorder (TD) from previous studies using [(123)I]2beta-carbomethoxy-3-(4-iodophenyl)tropane ([(123)I]beta-CIT) and single photon emission tomography (SPECT). However, because those studies were performed in medicated adult patients with TD, we decided to compare DAT densities in nine drug-naive children with TD and eight normal children. The children with TD did not suffer from associated psychiatric problems such as obsessive-compulsive symptoms, attention deficit hyperactivity disorder, anxiety, depression and developmental difficulties. We performed brain SPECT 2 h after the intravenous administration of I-123N-(3-iodopropen-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl)tropane ([(123)I]IPT) and carried out both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity of tics in children with TD assessed with the Yale Global Tic Severity Scale (YGTSS) and the specific/non-specific DAT binding ratio of the basal ganglia. Drug-naive children with TD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children that did not correlate significantly with the severity of tics. Our results with drug-naive children with TD between the ages of 6 and 12 may help to clarify previous findings concerning DAT binding in adult patients with TD and suggest that DAT densities may be associated directly with the pathophysiology of TD, regardless of disease progress or drug effect. PMID:14972371

  3. Indirection and symbol-like processing in the prefrontal cortex and basal ganglia

    PubMed Central

    Kriete, Trenton; Noelle, David C.; Cohen, Jonathan D.; O’Reilly, Randall C.

    2013-01-01

    The ability to flexibly, rapidly, and accurately perform novel tasks is a hallmark of human behavior. In our everyday lives we are often faced with arbitrary instructions that we must understand and follow, and we are able to do so with remarkable ease. It has frequently been argued that this ability relies on symbol processing, which depends critically on the ability to represent variables and bind them to arbitrary values. Whereas symbol processing is a fundamental feature of all computer systems, it remains a mystery whether and how this ability is carried out by the brain. Here, we provide an example of how the structure and functioning of the prefrontal cortex/basal ganglia working memory system can support variable binding, through a form of indirection (akin to a pointer in computer science). We show how indirection enables the system to flexibly generalize its behavior substantially beyond its direct experience (i.e., systematicity). We argue that this provides a biologically plausible mechanism that approximates a key component of symbol processing, exhibiting both the flexibility, but also some of the limitations, that are associated with this ability in humans. PMID:24062434

  4. Idiopathic basal ganglia calcification-associated PDGFRB mutations impair the receptor signalling

    PubMed Central

    Arts, Florence A; Velghe, Amélie I; Stevens, Monique; Renauld, Jean-Christophe; Essaghir, Ahmed; Demoulin, Jean-Baptiste

    2015-01-01

    Platelet-derived growth factors (PDGF) bind to two related receptor tyrosine kinases, which are encoded by the PDGFRA and PDGFRB genes. Recently, heterozygous PDGFRB mutations have been described in patients diagnosed with idiopathic basal ganglia calcification (IBGC or Fahr disease), a rare inherited neurological disorder. The goal of the present study was to determine whether these mutations had a positive or negative impact on the PDGFRB activity. We first showed that the E1071V mutant behaved like wild-type PDGFRB and may represent a polymorphism unrelated to IBGC. In contrast, the L658P mutant had no kinase activity and failed to activate any of the pathways normally stimulated by PDGF. The R987W mutant activated Akt and MAP kinases but did not induce the phosphorylation of signal transducer and activator of transcription 3 (STAT3) after PDGF stimulation. Phosphorylation of phospholipase C? was also decreased. Finally, we showed that the R987W mutant was more rapidly degraded upon PDGF binding compared to wild-type PDGFRB. In conclusion, PDGFRB mutations associated with IBGC impair the receptor signalling. PDGFRB loss of function in IBGC is consistent with recently described inactivating mutations in the PDGF-B ligand. These results raise concerns about the long-term safety of PDGF receptor inhibition by drugs such as imatinib. PMID:25292412

  5. Idiopathic basal ganglia calcification-associated PDGFRB mutations impair the receptor signalling.

    PubMed

    Arts, Florence A; Velghe, Amélie I; Stevens, Monique; Renauld, Jean-Christophe; Essaghir, Ahmed; Demoulin, Jean-Baptiste

    2015-01-01

    Platelet-derived growth factors (PDGF) bind to two related receptor tyrosine kinases, which are encoded by the PDGFRA and PDGFRB genes. Recently, heterozygous PDGFRB mutations have been described in patients diagnosed with idiopathic basal ganglia calcification (IBGC or Fahr disease), a rare inherited neurological disorder. The goal of the present study was to determine whether these mutations had a positive or negative impact on the PDGFRB activity. We first showed that the E1071V mutant behaved like wild-type PDGFRB and may represent a polymorphism unrelated to IBGC. In contrast, the L658P mutant had no kinase activity and failed to activate any of the pathways normally stimulated by PDGF. The R987W mutant activated Akt and MAP kinases but did not induce the phosphorylation of signal transducer and activator of transcription 3 (STAT3) after PDGF stimulation. Phosphorylation of phospholipase C? was also decreased. Finally, we showed that the R987W mutant was more rapidly degraded upon PDGF binding compared to wild-type PDGFRB. In conclusion, PDGFRB mutations associated with IBGC impair the receptor signalling. PDGFRB loss of function in IBGC is consistent with recently described inactivating mutations in the PDGF-B ligand. These results raise concerns about the long-term safety of PDGF receptor inhibition by drugs such as imatinib. PMID:25292412

  6. Novel SLC20A2 mutations identified in southern Chinese patients with idiopathic basal ganglia calcification.

    PubMed

    Chen, Wan-Jin; Yao, Xiang-Ping; Zhang, Qi-Jie; Ni, Wang; He, Jin; Li, Hong-Fu; Liu, Xin-Yi; Zhao, Gui-Xian; Murong, Shen-Xing; Wang, Ning; Wu, Zhi-Ying

    2013-10-15

    Idiopathic basal ganglia calcification (IBGC) is a rare neuropsychiatric disorder characterized by bilateral and symmetric cerebral calcifications. Recently, SLC20A2 was identified as a causative gene for familial IBGC, and three mutations were reported in a northern Chinese population. Here, we aimed to explore the mutation spectrum of SLC20A2 in a southern Chinese population. Sanger sequencing was employed to screen mutations within SLC20A2 in two IBGC families and 14 sporadic IBGC cases from a southern Han Chinese population. Four novel mutations (c.82G>A p.D28N, c.185T>C p.L62P, c.1470_1478delGCAGGTCCT p.Q491_L493del and c.935-1G>A) were identified in two families and two sporadic cases, respectively; none were detected in 200 unrelated controls. No mutation was found in the remaining 12 patients. Different mutations may result in varied phenotypes, including brain calcification and clinical manifestations. Our study supports the hypothesis that SLC20A2 is a causative gene of IBGC and expands the mutation spectrum of SLC20A2, which facilitates the understanding of the genotype-phenotype correlation of IBGC. PMID:23939468

  7. Electrophysiology of Basal Ganglia and Cortex in Models of Parkinson Disease

    PubMed Central

    Ellens, Damien J.; Leventhal, Daniel K.

    2014-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD. PMID:23948994

  8. Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training

    PubMed Central

    Li, Gujing; He, Hui; Huang, Mengting; Zhang, Xingxing; Lu, Jing; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong

    2015-01-01

    Studies have revealed that prolonged, specialized training combined with higher cognitive conditioning induces enhanced brain alternation. In particular, dancers with long-term dance experience exhibit superior motor control and integration with their sensorimotor networks. However, little is known about the functional connectivity patterns of spontaneous intrinsic activities in the sensorimotor network of dancers. Our study examined the functional connectivity density (FCD) of dancers with a mean period of over 10 years of dance training in contrast with a matched non-dancer group without formal dance training using resting-state fMRI scans. FCD was mapped and analyzed, and the functional connectivity (FC) analyses were then performed based on the difference of FCD. Compared to the non-dancers, the dancers exhibited significantly increased FCD in the precentral gyri, postcentral gyri and bilateral putamen. Furthermore, the results of the FC analysis revealed enhanced connections between the middle cingulate cortex and the bilateral putamen and between the precentral and the postcentral gyri. All findings indicated an enhanced functional integration in the cortico-basal ganglia loops that govern motor control and integration in dancers. These findings might reflect improved sensorimotor function for the dancers consequent to long-term dance training. PMID:26035693

  9. Dopamine physiology in the basal ganglia of male zebra finches during social stimulation

    PubMed Central

    Ihle, Eva C; van der Hart, Marieke; Jongsma, Minke; Tecott, Larry H; Doupe, Allison J

    2015-01-01

    Accumulating evidence suggests that dopamine (DA) is involved in altering neural activity and gene expression in a zebra finch cortical–basal ganglia circuit specialized for singing, upon the shift between solitary singing and singing as a part of courtship. Our objective here was to sample changes in the extracellular concentrations of DA in Area X of adult and juvenile birds, to test the hypothesis that DA levels would change similarly during presentation of a socially salient stimulus in both age groups. We used microdialysis to sample the extracellular milieu of Area X in awake, behaving adult and juvenile male zebra finches, and analysed the dialysate using high-performance liquid chromatography coupled with electrochemical detection. The extracellular levels of DA in Area X increased significantly during both female presentation to adult males and tutor presentation to juvenile males. DA levels were not correlated with the time spent singing. We also reverse-dialysed Area X with pharmacologic agents that act either on DA systems directly or on norepinephrine, and found that all of these agents significantly increased DA levels (3- to 10-fold) in Area X. These findings suggest that changes in extracellular DA levels can be stimulated similarly by very different social contexts (courtship and interaction with tutor), and influenced potently by dopaminergic and noradrenergic drugs. These results raise the possibility that the arousal level or attentional state of the subject (rather than singing behavior) is the common feature eliciting changes in extracellular DA concentration. PMID:25872575

  10. A direct GABAergic output from the basal ganglia to frontal cortex

    PubMed Central

    Saunders, Arpiar; Oldenburg, Ian A.; Berezovskii, Vladimir K.; Johnson, Caroline A.; Kingery, Nathan D.; Elliott, Hunter L.; Xie, Tiao; Gerfen, Charles R.; Sabatini, Bernardo L.

    2014-01-01

    The basal ganglia (BG) are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning1. Current models postulate that the BG modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by the BG via direct (dSPNs) and indirect (iSPNs) pathway striatal projection neurons2–4. The BG thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems5. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the BG, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT+ cells, which have been historically identified as an extension of the nucleus basalis (NB), as well as ChAT− cells, release the inhibitory neurotransmitter GABA (γ-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signaling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the BG to modulate frontal cortices. PMID:25739505

  11. Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways.

    PubMed

    Oldenburg, Ian A; Sabatini, Bernardo L

    2015-06-01

    Motor cortex, basal ganglia (BG), and thalamus are arranged in a recurrent loop whose activity guides motor actions. In the dominant model of the function of the BG and their role in Parkinson's disease, direct (dSPNs) and indirect (iSPNs) striatal projection neurons are proposed to oppositely modulate cortical activity via BG outputs to thalamus. Here, we test this model by determining how striatal activity modulates primary motor cortex in awake head-restrained mice. We find that, within 200 ms, dSPN and iSPN activation exert robust and opposite effects on the majority of cortical neurons. However, these effects are heterogeneous, with certain cortical neurons biphasically modulated by iSPN stimulation. Moreover, these striatal effects are diminished when the animal performs a motor action. Thus, the effects of dSPN and iSPN activity on cortex are at times antagonistic, consistent with classic models, whereas in other contexts these effects can be occluded or coactive. PMID:26050037

  12. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive

    PubMed Central

    Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  13. Exploring neurocircuitries of the basal ganglia by intracerebral administration of selective neurotoxins.

    PubMed

    Herrera-Marschitz, Mario; Bustamante, Diego; Morales, Paola; Goiny, Michel

    2007-04-01

    The detailed anatomy of the monoamine pathways of the rat, first described by the students of Nils Ake Hillarp in Sweden, provided the basis for a neurocircuitry targeted pharmacology, leading to important therapeutic breakthroughs. Progress was achieved by the introduction of accurate lesion techniques based on selective neurotoxins. Systematic intracerebral injections of 6-hydroxydopamine let Urban Ungerstedt at the Karolinska Institutet, Stockholm, Sweden, to propose the first stereotaxic mapping of the monoamine pathways in the rat brain; and the 'Rotational Behaviour', as a classical model for screening drugs useful for alleviating Parkinson's disease and other neuropathologies. The direction of the rotational behaviour induced by drugs administrated to unilaterally 6-hydroxydopamine-lesioned rats reveals their mechanism of action at dopamine synapses, as demonstrated when rotational behaviour was combined with microdialysis. The model was useful for proposing a role for dopamine receptors in the gating of the flow of information integrated and/or modulated by the basal ganglia, through different efferent pathways; notably the striatopallidal system, via D(2) receptors, and the striatonigral system, via D(1) receptors. The role of other dopamine receptor subtypes on rotational behaviour has not yet been clarified. PMID:17449458

  14. Emotional Speech Perception Unfolding in Time: The Role of the Basal Ganglia

    PubMed Central

    Paulmann, Silke; Ott, Derek V. M.; Kotz, Sonja A.

    2011-01-01

    The basal ganglia (BG) have repeatedly been linked to emotional speech processing in studies involving patients with neurodegenerative and structural changes of the BG. However, the majority of previous studies did not consider that (i) emotional speech processing entails multiple processing steps, and the possibility that (ii) the BG may engage in one rather than the other of these processing steps. In the present study we investigate three different stages of emotional speech processing (emotional salience detection, meaning-related processing, and identification) in the same patient group to verify whether lesions to the BG affect these stages in a qualitatively different manner. Specifically, we explore early implicit emotional speech processing (probe verification) in an ERP experiment followed by an explicit behavioral emotional recognition task. In both experiments, participants listened to emotional sentences expressing one of four emotions (anger, fear, disgust, happiness) or neutral sentences. In line with previous evidence patients and healthy controls show differentiation of emotional and neutral sentences in the P200 component (emotional salience detection) and a following negative-going brain wave (meaning-related processing). However, the behavioral recognition (identification stage) of emotional sentences was impaired in BG patients, but not in healthy controls. The current data provide further support that the BG are involved in late, explicit rather than early emotional speech processing stages. PMID:21437277

  15. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    PubMed

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (<3m) to the ipsilesional cortex in late session (>3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  16. Role of Beta-Arrestin 2 Downstream of Dopamine Receptors in the Basal Ganglia

    PubMed Central

    Del’Guidice, Thomas; Lemasson, Morgane; Beaulieu, Jean-Martin

    2011-01-01

    Multifunctional scaffolding protein beta-arrestins (?Arr) and the G protein-receptor kinases are involved in the desensitization of several G protein-coupled receptors (GPCR). However, arrestins can also contribute to GPCR signaling independently from G proteins. In this review, we focus on the role of ?Arr in the regulation of dopamine receptor functions in the striatum. First, we present in vivo evidence supporting a role for these proteins in the regulation of dopamine receptor desensitization. Second, we provide an overview of the roles of ?Arr2 in the regulation of extracellular-signal-regulated kinases/MAP kinases and Akt/GSK3 signaling pathways downstream of the D1 and D2 dopamine receptors. Thereafter, we examine the possible involvement of ?Arr-mediated signaling in the action of dopaminergic drugs used for the treatment of mental disorders. Finally, we focus on different potential cellular proteins regulated by ?Arr-mediated signaling which could contribute to the regulation of behavioral responses to dopamine. Overall, the identification of a cell signaling function for ?Arr downstream of dopamine receptors underscores the intricate complexity of the intertwined mechanisms regulating and mediating cell signaling in the basal ganglia. Understanding these mechanisms may lead to a better comprehension of the several roles played by these structures in the regulation of mood and to the development of new psychoactive drugs having better therapeutic efficacy. PMID:21922001

  17. Technical Integration of Hippocampus, Basal Ganglia and Physical Models for Spatial Navigation

    PubMed Central

    Fox, Charles; Humphries, Mark; Mitchinson, Ben; Kiss, Tamas; Somogyvari, Zoltan; Prescott, Tony

    2008-01-01

    Computational neuroscience is increasingly moving beyond modeling individual neurons or neural systems to consider the integration of multiple models, often constructed by different research groups. We report on our preliminary technical integration of recent hippocampal formation, basal ganglia and physical environment models, together with visualisation tools, as a case study in the use of Python across the modelling tool-chain. We do not present new modeling results here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a flexible platform, offering a significant reduction in development time, without a corresponding significant increase in execution time. We illustrate this by implementing a part of the model in various alternative languages and coding styles, and comparing their execution times. For very large-scale system integration, communication with other languages and parallel execution may be required, which we demonstrate using the BRAHMS framework's Python bindings. PMID:19333376

  18. Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training.

    PubMed

    Li, Gujing; He, Hui; Huang, Mengting; Zhang, Xingxing; Lu, Jing; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong

    2015-01-01

    Studies have revealed that prolonged, specialized training combined with higher cognitive conditioning induces enhanced brain alternation. In particular, dancers with long-term dance experience exhibit superior motor control and integration with their sensorimotor networks. However, little is known about the functional connectivity patterns of spontaneous intrinsic activities in the sensorimotor network of dancers. Our study examined the functional connectivity density (FCD) of dancers with a mean period of over 10 years of dance training in contrast with a matched non-dancer group without formal dance training using resting-state fMRI scans. FCD was mapped and analyzed, and the functional connectivity (FC) analyses were then performed based on the difference of FCD. Compared to the non-dancers, the dancers exhibited significantly increased FCD in the precentral gyri, postcentral gyri and bilateral putamen. Furthermore, the results of the FC analysis revealed enhanced connections between the middle cingulate cortex and the bilateral putamen and between the precentral and the postcentral gyri. All findings indicated an enhanced functional integration in the cortico-basal ganglia loops that govern motor control and integration in dancers. These findings might reflect improved sensorimotor function for the dancers consequent to long-term dance training. PMID:26035693

  19. A de novo nonsense PDGFB mutation causing idiopathic basal ganglia calcification with laryngeal dystonia

    PubMed Central

    Nicolas, Gaël; Jacquin, Agnès; Thauvin-Robinet, Christel; Rovelet-Lecrux, Anne; Rouaud, Olivier; Pottier, Cyril; Aubriot-Lorton, Marie-Hélène; Rousseau, Stéphane; Wallon, David; Duvillard, Christian; Béjot, Yannick; Frébourg, Thierry; Giroud, Maurice; Campion, Dominique; Hannequin, Didier

    2014-01-01

    Idiopathic basal ganglia calcification (IBGC) is characterized by brain calcification and a wide variety of neurologic and psychiatric symptoms. In families with autosomal dominant inheritance, three causative genes have been identified: SLC20A2, PDGFRB, and, very recently, PDGFB. Whereas in clinical practice sporadic presentation of IBGC is frequent, well-documented reports of true sporadic occurrence are rare. We report the case of a 20-year-old woman who presented laryngeal dystonia revealing IBGC. Her healthy parents' CT scans were both normal. We identified in the proband a new nonsense mutation in exon 4 of PDGFB, c.439C>T (p.Gln147*), which was absent from the parents' DNA. This mutation may result in a loss-of-function of PDGF-B, which has been shown to cause IBGC in humans and to disrupt the blood-brain barrier in mice, resulting in brain calcification. The c.439C>T mutation is located between two previously reported nonsense mutations, c.433C>T (p.Gln145*) and c.445C>T (p.Arg149*), on a region that could be a hot spot for de novo mutations. We present the first full demonstration of the de novo occurrence of an IBGC-causative mutation in a sporadic case. PMID:24518837

  20. A de novo nonsense PDGFB mutation causing idiopathic basal ganglia calcification with laryngeal dystonia.

    PubMed

    Nicolas, Gaël; Jacquin, Agnès; Thauvin-Robinet, Christel; Rovelet-Lecrux, Anne; Rouaud, Olivier; Pottier, Cyril; Aubriot-Lorton, Marie-Hélène; Rousseau, Stéphane; Wallon, David; Duvillard, Christian; Béjot, Yannick; Frébourg, Thierry; Giroud, Maurice; Campion, Dominique; Hannequin, Didier

    2014-10-01

    Idiopathic basal ganglia calcification (IBGC) is characterized by brain calcification and a wide variety of neurologic and psychiatric symptoms. In families with autosomal dominant inheritance, three causative genes have been identified: SLC20A2, PDGFRB, and, very recently, PDGFB. Whereas in clinical practice sporadic presentation of IBGC is frequent, well-documented reports of true sporadic occurrence are rare. We report the case of a 20-year-old woman who presented laryngeal dystonia revealing IBGC. Her healthy parents' CT scans were both normal. We identified in the proband a new nonsense mutation in exon 4 of PDGFB, c.439C>T (p.Gln147*), which was absent from the parents' DNA. This mutation may result in a loss-of-function of PDGF-B, which has been shown to cause IBGC in humans and to disrupt the blood-brain barrier in mice, resulting in brain calcification. The c.439C>T mutation is located between two previously reported nonsense mutations, c.433C>T (p.Gln145*) and c.445C>T (p.Arg149*), on a region that could be a hot spot for de novo mutations. We present the first full demonstration of the de novo occurrence of an IBGC-causative mutation in a sporadic case. PMID:24518837

  1. Multiplicity of control in the basal ganglia: computational roles of striatal subregions.

    PubMed

    Bornstein, Aaron M; Daw, Nathaniel D

    2011-06-01

    The basal ganglia, in particular the striatum, are central to theories of behavioral control, and often identified as a seat of action selection. Reinforcement learning (RL) models--which have driven much recent experimental work on this region--cast striatum as a dynamic controller, integrating sensory and motivational information to construct efficient and enriching behavioral policies. Befitting this informationally central role, the BG sit at the nexus of multiple anatomical 'loops' of synaptic projections, connecting a wide range of cortical and subcortical structures. Numerous pioneering anatomical studies conducted over the past several decades have meticulously catalogued these loops, and labeled them according to the inferred functions of the connected regions. The specific cotermina of the projections are highly localized to several different subregions of the striatum, leading to the suggestion that these subregions perform complementary but distinct functions. However, until recently, the dominant computational framework outlined only a bipartite, dorsal/ventral, division of striatum. We review recent computational and experimental advances that argue for a more finely fractionated delineation. In particular, experimental data provide extensive insight into unique functions subserved by the dorsomedial striatum (DMS). These functions appear to correspond well with theories of a 'model-based' RL subunit, and may also shed light on the suborganization of ventral striatum. Finally, we discuss the limitations of these ideas and how they point the way toward future refinements of neurocomputational theories of striatal function, bringing them into contact with other areas of computational theory and other regions of the brain. PMID:21429734

  2. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive.

    PubMed

    Fiore, Vincenzo G; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson's disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  3. Eyes on MEGDEL: distinctive basal ganglia involvement in dystonia deafness syndrome.

    PubMed

    Wortmann, Saskia B; van Hasselt, Peter M; Barić, Ivo; Burlina, Alberto; Darin, Niklas; Hörster, Friederike; Coker, Mahmut; Ucar, Sema Kalkan; Krumina, Zita; Naess, Karin; Ngu, Lock H; Pronicka, Ewa; Riordan, Gilian; Santer, Rene; Wassmer, Evangeline; Zschocke, Johannes; Schiff, Manuel; de Meirleir, Linda; Alowain, Mohammed A; Smeitink, Jan A M; Morava, Eva; Kozicz, Tamas; Wevers, Ron A; Wolf, Nicole I; Willemsen, Michel A

    2015-04-01

    Pediatric movement disorders are still a diagnostic challenge, as many patients remain without a (genetic) diagnosis. Magnetic resonance imaging (MRI) pattern recognition can lead to the diagnosis. MEGDEL syndrome (3-MethylGlutaconic aciduria, Deafness, Encephalopathy, Leigh-like syndrome MIM #614739) is a clinically and biochemically highly distinctive dystonia deafness syndrome accompanied by 3-methylglutaconic aciduria, severe developmental delay, and progressive spasticity. Mutations are found in SERAC1, encoding a phosphatidylglycerol remodeling enzyme essential for both mitochondrial function and intracellular cholesterol trafficking. Based on the homogenous phenotype, we hypothesized an accordingly characteristic MRI pattern. A total of 43 complete MRI studies of 30 patients were systematically reevaluated. All patients presented a distinctive brain MRI pattern with five characteristic disease stages affecting the basal ganglia, especially the putamen. In stage 1, T2 signal changes of the pallidum are present. In stage 2, swelling of the putamen and caudate nucleus is seen. The dorsal putamen contains an "eye" that shows no signal alteration and (thus) seems to be spared during this stage of the disease. It later increases, reflecting progressive putaminal involvement. This "eye" was found in all patients with MEGDEL syndrome during a specific age range, and has not been reported in other disorders, making it pathognomonic for MEDGEL and allowing diagnosis based on MRI findings. PMID:25642805

  4. A model of the basal ganglia in voluntary movement and postural reactions.

    PubMed

    Hemami, Hooshang; Moussavi, Zahra

    2014-01-01

    A basal ganglia central pattern generator (CPG) is developed and its role in voluntary movements on the ground and postural reactions on a disturbed platform are studied and analysed by simulation. Biped dynamics and platform kinematics are utilised. The effects of agonist-antagonist muscular co-activation and joint stiffness are formulated. The implementation of the necessary counter-manoeuvres for maintaining balance and postural stability is studied. A control strategy, applicable to large systems, is formulated. The biped manoeuvres and transitions terminate in pre-specified intervals of time. Gravity is included and compensated for. Certain voluntary and postural adjustment strategies are the same but are initiated differently. Further experimental/computational research may identify the central nervous system and sensory paths that lead to the CPG. All actuator forces linearly evolve in time from their original values to their terminal values. There are no central continuous feedback loops present. Monitoring and sensing, however, are ongoing. The counter-manoeuvres are based on learned human-like voluntary movements that are triggered by the disturbance. The required central inputs to the musculoskeletal system are designed in the CPG. A functional structure for the CPG is proposed. The effect of certain disorders and malfunctions of the CPG are studied by simulation. PMID:23282072

  5. A role for the basal ganglia in nicotinic modulation of the blink reflex.

    PubMed

    Evinger, C; Basso, M A; Manning, K A; Sibony, P A; Pellegrini, J J; Horn, A K

    1993-01-01

    In humans and rats we found that nicotine transiently modifies the blink reflex. For blinks elicited by stimulation of the supraorbital branch of the trigeminal nerve, nicotine decreased the magnitude of the orbicularis oculi electromyogram (OOemg) and increased the latency of only the long-latency (R2) component. For blinks elicited by electrical stimulation of the cornea, nicotine decreased the magnitude and increased the latency of the single component of OOemg response. Since nicotine modified only one component of the supraorbitally elicited blink reflex, nicotine must act primarily on the central nervous system rather than at the muscle. The effects of nicotine could be caused by direct action on lower brainstem interneurons or indirectly by modulating descending systems impinging on blink interneurons. Since precollicular decerebration eliminated nicotine's effects on the blink reflex, nicotine must act through descending systems. Three lines of evidence suggest that nicotine affects the blink reflex through the basal ganglia by causing dopamine release in the striatum. First, stimulation of the substantia nigra mimicked the effects of nicotine on the blink reflex. Second, haloperidol, a dopamine (D2) receptor antagonist, blocked the effect of nicotine on the blink reflex. Third, apomorphine, a D2 receptor agonist, mimicked the effects of nicotine on the blink reflex. PMID:8454014

  6. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis.

    PubMed

    Yang, Shuangming; Wang, Jiang; Li, Shunan; Deng, Bin; Wei, Xile; Yu, Haitao; Li, Huiyan

    2015-11-01

    The basal ganglia (BG) comprise multiple subcortical nuclei, which are responsible for cognition and other functions. Developing a brain-machine interface (BMI) demands a suitable solution for the real-time implementation of a portable BG. In this study, we used a digital hardware implementation of a BG network containing 256 modified Izhikevich neurons and 2048 synapses to reliably reproduce the biological characteristics of BG on a single field programmable gate array (FPGA) core. We also highlighted the role of Parkinsonian analysis by considering neural dynamics in the design of the hardware-based architecture. Thus, we developed a multi-precision architecture based on a precise analysis using the FPGA-based platform with fixed-point arithmetic. The proposed embedding BG network can be applied to intelligent agents and neurorobotics, as well as in BMI projects with clinical applications. Although we only characterized the BG network with Izhikevich models, the proposed approach can also be extended to more complex neuron models and other types of functional networks. PMID:26318085

  7. A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning.

    PubMed

    Chersi, Fabian; Mirolli, Marco; Pezzulo, Giovanni; Baldassarre, Gianluca

    2013-05-01

    Dual-system theories postulate that actions are supported either by a goal-directed or by a habit-driven response system. Neuroimaging and anatomo-functional studies have provided evidence that the prefrontal cortex plays a fundamental role in the first type of action control, while internal brain areas such as the basal ganglia are more active during habitual and overtrained responses. Additionally, it has been shown that areas of the cortex and the basal ganglia are connected through multiple parallel "channels", which are thought to function as an action selection mechanism resolving competitions between alternative options available in a given context. In this paper we propose a multi-layer network of spiking neurons that implements in detail the thalamo-cortical circuits that are believed to be involved in action learning and execution. A key feature of this model is that neurons are organized in small pools in the motor cortex and form independent loops with specific pools of the basal ganglia where inhibitory circuits implement a multistep selection mechanism. The described model has been validated utilizing it to control the actions of a virtual monkey that has to learn to turn on briefly flashing lights by pressing corresponding buttons on a board. When the animal is able to fluently execute the task the button-light associations are remapped so that it has to suppress its habitual behavior in order to execute goal-directed actions. The model nicely shows how sensory-motor associations for action sequences are formed at the cortico-basal ganglia level and how goal-directed decisions may override automatic motor responses. PMID:23266482

  8. Presynaptic Inhibition in the Striatum of the Basal Ganglia Improves Pattern Classification and Thus Promotes Superior Goal Selection

    PubMed Central

    Schwab, David J.; Houk, James C.

    2015-01-01

    This review article takes a multidisciplinary approach to understand how presynaptic inhibition in the striatum of the basal ganglia (BG) contributes to pattern classification and the selection of goals that control behavior. It is a difficult problem both because it is multidimensional and because it is has complex system dynamics. We focus on the striatum because, as the main site for input to the BG, it gets to decide what goals are important to consider. PMID:26696840

  9. Presynaptic Inhibition in the Striatum of the Basal Ganglia Improves Pattern Classification and Thus Promotes Superior Goal Selection.

    PubMed

    Schwab, David J; Houk, James C

    2015-01-01

    This review article takes a multidisciplinary approach to understand how presynaptic inhibition in the striatum of the basal ganglia (BG) contributes to pattern classification and the selection of goals that control behavior. It is a difficult problem both because it is multidimensional and because it is has complex system dynamics. We focus on the striatum because, as the main site for input to the BG, it gets to decide what goals are important to consider. PMID:26696840

  10. Interactions between Cortical Rhythms and Spiking Activity of Single Basal Ganglia Neurons in the Normal and Parkinsonian State

    PubMed Central

    Gatev, Plamen

    2009-01-01

    In order to evaluate the specific interactions between cortical oscillations and basal ganglia–spiking activity under normal and parkinsonian conditions, we examined the relationship between frontal cortex electroencephalographic (EEG) signals and simultaneously recorded neuronal activity in the internal and external segments of the pallidum or the subthalamic nucleus (STN) in 3 rhesus monkeys. After we made recordings in the normal state, hemiparkinsonism was induced with intracarotid injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in one animal, followed by additional recordings. Spiking activity in the pallidum and STN was associated with significant shifts in the level of EEG synchronization. We also found that the spectral power of beta- and gamma-band EEG rhythms covaried positively before the basal ganglia spikes but did not covary or covaried negatively thereafter. In parkinsonism, changes in cortical synchronization and phase coherence were reduced in EEG segments aligned to STN spikes, whereas both were increased in data segments aligned to pallidal spikes. Spiking-related changes in beta/gamma-band covariance were reduced. The findings indicate that basal ganglia and cortex interact in the processing of cortical rhythms that contain oscillations across a broad range of frequencies and that this interaction is severely disrupted in parkinsonism. PMID:18842667

  11. [Idiopathic bilateral basal ganglia calcification (Fahr's disease) presenting with psychotic depression and criminal violence: a case report with forensic aspect].

    PubMed

    Özer, ÜrĂŒn; GörgĂŒlĂŒ, Yasemin; Can GĂŒngör, Ferda; GençtĂŒrk, Mert

    2014-01-01

    Fahr's disease is a rare neuropsychiatric disease characterized by bilateral intracranial calcification, primarily in the basal ganglia. The more general term, Fahr's syndrome, is used for primary and secondary basal ganglia calcification, regardless of the etiology, but the term Fahr's disease is used to describe primary, idiopathic cases. Fahr's disease may present with neurological symptoms, such as parkinsonism and extrapyramidal symptoms, dysarthria, paresis, convulsion, and syncope. Psychiatric disorders, including behavioral disorders, psychosis, and mood disorders, as well as cognitive disorders can occur. CT is useful for the diagnosis of Fahr's disease. Herein we present a patient diagnosed as Fahr's disease that presented with symptoms of depression, delusions, and auditory hallucinations. The 47-year-old male patient was hospitalized in a forensic psychiatry inpatient clinic due to aggressive behavior and was subsequently diagnosed with major depressive disorder with psychotic features. While hospitalized he was treated with antidepressant and antipsychotic drugs, as well as electroconvulsive therapy, resulting in significant improvement in his symptoms. As bilateral basal ganglia calcification was observed via CT, the patient was diagnosed as Fahr's disease. This case report emphasizes the importance of cranial imaging and detailed laboratory examination when evaluating patients with psychosis and affective symptoms. Pathologies such as Fahr's disease must be included in the differential diagnosis, especially in cases with neurological symptoms and cranial imaging findings. PMID:24936761

  12. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control.

    PubMed

    Woolley, S C; Kao, M H

    2015-06-18

    Many motor behaviors, from walking to speaking, are acquired through experience, in particular, through trial-and-error learning. The acquisition and maintenance of such motor behaviors in a wide range of species, including humans, appear to depend on cortical-basal ganglia circuits. In this review, we discuss recent studies in songbirds that have been pivotal in informing our current understanding of motor learning and cortical-basal ganglia function. Songbirds are important ethological model systems for the study of motor learning because young songbirds naturally develop and refine their songs through trial-and-error learning. In addition, reinforcement mechanisms are hypothesized to be important for the maintenance and plasticity of structured adult song. Computational and experimental studies highlight the importance of vocal motor variability as the substrate upon which reinforcement mechanisms could operate to shape developing song and to maintain adult song. Recent studies in songbirds indicate that this vocal motor variability is actively generated and modulated by a highly specialized cortical-basal ganglia circuit evolved for a single behavior, song. We argue that these and other recent findings illustrate how the tight association between a specialized neural circuit and a natural behavior make songbirds a unique and powerful model in which to investigate the neural substrates of motor learning and plasticity. PMID:25445191

  13. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    PubMed

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. PMID:26639855

  14. Cortico-basal ganglia circuits involved in different motivation disorders in non-human primates.

    PubMed

    Sgambato-Faure, VĂ©ronique; Worbe, Yulia; Epinat, Justine; FĂ©ger, Jean; Tremblay, LĂ©on

    2016-01-01

    The ventral striatum (VS) is of particular interest in the study of neuropsychiatric disorders. In this study, performed on non-human primates, we associated local perturbation with monosynaptic axonal tracer injection into medial, central and lateral VS to characterize anatomo-functional circuits underlying the respective expression of sexual manifestations, stereotyped behaviors and hypoactive state associated with loss of food motivation. For the three behavioral effects, we demonstrated the existence of three distinct cortico-basal ganglia (BG) circuits that were topographically organized and overlapping at some cortical (orbitofrontal cortex, anterior cingulate cortex) and subcortical (caudal levels of BG) levels, suggesting interactions between motivation domains. Briefly, erection was associated with a circuit involving the orbitofrontal cortex, medial prefrontal cortex (areas 10, 11) and limbic parts of BG, i.e. medial parts of the pallidal complex and the substantia nigra pars reticulata (SNr). Stereotyped behavior was linked to a circuit involving the lateral orbitofrontal cortex (area 12/47) and limbic parts of the pallidal complex and of the SNr, while the apathetic state was underlined by a circuit involving not only the orbital and medial prefrontal cortex but also the lateral prefrontal cortex (area 8, 45), the anterior insula and the lateral parts of the medial pallidal complex and of the ventro-medial SNr. For the three behavioral effects, the cortico-BG circuits mainly involved limbic regions of the external and internal pallidum, as well as the limbic part of the substantia nigra pars reticulata (SNr), suggesting the involvement of both direct and indirect striatal pathways and both output BG structures. As these motivation disorders could still be induced in dopamine (DA)-depleted monkeys, we suggest that DA issued from the substantia nigra pars compacta (SNc) modulates their expression rather than causes them. Finally, this study may give some insights into the structure to target to achieve therapeutic benefits from deep brain stimulation in motivation disorders. PMID:25304400

  15. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions

    PubMed Central

    Bosch-Bouju, Clémentine; Hyland, Brian I.; Parr-Brownlie, Louise C.

    2013-01-01

    Motor thalamus (Mthal) is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG). The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarizes anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily “driven” by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new “super-integrator” theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum), which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs in the Mthal. PMID:24273509

  16. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    PubMed Central

    Plantinga, Birgit R.; Temel, Yasin; Roebroeck, Alard; Uluda?, Kâmil; Ivanov, Dimo; Kuijf, Mark L.; ter Haar Romenij, Bart M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target structures on routine clinical MR images, direct targeting of structures can be challenging. Non-clinical MR scanners with ultra-high magnetic field (7T or higher) have the potential to improve the quality of these images. This technology report provides an overview of the current possibilities of visualizing deep brain stimulation targets and their related structures with the aid of ultra-high field MRI. Reviewed studies showed improved resolution, contrast- and signal-to-noise ratios at ultra-high field. Sequences sensitive to magnetic susceptibility such as T2* and susceptibility weighted imaging and their maps in general showed the best visualization of target structures, including a separation between the subthalamic nucleus and the substantia nigra, the lamina pallidi medialis and lamina pallidi incompleta within the globus pallidus and substructures of the thalamus, including the ventral intermediate nucleus (Vim). This shows that the visibility, identification, and even subdivision of the small deep brain stimulation targets benefit from increased field strength. Although ultra-high field MR imaging is associated with increased risk of geometrical distortions, it has been shown that these distortions can be avoided or corrected to the extent where the effects are limited. The availability of ultra-high field MR scanners for humans seems to provide opportunities for a more accurate targeting for deep brain stimulation in patients with Parkinson's disease and related disorders. PMID:25414656

  17. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease.

    PubMed

    Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter

    2015-06-01

    Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance-related pathological circuit interactions. PMID:25888552

  18. Clinico-radiological Characteristics of Spontaneous Basal Ganglia Hemorrhage, According to Regional Classification

    PubMed Central

    Kim, Do Young; Choo, Yeon Soo; Jang, E Wook; Chung, Joonho; Joo, Jin Yang

    2014-01-01

    Objective The clinico-radiologic features of the spontaneous basal ganglia hemorrhage (BGH) may often differ one from another, according to its regional location. Therefore, we attempted to classify the BGH into regional subgroups, and to extrapolate the distinct characteristics of each group of BGH. Materials and Methods A total of 103 BGHs were analyzed by retrospective review of medical records. BGH was classified according to four subgroups; anterior BGH; posterior BGH; lateral BGH; massive BGH. Results The most common BGH was the posterior BGH (56, 54.4%), followed by the lateral BGH (26, 25.2%), the massive BGH (12, 11.7%), and the anterior BGH (9, 8.7%). The shape of hemorrhage tended to be round in anterior, irregular in posterior, and ovoid in lateral BGH. A layered density of hematoma on initial computed tomography showed correlation with hematoma expansion (p = 0.016), which was observed more often in the postero-lateral group of BGH than in the anterior BGH group. Relatively better recovery from the initial insult was observed in the lateral BGH group than in the other regional BGH groups. The proportion of poor outcome (modified Rankin scale 4, 5, 6) was 100% in the massive, 41.1% in the posterior, 34.6% in the lateral, and 0% in the anterior BGH group. Conclusion We observed that BGH can be grouped according to its regional location and each group may have distinct characteristics. Thus, a more sophisticated clinical strategy tailored to each group of BGHs can be implemented. PMID:25340023

  19. Rule-Based Categorization Deficits in Focal Basal Ganglia Lesion and Parkinson’s Disease Patients

    PubMed Central

    Ell, Shawn W.; Weinstein, Andrea; Ivry, Richard B.

    2010-01-01

    Patients with basal ganglia (BG) pathology are consistently found to be impaired on rule-based category learning tasks in which learning is thought to depend upon the use of an explicit, hypothesis-guided strategy. The factors that influence this impairment remain unclear. Moreover, it remains unknown if the impairments observed in patients with degenerative disorders such as Parkinson's disease (PD) are also observed in those with focal BG lesions. In the present study, we tested patients with either focal BG lesions or PD on two categorization tasks that varied in terms of their demands on selective attention and working memory. Individuals with focal BG lesions were impaired on the task in which working-memory demand was high and performed similarly to healthy controls on the task in which selective-attention demand was high. In contrast, individuals with PD were impaired on both tasks, and accuracy rates did not differ between on- and off-medication states for a subset of patients who were also tested after abstaining from dopaminergic medication. Quantitative, model-based analyses attributed the performance deficit for both groups in the task with high working-memory demand to the utilization of suboptimal strategies, whereas the PD-specific impairment on the task with high selective-attention demand was driven by the inconsistent use of an optimal strategy. These data suggest that the demands on selective attention and working memory affect the presence of impairment in patients with focal BG lesions and the nature of the impairment in patients with PD. PMID:20600196

  20. A spiking Basal Ganglia model of synchrony, exploration and decision making

    PubMed Central

    Mandali, Alekhya; Rengaswamy, Maithreye; Chakravarthy, V. Srinivasa; Moustafa, Ahmed A.

    2015-01-01

    To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either “explore” or “exploit” or “not to take any action” for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior. PMID:26074761

  1. The effects of cues on neurons in the basal ganglia in Parkinson's disease

    PubMed Central

    Sarma, Sridevi V.; Cheng, Ming L.; Eden, Uri; Williams, Ziv; Brown, Emery N.; Eskandar, Emad

    2012-01-01

    Visual cues open a unique window to the understanding of Parkinson's disease (PD). These cues can temporarily but dramatically improve PD motor symptoms. Although details are unclear, cues are believed to suppress pathological basal ganglia (BG) activity through activation of corticostriatal pathways. In this study, we investigated human BG neurophysiology under different cued conditions. We evaluated bursting, 10–30 Hz oscillations (OSCs), and directional tuning (DT) dynamics in the subthalamic nucleus (STN) activity while seven patients executed a two-step motor task. In the first step (predicted +cue), the patient moved to a target when prompted by a visual go cue that appeared 100% of the time. Here, the timing of the cue is predictable and the cue serves an external trigger to execute a motor plan. In the second step, the cue appeared randomly 50% of the time, and the patient had to move to the same target as in the first step. When it appeared (unpredicted +cue), the motor plan was to be triggered by the cue, but its timing was not predictable. When the cue failed to appear (unpredicted −cue), the motor plan was triggered by the absence of the visual cue. We found that during predicted +cue and unpredicted −cue trials, OSCs significantly decreased and DT significantly increased above baseline, though these modulations occurred an average of 640 ms later in unpredicted −cue trials. Movement and reaction times were comparable in these trials. During unpredicted +cue trials, OSCs, and DT failed to modulate though bursting significantly decreased after movement. Correspondingly, movement performance deteriorated. These findings suggest that during motor planning either a predictably timed external cue or an internally generated cue (generated by the absence of a cue) trigger the execution of a motor plan in premotor cortex, whose increased activation then suppresses pathological activity in STN through direct pathways, leading to motor facilitation in PD. PMID:22855673

  2. Basal ganglia contribution to rule expectancy and temporal predictability in speech.

    PubMed

    Kotz, Sonja A; Schmidt-Kassow, Maren

    2015-07-01

    The current work set out to answer three questions: (1) Are reported syntactic deficits in patients with structural damage to the basal ganglia (BG) in the cortico-striato-thalamo-cortical systems (CSTCS) the result of a syntax specific computational deficit or are they potentially a consequence of a generalized timing deficit? (2) Do BG patients suffer from a simple beat perception deficit in speech comparable to the one reported in music? (3) Can regular speech meter (i.e., a pattern of beats induced by the regular alteration of stressed and unstressed syllable accents) ameliorate the computation of syntactically marked information by making speech events temporally predictable and salient? The latter 'remediation' hypothesis would predict that when speech events (i.e., those that are syntactically marked) are metrically aligned to the syllabic accent structure, the computation of syntactic information is facilitated or in the case of patients ameliorated. During continuous EEG measurement nineteen patients with focal BG lesions and matched healthy controls listened to metrically regular and syntactically well-formed sentences and metrically well-formed sentences that either violated syntactic expectancy, metrical expectancy, or both. While healthy controls showed an expected P600 response in the event-related brain potential (ERP) to all expectancy violations, BG patients showed overall comparable P600 responses to all, but the metrical expectancy violation. These results confirm that (1) BG patients suffer from a simple beat perception deficit in speech and (2) regular speech meter ameliorates the computation of syntactically marked information in the speech signal. We propose that a domain general sensorimotor cerebello-thalamo-cortical system (CTCS), involved in event-based temporal processing, engages in the remediation of dysfunctional cortico-striato-thalamo-cortical timing that affects the timely computation of linguistic (i.e., syntax) information in the speech signal. PMID:25863903

  3. Function of basal ganglia in bridging cognitive and motor modules to perform an action

    PubMed Central

    Nagano-Saito, Atsuko; Martinu, Kristina; Monchi, Oury

    2014-01-01

    The basal ganglia (BG) are thought to be involved in the integration of multiple sources of information, and their dysfunction can lead to disorders such as Parkinson's disease (PD). PD patients show motor and cognitive dysfunction with specific impairments in the internal generation of motor actions and executive deficits, respectively. The role of the BG, then, would be to integrate information from several sources in order to make a decision on a resulting action adequate for the required task. Reanalyzing the data set from our previous study (Martinu et al., 2012), we investigated this hypothesis by applying a graph theory method to a series of fMRI data during the performance of self-initiated (SI) finger movement tasks obtained in healthy volunteers (HV) and early stage PD patients. Dorsally, connectivity strength between the medial prefrontal areas (mPFC) and cortical regions including the primary motor area (M1), the extrastriate visual cortex, and the associative cortex, was reduced in the PD patients. The connectivity strengths were positively correlated to activity in the striatum in both groups. Ventrally, all connectivity between the striatum, the thalamus, and the extrastriate visual cortex decreased in strength in the PD, as did the connectivity between the striatum and the ventrolateral PFC (VLPFC). Individual response time (RT) was negatively correlated to connectivity strength between the dorsolateral PFC (DLPFC) and the striatum and positively correlated to connectivity between the VLPFC and the striatum in the HV. These results indicate that the BG, with the mPFC and thalamus, are involved in integrating multiple sources of information from areas such as DLPFC, and VLPFC, connecting to M1, thereby determining a network that leads to the adequate decision and performance of the resulting action. PMID:25071432

  4. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    PubMed Central

    Qiu, Mei-Hong; Chen, Michael C.; Huang, Zhi-Li; Lu, Jun

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders. PMID:24723855

  5. Clinical significance of blood supply to the internal capsule and basal ganglia.

    PubMed

    Djuleji?, Vuk; Marinkovi?, Slobodan; Georgievski, Biljana; Stijak, Lazar; Aksi?, Milan; Puškaš, Laslo; Mili?, Ivan

    2016-03-01

    Although the general vascular supply of the basal ganglia and internal capsule is well known, precise data are lacking regarding the variations of the vascular territories in the two regions. Twelve hemispheres were studied following an injection of coloured ink into the main cerebral arteries, namely the anterior cerebral (ACA), middle cerebral (MCA), anterior choroidal (AChA) and posterior cerebral artery (PCA). Serial sections of the injected hemispheres were taken in the axial or coronal plane. In 75% of the hemispheres, ACA perforators were seen to supply the inferomedial part of the head of the caudate nucleus and the anterior limb of the internal capsule, as well as the anterior and inferior portions of the putamen and globus pallidus. The MCA vessels perfused the superolateral part of the head and body of the caudate nucleus, the superior part of the entire internal capsule, most of the putamen and part of the globus pallidus. The AChA perforators perfused the medial segment of the globus pallidus, the inferior part of the posterior limb, the retrolenticular and sublenticular portions of the internal capsule, and occasionally its genu. The same segment of the globus pallidus and the inferior part of the genu of the internal capsule were most likely supplied by the perforators of the internal carotid artery. A predominance of ACA territory was noticed in one specimen (8.33%) and a predominance of MCA territory in two specimens (16.67%). The obtained anatomical data may help radiologic determination of perforators involved in ischemic events, as well as a better understanding of the neurological deficits in the same events. PMID:26596401

  6. Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds

    PubMed Central

    Goldberg, Jesse H.; Farries, Michael A.

    2012-01-01

    The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (∌5 ms) pulse of inhibition that completely suppresses thalamic spiking. As a result, thalamic spikes are entrained to pallidal spikes with submillisecond precision. Second, we find that the number of thalamic spikes that discharge within a single pallidal interspike interval (ISI) depends linearly on the duration of that interval but does not depend on pallidal activity prior to the interval. In a detailed biophysical model, our results were not easily explained by the postinhibitory “rebound” mechanism previously observed in anesthetized birds and in brain slices, nor could most of our data be characterized as “gating” of excitatory transmission by inhibitory pallidal input. Instead, we propose a novel “entrainment” mechanism of pallidothalamic transmission that highlights the importance of an excitatory conductance that drives spiking, interacting with brief pulses of pallidal inhibition. Building on our recent finding that cortical inputs can drive syllable-locked rate modulations in thalamic neurons during singing, we report here that excitatory inputs affect thalamic spiking in two ways: by shortening the latency of a thalamic spike after a pallidal spike and by increasing thalamic firing rates within individual pallidal ISIs. We present a unifying biophysical model that can reproduce all known modes of pallidothalamic transmission—rebound, gating, and entrainment—depending on the amount of excitation the thalamic neuron receives. PMID:22673333

  7. Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments

    PubMed Central

    Crittenden, Jill R.; Graybiel, Ann M.

    2011-01-01

    The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders. PMID:21941467

  8. Correlation of iron deposition and change of gliocyte metabolism in the basal ganglia region evaluated using magnetic resonance imaging techniques: an in vivo study

    PubMed Central

    Liu, Haodi

    2016-01-01

    Introduction We assessed the correlation between iron deposition and the change of gliocyte metabolism in healthy subjects’ basal ganglia region, by using 3D-enhanced susceptibility weighted angiography (ESWAN) and proton magnetic resonance spectroscopy (1H-MRS). Material and methods Seventy-seven healthy volunteers (39 female and 38 male subjects; age range: 24–82 years old) were enrolled in the experiment including ESWAN and proton MRS sequences, consent for which was provided by themselves or their guardians. For each subject, the mean phase value gained by ESWAN was used to evaluate the iron deposition; choline/creatine (Cho/Cr) and mI/Cr ratios gained by 1H-MRS were used to evaluate gliocyte metabolism in the basal ganglia region of both sides. The paired t test was used to test the difference between the two sides of the basal ganglia region. Linear regression was performed to evaluate the relation between mean phase value and age. Pearson's correlation coefficient was calculated to analyze the relationship between the result of ESWAN and 1H-MRS. Results There was no difference between the two sides of the basal ganglia region in the mean phase value and Cho/Cr. But in mI/Cr the mean phase value of each nucleus in bilateral basal ganglia decreased with increasing age. There are 16 r-values between the mean phase value and Cho/Cr and mI/Cr in bilateral basal ganglia region. And each of all p-values is less than 0.001 (p < 0.001). Conclusions Iron deposition in the bilateral basal ganglia is associated with the change of gliocyte metabolism with increasing age. Iron deposition in each nucleus of the basal ganglia region changes with age. PMID:26925133

  9. Chorea, Hyperglycemia, Basal Ganglia Syndrome (C-H-BG) in an uncontrolled diabetic patient with normal glucose levels on presentation

    PubMed Central

    Bizet, Jorge; Cooper, Chad J.; Quansah, Raphael; Rodriguez, Emmanuel; Teleb, Mohamed; Hernandez, German T.

    2014-01-01

    Patient: Female, 66 Final Diagnosis: Chorea • hyperglycemia • Basal Ganglia Syndrome (C-H-BG) Symptoms: Hemibalism • hemichorea Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Challenging differential diagnosis Background: Hemichorea-hemiballism (HCHB) is a spectrum of involuntary, continuous non-patterned movement involving 1 side of the body. Possible causes of HCHB include hemorrhagic or ischemic stroke, neoplasm, systemic lupus erythematosus, HHNK, Wilson’s disease, and thyrotoxicosis. This case illustrates the need to be aware of hyperglycemia as a cause of hemiballism/hemichorea, which is now referred to in the medical literature as C-H-BG (chorea, hyperglycemia, basal ganglia) syndrome. Case Report: A 66-year-old Hispanic woman presented to our care with hemiballism/hemichorea of the right arm and leg of 1 week duration. She had been admitted 3 months prior with toxic metabolic encephalopathy secondary to hyperosmolar hyperglycemic non-ketotic syndrome with a blood glucose level of 984 mg/dL. Her blood glucose level was normal but hemoglobin A1C was 12.2%. A brain MRI revealed an asymmetric T1 hyperintensity of the left putamen. This specific finding was compatible with hyperglycemia-induced hemichorea hemiballism syndrome. The hemiballism/hemichorea slowly improved over the course of the hospitalization with strict glycemic control. At the 3-month follow-up visit she had no involuntary movements of her extremities, and she had well controlled blood glucose levels and a hemoglobin A1C of 9.0. Conclusions: In a patient with normal glycemic levels but a history of uncontrolled diabetes, C-H-BG syndrome should be on the top of the differential list when the characteristic MRI findings of a hyperintensity in the basal ganglia are observed. This is a rare disease that deserves attention because it is reversible with correction of hyperglycemia. Thus, prompt recognition and treatment is essential to avoid adverse outcomes. PMID:24744820

  10. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy

    PubMed Central

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-01-01

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive–compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1–8?Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative–limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative–limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology. PMID:22832400

  11. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    PubMed

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-01-01

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8?Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology. PMID:22832400

  12. A key role of the basal ganglia in pain and analgesia - insights gained through human functional imaging

    PubMed Central

    2010-01-01

    The basal ganglia (BG) are composed of several nuclei involved in neural processing related to the execution of motor, cognitive and emotional activities. Preclinical and clinical data have implicated a role for these structures in pain processing. Recently neuroimaging has added important information on BG activation in conditions of acute pain, chronic pain and as a result of drug effects. Our current understanding of alterations in cortical and sub-cortical regions in pain suggests that the BG are uniquely involved in thalamo-cortico-BG loops to integrate many aspects of pain. These include the integration of motor, emotional, autonomic and cognitive responses to pain. PMID:20465845

  13. Clinical interpretation of residual uptake in 11C-methionine positron emission tomography after treatment of basal ganglia germ cell tumors: report of 3 cases.

    PubMed

    Fukuoka, Kohei; Yanagisawa, Takaaki; Watanabe, Yuko; Suzuki, Tomonari; Matsutani, Masao; Kuji, Ichiei; Nishikawa, Ryo

    2015-10-01

    Although (11)C-methionine (MET)-PET has been used to diagnose intracranial germ cell tumors (GCTs) arising in the basal ganglia, whether this imaging technique is useful in assessing treatment response and residual tumor is still unclear. The authors report 3 cases of basal ganglia GCTs in which the residual MET uptake at the end of treatment did not develop into a relapse, even without additional treatment. Case 1 is a 22-year-old man who had a second relapse of a left basal ganglia germinoma with diffuse dissemination on the walls of both of his lateral ventricles. MET-PET revealed high MET accumulation around tumors and their surroundings (maximum standardized uptake value [SUVmax] 3.3). After all treatments, MET-PET demonstrated mild tracer accumulation in both basal ganglia (SUVmax 2.2). Progression-free survival was 56 months from the second relapse without any further treatment. Case 2 is a 17-year-old boy with a left basal ganglia germinoma that showed increased MET uptake (SUVmax 4.2). After treatment, MET-PET revealed residual MET uptake (SUVmax 2.4) along the left posterior limb of the internal capsule. Progression-free survival was 52 months from the start of treatment. Case 3 is a 7-year-old boy with a left basal ganglia choriocarcinoma with increased tumor MET uptake (SUVmax 2.5). A minor enhanced mass remained on MRI after treatment with residual MET accumulation (SUVmax 1.4). Progression-free survival was 44 months. Treatment strategies based on MET uptake on PET should be carefully designed in patients with basal ganglia GCTs to avoid overtreatment and complications. PMID:26140394

  14. A case of traumatic hematoma in the basal ganglia that showed deterioration after arrival at the hospital.

    PubMed

    Moriya, Takashi; Tagami, Rumi; Furukawa, Makoto; Sakurai, Atsushi; Kinoshita, Kosaku; Tanjoh, Katsuhisa

    2013-01-01

    A case of traumatic hematoma in the basal ganglia that showed deterioration after arrival at the hospital was reported. A 65-year-old man crashed into the wall while riding a motorcycle. His Glasgow coma scale was E3V4M6 and showed retrograde amnesia and slight right motor weakness. Because head CT in the secondary trauma survey showed subarachnoid hemorrhage in the right Sylvian fissure and multiple gliding contusions in the left frontal and parietal lobe, he was entered into the intensive care unit for diagnosis of diffuse brain injury. He showed complete muscle weakness of left upper and lower limbs 5 h after the accident. Head CT newly showed hematoma, 2 cm in diameter, in the right basal ganglia. The patient vomited following the CT scan, and so his consciousness suddenly deteriorated into a stupor. We performed head CT again. The hematoma had enlarged to 5 cm at the same lesion and partially expanded into midbrain. The patient died on the 13th day of trauma. Based on retrospective interpretation, we conclude that clinical examinations, follow-up CT scans and blood examinations should be performed frequently as part of ICU management for all TBI patients in the early phase after trauma. PMID:23564122

  15. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    PubMed Central

    Zou, Wei; Chen, Qiu-xin; Sun, Xiao-wei; Chi, Qing-bin; Kuang, Hong-yu; Yu, Xue-ping; Dai, Xiao-hong

    2015-01-01

    Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20) and Qubin (GB7) acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 ?g/mL DAPT solution (10 mL) infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage. PMID:25878596

  16. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood

    PubMed Central

    Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H.; Leung, Hoi-Chung; Li, Chiang-shan R.

    2014-01-01

    The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anticorrelation of the “task-positive” network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. PMID:25514518

  17. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood.

    PubMed

    Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-shan R

    2015-02-15

    The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. PMID:25514518

  18. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina of dorsal root ganglia.

    PubMed

    Bush, M S; Reid, A R; Allt, G

    1991-09-01

    Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves. PMID:1960538

  19. Functional Connectivity of Insula, Basal Ganglia, and Prefrontal Executive Control Networks during Hypoglycemia in Type 1 Diabetes

    PubMed Central

    Simonson, Donald C.; Nickerson, Lisa D.; Flores, Veronica L.; Siracusa, Tamar; Hager, Brandon; Lyoo, In Kyoon; Renshaw, Perry F.; Jacobson, Alan M.

    2015-01-01

    Human brain networks mediating interoceptive, behavioral, and cognitive aspects of glycemic control are not well studied. Using group independent component analysis with dual-regression approach of functional magnetic resonance imaging data, we examined the functional connectivity changes of large-scale resting state networks during sequential euglycemic–hypoglycemic clamp studies in patients with type 1 diabetes and nondiabetic controls and how these changes during hypoglycemia were related to symptoms of hypoglycemia awareness and to concurrent glycosylated hemoglobin (HbA1c) levels. During hypoglycemia, diabetic patients showed increased functional connectivity of the right anterior insula and the prefrontal cortex within the executive control network, which was associated with higher HbA1c. Controls showed decreased functional connectivity of the right anterior insula with the cerebellum/basal ganglia network and of temporal regions within the temporal pole network and increased functional connectivity in the default mode and sensorimotor networks. Functional connectivity reductions in the right basal ganglia were correlated with increases of self-reported hypoglycemic symptoms in controls but not in patients. Resting state networks that showed different group functional connectivity during hypoglycemia may be most sensitive to glycemic environment, and their connectivity patterns may have adapted to repeated glycemic excursions present in type 1 diabetes. Our results suggest that basal ganglia and insula mediation of interoceptive awareness during hypoglycemia is altered in type 1 diabetes. These changes could be neuroplastic adaptations to frequent hypoglycemic experiences. Functional connectivity changes in the insula and prefrontal cognitive networks could also reflect an adaptation to changes in brain metabolic pathways associated with chronic hyperglycemia. SIGNIFICANCE STATEMENT The major factor limiting improved glucose control in type 1 diabetes is the significant increase in hypoglycemia associated with insulin treatment. Repeated exposure to hypoglycemia alters patients' ability to recognize the autonomic and neuroglycopenic symptoms associated with low plasma glucose levels. We examined brain resting state networks during the induction of hypoglycemia in diabetic and control subjects and found differences in networks involved in sensorimotor function, cognition, and interoceptive awareness that were related to chronic levels of glycemic control. These findings identify brain regions that are sensitive to variations in plasma glucose levels and may also provide a basis for understanding the mechanisms underlying the increased incidence of cognitive impairment and affective disorders seen in patients with diabetes. PMID:26245963

  20. Loss of function of Slc20a2 associated with familial idiopathic Basal Ganglia calcification in humans causes brain calcifications in mice.

    PubMed

    Jensen, Nina; Schrűder, Henrik Daa; Hejbűl, Eva Kildall; Füchtbauer, Ernst-Martin; de Oliveira, Joăo Ricardo Mendes; Pedersen, Lene

    2013-11-01

    Familial idiopathic basal ganglia calcification (FIBGC) is a neurodegenerative disorder with neuropsychiatric and motor symptoms. Deleterious mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), were recently linked to FIBGC in almost 50% of the families reported worldwide. Here, we show that knockout of Slc20a2 in mice causes calcifications in the thalamus, basal ganglia, and cortex, demonstrating that reduced PiT2 expression alone can cause brain calcifications. PMID:23934451

  1. Idiopathic basal ganglia calcification presenting as schizophrenia-like psychosis and obsessive-compulsive symptoms: A case report

    PubMed Central

    PAN, BING; LIU, WEIBO; CHEN, QIAOZHEN; ZHENG, LEILEI; BAO, YINGYING; LI, HUICHUN; YU, RISHENG

    2015-01-01

    Idiopathic basal ganglia calcification (IBGC) is a rare neurodegenerative disorder characterized by the deposition of calcium in the brain and variable combinations of movement disorders, gait impairment and neuropsychiatric symptoms. Few reports have described psychiatric manifestations as early symptoms of IBGC. The present study reports the case of a middle-aged man with schizophrenia-like psychosis and obsessive-compulsive symptoms as the first manifestations of IBGC. The response of the patient to olanzapine and fluoxetine suggests that low-dose olanzapine is effective and should be increased cautiously to avoid worsening parkinsonism and that fluoxetine is an effective drug for the treatment of obsessive-compulsive symptoms in IBGC. PMID:26622362

  2. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    PubMed

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule. PMID:18495422

  3. Early onset of deafening-induced song deterioration and differential requirements of the pallial-basal ganglia vocal pathway

    PubMed Central

    Horita, Haruhito; Wada, Kazuhiro; Jarvis, Erich D.

    2010-01-01

    Similar to humans, songbirds rely on auditory feedback to maintain the acoustic and sequence structure of adult learned vocalizations. When songbirds are deafened, the learned features of song, such as syllable structure and sequencing, eventually deteriorate. However, the time-course and initial phases of song deterioration have not been well studied, particularly in the most commonly studied songbird, the zebra finch. Here, we observed previously uncharacterized subtle but significant changes to learned song within a few days following deafening. Syllable structure became detectably noisier and silent intervals between song motifs increased. Although song motif sequences remained stable at 2 weeks, as previously reported, pronounced changes occurred in longer stretches of song bout sequences. These included deletions of syllables between song motifs, changes in the frequency at which specific chunks of song were produced and stuttering for birds that had some repetitions of syllables before deafening. Changes in syllable structure and song bout sequence occurred at different rates, indicating different mechanisms for their deterioration. The changes in syllable structure required an intact lateral part but not the medial part of the pallial-basal ganglia vocal pathway, whereas changes in the song bout sequence did not require lateral or medial portions of the pathway. These findings indicate that deafening-induced song changes in zebra finches can be detected rapidly after deafening, that acoustic and sequence changes can occur independently, and that, within this time period, the pallial-basal ganglia vocal pathway controls the acoustic structure changes but not the song bout sequence changes. PMID:19087177

  4. Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia.

    PubMed

    Shine, James M; Matar, Elie; Ward, Philip B; Frank, Michael J; Moustafa, Ahmed A; Pearson, Mark; Naismith, Sharon L; Lewis, Simon J G

    2013-12-01

    Recent neuroimaging evidence has led to the proposal that freezing of gait in Parkinson's disease is due to dysfunctional interactions between frontoparietal cortical regions and subcortical structures, such as the striatum. However, to date, no study has employed task-based functional connectivity analyses to explore this hypothesis. In this study, we used a data-driven multivariate approach to explore the impaired communication between distributed neuronal networks in 10 patients with Parkinson's disease and freezing of gait, and 10 matched patients with no clinical history of freezing behaviour. Patients performed a virtual reality gait task on two separate occasions (once ON and once OFF their regular dopaminergic medication) while functional magnetic resonance imaging data were collected. Group-level independent component analysis was used to extract the subject-specific time courses associated with five well-known neuronal networks: the motor network, the right- and left cognitive control networks, the ventral attention network and the basal ganglia network. We subsequently analysed both the activation and connectivity of these neuronal networks between the two groups with respect to dopaminergic state and cognitive load while performing the virtual reality gait task. During task performance, all patients used the left cognitive control network and the ventral attention network and in addition, showed increased connectivity between the bilateral cognitive control networks. However, patients with freezing demonstrated functional decoupling between the basal ganglia network and the cognitive control network in each hemisphere. This decoupling was also associated with paroxysmal motor arrests. These results support the hypothesis that freezing behaviour in Parkinson's disease is because of impaired communication between complimentary yet competing neural networks. PMID:24142148

  5. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model.

    PubMed

    Bechard, Allison R; Cacodcar, Nadia; King, Michael A; Lewis, Mark H

    2016-02-15

    Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g., autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. PMID:26620495

  6. Singing can improve speech function in aphasics associated with intact right basal ganglia and preserve right temporal glucose metabolism: Implications for singing therapy indication.

    PubMed

    Akanuma, Kyoko; Meguro, Kenichi; Satoh, Masayuki; Tashiro, Manabu; Itoh, Masatoshi

    2016-01-01

    Clinically, we know that some aphasic patients can sing well despite their speech disturbances. Herein, we report 10 patients with non-fluent aphasia, of which half of the patients improved their speech function after singing training. We studied ten patients with non-fluent aphasia complaining of difficulty finding words. All had lesions in the left basal ganglia or temporal lobe. They selected the melodies they knew well, but which they could not sing. We made a new lyric with a familiar melody using words they could not name. The singing training using these new lyrics was performed for 30 minutes once a week for 10 weeks. Before and after the training, their speech functions were assessed by language tests. At baseline, 6 of them received positron emission tomography to evaluate glucose metabolism. Five patients exhibited improvements after intervention; all but one exhibited intact right basal ganglia and left temporal lobes, but all exhibited left basal ganglia lesions. Among them, three subjects exhibited preserved glucose metabolism in the right temporal lobe. We considered that patients who exhibit intact right basal ganglia and left temporal lobes, together with preserved right hemispheric glucose metabolism, might be an indication of the effectiveness of singing therapy. PMID:25567372

  7. Sodium Para-aminosalicylic Acid Protected Primary Cultured Basal Ganglia Neurons of Rat from Manganese-Induced Oxidative Impairment and Changes of Amino Acid Neurotransmitters.

    PubMed

    Li, Shao-Jun; Li, Yong; Chen, Jing-Wen; Yuan, Zong-Xiang; Mo, Yu-Huan; Lu, Guo-Dong; Jiang, Yue-Ming; Ou, Chao-Yan; Wang, Fang; Huang, Xiao-Wei; Luo, Yi-Ni; Ou, Shi-Yan; Huang, Yan-Ni

    2016-04-01

    Manganese (Mn), an essential trace metal for protein synthesis and particularly neurotransmitter metabolism, preferentially accumulates in basal ganglia. However, excessive Mn accumulation may cause neurotoxicity referred to as manganism. Sodium para-aminosalicylic acid (PAS-Na) has been used to treat manganism with unclear molecular mechanisms. Thus, we aim to explore whether PAS-Na can inhibit Mn-induced neuronal injury in basal ganglia in vitro. We exposed basal ganglia neurons with 50 ΌM manganese chloride (MnCl2) for 24 h and then replaced with 50, 150, and 450 ΌM PAS-Na treatment for another 24 h. MnCl2 significantly decreased cell viability but increased leakage rate of lactate dehydrogenase and DNA damage (as shown by increasing percentage of DNA tail and Olive tail moment). Mechanically, Mn reduced glutathione peroxidase and catalase activity and interrupted amino acid neurotransmitter balance. However, PAS-Na treatment reversed the aforementioned Mn-induced toxic effects. Taken together, these results showed that PAS-Na could protect basal ganglia neurons from Mn-induced neurotoxicity. PMID:26286965

  8. Temporal Changes of CB1 Cannabinoid Receptor in the Basal Ganglia as a Possible Structure-Specific Plasticity Process in 6-OHDA Lesioned Rats

    PubMed Central

    Chaves-Kirsten, Gabriela P.; Mazucanti, Caio H. Y.; Real, Caroline C.; Souza, Bruna M.; Britto, Luiz R. G.; Torrăo, Andréa S.

    2013-01-01

    The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson’s Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model. PMID:24116178

  9. [Mineralization of the basal ganglia as the supposed cause of poor tolerance of zuclopenthixol in a patient with long-term untreated paranoid schizophrenia].

    PubMed

    Wichowicz, Hubert M; Wilkowska, Alina; Banecka-Majkutewicz, Zyta; Kummer, Ɓukasz; Konarzewska, Joanna; Raczak, Alicja

    2013-01-01

    Formations described as intracranial calcifications can appear in the course of diseases of the central nervous system, other systems and organs (e.g. endocrine), but also as a disorder of idiopathic character. They are frequently located in subcortical nuclei and usually constitute an incidental finding. This report presents the case of a patient suffering from paranoid schizophrenia for approximately 40 years, who did not agree to any treatment and was hospitalized against her will because she was the threat to the lives of others. She was treated with zuklopentixol resulting in positive symptoms reduction and considerable improvement in social functioning. Unfortunately neurological symptoms appeared: bradykinesis, rigidity--of the type of the lead pipe, balance, posture and gait abnormalities, disturbances in precise hands movements, double-sided Rossolimo's sign, plantar reflex without the participation of the big toe on the left. Neuroimaging studies have demonstrated changes in the form of lenticular nuclei calcification and reduction of signal intensity in posterior parts of both putamens. Neurological symptoms decreased significantly after switching to atypical neuroleptic (olanzapine), and the patient did not require any additional treatment. Mineralization of the basal ganglia can often be associated with psychiatric disorders and it shouldn't be neglected because it can require modification of pharmacotherapy or additional neurological treatment. PMID:24946467

  10. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice

    PubMed Central

    Hisatsune, Chihiro; Miyamoto, Hiroyuki; Hirono, Moritoshi; Yamaguchi, Naohide; Sugawara, Takeyuki; Ogawa, Naoko; Ebisui, Etsuko; Ohshima, Toshio; Yamada, Masahisa; Hensch, Takao K.; Hattori, Mitsuharu; Mikoshiba, Katsuhiko

    2013-01-01

    The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca2+ channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway. PMID:24109434

  11. Basal acetylcholine release in leech ganglia depolarizes neurons through receptors with a nicotinic binding site

    PubMed

    Burgin; Szczupak

    1998-05-21

    The response of Retzius neurons, the main neuronal source of serotonin in the leech nervous system, to cholinergic agonists has been extensively investigated. In this study, we analyzed the effects of inhibiting the acetylcholinesterase (AChE) activity in the leech midbody ganglion on the electrophysiological activity of the Retzius neurons. Bath application of neostigmine and physostigmine (0.1-100 &mgr;mol l-1) produced, after a delay, a strong depolarization of the Retzius neurons with a dose-dependent amplitude and latency. The amplitude of this depolarization increased as the extracellular level of Ca2+ increased and decreased as the extracellular level of Ca2+ decreased. The response to neostigmine and physostigmine was inhibited by curare (100 &mgr;mol l-1), nicotine (10 &mgr;mol l-1), atropine (100 &mgr;mol l-1) and strychnine (100 &mgr;mol l-1), but was not affected by mecamylamine (100 &mgr;mol l-1) or hexamethonium (100 &mgr;mol l-1). Superfusion with solutions containing 100 &mgr;mol l-1 strychnine or atropine produced a progressive hyperpolarization of the Retzius neurons, while superfusion with 100 &mgr;mol l-1 curare did not. The hyperpolarization induced by atropine was inhibited in the presence of curare. Other neurons in the ganglion showed distinctive responses to the AChE inhibitors that were coincident with their responses to cholinergic agonists. The results suggest the existence of a basal level of acetylcholine (ACh) release in the leech ganglion that is powerfully counteracted by endogenous AChE activity. Under control conditions, this basal release appears to be sufficient to generate an ACh tonus that regulates the membrane potential of Retzius neurons. Since these neurons can support a sustained firing rate, which is dependent on the membrane potential, the results presented in this report suggest that the basal ACh tonus regulates the output of these neuromodulatory serotonergic neurons. PMID:9600872

  12. Basal acetylcholine release in leech ganglia depolarizes neurons through receptors with a nicotinic binding site.

    PubMed

    Marín Burgin, A; Szczupak, L

    1998-06-01

    The response of Retzius neurons, the main neuronal source of serotonin in the leech nervous system, to cholinergic agonists has been extensively investigated. In this study, we analyzed the effects of inhibiting the acetylcholinesterase (AChE) activity in the leech midbody ganglion on the electrophysiological activity of the Retzius neurons. Bath application of neostigmine and physostigmine (0.1-100 mumol l-1) produced, after a delay, a strong depolarization of the Retzius neurons with a dose-dependent amplitude and latency. The amplitude of this depolarization increased as the extracellular level of Ca2+ increased and decreased as the extracellular level of Ca2+ decreased. The response to neostigmine and physostigmine was inhibited by curare (100 mumol l-1), nicotine (10 mumol l-1), atropine (100 mumol l-1) and strychnine (100 mumol l-1), but was not affected by mecamylamine (100 mumol l-1) or hexamethonium (100 mumol l-1). Superfusion with solutions containing 100 mumol l-1 strychnine or atropine produced a progressive hyperpolarization of the Retzius neurons, while superfusion with 100 mumol l-1 curare did not. The hyperpolarization induced by atropine was inhibited in the presence of curare. Other neurons in the ganglion showed distinctive responses to the AChE inhibitors that were coincident with their responses to cholinergic agonists. The results suggest the existence of a basal level of acetylcholine (ACh) release in the leech ganglion that is powerfully counteracted by endogenous AChE activity. Under control conditions, this basal release appears to be sufficient to generate an ACh tonus that regulates the membrane potential of Retzius neurons. Since these neurons can support a sustained firing rate, which is dependent on the membrane potential, the results presented in this report suggest that the basal ACh tonus regulates the output of these neuromodulatory serotonergic neurons. PMID:9722429

  13. Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and Parkinsonian states

    NASA Astrophysics Data System (ADS)

    Liu, Jianbo; Khalil, Hassan K.; Oweiss, Karim G.

    2011-08-01

    Controlling the spatiotemporal firing pattern of an intricately connected network of neurons through microstimulation is highly desirable in many applications. We investigated in this paper the feasibility of using a model-based approach to the analysis and control of a basal ganglia (BG) network model of Hodgkin-Huxley (HH) spiking neurons through microstimulation. Detailed analysis of this network model suggests that it can reproduce the experimentally observed characteristics of BG neurons under a normal and a pathological Parkinsonian state. A simplified neuronal firing rate model, identified from the detailed HH network model, is shown to capture the essential network dynamics. Mathematical analysis of the simplified model reveals the presence of a systematic relationship between the network's structure and its dynamic response to spatiotemporally patterned microstimulation. We show that both the network synaptic organization and the local mechanism of microstimulation can impose tight constraints on the possible spatiotemporal firing patterns that can be generated by the microstimulated network, which may hinder the effectiveness of microstimulation to achieve a desired objective under certain conditions. Finally, we demonstrate that the feedback control design aided by the mathematical analysis of the simplified model is indeed effective in driving the BG network in the normal and Parskinsonian states to follow a prescribed spatiotemporal firing pattern. We further show that the rhythmic/oscillatory patterns that characterize a dopamine-depleted BG network can be suppressed as a direct consequence of controlling the spatiotemporal pattern of a subpopulation of the output Globus Pallidus internalis (GPi) neurons in the network. This work may provide plausible explanations for the mechanisms underlying the therapeutic effects of deep brain stimulation (DBS) in Parkinson's disease and pave the way towards a model-based, network level analysis and closed-loop control and optimization of DBS parameters, among many other applications. Based on 'Model-based spatiotemporal analysis and control of a network of spiking basal ganglia neurons' by Liu J, Khalil H K and Oweiss K G 2011 in the Proceedings of the 5th IEEE EMBS Conference on Neural Engineering.

  14. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.

    PubMed

    Morita, Kenji; Kawaguchi, Yasuo

    2015-08-01

    There are two prevailing notions regarding the involvement of the corticobasal ganglia system in value-based learning: (i) the direct and indirect pathways of the basal ganglia are crucial for appetitive and aversive learning, respectively, and (ii) the activity of midbrain dopamine neurons represents reward-prediction error. Although (ii) constitutes a critical assumption of (i), it remains elusive how (ii) holds given (i), with the basal-ganglia influence on the dopamine neurons. Here we present a computational neural-circuit model that potentially resolves this issue. Based on the latest analyses of the heterogeneous corticostriatal neurons and connections, our model posits that the direct and indirect pathways, respectively, represent the values of upcoming and previous actions, and up-regulate and down-regulate the dopamine neurons via the basal-ganglia output nuclei. This explains how the difference between the upcoming and previous values, which constitutes the core of reward-prediction error, is calculated. Simultaneously, it predicts that blockade of the direct/indirect pathway causes a negative/positive shift of reward-prediction error and thereby impairs learning from positive/negative error, i.e. appetitive/aversive learning. Through simulation of reward-reversal learning and punishment-avoidance learning, we show that our model could indeed account for the experimentally observed features that are suggested to support notion (i) and could also provide predictions on neural activity. We also present a behavioral prediction of our model, through simulation of inter-temporal choice, on how the balance between the two pathways relates to the subject's time preference. These results indicate that our model, incorporating the heterogeneity of the cortical influence on the basal ganglia, is expected to provide a closed-circuit mechanistic understanding of appetitive/aversive learning. PMID:26095906

  15. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy

    PubMed Central

    FlĂžnes, Irene; Sztromwasser, PaweƂ; Haugarvoll, Kristoffer; Dölle, Christian; Lykouri, Maria; SchwarzlmĂŒller, Thomas; Jonassen, Inge; Miletic, Hrvoje; Johansson, Stefan; Knappskog, Per M.; Bindoff, Laurence A.; Tzoulis, Charalampos

    2016-01-01

    Background Biotin-thiamine responsive basal ganglia disease is a severe, but potentially treatable disorder caused by mutations in the SLC19A3 gene. Although the disease is inherited in an autosomal recessive manner, patients with typical phenotypes carrying single heterozygous mutations have been reported. This makes the diagnosis uncertain and may delay treatment. Methods and Results In two siblings with early-onset encephalopathy dystonia and epilepsy, whole-exome sequencing revealed a novel single heterozygous SLC19A3 mutation (c.337T>C). Although Sanger-sequencing and copy-number analysis revealed no other aberrations, RNA-sequencing in brain tissue suggested the second allele was silenced. Whole-genome sequencing resolved the genetic defect by revealing a novel 45,049 bp deletion in the 5’-UTR region of the gene abolishing the promoter. High dose thiamine and biotin therapy was started in the surviving sibling who remains stable. In another patient two novel compound heterozygous SLC19A3 mutations were found. He improved substantially on thiamine and biotin therapy. Conclusions We show that large genomic deletions occur in the regulatory region of SLC19A3 and should be considered in genetic testing. Moreover, our study highlights the power of whole-genome sequencing as a diagnostic tool for rare genetic disorders across a wide spectrum of mutations including non-coding large genomic rearrangements. PMID:26863430

  16. Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models

    PubMed Central

    Helie, Sebastien; Chakravarthy, Srinivasa; Moustafa, Ahmed A.

    2013-01-01

    Many computational models of the basal ganglia (BG) have been proposed over the past twenty-five years. While computational neuroscience models have focused on closely matching the neurobiology of the BG, computational cognitive neuroscience (CCN) models have focused on how the BG can be used to implement cognitive and motor functions. This review article focuses on CCN models of the BG and how they use the neuroanatomy of the BG to account for cognitive and motor functions such as categorization, instrumental conditioning, probabilistic learning, working memory, sequence learning, automaticity, reaching, handwriting, and eye saccades. A total of 19 BG models accounting for one or more of these functions are reviewed and compared. The review concludes with a discussion of the limitations of existing CCN models of the BG and prescriptions for future modeling, including the need for computational models of the BG that can simultaneously account for cognitive and motor functions, and the need for a more complete specification of the role of the BG in behavioral functions. PMID:24367325

  17. One View of the Current State of Understanding in Basal Ganglia Pathophysiology and What is Needed for the Future

    PubMed Central

    Montgomery, Erwin B.

    2011-01-01

    Deep Brain Stimulation (DBS), arguably, is the most dramatic development in movement disorders since the levodopa for Parkinson’s disease. Yet, its mechanisms of action of DBS are unknown. However, DBS related research already has demonstrated that current concepts of basal ganglia pathophysiology are wrong. Specifically, the notion that over-activity of the globus pallidus interna causes parkinsonism, the basis for the most current theories, is no longer tenable. The development of any new theory will be aided by an understanding of how current theories are wrong and why have these flawed theories persist. Many of the problems of current theories are more matters of inference, assumptions, presumptions, and the accepted level of ambiguity than they are of fact. Consequently, it is imperative that these issues be addressed. Just as the inappropriate use of a tool or method is grounds for criticism, methods of reasoning are tools that can be used inappropriately and should be subject to discussion just as misuse of any other tool. Thorough criticism can provide very important lesions though the process could be mistaken as harsh or personal; neither is the case here. At the least, such analyzes can point to potential pitfalls that could be avoided in the development of new theories. As will be discussed, theories are important for the development of therapies but perhaps most important, for the acceptance of new therapies, as was the case for the recent resurgence of interest in surgical therapies. PMID:24868387

  18. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease

    PubMed Central

    Miguelez, Cristina; Morera-Herreras, Teresa; Torrecilla, Maria; Ruiz-Ortega, Jose A.; Ugedo, Luisa

    2014-01-01

    The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4–7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA. PMID:24672433

  19. The allocation of attention to learning of goal-directed actions: a cognitive neuroscience framework focusing on the Basal Ganglia.

    PubMed

    Franz, E A

    2012-01-01

    The present paper builds on the idea that attention is largely in service of our actions. A framework and model which captures the allocation of attention for learning of goal-directed actions is proposed and developed. This framework highlights an evolutionary model based on the notion that rudimentary functions of the basal ganglia have become embedded into increasingly higher levels of networks which all contribute to adaptive learning. Supporting the proposed model, background literature is presented alongside key evidence based on experimental studies in the so-called "split-brain" (surgically divided cerebral hemispheres), and selected evidence from related areas of research. Although overlap with other existing findings and models is acknowledged, the proposed framework is an original synthesis of cognitive experimental findings with supporting evidence of a neural system and a carefully formulated model of attention. It is the hope that this new synthesis will be informative in fields of cognition and other fields of brain sciences and will lead to new avenues for experimentation across domains. PMID:23267335

  20. Aberrant white matter networks mediate cognitive impairment in patients with silent lacunar infarcts in basal ganglia territory.

    PubMed

    Tang, Jinfu; Zhong, Suyu; Chen, Yaojing; Chen, Kewei; Zhang, Junying; Gong, Gaolang; Fleisher, Adam S; He, Yong; Zhang, Zhanjun

    2015-09-01

    Silent lacunar infarcts, which are present in over 20% of healthy elderly individuals, are associated with subtle deficits in cognitive functions. However, it remains largely unclear how these silent brain infarcts lead to cognitive deficits and even dementia. Here, we used diffusion tensor imaging tractography and graph theory to examine the topological organization of white matter networks in 27 patients with silent lacunar infarcts in the basal ganglia territory and 30 healthy controls. A whole-brain white matter network was constructed for each subject, where the graph nodes represented brain regions and the edges represented interregional white matter tracts. Compared with the controls, the patients exhibited a significant reduction in local efficiency and global efficiency. In addition, a total of eighteen brain regions showed significantly reduced nodal efficiency in patients. Intriguingly, nodal efficiency-behavior associations were significantly different between the two groups. The present findings provide new aspects into our understanding of silent infarcts that even small lesions in subcortical brain regions may affect large-scale cortical white matter network, as such may be the link between subcortical silent infarcts and the associated cognitive impairments. Our findings highlight the need for network-level neuroimaging assessment and more medical care for individuals with silent subcortical infarcts. PMID:25873426

  1. Mutation Analysis of SLC20A2 and SPP2 as Candidate Genes for Familial Idiopathic Basal Ganglia Calcification

    PubMed Central

    Ashtari, Fereshteh; Saliminejad, Kioomars; Ahani, Ali; Kamali, Koorosh; Pahlevanzadeh, Zhamak; Khorshid, Hamid Reza Khorram

    2013-01-01

    Background Familial Idiopathic Basal Ganglia Calcification (IBGC) is a rare neurodegenerative disorder which is usually transmitted as an autosomal dominant trait. IBGC is genetically heterogeneous and SLC20A2, on chromosome 8p21.1–8q11.23, is the first gene found in IBGC-affected patients with varied ancestry. On the other hand, several candidate genes for IBGC on chromosome 2q37, including the SPP2 gene, may play a role in inhibiting calcification. Methods Totally, 22 members of a three generational Iranian family affected by IBGC, with an autosomal dominant pattern of inheritance were included in this study. DNA was extracted from the whole blood using standard salting out method. To find a mutation responsible for IBGC, we sequenced the coding region of SLC20A2 as well as promoter and coding region of SPP2 in the index subject of IBGC-affected family. Results Pathogenic mutation was found neither in SLC20A2 nor in SPP2. Conclusion Our results strengthen genetic heterogeneity of this condition. Additional mutation studies are necessary to find a gene or genes responsible for IBGC in this affected family. PMID:24286000

  2. The Allocation of Attention to Learning of Goal-Directed Actions: A Cognitive Neuroscience Framework Focusing on the Basal Ganglia

    PubMed Central

    Franz, E. A.

    2012-01-01

    The present paper builds on the idea that attention is largely in service of our actions. A framework and model which captures the allocation of attention for learning of goal-directed actions is proposed and developed. This framework highlights an evolutionary model based on the notion that rudimentary functions of the basal ganglia have become embedded into increasingly higher levels of networks which all contribute to adaptive learning. Supporting the proposed model, background literature is presented alongside key evidence based on experimental studies in the so-called “split-brain” (surgically divided cerebral hemispheres), and selected evidence from related areas of research. Although overlap with other existing findings and models is acknowledged, the proposed framework is an original synthesis of cognitive experimental findings with supporting evidence of a neural system and a carefully formulated model of attention. It is the hope that this new synthesis will be informative in fields of cognition and other fields of brain sciences and will lead to new avenues for experimentation across domains. PMID:23267335

  3. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions

    PubMed Central

    Fee, Michale S.

    2012-01-01

    In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current “time” in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources. PMID:22754501

  4. rTMS with Motor Training Modulates Cortico-Basal Ganglia-Thalamocortical Circuits in Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Yoo, Woo-Kyoung; Goo, Kyoung-Hyup; Park, Chang-hyun; Kim, Sung Tae; Pascual-Leone, Alvaro

    2013-01-01

    Background and Purpose Repetitive transcranial magnetic stimulation (rTMS) may enhance plastic changes in the human cortex and modulation of behavior. However, the underlying neural mechanisms have not been sufficiently investigated. We examined the clinical effects and neural correlates of high-frequency rTMS coupled with motor training in patients with hemiparesis after stroke. Methods Twenty-one patients were randomly divided into two groups, and received either real or sham rTMS. Ten daily sessions of 1,000 pulses of real or sham rTMS were applied at 10 Hz over the primary motor cortex of the affected hemisphere, coupled with sequential finger motor training of the paretic hand. Functional MRIs were obtained before and after training using sequential finger motor tasks, and performances were assessed. Results Following rTMS intervention, movement accuracy of sequential finger motor tasks showed significantly greater improvement in the real group than in the sham group (p<0.05). Real rTMS modulated areas of brain activation during performance of motor tasks with a significant interaction effect in the sensorimotor cortex, thalamus, and caudate nucleus. Patients in the real rTMS group also showed significantly enhanced activation in the affected hemisphere compared to the sham rTMS group. Conclusion According to these results, a 10 day course of high-frequency rTMS coupled with motor training improved motor performance through modulation of activities in the cortico-basal ganglia-thalamocortical circuits. PMID:22555430

  5. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson’s Disease

    PubMed Central

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  6. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control

    PubMed Central

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391

  7. The impact of butylphthalide on the hypothalamus-pituitary-adrenal axis of patients suffering from cerebral infarction in the basal ganglia

    PubMed Central

    Niu, Huiyan; Zhang, Zhanqiang; Wang, Hai; Wang, Huifang; Zhang, Jinyan; Li, Chunbo; Zhao, Liang

    2016-01-01

    Background Butylphthalide sodium chloride injection for patients with acute cerebral infarction has a certain effect. Although there are several proposed mechanisms of drug action, no related research on improving the inflammatory cytokines that regulate the body’s immune system through the hypothalamus-pituitary-adrenal axis has been published. Objective To determine the impact of butylphthalide and sodium chloride injection on the hypothalamus-pituitary-adrenal (HPA) axis after acute cerebral infarction in the basal ganglia. Methods Patients were randomly divided into treatment and control groups; the treatment group received intravenous drips of butylphthalide, while the control group did not. The levels of adrenocorticotropic hormone (ACTH) and cortisol (COR), along with the National Institutes of Health Stroke Scale (NIHSS) scores of both groups were detected using the radioimmunoassay method. This was done at regular intervals after cerebral infarction in the basal ganglia was detected. Results Fourteen days after treatment, the levels of serum ACTH and COR in both groups were higher than normal. The NIHSS score and levels of ACTH and COR of the treatment group were significantly lower than those of the control group (p<0.05). The data was computed and analyzed using SPSS17.0 software. Conclusion Butylphthalide treatment for patients suffering from acute basal ganglia infarction can reduce the adverse effects on the HPA axis, thus improving patient prognosis.

  8. Model-Based Analysis and Control of a Network of Basal Ganglia Spiking Neurons in the Normal and Parkinsonian States

    PubMed Central

    Liu, Jianbo; Khalil, Hassan K.; Oweiss, Karim G.

    2011-01-01

    Controlling the spatiotemporal firing pattern of an intricately connected network of neurons through microstimulation is highly desirable in many applications. We investigated in this paper the feasibility of using a model-based approach to the analysis and control of a Basal Ganglia (BG) network model of Hodgkin–Huxley (HH) spiking neurons through microstimulation. Detailed analysis of this network model suggests that it can reproduce the experimentally observed characteristics of BG neurons under a normal and a pathological Parkinsonian state. A simplified neuronal firing rate model, identified from the detailed HH network model, is shown to capture the essential network dynamics. Mathematical analysis of the simplified model reveals the presence of a systematic relationship between the network’s structure and its dynamic response to spatiotemporally patterned microstimulation. We show that both the network synaptic organization and the local mechanism of microstimulation can impose tight constraints on the possible spatiotemporal firing patterns that can be generated by the microstimulated network, which may hinder the effectiveness of microstimulation to achieve a desired objective under certain conditions. Finally, we demonstrate that the feedback control design aided by the mathematical analysis of the simplified model is indeed effective in driving the BG network in the normal and Parskinsonian states to follow a prescribed spatiotemporal firing pattern. We further show that the rhythmic/oscillatory patterns that characterize a dopamine-depleted BG network can be suppressed as a direct consequence of controlling the spatiotemporal pattern of a subpopulation of the output Globus Pallidus internalis (GPi) neurons in the network. This work may provide plausible explanations for the mechanisms underlying the therapeutic effects of Deep Brain Stimulation (DBS) in PD and pave the way towards a model-based, network level analysis and closed-loop control and optimization of DBS parameters, among many other applications. PMID:21775788

  9. Emergent structured transition from variation to repetition in a biologically-plausible model of learning in basal ganglia

    PubMed Central

    Shah, Ashvin; Gurney, Kevin N.

    2014-01-01

    Often, when animals encounter an unexpected sensory event, they transition from executing a variety of movements to repeating the movement(s) that may have caused the event. According to a recent theory of action discovery (Redgrave and Gurney, 2006), repetition allows the animal to represent those movements, and the outcome, as an action for later recruitment. The transition from variation to repetition often follows a non-random, structured, pattern. While the structure of the pattern can be explained by sophisticated cognitive mechanisms, simpler mechanisms based on dopaminergic modulation of basal ganglia (BG) activity are thought to underlie action discovery (Redgrave and Gurney, 2006). In this paper we ask the question: can simple BG-mediated mechanisms account for a structured transition from variation to repetition, or are more sophisticated cognitive mechanisms always necessary? To address this question, we present a computational model of BG-mediated biasing of behavior. In our model, unlike most other models of BG function, the BG biases behavior through modulation of cortical response to excitation; many possible movements are represented by the cortical area; and excitation to the cortical area is topographically-organized. We subject the model to simple reaching tasks, inspired by behavioral studies, in which a location to which to reach must be selected. Locations within a target area elicit a reinforcement signal. A structured transition from variation to repetition emerges from simple BG-mediated biasing of cortical response to excitation. We show how the structured pattern influences behavior in simple and complicated tasks. We also present analyses that describe the structured transition from variation to repetition due to BG-mediated biasing and from biasing that would be expected from a type of cognitive biasing, allowing us to compare behavior resulting from these types of biasing and make connections with future behavioral experiments. PMID:24575067

  10. Thalamic haemorrhage vs internal capsule-basal ganglia haemorrhage: clinical profile and predictors of in-hospital mortality

    PubMed Central

    Arboix, Adrià; Rodríguez-Aguilar, Raquel; Oliveres, Montserrat; Comes, Emili; García-Eroles, Luis; Massons, Joan

    2007-01-01

    Background There is a paucity of clinical studies focused specifically on intracerebral haemorrhages of subcortical topography, a subject matter of interest to clinicians involved in stroke management. This single centre, retrospective study was conducted with the following objectives: a) to describe the aetiological, clinical and prognostic characteristics of patients with thalamic haemorrhage as compared with that of patients with internal capsule-basal ganglia haemorrhage, and b) to identify predictors of in-hospital mortality in patients with thalamic haemorrhage. Methods Forty-seven patients with thalamic haemorrhage were included in the "Sagrat Cor Hospital of Barcelona Stroke Registry" during a period of 17 years. Data from stroke patients are entered in the stroke registry following a standardized protocol with 161 items regarding demographics, risk factors, clinical features, laboratory and neuroimaging data, complications and outcome. The region of the intracranial haemorrhage was identified on computerized tomographic (CT) scans and/or magnetic resonance imaging (MRI) of the brain. Results Thalamic haemorrhage accounted for 1.4% of all cases of stroke (n = 3420) and 13% of intracerebral haemorrhage (n = 364). Hypertension (53.2%), vascular malformations (6.4%), haematological conditions (4.3%) and anticoagulation (2.1%) were the main causes of thalamic haemorrhage. In-hospital mortality was 19% (n = 9). Sensory deficit, speech disturbances and lacunar syndrome were significantly associated with thalamic haemorrhage, whereas altered consciousness (odds ratio [OR] = 39.56), intraventricular involvement (OR = 24.74) and age (OR = 1.23), were independent predictors of in-hospital mortality. Conclusion One in 8 patients with acute intracerebral haemorrhage had a thalamic hematoma. Altered consciousness, intraventricular extension of the hematoma and advanced age were determinants of a poor early outcome. PMID:17919332

  11. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association

    PubMed Central

    Hoshi, Eiji

    2013-01-01

    Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner. PMID:24155692

  12. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes.

    PubMed

    Schwartze, Michael; Keller, Peter E; Patel, Aniruddh D; Kotz, Sonja A

    2011-01-20

    The basal ganglia (BG) are part of extensive subcortico-cortical circuits that are involved in a variety of motor and non-motor cognitive functions. Accumulating evidence suggests that one specific function that engages the BG and associated cortico-striato-thalamo-cortical circuitry is temporal processing, i.e., the mechanisms that underlie the encoding, decoding and evaluation of temporal relations or temporal structure. In the current study we investigated the interplay of two processes that require precise representations of temporal structure, namely the perception of an auditory pacing signal and manual motor production by means of finger tapping in a sensorimotor synchronization task. Patients with focal lesions of the BG and healthy control participants were asked to align finger taps to tone sequences that either did or did not contain a tempo acceleration or tempo deceleration at a predefined position, and to continue tapping at the final tempo after the pacing sequence had ceased. Performance in this adaptive synchronization-continuation paradigm differed between the two groups. Selective damage to the BG affected the abilities to detect tempo changes and to perform attention-dependent error correction, particularly in response to tempo decelerations. An additional assessment of preferred spontaneous, i.e., unpaced but regular, production rates yielded more heterogeneous results in the patient group. Together these findings provide evidence for less efficient processing in the perception and the production of temporal structure in patients with focal BG lesions. The results also support the functional role of the BG system in attention-dependent temporal processing. PMID:20883725

  13. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.

    PubMed

    Morita, Kenji; Kato, Ayaka

    2014-01-01

    It has been suggested that the midbrain dopamine (DA) neurons, receiving inputs from the cortico-basal ganglia (CBG) circuits and the brainstem, compute reward prediction error (RPE), the difference between reward obtained or expected to be obtained and reward that had been expected to be obtained. These reward expectations are suggested to be stored in the CBG synapses and updated according to RPE through synaptic plasticity, which is induced by released DA. These together constitute the "DA=RPE" hypothesis, which describes the mutual interaction between DA and the CBG circuits and serves as the primary working hypothesis in studying reward learning and value-based decision-making. However, recent work has revealed a new type of DA signal that appears not to represent RPE. Specifically, it has been found in a reward-associated maze task that striatal DA concentration primarily shows a gradual increase toward the goal. We explored whether such ramping DA could be explained by extending the "DA=RPE" hypothesis by taking into account biological properties of the CBG circuits. In particular, we examined effects of possible time-dependent decay of DA-dependent plastic changes of synaptic strengths by incorporating decay of learned values into the RPE-based reinforcement learning model and simulating reward learning tasks. We then found that incorporation of such a decay dramatically changes the model's behavior, causing gradual ramping of RPE. Moreover, we further incorporated magnitude-dependence of the rate of decay, which could potentially be in accord with some past observations, and found that near-sigmoidal ramping of RPE, resembling the observed DA ramping, could then occur. Given that synaptic decay can be useful for flexibly reversing and updating the learned reward associations, especially in case the baseline DA is low and encoding of negative RPE by DA is limited, the observed DA ramping would be indicative of the operation of such flexible reward learning. PMID:24782717

  14. Origins of multisynaptic projections from the basal ganglia to the forelimb region of the ventral premotor cortex in macaque monkeys.

    PubMed

    Ishida, Hiroaki; Inoue, Ken-Ichi; Takada, Masahiko; Hoshi, Eiji

    2016-01-01

    The ventral premotor cortex (PMv), occupying the ventral aspect of area 6 in the frontal lobe, has been implicated in action planning and execution based on visual signals. Although the PMv has been characterized by cortico-cortical connections with specific subregions of the parietal and prefrontal cortical areas, a topographical input/output organization between the PMv and the basal ganglia (BG) still remains elusive. In the present study, retrograde transneuronal labelling with the rabies virus was employed to identify the origins of multisynaptic projections from the BG to the PMv. The virus was injected into the forelimb region of the PMv, identified in the ventral aspect of the genu of the arcuate sulcus, in macaque monkeys. The survival time after the virus injection was set to allow either the second- or third-order neuron labelling across two or three synapses. The second-order neurons were observed in the ventral portion (primary motor territory) and the caudodorsal portion (higher-order motor territory) of the internal segment of the globus pallidus. Subsequently, the third-order neurons were distributed in the putamen caudal to the anterior commissure, including both the primary and the higher-order motor territories, and in the ventral striatum (limbic territory). In addition, they were found in the dorsolateral portion (motor territory) and ventromedial portion (limbic territory) of the subthalamic nucleus, and in the external segment of the globus pallidus including both the limbic and motor territories. These findings indicate that the PMv receives diverse signals from the primary motor, higher-order motor and limbic territories of the BG. PMID:26547510

  15. Activity in a Cortical-Basal Ganglia Circuit for Song Is Required for Social Context-Dependent Vocal Variability

    PubMed Central

    Stepanek, Laurie

    2010-01-01

    Variability in adult motor output is important for enabling animals to respond to changing external conditions. Songbirds are useful for studying variability because they alter the amount of variation in their song depending on social context. When an adult zebra finch male sings to a female (“directed”), his song is highly stereotyped, but when he sings alone (“undirected”), his song varies across renditions. Lesions of the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the output nucleus of a cortical-basal ganglia circuit for song, reduce song variability to that of the stereotyped “performance” state. However, such lesions not only eliminate LMAN's synaptic input to its targets, but can also cause structural or physiological changes in connected brain regions, and thus cannot assess whether the acute activity of LMAN is important for social modulation of adult song variability. To evaluate the effects of ongoing LMAN activity, we reversibly silenced LMAN in singing zebra finches by bilateral reverse microdialysis of the GABAA receptor agonist muscimol. We found that LMAN inactivation acutely reduced undirected song variability, both across and even within syllable renditions, to the level of directed song variability in all birds examined. Song variability returned to pre-muscimol inactivation levels after drug washout. However, unlike LMAN lesions, LMAN inactivation did not eliminate social context effects on song tempo in adult birds. These results indicate that the activity of LMAN neurons acutely and actively generates social context-dependent increases in adult song variability but that social regulation of tempo is more complex. PMID:20884763

  16. Basal ganglia dysfunction

    MedlinePLUS

    ... 71. Lang AE. Parkinsonism. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: ... AE. Other movement disorders. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: ...

  17. Identification of a novel genetic locus on chromosome 8p21.1-q11.23 for idiopathic basal ganglia calcification.

    PubMed

    Dai, Xiaohua; Gao, Yong; Xu, Zhenping; Cui, Xiaoniu; Liu, Juan; Li, Yulei; Xu, Haibo; Liu, Mugen; Wang, Qing K; Liu, Jing Yu

    2010-10-01

    Idiopathic basal ganglia calcification (IBGC) is a neurodegenerative disorder that is characterized by basal ganglia and extrabasal ganglia calcification, and usually inherited in an autosomal dominant pattern. To date, two genetic loci for IBGC were identified on chromosomes 14q and 2q, but further genetic heterogeneity clearly exists. In this study, a large Chinese family with autosomal dominant IBGC was characterized. Linkage analysis excluded the 14q13 and 2q37 loci. The large family was then characterized by genome-wide linkage analysis to identify a novel genetic locus for IBGC. Significant linkage was identified with markers on chromosome 8p21.1-q11.23 with a maximum LOD score of 4.10. Fine mapping defined the new genetic locus within a 25?Mb region between markers D8S1809 and D8S1833. Future studies of the candidate genes at the 8p21.1-q11.23 locus may lead to identification of a disease-causing gene with IBGC. PMID:20552677

  18. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity.

    PubMed

    Cotterill, R M

    2001-05-01

    It is suggested that the anatomical structures which mediate consciousness evolved as decisive embellishments to a (non-conscious) design strategy present even in the simplest unicellular organisms. Consciousness is thus not the pinnacle of a hierarchy whose base is the primitive reflex, because reflexes require a nervous system, which the single-celled creature does not possess. By postulating that consciousness is intimately connected to self-paced probing of the environment, also prominent in prokaryotic behavior, one can make mammalian neuroanatomy amenable to dramatically straightforward rationalization. Muscular contraction is the nervous system's only externally directed product, and the signaling routes which pass through the various brain components must ultimately converge on the motor areas. The function of several components is still debatable, so it might seem premature to analyze the global operation of the circuit these routes constitute. But such analysis produces a remarkably simple picture, and it sheds new light on the roles of the individual components. The underlying principle is conditionally permitted movement, some components being able to veto muscular contraction by denying the motor areas sufficient activation. This is true of the basal ganglia (BG) and the cerebellum (Cb), which act in tandem with the sensory cerebrum, and which can prevent the latter's signals to the motor areas from exceeding the threshold for overt movement. It is also true of the anterior cingulate, which appears to play a major role in directing attention. In mammals, the result can be mere thought, provided that a second lower threshold is exceeded. The veto functions of the BG and the Cb stem from inhibition, but the countermanding disinhibition develops at markedly different rates in those two key components. It develops rapidly in the BG, control being exercised by the amygdala, which itself is governed by various other brain regions. It develops over time in the Cb, thereby permitting previously executed movements that have proved advantageous. If cognition is linked to overt or covert movement, intelligence becomes the ability to consolidate individual motor elements into more complex patterns, and creativity is the outcome of a race-to-threshold process which centers on the motor areas. Amongst the ramifications of these ideas are aspects of cortical oscillations, phantom limb sensations, amyotrophic lateral sclerosis (ALS) the difficulty of self-tickling and mirror neurons. PMID:11250060

  19. Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways

    PubMed Central

    Lindahl, Mikael; Kamali Sarvestani, Iman; Ekeberg, Örjan; Kotaleski, Jeanette Hellgren

    2013-01-01

    Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus. We find that SNr becomes particularly responsive to the characteristic burst-like activity seen in both direct and indirect pathway striatal medium spiny neurons (MSN). As expected by the standard model, direct pathway MSNs are responsible for decreasing the activity in SNr. In particular, our simulations indicate that bursting in only a few percent of the direct pathway MSNs is sufficient for completely inhibiting SNr neuron activity. The standard model also suggests that SNr activity in the indirect pathway is controlled by MSNs disinhibiting the subthalamic nucleus (STN) via the globus pallidus externa (GPe). Our model rather indicates that SNr activity is controlled by the direct GPe-SNr projections. This is partly because GPe strongly inhibits SNr but also due to depressing STN-SNr synapses. Furthermore, depressing GPe-SNr synapses allow the system to become sensitive to irregularly firing GPe subpopulations, as seen in dopamine depleted conditions, even when the GPe mean firing rate does not change. Similar to the direct pathway, simulations indicate that only a few percent of bursting indirect pathway MSNs can significantly increase the activity in SNr. Finally, the model predicts depressing STN-SNr synapses, since such an assumption explains experiments showing that a brief transient activation of the hyperdirect pathway generates a tri-phasic response in SNr, while a sustained STN activation has minor effects. This can be explained if STN-SNr synapses are depressing such that their effects are counteracted by the (known) depressing GPe-SNr inputs. PMID:23801960

  20. Singing-related neural activity distinguishes two putative pallidal cell types in the songbird basal ganglia: comparison to the primate internal and external pallidal segments

    PubMed Central

    Goldberg, Jesse H.; Adler, Avital; Bergman, Hagai; Fee, Michale S.

    2010-01-01

    The songbird area X is a basal ganglia homologue that contains two pallidal cell types—local neurons that project within the basal ganglia and output neurons that project to the thalamus. Based on these projections, it has been proposed that these classes are structurally homologous to the primate external (GPe) and internal (GPi) pallidal segments. To test the hypothesis that the two area X pallidal types are functionally homologous to GPe and GPi neurons, we recorded from neurons in area X of singing juvenile male zebra finches, and directly compare their firing patterns to neurons recorded in the primate pallidus. In area X, we find two cell classes that exhibited high firing (HF) rates (>60Hz) characteristic of pallidal neurons. HF-1 neurons, like most GPe neurons we examined, exhibited large firing rate modulations, including bursts and long pauses. In contrast, HF-2 neurons, like GPi neurons, discharged continuously without bursts or long pauses. To test if HF-2 neurons were the output neurons that project to the thalamus, we next recorded directly from pallidal axon terminals in thalamic nucleus DLM, and found that all terminals exhibited singing-related firing patterns indistinguishable from HF-2 neurons. Our data show that singing-related neural activity distinguishes two putative pallidal cell types in area X: thalamus-projecting neurons that exhibit activity similar to the primate GPi, and non-thalamus-projecting neurons that exhibit activity similar to the primate GPe. These results suggest that song learning in birds and motor learning in mammals employ conserved basal ganglia signaling strategies. PMID:20484651

  1. Pharmacological MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function

    PubMed Central

    Andersen, Anders H.; Hardy, Peter A.; Forman, Eric; Gerhardt, Greg A.; Gash, Don M.; Grondin, Richard; Zhang, Zhiming

    2014-01-01

    The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. While the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, three groups of rhesus macaques were studied: Normal middle-aged animals (used as controls), middle-aged animals with MPTP-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and phMRI procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine (APO) administration followed by either a D1 (SCH23390) or D2 (raclopride) receptor antagonist. Significant, functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these two groups in the internal segment of the globus pallidus (GPi). In contrast, the pharmacological responses seen in the control animals were much milder compared with the other two groups in all examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. PMID:25443764

  2. Proceedings of the workshop on Cerebellum, Basal Ganglia and Cortical Connections Unmasked in Health and Disorder held in Brno, Czech Republic, October 17th, 2013.

    PubMed

    BareĆĄ, Martin; Apps, Richard; Kikinis, Zora; Timmann, Dagmar; Oz, Gulin; Ashe, James J; Loft, Michaela; Koutsikou, Stella; Cerminara, Nadia; Bushara, Khalaf O; KaĆĄpĂĄrek, TomĂĄĆĄ

    2015-04-01

    The proceedings of the workshop synthesize the experimental, preclinical, and clinical data suggesting that the cerebellum, basal ganglia (BG), and their connections play an important role in pathophysiology of various movement disorders (like Parkinson's disease and atypical parkinsonian syndromes) or neurodevelopmental disorders (like autism). The contributions from individual distinguished speakers cover the neuroanatomical research of complex networks, neuroimaging data showing that the cerebellum and BG are connected to a wide range of other central nervous system structures involved in movement control. Especially, the cerebellum plays a more complex role in how the brain functions than previously thought. PMID:25205331

  3. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    PubMed

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-01

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. PMID:24928224

  4. Analysis of Small Ischemic Lesions in the Examinees of a Brain Dock and Neurological Examination of Animals Subjected to Cortical or Basal Ganglia Photothrombotic Infarction.

    PubMed

    Kuroiwa, Toshihiko; Tabata, Hitoshi; Xi, Guohua; Hua, Ya; Schallert, Timothy; Keep, Richard F

    2016-01-01

    We analyzed cases of small brain ischemic lesions found in examinees of a brain dock (neurological health screening center). Small cerebral infarction was found in 17 % of the examinees (733 cases). White matter lesions were found in 24 %. Infarctions were located in the cortex or subcortical white matter in 31 % and in the basal ganglia in 44 % of cases. Infratentorial infarction was found in 1.6 %. We have developed an animal model of small infarction in the cortex or basal ganglia induced by photothrombosis in rodents. Sprague-Dawley rats or Mongolian gerbils were anesthetized and photothrombotic infarction was induced in the left caudate nucleus or parietal cortex by light exposure via an optic fiber and intravenous Rose Bengal dye injection. Histological examination revealed development of a small spherical infarction surrounding the tip of the optic fiber. The lesion turned to a cyst by 6 weeks after lesioning. Neurological deficits were found in animals both with cortical and caudate infarction. Behavioral changes in an open field test differed with the lesion site. Neurological deficits were sustained longer in animals with larger infarctions. Thus, photothrombotic infarction is useful for analyzing location-dependent and size-dependent neurological and neuropathological changes after cerebral infarction. PMID:26463929

  5. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  6. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    PubMed

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. PMID:21764258

  7. Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation

    PubMed Central

    Sweet, Jennifer A.; Walter, Benjamin L.; Gunalan, Kabilar; Chaturvedi, Ashutosh; Mcintyre, Cameron C.; Miller, Jonathan P.

    2015-01-01

    Object Stimulation of white matter pathways near targeted structures may contribute to therapeutic effects of deep brain stimulation (DBS) for patients with Parkinson disease (PD). Two tracts linking the basal ganglia and cerebellum have been described in primates: the subthalamopontocerebellar tract (SPCT) and the dentatothalamic tract (DTT). The authors used fiber tractography to evaluate white matter tracts that connect the cerebellum to the region of the basal ganglia in patients with PD who were candidates for DBS. Methods Fourteen patients with advanced PD underwent 3-T MRI, including 30-directional diffusion-weighted imaging sequences. Diffusion tensor tractography was performed using 2 regions of interest: ipsilateral subthalamic and red nuclei, and contralateral cerebellar hemisphere. Nine patients underwent subthalamic DBS, and the course of each tract was observed relative to the location of the most effective stimulation contact and the volume of tissue activated. Results In all patients 2 distinct tracts were identified that corresponded closely to the described anatomical features of the SPCT and DTT, respectively. The mean overall distance from the active contact to the DTT was 2.18 ± 0.35 mm, and the mean proportional distance relative to the volume of tissue activated was 1.35 ± 0.48. There was a nonsignificant trend toward better postoperative tremor control in patients with electrodes closer to the DTT. Conclusions The SPCT and the DTT may be related to the expression of symptoms in PD, and this may have implications for DBS targeting. The use of tractography to identify the DTT might assist with DBS targeting in the future. PMID:24484226

  8. Altered Neuronal Firing Pattern of the Basal Ganglia Nucleus Plays a Role in Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    PubMed Central

    Li, Xiaoyu; Zhuang, Ping; Li, Yongjie

    2015-01-01

    Background: Levodopa therapy alleviates the symptoms of Parkinson’s disease (PD), but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID). Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1 ± 11.0 years; disease duration, 8.7 ± 5.6 years) were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr (1967) scores ranged from 2–4 and their UPDRS III scores were 28.5 ± 5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7 ± 1.6). Microelectrode recording was performed in the globus pallidus internus (GPi) and subthalamic nucleus (STN) during pallidotomy (n = 12) or STN deep brain stimulation (DBS; bilateral, n = 12; unilateral, n = 6). The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs) and the corresponding coefficient of variation (CV). Results: A total of 295 neurons were identified from the GPi (n = 12) and STN (n = 18). These included 26 (8.8%) highly grouped discharge, 30 (10.2%) low frequency firing, 78 (26.4%) rapid tonic discharge, 103 (34.9%) irregular activity, and 58 (19.7%) tremor-related activity. There were significant differences between the two groups (p < 0.05) for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID. PMID:26635583

  9. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal fronto-parietal and basal ganglia-cortical networks

    PubMed Central

    Shulman, Gordon L.; Astafiev, Serguei V.; Franke, Danny; Pope, Daniel L. W.; Snyder, Abraham Z.; McAvoy, Mark P.; Corbetta, Maurizio

    2009-01-01

    Shifts of attention to unattended stimuli (stimulus-driven reorienting) are often studied by measuring responses to unexpected stimuli, confounding reorienting and expectation. We separately measured the blood-oxygenation-level-dependent (BOLD) signal for both factors by manipulating the probability of salient visual cues that either shifted attention away from or maintained attention on a stream of visual stimuli. The results distinguished three networks recruited by reorienting. Right temporo-parietal junction (TPJ), the posterior core of a ventral fronto-parietal network, was activated more by cues for shifting than maintaining attention independently of cue location and probability, acting as a switch. TPJ was separately modulated by low probability cues, which signaled a breach of spatial expectation, independently of whether they shifted attention. Under resting conditions, TPJ activity was correlated (resting-state functional connectivity MRI, (rs-fcMRI)) with right inferior frontal gyrus (IFG), an anterior component of the ventral network. Nevertheless, IFG was activated only by unexpected shifts of attention, dissociating its function from TPJ. Basal ganglia and frontal/insula regions also were activated only when reorienting was unexpected but showed strong rs-fcMRI among themselves, not with TPJ/IFG, defining a distinct network that may retrieve/activate commands for shifting attention. Within dorsal fronto-parietal regions, shifting attention produced sustained spatially-selective modulations in intraparietal sulcus (IPS) and FEF, and transient less selective modulations in precuneus and FEF. Modulations were observed even when reorienting was likely, but increased when reorienting was unexpected. The latter result may partly reflect interactions with lateral prefrontal components of the basal-ganglia/frontal/insula network that showed significant rs-fcMRI with the dorsal network. PMID:19357267

  10. An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning

    PubMed Central

    Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A.

    2014-01-01

    Although empirical and neural studies show that serotonin (5HT) plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL)-framework. The model depicts the roles of dopamine (DA) and serotonin (5HT) in Basal Ganglia (BG). In this model, the DA signal is represented by the temporal difference error (?), while the 5HT signal is represented by a parameter (?) that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: (1) Risk-sensitive decision making, where 5HT controls risk assessment, (2) Temporal reward prediction, where 5HT controls time-scale of reward prediction, and (3) Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG. PMID:24795614

  11. In vivo metabolite differences between the basal ganglia and cerebellum of the rat brain detected with proton MRS at 3T

    PubMed Central

    Zahr, Natalie M.; Sullivan, Edith V.; Pfefferbaum, Adolf

    2007-01-01

    In vivo magnetic resonance spectroscopy (MRS) enables non-invasive longitudinal tracking of brain chemistry changes that can accompany aging, neurodegenerative disease, drug addiction and experimental manipulations in animals modeling such conditions. J-coupled resonances, such as glutamate, which are highly relevant to neuropsychiatric conditions are difficult to resolve on a clinical 3T MR scanner using conventional one-dimensional MRS sequences. We, therefore, implemented Constant Time PRESS (CT-PRESS) to quantify major metabolite and neurotransmitter biochemical signals, including glutamate, in two brain regions of the rat—basal ganglia and cerebellum. We acquired spectra at two distinct time points in two independent groups of six rats and analyzed metabolite levels using either creatine or water as a reference. Our results provide evidence that CT-PRESS at 3T is adequate and reliable for in vivo detection and quantification of glutamate in the rat brain and that regional differences occur in the signal intensities of the major metabolites. That the directionality of the differences depends on whether creatine or water is used as a reference for metabolite levels emphasizes the benefit to in vivo MRS of incorporating methods to establish absolute baseline metabolite concentrations. PMID:17346948

  12. Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry.

    PubMed

    Teicher, M H; Anderson, C M; Polcari, A; Glod, C A; Maas, L C; Renshaw, P F

    2000-04-01

    Attention-deficit/hyperactivity disorder is a highly heritable and prevalent neuropsychiatric disorder estimated to affect 6% of school-age children. Its clinical hallmarks are inattention, hyperactivity and impulsivity, which often respond substantially to treatment with methylphenidate or dextroamphetamine. Etiological theories suggest a deficit in corticostriatal circuits, particularly those components modulated by dopamine. We developed a new functional magnetic resonance imaging procedure (T2 relaxometry) to indirectly assess blood volume in the striatum (caudate and putamen) of boys 6-12 years of age in steady-state conditions. Boys with attention-deficit/hyperactivity disorder had higher T2 relaxation time measures in the putamen bilaterally than healthy control subjects. Relaxation times strongly correlated with the child's capacity to sit still and his accuracy in accomplishing a computerized attention task. Daily treatment with methylphenidate significantly changed the T2 relaxation times in the putamen of children with attention-deficit/hyperactivity disorder, although the magnitude and direction of the effect was strongly dependent on the child's unmedicated activity state. There was a similar but nonsignificant trend in the right caudate. T2 relaxation time measures in thalamus did not differ significantly between groups, and were not affected by methylphenidate. Attention-deficit/hyperactivity disorder symptoms may be closely tied to functional abnormalities in the putamen, which is mainly involved in the regulation of motor behavior. PMID:10742158

  13. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    PubMed

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castańeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' ??=?0.008, ?(2) (9)?=?238.837, P?

  14. Prior MDMA (Ecstasy) use is associated with increased basal ganglia–thalamocortical circuit activation during motor task performance in humans: An fMRI study

    PubMed Central

    Karageorgiou, John; Dietrich, Mary S.; Charboneau, Evonne J.; Woodward, Neil D.; Blackford, Jennifer U.; Salomon, Ronald M.; Cowan, Ronald L.

    2009-01-01

    MDMA (3,4-methylenedioxymethamphetamine; Ecstasy) is a popular recreational drug that produces long-lasting serotonin (5-HT) neurotoxicity consisting of reductions in markers for 5-HT axons. 5-HT innervates cortical and subcortical brain regions mediating motor function, predicting that MDMA users will have altered motor system neurophysiology. We used functional magnetic resonance imaging (fMRI) to assay motor task performance-associated brain activation changes in MDMA and non-MDMA users. 24 subjects (14 MDMA users and 10 controls) performed an event-related motor tapping task (1, 2 or 4 taps) during fMRI at 3 T. Motor regions of interest were used to measure percent signal change (PSC) and percent activated voxels (PAV) in bilateral motor cortex, sensory cortex, supplementary motor area (SMA), caudate, putamen, pallidum and thalamus. We used SPM5 to measure brain activation via three methods: T-maps, PSC and PAV. There was no statistically significant difference in reaction time between the two groups. For the Tap 4 condition, MDMA users had more activation than controls in the right SMA for T-score (p = 0.02), PSC (p = 0.04) and PAV (p = 0.03). Lifetime episodes of MDMA use were positively correlated with PSC for the Tap 4 condition on the right for putamen and pallidum; with PAV in the right motor and sensory cortex and bilateral thalamus. In conclusion, we found a group difference in the right SMA and positive dose–response association between lifetime exposure to MDMA and signal magnitude and extent in several brain regions. This evidence is consistent with MDMA-induced alterations in basal ganglia–thalamocortical circuit neurophysiology and is potentially secondary to neurotoxic effects on 5-HT signaling. Further studies examining behavioral correlates and the specific neurophysiological basis of the observed findings are warranted. PMID:19264142

  15. Use of a Novel High-Resolution Magnetic Resonance Neurography Protocol to Detect Abnormal Dorsal Root Ganglia in Sjögren Patients With Neuropathic Pain

    PubMed Central

    Birnbaum, Julius; Duncan, Trisha; Owoyemi, Kristie; Wang, Kenneth C.; Carrino, John; Chhabra, Avneesh

    2014-01-01

    Abstract The diagnosis and treatment of patients with Sjögren syndrome (SS) with neuropathic pain pose several challenges. Patients with SS may experience unorthodox patterns of burning pain not conforming to a traditional “stocking-and-glove” distribution, which can affect the face, torso, and proximal extremities. This distribution of neuropathic pain may reflect mechanisms targeting the proximal-most element of the peripheral nervous system—the dorsal root ganglia (DRG). Skin biopsy can diagnose such a small-fiber neuropathy and is a surrogate marker of DRG neuronal cell loss. However, SS patients have been reported who have similar patterns of proximal neuropathic pain, despite having normal skin biopsy studies. In such cases, DRGs may be targeted by mechanisms not associated with neuronal cell loss. Therefore, alternative approaches are warranted to help characterize abnormal DRGs in SS patients with proximal neuropathic pain. We performed a systematic review of the literature to define the frequency and spectrum of SS peripheral neuropathies, and to better understand the attribution of SS neuropathic pain to peripheral neuropathies. We found that the frequency of SS neuropathic pain exceeded the prevalence of peripheral neuropathies, and that painful peripheral neuropathies occurred less frequently than neuropathies not always associated with pain. We developed a novel magnetic resonance neurography (MRN) protocol to evaluate DRG abnormalities. Ten SS patients with proximal neuropathic pain were evaluated by this MRN protocol, as well as by punch skin biopsies evaluating for intraepidermal nerve fiber density (IENFD) of unmyelinated nerves. Five patients had radiographic evidence of DRG abnormalities. Patients with MRN DRG abnormalities had increased IENFD of unmyelinated nerves compared to patients without MRN DRG abnormalities (30.2 [interquartile range, 4.4] fibers/mm vs. 11.0 [4.1] fibers/mm, respectively; p = 0.03). Two of these 5 SS patients whose neuropathic pain resolved with intravenous immunoglobulin (IVIg) therapy had improvement of MRN DRG abnormalities. We have developed a novel MRN protocol that can detect DRG abnormalities in SS patients with neuropathic pain who do not have markers of peripheral neuropathy. We found that SS patients with MRN DRG abnormalities had statistically significant, increased IENFD on skin biopsy studies, which may suggest a relationship between trophic mediators and neuropathic pain. Given that our literature review has demonstrated that many SS neuropathic pain patients do not have a neuropathy, our findings suggest an important niche for this MRN DRG technique in the evaluation of broader subsets of SS neuropathic pain patients who may not have underlying neuropathies. The improvement of MRN DRG abnormalities in patients with IVIg-induced remission of neuropathic pain suggests that our MRN protocol may be capturing reversible, immune-mediated mechanisms targeting the DRG. PMID:24797167

  16. A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making

    PubMed Central

    Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A.

    2015-01-01

    There is significant evidence that in addition to reward-punishment based decision making, the Basal Ganglia (BG) contributes to risk-based decision making (Balasubramani et al., 2014). Despite this evidence, little is known about the computational principles and neural correlates of risk computation in this subcortical system. We have previously proposed a reinforcement learning (RL)-based model of the BG that simulates the interactions between dopamine (DA) and serotonin (5HT) in a diverse set of experimental studies including reward, punishment and risk based decision making (Balasubramani et al., 2014). Starting with the classical idea that the activity of mesencephalic DA represents reward prediction error, the model posits that serotoninergic activity in the striatum controls risk-prediction error. Our prior model of the BG was an abstract model that did not incorporate anatomical and cellular-level data. In this work, we expand the earlier model into a detailed network model of the BG and demonstrate the joint contributions of DA-5HT in risk and reward-punishment sensitivity. At the core of the proposed network model is the following insight regarding cellular correlates of value and risk computation. Just as DA D1 receptor (D1R) expressing medium spiny neurons (MSNs) of the striatum were thought to be the neural substrates for value computation, we propose that DA D1R and D2R co-expressing MSNs are capable of computing risk. Though the existence of MSNs that co-express D1R and D2R are reported by various experimental studies, prior existing computational models did not include them. Ours is the first model that accounts for the computational possibilities of these co-expressing D1R-D2R MSNs, and describes how DA and 5HT mediate activity in these classes of neurons (D1R-, D2R-, D1R-D2R- MSNs). Starting from the assumption that 5HT modulates all MSNs, our study predicts significant modulatory effects of 5HT on D2R and co-expressing D1R-D2R MSNs which in turn explains the multifarious functions of 5HT in the BG. The experiments simulated in the present study relates 5HT to risk sensitivity and reward-punishment learning. Furthermore, our model is shown to capture reward-punishment and risk based decision making impairment in Parkinson's Disease (PD). The model predicts that optimizing 5HT levels along with DA medications might be essential for improving the patients' reward-punishment learning deficits. PMID:26136679

  17. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson’s disease

    PubMed Central

    2013-01-01

    Background It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson’s disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Results Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. Conclusions These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms. PMID:24308494

  18. A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making.

    PubMed

    Balasubramani, Pragathi P; Chakravarthy, V Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A

    2015-01-01

    There is significant evidence that in addition to reward-punishment based decision making, the Basal Ganglia (BG) contributes to risk-based decision making (Balasubramani et al., 2014). Despite this evidence, little is known about the computational principles and neural correlates of risk computation in this subcortical system. We have previously proposed a reinforcement learning (RL)-based model of the BG that simulates the interactions between dopamine (DA) and serotonin (5HT) in a diverse set of experimental studies including reward, punishment and risk based decision making (Balasubramani et al., 2014). Starting with the classical idea that the activity of mesencephalic DA represents reward prediction error, the model posits that serotoninergic activity in the striatum controls risk-prediction error. Our prior model of the BG was an abstract model that did not incorporate anatomical and cellular-level data. In this work, we expand the earlier model into a detailed network model of the BG and demonstrate the joint contributions of DA-5HT in risk and reward-punishment sensitivity. At the core of the proposed network model is the following insight regarding cellular correlates of value and risk computation. Just as DA D1 receptor (D1R) expressing medium spiny neurons (MSNs) of the striatum were thought to be the neural substrates for value computation, we propose that DA D1R and D2R co-expressing MSNs are capable of computing risk. Though the existence of MSNs that co-express D1R and D2R are reported by various experimental studies, prior existing computational models did not include them. Ours is the first model that accounts for the computational possibilities of these co-expressing D1R-D2R MSNs, and describes how DA and 5HT mediate activity in these classes of neurons (D1R-, D2R-, D1R-D2R- MSNs). Starting from the assumption that 5HT modulates all MSNs, our study predicts significant modulatory effects of 5HT on D2R and co-expressing D1R-D2R MSNs which in turn explains the multifarious functions of 5HT in the BG. The experiments simulated in the present study relates 5HT to risk sensitivity and reward-punishment learning. Furthermore, our model is shown to capture reward-punishment and risk based decision making impairment in Parkinson's Disease (PD). The model predicts that optimizing 5HT levels along with DA medications might be essential for improving the patients' reward-punishment learning deficits. PMID:26136679

  19. Analysis of gene expression pattern and neuroanatomical correlates for SLC20A2 (PiT-2) shows a molecular network with potential impact in idiopathic basal ganglia calcification ("Fahr's disease").

    PubMed

    da Silva, R J Galdino; Pereira, I C L; Oliveira, J R M

    2013-06-01

    Familial idiopathic basal ganglia calcification (FIBGC), also known as "Fahr's disease," is a neuropsychiatric disorder with motor and cognitive symptoms. It is characterized pathologically by bilateral calcification most commonly in the basal ganglia and also in other brain regions such as the thalamus and cerebellum. A recent report by Wang et al. (2012) discovered multiple families with FIBGC carrying mutations in the SLC20A2 gene, encoding the inorganic phosphate transporter PiT-2, which segregated in an autosomal dominant pattern. To understand further the role of SLC20A2 in FIBGC brain pathology, here we described the gene expression pattern across the whole brain for SLC20A2, using the Allen Institute Human Brain Atlas database. Microarray analysis provided evidence that the neuroanatomical pattern of expression for SLC20A2 is highest in the regions most commonly affected in FIBGC. Neuroanatomical regions that demonstrated high correlation or anti-correlation with SLC20A2 expression also showed a molecular network with potential to explain the limited neuroanatomical distribution of calcifications in IBGC. Lastly, these co-expression networks suggest additional further candidate genes for FIBGC. PMID:23576097

  20. Eyeblink Conditioning Deficits Indicate Timing and Cerebellar Abnormalities in Schizophrenia

    ERIC Educational Resources Information Center

    Brown, S.M.; Kieffaber, P.D.; Carroll, C.A.; Vohs, J.L.; Tracy, J.A.; Shekhar, A.; O'Donnell, B.F.; Steinmetz, J.E.; Hetrick, W.P.

    2005-01-01

    Accumulating evidence indicates that individuals with schizophrenia manifest abnormalities in structures (cerebellum and basal ganglia) and neurotransmitter systems (dopamine) linked to internal-timing processes. A single-cue tone delay eyeblink conditioning paradigm comprised of 100 learning and 50 extinction trials was used to examine cerebellar


  1. Eyeblink Conditioning Deficits Indicate Timing and Cerebellar Abnormalities in Schizophrenia

    ERIC Educational Resources Information Center

    Brown, S.M.; Kieffaber, P.D.; Carroll, C.A.; Vohs, J.L.; Tracy, J.A.; Shekhar, A.; O'Donnell, B.F.; Steinmetz, J.E.; Hetrick, W.P.

    2005-01-01

    Accumulating evidence indicates that individuals with schizophrenia manifest abnormalities in structures (cerebellum and basal ganglia) and neurotransmitter systems (dopamine) linked to internal-timing processes. A single-cue tone delay eyeblink conditioning paradigm comprised of 100 learning and 50 extinction trials was used to examine cerebellar…

  2. Transcranial Magnetic Stimulation (TMS) as a Tool for Early Diagnosis and Prognostication in Cortico-Basal Ganglia Degeneration (CBD) Syndromes: Review of Literature and Case Report

    PubMed Central

    Issac, Thomas Gregor; Chandra, Sadanandavalli Retnaswami; Nagaraju, B. C.

    2016-01-01

    Background: Cortico basal degeneration (CBD) of the brain is a rare progressive neurodegenerative disease which encompasses unique neuropsychiatric manifestations. Early diagnosis is essential for initiating proper treatment and favorable outcome. Transcranial Magnetic Stimulation (TMS), a well-known technique for assessment of cortical excitatory and inhibitory properties. It was suggested that in a degenerative disease like CBD which involves the cortex as well as the subcortical structures, comparing both hemispheres, a differential pattern in TMS can be obtained which would help in early identification, prognostication and early therapeutic intervention. Case Report: We describe a case of CBD with corroborative clinical and imaging picture wherein single pulse TMS was used over both the hemispheres measuring the following parameters of interest which included: Motor Threshold (MT), Central Motor Conduction Time (CMCT) and Silent Period (SP). Results and Conclusion: Differential patterns of MT, CMCT and SP was obtained by stimulating over both the hemispheres with the affected hemisphere showing significantly reduced MT and prolonged CMCT implying early impairment of cortical and subcortical structures thereby revealing the potential application of TMS being utilized in a novel way for early detection and prognostication in CBD syndromes. PMID:27011412

  3. Convergent evidence for abnormal striatal synaptic plasticity in dystonia

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes linking etiology to pathophysiology of the disease. PMID:20005952

  4. Neural code alterations and abnormal time patterns in Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo

    2015-04-01

    Objective. The neural code used by the basal ganglia is a current question in neuroscience, relevant for the understanding of the pathophysiology of Parkinson’s disease. While a rate code is known to participate in the communication between the basal ganglia and the motor thalamus/cortex, different lines of evidence have also favored the presence of complex time patterns in the discharge of the basal ganglia. To gain insight into the way the basal ganglia code information, we studied the activity of the globus pallidus pars interna (GPi), an output node of the circuit. Approach. We implemented the 6-hydroxydopamine model of Parkinsonism in Sprague-Dawley rats, and recorded the spontaneous discharge of single GPi neurons, in head-restrained conditions at full alertness. Analyzing the temporal structure function, we looked for characteristic scales in the neuronal discharge of the GPi. Main results. At a low-scale, we observed the presence of dynamic processes, which allow the transmission of time patterns. Conversely, at a middle-scale, stochastic processes force the use of a rate code. Regarding the time patterns transmitted, we measured the word length and found that it is increased in Parkinson’s disease. Furthermore, it showed a positive correlation with the frequency of discharge, indicating that an exacerbation of this abnormal time pattern length can be expected, as the dopamine depletion progresses. Significance. We conclude that a rate code and a time pattern code can co-exist in the basal ganglia at different temporal scales. However, their normal balance is progressively altered and replaced by pathological time patterns in Parkinson’s disease.

  5. Extragenic bypass suppressors of mutations in the essential gene BLD2 promote assembly of basal bodies with abnormal microtubules in Chlamydomonas reinhardtii.

    PubMed Central

    Preble, A M; Giddings, T H; Dutcher, S K

    2001-01-01

    bld2-1 mutant Chlamydomonas reinhardtii strains assemble basal bodies with singlet microtubules; bld2-1 cells display flagellar assembly defects as well as positioning defects of the mitotic spindle and cleavage furrow. To further understand the role of the BLD2 gene, we have isolated three new bld2 alleles and three partially dominant extragenic suppressors, rgn1-1, rgn1-2, and rgn1-3. bld2 rgn1-1 strains have phenotypes intermediate between those of bld2 and wild-type strains with respect to flagellar number, microtubule rootlet organization, cleavage furrow positioning, and basal body structural phenotypes. Instead of the triplet microtubules of wild-type cells, bld2 rgn1-1 basal bodies have mixtures of no, singlet, doublet, and triplet microtubules. The bld2-4 allele was made by insertional mutagenesis and identified in a noncomplementation screen in a diploid strain. The bld2-4 allele has a lethal phenotype based on mitotic segregation in diploid strains and in haploid strains generated by meiotic recombination. The lethal phenotype in haploid strains is suppressed by rgn1-1; these suppressed strains have similar phenotypes to other bld2 rgn1-1 double mutants. It is likely that BLD2 is an essential gene that is needed for basal body assembly and function. PMID:11139500

  6. [Information analysis of spinal ganglia].

    PubMed

    Lobko, P I; Kovaleva, D V; Kovalchuk, I E; Pivchenko, P G; Rudenok, V V; Davydova, L A

    2000-01-01

    Information parameters (entropia and redundancy) of cervical and thoracic spinal ganglia of albino rat foetuses, mature animals (cat and dog) and human subjects were analysed. Information characteristics of spinal ganglia were shown to be level-specified and to depend on their functional peculiarities. Information parameters of thoracic spinal ganglia of man and different animals are specie specified and may be used in assessment of morphological structures as information systems. PMID:12629803

  7. Cerebral abnormalities: use of calculated T1 and T2 magnetic resonance images for diagnosis

    SciTech Connect

    Mills, C.M.; Crooks, L.E.; Kaufman, L.; Brant-Zawadzki, M.

    1984-01-01

    The potential clinical importance of T1 and T2 relaxation times in distinguishing normal and pathologic tissue with magnetic resonance (MR) is discussed and clinical examples of cerebral abnormalities are given. Five patients with cerebral infarction, 15 with multiple sclerosis, two with Wilson disease, and four with tumors were imaged. Hemorrhagic and ischemic cerebrovascular accidents were distinguished using the spin echo technique. In the patients with multiple sclerosis, lesions had prolonged T1 and T2 times, but the definition of plaque was limited by spatial resolution. No abnormalities in signal intensity were seen in the patient with Wilson disease who was no longer severly disabled; abnormal increased signal intensity in the basal ganglia was found in the second patient with Wilson disease. Four tumors produced abnormal T1 and T2 relaxation times but these values alone were not sufficient for tumor characterization.

  8. Genetics Home Reference: Familial idiopathic basal ganglia calcification

    MedlinePLUS

    ... of a PiT-2 protein that cannot effectively transport phosphate into cells. As a result, phosphate levels ... changes in the PDGFRB protein could alter phosphate transport signaling pathways, causing an increase in phosphate levels ...

  9. Dissociations in Processing Derivational Morphology: The Right Basal Ganglia Involvement

    ERIC Educational Resources Information Center

    Marangolo, Paola; Piras, Fabrizio

    2008-01-01

    In the neuropsychological literature, there is converging evidence for a dominant role of the left hemisphere in morphological processing. However, two right hemisphere patients were described with a clear dissociation between impaired derivational morphology and preserved inflectional processing. A recent fMRI experiment confirmed the involvement…

  10. Genetics Home Reference: Familial idiopathic basal ganglia calcification

    MedlinePLUS

    ... the front of the brain are involved in reasoning, planning, judgment, and problem-solving. The regions of ... more about genetic testing , particularly the difference between clinical tests and research tests . To locate a healthcare ...

  11. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in treating neurodegenerative disorders.

  12. Motor Control Abnormalities in Parkinson’s Disease

    PubMed Central

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  13. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

    PubMed Central

    Haagensen, Brian N.; Christensen, Mark S.; Madsen, Kristoffer H.; Rowe, James B.; Lűkkegaard, Annemette; Siebner, Hartwig R.

    2015-01-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy alleviates basal ganglia dysfunction in Parkinson's disease, it often elicits involuntary movements, referred to as levodopa-induced peak-of-dose dyskinesias. Here, we used a novel pharmacodynamic neuroimaging approach to identify the changes in cortico-basal ganglia connectivity that herald the emergence of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51–84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation of striato-cortical feedback connections from putamen to the pre-supplementary motor area (Pcorrected = 0.020) and primary motor cortex (Pcorrected = 0.044), but not feed-forward connections from the cortex to the putamen. Our results identify for the first time, aberrant dopaminergic modulation of striatal-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an aberrant reinforcement signal producing an abnormal motor drive that ultimately triggers involuntary movements. PMID:25882651

  14. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans.

    PubMed

    Herz, Damian M; Haagensen, Brian N; Christensen, Mark S; Madsen, Kristoffer H; Rowe, James B; Lűkkegaard, Annemette; Siebner, Hartwig R

    2015-06-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy alleviates basal ganglia dysfunction in Parkinson's disease, it often elicits involuntary movements, referred to as levodopa-induced peak-of-dose dyskinesias. Here, we used a novel pharmacodynamic neuroimaging approach to identify the changes in cortico-basal ganglia connectivity that herald the emergence of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51-84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation of striato-cortical feedback connections from putamen to the pre-supplementary motor area (Pcorrected = 0.020) and primary motor cortex (Pcorrected = 0.044), but not feed-forward connections from the cortex to the putamen. Our results identify for the first time, aberrant dopaminergic modulation of striatal-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an aberrant reinforcement signal producing an abnormal motor drive that ultimately triggers involuntary movements. PMID:25882651

  15. CELL ADHESION MOLECULE CADHERIN-6 FUNCTION IN ZEBRAFISH CRANIAL AND LATERAL LINE GANGLIA DEVELOPMENT

    PubMed Central

    Liu, Q.; Dalman, M. R.; Sarmah, S.; Chen, S.; Chen, Y.; Hurlbut, A. K.; Spencer, M. A.; Pancoe, L.; Marrs, J. A.

    2015-01-01

    Cadherins regulate the vertebrate nervous system development. We previously showed that cadherin-6 message (cdh6) was strongly expressed in the majority of the embryonic zebrafish cranial and lateral line ganglia during their development. Here, we present evidence that cdh6 has specific functions during cranial and lateral line ganglia and nerve development. We analyzed the consequences of cdh6 loss-of-function on cranial ganglion and nerve differentiation in zebrafish embryos. Embryos injected with zebrafish cdh6 specific antisense morpholino oligonucleotides (MOs, which suppress gene expression during development; cdh6 morphant embryos) displayed a specific phenotype, including (i) altered shape and reduced development of a subset of the cranial and lateral line ganglia (e.g. the statoacoustic ganglion and vagal ganglion) and (ii) cranial nerves were abnormally formed. This data illustrates an important role for cdh6 in the formation of cranial ganglia and their nerves. PMID:21584906

  16. Abnormal Bursting as a Pathophysiological Mechanism in Parkinson's Disease

    PubMed Central

    Lobb, CJ

    2014-01-01

    Despite remarkable advances in Parkinson's disease (PD) research, the pathophysiological mechanisms causing motor dysfunction remain unclear, possibly delaying the advent of new and improved therapies. Several such mechanisms have been proposed including changes in neuronal firing rates, the emergence of pathological oscillatory activity, increased neural synchronization, and abnormal bursting. This review focuses specifically on the role of abnormal bursting of basal ganglia neurons in PD, where a burst is a physiologically-relevant, transient increase in neuronal firing over some reference period or activity. After reviewing current methods for how bursts are detected and what the functional role of bursts may be under normal conditions, existing studies are reviewed that suggest that bursting is abnormally increased in PD and that this increases with worsening disease. Finally, the influence of therapeutic approaches for PD such as dopamine-replacement therapy with levodopa or dopamine agonists, lesions, or deep brain stimulation on bursting is discussed. Although there is insufficient evidence to conclude that increased bursting causes motor dysfunction in PD, current evidence suggests that targeted investigations into the role of bursting in PD may be warranted. PMID:24729952

  17. Widespread abnormality of the ?-aminobutyric acid-ergic system in Tourette syndrome

    PubMed Central

    Bagic, Anto; Simmons, Janine M.; Mari, Zoltan; Bonne, Omer; Xu, Ben; Kazuba, Diane; Herscovitch, Peter; Carson, Richard E.; Murphy, Dennis L.; Drevets, Wayne C.; Hallett, Mark

    2012-01-01

    Dysfunction of the ?-aminobutyric acid-ergic system in Tourette syndrome may conceivably underlie the symptoms of motor disinhibition presenting as tics and psychiatric manifestations, such as attention deficit hyperactivity disorder and obsessive–compulsive disorder. The purpose of this study was to identify a possible dysfunction of the ?-aminobutyric acid-ergic system in Tourette patients, especially involving the basal ganglia-thalamo-cortical circuits and the cerebellum. We studied 11 patients with Tourette syndrome and 11 healthy controls. Positron emission tomography procedure: after injection of 20?mCi of [11C]flumazenil, dynamic emission images of the brain were acquired. Structural magnetic resonance imaging scans were obtained to provide an anatomical framework for the positron emission tomography data analysis. Images of binding potential were created using the two-step version of the simplified reference tissue model. The binding potential images then were spatially normalized, smoothed and compared between groups using statistical parametric mapping. We found decreased binding of GABAA receptors in Tourette patients bilaterally in the ventral striatum, globus pallidus, thalamus, amygdala and right insula. In addition, the GABAA receptor binding was increased in the bilateral substantia nigra, left periaqueductal grey, right posterior cingulate cortex and bilateral cerebellum. These results are consistent with the longstanding hypothesis that circuits involving the basal ganglia and thalamus are disinhibited in Tourette syndrome patients. In addition, the abnormalities in GABAA receptor binding in the insula and cerebellum appear particularly noteworthy based upon recent evidence implicating these structures in the generation of tics. PMID:22577221

  18. [Traumatic basal subarachnoid hemorrhage].

    PubMed

    Lundgaard, Peter; Leth, Peter Mygind; Gregersen, Markil

    2003-04-28

    Massive subarachnoid hemorrhage may occur on a traumatic basis. The injury is most often sustained by a blow with a clenched fist against the posterolateral part of the cranial basis, but the injury may also occur in relation to an accident. The condition is rare, most often occurring in alcohol intoxicated men. The victim typically collapses immediately and usually dies within a few minutes. The origin of the bleeding may be the vertebral artery on the neck or the intercranial basal brain arteries. In some cases the origin of the bleeding cannot be located. The pathogenetic mechanisms have been a subject of discussion. The damage to the artery may occur in relation to a fracture of the transverse process of the atlas or in relation to subluxations in the cervical vertebral column. The arterial rupture may occur in both normal and abnormal arteries. In many of the cases the trauma may be very slight. This has, of course, important legal implications. PMID:12772392

  19. Basal cell carcinoma: pathophysiology.

    PubMed

    Sehgal, Virendra N; Chatterjee, Kingshuk; Pandhi, Deepika; Khurana, Ananta

    2014-01-01

    Basal cell carcinoma (BCC) is the most common skin cancer in humans, which typically appears over the sun-exposed skin as a slow-growing, locally invasive lesion that rarely metastasizes. Although the exact etiology of BCC is unknown, there exists a well-established relationship between BCC and the pilo-sebaceous unit, and it is currently thought to originate from pluri-potential cells in the basal layer of the epidermis or the follicle. The patched/hedgehog intracellular signaling pathway plays a central role in both sporadic BCCs and nevoid BCC syndrome (Gorlin syndrome). This pathway is vital for the regulation of cell growth, and differentiation and loss of inhibition of this pathway is associated with development of BCC. The sonic hedgehog protein is the most relevant to BCC; nevertheless, the Patched (PTCH) protein is the ligand-binding component of the hedgehog receptor complex in the cell membrane. The other protein member of the receptor complex, smoothened (SMO), is responsible for transducing hedgehog signaling to downstream genes, leading to abnormal cell proliferation. The importance of this pathway is highlighted by the successful use in advanced forms of BCC of vismodegib, a Food and Drug Administration-approved drug, that selectively inhibits SMO. The UV-specific nucleotide changes in the tumor suppressor genes, TP53 and PTCH, have also been implicated in the development of BCC. PMID:25134314

  20. Basal Cell Carcinoma (BCC)

    MedlinePLUS

    ... carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive than other types of basal ... to treat them early and with slightly more aggressive techniques. Excision – The basal cell carcinoma is cut ...

  1. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    SciTech Connect

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-05-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities.

  2. Abnormal Striatal Dopaminergic Neurotransmission during Rest and Task Production in Spasmodic Dysphonia

    PubMed Central

    Berman, Brian D.; Herscovitch, Peter; Hallett, Mark

    2013-01-01

    Spasmodic dysphonia is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech production. The pathophysiology of spasmodic dysphonia is thought to involve structural and functional abnormalities in the basal ganglia–thalamo-cortical circuitry; however, neurochemical correlates underpinning these abnormalities as well as their relations to spasmodic dysphonia symptoms remain unknown. We used positron emission tomography with the radioligand [11C]raclopride (RAC) to study striatal dopaminergic neurotransmission at the resting state and during production of symptomatic sentences and asymptomatic finger tapping in spasmodic dysphonia patients. We found that patients, compared to healthy controls, had bilaterally decreased RAC binding potential (BP) to striatal dopamine D2/D3 receptors on average by 29.2%, which was associated with decreased RAC displacement (RAC ?BP) in the left striatum during symptomatic speaking (group average difference 10.2%), but increased RAC ?BP in the bilateral striatum during asymptomatic tapping (group average difference 10.1%). Patients with more severe voice symptoms and subclinically longer reaction time to initiate the tapping sequence had greater RAC ?BP measures, while longer duration of spasmodic dysphonia was associated with a decrease in task-induced RAC ?BP. Decreased dopaminergic transmission during symptomatic speech production may represent a disorder-specific pathophysiological trait involved in symptom generation, whereas increased dopaminergic function during unaffected task performance may be explained by a compensatory adaptation of the nigrostriatal dopaminergic system possibly due to decreased striatal D2/D3 receptor availability. These changes can be linked to the clinical and subclinical features of spasmodic dysphonia and may represent the neurochemical basis of basal ganglia alterations in this disorder. PMID:24027271

  3. Brain white matter volume abnormalities in Lesch-Nyhan disease and its variants

    PubMed Central

    Varvaris, Mark; Vannorsdall, Tracy D.; Gordon, Barry; Harris, James C.; Jinnah, H.A.

    2015-01-01

    Objective: We sought to examine brain white matter abnormalities based on MRI in adults with Lesch-Nyhan disease (LND) or an attenuated variant (LNV) of this rare, X-linked neurodevelopmental disorder of purine metabolism. Methods: In this observational study, we compared 21 adults with LND, 17 with LNV, and 33 age-, sex-, and race-matched healthy controls using voxel-based morphometry and analysis of covariance to identify white matter volume abnormalities in both patient groups. Results: Patients with classic LND showed larger reductions of white (26%) than gray (17%) matter volume relative to healthy controls. Those with LNV showed comparable reductions of white (14%) and gray (15%) matter volume. Both patient groups demonstrated reduced volume in medial inferior white matter regions. Compared with LNV, the LND group showed larger reductions in inferior frontal white matter adjoining limbic and temporal regions and the motor cortex. These regions likely include such long association fibers as the superior longitudinal and uncinate fasciculi. Conclusions: Despite earlier reports that LND primarily involves the basal ganglia, this study reveals substantial white matter volume abnormalities. Moreover, white matter deficits are more severe than gray matter deficits in classic LND, and also characterize persons with LNV. The brain images acquired for these analyses cannot precisely localize white matter abnormalities or determine whether they involve changes in tract orientation or anisotropy. However, clusters of reduced white matter volume identified here affect regions that are consistent with the neurobehavioral phenotype. PMID:25503620

  4. Structural brain abnormalities in cervical dystonia

    PubMed Central

    2013-01-01

    Background Idiopathic cervical dystonia is characterized by involuntary spasms, tremors or jerks. It is not restricted to a disturbance in the basal ganglia system because non-conventional voxel-based MRI morphometry (VBM) and diffusion tensor imaging (DTI) have detected numerous regional changes in the brains of patients. In this study scans of 24 patients with cervical dystonia and 24 age-and sex-matched controls were analysed using VBM, DTI and magnetization transfer imaging (MTI) using a voxel-based approach and a region-of-interest analysis. Results were correlated with UDRS, TWSTRS and disease duration. Results We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia. Conclusions Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems. PMID:24131497

  5. Abuse of amphetamines and structural abnormalities in the brain.

    PubMed

    Berman, Steven; O'Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D

    2008-10-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques including manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959

  6. Abuse of Amphetamines and Structural Abnormalities in Brain

    PubMed Central

    Berman, Steven; O’Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.

    2009-01-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959

  7. Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions.

    PubMed

    Löscher, Wolfgang

    2010-01-01

    Circling or rotational behavior is the most studied indicator of cerebral asymmetry in the rat. In humans, disturbances in cerebral asymmetry are involved in the etiology of several psychiatric disorders, including schizophrenia, Tourette syndrome and attention-deficit hyperactivity disorder. Abnormal rotational behavior in rodents is indicative of either an imbalance of forebrain dopamine systems, particularly an imbalance of nigrostriatal function, or an inner ear disease affecting the vestibular (balance) system. Abnormally enhanced circling behavior has been described in several mutant rat and mouse strains both with and without defects of the vestibular system. However, the relationship between vestibular defects and lateralized circling in rodents is only incompletely understood. In this review, we describe and discuss various spontaneous mutations associated with abnormal circling behavior in different rat strains and their potential relevance to model specific brain dysfunctions. The circling rat mutants described in this review illustrate how genetic animal models may serve to study multifaceted brain functions and dysfunctions, including disorders of the basal ganglia and vestibular system. PMID:19607857

  8. Abnormal eye movements in blepharospasm and involuntary levator palpebrae inhibition. Clinical and pathophysiological considerations.

    PubMed

    Aramideh, M; Bour, L J; Koelman, J H; Speelman, J D; Ongerboer de Visser, B W

    1994-12-01

    We report on four patients with involuntary eyelid closure and eye movement disorders. Three were healthy until the onset of their illness and one had a mild generalized choreoathetosis and dystonia due to kernicterus. Electromyographic recording revealed solely blepharospasm in two patients and blepharospasm in combination with involuntary levator palpebrae inhibition in the other two. The eye movement abnormalities were clinically characterized by inability to fix gaze and short or prolonged episodes of uncontrollable eye deviations accompanied, in two patients, by diplopia in horizontal or vertical directions. These episodes occurred independently of a disorder of eyelid movement. Eye movement recordings with a double magnetic induction technique showed saccadic intrusions in horizontal directions. They consisted of highly frequent square wave jerks in three and sporadic macro-square wave jerks in two patients. There were also episodes of extraocular muscle dystonia, commonly known as oculogyric crises, resulting in involuntary upward eye deviation in all patients and lateral deviation in three patients. In one patient, nasal-ward deviations were sometimes restricted to one eye. We conclude that these abnormal eye movements do not necessarily point to a symptomatic form of dystonia and that they may limit the beneficial effect of botulinum toxin or surgical intervention in the therapeutic management of involuntary eyelid closure. We suggest that either basal ganglia, especially substantia nigra pars reticularis and the brainstem structures, especially the paramedian pontine reticular formation, or both, may be involved in the pathogenesis of these abnormal movements. PMID:7820580

  9. [Walking abnormalities in children].

    PubMed

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional specialization of the cortex through the spinal stepping generator-fastigial nucleus-thalamus-cortex pathway. Early detection of locomotion failure and early adjustment of this condition through environmental factors can prevent the development of higher cortical dysfunction. PMID:21068458

  10. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  11. Nevoid Basal cell carcinoma syndrome: a case report and review.

    PubMed

    Bala Subramanyam, S; Naga Sujata, D; Sridhar, K; Pushpanjali, M

    2015-03-01

    Nevoid basal cell carcinoma syndrome, a rare autosomal dominant disorder, comprises of a number of abnormalities such as multiple nevoid basal cell carcinomas, skeletal abnormalities and multiple keratocystic odontogenic tumors. Diagnosis may be difficult because of the variability of expressivity and different ages of onset for different traits of this disorder. The dental clinician may be the first to encounter and identify this syndrome, when the multiple cysts like radiolucencies are discovered on panoramic view. This article reports a case of Nevoid basal cell carcinoma syndrome and provides an overview on diagnosis and management. PMID:25838663

  12. Innervation of the gallbladder: structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia.

    PubMed

    Mawe, G M; Talmage, E K; Cornbrooks, E B; Gokin, A P; Zhang, L; Jennings, L J

    1997-10-01

    The muscle and epithelial tissues of the gallbladder are regulated by a ganglionated plexus that lies within the wall of the organ. Although these ganglia are derived from the same set of precursor neural crest cells that colonize the gut, they exhibit structural, neurochemical and physiological characteristics that are distinct from the myenteric and submucous plexuses of the enteric nervous system. Structurally, the ganglionated plexus of the guinea pig gallbladder is comprised of small clusters of neurons that are located in the outer wall of the organ, between the serosa and underlying smooth muscle. The ganglia are encapsulated by a shell of fibroblasts and a basal lamina, and are devoid of collagen. Gallbladder neurons are rather simple in structure, consisting of a soma, a few short dendritic processes and one or two long axons. Results reported here indicate that all gallbladder neurons are probably cholinergic since they all express immunoreactivity for choline acetyltransferase. The majority of these neurons also express substance P, neuropeptide Y, and somatostatin, and a small remaining population of neurons express vasoactive intestinal peptide (VIP) immunoreactivity and NADPH-diaphorase enzymatic activity. We report here that NADPH-diaphorase activity, nitric oxide synthase immunoreactivity, and VIP immunoreactivity are expressed by the same neurons in the gallbladder. Physiological studies indicate that the ganglia of the gallbladder are the site of action of the following neurohumoral inputs: 1) all neurons receive nicotinic input from vagal preganglionic fibers; 2) norepinephrine released from sympathetic postganglionic fibers acts presynaptically on vagal terminals within gallbladder ganglia to decrease the release of acetylcholine from vagal terminals; 3) substance P and calcitonin gene-related peptide, which are co-expressed in sensory fibers, cause prolonged depolarizations of gallbladder neurons that resemble slow EPSPs; and 4) cholecystokinin (CCK) acts presynaptically within gallbladder ganglia to increase the release of acetylcholine from vagal terminals. Results reported here indicate that hormonal CCK can readily access gallbladder ganglia, since there is no evidence for a blood-ganglionic barrier in the gallbladder. Taken together, these results indicate that gallbladder ganglia are not simple relay stations, but rather sites of complex modulatory interactions that ultimately influence the functions of muscle and epithelial cells in the organ. PMID:9329015

  13. Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease

    PubMed Central

    Lee, Sungseok; Ives, Angela M.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent disease. HSV-1 and HSV-2 establish latency in both sensory and autonomic ganglia. Autonomic ganglia are more responsive than sensory ganglia to stimuli associated with recurrent disease in humans, such as stress and hormone fluctuations, suggesting that autonomic ganglia may play an important role in recurrent disease. We show that HSV-1 can reactivate from autonomic ganglia, independently from sensory ganglia, to cause recurrent ocular disease. We found no evidence that HSV-2 could reactivate from autonomic ganglia independently from sensory ganglia after ocular infection, but HSV-2 did replicate in both ganglia simultaneously to cause persistent disease. Thus, viral replication and reactivation in autonomic ganglia contribute to different clinical disease manifestations of HSV-1 and HSV-2 after ocular infection. PMID:26041294

  14. [Seizures revealing phosphocalcic metabolism abnormalities].

    PubMed

    Hmami, F; Chaouki, S; Benmiloud, S; Souilmi, F Z; Abourazzak, S; Idrissi, M; Atmani, S; Bouharrou, A; Hida, M

    2014-01-01

    Hypocalcemia due to hypoparathyroidism produces a broad spectrum of clinical manifestations, but overt symptoms may be sparse. One unusual presentation is onset or aggravation of epilepsy in adolescence revealing hypoparathyroidism. This situation can lead to delayed diagnosis, with inefficacity of the antiepileptic drugs. We report five cases of adolescence-onset epilepsy with unsuccessful antiepileptic therapy, even with gradually increasing dose. Physical examination revealed signs of hypocalcemia, confirmed biologically. Full testing disclosed the origin of the seizures: hypoparathyroidism in three patients and pseudohypoparathyroidism in the other two. In four of five patients, computed tomography showed calcification of the basal ganglia, defining Fahr's syndrome. The patients were treated with oral calcium and active vitamin D (1-alphahydroxy vitamin D3). Seizure frequency progressively decreased and serum calcium levels returned to normal. These cases illustrate the importance of the physical examination and of routine serum calcium assay in patients with new-onset epileptic seizures in order to detect hypocalcemia secondary to hypoparathyroidism. PMID:24726042

  15. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation.

    PubMed

    Israelashvili, Michal; Loewenstern, Yocheved; Bar-Gad, Izhar

    2015-07-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  16. Abnormal High-Frequency Burst Firing of Cerebellar Neurons in Rapid-Onset Dystonia-Parkinsonism

    PubMed Central

    Fremont, Rachel; Calderon, D. Paola; Maleki, Sara

    2014-01-01

    Loss-of-function mutations in the ?3 isoform of the Na+/K+ ATPase (sodium pump) are responsible for rapid-onset dystonia parkinsonism (DYT12). Recently, a pharmacological model of DYT12 was generated implicating both the cerebellum and basal ganglia in the disorder. Notably, partially blocking sodium pumps in the cerebellum was necessary and sufficient for induction of dystonia. Thus, a key question that remains is how partially blocking sodium pumps in the cerebellum induces dystonia. In vivo recordings from dystonic mice revealed abnormal high-frequency bursting activity in neurons of the deep cerebellar nuclei (DCN), which comprise the bulk of cerebellar output. In the same mice, Purkinje cells, which provide strong inhibitory drive to DCN cells, also fired in a similarly erratic manner. In vitro studies demonstrated that Purkinje cells are highly sensitive to sodium pump dysfunction that alters the intrinsic pacemaking of these neurons, resulting in erratic burst firing similar to that identified in vivo. This abnormal firing abates when sodium pump function is restored and dystonia caused by partial block of sodium pumps can be similarly alleviated. These findings suggest that persistent high-frequency burst firing of cerebellar neurons caused by sodium pump dysfunction underlies dystonia in this model of DYT12. PMID:25164667

  17. RFamide peptides in agnathans and basal chordates.

    PubMed

    Osugi, Tomohiro; Son, You Lee; Ubuka, Takayoshi; Satake, Honoo; Tsutsui, Kazuyoshi

    2016-02-01

    Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution. PMID:26130238

  18. Shared and distinct gray matter abnormalities in schizophrenia, schizophrenia relatives and bipolar disorder in association with cognitive impairment.

    PubMed

    Knöchel, Christian; StÀblein, Michael; Prvulovic, David; Ghinea, Denisa; Wenzler, Sofia; Pantel, Johannes; Alves, Gilberto; Linden, David E J; Harrison, Octavia; Carvalho, Andre; Reif, Andreas; Oertel-Knöchel, Viola

    2016-03-01

    Cognitive impairments have been linked to structural and functional alterations in frontal and subcortical brain regions, ultimately leading to fronto-thalamic connectivity disturbances. We hypothesized that such neuronal disruptions in frontal and subcortical structures may account for neuropsychological deficits in schizophrenia (SZ), schizophrenia relatives and bipolar disorder (BD). We acquired T1-weighted anatomical MRI sequences in 209 participants: 57 SZ patients, 47 first-degree relatives of SZ patients, 48 BD I patients and 57 healthy controls. We computed group comparisons of gray matter (GM) volume in frontal and basal ganglia regions-of-interest, followed by correlation analysis between psychomotor speed, executive functioning and learning and GM volumes in candidate regions. Several frontal GM volume reductions as well as GM increases in the thalamus and the putamen were exhibited in SZ patients as compared to controls. The same finding was observed - less pronounced - when comparing SZ relatives and controls. BD patients presented GM volume increases in the basal ganglia in comparison to controls. In SZ patients, increases in bilateral thalamus GM volume and decreases in left middle and superior frontal gyrus volume were significantly associated with worse cognitive performance. In summary, our results indicate distinct imbalances across frontal-subcortical circuits in BD, SZ relatives and SZ. The functional relevance of the findings were mainly limited to the SZ patients group: in this group, abnormalities were directly associated with cognitive performance. This result is in line with the finding that the volume alterations were strongest in SZ patients and followed by BD patients and SZ relatives. PMID:26833265

  19. Severity of Dysfluency Correlates with Basal Ganglia Activity in Persistent Developmental Stuttering

    ERIC Educational Resources Information Center

    Giraud, Anne-Lise; Neumann, Katrin; Bachoud-Levi, Anne-Catherine; von Gudenberg, Alexander W.; Euler, Harald A.; Lanfermann, Heinrich; Preibisch, Christine

    2008-01-01

    Previous studies suggest that anatomical anomalies [Foundas, A. L., Bollich, A. M., Corey, D. M., Hurley, M., & Heilman, K. M. (2001). "Anomalous anatomy of speech-language areas in adults with persistent developmental stuttering." "Neurology," 57, 207-215; Foundas, A. L., Corey, D. M., Angeles, V., Bollich, A. M., Crabtree-Hartman, E., & Heilman,


  20. A probabilistic atlas of the basal ganglia using 7 T MRI

    PubMed Central

    Keuken, Max C.; Forstmann, Birte U.

    2015-01-01

    A common localization procedure in functional imaging studies includes the overlay of statistical parametric functional magnetic resonance imaging (fMRI) maps or coordinates with neuroanatomical atlases in standard space, e.g., MNI-space. This procedure allows the identification of specific brain regions. Most standard MRI software packages include a wide range of atlases but have a poor coverage of the subcortex. We estimated that approximately 7% of the known subcortical structures are mapped in standard MRI-compatible atlases [1]. Here we provide a data description of a subcortical probabilistic atlas based on ultra-high resolution in-vivo anatomical imaging using 7 T (T) MRI. The atlas includes six subcortical nuclei: the striatum (STR), the globus pallidus internal and external segment (GPi/e), the subthalamic nucleus (STN), the substantia nigra (SN), and the red nucleus (RN). These probabilistic atlases are shared on freely available platforms such as NITRC and NeuroVault and are published in NeuroImage “Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI” [2]. PMID:26322322

  1. Stop and Think about Basal Ganglia Functional Organization: The Pallido-Striatal "Stop" Route.

    PubMed

    Deffains, Marc; Iskhakova, Liliya; Bergman, Hagai

    2016-01-20

    The "arkypallidal" neurons of the globus pallidus (external segment) emit feedback GABAergic projections to the striatum. In this issue of Neuron, Mallet et al. (2016) show that "arkypallidal" neurons provide a Stop signal, suppressing the development of Go-related striatal activity. PMID:26796685

  2. A Computational Model of Inhibitory Control in Frontal Cortex and Basal Ganglia

    ERIC Educational Resources Information Center

    Wiecki, Thomas V.; Frank, Michael J.

    2013-01-01

    Planning and executing volitional actions in the face of conflicting habitual responses is a critical aspect of human behavior. At the core of the interplay between these 2 control systems lies an override mechanism that can suppress the habitual action selection process and allow executive control to take over. Here, we construct a neural circuit…

  3. Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease.

    PubMed

    Piggott, Margaret A; Owens, Jonathan; O'Brien, John; Colloby, Sean; Fenwick, John; Wyper, David; Jaros, Evelyn; Johnson, Mary; Perry, Robert H; Perry, Elaine K

    2003-03-01

    Derivatives of the muscarinic antagonist 3-quinuclidinyl-4-iodobenzilate (QNB), particularly [123I]-(R,R)-I-QNB, are currently being assessed as in vivo ligands to monitor muscarinic receptors in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), relating changes to disease symptoms and to treatment response with cholinergic medication. To assist in the evaluation of in vivo binding, muscarinic receptor density in post-mortem human brain was measured by autoradiography with [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB and compared to M1 ([3H]pirenzepine) and M2 and M4 ([3H]AF-DX 384) receptor binding. Binding was calculated in tissue containing striatum, globus pallidus (GPe), claustrum, and cingulate and insula cortex, in cases of AD, DLB, Parkinson's disease (PD) and normal elderly controls. Pirenzepine, AF-DX 384 and (R,S)-I-QNB binding in the striatum correlated positively with increased Alzheimer-type pathology, and AF-DX 384 and (R,R)-I-QNB cortical binding correlated positively with increased Lewy body (LB) pathology; however, striatal pirenzepine binding correlated negatively with cortical LB pathology. M1 receptors were significantly reduced in striatum in DLB compared to AD, PD, and controls and there was a significant correlation between M1 and dopamine D2 receptor densities. [3H]AF-DX 384 binding was higher in the striatum and GPe in AD. Binding of [125I]-(R,R)-I-QNB, which may reflect increased muscarinic M4 receptors, was higher in cortex and claustrum in DLB and AD. [125I]-(R,S)-I-QNB binding was higher in the GPe in AD. Low M1 and D2 receptors in DLB imply altered regulation of the striatal projection neurons which express these receptors. Low density of striatal M1 receptors may relate to the extent of movement disorder in DLB, and to a reduced risk of parkinsonism with acetylcholinesterase inhibition. PMID:12706204

  4. Severity of Dysfluency Correlates with Basal Ganglia Activity in Persistent Developmental Stuttering

    ERIC Educational Resources Information Center

    Giraud, Anne-Lise; Neumann, Katrin; Bachoud-Levi, Anne-Catherine; von Gudenberg, Alexander W.; Euler, Harald A.; Lanfermann, Heinrich; Preibisch, Christine

    2008-01-01

    Previous studies suggest that anatomical anomalies [Foundas, A. L., Bollich, A. M., Corey, D. M., Hurley, M., & Heilman, K. M. (2001). "Anomalous anatomy of speech-language areas in adults with persistent developmental stuttering." "Neurology," 57, 207-215; Foundas, A. L., Corey, D. M., Angeles, V., Bollich, A. M., Crabtree-Hartman, E., & Heilman,…

  5. A Computational Model of Inhibitory Control in Frontal Cortex and Basal Ganglia

    ERIC Educational Resources Information Center

    Wiecki, Thomas V.; Frank, Michael J.

    2013-01-01

    Planning and executing volitional actions in the face of conflicting habitual responses is a critical aspect of human behavior. At the core of the interplay between these 2 control systems lies an override mechanism that can suppress the habitual action selection process and allow executive control to take over. Here, we construct a neural circuit


  6. Optical coherence tomography imaging of the basal ganglia: feasibility and brief review

    PubMed Central

    Lopez, W. O. Contreras; Ângelos, J. S.; Martinez, R. C. R.; Takimura, C. K.; Teixeira, M. J.; Lemos, P. A.; Fonoff, E. T.

    2015-01-01

    Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonflyℱ, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures. PMID:26421868

  7. Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway.

    PubMed

    Bodor, Agnes L; Giber, KristĂłf; RovĂł, Zita; Ulbert, IstvĂĄn; AcsĂĄdy, LĂĄszlĂł

    2008-03-19

    Giant inhibitory terminals with multiple synapses, the counterparts of excitatory "detonator" or "driver" terminals, have not been described in the forebrain. Using three-dimensional reconstructions of electron microscopic images, we quantitatively characterize a GABAergic pathway that establishes synaptic contacts exclusively via multiple synapses. Axon terminals of the nigrothalamic pathway formed, on average, 8.5 synapses on large-diameter dendrites and somata of relay cells in the ventromedial nucleus of the rat thalamus. All synapses of a given terminal converged on a single postsynaptic element. The vast majority of the synapses established by a single terminal were not separated by astrocytic processes. Nigrothalamic terminals in the macaque monkey showed the same ultrastructural features both in qualitative and quantitative terms (the median number of synapse per target was also 8.5). The individual synapses were closely spaced in both species. The nearest-neighbor synaptic distances were 169 nm in the rat and 178 nm in the monkey. The average number of synapses within 0.75 microm from any given synapse was 3.8 in the rat and 3.5 in the monkey. The arrangement of synapses described in this study creates favorable conditions for intersynaptic spillover of GABA among the multiple synapses of a single bouton, which can result in larger charge transfer. This could explain faithful and efficient GABAergic signal transmission in the nigrothalamic pathway in the healthy condition and during Parkinson's disease. In addition, our structural data suggest that the rodent nigrothalamic pathway can be a valid model of the primate condition, when the mechanism of GABAergic transmission is studied. PMID:18354012

  8. Reduced basal ganglia ?-opioid receptor availability in trigeminal neuropathic pain: A pilot study

    PubMed Central

    2012-01-01

    Background Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP. Findings In this study, we examined the regional ?-opioid receptor (?OR) availability in vivo (non-displaceable binding potential BPND) of TNP patients with positron emission tomography (PET) using the ?OR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced ?OR BPND in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the ?OR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients. Conclusions Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous ?-opioid system, rather than only to the peripheral pathology. The decreased availability of ?ORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system. PMID:23006894

  9. Differential activation of dopaminergic systems in rat brain basal ganglia by morphine and methamphetamine.

    PubMed

    Mori, T; Iwase, Y; Saeki, T; Iwata, N; Murata, A; Masukawa, D; Suzuki, T

    2016-05-13

    Typical abused drug-induced behavioral changes are ordinarily mediated by the mesolimbic dopaminergic system and even the phenotypes of behavior are different from each other. However, the mechanisms that underlie the behavioral changes induced by these abused drugs have not yet been elucidated. The present study was designed to investigate the mechanisms that underlie how abused drugs induce distinct behavioral changes using neurochemical as well as behavioral techniques in rats. Methamphetamine (2mg/kg) more potently increased dopamine release from the striatum more than that from the nucleus accumbens. In contrast, the administration of morphine (10mg/kg) produced a significant increase in the release of dopamine from the nucleus accumbens, but not the striatum, which is accompanied by a decrease in the release of GABA in the ventral tegmental area. These findings indicate that morphine and methamphetamine differentially regulate dopaminergic systems to produce behavioral changes, even though both drugs have abuse potential through activation of the mesolimbic dopaminergic system. PMID:26820597

  10. Bilateral basal ganglia lesions after hypoglycemic coma in a 6-year-old child.

    PubMed

    Kara, Cengiz; Aydin, Omer Faruk; Aslan, Belma; Gürer, Y K Yavuz

    2007-02-01

    Imaging findings of brain damage due to neonatal hypoglycemia are known; however, the effect of childhood hypoglycemia on the brain has not been described well. The authors present the case of a 6-year-old girl who had seizures secondary to hypoglycemia followed up for 1 year as epilepsy. The patient had experienced a hypoglycemic coma attack about 1 year before. Brain magnetic resonance imaging showed atrophy of the cerebrum and cerebellum and bilateral symmetrically hyperintense lesions in the putamina. The patient was diagnosed with hypoglycemia due to hyperinsulinism. PMID:17621490

  11. Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement.

    PubMed

    Mink, J W; Thach, W T

    1991-02-01

    1. Inactivation of the portions of globus pallidus pars interna (GPi) containing the greatest concentration of wrist-related neurons was achieved in two rhesus monkeys with microinjections of muscimol (temporary) and kainic acid (permanent). 2. After muscimol injection, there was onset within 30 s of 1) tonic and phasic coactivation of wrist flexors and extensors; 2) slightly greater activation of the flexors, giving a flexor bias in postural holds and the endpoint of movements; and 3) slowness of all movements with a prolonged movement time. Nevertheless, 4) movements made by lessening prior loaded muscle activity (to move in the direction of the load) were slower than movement made by increasing muscle activity (to move against the direction of the load). Despite marked slowing of all movements, there was 5) a normal reaction time for movement onset. Finally, there was 6) a reduced amplitude of most movements. Open room behavior included 7) spiraling contralateral to the lesion while walking. Effects were reproducible (12 injections), were apparent for 7-8 h and were usually completely gone by the next day's testing. 3. After kainic acid injection, there was a period of mixed effects, followed by a period of permanent defects (observed for up to 24 days) that duplicated the temporary effects of muscimol. 4. By contrast, muscimol inactivation of the cerebellar dentate nucleus resulted in 1) a prolonged reaction time and 2) an increased variability of movement trajectory, but 3) without change in movement time or peak velocity. Open room behavior included overshoot in reaching for fruit with the forelimb ipsilateral to the injection. 5. From the facts that normal pallidal neurons fire constantly, that pallidal neurons inhibit their target neurons, and that the muscimol effect was immediate, we conclude that the release of the target neurons from the tonic inhibition allowed them to fire in patterns that promoted a maintained state of cocontraction of agonist and antagonist muscles. From the fact that movement time was prolonged, we conclude that the maintained state of neural activity that caused the muscle cocontraction interfered with the commands for voluntary movement, which were generated by other mechanisms. From the fact that reaction time for movement onset was normal, we conclude that the pallidal neurons may play little or no role in the voluntary initiation of these movements, which are instead generated by other structures that include the anterior cerebral cortex and the lateral cerebellum. PMID:2016644

  12. Hyporesponsive Reward Anticipation in the Basal Ganglia following Severe Institutional Deprivation Early in Life

    ERIC Educational Resources Information Center

    Mehta, Mitul A.; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C. R.; Sonuga-Barke, Edmund

    2010-01-01

    Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous


  13. Optical coherence tomography imaging of the basal ganglia: feasibility and brief review.

    PubMed

    Lopez, W O Contreras; Ângelos, J S; Martinez, R C R; Takimura, C K; Teixeira, M J; Lemos Neto, P A; Fonoff, E T

    2015-12-01

    Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures. PMID:26421868

  14. Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24.

    PubMed

    Wierenga, Lara; Langen, Marieke; Ambrosino, Sara; van Dijk, Sarai; Oranje, Bob; Durston, Sarah

    2014-08-01

    Developmental imaging studies show that cortical grey matter decreases in volume during childhood and adolescence. However, considerably less research has addressed the development of subcortical regions (caudate, putamen, pallidum, accumbens, thalamus, amygdala, hippocampus and the cerebellar cortex), in particular not in longitudinal designs. We used the automatic labeling procedure in FreeSurfer to estimate the developmental trajectories of the volume of these subcortical structures in 147 participants (age 7.0-24.3years old, 94 males; 53 females) of whom 53 participants were scanned twice or more. A total of 223 magnetic resonance imaging (MRI) scans (acquired at 1.5-T) were analyzed. Substantial diversity in the developmental trajectories was observed between the different subcortical gray matter structures: the volume of caudate, putamen and nucleus accumbens decreased with age, whereas the volume of hippocampus, amygdala, pallidum and cerebellum showed an inverted U-shaped developmental trajectory. The thalamus showed an initial small increase in volume followed by a slight decrease. All structures had a larger volume in males than females over the whole age range, except for the cerebellum that had a sexually dimorphic developmental trajectory. Thus, subcortical structures appear to not yet be fully developed in childhood, similar to the cerebral cortex, and continue to show maturational changes into adolescence. In addition, there is substantial heterogeneity between the developmental trajectories of these structures. PMID:24705201

  15. Atypical developmental venous anomaly associated with contrast enhancement and hyperperfusion in the surrounding basal ganglia

    PubMed Central

    Solak, Aynur; Genc, Berhan; Bilgic, Nalan

    2015-01-01

    Developmental venous anomalies (DVAs) are the most common type of cerebral vascular malformations. They are generally accepted as variants of venous development and frequently identified incidentally, particularly on contrast-enhanced MR imaging. Most of the DVAs do not affect the integrity of the surrounding parenchyma. This article discusses an atypical DVA which is associated with contrast enhancement and increased perfusion within the drainage territory of the DVA, probably due to anomalous venous drainage. These unusual perfusion patterns of the DVAs should be differentiated from other entities such as hypervascular brain tumors or ischemia with hemodynamical changes which have different clinical management. PMID:26029651

  16. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks.

    PubMed

    Lo, Chung-Chuan; Wang, Xiao-Jing

    2006-07-01

    Growing evidence from primate neurophysiology and modeling indicates that in reaction time tasks, a perceptual choice is made when the firing rate of a selective cortical neural population reaches a threshold. This raises two questions: what is the neural substrate of the threshold and how can it be adaptively tuned according to behavioral demands? Using a biophysically based network model of spiking neurons, we show that local dynamics in the superior colliculus gives rise to an all-or-none burst response that signals threshold crossing in upstream cortical neurons. Furthermore, the threshold level depends only weakly on the efficacy of the cortico-collicular pathway. In contrast, the threshold and the rate of reward harvest are sensitive to, and hence can be optimally tuned by, the strength of cortico-striatal synapses, which are known to be modifiable by dopamine-dependent plasticity. Our model provides a framework to describe the main computational steps in a reaction time task and suggests that separate brain pathways are critical to the detection and adjustment of a decision threshold. PMID:16767089

  17. Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat.

    PubMed

    Kung, Shu-Jen; Chen, Joyce L; Zatorre, Robert J; Penhune, Virginia B

    2013-03-01

    Humans are able to find and tap to the beat of musical rhythms varying in complexity from children's songs to modern jazz. Musical beat has no one-to-one relationship with auditory features-it is an abstract perceptual representation that emerges from the interaction between sensory cues and higher-level cognitive organization. Previous investigations have examined the neural basis of beat processing but have not tested the core phenomenon of finding and tapping to the musical beat. To test this, we used fMRI and had musicians find and tap to the beat of rhythms that varied from metrically simple to metrically complex-thus from a strong to a weak beat. Unlike most previous studies, we measured beat tapping performance during scanning and controlled for possible effects of scanner noise on beat perception. Results showed that beat finding and tapping recruited largely overlapping brain regions, including the superior temporal gyrus (STG), premotor cortex, and ventrolateral PFC (VLPFC). Beat tapping activity in STG and VLPFC was correlated with both perception and performance, suggesting that they are important for retrieving, selecting, and maintaining the musical beat. In contrast BG activity was similar in all conditions and was not correlated with either perception or production, suggesting that it may be involved in detecting auditory temporal regularity or in associating auditory stimuli with a motor response. Importantly, functional connectivity analyses showed that these systems interact, indicating that more basic sensorimotor mechanisms instantiated in the BG work in tandem with higher-order cognitive mechanisms in PFC. PMID:23163420

  18. Structural Correlates of Efficient GABAergic Transmission in the Basal Ganglia-Thalamus Pathway

    PubMed Central

    Bodor, Ágnes L.; Giber, Kristóf; Rovó, Zita; Ulbert, István; Acsády, László

    2009-01-01

    Giant inhibitory terminals with multiple synapses, the counterparts of excitatory “detonator” or “driver” terminals, have not been described in the forebrain. Using three-dimensional reconstructions of electron microscopic images, we quantitatively characterize a GABAergic pathway that establishes synaptic contacts exclusively via multiple synapses. Axon terminals of the nigrothalamic pathway formed, on average, 8.5 synapses on large-diameter dendrites and somata of relay cells in the ventromedial nucleus of the rat thalamus. All synapses of a given terminal converged on a single postsynaptic element. The vast majority of the synapses established by a single terminal were not separated by astrocytic processes. Nigrothalamic terminals in the macaque monkey showed the same ultrastructural features both in qualitative and quantitative terms (the median number of synapse per target was also 8.5). The individual synapses were closely spaced in both species. The nearest-neighbor synaptic distances were 169 nm in the rat and 178 nm in the monkey. The average number of synapses within 0.75 ?m from any given synapse was 3.8 in the rat and 3.5 in the monkey. The arrangement of synapses described in this study creates favorable conditions for intersynaptic spillover of GABA among the multiple synapses of a single bouton, which can result in larger charge transfer. This could explain faithful and efficient GABAergic signal transmission in the nigrothalamic pathway in the healthy condition and during Parkinson’s disease. In addition, our structural data suggest that the rodent nigrothalamic pathway can be a valid model of the primate condition, when the mechanism of GABAergic transmission is studied. PMID:18354012

  19. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia

    PubMed Central

    Wang, Xu-yang; Gu, Pei-yuan; Chen, Shi-wen; Gao, Wen-wei; Tian, Heng-li; Lu, Xiang-he; Zheng, Wei-ming; Zhuge, Qi-chuan; Hu, Wei-xing

    2015-01-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1–5 and L7–S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy. PMID:26807126

  20. Dorsal root ganglia microenvironment of female BB Wistar diabetic rats with mild neuropathy.

    PubMed

    Zochodne, D W; Ho, L T; Allison, J A

    1994-12-01

    Abnormalities in the microenvironment of dorsal root ganglia (DRG) might play a role in the pathogenesis of sensory abnormalities in human diabetic neuropathy. We examined aspects of DRG microenvironment by measuring local blood flow and oxygen tension in the L4 dorsal root ganglia of female BB Wistar (BBW) diabetic rats with mild neuropathy. The findings were compared with concurrent measurements of local sciatic endoneurial blood flow and oxygen tension. Diabetic rats were treated with insulin and underwent electrophysiological, blood flow and oxygen tension measurements at either 7-11 or 17-23 weeks after the development of glycosuria. Nondiabetic female BB Wistar rats from the same colony served as controls. At both ages, BBW diabetic rats had significant abnormalities in sensory, but not motor conduction compared to nondiabetic controls. Sciatic endoneurial blood flow in the diabetic rats of both ages was similar to control values, but the older (17-23 week diabetic) BBW diabetic rats had a selective reduction in DRG blood flow. Sciatic endoneurial oxygen tensions were not significantly altered in the diabetic rats. DRG oxygen tension appeared lowered in younger (7-11 week diabetic) but not older (17-23 week diabetic) BBW rats. Our findings indicate that there are important changes in the DRG microenvironment of diabetic rats with selective sensory neuropathy. PMID:7699389

  1. Basal temporal language area.

    PubMed

    Lüders, H; Lesser, R P; Hahn, J; Dinner, D S; Morris, H H; Wyllie, E; Godoy, J

    1991-04-01

    Language interference was elicited by electrical stimulation of the dominant basal temporal region in 8 out of 22 cases and in none of 7 cases with subdural electrodes implanted over the nondominant temporal lobe. Language interference was elicited by stimulation of electrodes placed over the fusiform gyrus 3-7 cm from the tip of the temporal lobe. Electrical stimulation of the basal temporal language area produced a global receptive and expressive aphasia with speech arrest at high stimulus intensities. Other higher cortical function, for example copying complex designs or memory of nonverbal information was intact, in spite of the total inability to process verbal information. At lower stimulus intensities partial aphasias with a predominant receptive component occurred. Surgical resection of the basal temporal language area produces no lasting language deficit. PMID:2043946

  2. Basal cell carcinoma – diagnosis

    PubMed Central

    Bowszyc-Dmochowska, Monika; Strzelecka-W?klar, Daria; Da?czak-Pazdrowska, Aleksandra; Adamski, Zygmunt

    2013-01-01

    Basal cell carcinoma is the most common skin cancer in the Caucasian population. The cancer arises in sun exposed areas of the skin. The incidence of morbidity is high and it is still growing. The metastatic rate is low, but the enlarging tumor may cause severe tissue disfigurement and a poor cosmetic outcome. The diagnosis is usually clinical but there are many subtypes of this carcinoma and correct diagnosis is the clue to appropriate treatment of the lesion. The main problem in basal cell carcinoma management is the high recurrence rate. PMID:24592119

  3. Life beyond the Basal.

    ERIC Educational Resources Information Center

    Grey, Jeanne; Carbone, Carole

    1987-01-01

    Reading is a tool for learning. The goal for the teaching of reading must be to produce lovers of reading. A holistic approach should replace exclusive dependence on basal readers. Effective methods are the following: (1) language experience approach; (2) word banks; (3) pattern books; (4) sustained silent reading; and (5) directed…

  4. Basal forebrain neuronal inhibition enables rapid behavioral stopping.

    PubMed

    Mayse, Jeffrey D; Nelson, Geoffrey M; Avila, Irene; Gallagher, Michela; Lin, Shih-Chieh

    2015-10-01

    Cognitive inhibitory control, the ability to rapidly suppress responses inappropriate for the context, is essential for flexible and adaptive behavior. Although most studies on inhibitory control have focused on the fronto-basal-ganglia circuit, we found that rapid behavioral stopping is enabled by neuronal inhibition in the basal forebrain (BF). In rats performing the stop signal task, putative noncholinergic BF neurons with phasic bursting responses to the go signal were nearly completely inhibited by the stop signal. The onset of BF neuronal inhibition was tightly coupled with and temporally preceded the latency to stop, the stop signal reaction time. Artificial inhibition of BF activity in the absence of the stop signal was sufficient to reproduce rapid behavioral stopping. These results reveal a previously unknown subcortical mechanism of rapid inhibitory control by the BF, which provides bidirectional control over the speed of response generation and inhibition. PMID:26368943

  5. Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease.

    PubMed

    Lee, Sungseok; Ives, Angela M; Bertke, Andrea S

    2015-08-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. PMID:26041294

  6. Protocadherin 17 regulates presynaptic assembly in topographic corticobasal Ganglia circuits.

    PubMed

    Hoshina, Naosuke; Tanimura, Asami; Yamasaki, Miwako; Inoue, Takeshi; Fukabori, Ryoji; Kuroda, Teiko; Yokoyama, Kazumasa; Tezuka, Tohru; Sagara, Hiroshi; Hirano, Shinji; Kiyonari, Hiroshi; Takada, Masahiko; Kobayashi, Kazuto; Watanabe, Masahiko; Kano, Masanobu; Nakazawa, Takanobu; Yamamoto, Tadashi

    2013-06-01

    Highly topographic organization of neural circuits exists for the regulation of various brain functions in corticobasal ganglia circuits. Although neural circuit-specific refinement during synapse development is essential for the execution of particular neural functions, the molecular and cellular mechanisms for synapse refinement are largely unknown. Here, we show that protocadherin 17 (PCDH17), one of the nonclustered Ύ2-protocadherin family members, is enriched along corticobasal ganglia synapses in a zone-specific manner during synaptogenesis and regulates presynaptic assembly in these synapses. PCDH17 deficiency in mice causes facilitated presynaptic vesicle accumulation and enhanced synaptic transmission efficacy in corticobasal ganglia circuits. Furthermore, PCDH17(-/-) mice exhibit antidepressant-like phenotypes that are known to be regulated by corticobasal ganglia circuits. Our findings demonstrate a critical role for PCDH17 in the synaptic development of specific corticobasal ganglia circuits and suggest the involvement of PCDH17 in such circuits in depressive behaviors. PMID:23684785

  7. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive A?-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in A?-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  8. Basal thumb arthritis.

    PubMed

    Dias, Richard; Chandrasenan, Jeevan; Rajaratnam, Vaikunthan; Burke, Frank D

    2007-01-01

    Basal thumb arthritis is a common condition seen in hand clinics across the United Kingdom and is often associated with other pathological conditions such as carpal tunnel syndrome and scaphotrapezial arthritis. Typically, patients complain of pain localised to the base of the thumb. This pain is often activity related, particularly after excessive use involving forceful pinch. A detailed history and examination is normally all that is needed to make the diagnosis. Provocative manoeuvres may be helpful in localising symptoms to the basal joint with degenerative changes or synovitis. Radiographs are useful for confirming the diagnosis and staging the disease in order to plan for surgery. The mainstay of initial treatment of basal thumb arthritis of any stage is activity modifications, rest, nonsteroidal anti-inflammatory drugs, exercises and splinting. A variety of surgical procedures are available to treat the condition when conservative measures have failed, in order to control symptoms and improve function. We review the current literature and discuss the clinical aspects of this condition, staging, and treatment options available, and the difficulties treating this group of patients. PMID:17267677

  9. Anatomic study of human laryngeal ganglia: number and distribution.

    PubMed

    Maranillo, Eva; Vazquez, Teresa; Ibanez, Marta; Hurtado, Miguel; Pascual-Font, Aran; McHanwell, Stephen; Valderrama-Canales, Francisco; Sanudo, Jose

    2008-10-01

    We have studied 12 laryngeal nerves: six internal branches of the superior laryngeal nerve (ILN) and six recurrent laryngeal nerves (RLN) from three human adult larynges (two males and one female). After dissection of each individual laryngeal nerve using a surgical microscope, the nerves were preserved in 10% formalin, embedded in paraffin wax, serially sectioned transversely at a thickness of 10 microm and stained with hematoxylin and eosin. We found 2-4 ganglia associated with the ILN. At least two ganglia were always present (six out of six cases), the largest one being associated with the branch of the nerve innervating the vestibule and the smallest one associated with the branch innervating the aryepiglottic fold. Other ganglia were found associated with the branches for the glosso-epiglottic fold and vallecula (four out of six cases) and interarytenoid muscle (three out of six cases). The RLN showed from two to six ganglia, all of them located in its anterior terminal division. Two of the ganglia were located in the part of the nerve between the origin of the branches for the interarytenoid and lateral cricoarytenoid muscles (three out of six cases). The remaining ganglia were located close to or at the origin of the muscular branches innervating the intrinsic laryngeal muscles. The cytology of the ganglia reported suggests that they were all autonomic in nature, probably parasympathetic. PMID:18773473

  10. Extratemporal abnormalities in phosphorus magnetic resonance spectroscopy of patients with mesial temporal sclerosis.

    PubMed

    Park, Eun Joo; Otaduy, Maria ConcepciĂłn Garcia; Lyra, Katarina Paz de; Andrade, Celi Santos; Castro, Luiz Henrique Martins; Passarelli, Valmir; Valerio, Rosa Maria Figueiredo; Jorge, Carmen Lisa; Tsunemi, Miriam Harumi; Leite, Claudia da Costa

    2016-02-01

    Objective We evaluated extratemporal metabolic changes with phosphorus magnetic resonance spectroscopy (31P-MRS) in patients with unilateral mesial temporal sclerosis (MTS). Method 31P-MRS of 33 patients with unilateral MTS was compared with 31 controls. The voxels were selected in the anterior, posterior insula-basal ganglia (AIBG, PIBG) and frontal lobes (FL). Relative values of phosphodiesters- PDE, phosphomonoesters-PME, inorganic phosphate - Pi, phosphocreatine- PCr, total adenosine triphosphate [ATPt = Îł- + a- + b-ATP] and the ratios PCr/ATPt, PCr/Îł-ATP, PCr/Pi and PME/PDE were obtained. Results We found energetic abnormalities in the MTS patients compared to the controls with Pi reduction bilaterally in the AIBG and ipsilaterally in the PIBG and the contralateral FL; there was also decreased PCr/Îł-ATP in the ipsilateral AIBG and PIBG. Increased ATPT in the contralateral AIBG and increased Îł-ATP in the ipsilateral PIBG were detected. Conclusion Widespread energy dysfunction was detected in patients with unilateral MTS. PMID:26982984

  11. Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson's disease.

    PubMed

    Heinrichs-Graham, Elizabeth; Wilson, Tony W; Santamaria, Pamela M; Heithoff, Sheila K; Torres-Russotto, Diego; Hutter-Saunders, Jessica A L; Estes, Katherine A; Meza, Jane L; Mosley, R L; Gendelman, Howard E

    2014-10-01

    Parkinson's disease (PD) is a neurodegenerative disorder associated with debilitating motor, posture, and gait abnormalities. Human studies recording local field potentials within the subthalamic nucleus and scalp-based electroencephalography have shown pathological beta synchronization throughout the cortical-basal ganglia motor network in PD. Suppression of such pathological beta synchronization has been associated with improved motor function, which may explain the effectiveness of deep-brain stimulation. We used magnetoencephalography (MEG) to investigate neural population-level beta responses, and other oscillatory activity, during a motor task in unmedicated patients with PD and a matched group of healthy adults. MEG is a noninvasive neurophysiological technique that permits the recording of oscillatory activity during movement planning, execution, and termination phases. Each of these phases was independently examined using beamforming to distinguish the brain areas and movement phases, where pathological oscillations exist during motor control. Patients with PD exhibited significantly diminished beta desynchronization compared with controls prior to and during movement, which paralleled reduced alpha desynchronization. This study is the first to systematically investigate neural oscillatory responses in PD during distinct stages of motor control (e.g. planning, execution, and termination) and indicates that these patients have significant difficulty suppressing cortical beta synchronization during movement planning, which may contribute to their diminished movement capacities. PMID:23645717

  12. Cortical basal ganglionic degeneration.

    PubMed

    Scarmeas, N; Chin, S S; Marder, K

    2001-10-01

    In this case study, we describe the symptoms, neuropsychological testing, and brain pathology of a retired mason's assistant with cortical basal ganglionic degeneration (CBGD). CBGD is an extremely rare neurodegenerative disease that is categorized under both Parkinsonian syndromes and frontal lobe dementias. It affects men and women nearly equally, and the age of onset is usually in the sixth decade of life. CBGD is characterized by Parkinson's-like motor symptoms and by deficits of movement and cognition, indicating focal brain pathology. Neuronal cell loss is ultimately responsible for the neurological symptoms. PMID:14602941

  13. Cortical Basal Ganglionic Degeneration

    PubMed Central

    Scarmeas, Nikolaos; Chin, Steven S.; Marder, Karen

    2011-01-01

    In this case study, we describe the symptoms, neuropsychological testing, and brain pathology of a retired mason's assistant with cortical basal ganglionic degeneration (CBGD). CBGD is an extremely rare neurodegenerative disease that is categorized under both Parkinsonian syndromes and frontal lobe dementias. It affects men and women nearly equally, and the age of onset is usually in the sixth decade of life. CBGD is characterized by Parkinson's-like motor symptoms and by deficits of movement and cognition, indicating focal brain pathology. Neuronal cell loss is ultimately responsible for the neurological symptoms. PMID:14602941

  14. Perianal Basal Cell Carcinoma

    PubMed Central

    Bulur, Isil; Boyuk, Emine; Saracoglu, Zeynep Nurhan; Arik, Deniz

    2015-01-01

    Basal cell carcinoma (BCC) is the most common non-melanoma skin cancer. Exposure to ultraviolet light is an important risk factor for BCC development and the disorder therefore develops commonly on body areas that are more exposed to sunlight, such as the face and neck. It is uncommon in the closed area of the body and quite rare in the perianal and genital regions. Herein, we report a 34-year-old patient with perianal BCC who had no additional risk factors. PMID:25848349

  15. Synaptic dimorphism in Onychophoran cephalic ganglia.

    PubMed

    Peńa-Contreras, Z; Mendoza-Briceńo, R V; Miranda-Contreras, L; Palacios-Prü, E L

    2007-03-01

    The taxonomic location of the Onychophora has been controversial because of their phenotypic and genotypic characteristics, related to both annelids and arthropods. We analyzed the ultrastructure of the neurons and their synapses in the cephalic ganglion of a poorly known invertebrate, the velvet worm Peripatus sedgwicki, from the mountainous region of El Valle, Mérida, Venezuela. Cephalic ganglia were dissected, fixed and processed for transmission electron microscopy. The animal has a high degree of neurobiological development, as evidenced by the presence of asymmetric (excitatory) and symmetric (inhibitory) synapses, as well as the existence of glial cell processes in a wide neuropile zone. The postsynaptic terminals were seen to contain subsynaptic cisterns formed by membranes of smooth endoplasmic reticulum beneath the postsynaptic density, whereas the presynaptic terminal showed numerous electron transparent synaptic vesicles. From the neurophylogenetic perspectives, the ultrastructural characteristics of the central nervous tissue of the Onychophora show important evolutionary acquirements, such as the presence of both excitatory and inhibitory synapses, indicating functional synaptic transmission, and the appearance of mature glial cells. PMID:18457135

  16. Human laryngeal ganglia contain both sympathetic and parasympathetic cell types.

    PubMed

    Ibanez, Marta; Valderrama-Canales, Francisco J; Maranillo, Eva; Vazquez, Teresa; Pascual-Font, Arán; McHanwell, Stephen; Sanudo, Jose

    2010-09-01

    The presence of ganglia associated with the laryngeal nerves is well documented. In man, these ganglia have been less well studied than in other species and, in particular, the cell types within these ganglia are less well characterized. Using a panel of antibodies to a variety of markers found in the paraganglion cells of other species, we were able to show the existence of at least two populations of cells within human laryngeal paraganglia. One population contained chromogranin and tyrosine hydroxylase representing a neurosecretory population possibly secreting dopamine. A second population of choline acetyltransferase positive cells would appear to have a putative parasympathetic function. Further work is needed to characterize these cell populations more fully before it will be possible to assign functions to these cell types but our results are consistent with the postulated functions of these ganglia as chemoreceptors, neurosecretory cells, and regulators of laryngeal mucus secretion. PMID:20821402

  17. Alarin in cranial autonomic ganglia of human and rat.

    PubMed

    Schrödl, Falk; Kaser-Eichberger, Alexandra; Trost, Andrea; Strohmaier, Clemens; Bogner, Barbara; Runge, Christian; Bruckner, Daniela; Krefft, Karolina; Kofler, Barbara; Brandtner, Herwig; Reitsamer, Herbert A

    2015-02-01

    Extrinsic and intrinsic sources of the autonomic nervous system contribute to choroidal innervation, thus being responsible for the control of choroidal blood flow, aqueous humor production or intraocular pressure. Neuropeptides are involved in this autonomic control, and amongst those, alarin has been recently introduced. While alarin is present in intrinsic choroidal neurons, it is not clear if these are the only source of neuronal alarin in the choroid. Therefore, we here screened for the presence of alarin in human cranial autonomic ganglia, and also in rat, a species lacking intrinsic choroidal innervation. Cranial autonomic ganglia (i.e., ciliary, CIL; pterygopalatine, PPG; superior cervical, SCG; trigeminal ganglion, TRI) of human and rat were prepared for immunohistochemistry against murine and human alarin, respectively. Additionally, double staining experiments for alarin and choline acetyltransferase (ChAT), tyrosine hydroxilase (TH), substance P (SP) were performed in human and rat ganglia for unequivocal identification of ganglia. For documentation, confocal laser scanning microscopy was used, while quantitative RT-PCR was applied to confirm immunohistochemical data and to detect alarin mRNA expression. In humans, alarin-like immunoreactivity (alarin-LI) was detected in intrinsic neurons and nerve fibers of the choroidal stroma, but was lacking in CIL, PPG, SCG and TRI. In rat, alarin-LI was detected in only a minority of cranial autonomic ganglia (CIL: 3.5%; PPG: 0.4%; SCG: 1.9%; TRI: 1%). qRT-PCR confirmed the low expression level of alarin mRNA in rat ganglia. Since alarin-LI was absent in human cranial autonomic ganglia, and only present in few neurons of rat cranial autonomic ganglia, we consider it of low impact in extrinsic ocular innervation in those species. Nevertheless, it seems important for intrinsic choroidal innervation in humans, where it could serve as intrinsic choroidal marker. PMID:25497346

  18. Paramecium tetraurelia basal body structure.

    PubMed

    Tassin, Anne-Marie; Lemullois, Michel; Aubusson-Fleury, Anne

    2015-01-01

    Paramecium is a free-living unicellular organism, easy to cultivate, featuring ca. 4000 motile cilia emanating from longitudinal rows of basal bodies anchored in the plasma membrane. The basal body circumferential polarity is marked by the asymmetrical organization of its associated appendages. The complex basal body plus its associated rootlets forms the kinetid. Kinetids are precisely oriented within a row in correlation with the cell polarity. Basal bodies also display a proximo-distal polarity with microtubule triplets at their proximal ends, surrounding a permanent cartwheel, and microtubule doublets at the transition zone located between the basal body and the cilium. Basal bodies remain anchored at the cell surface during the whole cell cycle. On the opposite to metazoan, there is no centriolar stage and new basal bodies develop anteriorly and at right angle from the base of the docked ones. Ciliogenesis follows a specific temporal pattern during the cell cycle and both unciliated and ciliated docked basal bodies can be observed in the same cell. The transition zone is particularly well organized with three distinct plates and a maturation of its structure is observed during the growth of the cilium. Transcriptomic and proteomic analyses have been performed in different organisms including Paramecium to understand the ciliogenesis process. The data have incremented a multi-organism database, dedicated to proteins involved in the biogenesis, composition and function of centrosomes, basal bodies or cilia. Thanks to its thousands of basal bodies and the well-known choreography of their duplication during the cell cycle, Paramecium has allowed pioneer studies focusing on the structural and functional processes underlying basal body duplication. Proteins involved in basal body anchoring are sequentially recruited to assemble the transition zone thus indicating that the anchoring process parallels the structural differentiation of the transition zone. This feature offers an opportunity to dissect spatio-temporally the mechanisms involved in the basal body anchoring process and transition zone formation. PMID:26862393

  19. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis.

    PubMed

    Pina-Camacho, Laura; Del Rey-Mejías, Ángel; Janssen, Joost; Bioque, Miquel; Gonzålez-Pinto, Ana; Arango, Celso; Lobo, Antonio; Sarró, Salvador; Desco, Manuel; Sanjuan, Julio; Lacalle-Aurioles, Maria; Cuesta, Manuel J; Saiz-Ruiz, Jerónimo; Bernardo, Miguel; Parellada, Mara

    2016-03-01

    Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis. PMID:26371339

  20. Children's Literature in the Basals.

    ERIC Educational Resources Information Center

    O'Brien, Maureen A.

    Three basal reading series, levels kindergarten through grade three, were studied to categorize the types of literature each contained. The following series were analyzed: "The Headway Program" (Open Court Publishing Company), "Series r Macmillan Reading," and "Basics in Reading" (Scott, Foresman and Company). It was hypothesized that basal…

  1. Report Card on Basal Readers.

    ERIC Educational Resources Information Center

    Goodman, Kenneth S.; And Others

    This report examines the nature of the modern basal reader, its economics, and use. First, the report provides a history showing how the confluence of business principles, positivistic science, and behavioral psychology led to the transformation of reading textbooks into basal readers. Next, the report examines objectives and subjective factors…

  2. Expression and localization of aquaporin-4 in sensory ganglia.

    PubMed

    Kato, Jungo; Takai, Yoshiki; Hayashi, Mariko Kato; Kato, Yasuhiro; Tanaka, Manami; Sohma, Yoshiro; Abe, Yoichiro; Yasui, Masato

    2014-09-01

    Aquaporin-4 (AQP4) is a water channel protein that is predominantly expressed in astrocytes in the CNS. The rapid water flux through AQP4 may contribute to electrolyte/water homeostasis and may support neuronal activities in the CNS. On the other hand, little is known about the expression of AQP4 in the peripheral nervous system (PNS). Using AQP4(-/-) mice as a negative control, we demonstrated that AQP4 is also expressed in sensory ganglia, such as trigeminal ganglia and dorsal root ganglia in the PNS. Immunohistochemistry revealed that AQP4 is exclusively localized to satellite glial cells (SGCs) surrounding the cell bodies of the primary afferent sensory neurons in the sensory ganglia. Biochemical analyses revealed that the expression levels of AQP4 in sensory ganglia were considerably lower than those in astrocytes in the CNS. Consistently, behavioral analyses did not show any significant difference in terms of mechanical and cold sensitivity between wild type and AQP4(-/-) mice. Overall, although the pathophysiological relevance of AQP4 in somatosensory perception remains unclear, our findings provide new insight into the involvement of water homeostasis in the peripheral sensory system. PMID:25124666

  3. Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors.

    PubMed

    Espinosa-Medina, I; Outin, E; Picard, C A; Chettouh, Z; Dymecki, S; Consalez, G G; Coppola, E; Brunet, J-F

    2014-07-01

    Neural crest cells migrate extensively and give rise to most of the peripheral nervous system, including sympathetic, parasympathetic, enteric, and dorsal root ganglia. We studied how parasympathetic ganglia form close to visceral organs and what their precursors are. We find that many cranial nerve-associated crest cells coexpress the pan-autonomic determinant Paired-like homeodomain 2b (Phox2b) together with markers of Schwann cell precursors. Some give rise to Schwann cells after down-regulation of PHOX2b. Others form parasympathetic ganglia after being guided to the site of ganglion formation by the nerves that carry preganglionic fibers, a parsimonious way of wiring the pathway. Thus, cranial Schwann cell precursors are the source of parasympathetic neurons during normal development. PMID:24925912

  4. Behavioral, Pharmacological, and Immunological Abnormalities after Streptococcal Exposure: A Novel Rat Model of Sydenham Chorea and Related Neuropsychiatric Disorders

    PubMed Central

    Brimberg, Lior; Benhar, Itai; Mascaro-Blanco, Adita; Alvarez, Kathy; Lotan, Dafna; Winter, Christine; Klein, Julia; Moses, Allon E; Somnier, Finn E; Leckman, James F; Swedo, Susan E; Cunningham, Madeleine W; Joel, Daphna

    2012-01-01

    Group A streptococcal (GAS) infections and autoimmunity are associated with the onset of a spectrum of neuropsychiatric disorders in children, with the prototypical disorder being Sydenham chorea (SC). Our aim was to develop an animal model that resembled the behavioral, pharmacological, and immunological abnormalities of SC and other streptococcal-related neuropsychiatric disorders. Male Lewis rats exposed to GAS antigen exhibited motor symptoms (impaired food manipulation and beam walking) and compulsive behavior (increased induced-grooming). These symptoms were alleviated by the D2 blocker haloperidol and the selective serotonin reuptake inhibitor paroxetine, respectively, drugs that are used to treat motor symptoms and compulsions in streptococcal-related neuropsychiatric disorders. Streptococcal exposure resulted in antibody deposition in the striatum, thalamus, and frontal cortex, and concomitant alterations in dopamine and glutamate levels in cortex and basal ganglia, consistent with the known pathophysiology of SC and related neuropsychiatric disorders. Autoantibodies (IgG) of GAS rats reacted with tubulin and caused elevated calcium/calmodulin-dependent protein kinase II signaling in SK-N-SH neuronal cells, as previously found with sera from SC and related neuropsychiatric disorders. Our new animal model translates directly to human disease and led us to discover autoantibodies targeted against dopamine D1 and D2 receptors in the rat model as well as in SC and other streptococcal-related neuropsychiatric disorders. PMID:22534626

  5. Polar basal melting on Mars

    NASA Astrophysics Data System (ADS)

    Clifford, S. M.

    1987-08-01

    The potential importance of basal melting on Mars is illustrated through the discussion of four examples: (1) the origin of the major polar reentrants, (2) the removal and storage of an ancient Martian ice sheet, (3) the mass balance of the polar terrains, and (4) the possibility of basal melting at temperate latitudes. This analysis suggests that the process of basal melting may play a key role in understanding the evolution of the Martian polar terrains and the long-term climatic behavior of water on Mars.

  6. Basal cell nevus syndrome or Gorlin syndrome.

    PubMed

    Thalakoti, Srikanth; Geller, Thomas

    2015-01-01

    Basal cell nevus syndrome (BCNS) or Gorlin syndrome is a rare neurocutaneous syndrome sometimes known as the fifth phacomatosis, inherited in autosomal dominant fashion with complete penetrance and variable expressivity. Gorlin syndrome is characterized by development of multiple basal cell carcinomas (BCCs), jaw cysts, palmar or plantar pits, calcification of falx cerebri, various developmental skeletal abnormalities such as bifid rib, hemi- or bifid vertebra and predisposition to the development of various tumors. BCNS is caused by a mutation in the PTCH1 gene localized to 9q22.3. Its estimated prevalence varies between 1/55600 and 1/256000 with an equal male to female ratio. The medulloblastoma variant seen in Gorlin syndrome patients is of the desmoplastic type, characteristically presenting during the first 3 years of life. Therefore, children with desmoplastic medulloblastoma should be carefully screened for other features of BCNS. Radiation therapy for desmoplastic medulloblastoma should be avoided in BCNS patients as it may induce development of invasive BCCs and other tumors in the skin area exposed to radiation. This syndrome is a multisystem disorder so involvement of multiple specialists with a multimodal approach to detect and treat various manifestations at early stages will reduce the long-term sequelae and severity of the condition. Life expectancy is not significantly altered but morbidity from complications and cosmetic scarring can be substantial. PMID:26564075

  7. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia’s Role in Cognitive Coordination

    PubMed Central

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions by manipulating separately the selection of sources and destinations of information transfers. We suggest that such a mechanism provides an account for several cognitive functions of the basal ganglia. The model also incorporates a possible mechanism by which subsequent transfers of information control the release of dopamine. This signal is used to produce novel stimulus–response associations by internalizing transferred cortical representations in the striatum. We discuss how the model is related to production systems and cognitive architectures. A series of simulations is presented to illustrate how the model can perform simple stimulus–response tasks, develop automatic behaviors, and provide an account of impairments in Parkinson’s and Huntington’s diseases. PMID:20438237

  8. Choosing the Right Basal Reader.

    ERIC Educational Resources Information Center

    Robbins, Ruth H.

    1980-01-01

    Looks at factors in the textbook publishing industry, especially costs and censorship, which affect the quality of available reading series. Notes the problem of readability and content bias. Finally, presents a checklist of basal reader evaluation criteria. (SJL)

  9. Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods

    PubMed Central

    Mayer, Georg; Harzsch, Steffen

    2007-01-01

    Background Onychophora (velvet worms) represent the most basal arthropod group and play a pivotal role in the current discussion on the evolution of nervous systems and segmentation in arthropods. Although there is a wealth of information on the immunolocalization of serotonin (5-hydroxytryptamine, 5-HT) in various euarthropods, as yet no comparable localization data are available for Onychophora. In order to understand how the onychophoran nervous system compares to that of other arthropods, we studied the distribution of serotonin-like immunoreactive neurons and histological characteristics of ventral nerve cords in Metaperipatus blainvillei (Onychophora, Peripatopsidae) and Epiperipatus biolleyi (Onychophora, Peripatidae). Results We demonstrate that paired leg nerves are the only segmental structures associated with the onychophoran nerve cord. Although the median commissures and peripheral nerves show a repeated pattern, their arrangement is independent from body segments characterized by the position of legs and associated structures. Moreover, the somata of serotonin-like immunoreactive neurons do not show any ordered arrangement in both species studied but are instead scattered throughout the entire length of each nerve cord. We observed neither a serially iterated nor a bilaterally symmetric pattern, which is in contrast to the strictly segmental arrangement of serotonergic neurons in other arthropods. Conclusion Our histological findings and immunolocalization experiments highlight the medullary organization of the onychophoran nerve cord and argue against segmental ganglia of the typical euarthropodan type being an ancestral feature of Onychophora. These results contradict a priori assumptions of segmental ganglia being an ancestral feature of arthropods and, thus, weaken the traditional Articulata hypothesis, which proposes a sistergroup relationship of Annelida and Arthropoda. PMID:17629937

  10. Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy.

    PubMed

    Vernino, Steven; Hopkins, Steve; Wang, Zhengbei

    2009-03-12

    Nicotinic acetylcholine receptors (AChR) are ligand-gated cation channels that are present throughout the nervous system. The ganglionic (alpha3-type) neuronal AChR mediates fast synaptic transmission in sympathetic, parasympathetic and enteric autonomic ganglia. Autonomic ganglia are an important site of neural integration and regulation of autonomic reflexes. Impaired cholinergic ganglionic synaptic transmission is one important cause of autonomic failure. Ganglionic AChR antibodies are found in many patients with autoimmune autonomic ganglionopathy (AAG). These antibodies recognize the alpha3 subunit of the ganglionic AChR, and thus do not bind non-specifically to other nicotinic AChR. Patients with high levels of ganglionic AChR antibodies typically present with rapid onset of severe autonomic failure, with orthostatic hypotension, gastrointestinal dysmotility, anhidrosis, bladder dysfunction and sicca symptoms. Impaired pupillary light reflex is often seen. Like myasthenia gravis, AAG is an antibody-mediated neurological disorder. Antibodies from patients with AAG inhibit ganglionic AChR currents and impair transmission in autonomic ganglia. An animal model of AAG in the rabbit recapitulates the important clinical features of the human disease and provides additional evidence that AAG is an antibody-mediated disorder caused by impairment of synaptic transmission in autonomic ganglia. PMID:18951069

  11. Abnormal Head Position

    MedlinePLUS

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  12. Intracellular recordings from pancreatic ganglia of the cat.

    PubMed Central

    King, B F; Love, J A; Szurszewski, J H

    1989-01-01

    1. The anatomy, morphology, and electrophysiology of parasympathetic ganglia of cat pancreas were studied in vitro. 2. Pancreatic ganglia existed as an interconnected plexus of small ganglia (ten to fifty cells) lying in the interlobular connective tissue. Occasionally smaller ganglia (four to ten cells) were observed lying on or within nerve trunks. 3. Electron micrographs revealed the presence of neurones and satellite cells as well as unmyelinated axons and nerve terminals. Nerve terminals contained small clear vesicles and/or large, dense-cored vesicles. 4. Intracellular recording of electrical activity revealed the presence of two types of ganglion cells. Type I ganglion cells exhibited resting membrane potentials that ranged from -40 to -63 mV and input resistances that ranged from 8 to 168 M omega. They responded to intracellular depolarizing current with action potentials, and received synaptic inputs which when activated caused fast and slow depolarizing responses. Type I cells were considered to be ganglionic neurones. Type II ganglion cells had higher resting membrane potentials that ranged from -61 to -83 mV, lower input resistances that ranged from 5 to 83 M omega and were electrically unexcitable. Repetitive stimulation of preganglionic nerves evoked a slow depolarization that was frequency dependent. Type II cells were considered to be satellite cells. 5. Stimulation of nerve trunks both central and peripheral to the ganglia evoked multiple, subthreshold, fast EPSPs in all type I cells tested. Fast EPSPs were blocked by the nicotinic antagonist hexamethonium. 6. Antidromic potentials were also observed following stimulation of either central or peripheral nerve trunks but never both. 7. In type I cells repetitive stimulation of both central and peripheral nerve trunks resulted in a slow, synaptically mediated depolarization which persisted during superfusion with nicotinic and muscarinic receptor antagonists. 8. Periods of low-frequency, spontaneous fast EPSPs and action potentials were observed in all type I cells tested. 9. It was concluded that parasympathetic neurones in cat pancreatic ganglia receive convergent fast and slow synaptic inputs from central and possibly peripheral sources and may function in vivo as sites of integration. The occurrence of spontaneous synaptic potentials in pancreatic ganglia suggests the possibility of intrinsic neural control of pancreatic function. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:2621634

  13. Cardiovascular effects of basal insulins.

    PubMed

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  14. Cardiovascular effects of basal insulins

    PubMed Central

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  15. Nevoid basal cell carcinoma syndrome (Gorlin syndrome)

    PubMed Central

    Lo Muzio, Lorenzo

    2008-01-01

    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms. The estimated prevalence varies from 1/57,000 to 1/256,000, with a male-to-female ratio of 1:1. Main clinical manifestations include multiple basal cell carcinomas (BCCs), odontogenic keratocysts of the jaws, hyperkeratosis of palms and soles, skeletal abnormalities, intracranial ectopic calcifications, and facial dysmorphism (macrocephaly, cleft lip/palate and severe eye anomalies). Intellectual deficit is present in up to 5% of cases. BCCs (varying clinically from flesh-colored papules to ulcerating plaques and in diameter from 1 to 10 mm) are most commonly located on the face, back and chest. The number of BBCs varies from a few to several thousand. Recurrent jaw cysts occur in 90% of patients. Skeletal abnormalities (affecting the shape of the ribs, vertebral column bones, and the skull) are frequent. Ocular, genitourinary and cardiovascular disorders may occur. About 5–10% of NBCCS patients develop the brain malignancy medulloblastoma, which may be a potential cause of early death. NBCCS is caused by mutations in the PTCH1 gene and is transmitted as an autosomal dominant trait with complete penetrance and variable expressivity. Clinical diagnosis relies on specific criteria. Gene mutation analysis confirms the diagnosis. Genetic counseling is mandatory. Antenatal diagnosis is feasible by means of ultrasound scans and analysis of DNA extracted from fetal cells (obtained by amniocentesis or chorionic villus sampling). Main differential diagnoses include Bazex syndrome, trichoepithelioma papulosum multiplex and Torre's syndrome (Muir-Torre's syndrome). Management requires a multidisciplinary approach. Keratocysts are treated by surgical removal. Surgery for BBCs is indicated when the number of lesions is limited; other treatments include laser ablation, photodynamic therapy and topical chemotherapy. Radiotherapy should be avoided. Vitamin A analogs may play a preventive role against development of new BCCs. Life expectancy in NBCCS is not significantly altered but morbidity from complications can be substantial. Regular follow-up by a multi-specialist team (dermatologist, neurologist and odontologist) should be offered. Patients with NBCCS should strictly avoid an excessive sun exposure. PMID:19032739

  16. Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging

    PubMed Central

    MĂŒller-Vahl, Kirsten R; Kaufmann, Jörn; Grosskreutz, Julian; Dengler, Reinhard; Emrich, Hinderk M; Peschel, Thomas

    2009-01-01

    Background Pathophysiological evidence suggests an involvement of fronto-striatal circuits in Tourette syndrome (TS). To identify TS related abnormalities in gray and white matter we used optimized voxel-based morphometry (VBM) and magnetization transfer imaging (MTI) which are more sensitive to tissue alterations than conventional MRI and provide a quantitative measure of macrostructural integrity. Methods Volumetric high-resolution anatomical T1-weighted MRI and MTI were acquired in 19 adult, unmedicated male TS patients without co-morbidities and 20 age- and sex-matched controls on a 1.5 Tesla neuro-optimized GE scanner. Images were pre-processed and analyzed using an optimized version of VBM in SPM2. Results Using VBM, TS patients showed significant decreases in gray matter volumes in prefrontal areas, the anterior cingulate gyrus, sensorimotor areas, left caudate nucleus and left postcentral gyrus. Decreases in white matter volumes were detected in the right inferior frontal gyrus, the left superior frontal gyrus and the anterior corpus callosum. Increases were found in the left middle frontal gyrus and left sensorimotor areas. In MTI, white matter reductions were seen in the right medial frontal gyrus, the inferior frontal gyrus bilaterally and the right cingulate gyrus. Tic severity was negatively correlated with orbitofrontal structures, the right cingulate gyrus and parts of the parietal-temporal-occipital association cortex bilaterally. Conclusion Our MRI in vivo neuropathological findings using two sensitive and unbiased techniques support the hypothesis that alterations in frontostriatal circuitries underlie TS pathology. We suggest that anomalous frontal lobe association and projection fiber bundles cause disinhibition of the cingulate gyrus and abnormal basal ganglia function. PMID:19435502

  17. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%. PMID:9596157

  18. Abnormal Myelin and Axonal Integrity in Recently Diagnosed Patients with Obstructive Sleep Apnea

    PubMed Central

    Kumar, Rajesh; Pham, Tiffany T.; Macey, Paul M.; Woo, Mary A.; Yan-Go, Frisca L.; Harper, Ronald M.

    2014-01-01

    Study Objectives: Patients with obstructive sleep apnea (OSA) show significant white matter injury; whether that injury represents myelin or axonal damage is unclear. The objective was to examine myelin and axonal changes in patients with newly diagnosed OSA over control subjects. Design: Cross-sectional study. Setting: University-based medical center. Participants: Twenty-three newly-diagnosed, treatment-naïve OSA and 23 age- and sex-matched control subjects. Interventions: None. Measurements and Results: Radial and axial diffusivity maps, calculated from diffusion tensor imaging data (3.0 Tesla MRI scanner), indicating diffusion perpendicular (myelin status) or parallel (axonal status) to fibers, respectively, were normalized, smoothed, and compared between groups (analysis of covariance; covariate: age). Global brain radial and axial diffusivity values, and global brain volume with myelin and axonal changes were determined, and region-of-interest analyses performed in areas of significant differences between groups based on voxel-based procedures. Global radial and axial diffusivity values were significantly reduced in OSA versus control subjects (radial, P = 0.004; axial, P = 0.019), with radial (myelin) diffusivity reduced more than axial (axonal), and more left-sided reduction for both measures. Localized declines for myelin and axonal measures appeared in the dorsal and ventral medulla, cerebellar cortex and deep nuclei, basal ganglia, hippocampus, amygdala, corpus callosum, insula, cingulate and medial frontal cortices, and other cortical areas (P < 0.005), all regions mediating functions affected in OSA. Conclusions: Fiber injury appears in critical medullary respiratory regulatory sites, as well as cognitive and autonomic control areas. Myelin is more affected in newly diagnosed OSA than axons, and primarily on the left side, possibly from the increased myelin sensitivity to hypoxia and asymmetric perfusion. Citation: Kumar R; Pham TT; Macey PM; Woo MA; Yan-Go FL; Harper RM. Abnormal myelin and axonal integrity in recently diagnosed patients with obstructive sleep apnea. SLEEP 2014;37(4):723-732. PMID:24899761

  19. Timely initiation of basal insulin.

    PubMed

    Riddle, Matthew C

    2004-02-01

    Recognition of the basal and postprandial components of hyperglycemia, in tandem with the development of new insulins and other clinical research, has led to a reassessment of type 2 diabetes mellitus treatment. In the future, insulin will be used earlier, treatment will intensify as the disease progresses, and combination therapy will be routine. Hyperglycemia can be controlled initially with sulfonylureas and metformin, agents that mainly improve control of fasting and preprandial glucose. When glycemic control can no longer be achieved with these and other oral agents alone, insulin treatment can be started as a single injection of a long-acting insulin. This method of supplementing basal insulin is safe, simple, and less likely to cause weight gain than multiple daily injections with shorter-acting insulins. Continuing oral agents during basal insulin therapy can provide a smoother transition to insulin and reduce the risk of loss of glycemic control. Of currently available insulins, glargine has the activity profile best suited to basal insulin therapy, with no prominent activity peak and a long duration of action, allowing a single daily injection in most cases. Although the traditional approach has been to introduce insulin therapy only after very high glucose values have persisted, despite prolonged use of oral agents alone, a more desirable strategy would be to prevent patients from ever experiencing the loss of glycemic control associated with hemoglobin A(1c) (HbA(1c)) elevations >7%. This goal could be achieved by diagnosing type 2 diabetes earlier in its course and by adding basal insulin to oral therapy much earlier. To maintain the recommended <7% HbA(1c) target level of control, treatments that target postprandial hyperglycemia will have to be added to basal insulin later on, as endogenous insulin continues to decline. PMID:15013454

  20. Peripheral effects of morphine and expression of ?-opioid receptors in the dorsal root ganglia during neuropathic pain: nitric oxide signaling

    PubMed Central

    2011-01-01

    Background The local administration of ?-opioid receptor (MOR) agonists attenuates neuropathic pain but the precise mechanism implicated in this effect is not completely elucidated. We investigated if nitric oxide synthesized by neuronal (NOS1) or inducible (NOS2) nitric oxide synthases could modulate the local antiallodynic effects of morphine through the peripheral nitric oxide-cGMP-protein kinase G (PKG)-ATP-sensitive K+ (KATP) channels signaling pathway activation and affect the dorsal root ganglia MOR expression during neuropathic pain. Results In wild type (WT) mice, the subplantar administration of morphine dose-dependently decreased the mechanical and thermal allodynia induced by the chronic constriction of the sciatic nerve (CCI), which effects were significantly diminished after their co-administration with different subanalgesic doses of a selective NOS1 (N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidine tris(trifluoroacetate) salt; NANT), NOS2 (L-N(6)-(1-iminoethyl)-lysine; L-NIL), L-guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ), PKG ((Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate; Rp-8-pCPT-cGMPs) inhibitor or a KATP channel blocker (glibenclamide). The evaluation of the expression of MOR in the dorsal root ganglia from sham-operated and sciatic nerve-injured WT, NOS1 knockout (KO) and NOS2-KO mice at 21 days after surgery demonstrated that, although the basal mRNA and protein levels of MOR were similar between WT and both NOS-KO animals, nerve injury only decreased their expression in WT mice. Conclusions These results suggest that the peripheral nitric oxide-cGMP-PKG-KATP signaling pathway activation participates in the local antiallodynic effects of morphine after sciatic nerve injury and that nitric oxide, synthesized by NOS1 and NOS2, is implicated in the dorsal root ganglia down-regulation of MOR during neuropathic pain. PMID:21486477

  1. Teachers' Decisions and Basal Reader Teachers' Manuals.

    ERIC Educational Resources Information Center

    Page, William D.

    Five speculations can be made about basal-series reading instruction: if it sells well, it may be bad; basal series may be based on marketing principles rather than educational principles; possession of a basal series by a school district tells llittle or nothing about the instruction in the school district that owns it; stories in basal series…

  2. Impaired L1 and Executive Control after Left Basal Ganglia Damage in a Bilingual Basque-Spanish Person with Aphasia

    ERIC Educational Resources Information Center

    Adrover-Roig, Daniel; Galparsoro-Izagirre, Nekane; Marcotte, Karine; Ferre, Perrine; Wilson, Maximiliano A.; Ansaldo, Ana Ines

    2011-01-01

    Bilinguals must focus their attention to control competing languages. In bilingual aphasia, damage to the fronto-subcortical loop may lead to pathological language switching and mixing and the attrition of the more automatic language (usually L1). We present the case of JZ, a bilingual Basque-Spanish 53-year-old man who, after haematoma in the


  3. Impaired L1 and Executive Control after Left Basal Ganglia Damage in a Bilingual Basque-Spanish Person with Aphasia

    ERIC Educational Resources Information Center

    Adrover-Roig, Daniel; Galparsoro-Izagirre, Nekane; Marcotte, Karine; Ferre, Perrine; Wilson, Maximiliano A.; Ansaldo, Ana Ines

    2011-01-01

    Bilinguals must focus their attention to control competing languages. In bilingual aphasia, damage to the fronto-subcortical loop may lead to pathological language switching and mixing and the attrition of the more automatic language (usually L1). We present the case of JZ, a bilingual Basque-Spanish 53-year-old man who, after haematoma in the…

  4. Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging.

    PubMed

    Wang, Dan; Li, Yan-Ying; Luo, Jian-Hua; Li, Yue-Hua

    2014-01-01

    This study aimed to investigate age-related iron deposition changes in healthy subjects and Alzheimer disease patients using susceptibility weighted imaging. The study recruited 182 people, including 143 healthy volunteers and 39 Alzheimer disease patients. All underwent conventional magnetic resonance imaging and susceptibility weighted imaging sequences. The groups were divided according to age. Phase images were used to investigate iron deposition in the bilateral head of the caudate nucleus, globus pallidus and putamen, and the angle radian value was calculated. We hypothesized that age-related iron deposition changes may be different between Alzheimer disease patients and controls of the same age, and that susceptibility weighted imaging would be a more sensitive method of iron deposition quantification. The results revealed that iron deposition in the globus pallidus increased with age, up to 40 years. In the head of the caudate nucleus, iron deposition peaked at 60 years. There was a general increasing trend with age in the putamen, up to 50-70 years old. There was significant difference between the control and Alzheimer disease groups in the bilateral globus pallidus in both the 60-70 and 70-80 year old group comparisons. In conclusion, iron deposition increased with age in the globus pallidus, the head of the caudate nucleus and putamen, reaching a plateau at different ages. Furthermore, comparisons between the control and Alzheimer disease group revealed that iron deposition changes were more easily detected in the globus pallidus. PMID:24820446

  5. A novel mutation in TTC19 associated with isolated complex III deficiency, cerebellar hypoplasia, and bilateral basal ganglia lesions

    PubMed Central

    Melchionda, Laura; Damseh, Nadirah S.; Abu Libdeh, Bassam Y.; Nasca, Alessia; Elpeleg, Orly; Zanolini, Alice; Ghezzi, Daniele

    2014-01-01

    Isolated complex III (cIII) deficiency is a rare biochemical finding in mitochondrial disorders, mainly associated with mutations in mitochondrial DNA MTCYB gene, encoding cytochrome b, or in assembly factor genes (BCS1L, TTC19, UQCC2, and LYRM7), whereas mutations in nuclear genes encoding cIII structural subunits are extremely infrequent. We report here a patient, a 9 year old female born from first cousin related parents, with normal development till 18 months when she showed unsteady gait with frequent falling down, cognitive, and speech worsening. Her course deteriorated progressively. Brain MRI showed cerebellar vermis hypoplasia and bilateral lentiform nucleus high signal lesions. Now she is bed ridden with tetraparesis and severely impaired cognitive and language functions. Biochemical analysis revealed isolated cIII deficiency in muscle, and impaired respiration in fibroblasts. We identified a novel homozygous rearrangement in TTC19 (c.213_229dup), resulting in frameshift with creation of a premature termination codon (p.Gln77Argfs*30). Western blot analysis demonstrated the absence of TTC19 protein in patient’s fibroblasts, while Blue-Native Gel Electrophoresis analysis revealed the presence of cIII-specific assembly intermediates. Mutations in TTC19 have been rarely associated with mitochondrial disease to date, being described in about ten patients with heterogeneous clinical presentations, ranging from early onset encephalomyopathy to adult forms with cerebellar ataxia. Contrariwise, the biochemical defect was a common hallmark in TTC19 mutant patients, confirming the importance of TTC19 in cIII assembly/stability. Therefore, we suggest extending the TTC19 mutational screening to all patients with cIII deficiency, independently from their phenotypes. PMID:25452764

  6. [The role of the basal ganglia in the reproducibility of instrumental reactions acquired to electrostimulation of the hippocampus].

    PubMed

    Grigor'ian, G A; Chilingarian, L I

    1990-01-01

    In dogs with electrodes implanted into the brain, a defensive instrumental conditioned reflex (CR) was elaborated to light flashes, stimulation of the dorsal hippocampus (DH) and caudate nucleus (CN) stimulation. Reproducibility of the learned movement was tested for the contralateral DN, CN, nucleus accumbens (AN) and pallid globe (PG). In the second series the percent of the elicited movements was compared to EPs, appearing in response to signal and testing stimulation. The degree was elucidated of structures participation in motivational, signal and executive links of CR. Low degree of AN participation in the executive CR link (2-nd series) and a high degree of AN and PG participation in the signal link (3-d series) were shown. Thus, intrasystemic CR generalization was more effective than the intersystemic one. PMID:2166389

  7. Quantitative conjugate imaging of iodine-123 and technetium-99m labeled brain agents in the basal ganglia

    NASA Astrophysics Data System (ADS)

    Jangha, Desiree N.

    In the research reported in this dissertation, the concept of classic conjugate imaging, a non-tomographic nuclear medicine technique, is modified such that activity of a radiopharmaceutical distribution in the striata can be estimated. A mathematical model is developed that extended the application of classic conjugate imaging to estimation of two distinct and aligned activity distributions. Error analysis of the mathematical model is performed to characterize the accuracy of the model and to benchmark the limitations of the model. Phantom experiments are performed to demonstrate the practical application of the model and to evaluate its' accuracy. A Monte Carlo simulation model of conjugate imaging of activity uptake in the striata of a primate is developed to evaluate the accuracy of the modified conjugate imaging technique as applied in the use of a dedicate conjugate imaging system. In addition, the simulation model is used to determine and characterize the shielding design of the small field of view gamma cameras comprising the dedicated conjugate imaging system. The application of scatter correction is investigated to address the downscatter of high-energy photon emissions into the photopeak window and the inclusion of scattered primary photons in the photopeak window. In this dissertation, it is shown that the modified conjugate imaging technique developed can be used to estimate accurately activity uptake in each of two distinct and aligned activity distributions. The accuracy of the technique was shown to be comparable to that of clinical quantitative SPECT. The modified conjugate imaging technique used with the dedicated conjugate imaging system may, therefore, be a viable quantitative nuclear medicine technique for activity estimation of radiopharmaceutical uptake in the striata of Parkinsonian and schizophrenic patients. The portability and low cost relative to SPECT systems make the dedicated conjugate imaging system advantageous for clinics with Parkinsonian and schizophrenic patients, who are unable to travel due to physical or mental limitation.

  8. Postinjection L-phenylalanine increases basal ganglia contrast in PET scans of 6-18F-DOPA

    SciTech Connect

    Doudet, D.J.; McLellan, C.A.; Aigner, T.G.; Wyatt, R.; Adams, H.R.; Miyake, H.; Finn, R.T.; Cohen, R.M. )

    1991-07-01

    The sensitivity of 18F-DOPA positron emission tomography for imaging presynaptic dopamine systems is limited by the amount of specific-to-nonspecific accumulation of radioactivity in brain. In rhesus monkeys, we have been able to increase this ratio by taking advantage of the lag time between 18F-DOPA injection and the formation of its main metabolite, the amino acid 18F-fluoromethoxydopa, the entrance of which into brain is responsible for most of the brain's nonspecific radioactivity. By infusing an unlabeled amino acid, L-phenylalanine, starting 15 min after 18F-DOPA administration, we preferentially blocked the accumulation of 18F-fluoromethoxydopa by preventing its entrance into brain through competition at the large neutral amino acid transport system of the blood-brain barrier. This method appears as reliable as the original and more sensitive, as demonstrated by the comparison of normal and MPTP-treated animals under both conditions.

  9. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia.

    PubMed

    Moghaddam, B

    1993-05-01

    The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed. PMID:8097232

  10. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies.

    PubMed

    Khamassi, Mehdi; Humphries, Mark D

    2012-01-01

    Behavior in spatial navigation is often organized into map-based (place-driven) vs. map-free (cue-driven) strategies; behavior in operant conditioning research is often organized into goal-directed vs. habitual strategies. Here we attempt to unify the two. We review one powerful theory for distinct forms of learning during instrumental conditioning, namely model-based (maintaining a representation of the world) and model-free (reacting to immediate stimuli) learning algorithms. We extend these lines of argument to propose an alternative taxonomy for spatial navigation, showing how various previously identified strategies can be distinguished as "model-based" or "model-free" depending on the usage of information and not on the type of information (e.g., cue vs. place). We argue that identifying "model-free" learning with dorsolateral striatum and "model-based" learning with dorsomedial striatum could reconcile numerous conflicting results in the spatial navigation literature. From this perspective, we further propose that the ventral striatum plays key roles in the model-building process. We propose that the core of the ventral striatum is positioned to learn the probability of action selection for every transition between states of the world. We further review suggestions that the ventral striatal core and shell are positioned to act as "critics" contributing to the computation of a reward prediction error for model-free and model-based systems, respectively. PMID:23205006

  11. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies

    PubMed Central

    Khamassi, Mehdi; Humphries, Mark D.

    2012-01-01

    Behavior in spatial navigation is often organized into map-based (place-driven) vs. map-free (cue-driven) strategies; behavior in operant conditioning research is often organized into goal-directed vs. habitual strategies. Here we attempt to unify the two. We review one powerful theory for distinct forms of learning during instrumental conditioning, namely model-based (maintaining a representation of the world) and model-free (reacting to immediate stimuli) learning algorithms. We extend these lines of argument to propose an alternative taxonomy for spatial navigation, showing how various previously identified strategies can be distinguished as “model-based” or “model-free” depending on the usage of information and not on the type of information (e.g., cue vs. place). We argue that identifying “model-free” learning with dorsolateral striatum and “model-based” learning with dorsomedial striatum could reconcile numerous conflicting results in the spatial navigation literature. From this perspective, we further propose that the ventral striatum plays key roles in the model-building process. We propose that the core of the ventral striatum is positioned to learn the probability of action selection for every transition between states of the world. We further review suggestions that the ventral striatal core and shell are positioned to act as “critics” contributing to the computation of a reward prediction error for model-free and model-based systems, respectively. PMID:23205006

  12. Nevoid basal cell carcinoma syndrome

    MedlinePLUS

    ... eye Head swelling due to fluid on the brain ( hydrocephalus) Rib abnormalities Tests that may be done include: Echocardiogram of the heart Genetic testing (in some patients) MRI of the brain Skin ...

  13. Teachers Reflect Standards in Basals

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    Dozens of teachers and literacy specialists from across the country hunkered down in Baltimore at round tables, with laptops, pens, and paper, intent on rewriting the collections that wield tremendous influence over the way millions of U.S. children learn literacy skills: the big-name basal readers. Hailing from 18 school districts in 11 states,


  14. Teachers Reflect Standards in Basals

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    Dozens of teachers and literacy specialists from across the country hunkered down in Baltimore at round tables, with laptops, pens, and paper, intent on rewriting the collections that wield tremendous influence over the way millions of U.S. children learn literacy skills: the big-name basal readers. Hailing from 18 school districts in 11 states,…

  15. Extending the Basal Reading Program.

    ERIC Educational Resources Information Center

    Greenlaw, M. Jean; Lankford, Mary D.

    Ten suggestions that can help the elementary school teacher expand and enhance the basal reading program are (1) collect additional material on the authors, genres, and art media found in the series; (2) supplement the program with audiovisual and human, as well as printed, resources; (3) meet with other staff members to plan the curriculum; (4)…

  16. Tooth - abnormal shape

    MedlinePLUS

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  17. Gene Therapy of the Peripheral Nervous System: Celiac Ganglia.

    PubMed

    Hammond, Bradley; Kreulen, David L

    2016-01-01

    Gene therapy has played an integral role in advancing our understanding of the central nervous system. However, gene therapy techniques have yet to be widely utilized in the peripheral nervous system. Critical targets for gene therapy within the PNS are the neurons in sympathetic ganglia, which are the final pathway to end organs. Thus they are the most specific targets for organ-specific neuron modification. This presents challenges because neurons are not viscerotopically organized within the ganglia and therefore cannot be targeted by their location. However, organ-specific neurons have been identified in sympathetic ganglia of some species and this offers an opportunity for targeting and transducing neurons by way of their target. In fact, alterations in sympathetic neurons have had pathological effects, and transducing organ-specific sympathetic neurons offer an exciting opportunity to selectively modify sympathetic pathology. In this chapter, we describe a method to virally transduce the celiac ganglion (CG), a prevertebral sympathetic ganglion that innervates abdominal organs, with AAV serotypes 1 and 6; thereby, providing a potential avenue to modulate specific subsets of neurons within the celiac ganglion. PMID:26611594

  18. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; AltmĂŒller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, GĂŒnter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  19. Epidemiology of basal cell carcinoma in the United Kingdom: incidence, lifestyle factors, and comorbidities

    PubMed Central

    Reinau, D; Surber, C; Jick, S S; Meier, C R

    2014-01-01

    Background: Little is known about the epidemiology of basal cell carcinoma (BCC). Methods: Using the Clinical Practice Research Datalink, we calculated annual incidence rates. In a case–control analysis, we examined lifestyle factors and comorbidities. Results: Incidence rose significantly between 2000 and 2011. Basal cell carcinoma risk was increased in alcohol drinkers (slightly) and immunocompromised patients, but reduced in smokers and individuals with abnormal weight. Conclusions: Basal cell carcinoma places a growing public health burden. Lifestyle factors do not play a major role in pathogenesis, but immunosuppression is important. PMID:24874476

  20. Urine - abnormal color

    MedlinePLUS

    The usual color of urine is straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. ... Abnormal urine color may be caused by infection, disease, medicines, or food you eat. Cloudy or milky urine is a sign ...

  1. Skeletal limb abnormalities

    MedlinePLUS

    Skeletal limb abnormalities refers to a variety of bone structure problems in the arms or legs (limbs). ... The term skeletal limb abnormalities is most often used to describe defects in the legs or arms that are due to a problem with your ...

  2. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  3. Coronary disease, cardioneuropathy, and conduction system abnormalities in the cardiomyopathy of Friedreich's ataxia.

    PubMed Central

    James, T N; Cobbs, B W; Coghlan, H C; McCoy, W C; Fisch, C

    1987-01-01

    Abnormalities of the heart are a frequent and possibly ubiquitous problem in patients with Friedreich's ataxia, but their pathogenesis is unclear. Postmortem findings are reported from the hearts of three patients with Friedreich's ataxia who died of congestive heart failure and atrial arrhythmias. Particular attention was paid to the following: the large and small coronary arteries, the nerves and ganglia, the conduction system, and the histological and cellular features of the cardiomyopathy. There were pleomorphic nuclei and focal fibrosis and degeneration throughout each heart including the conduction system. There were distinctive abnormalities of both large and small coronary arteries, and focal degeneration of nerves and ganglia. These observations suggest a mosaic concept for the pathogenesis for the cardiomyopathy of Friedreich's ataxia that involves the interplay of molecular faults, cardiomyopathy, cardioneuropathy, and coronary disease. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 Fig 9 Fig 10 Fig 11 PMID:3593615

  4. Basal body structure in Trichonympha.

    PubMed

    Guichard, Paul; Gönczy, Pierre

    2016-01-01

    Trichonympha is a symbiotic flagellate of many species of termites and of the wood-feeding cockroach. Remarkably, this unicellular organism harbors up to over ten thousand flagella on its surface, which serve to propel it through the viscous environment of the host hindgut. In the 1960s, analysis of resin-embedded Trichonympha samples by electron microscopy revealed that the basal bodies that give rise to these flagella are exceptionally long, with a proximal, cartwheel-bearing, region some 50 times longer than that of regular centrioles. In recent years, this salient feature has prompted the analysis of the 3D architecture of Trichonympha basal bodies in the native state using cryo-electron tomography. The resulting ~40 Å resolution map of the basal body proximal region revealed a number of novel features that may be conserved in centrioles of other systems. These include proximal-distal polarity of the pinhead structure that links the cartwheel to centriolar microtubules, as well as of the linker between the A and the C microtubules. Moreover, this work demonstrated that the cartwheel is made of stacked ring-like structures that likely each comprise 18 molecules of SAS-6 proteins. PMID:26937279

  5. Multiple keratocystic odontogenic tumors in nevoid basal cell carcinoma syndrome

    PubMed Central

    Pereira, Treville; Tamgadge, Avinash; Sapdhare, Swati; Pujar, Ashwini

    2015-01-01

    Keratocystic odontogenic tumor (KCOT) is of particular interest because its recurrence rate is high and its behavior is aggressive. Nevoid basal cell carcinoma syndrome (NBCCS), which is also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and with a predisposition to neoplasms. These multiple KCOTs have warranted an aggressive treatment at the earliest because of the damage and possible complications. Recurrence of these lesions is a characteristic feature that has to be considered while explaining the prognosis to the patient. Here, we report a case of a 14-year-old boy with clinical features of basal cell nevus syndrome and multiple KCOTs. In addition to the other common features, congenitally missing third molars in all the four quadrants is a feature which has not been previously reported in association with NBCCS in Indian patients. PMID:26981489

  6. Chromosomal abnormalities in oocytes.

    PubMed

    Plachot, M

    2001-10-22

    Since the beginning of in vitro fertilization (IVF), basic research has provided insight in the field of human reproduction, especially in genetics. Indeed, the contribution of chromosomal abnormalities to oocyte disorders and impaired embryonic development is now well known. Of oocytes that fail to fertilize after in vitro insemination, 26.5% have been found to be abnormal, with 13.3% showing hypohaploidy, 8.1% hyperhaploidy, 1.6% structural abnormalities and 3.5% diploidy. The total incidence of abnormalities seems to be correlated with the fertility status of the woman. It is higher in oocytes from women with tubal or unexplained infertility than in those from women whose husband's infertility is the sole cause of infertility in the couple. Although few oocytes recovered during natural cycles have been studied, gonadotropins, which are widely used to stimulate follicle growth and ovulation, do not increase the risk of abnormalities. The effect of maternal age on fetal aneuploidy, well documented at birth, has not been unambiguously shown to result from an increase in the frequency of aneuploid oocytes. Intra- and extra-follicular influences (perifollicular microvasculature, oxygenation, and the presence of residues from cigarette smoke) may disturb maturation, leading to immaturity and aneuploidy. Thus, oocyte meiosis is very sensitive to endogenous and exogenous factors that could result in oocytes with chromosomal abnormalities and therefore, abnormal zygotes. PMID:11576735

  7. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2754765

  8. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    SciTech Connect

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H. ); Murray, R.S. Veterans Administration Medical Center, Denver, CO )

    1988-04-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia.

  9. Abnormal Uterine Bleeding

    MedlinePLUS

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  10. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  11. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium. PMID:21572528

  12. Aplysia Ganglia Preparation for Electrophysiological and Molecular Analyses of Single Neurons

    PubMed Central

    Akhmedov, Komol; Kadakkuzha, Beena M.; Puthanveettil, Sathyanarayanan V.

    2014-01-01

    A major challenge in neurobiology is to understand the molecular underpinnings of neural circuitry that govern a specific behavior. Once the specific molecular mechanisms are identified, new therapeutic strategies can be developed to treat abnormalities in specific behaviors caused by degenerative diseases or aging of the nervous system. The marine snail Aplysia californica is well suited for the investigations of cellular and molecular basis of behavior because neural circuitry underlying a specific behavior could be easily determined and the individual components of the circuitry could be easily manipulated. These advantages of Aplysia have led to several fundamental discoveries of neurobiology of learning and memory. Here we describe a preparation of the Aplysia nervous system for the electrophysiological and molecular analyses of individual neurons. Briefly, ganglion dissected from the nervous system is exposed to protease to remove the ganglion sheath such that neurons are exposed but retain neuronal activity as in the intact animal. This preparation is used to carry out electrophysiological measurements of single or multiple neurons. Importantly, following the recording using a simple methodology, the neurons could be isolated directly from the ganglia for gene expression analysis. These protocols were used to carry out simultaneous electrophysiological recordings from L7 and R15 neurons, study their response to acetylcholine and quantitating expression of CREB1 gene in isolated single L7, L11, R15, and R2 neurons of Aplysia. PMID:24457225

  13. Discourse Types in Canadian Basal Reading Programs.

    ERIC Educational Resources Informa