Science.gov

Sample records for abnormal brain activity

  1. Sources of abnormal EEG activity in brain infarctions.

    PubMed

    Fernández-Bouzas, A; Harmony, T; Fernández, T; Silva-Pereyra, J; Valdés, P; Bosch, J; Aubert, E; Casián, G; Otero Ojeda, G; Ricardo, J; Hernández-Ballesteros, A; Santiago, E

    2000-10-01

    EEGs from 16 patients with stroke in three different stages of evolution were recorded. EEG sources were calculated every 0.39 Hz by frequency domain VARETA. The main source was within the delta band in 2 out of 4 chronic patients, and in 67% of the patients in the acute or subacute stages when edema (cytotoxic or vasogenic) was present. Moreover, all patients showed abnormal activity in the theta band. Sources of abnormal activity in cortical or corticosubcortical infarcts were located in the cortex, surrounding the lesion. At the site of the infarct, a decrease of EEG power was observed. Sources of abnormal theta power coincided with edema and/or ischemic penumbra. PMID:11056837

  2. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies. PMID:25311587

  3. Associations between Circadian Activity Rhythms and Functional Brain Abnormalities among Euthymic Bipolar Patients: A Preliminary Study

    PubMed Central

    McKenna, Benjamin S.; Drummond, Sean P. A.; Eyler, Lisa T.

    2014-01-01

    Background Working memory and underlying functional brain deficits have been observed in euthymic bipolar disorder (BD) patients, though there is heterogeneity in the degree of deficits. Sleep/circadian rhythm abnormalities are thought to be a core component of BD and may explain some of the heterogeneity in functional abnormalities. This preliminary study examined associations between sleep/circadian rhythm abnormalities and functional magnetic resonance imaging (fMRI) brain response on a working memory task among BD patients. Methods Fourteen euthymic medicated BD patients wore an actigraph for seven days before undergoing fMRI with a working memory task. Two matched healthy comparison (HC) groups were used (14 in each sample). One group completed the actigraphy portion and one completed the fMRI portion of the study. Circadian activity rhythm and sleep variables were calculated and compared between BD and HC participants. Variables that significantly differed were used to examine the association between activity rhythms/sleep abnormalities and fMRI working memory brain response in anatomically defined regions. Results Sleep efficiency and the rhythm robustness, mesor, and amplitude-to-width ratio were significantly abnormal in BD patients. Individual variability in all the sleep/circadian variables was significantly associated with the degree of abnormality of brain response in the dorsolateral prefrontal cortex and supramarginal gyri. Limitations Small sample size and multiple comparison groups limit the interpretability of these findings. Conclusions BD patients have abnormal activity rhythms and sleep efficiency, which are associated with abnormal working memory brain response. These preliminary findings support the notion that the sleep/circadian system is important in the functional brain deficits among BD patients. PMID:24856561

  4. The MEG topography and the source model of abnormal neural activities associated with brain lesions

    SciTech Connect

    Ueno, S.; Iramina, K.; Ozaki, H.; Harada, K.

    1986-09-01

    A source model is proposed to simulate spatial distributions of abnormal MEG and EEG activities generated by abnormal neural activities such as the delta activity associated with brain tumors. Brain tumor itself is electrically silent and the spherical shell around the tumor might generate abnormal neural activities. The sources of these neural activities are represented by combinations of multiple current dipoles. The head is assumed to be a spherical volume conductor. Electrical potentials and magnetic fields over the surface of the spheres are calculated. The computer simulation shows that the MEG topography and EEG topography vary variously with combinations of location and orientation of the dipoles. In a special case, however, that the dipoles orient in the same direction or orient radially, the spatial patterns of the MEGs and EEGs generated by numerous dipoles are analogous to those generated by single dipoles.

  5. Abnormal brain activation during directed forgetting of negative memory in depressed patients.

    PubMed

    Yang, Wenjing; Chen, Qunlin; Liu, Peiduo; Cheng, Hongsheng; Cui, Qian; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang

    2016-01-15

    The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression. PMID:26639452

  6. Abnormal spontaneous brain activity in minimal hepatic encephalopathy: resting-state fMRI study

    PubMed Central

    Zhong, Wei-Jia; Zhou, Zhi-Ming; Zhao, Jian-Nong; Wu, Wei; Guo, Da-Jing

    2016-01-01

    PURPOSE We aimed to assess the abnormality of baseline spontaneous brain activity in minimal hepatic encephalopathy (MHE) by amplitude of low frequency fluctuation (ALFF) and fraction ALFF (fALFF). METHODS A total of 14 MHE patients and 14 healthy controls were included in our study. Both ALFF and fALFF of functional magnetic resonance imaging were calculated for statistical analysis. RESULTS Compared with healthy controls, patients with MHE had significantly decreased ALFF in the bilateral medial prefrontal cortex (MPFC), left superior frontal gyrus, right precentral gyrus, left opercular part of inferior frontal gyrus, left gyrus rectus, bilateral precuneus, and the posterior lobe of right cerebellum; and they had significantly decreased fALFF in the bilateral MPFC, right middle frontal gyrus, right superior temporal gyrus, and the posterior lobe of left cerebellum. CONCLUSION ALFF and fALFF changes in many brain regions demonstrate abnormality of the spontaneous neuronal activity in MHE. Especially the impairment of right precuneus and left MPFC may play a critical role in manifestation of MHE. Changes of ALFF and fALFF in the precuneus and the MPFC can be used as a potential marker for MHE. PMID:26742646

  7. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation.

    PubMed

    Israelashvili, Michal; Loewenstern, Yocheved; Bar-Gad, Izhar

    2015-07-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  8. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder

    PubMed Central

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  9. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder.

    PubMed

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R; Fan, Jin

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  10. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model

    PubMed Central

    Nakao, Kazuhito; Nakazawa, Kazu

    2014-01-01

    In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The “paradoxically” high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception. PMID:25018691

  11. Abnormal Baseline Brain Activity in Patients with Pulsatile Tinnitus: A Resting-State fMRI Study

    PubMed Central

    Han, Lv; Zhaohui, Liu; Fei, Yan; Ting, Li; Pengfei, Zhao; Wang, Du; Cheng, Dong; Pengde, Guo; Xiaoyi, Han; Xiao, Wang; Rui, Li; Zhenchang, Wang

    2014-01-01

    Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT) patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI) technique. The present study used unilateral PT patients (n = 42) and age-, sex-, and education-matched normal control subjects (n = 42) to investigate the changes in structural and amplitude of low-frequency (ALFF) of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG) and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients. PMID:24872895

  12. Abnormal Brain Activity in Social Reward Learning in Children with Autism Spectrum Disorder: An fMRI Study

    PubMed Central

    Choi, Uk-Su; Kim, Sun-Young; Sim, Hyeon Jeong; Lee, Seo-Young; Park, Sung-Yeon; Jeong, Joon-Sup; Seol, Kyeong In; Yoon, Hyo-Woon; Jhung, Kyungun; Park, Jee-In

    2015-01-01

    Purpose We aimed to determine whether Autism Spectrum Disorder (ASD) would show neural abnormality of the social reward system using functional MRI (fMRI). Materials and Methods 27 ASDs and 12 typically developing controls (TDCs) participated in this study. The social reward task was developed, and all participants performed the task during fMRI scanning. Results ASDs and TDCs with a social reward learning effect were selected on the basis of behavior data. We found significant differences in brain activation between the ASDs and TDCs showing a social reward learning effect. Compared with the TDCs, the ASDs showed reduced activity in the right dorsolateral prefrontal cortex, right orbitofrontal cortex, right parietal lobe, and occipital lobe; however, they showed increased activity in the right parahippocampal gyrus and superior temporal gyrus. Conclusion These findings suggest that there might be neural abnormality of the social reward learning system of ASDs. Although this study has several potential limitations, it presents novel findings in the different neural mechanisms of social reward learning in children with ASD and a possible useful biomarker of high-functioning ASDs. PMID:25837176

  13. Abnormal brain activation and connectivity to standardized disorder-related visual scenes in social anxiety disorder.

    PubMed

    Heitmann, Carina Yvonne; Feldker, Katharina; Neumeister, Paula; Zepp, Britta Maria; Peterburs, Jutta; Zwitserlood, Pienie; Straube, Thomas

    2016-04-01

    Our understanding of altered emotional processing in social anxiety disorder (SAD) is hampered by a heterogeneity of findings, which is probably due to the vastly different methods and materials used so far. This is why the present functional magnetic resonance imaging (fMRI) study investigated immediate disorder-related threat processing in 30 SAD patients and 30 healthy controls (HC) with a novel, standardized set of highly ecologically valid, disorder-related complex visual scenes. SAD patients rated disorder-related as compared with neutral scenes as more unpleasant, arousing and anxiety-inducing than HC. On the neural level, disorder-related as compared with neutral scenes evoked differential responses in SAD patients in a widespread emotion processing network including (para-)limbic structures (e.g. amygdala, insula, thalamus, globus pallidus) and cortical regions (e.g. dorsomedial prefrontal cortex (dmPFC), posterior cingulate cortex (PCC), and precuneus). Functional connectivity analysis yielded an altered interplay between PCC/precuneus and paralimbic (insula) as well as cortical regions (dmPFC, precuneus) in SAD patients, which emphasizes a central role for PCC/precuneus in disorder-related scene processing. Hyperconnectivity of globus pallidus with amygdala, anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) additionally underlines the relevance of this region in socially anxious threat processing. Our findings stress the importance of specific disorder-related stimuli for the investigation of altered emotion processing in SAD. Disorder-related threat processing in SAD reveals anomalies at multiple stages of emotion processing which may be linked to increased anxiety and to dysfunctionally elevated levels of self-referential processing reported in previous studies. Hum Brain Mapp 37:1559-1572, 2016. © 2016 Wiley Periodicals, Inc. PMID:26806013

  14. Schizophrenia and abnormal brain network hubs

    PubMed Central

    Rubinov, Mikail; Bullmore, Ed.

    2013-01-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia. PMID:24174905

  15. Brain Abnormalities in Neuromyelitis Optica Spectrum Disorder

    PubMed Central

    Kim, Woojun; Kim, Su-Hyun; Huh, So-Young; Kim, Ho Jin

    2012-01-01

    Neuromyelitis optica (NMO) is an idiopathic inflammatory syndrome of the central nervous system that is characterized by severe attacks of optic neuritis (ON) and myelitis. Until recently, NMO was considered a disease without brain involvement. However, since the discovery of NMO-IgG/antiaqaporin-4 antibody, the concept of NMO was broadened to NMO spectrum disorder (NMOSD), and brain lesions are commonly recognized. Furthermore, some patients present with brain symptoms as their first manifestation and develop recurrent brain symptoms without ON or myelitis. Brain lesions with characteristic locations and configurations can be helpful in the diagnosis of NMOSD. Due to the growing recognition of brain abnormalities in NMOSD, these have been included in the NMO and NMOSD diagnostic criteria or guidelines. Recent technical developments such as diffusion tensor imaging, MR spectroscopy, and voxel-based morphometry reveal new findings related to brain abnormalities in NMOSD that were not identified using conventional MRI. This paper focuses on the incidence and characteristics of the brain lesions found in NMOSD and the symptoms that they cause. Recent studies using advanced imaging techniques are also introduced. PMID:23259063

  16. Developmental disruptions underlying brain abnormalities in ciliopathies

    PubMed Central

    Guo, Jiami; Higginbotham, Holden; Li, Jingjun; Nichols, Jackie; Hirt, Josua; Ghukasyan, Vladimir; Anton, E.S.

    2015-01-01

    Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies. PMID:26206566

  17. Developmental disruptions underlying brain abnormalities in ciliopathies.

    PubMed

    Guo, Jiami; Higginbotham, Holden; Li, Jingjun; Nichols, Jackie; Hirt, Josua; Ghukasyan, Vladimir; Anton, E S

    2015-01-01

    Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies. PMID:26206566

  18. Glucocorticoids, cytokines and brain abnormalities in depression

    PubMed Central

    Zunszain, Patricia A.; Anacker, Christoph; Cattaneo, Annamaria; Carvalho, Livia A.; Pariante, Carmine M.

    2010-01-01

    Major depression (MD) is a common psychiatric disorder with a complex and multifactor aetiology. Potential mechanisms associated with the pathogenesis of this disorder include monoamine deficits, hypothalamic-pituitary-adrenal (HPA) axis dysfunctions, inflammatory and/or neurodegenerative alterations. An increased secretion and reactivity of cortisol together with an altered feedback inhibition are the most widely observed HPA abnormalities in MD patients. Glucocorticoids, such as cortisol, are vital hormones that are released in response to stress, and regulate metabolism and immunity but also neuronal survival and neurogenesis. Interestingly depression is highly prevalent in infectious, autoimmune and neurodegenerative diseases and at the same time, depressed patients show higher levels of pro-inflammatory cytokines. Since communication occurs between the endocrine, immune and central nervous system, an activation of the inflammatory responses can affect neuroendocrine processes, and vice versa. Therefore, HPA axis hyperactivity and inflammation might be part of the same pathophysiological process: HPA axis hyperactivity is a marker of glucocorticoid resistance, implying ineffective action of glucocorticoid hormones on target tissues, which could lead to immune activation; and, equally, inflammation could stimulate HPA axis activity via both a direct action of cytokines on the brain and by inducing glucocorticoid resistance. In addition, increased levels of pro-inflammatory cytokines also induce the production of neurotoxic end products of the tryptophan–kynurenine pathway. Although the evidence for neurodegeneration in MD is controversial, depression is comorbid with many other conditions where neurodegeneration is present. Since several systems seem to be involved interacting with each other, we cannot unequivocally accept the simple model that glucocorticoids induce neurodegeneration, but rather that elevated cytokines, in the context of glucocorticoid resistance, are probably the offenders. Chronic inflammatory changes in the presence of glucocorticoid resistance may represent a common feature that could be responsible for the enhanced vulnerability of depressed patients to develop neurodegenerative changes later in life. However, further studies are needed to clarify the relative contribution of glucocorticoids and inflammatory signals to MD and other disorders. PMID:20406665

  19. Abnormal Asymmetry of Brain Connectivity in Schizophrenia

    PubMed Central

    Ribolsi, Michele; Daskalakis, Zafiris J.; Siracusano, Alberto; Koch, Giacomo

    2014-01-01

    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia. PMID:25566030

  20. Mapping brain abnormalities in boys with autism.

    PubMed

    Brun, Caroline C; Nicolson, Rob; Leporé, Natasha; Chou, Yi-Yu; Vidal, Christine N; DeVito, Timothy J; Drost, Dick J; Williamson, Peter C; Rajakumar, Nagalingam; Toga, Arthur W; Thompson, Paul M

    2009-12-01

    Children with autism spectrum disorder (ASD) exhibit characteristic cognitive and behavioral differences, but no systematic pattern of neuroanatomical differences has been consistently found. Recent neurodevelopmental models posit an abnormal early surge in subcortical white matter growth in at least some autistic children, perhaps normalizing by adulthood, but other studies report subcortical white matter deficits. To investigate the profile of these alterations in 3D, we mapped brain volumetric differences using a relatively new method, tensor-based morphometry. 3D T1-weighted brain MRIs of 24 male children with ASD (age: 9.5 years +/- 3.2 SD) and 26 age-matched healthy controls (age: 10.3 +/- 2.4 SD) were fluidly registered to match a common anatomical template. Autistic children had significantly enlarged frontal lobes (by 3.6% on the left and 5.1% on the right), and all other lobes of the brain were enlarged significantly, or at trend level. By analyzing the applied deformations statistically point-by-point, we detected significant gray matter volume deficits in bilateral parietal, left temporal and left occipital lobes (P = 0.038, corrected), trend-level cerebral white matter volume excesses, and volume deficits in the cerebellar vermis, adjacent to volume excesses in other cerebellar regions. This profile of excesses and deficits in adjacent regions may (1) indicate impaired neuronal connectivity, resulting from aberrant myelination and/or an inflammatory process, and (2) help to understand inconsistent findings of regional brain tissue excesses and deficits in autism. PMID:19554561

  1. Novel brain MRI abnormalities in Gitelman syndrome.

    PubMed

    El Beltagi, Ahmed; Norbash, Alexander; Vattoth, Surjith

    2015-10-01

    Gitelman syndrome is an autosomal recessive renal tubular disorder characterized by hypokalemic metabolic alkalosis, hypomagnesemia and hypocalciuria. The syndrome is caused by a defective thiazide-sensitive sodium chloride co-transporter in the distal convoluted tubules of the kidneys. Gitelman syndrome could be confused with Bartter syndrome; the main differentiating feature is the presence of low urinary calcium excretion in the former. Descriptions of neuroradiological imaging findings associated with Gitelman syndrome are very scarce in the literature and include basal ganglia calcification, idiopathic intracranial hypertension and sclerochoroidal calcification. Cauda equina syndrome-like presentation has been reported, but without any corresponding imaging findings on lumbar spine MRI. We report a 13-year-old male with Gitelman syndrome who presented with altered mental status following a fall and scalp laceration and unremarkable brain CT, followed during hospitalization by somnolence and seizures. Metabolically the patient demonstrated hypokalemia and hypomagnesemia. MRI demonstrated features of encephalopathy including predominantly right-sided cerebral hemispheric signal abnormality and cytotoxic edema, with bilateral symmetric involvement of the thalami, midbrain tegmentum and tectum and cerebellar dentate nuclei. MRI after five months obtained during a later episode of encephalopathy showed resolution of the signal abnormalities with setting in of brain atrophy and also areas of newly developed cytotoxic edema in the left thalamus, bilateral dorsal midbrain and right greater than left dentate nuclei. The described abnormalities, either recurrent or in isolation, have not previously been published in patients with Gitelman syndrome. We believe that the findings are due to alteration of respiratory chain function secondary to the metabolic derangement and hence have a similar imaging appearance as encephalopathy related to mitochondrial cytopathy or metabolic encephalopathy. PMID:26443301

  2. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  3. Mapping Brain Abnormalities in Boys with Autism

    PubMed Central

    Brun, Caroline; Nicolson, Rob; Leporé, Natasha; Chou, Yi-Yu; Vidal, Christine N.; DeVito, Timothy J.; Drost, Dick J.; Williamson, Peter C.; Rajakumar, Nagalingam; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Children with autism spectrum disorder (ASD) exhibit characteristic cognitive and behavioral differences, but no systematic pattern of neuroanatomical differences has been consistently found. Recent neurodevelopmental models posit an abnormal early surge in subcortical white matter growth in at least some autistic children, perhaps normalizing by adulthood, but other studies report subcortical white matter deficits. To investigate the profile of these alterations in 3D, we mapped brain volumetric differences using a relatively new method, tensor-based morphometry (TBM). 3D T1-weighted brain MRIs of 24 male children with ASD (age: 9.5 years ± 3.2 SD) and 26 age-matched healthy controls (age: 10.3 ± 2.4 SD) were fluidly registered to match a common anatomical template. Autistic children had significantly enlarged frontal lobes (by 3.6% on the left and 5.1% on the right), and all other lobes of the brain were enlarged significantly, or at trend level. By analyzing the applied deformations statistically point-by-point, we detected significant gray matter volume deficits in bilateral parietal, left temporal and left occipital lobes (p=0.038, corrected), trend-level cerebral white matter volume excesses, and volume deficits in the cerebellar vermis, adjacent to volume excesses in other cerebellar regions. This profile of excesses and deficits in adjacent regions may (1) indicate impaired neuronal connectivity, resulting from aberrant myelination and/or an inflammatory process, and (2) help to understand inconsistent findings of regional brain tissue excesses and deficits in autism. PMID:19554561

  4. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination.

    PubMed

    Kirk, John; Plumb, Jonnie; Mirakhur, Meenakshi; McQuaid, Stephen

    2003-10-01

    Blood-brain barrier (BBB) hyperpermeability in multiple sclerosis (MS) is associated with lesion pathogenesis and has been linked to pathology in microvascular tight junctions (TJs). This study quantifies the uneven distribution of TJ pathology and its association with BBB leakage. Frozen sections from plaque and normal-appearing white matter (NAWM) in 14 cases were studied together with white matter from six neurological and five normal controls. Using single and double immunofluorescence and confocal microscopy, the TJ-associated protein zonula occludens-1 (ZO-1) was examined across lesion types and tissue categories, and in relation to fibrinogen leakage. Confocal image data sets were analysed for 2198 MS and 1062 control vessels. Significant differences in the incidence of TJ abnormalities were detected between the different lesion types in MS and between MS and control white matter. These were frequent in oil-red O (ORO)(+) active plaques, affecting 42% of vessel segments, but less frequent in ORO(-) inactive plaques (23%), NAWM (13%), and normal (3.7%) and neurological controls (8%). A similar pattern was found irrespective of the vessel size, supporting a causal role for diffusible inflammatory mediators. In both NAWM and inactive lesions, dual labelling showed that vessels with the most TJ abnormality also showed most fibrinogen leakage. This was even more pronounced in active lesions, where 41% of vessels in the highest grade for TJ alteration showed severe leakage. It is concluded that disruption of TJs in MS, affecting both paracellular and transcellular paths, contributes to BBB leakage. TJ abnormality and BBB leakage in inactive lesions suggests either failure of TJ repair or a continuing pathological process. In NAWM, it suggests either pre-lesional change or secondary damage. Clinically inapparent TJ pathology has prognostic implications and should be considered when planning disease-modifying therapy. PMID:14517850

  5. Abnormal reward system activation in mania.

    PubMed

    Abler, Birgit; Greenhouse, Ian; Ongur, Dost; Walter, Henrik; Heckers, Stephan

    2008-08-01

    Transmission of reward signals is a function of dopamine, a neurotransmitter known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), we investigated how expectation and receipt of monetary rewards modulate brain activation in patients with bipolar mania and schizophrenia. We studied 12 acutely manic patients with a history of bipolar disorder, 12 patients with a current episode of schizoaffective disorder or schizophrenia and 12 healthy subjects. All patients were treated with dopamine antagonists at the time of the study. Subjects performed a delayed incentive paradigm with monetary reward in the scanner that allowed for investigating effects of expectation, receipt, and omission of rewards. Patients with schizophrenia and healthy control subjects showed the expected activation of dopaminergic brain areas, that is, ventral tegmentum activation upon expectation of monetary rewards and nucleus accumbens activation during receipt vs omission of rewards. In manic patients, however, we did not find a similar pattern of brain activation and the differential signal in the nucleus accumbens upon receipt vs omission of rewards was significantly lower compared to the healthy control subjects. Our findings provide evidence for abnormal function of the dopamine system during receipt or omission of expected rewards in bipolar disorder. These deficits in prediction error processing in acute mania may help to explain symptoms of disinhibition and abnormal goal pursuit regulation. PMID:17987058

  6. Abnormal Reward System Activation in Mania

    PubMed Central

    Abler, Birgit; Greenhouse, Ian; Ongur, Dost; Walter, Henrik; Heckers, Stephan

    2008-01-01

    Transmission of reward signals is a function of dopamine, a neurotransmitter known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), we investigated how expectation and receipt of monetary rewards modulate brain activation in patients with bipolar mania and schizophrenia. We studied 12 acutely manic patients with a history of bipolar disorder, 12 patients with a current episode of schizoaffective disorder or schizophrenia and 12 healthy subjects. All patients were treated with dopamine antagonists at the time of the study. Subjects performed a delayed incentive paradigm with monetary reward in the scanner that allowed for investigating effects of expectation, receipt, and omission of rewards. Patients with schizophrenia and healthy control subjects showed the expected activation of dopaminergic brain areas, that is, ventral tegmentum activation upon expectation of monetary rewards and nucleus accumbens activation during receipt vs omission of rewards. In manic patients, however, we did not find a similar pattern of brain activation and the differential signal in the nucleus accumbens upon receipt vs omission of rewards was significantly lower compared to the healthy control subjects. Our findings provide evidence for abnormal function of the dopamine system during receipt or omission of expected rewards in bipolar disorder. These deficits in prediction error processing in acute mania may help to explain symptoms of disinhibition and abnormal goal pursuit regulation. PMID:17987058

  7. Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase-Defective eEF2K Mice

    ERIC Educational Resources Information Center

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi

    2012-01-01

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular…

  8. Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase-Defective eEF2K Mice

    ERIC Educational Resources Information Center

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi

    2012-01-01

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular

  9. Regional brain activation changes and abnormal functional connectivity of the ventrolateral prefrontal cortex during working memory processing in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Wolf, Robert C; Plichta, Michael M; Sambataro, Fabio; Fallgatter, Andreas J; Jacob, Christian; Lesch, Klaus-Peter; Herrmann, Martin J; Schönfeldt-Lecuona, Carlos; Connemann, Bernhard J; Grön, Georg; Vasic, Nenad

    2009-07-01

    Previous studies on working memory (WM) function in adults with attention-deficit/hyperactivity disorder (ADHD) suggested aberrant activation of the prefrontal cortex and the cerebellum. Although it has been hypothesized that activation differences in these regions most likely reflect aberrant frontocerebellar circuits, the functional coupling of these brain networks during cognitive performance has not been investigated so far. In this study, functional magnetic resonance imaging (fMRI) and both univariate and multivariate analytic techniques were used to investigate regional activation changes and functional connectivity differences during cognitive processing in healthy controls (n = 12) and ADHD adults (n = 12). Behavioral performance during a parametric verbal WM paradigm did not significantly differ between adults with ADHD and healthy controls. During the delay period of the activation task, however, ADHD patients showed significantly less activation in the left ventrolateral prefrontal cortex (VLPFC), as well as in cerebellar and occipital regions compared with healthy control subjects. In both groups, independent component analyses revealed a functional network comprising bilateral lateral prefrontal, striatal, and cingulate regions. ADHD adults had significantly lower connectivity in the bilateral VLPFC, the anterior cingulate cortex, the superior parietal lobule, and the cerebellum compared with healthy controls. Increased connectivity in ADHD adults was found in right prefrontal regions, the left dorsal cingulate cortex and the left cuneus. These findings suggest both regional brain activation deficits and functional connectivity changes of the VLPFC and the cerebellum as well as functional connectivity abnormalities of the anterior cingulate and the parietal cortex in ADHD adults during WM processing. PMID:19107748

  10. Abnormal Brain Activation in Neurofibromatosis Type 1: A Link between Visual Processing and the Default Mode Network

    PubMed Central

    Violante, Inês R.; Ribeiro, Maria J.; Cunha, Gil; Bernardino, Inês; Duarte, João V.; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified. PMID:22723888

  11. Mitochondrial abnormalities in temporal lobe of autistic brain.

    PubMed

    Tang, Guomei; Gutierrez Rios, Puri; Kuo, Sheng-Han; Akman, Hasan Orhan; Rosoklija, Gorazd; Tanji, Kurenai; Dwork, Andrew; Schon, Eric A; Dimauro, Salvatore; Goldman, James; Sulzer, David

    2013-06-01

    Autism spectrum disorder (ASD) consists of a group of complex developmental disabilities characterized by impaired social interactions, deficits in communication and repetitive behavior. Multiple lines of evidence implicate mitochondrial dysfunction in ASD. In postmortem BA21 temporal cortex, a region that exhibits synaptic pathology in ASD, we found that compared to controls, ASD patients exhibited altered protein levels of mitochondria respiratory chain protein complexes, decreased Complex I and IV activities, decreased mitochondrial antioxidant enzyme SOD2, and greater oxidative DNA damage. Mitochondrial membrane mass was higher in ASD brain, as indicated by higher protein levels of mitochondrial membrane proteins Tom20, Tim23 and porin. No differences were observed in either mitochondrial DNA or levels of the mitochondrial gene transcription factor TFAM or cofactor PGC1α, indicating that a mechanism other than alterations in mitochondrial genome or mitochondrial biogenesis underlies these mitochondrial abnormalities. We further identified higher levels of the mitochondrial fission proteins (Fis1 and Drp1) and decreased levels of the fusion proteins (Mfn1, Mfn2 and Opa1) in ASD patients, indicating altered mitochondrial dynamics in ASD brain. Many of these changes were evident in cortical pyramidal neurons, and were observed in ASD children but were less pronounced or absent in adult patients. Together, these findings provide evidence that mitochondrial function and intracellular redox status are compromised in pyramidal neurons in ASD brain and that mitochondrial dysfunction occurs during early childhood when ASD symptoms appear. PMID:23333625

  12. Genes and brain malformations associated with abnormal neuron positioning.

    PubMed

    Moffat, Jeffrey J; Ka, Minhan; Jung, Eui-Man; Kim, Woo-Yang

    2015-01-01

    Neuronal positioning is a fundamental process during brain development. Abnormalities in this process cause several types of brain malformations and are linked to neurodevelopmental disorders such as autism, intellectual disability, epilepsy, and schizophrenia. Little is known about the pathogenesis of developmental brain malformations associated with abnormal neuron positioning, which has hindered research into potential treatments. However, recent advances in neurogenetics provide clues to the pathogenesis of aberrant neuronal positioning by identifying causative genes. This may help us form a foundation upon which therapeutic tools can be developed. In this review, we first provide a brief overview of neural development and migration, as they relate to defects in neuronal positioning. We then discuss recent progress in identifying genes and brain malformations associated with aberrant neuronal positioning during human brain development. PMID:26541977

  13. Brain Anatomical Abnormalities in High-Risk Individuals, First-Episode, and Chronic Schizophrenia: An Activation Likelihood Estimation Meta-analysis of Illness Progression

    PubMed Central

    Chan, Raymond C. K.; Di, Xin; McAlonan, Grainne M.; Gong, Qi-yong

    2011-01-01

    Objective: The present study reviewed voxel-based morphometry (VBM) studies on high-risk individuals with schizophrenia, patients experiencing their first-episode schizophrenia (FES), and those with chronic schizophrenia. We predicted that gray matter abnormalities would show progressive changes, with most extensive abnormalities in the chronic group relative to FES and least in the high-risk group. Method: Forty-one VBM studies were reviewed. Eight high-risk studies, 14 FES studies, and 19 chronic studies were analyzed using anatomical likelihood estimation meta-analysis. Results: Less gray matter in the high-risk group relative to controls was observed in anterior cingulate regions, left amygdala, and right insula. Lower gray matter volumes in FES compared with controls were also found in the anterior cingulate and right insula but not the amygdala. Lower gray matter volumes in the chronic group were most extensive, incorporating similar regions to those found in FES and high-risk groups but extending to superior temporal gyri, thalamus, posterior cingulate, and parahippocampal gryus. Subtraction analysis revealed less frontotemporal, striatal, and cerebellar gray matter in FES than the high-risk group; the high-risk group had less gray matter in left subcallosal gyrus, left amygdala, and left inferior frontal gyrus compared with FES. Subtraction analysis confirmed lower gray matter volumes through ventral-dorsal anterior cingulate, right insula, left amygdala and thalamus in chronic schizophrenia relative to FES. Conclusions: Frontotemporal brain structural abnormalities are evident in nonpsychotic individuals at high risk of developing schizophrenia. The present meta-analysis indicates that these gray matter abnormalities become more extensive through first-episode and chronic illness. Thus, schizophrenia appears to be a progressive cortico-striato-thalamic loop disorder. PMID:19633214

  14. Structural brain abnormalities in cervical dystonia

    PubMed Central

    2013-01-01

    Background Idiopathic cervical dystonia is characterized by involuntary spasms, tremors or jerks. It is not restricted to a disturbance in the basal ganglia system because non-conventional voxel-based MRI morphometry (VBM) and diffusion tensor imaging (DTI) have detected numerous regional changes in the brains of patients. In this study scans of 24 patients with cervical dystonia and 24 age-and sex-matched controls were analysed using VBM, DTI and magnetization transfer imaging (MTI) using a voxel-based approach and a region-of-interest analysis. Results were correlated with UDRS, TWSTRS and disease duration. Results We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia. Conclusions Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems. PMID:24131497

  15. Mapping brain volumetric abnormalities in never-treated pathological gamblers.

    PubMed

    Fuentes, Daniel; Rzezak, Patricia; Pereira, Fabricio R; Malloy-Diniz, Leandro F; Santos, Luciana C; Duran, Fbio L S; Barreiros, Maria A; Castro, Cludio C; Busatto, Geraldo F; Tavares, Hermano; Gorenstein, Clarice

    2015-06-30

    Several magnetic resonance imaging (MRI) studies to date have investigated brain abnormalities in association with the diagnosis of pathological gambling (PG), but very few of these have specifically searched for brain volume differences between PG patients and healthy volunteers (HV). To investigate brain volume differences between PG patients and HV, 30 male never-treated PG patients (DSM-IV-TR criteria) and 30 closely matched HV without history of psychiatric disorders in the past 2 years underwent structural magnetic resonance imaging with a 1.5-T instrument. Using Freesurfer software, we performed an exploratory whole-brain voxelwise volume comparison between the PG group and the HV group, with false-discovery rate correction for multiple comparisons (p < 0.05). Using a more flexible statistical threshold (p < 0.01, uncorrected for multiple comparisons), we also measured absolute and regional volumes of several brain structures separately. The voxelwise analysis showed no clusters of significant regional differences between the PG and HV groups. The additional analyses of absolute and regional brain volumes showed increased absolute global gray matter volumes in PG patients relative to the HV group, as well as relatively decreased volumes specifically in the left putamen, right thalamus and right hippocampus (corrected for total gray matter). Our findings indicate that structural brain abnormalities may contribute to the functional changes associated with the symptoms of PG, and they highlight the relevance of the brain reward system to the pathophysiology of this disorder. PMID:25952288

  16. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial

  17. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  18. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  19. Postural abnormalities and contraversive pushing following right hemisphere brain damage.

    PubMed

    Lafosse, C; Kerckhofs, E; Vereeck, L; Troch, M; Van Hoydonck, G; Moeremans, M; Sneyers, C; Broeckx, J; Dereymaeker, L

    2007-06-01

    We investigated the presence of postural abnormalities in a consecutive sample of stroke patients, with either left or right brain damage, in relation to their perceived body position in space. The presence or absence of posture-related symptoms was judged by two trained therapists and subsequently analysed by hierarchical classes analysis (HICLAS). The subject classes resulting from the HICLAS model were further validated with respect to posture-related measurements, such as centre of gravity position and head position, as well as measurements related to the postural body scheme, such as the perception of postural and visual verticality. The results of the classification analysis clearly demonstrated a relation between the presence of right brain damage and abnormalities in body geometry. The HICLAS model revealed three classes of subjects: The first class contained almost all the patients without neglect and without any signs of contraversive pushing. They were mainly characterised by a normal body axis in any position. The second class were all neglect patients but predominantly without any contraversive pushing. The third class contained right brain damaged patients, all showing neglect and mostly exhibiting contraversive pushing. The patients in the third class showed a clear resistance to bringing the weight over to the ipsilesional side when the therapist attempted to make the subject achieve a vertical posture across the midline. The clear correspondence between abnormalities of the observed body geometry and the tilt of the subjective postural and visual vertical suggests that a patient's postural body geometry is characterised by leaning towards the side of space where he/she feels aligned with an altered postural body scheme. The presence of contraversive pushing after right brain damage points in to a spatial higher-order processing deficit underlying the higher frequency and severity of the axial postural abnormalities found after right brain lesions. PMID:17474062

  20. Abnormal brain activation of adolescent internet addict in a ball-throwing animation task: possible neural correlates of disembodiment revealed by fMRI.

    PubMed

    Kim, Yeoung-Rang; Son, Jung-Woo; Lee, Sang-Ick; Shin, Chul-Jin; Kim, Sie-Kyeong; Ju, Gawon; Choi, Won-Hee; Oh, Jong-Hyun; Lee, Seungbok; Jo, Seongwoo; Ha, Tae Hyon

    2012-10-01

    While adolescent internet addicts are immersed in cyberspace, they are easily able to experience 'disembodied state'. The purposes of this study were to investigate the difference of brain activity between adolescent internet addicts and normal adolescents in a state of disembodiment, and to find the correlation between the activities of disembodiment-related areas and the behavioral characteristics related to internet addiction. The fMRI images were taken while the addiction group (N=17) and the control group (N=17) were asked to perform the task composed with ball-throwing animations. The task reflected on either self-agency about ball-throwing or location of a ball. And each block was shown with either different (Changing View) or same animations (Fixed View). The disembodiment-related condition was the interaction between Agency Task and Changing View. Within-group analyses revealed that the addiction group exhibited higher activation in the thalamus, bilateral precentral area, bilateral middle frontal area, and the area around the right temporo-parietal junction. And between-group analyses showed that the addiction group exhibited higher activation in the area near the left temporo-parieto-occipital junction, right parahippocampal area, and other areas than the control group. Finally, the duration of internet use was significantly correlated with the activity of posterior area of left middle temporal gyrus in the addiction group. These results show that the disembodiment-related activation of the brain is easily manifested in adolescent internet addicts. Internet addiction of adolescents could be significantly unfavorable for their brain development related with identity formation. PMID:22687465

  1. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  2. Midline Brain Abnormalities Across Psychotic and Mood Disorders.

    PubMed

    Landin-Romero, Ramón; Amann, Benedikt L; Sarró, Salvador; Guerrero-Pedraza, Amalia; Vicens, Victor; Rodriguez-Cano, Elena; Vieta, Eduard; Salvador, Raymond; Pomarol-Clotet, Edith; Radua, Joaquim

    2016-01-01

    Patients with schizophrenia are known to have increased prevalence of abnormalities in midline brain structures, such as a failure of the septum pellucidum to fuse (cavum septum pellucidum) and the absence of the adhesio interthalamica. This is the first study to investigate the prevalence of these abnormalities across a large multidiagnostic sample. Presence of cavum septum pellucidum and absence of the adhesio interthalamica was assessed in 639 patients with chronic schizophrenia, delusional disorder, schizoaffective disorder, bipolar disorder, major depressive disorder, or a first episode of psychosis, mania or unipolar depression. This was compared with 223 healthy controls using logistic-regression-derived odds ratios (OR). Patients with psychotic or mood disorders showed an increased prevalence of both abnormalities (OR of cavum septum pellucidum = 2.1, OR of absence of the adhesio interthalamica = 2.6, OR of both cavum septum pellucidum and absence of the adhesio interthalamica = 3.8, all P < .001). This increased prevalence was separately observed in nearly all disorders as well as after controlling for potential confounding factors. This study supports a general increased prevalence of midline brain abnormalities across mood and psychotic disorders. This nonspecificity may suggest that these disorders share a common neurodevelopmental etiology. PMID:26187283

  3. MRI-based methods to detect placental and fetal brain abnormalities in utero.

    PubMed

    Girardi, Guillermina

    2016-04-01

    There are very few methods for screening women for pregnancy complications. Identification of pregnancies at risk would be of enormous clinical significance as would influence decisions made about pregnancy management and delivery. Adverse pregnancy outcomes such as obstetric antiphospholipid syndrome (APS) and preterm birth (PTB), characterized by placental insufficiency and abnormal fetal brain development, in mice and humans have been associated with activation of inflammatory pathways, in particular the complement cascade. Recently, antibodies against C3 activation products conjugated with contrast agent ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles were used to detect non-invasively sites of inflammation within the placenta and the fetal brain in mouse models of APS and PTB. In utero, magnetic resonance imaging (MRI)-based detection of C3 deposition in the placenta in the APS model was associated with signs of placental insufficiency and intrauterine growth restriction. In both models, fetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration. Proton magnetic resonance spectroscopy ((1)H MRS), another non invasive method, is used to identify metabolic abnormalities to predict fetal brain abnormalities. This review describes the recent development of preclinical MRI-based methods for the detection of inflammatory markers of placental insufficiency and abnormal fetal brain development and metabolism to predict pregnancy outcomes. PMID:26187242

  4. Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO) - conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development

    PubMed Central

    Girardi, G; Fraser, J; Lennen, R; Vontell, R; Jansen, M; Hutchison, G

    2015-01-01

    In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders. PMID:25245499

  5. Early blood gas abnormalities and the preterm brain.

    PubMed

    Leviton, Alan; Allred, Elizabeth; Kuban, Karl C K; Dammann, Olaf; O'Shea, T Michael; Hirtz, Deborah; Schreiber, Michael D; Paneth, Nigel

    2010-10-15

    The authors explored associations between blood gas abnormalities in more than 1,000 preterm infants during the first postnatal days and indicators of neonatal brain damage. During 2002-2004, women delivering infants before 28 weeks' gestation at one of 14 participating institutions in 5 US states were asked to enroll in the study. The authors compared infants with blood gas values in the highest or lowest quintile for gestational age and postnatal day (extreme value) on at least 1 of the first 3 postnatal days with the remainder of the subjects, with separate analyses for blood gas abnormalities on multiple days and for partial pressure of oxygen in the alveolar gas of <35. Outcomes analyzed were ventriculomegaly and an echolucent lesion on an ultrasound scan in the neonatal intensive care unit, and cerebral palsy, microcephaly, and a low score on a Bayley Scale of Infant Development at 24 months. Every blood gas derangement (hypoxemia, hyperoxemia, hypocapnia, hypercapnia, and acidosis) was associated with multiple indicators of brain damage. However, for some, the associations were seen with only 1 day of exposure; others were evident with 2 or more days' exposure. Findings suggest that individual blood gas derangements do not increase brain damage risk. Rather, the multiple derangements associated with indicators of brain damage might be indicators of immaturity/vulnerability and illness severity. PMID:20807736

  6. Early Blood Gas Abnormalities and the Preterm Brain

    PubMed Central

    Leviton, Alan; Allred, Elizabeth; Kuban, Karl C. K.; Dammann, Olaf; O'Shea, T. Michael; Hirtz, Deborah; Schreiber, Michael D.; Paneth, Nigel

    2010-01-01

    The authors explored associations between blood gas abnormalities in more than 1,000 preterm infants during the first postnatal days and indicators of neonatal brain damage. During 2002–2004, women delivering infants before 28 weeks’ gestation at one of 14 participating institutions in 5 US states were asked to enroll in the study. The authors compared infants with blood gas values in the highest or lowest quintile for gestational age and postnatal day (extreme value) on at least 1 of the first 3 postnatal days with the remainder of the subjects, with separate analyses for blood gas abnormalities on multiple days and for partial pressure of oxygen in the alveolar gas of <35. Outcomes analyzed were ventriculomegaly and an echolucent lesion on an ultrasound scan in the neonatal intensive care unit, and cerebral palsy, microcephaly, and a low score on a Bayley Scale of Infant Development at 24 months. Every blood gas derangement (hypoxemia, hyperoxemia, hypocapnia, hypercapnia, and acidosis) was associated with multiple indicators of brain damage. However, for some, the associations were seen with only 1 day of exposure; others were evident with 2 or more days’ exposure. Findings suggest that individual blood gas derangements do not increase brain damage risk. Rather, the multiple derangements associated with indicators of brain damage might be indicators of immaturity/vulnerability and illness severity. PMID:20807736

  7. Abnormal Brain Network Organization in Body Dysmorphic Disorder

    PubMed Central

    Arienzo, Donatello; Leow, Alex; Brown, Jesse A; Zhan, Liang; GadElkarim, Johnson; Hovav, Sarit; Feusner, Jamie D

    2013-01-01

    Body dysmorphic disorder (BDD) is characterized by preoccupation with misperceived defects of appearance, causing significant distress and disability. Previous studies suggest abnormalities in information processing characterized by greater local relative to global processing. The purpose of this study was to probe whole-brain and regional white matter network organization in BDD, and to relate this to specific metrics of symptomatology. We acquired diffusion-weighted 34-direction MR images from 14 unmedicated participants with DSM-IV BDD and 16 healthy controls, from which we conducted whole-brain deterministic diffusion tensor imaging tractography. We then constructed white matter structural connectivity matrices to derive whole-brain and regional graph theory metrics, which we compared between groups. Within the BDD group, we additionally correlated these metrics with scores on psychometric measures of BDD symptom severity as well as poor insight/delusionality. The BDD group showed higher whole-brain mean clustering coefficient than controls. Global efficiency negatively correlated with BDD symptom severity. The BDD group demonstrated greater edge betweenness centrality for connections between the anterior temporal lobe and the occipital cortex, and between bilateral occipital poles. This represents the first brain network analysis in BDD. Results suggest disturbances in whole brain structural topological organization in BDD, in addition to correlations between clinical symptoms and network organization. There is also evidence of abnormal connectivity between regions involved in lower-order visual processing and higher-order visual and emotional processing, as well as interhemispheric visual information transfer. These findings may relate to disturbances in information processing found in previous studies. PMID:23322186

  8. Abuse of amphetamines and structural abnormalities in the brain.

    PubMed

    Berman, Steven; O'Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D

    2008-10-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques including manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959

  9. Abuse of Amphetamines and Structural Abnormalities in Brain

    PubMed Central

    Berman, Steven; ONeill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.

    2009-01-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959

  10. Abnormal MEG Oscillatory Activity during Visual Processing in the Prefrontal Cortices and Frontal Eye-Fields of the Aging HIV Brain

    PubMed Central

    Wilson, Tony W.; Fox, Howard S.; Robertson, Kevin R.; Sandkovsky, Uriel; O’Neill, Jennifer; Heinrichs-Graham, Elizabeth; Knott, Nichole L.; Swindells, Susan

    2013-01-01

    Objective Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation. Methods High-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming. Results Uninfected controls had increased neuronal synchronization in the 6–12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions. Conclusions MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health. PMID:23840428

  11. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    PubMed

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies. PMID:22809542

  12. The course of neuropsychological impairment and brain structure abnormalities in psychotic disorders.

    PubMed

    Woodward, Neil D

    2016-01-01

    Neuropsychological impairment and abnormalities in brain structure are commonly observed in psychotic disorders, including schizophrenia and bipolar disorder. Shared deficits in neuropsychological functioning and abnormalities in brain structure suggest overlapping neuropathology between schizophrenia and bipolar disorder which has important implications for psychiatric nosology, treatment, and our understanding of the etiology of psychotic illnesses. However, the emergence and trajectory of brain dysfunction in psychotic disorders is less well understood. Differences in the course and progression of neuropsychological impairment and brain abnormalities among psychotic disorders may point to unique neuropathological processes. This article reviews the course of neuropsychological impairment and brain structure abnormalities in schizophrenia and bipolar disorder. PMID:25152315

  13. Neuroendocrine abnormalities in patients with traumatic brain injury

    NASA Technical Reports Server (NTRS)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture. Increased intracranial pressure, which releases vasopressin by altering normal hypothalamic anatomy, may represent a unique type of stress to neuroendocrine systems and may contribute to adrenal secretion by a mechanism that requires intact brainstem function. Endocrine function should be monitored in brain-injured patients with basilar skull fractures and protracted posttraumatic amnesia, and patients with SIADH or DI should be closely monitored for other endocrine abnormalities.

  14. Anatomical and functional brain abnormalities in unmedicated major depressive disorder

    PubMed Central

    Yang, Xiao; Ma, Xiaojuan; Li, Mingli; Liu, Ye; Zhang, Jian; Huang, Bin; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong

    2015-01-01

    Background Using magnetic resonance imaging (MRI) and resting-state functional magnetic resonance imaging (rsfMRI) to explore the mechanism of brain structure and function in unmedicated patients with major depressive disorder (MDD). Patients and methods Fifty patients with MDD and 50 matched healthy control participants free of psychotropic medication underwent high-resolution structural and rsfMRI scanning. Optimized diffeomorphic anatomical registration through exponentiated lie algebra and the Data Processing Assistant for rsfMRI were used to find potential differences in gray-matter volume (GMV) and regional homogeneity (ReHo) between the two groups. A Pearson correlation model was used to analyze associations of morphometric and functional changes with clinical symptoms. Results Compared to healthy controls, patients with MDD showed significant GMV increase in the left posterior cingulate gyrus and GMV decrease in the left lingual gyrus (P<0.001, uncorrected). In ReHo analysis, values were significantly increased in the left precuneus and decreased in the left putamen (P<0.001, uncorrected) in patients with MDD compared to healthy controls. There was no overlap between anatomical and functional changes. Linear correlation suggested no significant correlation between mean GMV values within regions with anatomical abnormality and ReHo values in regions with functional abnormality in the patient group. These changes were not significantly correlated with symptom severity. Conclusion Our study suggests a dissociation pattern of brain regions with anatomical and functional alterations in unmedicated patients with MDD, especially with regard to GMV and ReHo. PMID:26425096

  15. Prenatal methylazoxymethanol treatment in rats produces brain abnormalities with morphological similarities to human developmental brain dysgeneses.

    PubMed

    Colacitti, C; Sancini, G; DeBiasi, S; Franceschetti, S; Caputi, A; Frassoni, C; Cattabeni, F; Avanzini, G; Spreafico, R; Di Luca, M; Battaglia, G

    1999-01-01

    A double methylazoxymethanol (MAM) intraperitoneal injection was prenatally administered to pregnant rats at gestational day 15 to induce developmental brain dysgeneses. Thirty adult rats from 8 different progenies were investigated with a combined electrophysiological and neuroanatomical analysis. The offspring of treated dams was characterized by extensive cortical layering abnormalities, subpial bands of heterotopic neurons in layer I, and subcortical nodules of heterotopic neurons extending from the periventricular region to the hippocampus and neocortex. The phenotype of cell subpopulations within the heterotopic structures was analyzed by means of antibodies raised against glial and neuronal markers, calcium binding proteins, GABA, and AMPA glutamate receptors. Neurons within the subcortical heterotopic nodules were characterized by abnormal firing properties, with sustained repetitive bursts of action potentials. The subcortical nodules were surrounded by cell clusters with ultrastructural features of young migrating neurons. The immunocytochemical data suggested, moreover, that the subcortical heterotopia were formed by neurons originally committed to the neocortex and characterized by morphological features similar to those found in human periventricular nodular heterotopia. The present study demonstrates that double MAM treatment at gestational day 15 induces in rats developmental brain abnormalities whose anatomical and physiological features bear resemblance to those observed in human brain dysgeneses associated with intractable epilepsy. Therefore, MAM treated rats could be considered as useful tools in investigating the pathogenic mechanisms involved in human developmental brain dysgeneses. PMID:10068317

  16. Progressive neuropsychiatric and brain abnormalities after smoke inhalation.

    PubMed

    Tobe, Edward

    2012-01-01

    A 46-year-old man inhaled combustible smoke of unknown chemical composition for 15-20 min in an automobile body shop. Within 1 month, he noted headache, sadness, anergia, anhedonia, agitation, poor sleep and impairment of concentration, attention and learning skills. Three years later, mental status examination showed major depression and cognitive disorder manifested by apprehension, continuous sadness, agitation, exhaustion, difficulty with word finding, bradyphrenia, short-term and long-term memory impairment, and judgement impaired by impulsive and affect-laden reactions without reflection. Impairments were noted on neuropsychiatric tests, and positron emission tomography (PET) scan of the brain with (18)F-fluorodeoxyglucose showed globally decreased and heterogeneous metabolic activity in the entire brain. Treatment included sertraline, methylphenidate, valproic acid and topiramate. At 14 years after smoke inhalation injury, he had persistent cognitive impairment. Repeat brain PET scan showed areas of improvement and deterioration. This case shows long-term brain and psychiatric dysfunction resulting after toxic smoke inhalation, with some areas of the brain having progressive deterioration between years 3 and 14 after smoke inhalation. PMID:22878982

  17. Functional brain network abnormalities during verbal working memory performance in adolescents and young adults with dyslexia.

    PubMed

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional neuroanatomy underlying cognitive dysfunction in dyslexia. In this study, functional magnetic resonance imaging and multivariate analytic techniques were used to investigate patterns of functional connectivity during a verbal WM task in individuals with dyslexia (n=12) and control subjects (n=13). Dyslexics were not significantly slower than controls; however, they were less accurate with increasing WM demand. Independent component analysis identified 18 independent components (ICs) among which two ICs were selected for further analyses. These ICs included functional networks which were positively correlated with the delay period of the activation task in both healthy controls and dyslexics. Connectivity abnormalities in dyslexics were detected within both networks of interest: within a "phonological" left-lateralized prefrontal network, increased functional connectivity was found in left prefrontal and inferior parietal regions. Within an "executive" bilateral frontoparietal network, dyslexics showed a decreased connectivity pattern comprising bilateral dorsolateral prefrontal and posterior parietal regions, while increased connectivity was found in the left angular gyrus, the left hippocampal cortex and the right thalamus. The functional connectivity strength in the latter regions was associated with WM task accuracy and with the numbers of errors during a spelling test. These data suggest functional connectivity abnormalities in two spatiotemporally dissociable brain networks underlying WM dysfunction in individuals with dyslexia. PMID:19782695

  18. Mapping abnormal subcortical brain morphometry in an elderly HIV + cohort

    PubMed Central

    Wade, Benjamin S.C.; Valcour, Victor G.; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H.; Gutman, Boris A.; Thompson, Paul M.

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%. PMID:26640768

  19. Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation.

    PubMed

    Eccles, J A; Garfinkel, S N; Harrison, N A; Ward, J; Taylor, R E; Bewley, A P; Critchley, H D

    2015-10-01

    Some patients experience skin sensations of infestation and contamination that are elusive to proximate dermatological explanation. We undertook a functional magnetic resonance imaging study of the brain to demonstrate, for the first time, that central processing of infestation-relevant stimuli is altered in patients with such abnormal skin sensations. We show differences in neural activity within amygdala, insula, middle temporal lobe and frontal cortices. Patients also demonstrated altered measures of self-representation, with poorer sensitivity to internal bodily (interoceptive) signals and greater susceptibility to take on an illusion of body ownership: the rubber hand illusion. Together, these findings highlight a potential model for the maintenance of abnormal skin sensations, encompassing heightened threat processing within amygdala, increased salience of skin representations within insula and compromised prefrontal capacity for self-regulation and appraisal. PMID:26260311

  20. mTOR signaling and its roles in normal and abnormal brain development

    PubMed Central

    Takei, Nobuyuki; Nawa, Hiroyuki

    2014-01-01

    Target of rapamycin (TOR) was first identified in yeast as a target molecule of rapamycin, an anti-fugal and immunosuppressant macrolide compound. In mammals, its orthologue is called mammalian TOR (mTOR). mTOR is a serine/threonine kinase that converges different extracellular stimuli, such as nutrients and growth factors, and diverges into several biochemical reactions, including translation, autophagy, transcription, and lipid synthesis among others. These biochemical reactions govern cell growth and cause cells to attain an anabolic state. Thus, the disruption of mTOR signaling is implicated in a wide array of diseases such as cancer, diabetes, and obesity. In the central nervous system, the mTOR signaling cascade is activated by nutrients, neurotrophic factors, and neurotransmitters that enhances protein (and possibly lipid) synthesis and suppresses autophagy. These processes contribute to normal neuronal growth by promoting their differentiation, neurite elongation and branching, and synaptic formation during development. Therefore, disruption of mTOR signaling may cause neuronal degeneration and abnormal neural development. While reduced mTOR signaling is associated with neurodegeneration, excess activation of mTOR signaling causes abnormal development of neurons and glia, leading to brain malformation. In this review, we first introduce the current state of molecular knowledge of mTOR complexes and signaling in general. We then describe mTOR activation in neurons, which leads to translational enhancement, and finally discuss the link between mTOR and normal/abnormal neuronal growth during development. PMID:24795562

  1. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain

    PubMed Central

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABAAR). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1–6, β1–3 or γ2 GABAAR subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABAAR subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABAARs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABAAR subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N=16) and comparison (N=14) subjects and found evidence of abnormal localization of the β1 and β2 GABAAR subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β252 kDa), 50 kDa (β250 kDa) and 48 kDa (β248 kDa). In the ER, we found increased total β2 GABAAR subunit (β2ALL) expression driven by increased β250 kDa, a decreased ratio of β248 kDa:β2ALL and an increased ratio of β250 kDa:β248 kDa. Decreased ratios of β1:β2ALL and β1:β250 kDa in both the ER and SYN fractions and an increased ratio of β252 kDa:β248 kDa at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABAARs. PMID:26241350

  2. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%. PMID:9596157

  3. Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review

    PubMed Central

    Heringa, Sophie M; Bouvy, Willem H; van den Berg, Esther; Moll, Annette C; Jaap Kappelle, L; Jan Biessels, Geert

    2013-01-01

    Retinal microvascular changes can be visualized noninvasively and have been associated with cognitive decline and brain changes in relation to aging and vascular disease. We systematically reviewed studies, published between 1990 and November 2012, on the association between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities, in the context of aging and vascular risk factors. In cross-sectional studies (k=26), retinal microvascular changes were associated with the presence of dementia (range of odds ratios (ORs) 1.17;5.57), with modest decrements in cognitive functioning in nondemented people (effect sizes -0.25;0.03), and with brain imaging abnormalities, including atrophy and vascular lesions (ORs 0.94;2.95). Longitudinal studies were more sparse (k=9) and showed no consistent associations between retinal microvascular changes and dementia or cognitive dysfunctioning 3 to 15 years later (ORs and hazard ratios 0.77;1.55). However, there were indications of prospective associations with brain imaging abnormalities ((ORs) 0.81;3.19). In conclusion, particularly in cross-sectional studies there is a correlation between retinal microvascular changes and dementia, cognitive impairment, and brain imaging abnormalities. Associations are strongest for more severe retinal microvascular abnormalities. Retinal microvascular abnormalities may offer an important window on the brain for etiological studies. PMID:23591648

  4. Congenital brain abnormalities: an update on malformations of cortical development and infratentorial malformations.

    PubMed

    Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M

    2014-07-01

    In the past two decades, significant progress in neuroimaging and genetic techniques has allowed for advances in the correct definition/classification of congenital brain abnormalities, which have resulted in a better understanding of their pathogenesis. In addition, new groups of diseases, such as axonal guidance disorders or tubulinopathies, are increasingly reported. Well-defined neuroimaging diagnostic criteria have been suggested for the majority of congenital brain abnormalities. Accurate diagnoses of these complex abnormalities, including distinction between malformations and disruptions, are of paramount significance for management, prognosis, and family counseling. In the next decade, these advances will hopefully be translated into deeper understanding of these disorders and more specific treatments. PMID:25192502

  5. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  6. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    PubMed

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. PMID:20887874

  7. Functional brain networks and abnormal connectivity in the movement disorders

    PubMed Central

    Poston, Kathleen L.; Eidelberg, David

    2012-01-01

    Clinical manifestations of movement disorders, such as Parkinson’s disease (PD) and dystonia, arise from neurophysiological changes within the cortico-striato-pallidothalamocortical (CSPTC) and cerebello-thalamo-cortical (CbTC) circuits. Neuroimaging techniques that probe connectivity within these circuits can be used to understand how these disorders develop as well as identify potential targets for medical and surgical therapies. Indeed, network analysis of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has identified abnormal metabolic networks associated with the cardinal motor symptoms of PD, such as akinesia and tremor, as well as PD-related cognitive dysfunction. More recent task-based and resting state functional magnetic resonance imaging studies have reproduced several of the altered connectivity patterns identified in these abnormal PD-related networks. A similar network analysis approach in dystonia revealed abnormal disease related metabolic patterns in both manifesting and non-manifesting carriers of dystonia mutations. Other multimodal imaging approaches using magnetic resonance diffusion tensor imaging in patients with primary genetic dystonia suggest abnormal connectivity within the CbTC circuits mediate the clinical manifestations of this inherited neurodevelopmental disorder. Ongoing developments in functional imaging and future studies in early patients are likely to enhance our understanding of these movement disorders and guide novel targets for future therapies. PMID:22206967

  8. Developmental origin of abnormal dendritic growth in the mouse brain induced by in utero disruption of aryl hydrocarbon receptor signaling.

    PubMed

    Kimura, Eiki; Kubo, Ken-Ichiro; Matsuyoshi, Chieri; Benner, Seico; Hosokawa, Mayuko; Endo, Toshihiro; Ling, Wenting; Kohda, Masanobu; Yokoyama, Kazuhito; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2015-01-01

    Increased prevalence of mental disorders cannot be solely attributed to genetic factors and is considered at least partly attributable to chemical exposure. Among various environmental chemicals, in utero and lactational dioxin exposure has been extensively studied and is known to induce higher brain function abnormalities in both humans and laboratory animals. However, how the perinatal dioxin exposure affects neuromorphological alterations has remained largely unknown. Therefore, in this study, we initially studied whether and how the over-expression of aryl hydrocarbon receptor (AhR), a dioxin receptor, would affect the dendritic growth in the hippocampus of the developing brain. Transfecting a constitutively active AhR plasmid into the hippocampus via in utero electroporation on gestational day (GD) 14 induced abnormal dendritic branch growth. Further, we observed that 14-day-old mice born to dams administered with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dose: 0, 0.6, or 3.0 μg/kg) on GD 12.5 exhibited disrupted dendritic branch growth in both the hippocampus and amygdala. Finally, we observed that 16-month-old mice born to dams exposed to perinatal TCDD as described above exhibited significantly reduced spine densities. These results indicated that abnormal micromorphology observed in the developing brain may persist until adulthood and may induce abnormal higher brain function later in life. PMID:26526904

  9. Abnormal deposits of chromium in the pathological human brain.

    PubMed Central

    Duckett, S

    1986-01-01

    Three patients presented with encephalopathies: an undiagnosed degenerative disease of the brain, a degenerative cerebral disease in a patient with a myeloma but without a myelomatous deposit in the CNS and a malignant astrocytoma. Perivascular pallidal deposits (vascular siderosis) containing chromium, phosphorus and calcium plus sometimes traces of other elements were present in the three cases. Such deposits were present in the pallidal parenchyma and around vessels in the cerebellum in one case. Calcium and phosphorus are always present in any CNS calcification but the presence of chromium has not been reported. Chromium and its compounds (ingested, injected or inhaled) are toxic to humans and animals in trace doses. Approximately 900 cases of chromium intoxication have been reported and usually have had dermatological or pulmonary lesions (including cancer) but there is no report of involvement of the CNS. Sublethal doses of chromium nitrate injected intraperitoneally in rats and rabbits results in the presence of chromium in the brain. A thorough investigation was made to find the source of the chromium in these patients. Chromium was found to be present in trace amounts in the radiological contrast agents administered to these patients and in the KCl replacement solution and in mylanta, an antacid, given to one case. The evidence that chromium induced pathological changes in these three brains is circumstantial but shows that chromium can penetrate the human brain. This study indicates that vascular siderosis found in the brains of the majority of middle-aged and elderly humans is not simply an anecdotal pathological curiosity, but that it can serve as a route of entry for toxic products into the brain. Images PMID:3958742

  10. Childhood Onset Schizophrenia: Cortical Brain Abnormalities as Young Adults

    ERIC Educational Resources Information Center

    Greenstein, Deanna; Lerch, Jason; Shaw, Philip; Clasen, Liv; Giedd, Jay; Gochman, Peter; Rapoport, Judith; Gogtay, Nitin

    2006-01-01

    Background: Childhood onset schizophrenia (COS) is a rare but severe form of the adult onset disorder. While structural brain imaging studies show robust, widespread, and progressive gray matter loss in COS during adolescence, there have been no longitudinal studies of sufficient duration to examine comparability with the more common adult onset

  11. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    ERIC Educational Resources Information Center

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  12. Thrombotic thrombocytopenic purpura: MR demonstration of reversible brain abnormalities

    SciTech Connect

    D'Aprile, P.; Carella, A.; Pagliarulo, R. ); Farchi, G. )

    1994-01-01

    We report a case of thrombotic thrombocytopenic purpura evaluated by MR, Multiple hyperintense foci on the TS-weighted images, observed principally in the brain stem and in the region of the basal nuclei, and neurologic signs disappeared after 15 days of therapy. 6 refs., 2 figs.

  13. Postnatal infection is associated with widespread abnormalities of brain development in premature newborns

    PubMed Central

    Chau, Vann; Brant, Rollin; Poskitt, Kenneth J.; Tam, Emily W. Y.; Synnes, Anne; Miller, Steven P.

    2014-01-01

    Infection is a risk factor for adverse neurodevelopmental outcome in preterm newborns. Our objective was to characterize the association of postnatal infection with adverse microstructural and metabolic brain development in premature newborns. One hundred seventeen preterm newborns (24–32 weeks gestation) were studied prospectively at a median of 32.0 and 40.3 weeks postmenstrual age: MRI (white matter injury, hemorrhage), MR (magnetic resonance) spectroscopy (metabolism) and diffusion tensor imaging (microstructure). Newborns were categorized as having “no infection”, “clinical infection”, or “positive-culture infection.” We compared brain injuries, as well as metabolic and microstructural development across these infection groups. In 34 newborns, clinical signs were accompanied by positive cultures while 17 had clinical signs of sepsis alone. White matter injury was identified in 34 newborns. In multivariate regression models infected newborns had brain imaging measures indicative of delayed brain development: lower N-acetylaspartate/choline, elevated average diffusivity (DAV) and decreased white matter fractional anisotropy. These widespread brain abnormalities were found in both newborns with positive-culture infection and in those with clinical infection. These findings suggest that postnatal infection, even without a positive culture, is an important risk factor for widespread abnormalities in brain. These abnormalities extend beyond brain injuries apparent with conventional MRI. PMID:22278180

  14. Structural brain abnormalities common to posttraumatic stress disorder and depression

    PubMed Central

    Kroes, Marijn C. W.; Rugg, Michael D.; Whalley, Matthew G.; Brewin, Chris R.

    2011-01-01

    Background Posttraumatic stress disorder (PTSD) and major depression are reliably associated with reductions in brain volume in markedly similar areas. To our knowledge, no volumetric studies have directly contrasted these conditions. We investigated which, if any, grey matter reductions would be uniquely associated with each disorder. We also investigated more subtle independent effects: specifically, correlations between brain volume and self-report measures of psychopathology. Methods We obtained structural magnetic resonance imaging scans from participants with PTSD, major depression and healthy controls exposed to trauma. Participants completed standardized self-report measures of anxiety and depression. We used voxel-based morphometry, applying the DARTEL algorithm within SPM5 to identify associated volumetric changes. Results We enrolled 24 patients with PTSD, 29 with major depression and 29 controls in our study. The clinical groups had regions of markedly smaller volume compared with the control group, particularly in prefrontal areas, but did not differ from each other. Greater self-reported anxiety was inversely related to volume in several areas, particularly the inferior temporal cortex, among patients with PTSD, but was associated with some volume increases in patients with major depression. Greater self-reported depression showed similar but weaker effects, being inversely related to brain volume in patients with PTSD but positively related to volume in the cuneus and precuneus of those with major depression. Limitations To maintain the representativeness of the sample, patients with PTSD were not excluded if they had typical comorbid conditions, such as depression. Patients were not all medication-free, but we controlled for group differences in antidepressant use in the analyses. Conclusion We identified commonalities in areas of brain volume in patients with PTSD and those with major depression, suggesting that existing findings concerning reductions in prefrontal areas in particular may not be specific to PTSD but rather related to features of the disorder that are shared with other conditions, such as depression. More subtle differences between patients with PTSD and those with major depression were represented by distinct structural correlates of self-reported anxiety and depression. PMID:21418787

  15. Abnormal Neural Connectivity in Schizophrenia and fMRI-Brain-Computer Interface as a Potential Therapeutic Approach

    PubMed Central

    Ruiz, Sergio; Birbaumer, Niels; Sitaram, Ranganatha

    2012-01-01

    Considering that single locations of structural and functional abnormalities are insufficient to explain the diverse psychopathology of schizophrenia, new models have postulated that the impairments associated with the disease arise from a failure to integrate the activity of local and distributed neural circuits: the “abnormal neural connectivity hypothesis.” In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI) are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia. The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem. PMID:23525496

  16. Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development.

    PubMed

    Muellner, Julia; Delmaire, Christine; Valabrégue, Romain; Schüpbach, Michael; Mangin, Jean-François; Vidailhet, Marie; Lehéricy, Stéphane; Hartmann, Andreas; Worbe, Yulia

    2015-04-15

    Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. PMID:25820811

  17. Abnormal brain structure in youth who commit homicide

    PubMed Central

    Cope, L.M.; Ermer, E.; Gaudet, L.M.; Steele, V.R.; Eckhardt, A.L.; Arbabshirani, M.R.; Caldwell, M.F.; Calhoun, V.D.; Kiehl, K.A.

    2014-01-01

    Background Violence that leads to homicide results in an extreme financial and emotional burden on society. Juveniles who commit homicide are often tried in adult court and typically spend the majority of their lives in prison. Despite the enormous costs associated with homicidal behavior, there have been no serious neuroscientific studies examining youth who commit homicide. Methods Here we use neuroimaging and voxel-based morphometry to examine brain gray matter in incarcerated male adolescents who committed homicide (n = 20) compared with incarcerated offenders who did not commit homicide (n = 135). Two additional control groups were used to understand further the nature of gray matter differences: incarcerated offenders who did not commit homicide matched on important demographic and psychometric variables (n = 20) and healthy participants from the community (n = 21). Results Compared with incarcerated adolescents who did not commit homicide (n = 135), incarcerated homicide offenders had reduced gray matter volumes in the medial and lateral temporal lobes, including the hippocampus and posterior insula. Feature selection and support vector machine learning classified offenders into the homicide and non-homicide groups with 81% overall accuracy. Conclusions Our results indicate that brain structural differences may help identify those at the highest risk for committing serious violent offenses. PMID:24936430

  18. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis.

    PubMed

    Holtzer, Roee; Verghese, Joe; Allali, Gilles; Izzetoglu, Meltem; Wang, Cuiling; Mahoney, Jeannette R

    2016-03-01

    The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait abnormalities (NGA) would moderate associations between brain activations, gait and cognitive performance. Using functional near-infrared spectroscopy we assessed changes in oxygenated hemoglobin levels in the pre-frontal cortex (PFC) during normal walk and walk while talk (WWT) conditions in a large cohort of non-demented older adults (n = 236; age = 75.5 ± 6.49 years; female = 51.7 %). NGA were defined as central (due to brain diseases) or peripheral (neuropathic gait) following a standardized neurological examination protocol. Double dissociations between brain activations and behavior emerged as a function of NGA. Higher oxygenation levels during WWT were related to better cognitive performance (estimate = 0.145; p < 0.001) but slower gait velocity (estimate = -6.336, p < 0.05) among normals. In contrast, higher oxygenation levels during WWT among individuals with peripheral NGA were associated with worse cognitive performance (estimate = -0.355; p < 0.001) but faster gait velocity (estimate = 14.855; p < 0.05). Increased activation in the PFC during locomotion may have a compensatory function that is designed to support gait among individuals with peripheral NGA. PMID:26613725

  19. Frequency of Structural Brain Abnormalities among Adult Diagnosed with Attention – Deficit/Hyperactivity Disorder

    PubMed Central

    Bakhshani, Nour-Mohammad; Babaei, Samaneh; Raghibi, Mahvash

    2014-01-01

    Although ADHD is known as a childhood disorder, it is prevalent among adults as well. Several studies have been conducted on the etiology of this disorder and its neurobiological and neuroanatomical manifestations in children, but the knowledge of adult ADHD is not enough. The present research was aimed at studying the structural brain abnormalities in adult ADHD cases. Fifteen adult patients diagnosed with ADHD, developed during their childhood, were selected for this study. In addition to clinical interview and Magnetic Resonance Imaging (MRI), all the participants were asked to fill the (ASRS-VI.I). The results indicated that about 40 % of adults with ADHD suffer from structural brain abnormalities. The results of MRI showed that 100% of the individuals with inattentive and combined types of ADHD were structurally damaged but MRI results did not reveal any structural brain abnormalities in hyperactive participants. The results of the present study are somewhat consistent with the results of previous studies. In general, any brain injury in the region related to cognitive processes (such as attention, memorization, and prevention) and brain circuits related to motor functions and motivation can contribute a role to the induction of ADHD symptoms. It is recommended to conduct more researches in the future with larger samples using other methods that are capable of assessing brain performance and the level and mechanism of the functions of neurotransmitters and neuronal modulators. PMID:24373266

  20. Absence of Glial α-Dystrobrevin Causes Abnormalities of the Blood-Brain Barrier and Progressive Brain Edema*

    PubMed Central

    Lien, Chun Fu; Mohanta, Sarajo Kumar; Frontczak-Baniewicz, Malgorzata; Swinny, Jerome D.; Zablocka, Barbara; Górecki, Dariusz C.

    2012-01-01

    The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction. PMID:23043099

  1. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms.

    PubMed

    Goedert, M; Spillantini, M G; Cairns, N J; Crowther, R A

    1992-01-01

    Preparations of dispersed paired helical filaments (PHFs) from the brains of Alzheimer's disease and Down's syndrome patients display on gels three principal bands corresponding to abnormally modified forms of the microtubule-associated protein tau. Interpretation of the pattern is difficult because there are six tau isoforms in normal brain and phosphorylation changes their mobility. By enzymatic dephosphorylation at high temperature, we have shifted the three abnormal bands obtained from dispersed PHFs to align with the six nonphosphorylated tau isoforms. By using antibodies specific for some of the inserts that distinguish the various isoforms and label PHFs, we have established a correspondence between PHFs, abnormal bands, and isoforms. This identification of isoforms is a necessary step in unravelling the molecular pathogenesis of PHFs. PMID:1530909

  2. Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Tung, Kelly L.; Kaminsky, Olivia; McGough, James J.; Hanada, Grant; Loo, Sandra K.

    2014-01-01

    Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s Continuous Performance Test (CPT). Method: Our previous study found that ADHD adults had increased rightward EEG beta (16–21 Hz) asymmetry in inferior parietal brain regions during the CPT (p = 0.00001), and that this metric exhibited a lack of normal correlation (i.e., observed in controls) with beta asymmetry at temporal–parietal regions. We re-tested these effects in a new ADHD sample and with both new and old samples combined. We additionally examined: (a) EEG asymmetry in multiple frequency bands, (b) unilateral effects for all asymmetry findings, and (c) the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings by demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal–parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal–parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increase of attentional shifting and compensatory sustained/selective attention. PMID:25104941

  3. How can we identify ictal and interictal abnormal activity?

    PubMed

    Fisher, Robert S; Scharfman, Helen E; deCurtis, Marco

    2014-01-01

    The International League Against Epilepsy (ILAE) defined a seizure as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain." This definition has been used since the era of Hughlings Jackson, and does not take into account subsequent advances made in epilepsy and neuroscience research. The clinical diagnosis of a seizure is empirical, based upon constellations of certain signs and symptoms, while simultaneously ruling out a list of potential imitators of seizures. Seizures should be delimited in time, but the borders of ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) often are indistinct. EEG recording is potentially very helpful for confirmation, classification and localization. About a half-dozen common EEG patterns are encountered during seizures. Clinicians rely on researchers to answer such questions as why seizures start, spread and stop, whether seizures involve increased synchrony, the extent to which extra-cortical structures are involved, and how to identify the seizure network and at what points interventions are likely to be helpful. Basic scientists have different challenges in use of the word 'seizure,' such as distinguishing seizures from normal behavior, which would seem easy but can be very difficult because some rodents have EEG activity during normal behavior that resembles spike-wave discharge or bursts of rhythmic spiking. It is also important to define when a seizure begins and stops so that seizures can be quantified accurately for pre-clinical studies. When asking what causes seizures, the transition to a seizure and differentiating the pre-ictal, ictal and post-ictal state is also important because what occurs before a seizure could be causal and may warrant further investigation for that reason. These and other issues are discussed by three epilepsy researchers with clinical and basic science expertise. PMID:25012363

  4. How Can We Identify Ictal and Interictal Abnormal Activity?

    PubMed Central

    Fisher, Robert S.; Scharfman, Helen E.; deCurtis, Marco

    2015-01-01

    The International League Against Epilepsy (ILAE) defined a seizure as “a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain.” This definition has been used since the era of Hughlings Jackson, and does not take into account subsequent advances made in epilepsy and neuroscience research. The clinical diagnosis of a seizure is empirical, based upon constellations of certain signs and symptoms, while simultaneously ruling out a list of potential imitators of seizures. Seizures should be delimited in time, but the borders of ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) often are indistinct. EEG recording is potentially very helpful for confirmation, classification and localization. About a half-dozen common EEG patterns are encountered during seizures. Clinicians rely on researchers to answer such questions as why seizures start, spread and stop, whether seizures involve increased synchrony, the extent to which extra-cortical structures are involved, and how to identify the seizure network and at what points interventions are likely to be helpful. Basic scientists have different challenges in use of the word ‘seizure,’ such as distinguishing seizures from normal behavior, which would seem easy but can be very difficult because some rodents have EEG activity during normal behavior that resembles spike-wave discharge or bursts of rhythmic spiking. It is also important to define when a seizure begins and stops so that seizures can be quantified accurately for pre-clinical studies. When asking what causes seizures, the transition to a seizure and differentiating the pre-ictal, ictal and post-ictal state is also important because what occurs before a seizure could be causal and may warrant further investigation for that reason. These and other issues are discussed by three epilepsy researchers with clinical and basic science expertise. PMID:25012363

  5. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    PubMed

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management. PMID:24788350

  6. Simulation of abnormal pulmonary thallium-201 activity following mastectomy

    SciTech Connect

    Hermoni, Y.; Gerson, M.C.

    1985-11-01

    Increased uptake of activity in one lung field was found on postexercise Tl-201 images in a woman who had undergone a previous mastectomy on that side. This was probably related to a partial loss of normal tissue attenuation following surgery, resulting in a simulation of abnormal pulmonary activity.

  7. Abnormal brain aging as a radical-related disease: A new target for nuclear medicine

    SciTech Connect

    Fujibayashi, Y.; Yamamoto, S.; Waki, A. |

    1996-05-01

    DNA damages caused by endogenously produced radicals are closely correlated with aging. Among them, mitochondrial DNA (mtDNA) deletions have been reported as a memory of DNA damage by oxygen radicals. In fact, clinical as well as experimental studies indicated the accumulation of deleted mtDNA in the brain, myocardium and son on, in aged subjects. In our previous work, radioiodinated radical trapping agent, p-iodophenyl-N-t-butylnitrone, and hypoxia imaging agent, Cu-62 diacetyl-bis-N-4-methyl-thiosemicarbazone have been developed for the diagnosis of radical-related diseases, such as ischemic, inflammation, cancer or aging. The aim of the present work was to evaluate these agents for brain aging studies. In our university, an unique animal model, a senescence accelerated model mouse (SAM), has been established. Among the various substrains, SAMP8 showing memory deterioration in its young age ({approximately}3 month) was basically evaluated as an abnormal brain aging model with mtDNA deletion. As controls, SAMR1 showing normal aging and ddY mice were used. MtDNA deletion n the brain was analyzed with polymerase-chain reaction (PCR) method, and relationship between mtDNA deletion and brain uptake of IPBN or Cu-62-ATSM was studied. In 1-3 month old SAMP8 brain, multiple mtDNa deletions were already found and their content was significantly higher than that of SAMR1 or age-matched ddY control. Thus, it was cleared that SAMP8 brain has high tendency to be attacked by endogenously produced oxygen radicals, possibly from its birth. Both IPBN and Cu-ATSM showed significantly higher accumulation in the SAMP8 brain than in the SAMR1 brain, indicating that these agents have high possibility for the early detection of abnormal brain aging as a radical-related disease.

  8. Neuromagnetic source imaging of abnormal spontaneous activity in tinnitus patient modulated by electrical cortical stimulation.

    PubMed

    Ramirez, Rey Rene; Kopell, Brian Harris; Butson, Christopher R; Gaggl, Wolfgang; Friedland, David R; Baillet, Sylvain

    2009-01-01

    Electrical cortical stimulation (CS) of the auditory cortices has been shown to reduce the severity of debilitating tinnitus in some patients. In this study, we performed MEG source imaging of spontaneous brain activity during concurrent CS of the left secondary auditory cortex of a volunteer suffering from right unilateral tinnitus. CS produced MEG artifacts which were successfully sorted and removed using a combination of sensor and source level signal separation and classification techniques. This contribution provides the first proof of concept reporting on analysis of MEG data with concurrent CS. Effects of CS on ongoing brain activity were revealed at the MEG sensor and source levels and indicate CS significantly reduced ongoing brain activity in the lower frequency range (<40Hz), and emphasized its higher (>40Hz), gamma range components. Further, our results show that CS increased the spectral correlation across multiple frequency bands in the low and high gamma ranges, and between the alpha and beta bands of the MEG. Finally, MEG sources localized in the auditory cortices and nearby regions exhibited abnormal spectral activity that was suppressed by CS. These results provide promising evidence in favor of the Thalamocortical Dysrhytmia (TCD) hypothesis of tinnitus, and suggest that CS may prove to be an effective treatment of tinnitus when targeted to brain regions exhibiting abnormal spontaneous activity. PMID:19964017

  9. Diffusion Tensor Imaging of Brain Abnormalities Induced by Prenatal Exposure to Radiation in Rodents

    PubMed Central

    Saito, Shigeyoshi; Sawada, Kazuhiko; Hirose, Miwa; Mori, Yuki; Yoshioka, Yoshichika; Murase, Kenya

    2014-01-01

    We assessed brain abnormalities in rats exposed prenatally to radiation (X-rays) using magnetic resonance imaging (MRI) and histological experiments. Pregnant rats were divided into 4 groups: the control group (n = 3) and 3 groups that were exposed to different radiation doses (0.5, 1.0, or 1.5 Gy; n = 3 each). Brain abnormalities were assessed in 32 neonatal male rats (8 per group). Ex vivo T2-weighted imaging and diffusion tensor imaging (DTI) were performed using 11.7-T MRI. The expression of markers of myelin production (Kluver–Barrera staining, KB), nonpyramidal cells (calbindin-D28k staining, CaBP), and pyramidal cells (staining of the nonphosphorylated heavy-chain neurofilament SMI-32) were histologically evaluated. Decreased brain volume, increased ventricle volume, and thinner cortices were observed by MRI in irradiated rats. However, no abnormalities in the cortical 6-layered structure were observed via KB staining in radiation-exposed rats. The DTI color-coded map revealed a dose-dependent reduction in the anisotropic signal (vertical direction), which did not represent reduced numbers of pyramidal cells; rather, it indicated a signal reduction relative to the vertical direction because of low nerve cell density in the entire cortex. We conclude that DTI and histological experiments are useful tools for assessing cortical and hippocampal abnormalities after prenatal exposure to radiation in rats. PMID:25202992

  10. Cranial index of children with normal and abnormal brain development in Sokoto, Nigeria: A comparative study

    PubMed Central

    Musa, Muhammad Awwal; Zagga, Abdullahi Daudu; Danfulani, Mohammed; Tadros, Aziz Abdo; Ahmed, Hamid

    2014-01-01

    Background: Abnormal brain development due to neurodevelopmental disorders in children has always been an important concern, but yet has to be considered as a significant public health problem, especially in the low- and middle-income countries including Nigeria. Aims: The aim of this study is to determine whether abnormal brain development in the form of neurodevelopmental disorders causes any deviation in the cranial index of affected children. Materials and Methods: This is a comparative study on the head length, head width, and cranial index of 112 children (72 males and 40 females) diagnosed with at least one abnormal problem in brain development, in the form of a neurodevelopmental disorder (NDD), in comparison with that of 218 normal growing children without any form of NDD (121 males and 97 females), aged 0-18 years old seen at the Usmanu Danfodiyo University Teaching Hospital, Sokoto, over a period of six months, June to December, 2012. The head length and head width of the children was measured using standard anatomical landmarks and cranial index calculated. The data obtained was entered into the Microsoft excel worksheet and analyzed using SPSS version 17. Results: The mean Cephalic Index for normal growing children with normal brain development was 79.82 ± 3.35 and that of the children with abnormal brain development was 77.78 ± 2.95 and the difference between the two groups was not statistically significant (P > 0.05). Conclusion: It can be deduced from this present study that the cranial index does not change in children with neurodevelopmental disorders. PMID:24966551

  11. An abnormal resting-state functional brain network indicates progression towards Alzheimer's disease.

    PubMed

    Xiang, Jie; Guo, Hao; Cao, Rui; Liang, Hong; Chen, Junjie

    2013-10-25

    Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer's disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations (normal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer's disease) using the Alzheimer's Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer's disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the resting-state functional network gradually increased, while clustering coefficients gradually decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In addition, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzheimer's disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventually lead to diffuse brain injury and other cognitive impairments. PMID:25206600

  12. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  13. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  14. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    PubMed Central

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is associated with numerous frontal lobe structural deficits, a conclusion that is not strongly supported following direct comparison of diagnostically pure groups. The results are important for future etiological studies, particularly those seeking to identify how early expression of specific brain structure abnormalities could potentiate the risk for antisocial behaviour. PMID:22663946

  15. Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials

    PubMed Central

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants’ math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN. PMID:24236212

  16. Brain white matter volume abnormalities in Lesch-Nyhan disease and its variants

    PubMed Central

    Varvaris, Mark; Vannorsdall, Tracy D.; Gordon, Barry; Harris, James C.; Jinnah, H.A.

    2015-01-01

    Objective: We sought to examine brain white matter abnormalities based on MRI in adults with Lesch-Nyhan disease (LND) or an attenuated variant (LNV) of this rare, X-linked neurodevelopmental disorder of purine metabolism. Methods: In this observational study, we compared 21 adults with LND, 17 with LNV, and 33 age-, sex-, and race-matched healthy controls using voxel-based morphometry and analysis of covariance to identify white matter volume abnormalities in both patient groups. Results: Patients with classic LND showed larger reductions of white (26%) than gray (17%) matter volume relative to healthy controls. Those with LNV showed comparable reductions of white (14%) and gray (15%) matter volume. Both patient groups demonstrated reduced volume in medial inferior white matter regions. Compared with LNV, the LND group showed larger reductions in inferior frontal white matter adjoining limbic and temporal regions and the motor cortex. These regions likely include such long association fibers as the superior longitudinal and uncinate fasciculi. Conclusions: Despite earlier reports that LND primarily involves the basal ganglia, this study reveals substantial white matter volume abnormalities. Moreover, white matter deficits are more severe than gray matter deficits in classic LND, and also characterize persons with LNV. The brain images acquired for these analyses cannot precisely localize white matter abnormalities or determine whether they involve changes in tract orientation or anisotropy. However, clusters of reduced white matter volume identified here affect regions that are consistent with the neurobehavioral phenotype. PMID:25503620

  17. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  18. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA lesioned rats.

    PubMed

    Kaminer, Jaime; Thakur, Pratibha; Evinger, Craig

    2015-05-01

    Parkinson's disease (PD) patients and the 6-hydroxydopamine (6-OHDA) lesioned rat model share blink abnormalities. In view of the evolutionarily conserved organization of blinking, characterization of blink reflex circuits in rodents may elucidate the neural mechanisms of PD reflex abnormalities. We examine the extent of this shared pattern of blink abnormalities by measuring blink reflex excitability, blink reflex plasticity, and spontaneous blinking in 6-OHDA lesioned rats. We also investigate whether 130-Hz subthalamic nucleus deep brain stimulation (STN DBS) affects blink abnormalities, as it does in PD patients. Like PD patients, 6-OHDA-lesioned rats exhibit reflex blink hyperexcitability, impaired blink plasticity, and a reduced spontaneous blink rate. At 130 Hz, but not 16 Hz, STN DBS eliminates reflex blink hyperexcitability and restores both short- and long-term blink plasticity. Replicating its lack of effect in PD patients, 130-Hz STN DBS does not reinstate a normal temporal pattern or rate to spontaneous blinking in 6-OHDA lesioned rats. These data show that the 6-OHDA lesioned rat is an ideal model system for investigating the neural bases of reflex abnormalities in PD and highlight the complexity of PD's effects on motor control, by showing that dopamine depletion does not affect all blink systems via the same neural mechanisms. PMID:25673748

  19. Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction.

    PubMed

    Pitel, Anne Lise; Segobin, Shailendra H; Ritz, Ludivine; Eustache, Francis; Beaunieux, Hélène

    2015-07-01

    Two brain networks are particularly affected by the harmful effect of chronic and excessive alcohol consumption: the circuit of Papez and the frontocerebellar circuit, in both of which the thalamus plays a key role. Shrinkage of the thalamus is more severe in alcoholics with Korsakoff's syndrome (KS) than in those without neurological complication (AL). In accordance with the gradient effect of thalamic abnormalities between AL and KS, the pattern of brain dysfunction in the Papez's circuit results in anterograde amnesia in KS and only mild-to-moderate episodic memory disorders in AL. On the opposite, dysfunction of the frontocerebellar circuit results in a similar pattern of working memory and executive deficits in the AL and KS. Several hypotheses, mutually compatible, can be drawn to explain that the severe thalamic shrinkage observed in KS has different consequences in the neuropsychological profile associated with the two brain networks. PMID:25108034

  20. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  1. Predictors of normal and abnormal outcome in clinical brain dopamine transporter imaging.

    PubMed

    Jaakkola, Elina; Joutsa, Juho; Kaasinen, Valtteri

    2016-03-01

    Brain dopamine transporter (DAT) imaging with [(123)I]FP-CIT SPECT can be used to evaluate the integrity of the mesostriatal dopaminergic system in patients with clinically uncertain parkinsonism. To evaluate whether scanning a patient is clinically necessary, it is vital to understand possible factors that affect the scanning result. Therefore, we investigated an unselected sample of 538 consecutively scanned patients from a 6-year period, and the demographic data and indications for DAT SPECT were recorded. After scanning, the patients were divided into groups according to the scanning outcome. Multivariate binary logistic regression analyses were performed to investigate whether the pre-imaging variables had independent associations with the outcome of the scan. Three hundred and three (56.3 %) patients had abnormal scans showing a dopaminergic deficit. The independent factors associated with abnormal scans were older age (p = 0.002), asymmetry of motor symptoms (p = 0.005) and shorter symptom duration (p < 0.001). Re-evaluation of the previously established Parkinson's disease diagnosis was associated with a higher probability of an abnormal scan (74.4 % abnormal, p = 0.004), whereas the possibility of medication-induced parkinsonism was associated with a higher probability of a normal scan (35.4 %, p = 0.036). The probability of an abnormal outcome in clinical brain DAT imaging increases with known risk factors of neurodegenerative parkinsonism. However, a long duration of uncertain motor symptoms and suspicion of medication-induced parkinsonism are associated with a higher probability of a normal outcome. The findings reflect epidemiological factors in parkinsonism together with referral biases that may be used to improve the clinical use of DAT imaging. PMID:26676600

  2. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  3. Use of dynamic contrast-enhanced MRI to measure subtle blood-brain barrier abnormalities.

    PubMed

    Armitage, Paul A; Farrall, Andrew J; Carpenter, Trevor K; Doubal, Fergus N; Wardlaw, Joanna M

    2011-04-01

    There is growing interest in investigating the role of subtle changes in blood-brain barrier (BBB) function in common neurological disorders and the possible use of imaging techniques to assess these abnormalities. Some studies have used dynamic contrast-enhanced MR imaging (DCE-MRI) and these have demonstrated much smaller signal changes than obtained from more traditional applications of the technique, such as in intracranial tumors and multiple sclerosis. In this work, preliminary results are presented from a DCE-MRI study of patients with mild stroke classified according to the extent of visible underlying white matter abnormalities. These data are used to estimate typical signal enhancement profiles in different tissue types and by degrees of white matter abnormality. The effect of scanner noise, drift and different intrinsic tissue properties on signal enhancement data is also investigated and the likely implications for interpreting the enhancement profiles are discussed. No significant differences in average signal enhancement or contrast agent concentration were observed between patients with different degrees of white matter abnormality, although there was a trend towards greater signal enhancement with more abnormal white matter. Furthermore, the results suggest that many of the factors considered introduce uncertainty of a similar magnitude to expected effect sizes, making it unclear whether differences in signal enhancement are truly reflective of an underlying BBB abnormality or due to an unrelated effect. As the ultimate aim is to achieve a reliable quantification of BBB function in subtle disorders, this study highlights the factors which may influence signal enhancement and suggests that further work is required to address the challenging problems of quantifying contrast agent concentration in healthy and diseased living human tissue and of establishing a suitable model to enable quantification of relevant physiological parameters. Meanwhile, it is essential that future studies use an appropriate control group to minimize these influences. PMID:21030178

  4. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis.

    PubMed

    Pina-Camacho, Laura; Del Rey-Mejías, Ángel; Janssen, Joost; Bioque, Miquel; González-Pinto, Ana; Arango, Celso; Lobo, Antonio; Sarró, Salvador; Desco, Manuel; Sanjuan, Julio; Lacalle-Aurioles, Maria; Cuesta, Manuel J; Saiz-Ruiz, Jerónimo; Bernardo, Miguel; Parellada, Mara

    2016-03-01

    Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis. PMID:26371339

  5. Abnormal Brain Connectivity Patterns in Adults with ADHD: A Coherence Study

    PubMed Central

    Sato, João Ricardo; Hoexter, Marcelo Queiroz; Castellanos, Xavier Francisco; Rohde, Luis A.

    2012-01-01

    Studies based on functional magnetic resonance imaging (fMRI) during the resting state have shown decreased functional connectivity between the dorsal anterior cingulate cortex (dACC) and regions of the Default Mode Network (DMN) in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD) relative to subjects with typical development (TD). Most studies used Pearson correlation coefficients among the BOLD signals from different brain regions to quantify functional connectivity. Since the Pearson correlation analysis only provides a limited description of functional connectivity, we investigated functional connectivity between the dACC and the posterior cingulate cortex (PCC) in three groups (adult patients with ADHD, n = 21; TD age-matched subjects, n = 21; young TD subjects, n = 21) using a more comprehensive analytical approach – unsupervised machine learning using a one-class support vector machine (OC-SVM) that quantifies an abnormality index for each individual. The median abnormality index for patients with ADHD was greater than for TD age-matched subjects (p = 0.014); the ADHD and young TD indices did not differ significantly (p = 0.480); the median abnormality index of young TD was greater than that of TD age-matched subjects (p = 0.016). Low frequencies below 0.05 Hz and around 0.20 Hz were the most relevant for discriminating between ADHD patients and TD age-matched controls and between the older and younger TD subjects. In addition, we validated our approach using the fMRI data of children publicly released by the ADHD-200 Competition, obtaining similar results. Our findings suggest that the abnormal coherence patterns observed in patients with ADHD in this study resemble the patterns observed in young typically developing subjects, which reinforces the hypothesis that ADHD is associated with brain maturation deficits. PMID:23049834

  6. Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    PubMed Central

    Roussotte, Florence; Soderberg, Lindsay

    2010-01-01

    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse. PMID:20978945

  7. Unsupervised abnormal crowd activity detection using interaction power model

    NASA Astrophysics Data System (ADS)

    Lin, Shengnan; Zhang, Hong; Cheng, Feiyang; Sun, Mingui; Yuan, Ding

    2014-11-01

    Abnormal event detection in crowded scenes is one of the most challenging tasks in the video surveillance for the public security control. Different from previous work based on learning. We proposed an unsupervised Interaction Power model with an adaptive threshold strategy to detect abnormal group activity by analyzing the steady state of individuals' behaviors in the crowed scene. Firstly, the optical flow field of the potential pedestrians is only calculated within the extracted foreground to reduce the computational cost. Secondly, each pedestrian can be divided into patches of the same size, and the interaction power of the pedestrians will be represented by the motion particles which describe the motion status at the center pixels of the patches. The motion status of each patch is computed by using the optical flows of the pixels within the patch. For each motion particle, its interaction power, defined as its steady state of the current behavior, is computed among all its neighboring motion particles. Finally, the dense crowds' steady state can be represented as a collection of motion particles' interaction power. Here, an adaptive threshold strategy is proposed to detect abnormal events by examining the frame power field which is a fixed-size random sampling of the interaction power of motion particles. Experimental results on the standard UMN dataset and online videos show that our method could detect the crowd anomalies and achieve a higher accuracy compared to the other competitive methods published recently.

  8. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  9. Skeletal and Brain Abnormalities in Fucosidosis, a Rare Lysosomal Storage Disorder

    PubMed Central

    Malatt, Camille; Koning, Jeffrey L.; Naheedy, John

    2015-01-01

    Fucosidosis is a rare genetic lysosomal storage disorder caused by a deficiency in alpha- L-fucosidase. We present a case of a 4-year, 11-month-old girl with developmental delay, as well as skeletal and brain abnormalities as shown on X-ray and MRI. Her spinal X- rays demonstrated lumbar kyphosis and anterior beaking of lumbar vertebral bodies. Lower iliac segment constriction, increased angulation of the acetabular roof, and widening of the ribs were apparent on abdominal X-ray. Her brain MRI illustrated symmetric T1 hyperintensity and T2 hypointensity of the bilateral globi pallidi. The case report highlights clinical and imaging findings of this rare disease. PMID:26622931

  10. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. PMID:26603466

  11. Abnormal structural connectivity in the brain networks of children with hydrocephalus

    PubMed Central

    Yuan, Weihong; Holland, Scott K.; Shimony, Joshua S.; Altaye, Mekibib; Mangano, Francesco T.; Limbrick, David D.; Jones, Blaise V.; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C.

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect abnormalities of brain network connectivity associated with hydrocephalus at both global and regional levels, thus providing a new avenue for potential diagnosis and prognosis tool for children with hydrocephalus. PMID:26106573

  12. Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes

    PubMed Central

    Chau, Vann; Synnes, Anne; Grunau, Ruth E.; Poskitt, Kenneth J.; Brant, Rollin

    2013-01-01

    Objective: Our objective was to determine the association of early brain maturation with neurodevelopmental outcome in premature neonates. Methods: Neonates born between 24 and 32 weeks’ gestation (April 2006 to August 2010) were prospectively studied with MRI early in life and again at term-equivalent age. Using diffusion tensor imaging and magnetic resonance spectroscopic imaging, fractional anisotropy (FA) (microstructure) and N-acetylaspartate (NAA)/choline (metabolism) were measured from the basal nuclei, white matter tracts, and superior white matter. Brain maturation is characterized by increasing FA and NAA/choline from early in life to term-equivalent age. In premature neonates, systemic illness and critical care therapies have been linked to abnormalities of these measures. Of the 177 neonates in this cohort, 5 died and 157 (91% of survivors) were assessed at 18 months’ corrected age (adjusted for prematurity) using the Bayley Scales of Infant and Toddler Development III motor, cognitive, and language composite scores (mean = 100, SD = 15). Results: Among these 157 infants, white matter injury was seen in 48 (30%). Severe white matter injury, in 10 neonates (6%), was associated with a decrease in motor (−18 points; p < 0.001) and cognitive (−8 points; p = 0.085) scores. With greater severity of adverse neurodevelopmental outcomes, slower increases in FA and NAA/choline were observed in the basal nuclei and brain white matter regions as neonates matured to term-equivalent age, independent of the presence of white matter injury. Conclusions: In the preterm neonate, abnormal brain maturation evolves through the period of neonatal intensive care and is associated with adverse neurodevelopmental outcomes. PMID:24212394

  13. Abnormal structural connectivity in the brain networks of children with hydrocephalus.

    PubMed

    Yuan, Weihong; Holland, Scott K; Shimony, Joshua S; Altaye, Mekibib; Mangano, Francesco T; Limbrick, David D; Jones, Blaise V; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect abnormalities of brain network connectivity associated with hydrocephalus at both global and regional levels, thus providing a new avenue for potential diagnosis and prognosis tool for children with hydrocephalus. PMID:26106573

  14. Abnormal White Matter Blood-Oxygen-Level-Dependent Signals in Chronic Mild Traumatic Brain Injury.

    PubMed

    Astafiev, Serguei V; Shulman, Gordon L; Metcalf, Nicholas V; Rengachary, Jennifer; MacDonald, Christine L; Harrington, Deborah L; Maruta, Jun; Shimony, Joshua S; Ghajar, Jamshid; Diwakar, Mithun; Huang, Ming-Xiong; Lee, Roland R; Corbetta, Maurizio

    2015-08-15

    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI. PMID:25758167

  15. Brain Perfusion Single Photon Emission Computed Tomography Abnormalities in Patients with Minimal Hepatic Encephalopathy

    PubMed Central

    Sunil, Hejjaji Venkataramarao; Mittal, Bhagwant Rai; Kurmi, Roshan; Chawla, Yogesh K; Dhiman, Radha K

    2012-01-01

    Background Minimal hepatic encephalopathy (MHE) is the mildest form of hepatic encephalopathy (HE). Minimal hepatic encephalopathy patients do not demonstrate clinically overt symptoms of HE but present with abnormal neuropsychological and/or neurophysiological tests indicative of cerebral dysfunction. This study was performed in such patients to identify regions of abnormal cerebral perfusion and to correlate regional cerebral blood flow (rCBF) changes with psychometric hepatic encephalopathy score (PHES), Child-Turcotte-Pugh's score (CTP), and model for end-stage liver disease (MELD) score. We also compared abnormal patterns of rCBF in cirrhotic patients of alcoholic etiology with non-alcoholic etiology. Methods This prospective study was performed to evaluate rCBF in 50 cirrhotic patients and 13 controls using technetium-99m ethyl cysteinate dimer (Tc-99m ECD) brain single photon emission computed tomography. All the patients underwent a battery of psychometry tests, PHES. Minimal hepatic encephalopathy was diagnosed if PHES was ≤−5. The rCBF changes were evaluated using region of interest (ROI) based semi-quantitative method of region/cerebellum and region/cortex ratios in 16 regions of the brain. Results Cirrhotic patients with MHE showed impaired perfusion in the superior prefrontal cortex and increased perfusion in the thalamus, brain-stem, medial temporal cortex, and the hippocampus when compared with the controls. Cerebral perfusion in superior prefrontal cortex correlated negatively with MELD score (r=−0.323, P=0.022). We found significant positive correlation between PHES score and rCBF values in the left superior prefrontal cortex (r=0.385, P=0.006). Cirrhotic patients with alcohol etiology showed significantly decreased rCBF in right inferior prefrontal cortex, right superior prefrontal cortex, and the anterior cingulate cortex while increased rCBF was noted in the right medial temporal cortex and hippocampus. Conclusion Our results suggest that alterations in cognition in cirrhotic patients with MHE may be associated with impaired abnormalities of rCBF. PMID:25755420

  16. Effects of hyperbaric oxygen on eye tracking abnormalities in males after mild traumatic brain injury.

    PubMed

    Cifu, David X; Hoke, Kathy W; Wetzel, Paul A; Wares, Joanna R; Gitchel, George; Carne, William

    2014-01-01

    The effects of hyperbaric oxygen (HBO2) on eye movement abnormalities in 60 military servicemembers with at least one mild traumatic brain injury (TBI) from combat were examined in a single-center, randomized, double-blind, sham-controlled, prospective study at the Naval Medicine Operational Training Center. During the 10 wk of the study, each subject was delivered a series of 40, once a day, hyperbaric chamber compressions at a pressure of 2.0 atmospheres absolute (ATA). At each session, subjects breathed one of three preassigned oxygen fractions (10.5%, 75%, or 100%) for 1 h, resulting in an oxygen exposure equivalent to breathing either surface air, 100% oxygen at 1.5 ATA, or 100% oxygen at 2.0 ATA, respectively. Using a standardized, validated, computerized eye tracking protocol, fixation, saccades, and smooth pursuit eye movements were measured just prior to intervention and immediately postintervention. Between and within groups testing of pre- and postintervention means revealed no significant differences on eye movement abnormalities and no significant main effect for HBO2 at either 1.5 ATA or 2.0 ATA equivalent compared with the sham-control. This study demonstrated that neither 1.5 nor 2.0 ATA equivalent HBO2 had an effect on postconcussive eye movement abnormalities after mild TBI when compared with a sham-control. PMID:25436771

  17. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    PubMed Central

    Hayes, Jasmeet P.; Miller, Danielle R.; Lafleche, Ginette; Salat, David H.; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having spatially heterogeneous white matter abnormalities. Region-specific reduction in fractional anisotropy (FA) in the left retrolenticular part of the internal capsule was observed in the mTBI + LOC group as the number of blast exposures increased. A mediation analysis revealed that mTBI + LOC indirectly influenced verbal memory performance through its effect on white matter integrity. PTSD was not associated with spatially heterogeneous white matter abnormalities. However, there was a suggestion that at higher levels of PTSD symptom severity, LOC was associated with reduced FA in the left retrolenticular part of the internal capsule. These results support postmortem reports of diffuse axonal injury following mTBI and suggest that injuries with LOC involvement may be particularly detrimental to white matter integrity. Furthermore, these results suggest that LOC-associated white matter abnormalities in turn influence neurocognitive function. PMID:26106539

  18. The nature of white matter abnormalities in blast-related mild traumatic brain injury.

    PubMed

    Hayes, Jasmeet P; Miller, Danielle R; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having spatially heterogeneous white matter abnormalities. Region-specific reduction in fractional anisotropy (FA) in the left retrolenticular part of the internal capsule was observed in the mTBI + LOC group as the number of blast exposures increased. A mediation analysis revealed that mTBI + LOC indirectly influenced verbal memory performance through its effect on white matter integrity. PTSD was not associated with spatially heterogeneous white matter abnormalities. However, there was a suggestion that at higher levels of PTSD symptom severity, LOC was associated with reduced FA in the left retrolenticular part of the internal capsule. These results support postmortem reports of diffuse axonal injury following mTBI and suggest that injuries with LOC involvement may be particularly detrimental to white matter integrity. Furthermore, these results suggest that LOC-associated white matter abnormalities in turn influence neurocognitive function. PMID:26106539

  19. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  20. Abnormal brain response to cholinergic challenge in chronic encephalopathy from the 1991 Gulf War.

    PubMed

    Haley, Robert W; Spence, Jeffrey S; Carmack, Patrick S; Gunst, Richard F; Schucany, William R; Petty, Frederick; Devous, Michael D; Bonte, Frederick J; Trivedi, Madhukar H

    2009-03-31

    Several case definitions of chronic illness in veterans of the 1991 Persian Gulf War have been linked epidemiologically with environmental exposure to cholinesterase-inhibiting chemicals, which cause chronic changes in cholinergic receptors in animal models. Twenty-one chronically ill Gulf War veterans (5 with symptom complex 1, 11 with complex 2, and 5 with complex 3) and 17 age-, sex- and education-matched controls, underwent an 99mTc-HMPAO-SPECT brain scan following infusion of saline and >48 h later a second scan following infusion of physostigmine in saline. From each SPECT image mean normalized regional cerebral blood flow (nrCBF) from 39 small blocks of correlated voxels were extracted with geostatistical spatial modeling from eight deep gray matter structures in each hemisphere. Baseline nrCBF in symptom complex 2 was lower than controls throughout deep structures. The change in nrCBF after physostigmine (challenge minus baseline) was negative in complexes 1 and 3 and controls but positive in complex 2 in some structures. Since effects were opposite in different groups, no finding typified the entire patient sample. A hold-out discriminant model of nrCBF from 17 deep brain blocks predicted membership in the clinical groups with sensitivity of 0.95 and specificity of 0.82. Gulf War-associated chronic encephalopathy in a subset of veterans may be due to neuronal dysfunction, including abnormal cholinergic response, in deep brain structures. PMID:19230625

  1. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  2. Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis

    PubMed Central

    Reig, Santiago; Parellada, Mara; Castro-Fornieles, Josefina; Janssen, Joost; Moreno, Dolores; Baeza, Inmaculada; Bargalló, Nuria; González-Pinto, Ana; Graell, Montserrat; Ortuño, Felipe; Otero, Soraya; Arango, Celso; Desco, Manuel

    2011-01-01

    The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of “schizophrenia” or “other psychosis” showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents. PMID:20478821

  3. Oseltamivir reduces hippocampal abnormal EEG activities after a virus infection (influenza) in isoflurane-anesthetized rats

    PubMed Central

    Cissé, Youssouf; Inoue, Isao; Kido, Hiroshi

    2012-01-01

    Background Oseltamivir phosphate (OP, Tamiflu®) is a widely used drug in the treatment of influenza with fever. However, case reports have associated OP intake with sudden abnormal behaviors. In rats infected by the influenza A virus (IAV), the electroencephalogram (EEG) displayed abnormal high-voltage amplitudes with spikes and theta oscillations at a core temperature of 39.9°C to 41°C. Until now, there has been no information describing the effect of OP on intact brain hippocampal activity of IAV-infected animals during hyperthermia. Objective The aim of the present study was to examine the effect of OP on abnormal EEG activities in the hippocampus using the rat model of influenza-associated encephalopathy. Methods Male Wistar rats aged 3 to 4 weeks were used for the study. Influenza A/WSN/33 strain (1 × 105 plaque forming unit in PBS, 60 µL) was applied intranasally to the rats. To characterize OP effects on the IAV-infected rats, EEG activity was studied more particularly in isoflurane-anesthetized IAV-infected rats during hyperthermia. Results We found that the hippocampal EEG of the OP-administered (10 mg/kg) IAV-infected rats showed significant reduction of the high-voltage amplitudes and spikes, but the theta oscillations, which had been observed only at >40°C in OP non-administered rats, appeared at 38°C core temperature. Atropine (30 mg/kg) blocked the theta oscillations. Conclusion Our data suggest that OP efficiently reduces the abnormal EEG activities after IAV infection during hyperthermia. However, OP administration may stimulate ACh release in rats at normal core temperature.

  4. Localization of perfusion abnormalities in brain SPECT imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Nguyen, Elise; Meunier, Jean; Soucy, Jean-Paul; Boucher, Luc; Laflamme, Louis

    2005-04-01

    SPECT (Single Photon Emission Computed Tomography) imagery has become widely available and is particularly useful for regional cerebral blood flow (rCBF) studies. Distribution of rCBF is still essentially studied by visual observation, searching for abnormalities, and comparing with other studies. In order to facilitate the localization of these abnormalities, we propose a simple, automatic and direct method to register a SPECT rCBF study with a commonly used atlas in the neurological community, the Talairach Atlas. The Talairach atlas still gives today the most extensive information of regions of interests, coupled with a coordinate system. The proposed method will therefore allow a physician to precisely navigate in a SPECT image by interpreting the abnormalities coordinates. The registration of these two volumes is carried out in two steps, a rough alignment followed by an elastic registration. The rough alignment step consists in computing the mass centroid of each volume and in scaling the volumes accordingly if necessary. A simple threshold method (30% of the maximum intensity of the SPECT image) is used to determine the volume of the brain being studied. In order to facilitate the fine registration, the Talairach atlas was previously segmented in three classes: cerebrospinal fluid (CSF), white and gray matters. Then, an automatic intensity transformation as well as a low-pass filtering is performed to closely resemble the spatial resolution and intensities of the SPECT volume. This intensity transformation is a simple method which combines the use of a joint 2D histogram of the segmented atlas and the individual volume as well as a clustering algorithm. The fine registration is then computed with an optical flow methodology. The effectiveness of this scheme was tested on a database of virtual patients, simulated from a database of 45 healthy and diseased brains. The rate of pixels misclassification in each class within a one pixel neighborhood (CSF 0.5%; white matter 1.37%, gray matter 2.80%) indicates that this proposed method will be useful for the nuclear physician in helping localize abnormalities.

  5. Neonatal brain abnormalities associated with autism spectrum disorder in children born very preterm.

    PubMed

    Ure, Alexandra M; Treyvaud, Karli; Thompson, Deanne K; Pascoe, Leona; Roberts, Gehan; Lee, Katherine J; Seal, Marc L; Northam, Elisabeth; Cheong, Jeanie L; Hunt, Rod W; Inder, Terrie; Doyle, Lex W; Anderson, Peter J

    2016-05-01

    Very preterm (VP) survivors are at increased risk of autism spectrum disorder (ASD) compared with term-born children. This study explored whether neonatal magnetic resonance (MR) brain features differed in VP children with and without ASD at 7 years. One hundred and seventy-two VP children (<30 weeks' gestation or <1250 g birth weight) underwent structural brain MR scans at term equivalent age (TEA; 40 weeks' gestation ±2 weeks) and were assessed for ASD at 7 years of age. The presence and severity of white matter, cortical gray matter, deep nuclear gray matter, and cerebellar abnormalities were assessed, and total and regional brain volumes were measured. ASD was diagnosed using a standardized parent report diagnostic interview and confirmed via an independent assessment. Eight VP children (4.7%) were diagnosed with ASD. Children with ASD had more cystic lesions in the cortical white matter at TEA compared with those without ASD (odds ratio [OR] 8.7, 95% confidence interval [CI] 1.5, 51.3, P = 0.02). There was also some evidence for smaller cerebellar volumes in children with ASD compared with those without ASD (OR = 0.82, CI = 0.66, 1.00, P = 0.06). Overall, the results suggest that VP children with ASD have different brain structure in the neonatal period compared with those who do not have ASD. Autism Res 2016, 9: 543-552. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26442616

  6. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  7. Abnormalities in auditory efferent activities in children with selective mutism.

    PubMed

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. PMID:24107432

  8. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects.

    PubMed

    Fernandes, Marilyse B L; Maximino, Luciana P; Perosa, Gimol B; Abramides, Dagma V M; Passos-Bueno, Maria Rita; Yacubian-Fernandes, Adriano

    2016-06-01

    Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc. PMID:27028366

  9. Sensory Abnormalities in Focal Hand Dystonia and Non-Invasive Brain Stimulation

    PubMed Central

    Quartarone, Angelo; Rizzo, Vincenzo; Terranova, Carmen; Milardi, Demetrio; Bruschetta, Daniele; Ghilardi, Maria Felice; Girlanda, Paolo

    2014-01-01

    It has been proposed that synchronous and convergent afferent input arising from repetitive motor tasks may play an important role in driving the maladaptive cortical plasticity seen in focal hand dystonia (FHD). This hypothesis receives support from several sources. First, it has been reported that in subjects with FHD, paired associative stimulation produces an abnormal increase in corticospinal excitability, which was not confined to stimulated muscles. These findings provide support for the role of excessive plasticity in FHD. Second, the genetic contribution to the dystonias is increasingly recognized indicating that repetitive, stereotyped afferent inputs may lead to late-onset dystonia, such as FHD, more rapidly in genetically susceptible individuals. It can be postulated, according to the two factor hypothesis that dystonia is triggered and maintained by the concurrence of environmental factors such as repetitive training and subtle abnormal mechanisms of plasticity within somatosensory loop. In the present review, we examine the contribution of sensory-motor integration in the pathophysiology of primary dystonia. In addition, we will discuss the role of non-invasive brain stimulation as therapeutic approach in FHD. PMID:25538594

  10. Mathematical Difficulties and White Matter Abnormalities in Subacute Pediatric Mild Traumatic Brain Injury.

    PubMed

    Van Beek, Leen; Ghesquière, Pol; Lagae, Lieven; De Smedt, Bert

    2015-10-15

    Mathematical difficulties have been documented following pediatric mild traumatic brain injury (mTBI), yet a precise characterization of these impairments and their neural correlates is currently unavailable. We aimed to characterize these impairments by comparing behavioral and neuroimaging (i.e., diffusion tensor imaging [DTI]) outcomes from children with subacute mTBI to typically-developing controls. Twenty subacute pediatric mTBI patients and 20 well-matched controls underwent cognitive assessment and DTI examination. DTI tractography was used to detect white matter abnormalities in the corpus callosum (CC) and superior and inferior longitudinal fasciculi; these tracts are involved in mathematical performance and they are often damaged after mTBI. Behavioral results revealed that children with mTBI performed significantly more poorly on rapid apprehension of small numbers of objects (or "subitizing"), processing of non-symbolic numerosities, and procedural problem solving. These group differences were explained by differences in visuospatial working memory, which suggests that the observed mathematical difficulties may be a consequence of impairments in visuospatial abilities. DTI analysis revealed subtle group differences in the CC genu and splenium (i.e., higher fractional anisotropy and lower mean and radial diffusivity in children with mTBI) but the observed white matter abnormalities of the CC were not significantly associated with the observed mathematical difficulties in the mTBI patients. PMID:25915107

  11. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  12. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    PubMed

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders. PMID:16876824

  13. A prospective study of gray matter abnormalities in mild traumatic brain injury

    PubMed Central

    Ling, Josef M.; Klimaj, Stefan; Toulouse, Trent

    2013-01-01

    Objective: To examine the underlying pathophysiology of mild traumatic brain injury through changes in gray matter diffusion and atrophy during the semiacute stage. Methods: Fifty patients and 50 sex-, age-, and education-matched controls were evaluated with a clinical and neuroimaging battery approximately 14 days postinjury, with 26 patients returning for follow-up 4 months postinjury. Clinical measures included tests of attention, processing speed, executive function, working memory, memory, and self-reported postconcussive symptoms. Measures of diffusion (fractional anisotropy [FA], mean diffusivity) and atrophy were obtained for cortical and subcortical structures to characterize effects of injury as a function of time. Results: Patients reported more cognitive, somatic, and emotional complaints during the semiacute injury phase, which were significantly reduced 4 months postinjury. Patients showed evidence of increased FA in the bilateral superior frontal cortex during the semiacute phase, with the left superior frontal cortex remaining elevated 4 months postinjury. There were no significant differences between patients and matched controls on neuropsychological testing or measures of gray matter atrophy/mean diffusivity at either time point. Conclusions: Increased cortical FA is largely consistent with an emerging animal literature of gray matter abnormalities after neuronal injury. Potential mechanistic explanations for increased FA include cytotoxic edema or reactive gliosis. In contrast, there was no evidence of cortical or subcortical atrophy in the current study, suggesting that frank neuronal or neuropil loss does not occur early in the chronic disease course for patients with typical mild traumatic brain injury. PMID:24259552

  14. Gyrification brain abnormalities associated with adolescence and early-adulthood cannabis use.

    PubMed

    Mata, Ignacio; Perez-Iglesias, Rocio; Roiz-Santiañez, Roberto; Tordesillas-Gutierrez, Diana; Pazos, Angel; Gutierrez, Agustin; Vazquez-Barquero, Jose Luis; Crespo-Facorro, Benedicto

    2010-03-01

    Although cannabis is the most widely used illicit drug in the world, the long-term effect of its use in the brain remains controversial. In order to determine whether adolescence and early-adulthood cannabis use is associated with gross volumetric and gyrification abnormalities in the brain, we set up a cross-sectional study using structural magnetic resonance imaging in a sample of general population subjects. Thirty cannabis-using subjects (mean age, 25.7 years; mean duration of regular use, 8.4 years, range: 3-21) with no history of polydrug use or neurologic/mental disorder and 44 non-using control subjects (mean age, 25.8 years) were included. Cannabis users showed bilaterally decreased concavity of the sulci and thinner sulci in the right frontal lobe. Among non-users, age was significantly correlated with decreased gyrification (i.e., less concave sulci and more convexe gyri) and decreased cortical thickness, supporting the notion of age-related gyrification changes. However, among cannabis users gyrification indices did not show significant dependency on age, age of regular cannabis use initiation, or cumulative exposure to cannabis. These results suggest that cannabis use in adolescence and early-adulthood might involve a premature alteration in cortical gyrification similar to what is normally observed at a later age, probably through disruption of normal neurodevelopment. PMID:20045399

  15. Metabolic Abnormalities in Lobar and Subcortical Brain Regions of Abstinent Polysubstance Users: Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Abé, Christoph; Mon, Anderson; Hoefer, Michael E.; Durazzo, Timothy C.; Pennington, David L.; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2013-01-01

    Aims: The aim of the study was to explore neurometabolic and associated cognitive characteristics of patients with polysubstance use (PSU) in comparison with patients with predominant alcohol use using proton magnetic resonance spectroscopy. Methods: Brain metabolite concentrations were examined in lobar and subcortical brain regions of three age-matched groups: 1-month-abstinent alcohol-dependent PSU, 1-month-abstinent individuals dependent on alcohol alone (ALC) and light drinking controls (CON). Neuropsychological testing assessed cognitive function. Results: While CON and ALC had similar metabolite levels, persistent metabolic abnormalities (primarily higher myo-inositol) were present in temporal gray matter, cerebellar vermis and lenticular nuclei of PSU. Moreover, lower cortical gray matter concentration of the neuronal marker N-acetylaspartate within PSU correlated with higher cocaine (but not alcohol) use quantities and with a reduced cognitive processing speed. Conclusions: These metabolite group differences reflect cellular/astroglial injury and/or dysfunction in alcohol-dependent PSU. Associations of other metabolite concentrations with neurocognitive performance suggest their functional relevance. The metabolic alterations in PSU may represent polydrug abuse biomarkers and/or potential targets for pharmacological and behavioral PSU-specific treatment. PMID:23797281

  16. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    PubMed

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. PMID:23856299

  17. Brain white matter abnormalities in female interstitial cystitis/bladder pain syndrome: A MAPP Network neuroimaging study

    PubMed Central

    Farmer, Melissa A.; Huang, Lejian; Martucci, Katherine; Yang, Claire C.; Maravilla, Kenneth R.; Harris, Richard E.; Clauw, Daniel J.; Mackey, Sean; Ellingson, Benjamin M.; Mayer, Emeran A.; Schaeffer, Anthony J.; Apkarian, A. Vania

    2015-01-01

    Purpose Several chronic pain conditions may be distinguished by condition-specific brain anatomical and functional abnormalities observed by imaging suggestive of underlying disease processes. Here we present the first characterization of IC/BPS-associated white matter (axonal) abnormalities based on multi-center neuroimaging from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. Materials and Methods Women with IC/BPS (n=34) and healthy controls (n=32) were assessed with questionnaires on pain, mood, and daily function. White matter microstructure was evaluated with diffusion tensor imaging (DTI) to model directional water flow along axons, or fractional anisotropy (FA). Regions that correlated with clinical parameters were further examined for sex and syndrome dependence. Results Women with IC/BPS exhibited numerous white matter abnormalities that correlated with severity of pain, urinary symptoms, and impaired quality of life. IC/BPS was characterized by decreased FA in aspects of the right anterior thalamic radiation, left forceps major, and right longitudinal fasciculus. Increased FA was detected in the right superior and bilateral inferior longitudinal fasciculi. Conclusions The first characterization of brain white matter abnormalities in women with IC/BPS reveals that regional decreases and increases in white matter integrity, across multiple axonal tracts, are associated with symptom severity in IC/BPS. Given that white matter abnormalities closely correlate with hallmark symptoms of IC/BPS, including bladder pain and urinary symptoms, brain anatomical alterations suggest neuropathological contributions to chronic urological pelvic pain. PMID:25711200

  18. Autism Spectrum Disorder as Early Neurodevelopmental Disorder: Evidence from the Brain Imaging Abnormalities in 2-3Years Old Toddlers

    ERIC Educational Resources Information Center

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships

  19. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    ERIC Educational Resources Information Center

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.…

  20. Decoding patterns of human brain activity.

    PubMed

    Tong, Frank; Pratte, Michael S

    2012-01-01

    Considerable information about mental states can be decoded from noninvasive measures of human brain activity. Analyses of brain activity patterns can reveal what a person is seeing, perceiving, attending to, or remembering. Moreover, multidimensional models can be used to investigate how the brain encodes complex visual scenes or abstract semantic information. Such feats of "brain reading" or "mind reading," though impressive, raise important conceptual, methodological, and ethical issues. What does successful decoding reveal about the cognitive functions performed by a brain region? How should brain signals be spatially selected and mathematically combined to ensure that decoding reflects inherent computations of the brain rather than those performed by the decoder? We highlight recent advances and describe how multivoxel pattern analysis can provide a window into mind-brain relationships with unprecedented specificity, when carefully applied. However, as brain-reading technology advances, issues of neuroethics and mental privacy will be important to consider. PMID:21943172

  1. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Black, Joel A.; Dib-Hajj, Sulayman; Baker, David; Newcombe, Jia; Cuzner, M. Louise; Waxman, Stephen G.

    2000-10-01

    Clinical abnormalities in multiple sclerosis (MS) have classically been considered to be caused by demyelination and/or axonal degeneration; the possibility of molecular changes in neurons, such as the deployment of abnormal repertoires of ion channels that would alter neuronal electrogenic properties, has not been considered. Sensory Neuron-Specific sodium channel SNS displays a depolarized voltage dependence, slower activation and inactivation kinetics, and more rapid recovery from inactivation than classical "fast" sodium channels. SNS is selectively expressed in spinal sensory and trigeminal ganglion neurons within the peripheral nervous system and is not expressed within the normal brain. Here we show that sodium channel SNS mRNA and protein, which are not present within the cerebellum of control mice, are expressed within cerebellar Purkinje cells in a mouse model of MS, chronic relapsing experimental allergic encephalomyelitis. We also demonstrate SNS mRNA and protein expression within Purkinje cells from tissue obtained postmortem from patients with MS, but not in control subjects with no neurological disease. These results demonstrate a change in sodium channel expression in neurons within the brain in an animal model of MS and in humans with MS and suggest that abnormal patterns of neuronal ion channel expression may contribute to clinical abnormalities such as ataxia in these disorders.

  2. Abnormal Subcortical Brain Morphology in Patients with Knee Osteoarthritis: A Cross-sectional Study

    PubMed Central

    Mao, Cui Ping; Bai, Zhi Lan; Zhang, Xiao Na; Zhang, Qiu Juan; Zhang, Lei

    2016-01-01

    Despite the involvement of subcortical brain structures in the pathogenesis of chronic pain and persistent pain as the defining symptom of knee osteoarthritis (KOA), little attention has been paid to the morphometric measurements of these subcortical nuclei in patients with KOA. The purpose of this study is to explore the potential morphological abnormalities of subcortical brain structures in patients with KOA as compared to the healthy control subjects by using high-resolution MRI. Structural MR data were acquired from 26 patients with KOA and 31 demographically similar healthy individuals. The MR data were analyzed by using FMRIB’s integrated registration and segmentation tool. Both volumetric analysis and surface-based shape analysis were performed to characterize the subcortical morphology. The normalized volumes of bilateral caudate nucleus were significantly smaller in the KOA group than in the control group (P = 0.004). There was also a trend toward smaller volume of the hippocampus in KOA as compared to the control group (P = 0.027). Detailed surface analyses further localized these differences with a greater involvement of the left hemisphere (P < 0.05, corrected) for the caudate nucleus. Hemispheric asymmetry (right larger than left) of the caudate nucleus was found in both KOA and control groups. Besides, no significant correlation was found between the structural data and pain intensities. Our results indicated that patients with KOA had statistically significant smaller normalized volumes of bilateral caudate nucleus and a trend toward smaller volume of the hippocampus as compared to the control subjects. Further investigations are necessary to characterize the role of caudate nucleus in the course of chronicity of pain associated with KOA. PMID:26834629

  3. Abnormal Network Topographies and Changes in Global Activity: Absence of a Causal Relationship

    PubMed Central

    Dhawan, Vijay; Tang, Chris C.; Ma, Yilong; Spetsieris, Phoebe; Eidelberg, David

    2012-01-01

    Changes in regional brain activity can be observed following global normalization procedures to reduce variability in the data. In particular, spurious regional differences may appear when scans from patients with low global activity are compared to those from healthy subjects. It has thus been suggested that the consistent increases in subcortical activity that characterize the abnormal Parkinson’s disease-related metabolic covariance pattern (PDRP) are artifacts of global normalization, and that similar topographies can be identified in scans from healthy subjects with varying global activity. To address this issue, we examined the effects of experimental reductions in global metabolic activity on PDRP expression. Ten healthy subjects underwent 18F-fluorodeoxyglucose PET in wakefulness and following sleep induction. In all subjects, the global metabolic rate (GMR) declined with sleep (mean −34%, range: −17 to −56%), exceeding the test-retest differences of the measure (p<0.001). By contrast, sleep-wake differences in PDRP expression did not differ from test-retest differences, and did not correlate (R2=0.04) with concurrent declines in global metabolic activity. Indeed, despite significant GMR reductions in sleep, PDRP values remained within the normal range. Likewise, voxel weights on the principal component patterns resulting from combined analysis of the sleep and wake scans did not correlate (R2<0.07) with the corresponding regional loadings on the PDRP topography. In aggregate, the data demonstrate that abnormal PDRP expression is not induced by reductions in global activity. Moreover, significant declines in GMR are not associated with the appearance of PDRP-like spatial topographies. PMID:22951259

  4. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study

    PubMed Central

    Slobounov, Semyon M.; Zhang, K.; Pennell, D.; Ray, W.; Johnson, B.; Sebastianelli, W.

    2010-01-01

    Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting. PMID:20039023

  5. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  6. Neural tube defects and abnormal brain development in F52-deficient mice.

    PubMed Central

    Wu, M; Chen, D F; Sasaoka, T; Tonegawa, S

    1996-01-01

    F52 is a myristoylated, alanine-rich substrate for protein kinase C. We have generated F52-deficient mice by the gene targeting technique. These mutant mice manifest severe neural tube defects that are not associated with other complex malformations, a phenotype reminiscent of common human neural tube defects. The neural tube defects observed include both exencephaly and spina bifida, and the phenotype exhibits partial penetrance with about 60% of homozygous embryos developing neural tube defects. Exencephaly is the prominent type of defect and leads to high prenatal lethality. Neural tube defects are observed in a smaller percentage of heterozygous embryos (about 10%). Abnormal brain development and tail formation occur in homozygous mutants and are likely to be secondary to the neural tube defects. Disruption of F52 in mice therefore identifies a gene whose mutation results in isolated neural tube defects and may provide an animal model for common human neural tube defects. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8700893

  7. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

    PubMed Central

    van Erp, T G M; Hibar, D P; Rasmussen, J M; Glahn, D C; Pearlson, G D; Andreassen, O A; Agartz, I; Westlye, L T; Haukvik, U K; Dale, A M; Melle, I; Hartberg, C B; Gruber, O; Kraemer, B; Zilles, D; Donohoe, G; Kelly, S; McDonald, C; Morris, D W; Cannon, D M; Corvin, A; Machielsen, M W J; Koenders, L; de Haan, L; Veltman, D J; Satterthwaite, T D; Wolf, D H; Gur, R C; Gur, R E; Potkin, S G; Mathalon, D H; Mueller, B A; Preda, A; Macciardi, F; Ehrlich, S; Walton, E; Hass, J; Calhoun, V D; Bockholt, H J; Sponheim, S R; Shoemaker, J M; van Haren, N E M; Pol, H E H; Ophoff, R A; Kahn, R S; Roiz-Santiañez, R; Crespo-Facorro, B; Wang, L; Alpert, K I; Jönsson, E G; Dimitrova, R; Bois, C; Whalley, H C; McIntosh, A M; Lawrie, S M; Hashimoto, R; Thompson, P M; Turner, J A

    2016-01-01

    The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=−0.46), amygdala (d=−0.31), thalamus (d=−0.31), accumbens (d=−0.25) and intracranial volumes (d=−0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness. PMID:26033243

  8. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium.

    PubMed

    van Erp, T G M; Hibar, D P; Rasmussen, J M; Glahn, D C; Pearlson, G D; Andreassen, O A; Agartz, I; Westlye, L T; Haukvik, U K; Dale, A M; Melle, I; Hartberg, C B; Gruber, O; Kraemer, B; Zilles, D; Donohoe, G; Kelly, S; McDonald, C; Morris, D W; Cannon, D M; Corvin, A; Machielsen, M W J; Koenders, L; de Haan, L; Veltman, D J; Satterthwaite, T D; Wolf, D H; Gur, R C; Gur, R E; Potkin, S G; Mathalon, D H; Mueller, B A; Preda, A; Macciardi, F; Ehrlich, S; Walton, E; Hass, J; Calhoun, V D; Bockholt, H J; Sponheim, S R; Shoemaker, J M; van Haren, N E M; Pol, H E H; Ophoff, R A; Kahn, R S; Roiz-Santiañez, R; Crespo-Facorro, B; Wang, L; Alpert, K I; Jönsson, E G; Dimitrova, R; Bois, C; Whalley, H C; McIntosh, A M; Lawrie, S M; Hashimoto, R; Thompson, P M; Turner, J A

    2016-04-01

    The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness. PMID:26033243

  9. Cognitive control dysfunction and abnormal frontal cortex activation in stimulant drug users and their biological siblings

    PubMed Central

    Smith, D G; Jones, P S; Bullmore, E T; Robbins, T W; Ersche, K D

    2013-01-01

    Cognitive and neural abnormalities are known to accompany chronic drug abuse, with impairments in cognition and changes in cortical structure seen in stimulant-dependent individuals. However, premorbid differences have also been observed in the brains and behavior of individuals at risk for substance abuse, before they develop dependence. Endophenotype research has emerged as a useful method for assessing preclinical traits that may be risk factors for pathology by studying patient populations and their undiagnosed first-degree relatives. This study used the color-word Stroop task to assess executive functioning in stimulant-dependent individuals, their unaffected biological siblings and unrelated healthy control volunteers using a functional magnetic resonance imaging paradigm. Both the stimulant-dependent and sibling participants demonstrated impairments in cognitive control and processing speed on the task, registering significantly longer response latencies. However, the two groups generated very different neural responses, with the sibling participants exhibiting a significant decrease in activation in the inferior frontal gyrus compared with both stimulant-dependent individuals and control participants. Both target groups also demonstrated a decrease in hemispheric laterality throughout the task, exhibiting a disproportionate increase in right hemispheric activation, which was associated with their behavioral inefficiencies. These findings not only suggest a possible risk factor for stimulant abuse of poor inhibitory control and cortical inefficiency but they also demonstrate possible adaptations in the brains of stimulant users. PMID:23673468

  10. Abnormal brain function of the rat neonate in a prenatal 5-bromo-2'-deoxyuridine (BrdU)-induced developmental disorder model.

    PubMed

    Ogawa, Tetsuo; Kuwagata, Makiko; Muneoka, Katsumasa; Wakai, Chizu; Senuma, Mika; Kubo, Hiroko; Shioda, Seiji

    2012-10-01

    Neonatal brain function was investigated in a prenatal BrdU-induced developmental disorder model, which has been reported to exhibit behavioral abnormalities such as locomotor hyperactivity, impaired learning and memory, and lower anxiety in offspring. After 1h home cage deprivation we observed an increase in the number of c-Fos (neuronal activity marker) immunoreactive cells in several brain regions of the olfactory and stress-related areas in normal neonates at 11 days. Next, pregnant rats were exposed to 50mg/kg of BrdU from gestation days 9-15, and their offspring at 11 days were home-cage deprived. Compared to vehicle control, the number of c-Fos immunoreactive cells in BrdU group was found to be decreased in the piriform cortex and locus coeruleus, which are known to play an important role in neonatal learning and memory. We also analyzed Pearson product-moment correlation coefficient of the number of c-Fos immunoreactive cells, focusing on the piriform cortex and locus coeruleus versus numerous other brain areas (11 areas including amygdala). Numerous significant correlations were observed in the vehicle control group, however, correlations of the locus coeruleus disappeared in the BrdU group. By observing c-Fos immunoreactivity after home cage deprivation our study uncovers abnormal brain functions as early as postnatal day 11 in this disorder model. Based on these results, we propose a new histological approach for functional characterization of developmental disorder models. PMID:22609825

  11. BRAIN ABNORMALITIES IN YOUNG ADULTS AT GENETIC RISK FOR AUTOSOMAL DOMINANT ALZHEIMER’S DISEASE: A CROSS-SECTIONAL STUDY

    PubMed Central

    Reiman, Eric M.; Quiroz, Yakeel T.; Fleisher, Adam S.; Chen, Kewei; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Fagan, Anne M.; Shah, Aarti R.; Alvarez, Sergio; Arbelaez, Andrés; Giraldo, Margarita; Acosta-Baena, Natalia; Sperling, Reisa A.; Dickerson, Brad; Stern, Chantal E.; Tirado, Victoria; Munoz, Claudia; Reiman, Rebecca A.; Huentelman, Matthew J.; Alexander, Gene E.; Langbaum, Jessica B.S.; Kosik, Kenneth S.; Tariot, Pierre N.; Lopera, Francisco

    2013-01-01

    Summary Background We previously detected functional brain imaging abnormalities in young adults at genetic risk for late-onset Alzheimer’s disease (AD). Here, we sought to characterize structural and functional magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and plasma biomarker abnormalities in young adults at risk for autosomal dominant early-onset AD. Biomarker measurements were characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the world’s largest known autosomal dominant early-onset AD kindred, more than two decades before the carriers’ estimated median age of 44 at the onset of mild cognitive impairment (MCI) and before their estimated age of 28 at the onset of amyloid-β (Aβ) plaque deposition. Methods Biomarker data for this cross-sectional study were acquired in Antioquia, Colombia between July and August, 2010. Forty-four participants from the Colombian Alzheimer’s Prevention Initiative (API) Registry had structural MRIs, functional MRIs during associative memory encoding/novel viewing and control tasks, and cognitive assessments. They included 20 mutation carriers and 24 non-carriers, who were cognitively normal, 18-26 years old and matched for their gender, age, and educational level. Twenty of the participants, including 10 mutation carriers and 10 non-carriers, had lumbar punctures and venipunctures. Primary outcome measures included task-dependent hippocampal/parahippocampal activations and precuneus/posterior cingulate deactivations, regional gray matter reductions, CSF Aβ1-42, total tau and phospho-tau181 levels, and plasma Aβ1-42 levels and Aβ1-42/Aβ1-40 ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and AD-related search regions. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. Findings The mutation carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological test scores, or proportion of apolipoprotein E (APOE) ε4 carriers. Compared to the non-carriers, carriers had higher CSF Aβ1-42 levels (p=0·008), plasma Aβ1-42 levels (p=0·01), and plasma Aβ1-42/Aβ1-40 ratios (p=0·001), consistent with Aβ1-42 overproduction. They also had greater hippocampal/parahippocampal activations (as low as p=0·008, after correction for multiple comparisons), less precuneus/posterior cingulate deactivations (as low as p=0·001, after correction), less gray matter in several regions (p-values <0·005, uncorrected, and corrected p=0·008 in the parietal search region), similar to findings in the later preclinical and clinical stages of autosomal dominant and late-onset AD. Interpretation Young adults at genetic risk for autosomal dominant AD have functional and structural MRI abnormalities, along with CSF and plasma biomarker findings consistent with Aβ1-42 over-production. While the extent to which the underlying brain changes are progressive or developmental remain to be determined, this study demonstrates the earliest known biomarker changes in cognitively normal people at genetic risk for autosomal dominant AD. Funding Banner Alzheimer’s Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Boston University Department of Psychology, Colciencias (1115-408-20512, 1115-545-31651), National Institute on Aging (R01 AG031581, P30 AG19610, UO1 AG024904, RO1 AG025526, RF1AG041705), National Institute of Neurological Disorders and Stroke (F31-NS078786) and state of Arizona. PMID:23137948

  12. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS)

    PubMed Central

    2011-01-01

    Background Bardet-Biedl syndrome (BBS) is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1) normal intracranial volume; 2) reduced white matter in all regions of the brain, but most in the occipital region; 3) preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4) reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5) increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes of the brain in patients with BBS, which parallel the findings, described in BBS mutant mouse models. Some of these brain abnormalities may be progressive and associated with the reported neurological and behavioral problems. Further future correlation of these MRI scan findings with detailed neurologic and neuropsychological exams together with genotype data will provide better understanding of the pathophysiology of BBS. PMID:21794117

  13. Abnormal Brain Dynamics Underlie Speech Production in Children with Autism Spectrum Disorder.

    PubMed

    Pang, Elizabeth W; Valica, Tatiana; MacDonald, Matt J; Taylor, Margot J; Brian, Jessica; Lerch, Jason P; Anagnostou, Evdokia

    2016-02-01

    A large proportion of children with autism spectrum disorder (ASD) have speech and/or language difficulties. While a number of structural and functional neuroimaging methods have been used to explore the brain differences in ASD with regards to speech and language comprehension and production, the neurobiology of basic speech function in ASD has not been examined. Magnetoencephalography (MEG) is a neuroimaging modality with high spatial and temporal resolution that can be applied to the examination of brain dynamics underlying speech as it can capture the fast responses fundamental to this function. We acquired MEG from 21 children with high-functioning autism (mean age: 11.43 years) and 21 age- and sex-matched controls as they performed a simple oromotor task, a phoneme production task and a phonemic sequencing task. Results showed significant differences in activation magnitude and peak latencies in primary motor cortex (Brodmann Area 4), motor planning areas (BA 6), temporal sequencing and sensorimotor integration areas (BA 22/13) and executive control areas (BA 9). Our findings of significant functional brain differences between these two groups on these simple oromotor and phonemic tasks suggest that these deficits may be foundational and could underlie the language deficits seen in ASD. Autism Res 2016, 9: 249-261. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26363154

  14. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    PubMed Central

    Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollmann, Robert; Ferguson, David JP; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, William F; Chen, Lieping; McLeod, Rima

    2008-01-01

    Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus, CD4+ and CD8+ T cells, and activated microglia in perivascular areas and brain parenchyma. Genetically resistant, chronically infected mice had substantially less inflammation. Conclusion In outbred mice, chronic, adult acquired T. gondii infection causes neurologic and behavioral abnormalities secondary to inflammation and loss of brain parenchyma. Perivascular inflammation is prominent particularly contiguous to the aqueduct of Sylvius and hippocampus. Even resistant mice have perivascular inflammation. This mouse model of chronic T. gondii infection raises questions of whether persistence of this parasite in brain can cause inflammation or neurodegeneration in genetically susceptible hosts. PMID:18947414

  15. Dentate gyrus abnormalities in sudden unexplained death in infants: morphological marker of underlying brain vulnerability.

    PubMed

    Kinney, Hannah C; Cryan, Jane B; Haynes, Robin L; Paterson, David S; Haas, Elisabeth A; Mena, Othon J; Minter, Megan; Journey, Kelley W; Trachtenberg, Felicia L; Goldstein, Richard D; Armstrong, Dawna D

    2015-01-01

    Sudden unexplained death in infants, including the sudden infant death syndrome, is likely due to heterogeneous causes that involve different intrinsic vulnerabilities and/or environmental factors. Neuropathologic research focuses upon the role of brain regions, particularly the brainstem, that regulate or modulate autonomic and respiratory control during sleep or transitions to waking. The hippocampus is a key component of the forebrain-limbic network that modulates autonomic/respiratory control via brainstem connections, but its role in sudden infant death has received little attention. We tested the hypothesis that a well-established marker of hippocampal pathology in temporal lobe epilepsy-focal granule cell bilamination in the dentate, a variant of granule cell dispersion-is associated with sudden unexplained death in infants. In a blinded study of hippocampal morphology in 153 infants with sudden and unexpected death autopsied in the San Diego County medical examiner's office, deaths were classified as unexplained or explained based upon autopsy and scene investigation. Focal granule cell bilamination was present in 41.2% (47/114) of the unexplained group compared to 7.7% (3/39) of the explained (control) group (p < 0.001). It was associated with a cluster of other dentate developmental abnormalities that reflect defective neuronal proliferation, migration, and/or survival. Dentate lesions in a large subset of infants with sudden unexplained death may represent a developmental vulnerability that leads to autonomic/respiratory instability or autonomic seizures, and sleep-related death when the infants are challenged with homeostatic stressors. Importantly, these lesions can be recognized in microscopic sections prepared in current forensic practice. Future research is needed to determine the relationship between hippocampal and previously reported brainstem pathology in sudden infant death. PMID:25421424

  16. High Fat Diet Produces Brain Insulin Resistance, Synaptodendritic Abnormalities and Altered Behavior in Mice

    PubMed Central

    Arnold, Steven E.; Lucki, Irwin; Brookshire, Bethany R.; Carlson, Gregory C.; Browne, Carolyn A.; Kazi, Hala; Bang, Sookhee; Choi, Bo-Ran; Chen, Yong; McMullen, Mary F.; Kim, Sangwon F.

    2014-01-01

    Insulin resistance and other features of the metabolic syndrome are increasingly recognized for their effects on cognitive health. To ascertain mechanisms by which this occurs, we fed mice a very high fat diet (60% kcal by fat) for 17 days or a moderate high fat diet (HFD, 45% kcal by fat) for 8 weeks and examined changes in brain insulin signaling responses, hippocampal synaptodendritic protein expression, and spatial working memory. Compared to normal control diet mice, cerebral cortex tissues of HFD mice were insulin-resistant as evidenced by failed activation of Akt, S6 and GSK3β with ex-vivo insulin stimulation. Importantly, we found that expression of brain IPMK, which is necessary for mTOR/Akt signaling, remained decreased in HFD mice upon activation of AMPK. HFD mouse hippocampus exhibited increased expression of serine-phosphorylated insulin receptor substrate 1 (IRS1-pS616), a marker of insulin resistance, as well as decreased expression of PSD-95, a scaffolding protein enriched in post-synaptic densities, and synaptopodin, an actin-associated protein enriched in spine apparatuses. Spatial working memory was impaired as assessed by decreased spontaneous alternation in a T-maze. These findings indicate that HFD is associated with telencephalic insulin resistance and deleterious effects on synaptic integrity and cognitive behaviors. PMID:24686304

  17. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  18. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy

    PubMed Central

    Smits, Paulien; Saada, Ann; Wortmann, Saskia B; Heister, Angelien J; Brink, Maaike; Pfundt, Rolph; Miller, Chaya; Haas, Dorothea; Hantschmann, Ralph; Rodenburg, Richard J T; Smeitink, Jan A M; van den Heuvel, Lambert P

    2011-01-01

    The oxidative phosphorylation (OXPHOS) system is under control of both the mitochondrial and the nuclear genomes; 13 subunits are synthesized by the mitochondrial translation machinery. We report a patient with Cornelia de Lange-like dysmorphic features, brain abnormalities and hypertrophic cardiomyopathy, and studied the genetic defect responsible for the combined OXPHOS complex I, III and IV deficiency observed in fibroblasts. The combination of deficiencies suggested a primary defect associated with the synthesis of mitochondrially encoded OXPHOS subunits. Analysis of mitochondrial protein synthesis revealed a marked impairment in mitochondrial translation. Homozygosity mapping and sequence analysis of candidate genes revealed a homozygous mutation in MRPS22, a gene encoding a mitochondrial ribosomal small subunit protein. The mutation predicts a Leu215Pro substitution at an evolutionary conserved site. Mutations in genes implicated in Cornelia de Lange syndrome or copy number variations were not found. Transfection of patient fibroblasts, in which MRPS22 was undetectable, with the wild-type MRPS22 cDNA restored the amount and activity of OXPHOS complex IV, as well as the 12S rRNA transcript level to normal values. These findings demonstrate the pathogenicity of the MRPS22 mutation and stress the significance of mutations in nuclear genes, including genes that have no counterparts in lower species like bacteria and yeast, for mitochondrial translation defects. PMID:21189481

  19. Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection.

    PubMed

    Fennema-Notestine, Christine; Ellis, Ronald J; Archibald, Sarah L; Jernigan, Terry L; Letendre, Scott L; Notestine, Randy J; Taylor, Michael J; Theilmann, Rebecca J; Julaton, Michelle D; Croteau, David J; Wolfson, Tanya; Heaton, Robert K; Gamst, Anthony C; Franklin, Donald R; Clifford, David B; Collier, Ann C; Gelman, Benjamin B; Marra, Christina; McArthur, Justin C; McCutchan, J Allen; Morgello, Susan; Simpson, David M; Grant, Igor

    2013-08-01

    MRI alterations in the cerebral white (WM) and gray matter (GM) are common in HIV infection, even during successful combination antiretroviral therapy (CART), and their pathophysiology and clinical significance are unclear. We evaluated the association of these alterations with recovery of CD4+ T cells. Seventy-five HIV-infected (HIV+) volunteers in the CNS HIV Anti-Retroviral Therapy Effects Research study underwent brain MRI at two visits. Multi-channel morphometry yielded volumes of total cerebral WM, abnormal WM, cortical and subcortical GM, and ventricular and sulcal CSF. Multivariable linear regressions were used to predict volumetric changes with change in current CD4 and detectable HIV RNA. On average, the cohort (79 % initially on CART) demonstrated loss of total cerebral WM alongside increases in abnormal WM and ventricular volumes. A greater extent of CD4 recovery was associated with increases in abnormal WM and subcortical GM volumes. Virologic suppression was associated with increased subcortical GM volume, independent of CD4 recovery. These findings suggest a possible link between brain alterations and immune recovery, distinct from the influence of virologic suppression. The association of increasing abnormal WM and subcortical GM volumes with CD4+ T cell recovery suggests that neuroinflammation may be one mechanism in CNS pathogenesis. PMID:23838849

  20. Conditional Tat protein brain expression in the GT-tg bigenic mouse induces cerebral fractional anisotropy abnormalities

    PubMed Central

    Carey, Amanda N.; Liu, Xiaoxu; Mintzopoulos, Dionyssios; Paris, Jason J.; McLaughlin, Jay P.; Kaufman, Marc J.

    2015-01-01

    Cerebral white matter changes including tissue water diffusion abnormalities detected with diffusion tensor magnetic resonance imaging (DTI) are commonly found in humans with Human Immunodeficiency Virus (HIV) infection, as well as in animal models of the disorder. The severities of some of these abnormalities have been reported to correlate with measures of disease progression or severity, or with the degree of cognitive dysfunction. Accordingly, DTI may be a useful translational biomarker. HIV-Tat protein appears to be an important factor in the viral pathogenesis of HIV-associated neurotoxicity. We previously reported cerebral gray matter density reductions in the GT-tg bigenic mouse treated with doxycycline (Dox) to conditionally induce Tat protein expression. Presently, we administered intraperitoneal (i.p.) Dox (100 mg/kg/day) for 7 days to GT-tg mice to determine whether induction of conditional Tat expression led to the development of cerebral DTI abnormalities. Perfused and fixed brains from eight GT-tg mice administered Dox and eight control mice administered saline i.p. were extracted and underwent DTI scans on a 9.4 Tesla scanner. A whole brain analysis detected fractional anisotropy (FA) reductions in several areas including insular and endopiriform regions, as well as within the dorsal striatum. These findings suggest that exposure to Tat protein is sufficient to induce FA abnormalities, and further support the use of the GT-tg mouse to model some effects of HIV. PMID:25619988

  1. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development.

    PubMed

    You, Linya; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-03-13

    Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo. PMID:25568313

  2. Deficiency of the Chromatin Regulator Brpf1 Causes Abnormal Brain Development*

    PubMed Central

    You, Linya; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo. PMID:25568313

  3. Tspyl2 Loss-of-Function Causes Neurodevelopmental Brain and Behavior Abnormalities in Mice.

    PubMed

    Li, Qi; Chan, Siu Yuen; Wong, Kwun K; Wei, Ran; Leung, Yu On; Ding, Abby Y; Hui, Tomy C K; Cheung, Charlton; Chua, Siew E; Sham, Pak C; Wu, Ed X; McAlonan, Grainne M

    2016-07-01

    Testis specific protein, Y-encoded-like 2 (TSPYL2) regulates the expression of genes encoding glutamate receptors. Glutamate pathology is implicated in neurodevelopmental conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD) and schizophrenia. In line with this, a microduplication incorporating the TSPYL2 locus has been reported in people with ADHD. However, the role of Tspyl2 remains unclear. Therefore here we used a Tspyl2 loss-of-function mouse model to directly examine how this gene impacts upon behavior and brain anatomy. We hypothesized that Tspyl2 knockout (KO) would precipitate a phenotype relevant to neurodevelopmental conditions. In line with this prediction, we found that Tspyl2 KO mice were marginally more active, had significantly impaired prepulse inhibition, and were significantly more 'sensitive' to the dopamine agonist amphetamine. In addition, the lateral ventricles were significantly smaller in KO mice. These findings suggest that disrupting Tspyl2 gene expression leads to behavioral and brain morphological alterations that mirror a number of neurodevelopmental psychiatric traits. PMID:26826030

  4. [Brain, psyche and physical activity].

    PubMed

    Hollmann, W; Strüder, H K

    2000-11-01

    Modern technical and biochemical methods allow investigation of hemodynamic and metabolic responses of the human brain during muscular work. Following a general introduction to the topic results from selected studies on endogenous opioid peptides, pain sensitivity and psyche, regional cerebral blood flow and cerebral glucose metabolism, amino acid transport across the blood-brain barrier, impact of physical work on the serotonergic system, influence of oxygen partial pressure on neurotransmitters and hormones during exercise, role of the brain as performance limiting factor as well as age-related changes in cerebral blood flow and hypothalamo-pituitary-adrenal/-gonadal axis function will be presented. PMID:11149280

  5. Active tactile exploration using a brain-machine-brain interface.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-11-10

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses. PMID:21976021

  6. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    PubMed Central

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  7. Children with reading disorder show modality independent brain abnormalities during semantic tasks

    PubMed Central

    Booth, James R.; Bebko, Genna; Burman, Douglas D.; Bitan, Tali

    2009-01-01

    Neuroimaging studies have suggested that left inferior frontal gyrus, left inferior parietal lobule and left middle temporal gyrus are critical for semantic processing in normal children. The goal of the present functional magnetic resonance imaging (fMRI) study was to determine whether these regions are systematically related to semantic processing in children (9- to 15-year-old) diagnosed with reading disorders (RD). Semantic judgments required participants to indicate whether two words were related in meaning. The strength of semantic association varied continuously from higher association pairs (e.g., king–queen) to lower association pairs (e.g. net–ship). We found that the correlation between association strength and activation was significantly weaker for RD children compared to controls in left middle temporal gyrus and left inferior parietal lobule for both the auditory and the visual modalities and in left inferior frontal gyrus for the visual modality. These results suggest that the RD children have abnormalities in semantic search/retrieval in the inferior frontal gyrus, integration of semantic information in the inferior parietal lobule and semantic lexical representations in the middle temporal gyrus. These deficits appear to be general to the semantic system and independent of modality. PMID:17010394

  8. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater during the perception of unnatural (versus natural) motion (P < 0.01). To explore the microstructural basis for these functional changes, the regions with significant interaction effects (i.e. those with group differences in activation across perceptual conditions) were used as seeds for tractographic analysis of diffusion tensor imaging scans acquired in the same subjects. Fibre pathways specifically connecting each of the significant functional magnetic resonance imaging clusters to the cerebellum were reconstructed. Of the various reconstructed pathways that were analysed, the ponto-cerebellar projection alone differed between groups, with reduced fibre integrity in dystonia (P < 0.001). In aggregate, the findings suggest that the normal pattern of brain activation in response to motion perception is disrupted in DYT1 dystonia. Thus, it is unlikely that the circuit changes that underlie this disorder are limited to primary sensorimotor pathways. PMID:26419798

  9. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  10. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs

    PubMed Central

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-01-01

    AIM: To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. METHODS: After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. RESULTS: Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. CONCLUSION: After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity. PMID:25400453

  11. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    PubMed Central

    Hashimoto, Nobuhiko; Nakaaki, Shutaro; Kawaguchi, Akiko; Sato, Junko; Kasai, Harumasa; Nakamae, Takashi; Narumoto, Jin; Miyata, Jun; Furukawa, Toshi A; Mimura, Masaru

    2014-01-01

    Background Although several functional imaging studies have demonstrated that behavior therapy (BT) modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD), the structural abnormalities underlying BT-resistant OCD remain unknown. Methods In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24) and nonresponders (n=15) to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion These results suggest that the brain structures in several areas, including the orbitofrontal cortex, anterior cingulate cortex, and cingulate bundles, are related to the lack of a response to BT in patients with OCD. The use of a voxel-based morphometry approach may be advantageous to understanding differences in brain abnormalities between responders and nonresponders to BT. PMID:25349476

  12. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    PubMed Central

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  13. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability.

    PubMed

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; El Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes; de Diego-Otero, Yolanda

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  14. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    PubMed Central

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  15. NCAM-deficient mice show prominent abnormalities in serotonergic and BDNF systems in brain - Restoration by chronic amitriptyline.

    PubMed

    Aonurm-Helm, Anu; Anier, Kaili; Zharkovsky, Tamara; Castrén, Eero; Rantamäki, Tomi; Stepanov, Vladimir; Järv, Jaak; Zharkovsky, Alexander

    2015-12-01

    Mood disorders are associated with alterations in serotonergic system, deficient BDNF (brain-derived neurotrophic factor) signaling and abnormal synaptic plasticity. Increased degradation and reduced functions of NCAM (neural cell adhesion molecule) have recently been associated with depression and NCAM deficient mice show depression-related behavior and impaired learning. The aim of the present study was to investigate potential changes in serotonergic and BDNF systems in NCAM knock-out mice. Serotonergic nerve fiber density and SERT (serotonin transporter) protein levels were robustly reduced in the hippocampus, prefrontal cortex and basolateral amygdala of adult NCAM(-)(/-) mice. This SERT reduction was already evident during early postnatal development. [(3)H]MADAM binding experiments further demonstrated reduced availability of SERT in cell membranes of NCAM(-)(/-) mice. Moreover, the levels of serotonin and its major metabolite 5-HIAA were down regulated in the brains of NCAM(-)(/-) mice. NCAM(-)(/-) mice also showed a dramatic reduction in the BDNF protein levels in the hippocampus and prefrontal cortex. This BDNF deficiency was associated with reduced phosphorylation of its receptor TrkB. Importantly, chronic administration of antidepressant amitriptyline partially or completely restored these changes in serotonergic and BDNF systems, respectively. In conclusion, NCAM deficiency lead to prominent and persistent abnormalities in brain serotonergic and BDNF systems, which likely contributes to the behavioral and neurobiological phenotype of NCAM(-/-) mice. PMID:26499173

  16. Autism spectrum disorder as early neurodevelopmental disorder: evidence from the brain imaging abnormalities in 2-3 years old toddlers.

    PubMed

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-07-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships in adolescents and adults with ASD, literature is still limited in information about the neurobiology of ASD in the early age of life. Brain images of 50 toddlers with ASD and 28 age, gender, and developmental quotient matched toddlers with developmental delay (DD) (control group) between ages 2 and 3 years were captured using combined magnetic resonance-based structural imaging and diffusion tensor imaging (DTI). Structural magnetic resonance imaging was applied to assess overall gray matter (GM) and white matter (WM) volumes, and regional alterations were assessed by voxel-based morphometry. DTI was used to investigate the white matter tract integrity. Compared with DD, significant increases were observed in ASD, primarily in global GM and WM volumes and in right superior temporal gyrus regional GM and WM volumes. Higher fractional anisotropy value was also observed in the corpus callosum, posterior cingulate cortex, and limbic lobes of ASD. The converging findings of structural and white matter abnormalities in ASD suggest that alterations in neural-anatomy of different brain regions may be involved in behavioral and cognitive deficits associated with ASD, especially in an early age of 2-3 years old toddlers. PMID:24419870

  17. Complex Regional Pain Syndrome is associated with structural abnormalities in pain-related regions of the human brain

    PubMed Central

    Barad, Meredith J; Ueno, Takefumi; Younger, Jarred; Chatterjee, Neil; Mackey, Sean

    2014-01-01

    Complex regional pain syndrome (CRPS) is a chronic condition that involves significant hyperalgesia of the affected limb, typically accompanied by localized autonomic abnormalities, and frequently motor dysfunction. Although central brain systems are thought to play a role in the development and maintenance of CRPS, these systems have not been well characterized. In this study, we used structural magnetic resonance imaging (sMRI) to characterize differences in gray matter volume between patients with right upper extremity CRPS and matched controls . Analyses were carried out using a whole brain voxel-based morphometry (VBM) approach. The CRPS group showed decreased gray matter volume in several pain-affect regions, including the dorsal insula, left orbitofrontal cortex, and several aspects of the cingulate cortex. Greater gray matter volume in CRPS patients was seen in the bilateral dorsal putamen and right hypothalamus. Correlation analyses with self-reported pain were then performed on the CRPS group. Pain duration was associated with decreased gray matter in the left dorsolateral prefrontal cortex. Pain intensity was positively correlated with volume in the left posterior hippocampus and left amygdala, and negatively correlated with the bilateral dorsolateral prefrontal cortex. Our findings demonstrate that CRPS is associated with abnormal brain system morphology, particularly pain-related sensory, affect, motor, and autonomic systems. PMID:24212070

  18. Characterization of Subtle Brain Abnormalities in a Mouse Model of Hedgehog Pathway Antagonist-Induced Cleft Lip and Palate

    PubMed Central

    Lipinski, Robert J.; Holloway, Hunter T.; O'Leary-Moore, Shonagh K.; Ament, Jacob J.; Pecevich, Stephen J.; Cofer, Gary P.; Budin, Francois; Everson, Joshua L.; Johnson, G. Allan; Sulik, Kathleen K.

    2014-01-01

    Subtle behavioral and cognitive deficits have been documented in patient cohorts with orofacial clefts (OFCs). Recent neuroimaging studies argue that these traits are associated with structural brain abnormalities but have been limited to adolescent and adult populations where brain plasticity during infancy and childhood may be a confounding factor. Here, we employed high resolution magnetic resonance microscopy to examine primary brain morphology in a mouse model of OFCs. Transient in utero exposure to the Hedgehog (Hh) signaling pathway antagonist cyclopamine resulted in a spectrum of facial dysmorphology, including unilateral and bilateral cleft lip and palate, cleft of the secondary palate only, and a non-cleft phenotype marked by midfacial hypoplasia. Relative to controls, cyclopamine-exposed fetuses exhibited volumetric differences in several brain regions, including hypoplasia of the pituitary gland and olfactory bulbs, hyperplasia of the forebrain septal region, and expansion of the third ventricle. However, in affected fetuses the corpus callosum was intact and normal division of the forebrain was observed. This argues that temporally-specific Hh signaling perturbation can result in typical appearing OFCs in the absence of holoprosencephalya condition classically associated with Hh pathway inhibition and frequently co-occurring with OFCs. Supporting the premise that some forms of OFCs co-occur with subtle brain malformations, these results provide a possible ontological basis for traits identified in clinical populations. They also argue in favor of future investigations into genetic and/or environmental modulation of the Hh pathway in the etiopathogenesis of orofacial clefting. PMID:25047453

  19. Cardiac repolarization abnormalities and increased sympathetic activity in scleroderma.

    PubMed Central

    Ciftci, Orcun; Onat, Ahmet Mesut; Yavuz, Bunyamin; Akdogan, Ali; Aytemir, Kudret; Tokgozoglu, Lale; Sahiner, Levent; Deniz, Ali; Ureten, Kemal; Kizilca, Guler; Calguneri, Meral; Oto, Ali

    2007-01-01

    BACKGROUND: Cardiac involvement in scleroderma is a poor prognostic sign and is usually underdiagnosed, particularly in asymptomatic patient. This paper focuses on QT dynamicity and heart rate variability (HRV) in patients with scleroderma and controls in an attempt to investigate the cardiac autonomic system and ventricular repolarization. METHODS: Sixty patients with scleroderma and 30 age- and sex-matched healthy controls who had no cardiovascular risk factors were included in this study. All patients and the controls underwent a 24-hour holter recording as well as a transthoracic echocardiography. HRV and QT dynamicity parameters were calculated. RESULTS: In HRV analysis, autonomic balance was changed in favor of the sympathetic system in patients with diffuse scleroderma. In QT dynamicity analysis, QT/RR slopes were significantly steeper in patients with diffuse scleroderma compared to patients with limited scleroderma and controls (QTapex/RR: 0.24 +/- 0.16, 0.15 +/- 0.03, 0.14 +/- 0.03 respectively p < 0.001; QTend/RR: 0.26 +/- 0.17, 0.14 +/- 0.04, 0.13 +/- 0.05, respectively p < 0.001). CONCLUSIONS: Patients with diffuse scleroderma may have asymptomatic cardiac repolarization abnormalities and autonomic dysfunction. Our results may indicate that QT dynamicity and HRV can be useful noninvasive methods that may detect impaired state of autonomic balance and cardiac repolarization in patients with diffuse scleroderma. PMID:17393947

  20. Association between Left Atrial Abnormality on ECG and Vascular Brain Injury on MRI in the Cardiovascular Health Study

    PubMed Central

    Kamel, Hooman; Bartz, Traci M.; Longstreth, W. T.; Okin, Peter M.; Thacker, Evan L.; Patton, Kristen K.; Stein, Phyllis K.; Gottesman, Rebecca F.; Heckbert, Susan R.; Kronmal, Richard A.; Elkind, Mitchell S. V.; Soliman, Elsayed Z.

    2014-01-01

    Background and Purpose Emerging evidence suggests that atrial disease is associated with vascular brain injury in the absence of atrial fibrillation (AF). Methods The Cardiovascular Health Study prospectively enrolled community-dwelling adults ≥65 years of age. Among participants who underwent MRI, we examined associations of ECG left atrial abnormality with brain infarcts and leukoaraiosis. P-wave terminal force in lead V1 (PTFV1) was the primary measure of left atrial abnormality; P-wave area and duration were secondary predictors. We excluded participants with AF before or on their index ECG. Primary outcomes were incident infarcts and worsening leukoaraiosis from initial to follow-up scan approximately 5 years later. Secondary outcomes were prevalent infarcts and degree of leukoaraiosis on initial MRI. Relative risk and linear regression models adjusted for vascular risk factors. Results Among 3,129 participants with ≥1 scan, each SD increase in PTFV1 was associated with a 0.05-point (95% CI, 0.0003–0.10) higher baseline white matter grade on a 10-point scale. PTFV1 was associated with prevalent infarcts of any type (RR per SD, 1.09; 95% CI, 1.04–1.16), and more so with prevalent non-lacunar infarcts (RR per SD, 1.22; 95% CI, 1.08–1.38). Among 1,839 participants with 2 scans, PTFV1 was associated with worsening leukoaraiosis (RR per SD, 1.09; 95% CI, 1.01–1.18), but not incident infarcts (RR per SD, 1.06; 95% CI, 0.93–1.20). Sensitivity analyses adjusting for incident AF found similar results. P-wave area and duration were not associated with outcomes. Conclusions ECG left atrial abnormality is associated with vascular brain injury in the absence of documented AF. PMID:25677594

  1. Red-Backed Vole Brain Promotes Highly Efficient In Vitro Amplification of Abnormal Prion Protein from Macaque and Human Brains Infected with Variant Creutzfeldt-Jakob Disease Agent

    PubMed Central

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood. PMID:24205298

  2. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    USGS Publications Warehouse

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood.

  3. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies

    PubMed Central

    Vingtdeux, Valérie; Davies, Peter; Dickson, Dennis W.

    2011-01-01

    Tauopathies represent a class of neurodegenerative disorders characterized by abnormal tau phosphorylation and aggregation into neuronal paired helical filaments (PHFs) and neurofibrillary tangles. AMP-activated protein kinase (AMPK) is a metabolic sensor expressed in most mammalian cell types. In the brain, AMPK controls neuronal maintenance and is overactivated during metabolic stress. Here, we show that activated AMPK (p-AMPK) is abnormally accumulated in cerebral neurons in 3R+4R and 3R tauopathies, such as Alzheimer's disease (AD), tangle-predominant dementia, Guam Parkinson dementia complex, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17, and to a lesser extent in some neuronal and glial populations in the 4R tauopathies, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease. In AD brains, p-AMPK accumulation decorated neuropil threads and dystrophic neurites surrounding amyloid plaques, and appeared in more than 90% of neurons bearing pre-tangles and tangles. Granular p-AMPK immunoreactivity was also observed in several tauopathies in apparently unaffected neurons devoid of tau inclusion, suggesting that AMPK activation preceded tau accumulation. Less p-AMPK pathology was observed in PSP and CBD, where minimal p-AMPK accumulation was also found in tangle-positive glial cells. p-AMPK was not found in purified PHFs, indicating that p-AMPK did not co-aggregate with tau in tangles. Finally, in vitro assays showed that AMPK can directly phosphorylate tau at Thr-231 and Ser-396/404. Thus, activated AMPK abnormally accumulated in tangle- and pre-tangle-bearing neurons in all major tauopathies. By controlling tau phosphorylation, AMPK might regulate neurodegeneration and therefore could represent a novel common determinant in tauopathies. PMID:20957377

  4. Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia.

    PubMed

    Jimenez, Amy M; Lee, Junghee; Wynn, Jonathan K; Cohen, Mark S; Engel, Stephen A; Glahn, David C; Nuechterlein, Keith H; Reavis, Eric A; Green, Michael F

    2016-01-01

    Early visual perception and attention are impaired in schizophrenia, and these deficits can be observed on target detection tasks. These tasks activate distinct ventral and dorsal brain networks which support stimulus-driven and goal-directed attention, respectively. We used single and dual target rapid serial visual presentation (RSVP) tasks during fMRI with an ROI approach to examine regions within these networks associated with target detection and the attentional blink (AB) in 21 schizophrenia outpatients and 25 healthy controls. In both tasks, letters were targets and numbers were distractors. For the dual target task, the second target (T2) was presented at three different lags after the first target (T1) (lag1 = 100 ms, lag3 = 300 ms, lag7 = 700ms). For both single and dual target tasks, patients identified fewer targets than controls. For the dual target task, both groups showed the expected AB effect with poorer performance at lag 3 than at lags 1 or 7, and there was no group by lag interaction. During the single target task, patients showed abnormally increased deactivation of the temporo-parietal junction (TPJ), a key region of the ventral network. When attention demands were increased during the dual target task, patients showed overactivation of the posterior intraparietal cortex, a key dorsal network region, along with failure to deactivate TPJ. Results suggest inefficient and faulty suppression of salience-oriented processing regions, resulting in increased sensitivity to stimuli in general, and difficulty distinguishing targets from non-targets. PMID:27014135

  5. Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia

    PubMed Central

    Jimenez, Amy M.; Lee, Junghee; Wynn, Jonathan K.; Cohen, Mark S.; Engel, Stephen A.; Glahn, David C.; Nuechterlein, Keith H.; Reavis, Eric A.; Green, Michael F.

    2016-01-01

    Early visual perception and attention are impaired in schizophrenia, and these deficits can be observed on target detection tasks. These tasks activate distinct ventral and dorsal brain networks which support stimulus-driven and goal-directed attention, respectively. We used single and dual target rapid serial visual presentation (RSVP) tasks during fMRI with an ROI approach to examine regions within these networks associated with target detection and the attentional blink (AB) in 21 schizophrenia outpatients and 25 healthy controls. In both tasks, letters were targets and numbers were distractors. For the dual target task, the second target (T2) was presented at three different lags after the first target (T1) (lag1 = 100 ms, lag3 = 300 ms, lag7 = 700ms). For both single and dual target tasks, patients identified fewer targets than controls. For the dual target task, both groups showed the expected AB effect with poorer performance at lag 3 than at lags 1 or 7, and there was no group by lag interaction. During the single target task, patients showed abnormally increased deactivation of the temporo-parietal junction (TPJ), a key region of the ventral network. When attention demands were increased during the dual target task, patients showed overactivation of the posterior intraparietal cortex, a key dorsal network region, along with failure to deactivate TPJ. Results suggest inefficient and faulty suppression of salience-oriented processing regions, resulting in increased sensitivity to stimuli in general, and difficulty distinguishing targets from non-targets. PMID:27014135

  6. Consequences of abnormal CDK activity in S phase.

    PubMed

    Anda, Silje; Rothe, Christiane; Boye, Erik; Grallert, Beáta

    2016-04-01

    Cyclin Dependent Kinases (CDKs) are important regulators of DNA replication. In this work we have investigated the consequences of increasing or decreasing the CDK activity in S phase. To this end we identified S-phase regulators of the fission yeast CDK, Cdc2, and used appropriate mutants to modulate Cdc2 activity. In fission yeast Mik1 has been thought to be the main regulator of Cdc2 activity in S phase. However, we find that Wee1 has a major function in S phase and thus we used wee1 mutants to investigate the consequences of increased Cdc2 activity. These wee1 mutants display increased replication stress and, particularly in the absence of the S-phase checkpoint, accumulate DNA damage. Notably, more cells incorporate EdU in a wee1(-) strain as compared to wildtype, suggesting altered regulation of DNA replication. In addition, a higher number of cells contain chromatin-bound Cdc45, an indicator of active replication forks. In addition, we found that Cdc25 is required to activate Cdc2 in S phase and used a cdc25 mutant to explore a situation where Cdc2 activity is reduced. Interestingly, a cdc25 mutant has a higher tolerance for replication stress than wild-type cells, suggesting that reduced CDK activity in S phase confers resistance to at least some forms of replication stress. PMID:26918805

  7. Whole-brain activity mapping onto a zebrafish brain atlas

    PubMed Central

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  8. Whole-brain activity mapping onto a zebrafish brain atlas.

    PubMed

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  9. Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer's disease and mild cognitive impairment.

    PubMed

    Sanabria-Diaz, Gretel; Martínez-Montes, Eduardo; Melie-Garcia, Lester

    2013-01-01

    This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network's attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356

  10. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study.

    PubMed

    Conforti, Renata; de Cristofaro, Mario; Cristofano, Adriana; Brogna, Barbara; Sardaro, Angela; Tedeschi, Gioacchino; Cirillo, Sossio; Di Costanzo, Alfonso

    2016-02-01

    This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7-20 years. White matter lesions (WMLs) were rated by semi-quantitative method, the signal intensity of white matter poster-superior to trigones (WMPST) by reference to standard images and brain atrophy by ventricular/brain ratio (VBR). At the end of MRI follow-up, the scores relative to lobar, temporal and periventricular WMLs, to WMPST signal intensity and to VBR were significantly increased compared to baseline, and MRI changes were more evident in some families than in others. No correlation was found between the MRI changes and age, onset, disease duration, muscular involvement, CTG repetition and follow-up duration. These results demonstrated that white matter involvement and brain atrophy were progressive in DM1 and suggested that progression rate varied from patient to patient, regardless of age, disease duration and genetic defect. PMID:26755488

  11. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation

    PubMed Central

    Prabowo, A.; Anink, J.; Lammens, M; Nellist, M.; van den Ouweland, A. M. W.; Adle-Biassette, H.; Sarnat, H.B.; Flores-Sarnat, L.; Crino, P.B.; Aronica, E.

    2012-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in either the TSC1 or TSC2 genes and characterized by developmental brain abnormalities. We defined the spectrum of brain abnormalities in fetal TSC brain ranging from 23 to 38 gestational weeks. We hypothesized (1) prenatal activation of the target-of-rapamycin complex 1 (TORC1) signaling pathway and (2) activation of inflammatory pathways in fetal brain lesions. Immunocytochemical analysis of cortical tubers, as well as subependymal lesions in all cases confirmed the cell-associated activation of the TORC1 signaling pathway in both the cortical tubers and subependymal lesions (including a congenital subependymal giant cell astrocytoma) with expression of pS6, p4EBP1 and c-myc proteins, as well as of p70 S6 kinase 1. The lesions contained macrophages and T-lymphocytes; giant cells within the lesions expressed inflammatory response markers including major histocompatibility complex (MHC) class I and II, Toll like receptor (TLR) 2 and 4 and advanced glycation end products (RAGE). These observations indicate that brain malformations in TSC are likely a consequence of increased mTOR activation during embryonic brain development. We also provide evidence supporting the possible immunogenicity of giant cells and the early activation of inflammatory pathways in TSC brain. PMID:22805177

  12. Nanotools for Neuroscience and Brain Activity Mapping

    PubMed Central

    Alivisatos, A. Paul; Andrews, Anne M.; Boyden, Edward S.; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Fraser, Scott E.; Lippincott-Schwartz, Jennifer; Looger, Loren L.; Masmanidis, Sotiris; McEuen, Paul L.; Nurmikko, Arto V.; Park, Hongkun; Peterka, Darcy S.; Reid, Clay; Roukes, Michael L.; Scherer, Axel; Schnitzer, Mark; Sejnowski, Terrence J.; Shepard, Kenneth L.; Tsao, Doris; Turrigiano, Gina; Weiss, Paul S.; Xu, Chris; Yuste, Rafael; Zhuang, Xiaowei

    2013-01-01

    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function. PMID:23514423

  13. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Ontiveros, Esperanza; Gómez-Garza, Gilberto; Barragán-Mejía, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R; Henríquez-Roldán, Carlos; Pérez-Guillé, Beatriz; Torres-Jardón, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C; Engle, Randall W

    2008-11-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n: 55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic resonance imaging MRI. Seven healthy young dogs with similar exposure to Mexico City air pollution had brain MRI, measurement of mRNA abundance of two inflammatory genes cyclooxygenase-2, and interleukin 1 beta in target brain areas, and histopathological evaluation of brain tissue. Children with no known risk factors for neurological or cognitive disorders residing in a polluted urban environment exhibited significant deficits in a combination of fluid and crystallized cognition tasks. Fifty-six percent of Mexico City children tested showed prefrontal white matter hyperintense lesions and similar lesions were observed in dogs (57%). Exposed dogs had frontal lesions with vascular subcortical pathology associated with neuroinflammation, enlarged Virchow-Robin spaces, gliosis, and ultrafine particulate matter deposition. Based on the MRI findings, the prefrontal cortex was a target anatomical region in Mexico City children and its damage could have contributed to their cognitive dysfunction. The present work presents a groundbreaking, interdisciplinary methodology for addressing relationships between environmental pollution, structural brain alterations by MRI, and cognitive deficits/delays in healthy children. PMID:18550243

  14. Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease

    PubMed Central

    Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M.; Leonardo, Cassandra D.; Ye, Jieping; Thompson, Paul M.; for the Alzheimer’s Disease Neuroimaging Initiative

    2015-01-01

    Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791

  15. Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer's disease.

    PubMed

    Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M; Leonardo, Cassandra D; Ye, Jieping; Thompson, Paul M; For The Alzheimer's Disease Neuroimaging Initiative

    2015-01-01

    Alzheimer's disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods - four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one "ball-and-stick" approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791

  16. Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.

    PubMed

    Renjith, Arokia; Manjula, P; Mohan Kumar, P

    2015-01-01

    Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method. PMID:26493726

  17. Microstructural abnormalities of the brain white matter in attention-deficit/hyperactivity disorder

    PubMed Central

    Chen, Lizhou; Huang, Xiaoqi; Lei, Du; He, Ning; Hu, Xinyu; Chen, Ying; Li, Yuanyuan; Zhou, Jinbo; Guo, Lanting; Kemp, Graham J.; Gong, Qiyong

    2015-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and behavioural symptoms and executive functions. Methods We assessed children and adolescents with ADHD and healthy controls using psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, between the 2 groups. Results Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as executive function in patients with ADHD. Limitations This study was limited by its cross-sectional design and small sample size. The cluster size of the significant result was small. Conclusion Our findings suggest that white matter abnormalities within the limbic network could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD. PMID:25853285

  18. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    PubMed Central

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ≥ 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  19. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury.

    PubMed

    Miller, Danielle R; Hayes, Jasmeet P; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2016-01-01

    Blast-related mild traumatic brain injury (mTBI) is a common injury among Iraq and Afghanistan military veterans due to the frequent use of improvised explosive devices. A significant minority of individuals with mTBI report chronic postconcussion symptoms (PCS), which include physical, emotional, and cognitive complaints. However, chronic PCS are nonspecific and are also associated with mental health disorders such as posttraumatic stress disorder (PTSD). Identifying the mechanisms that contribute to chronic PCS is particularly challenging in blast-related mTBI, where the incidence of comorbid PTSD is high. In this study, we examined whether blast-related mTBI is associated with diffuse white matter changes, and whether these neural changes are associated with chronic PCS. Ninety Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans were assigned to one of three groups including a blast-exposed no--TBI group, a blast-related mTBI without loss of consciousness (LOC) group (mTBI--LOC), and a blast-related mTBI with LOC group (mTBI + LOC). PCS were measured with the Rivermead Postconcussion Questionnaire. Results showed that participants in the mTBI + LOC group had more spatially heterogeneous white matter abnormalities than those in the no--TBI group. These white matter abnormalities were significantly associated with physical PCS severity even after accounting for PTSD symptoms, but not with cognitive or emotional PCS severity. A mediation analysis revealed that mTBI + LOC significantly influenced physical PCS severity through its effect on white matter integrity. These results suggest that white matter abnormalities are associated with chronic PCS independent of PTSD symptom severity and that these abnormalities are an important mechanism explaining the relationship between mTBI and chronic physical PCS. PMID:26497829

  20. Predictors of Abnormal Neuroimaging of the Brain in Children With Epilepsy Aged 1 Month to 2 Years: Useful Clues in a Resource-Limited Setting.

    PubMed

    Sanmaneechai, Oranee; Danchaivijitr, Nasuda; Likasitwattanakul, Surachai

    2015-10-01

    Neuroimaging should be performed on infants with seizure. However, there are economic limitations in performing neuroimaging in a resource-limited setting. The younger the age, the higher the risk of having abnormal neuroimaging. The aim was to determine frequency and predictors of abnormal neuroimaging in children with epilepsy aged 1 month to 2 years. History, physical examination, electroencephalogram (EEG), and neuroimaging were reviewed. Thirty-seven of 49 (76%) had neuroimaging studies; 19 computed tomography (CT), 14 magnetic resonance imaging (MRI), and 4 had both. Abnormal neuroimaging was found in 19 (51%). Predictors of abnormal neuroimages are developmental delay, abnormal head circumference, and abnormal neurologic examination. Eight children (21%) had lesions on neuroimaging studies that altered or influenced management. Of 8 patients with normal examination and EEG, 1 had a brain tumor and another had arteriovenous malformation. Neuroimaging should be considered as an essential aid in the evaluation of infants with epilepsy, even in a resource-limited setting. PMID:25792429

  1. Thinking Patterns, Brain Activity and Strategy Choice

    NASA Astrophysics Data System (ADS)

    Nishimura, Kazuo; Okada, Akira; Inagawa, Michiyo; Tobinaga, Yoshikazu

    2012-03-01

    In this study we analyzed the relationship between thinking patterns, behavior and associated brain activity. Subjects completed a self-report assessing whether they could voluntarily stop thinking or not, and were then divided into two groups: those with the ability to stop thinking and those without. We measured subjects' brain activity using magnetoencephalography while giving them a series of tasks intended to encourage or discourage spontaneous thinking. Our findings revealed differences between the two groups in terms of which portions of the brain were active during the two types of task. A second questionnaire confirmed a relationship between the ability to stop thinking and strategy choices in a dilemma game. We found that subjects without the ability to stop thinking had a tendency to choose cooperative behavior.

  2. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  3. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal

  4. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  5. Air Pollution, Cognitive Deficits and Brain Abnormalities: A Pilot Study with Children and Dogs

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Mora-Tiscareno, Antonieta; Ontiveros, Esperanza; Gomez-Garza, Gilberto; Barragan-Mejia, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R.; Henriquez-Roldan, Carlos; Perez-Guille, Beatriz; Torres-Jardon, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E.; Gonzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C.; Engle, Randall W.

    2008-01-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n:55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic

  6. Air Pollution, Cognitive Deficits and Brain Abnormalities: A Pilot Study with Children and Dogs

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Mora-Tiscareno, Antonieta; Ontiveros, Esperanza; Gomez-Garza, Gilberto; Barragan-Mejia, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R.; Henriquez-Roldan, Carlos; Perez-Guille, Beatriz; Torres-Jardon, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E.; Gonzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C.; Engle, Randall W.

    2008-01-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n:55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic…

  7. Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder

    ERIC Educational Resources Information Center

    Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.

    2008-01-01

    The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation…

  8. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum

    PubMed Central

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Bron, Esther E.; Osse, Robert Jan; de Koning, Inge; Jiskoot, Lize C.; Klein, Stefan; de Jong, Frank Jan; van der Lugt, Aad; van Swieten, John C.; Smits, Marion

    2016-01-01

    Purpose ‘Phenocopy’ frontotemporal dementia (phFTD) patients may clinically mimic the behavioral variant of FTD (bvFTD), but do not show functional decline or abnormalities upon visual inspection of routine neuroimaging. We aimed to identify abnormalities in gray matter (GM) volume and perfusion in phFTD and to assess whether phFTD belongs to the FTD spectrum. We compared phFTD patients with both healthy controls and bvFTD patients. Materials & methods Seven phFTD and 11 bvFTD patients, and 20 age-matched controls underwent structural T1-weighted magnetic resonance imaging (MRI) and 3D pseudo-continuous arterial spin labeling (pCASL) at 3T. Normalized GM (nGM) volumes and perfusion, corrected for partial volume effects, were quantified regionally as well as in the entire supratentorial cortex, and compared between groups taking into account potential confounding effects of gender and scanner. Results PhFTD patients showed cortical atrophy, most prominently in the right temporal lobe. Apart from this regional atrophy, GM volume was generally not different from either controls or from bvFTD. BvFTD however showed extensive frontotemporal atrophy. Perfusion was increased in the left prefrontal cortex compared to bvFTD and to a lesser extent to controls. Conclusion PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum. PMID:27222795

  9. Smoking Intensity and Lipoprotein Abnormalities in Active Smokers

    PubMed Central

    Gossett, Linda K.; Johnson, Heather M.; Piper, Megan E.; Fiore, Michael C.; Baker, Timothy B.; Stein, James H.

    2009-01-01

    Background Smoking is associated with decreased high-density lipoprotein cholesterol (HDL-C) and elevated triglycerides. Objective To evaluate the effects of five markers of smoking intensity on lipoprotein concentrations and particle sizes in a large, modern cohort of current smokers. Methods Fasting nuclear magnetic resonance spectroscopy lipoprotein profiles were obtained in a large cohort of current smokers enrolled in a smoking cessation trial. Multivariate linear regression models were constructed to determine predictors of lipoprotein fractions. Models included age, sex, race, waist circumference, level of physical activity and alcohol consumption. Smoking intensity parameters included: current cigarettes smoked/day, pack-years, the Fagerström Test of Nicotine Dependence (FTND) score, and carbon monoxide (CO) levels. Results The 1,504 subjects (58% women, 84% white) had a mean (standard deviation) age of 45 (11.0) years. They smoked 21.4 (8.9) cigarettes/day (29.4 [20.4] pack-years). HDL-C (42.0 [13.5] mg/dL) and total HDL particles (30.3 [5.9] μmol/L) were low. Cigarettes smoked/day independently predicted higher total cholesterol (p=0.009), low-density lipoprotein cholesterol (p=0.023), and triglycerides (p=0.002). CO levels predicted lower HDL-C (p=0.027) and total HDL particles (p=0.009). However, the incremental R2 for each marker of smoking intensity on each lipoprotein was small. Relationships between the FTND score and lipoproteins were weak and inconsistent. Participants in the lowest quintiles of current smoking, pack-years, and CO had more favorable lipoproteins (all p<0.04). Conclusions Among current smokers, increased smoking burden is associated with small increases in total cholesterol, LDL-C, and triglycerides. Increased recent smoke exposure is associated with small decreases in HDL-C and HDL particles. PMID:20161531

  10. Nonlinear analysis of brain activity in magnetic influenced Parkinson patients.

    PubMed

    Anninos, P A; Adamopoulos, A V; Kotini, A; Tsagas, N

    2000-01-01

    Magnetoencephalogram (MEG) recordings were obtained from the brain of patients suffering from Parkinson's disease (PD) using the Superconductive Quantum Interference Device (SQUID). For each patient the magnetic activity was recorded from a total of 64 points of the skull (32 points from each temporal lobe) as defined by a recording reference system, which is based on the 10-20 Electrode Placement System. Some of the recorded points were observed to exhibit abnormal rhythmic activity, characterized by high amplitudes and low frequencies. External magnetic stimulation (EMS) with intensity 1-7.5pT, and frequency the alpha-rhythm of the patient (8-13 Hz) was applied in the left-right temporal, frontal-occipital and vertex (2 minutes over each of the above regions) and the brain magnetic activity was recorded again. The application of the EMS resulted in rapid attenuation of the MEG activity of PD patients. Furthermore, chaotic dynamic methods were used, in order to estimate the correlation dimension D of the reconstructed phase spaces. The estimated values of D, in conjunction with the results derived from the other data analysis methods, strongly support the existence of low dimension chaotic structures in the dynamics of cortical activity of PD patients. In addition, the increased values of D of the MEG after the application of EMS when compared with the corresponding ones obtained from the MEGs prior to the EMS, suggest that the neural dynamics are strongly influenced by the application of EMS. PMID:11154103

  11. Quantitative observation and study on rhythmic abnormalities of activities in animals prior to earthquakes

    NASA Astrophysics Data System (ADS)

    Feng, Chungao; Jiang, Jinchang

    1992-11-01

    In this paper, the normal daily activities and abnormal activities related to earthquake premonitory information are given by a quantitative observation and analysis of activities in the sparrow (SR, Passer montanus), budgerigar (BG, Melopsittacus undulatus) and rat (RT, Rattus norvegicus). The results show that the quantitative observation of habitual abnormalities in animals may provide some cues for the short-term earthquake prediction. The normal activity rhythms for the SR and BG are similar, and both present M mode. The high activities occurs during 07h 10h and 15h 16h, respectively, the low activities occurs during 12h 13h, and at night both birds are basically silent. For the RT, the normal rhythmic activity has the middle magnitude during 07h 10h and 17h 18h, the low and high magnitudes occur during 11h 16h and from 19h to 06h at the next day. For the SR, BG and RT, observable abnormal changes of the normal activity rhythm were found before earthquakes. The night activities of the SR and BG were increased noticeably. For the RT the activities during the low magnitude of activities at the day time were also increased. They both are about 300 times greater than the normal activity value. Moreover, the total activity values per day were increased, and were about 2 times of the normal value. The x 2-test shows that the abnormalities of the daily activity rhythm and following increase of the daily activity events are significantly correlated with earthquakes of magnitude over 4.3 in Tangshan seismic area within the region of 200 km distance from the observation station.

  12. Differential Impact of Hyponatremia and Hepatic Encephalopathy on Health-Related Quality of Life and Brain Metabolite Abnormalities in Cirrhosis

    PubMed Central

    Ahluwalia, Vishwadeep; Wade, James B; Thacker, Leroy; Kraft, Kenneth A; Sterling, Richard K; Stravitz, R Todd; Fuchs, Michael; Bouneva, Iliana; Puri, Puneet; Luketic, Velimir; Sanyal, Arun J; Gilles, HoChong; Heuman, Douglas M; Bajaj, Jasmohan S

    2013-01-01

    Background Hyponatremia (HN) and hepatic encephalopathy (HE) together can impair health-related quality-of-life (HRQOL) and cognition in cirrhosis. Aim To study effect of hyponatremia on cognition, HRQOL and brain MR spectroscopy (MRS) independent of HE. Methods Four cirrhotic groups(no HE/HN, HE alone, HN alone (sodium<130mEq/L),HE+HN) underwent cognitive testing, HRQOL using Sickness Impact Profile (SIP: higher score is worse; has psycho-social and physical sub-scores) and brain MRS (myoinositol(mI) and glutamate+glutamine(Glx)), which were compared across groups. A subset underwent HRQOL testing before/after diuretic withdrawal. Results 82 cirrhotics (30 no HE/HN, 25 HE, 17 HE+HN and 10 HN, MELD 12, 63% Hepatitis C) were included. Cirrhotics with HN alone and without HE/HN had better cognition compared to HE groups (median abnormal tests no-HE/HN:3, HN:3.5, HE:6.5,HE+HN:7, p=0.008). Despite better cognition, HN only patients had worse HRQOL in total and psychosocial SIP while both HN groups (with/without HE) had a significantly worse physical SIP(p<0.0001, all comparisons). Brain MRS showed lowest Glx in HN and highest in HE groups (p<0.02). mI levels were comparably decreased in the three affected (HE,HE+HN and HN) groups compared to no HE/HN and were associated with poor HRQOL. Six HE+HN cirrhotics underwent diuretic withdrawal which improved serum sodium and total/psycho-social SIP scores. Conclusions Hyponatremic cirrhotics without HE have poor HRQOL despite better cognition than those with concomitant HE. Glx levels were lowest in HN without HE but mI was similar across affected groups. HRQOL improved after diuretic withdrawal. Hyponatremia has a complex, non-linear relationship with brain Glx and mI, cognition and HRQOL. PMID:23665182

  13. Spontaneous brain magnetic activity in schizophrenia patients treated with aripiprazole.

    PubMed

    Cañive, J M; Lewine, J D; Edgar, J C; Davis, J T; Miller, G A; Torres, F; Tuason, V B

    1998-01-01

    This magnetoencaphalographic (MEG) study was conducted as part of a multicenter clinical trial to study the efficacy of aripiprazole. Participants included 5 DSM-IV schizophrenia subjects and 10 age-matched normal controls. The schizophrenia subjects underwent a second MEG recording after 8 weeks of open-label treatment with aripiprazole. Overall, control subjects showed no abnormal spontaneous magnetic brain activity. At washout, 3 patients showed increased delta and theta activity along with paraxosymal bitemporal slow waves. In 2 of these patients, the slow waves were generated in the superior temporal plane, as determined by dipole modeling. In the third patient, the slow waves appeared to have been generated at multiple regions throughout the temporal and inferior parietal lobes. As a group, schizophrenia patients, when compared with normal controls, demonstrated significant decreases in alpha peak frequency and power. Following treatment, aripiprazole had a significant normalizing effect on delta and theta activity. Patients on aripiprazole continued to demonstrate significant abnormalities in alpha frequency and power. PMID:9580382

  14. Regional brain activity correlates of nicotine dependence.

    PubMed

    Rose, Jed E; Behm, Frederique M; Salley, Alfred N; Bates, James E; Coleman, R Edward; Hawk, Thomas C; Turkington, Timothy G

    2007-12-01

    Fifteen smokers participated in a study investigating brain correlates of nicotine dependence. Dependence was reduced by having subjects switch to denicotinized cigarettes for 2 weeks while wearing nicotine skin patches. Positron emission tomography (PET) scans assessed regional cerebral metabolic rate for glucose (rCMRglc) after overnight nicotine abstinence on three occasions: (1) at baseline; (2) after 2 weeks of exposure to denicotinized cigarettes+nicotine patches; and (3) 2 weeks after returning to smoking the usual brands of cigarettes. Craving for cigarettes and scores on the Fagerström Test of Nicotine Dependence (FTND) questionnaire decreased at the second session relative to the first and last sessions. Regional brain metabolic activity (normalized to whole brain values) at session 2 also showed a significant decrease in the right hemisphere anterior cingulate cortex. Exploratory post hoc analyses showed that the change in craving across sessions was negatively correlated with the change in rCMRglc in several structures within the brain reward system, including the ventral striatum, orbitofrontal cortex and pons. The between-session difference in thalamus activity (right hemisphere) was positively correlated with the difference in FTND scores. Correlational analyses also revealed that reported smoking for calming effects was associated with a decrease (at session 2) in thalamus activity (bilaterally) and with an increase in amygdala activity (left hemisphere). Reported smoking to enhance pleasurable relaxation was associated with an increase in metabolic activity of the dorsal striatum (caudate, putamen) at session 2. These findings suggest that reversible changes in regional brain metabolic activity occur in conjunction with alterations in nicotine dependence. The results also highlight the likely role of thalamic gating processes as well as striatal reward and corticolimbic regulatory pathways in the maintenance of cigarette addiction. PMID:17356570

  15. Regional homogeneity of resting-state brain abnormalities in violent juvenile offenders: a biomarker of brain immaturity?

    PubMed

    Chen, Chen; Zhou, Jiansong; Liu, Chunhong; Witt, Katrina; Zhang, Yingdong; Jing, Bin; Li, Chun; Wang, Xiaoping; Li, Lingjiang

    2015-01-01

    The authors investigated whether male violent juvenile offenders demonstrate any differences in local functional connectivity indicative of delayed maturation of the brain that may serve as a biomarker of violence. Twenty-nine violent juvenile offenders and 28 age-matched controls were recruited. Regional homogeneity (ReHo) method was used to analyze resting-state magnetic resonance images. Violent offenders showed significantly lower ReHo values in the right caudate, right medial prefrontal cortex, and left precuneus, and higher values in the right supramarginal gyrus than the controls. These regions had both high sensitivity and specificity in distinguishing between the two groups suggesting that dysfunction in these regions can be used to correctly classify those individuals who are violent. Dysfunction in the right medial prefrontal-caudate circuit may, therefore, represent an important biomarker of violence juvenile males. PMID:25716485

  16. Brain Activity on Navigation in Virtual Environments.

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.

    2001-01-01

    Assessed the cognitive processing that takes place in virtual environments by measuring electrical brain activity using Fast Fourier Transform analysis. University students performed the same task in a real and a virtual environment, and eye movement measurements showed that all subjects were more attentive when navigating in the virtual world.…

  17. Modulation of Brain Activity during Phonological Familiarization

    ERIC Educational Resources Information Center

    Majerus, S.; Van der Linden, M.; Collette, F.; Laureys, S.; Poncelet, M.; Degueldre, C.; Delfiore, G.; Luxen, A.; Salmon, E.

    2005-01-01

    We measured brain activity in 12 adults for the repetition of auditorily presented words and nonwords, before and after repeated exposure to their phonological form. The nonword phoneme combinations were either of high (HF) or low (LF) phonotactic frequency. After familiarization, we observed, for both word and nonword conditions, decreased

  18. Altered Spontaneous Brain Activity in Betel Quid Dependence

    PubMed Central

    Liu, Tao; Li, Jian-jun; Zhao, Zhong-yan; Yang, Guo-shuai; Pan, Meng-jie; Li, Chang-qing; Pan, Su-yue; Chen, Feng

    2016-01-01

    Abstract It has been suggested by the first voxel-based morphometry investigation that betel quid dependence (BQD) individuals are presented with brain structural changes in previous reports, and there may be a neurobiological basis for BQD individuals related to an increased risk of executive dysfunction and disinhibition, subjected to the reward system, cognitive system, and emotion system. However, the effects of BQD on neural activity remain largely unknown. Individuals with impaired cognitive control of behavior often reveal altered spontaneous cerebral activity in resting-state functional magnetic resonance imaging and those changes are usually earlier than structural alteration. Here, we examined BQD individuals (n = 33) and age-, sex-, and education-matched healthy control participants (n = 32) in an resting-state functional magnetic resonance imaging study to observe brain function alterations associated with the severity of BQD. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were both evaluated to stand for spontaneous cerebral activity. Gray matter volumes of these participants were also calculated for covariate. In comparison with healthy controls, BQD individuals demonstrated dramatically decreased ALFF and ReHo values in the prefrontal gurus along with left fusiform, and increased ALFF and ReHo values in the primary motor cortex area, temporal lobe as well as some regions of occipital lobe. The betel quid dependence scores (BQDS) were negatively related to decreased activity in the right anterior cingulate. The abnormal spontaneous cerebral activity revealed by ALFF and ReHo calculation excluding the structural differences in patients with BQD may help us probe into the neurological pathophysiology underlying BQD-related executive dysfunction and disinhibition. Diminished spontaneous brain activity in the right anterior cingulate cortex may, therefore, represent a biomarker of BQD individuals. PMID:26844480

  19. Defective glycine cleavage system in nonketotic hyperglycinemia. Occurrence of a less active glycine decarboxylase and an abnormal aminomethyl carrier protein.

    PubMed Central

    Hiraga, K; Kochi, H; Hayasaka, K; Kikuchi, G; Nyhan, W L

    1981-01-01

    The activities of then glycine cleavage system in the liver and brain of patient with nonketotic hyperglycinemia was extremely low as compared with those of control human liver and brain. The activities of glycine decarboxylase (P-protein) and the aminomethyl carrier protein (H-protein), two of the four protein components of the glycine cleavage system, were considerably reduced in both the liver and brain; the extent of reduction was greater in the H-protein. The activity of the T-protein was normal. Purified H-protein from the patient did not react with lipoamide dehydrogenase, and titration of thiol groups with [2,3-14C]N-ethylmaleimide suggested that this H-protein is devoid of lipoic acid. This structural abnormality in the H-protein is considered to constitute the primary molecular lesion in this patient with non-ketotic hyperglycinemia. Immunochemical studies using an antibody specific for P-protein showed that the patient was due to reduction of the catalytic activity of the protein rather than a decrease in the actual amount of the P-protein. Partial inactivation of P-protein could result secondarily from impaired metabolism of glycine resulting from deficiency in the activity of H-protein. However, the H-protein from the patient could stimulate the P-protein catalyzed exchange of the carboxyl carbon of glycine with 14CO2, although the specific activity of the purified H-protein from the patient was only 4% of that of control human H-protein. The content of H-protein in the liver of the patient was approximately 35% of that of control human liver. Images PMID:6790577

  20. Asymmetric Di-methyl Arginine is Strongly Associated with Cognitive Dysfunction and Brain MR Spectroscopic Abnormalities in Cirrhosis

    PubMed Central

    Bajaj, Jasmohan S; Ahluwalia, Vishwadeep; Wade, James B; Sanyal, Arun J; White, Melanie B; Noble, Nicole A; Monteith, Pamela; Fuchs, Michael; Sterling, Richard K; Luketic, Velimir; Bouneva, Iliana; Stravitz, Richard T; Puri, Puneet; Kraft, Kenneth A; Gilles, HoChong; Heuman, Douglas M

    2012-01-01

    Background Asymmetric di-methyl arginine (ADMA) is an inhibitor of nitric oxide synthase that accumulates in liver disease and may contribute to hepatic encephalopathy(HE). Aim To evaluate the association of ADMA with cognition and brain MR spectroscopy(MRS) in cirrhosis. Methods Cirrhotic patients with/without prior HE and non-cirrhotic controls underwent cognitive testing and ADMA determination. A subgroup underwent brain MRS [Glutamine/glutamate(Glx), myoinositol(mI), N-acetyl-aspartate(NAA) in parietal white, occipital gray and anterior cingulate(ACC)]. We also tested cognition and ADMA in a cirrhotic subgroup before and 1 month after transjugular intrahepatic portosystemic shunting (TIPS). Cognition and MRS values were correlated with ADMA and compared between groups using multi-variable regression. ADMA levels were compared between those who did/did not develop post-TIPS HE. Results 90 cirrhotics (MELD13, 54 prior HE) and 16 controls were included. Controls had better cognition and lower ADMA, Glx and higher mI compared to cirrhotics. Prior HE patients had worse cognition, higher ADMA and Glx and lower mI compared to non-HE cirrhotics. ADMA was positively correlated with MELD (r=0.58,p<0.0001), abnormal cognitive test number(r=0.66,p<0.0001) and Glx and NAAA (white matter,ACC) and negatively with mI. On regression, ADMA predicted number of abnormal tests and mean Z-score independent of prior HE and MELD. 12 patients underwent TIPS;7 developed HE post-TIPS. ADMA increased post-TIPS in patients who developed HE(p=0.019) but not in others(p=0.89). Conclusions A strong association of ADMA with cognition and prior HE was found independent of MELD score in cirrhosis. PMID:22889958

  1. Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance.

    PubMed

    Minkova, Lora; Eickhoff, Simon B; Abdulkadir, Ahmed; Kaller, Christoph P; Peter, Jessica; Scheller, Elisa; Lahr, Jacob; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs. PMID:26453902

  2. Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection

    PubMed Central

    Kamat, Rujvi; Brown, Gregory G.; Bolden, Khalima; Fennema-Notestine, Christine; Archibald, Sarah; Marcotte, Thomas D.; Letendre, Scott L.; Ellis, Ronald J.; Woods, Steven Paul; Grant, Igor; Heaton, Robert K.

    2015-01-01

    Apathy is a relatively common psychiatric syndrome in HIV infection, but little is known about its neural correlates. In the present study, we examined the associations between apathy and diffusion tensor imaging (DTI) indices in key frontal white matter regions in the thalamocorticostriatal circuit that has been implicated in the expression of apathy. Nineteen participants with HIV infection and 19 demographically comparable seronegative comparison subjects completed the Apathy subscale of the Frontal Systems Behavioral Scale as a part of a comprehensive neuropsychiatric research evaluation. When compared to the seronegative participants, the HIV+ group had significantly more frontal white matter abnormalities. Within HIV+ persons, and as predicted, higher ratings of apathy were associated with greater white matter alterations in the anterior corona radiata, genu, and orbital medial prefrontal cortex. The associations between white matter alterations and apathy were independent of depression and were stronger among participants with lower current CD4 counts. All told, these findings indicate that apathy is independently associated with white matter abnormalities in anterior, medial brain regions in persons infected with HIV, particularly in the setting of lower current immune functioning, which may have implications for antiretroviral therapy. PMID:25275424

  3. Intracranial Intra-arachnoid Diverticula and Cyst-like Abnormalities of the Brain.

    PubMed

    Platt, Simon; Hicks, Jill; Matiasek, Lara

    2016-03-01

    Primary intracranial cystic or cyst-like lesions include intra-arachnoid, epidermoid, dermoid, and choroid plexus cysts. Differentiation of these cystic lesions can usually be accomplished by imaging studies alone; however, some cysts are similar in appearance and require histopathology for definitive diagnosis. Clinical signs often reflect the location of the cysts within the intracranial cavity rather than the type of cyst. If clinical signs are significant and progressive, surgical removal is warranted and may be successful, although cystic contents could be harmful if allowed to contact surrounding brain parenchyma or meninges. PMID:26704659

  4. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallars, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  5. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  6. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  7. Post mTBI fatigue is associated with abnormal brain functional connectivity.

    PubMed

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants' fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject's fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  8. Post mTBI fatigue is associated with abnormal brain functional connectivity

    PubMed Central

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants’ fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject’s fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  9. Developmental pattern of plasminogen activator activity in chick brain hemispheres.

    PubMed

    Scicolone, G; Pereyra-Alfonso, S; Ferrán, J L; Flores, V

    1998-09-01

    Plasminogen activators play key roles in several developmental events. In previous works we demonstrated the existence of typical developmental patterns of protease activity in the chick optic lobe and cerebellum. The aim of this work is to study the temporal pattern of development of plasminogen activator activity in the brain hemispheres. Plasminogen activator activity was assayed in soluble fractions derived by ultracentrifugation from Triton X-100 treated membrane fractions by using a radial fibrinolytic assay. Employing different inhibitors and anti-plasminogen activators antibodies we showed that developing brain hemispheres express only one type of enzyme which corresponds to the urokinase-type. Other results indicate that the protease activity displays a temporal pattern which completely differs from those of general parameters of development. This suggests that the plasminogen activator activity is developmentally regulated and could display specific functions during particular stages of development. PMID:9712189

  10. Evidence for progressive brain abnormalities in early schizophrenia: a cross-sectional structural and functional connectivity study.

    PubMed

    Zhang, Fangfang; Qiu, Linlin; Yuan, Lili; Ma, Huijuan; Ye, Rong; Yu, Fengqiong; Hu, Panpan; Dong, Yi; Wang, Kai

    2014-10-01

    It has long been debated whether a progressive process is involved in schizophrenia. The aim of the current study was to determine whether a progressive process was involved in patients with early schizophrenia, who were drug naive or had received short-term minimal antipsychotic treatment to avoid the distortion through medication effects. Twenty-eight patients with schizophrenia with illness-duration of up to 3 years and twenty-six matched healthy controls were recruited. Structural and functional brain networks were examined based on diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI). The intergroup differences and correlation with illness duration in the patient group were surveyed. The schizophrenic patients showed lower fractional anisotropy (FA) values in the corpus callosum and corona radiata. Negative correlations of illness duration with FA values were observed in similar regions. During functional analysis, reduced functional connectivity between bilateral temporoparietal-junction (TPJ) and the posterior cingulate cortex (PCC) were found in the default mode network (DMN) in schizophrenic patients. In addition, the left TPJ showed gradually weaker functional connectivity with PCC and the medial prefrontal cortex (MPFC) in DMN as the duration of schizophrenia increased. The results suggested that early in the disease process patients have decreased connectivity in both structural and functional networks and that the weaker structural and functional connectivity negatively correlated with illness duration, which provided evidence for progressive brain abnormalities in early schizophrenia. PMID:25176348

  11. Brain MR spectroscopic abnormalities in "MRI-negative" tuberous sclerosis complex patients.

    PubMed

    Wu, William E; Kirov, Ivan I; Tal, Assaf; Babb, James S; Milla, Sarah; Oved, Joseph; Weiner, Howard L; Devinsky, Orrin; Gonen, Oded

    2013-05-01

    Since approximately 5-10% of the ~50,000 tuberous sclerosis complex (TSC) patients in the US are "MRI-negative," our goal was to test the hypothesis that they nevertheless exhibit metabolic abnormalities. To test this, we used proton MR spectroscopy to obtain and compare gray and white matter (GM and WM) levels of the neuronal marker, N-acetylaspartate (NAA), the glial marker, myo-inositol (mI), and its associated creatine (Cr), and choline (Cho) between two "MRI-negative" female TSC patients (ages 5 and 43 years) and their matched controls. The NAA, Cr, Cho and mI concentrations, 9.8, 6.3, 1.4, and 5.7 mM, in the pediatric control were similar to those of the patients, whereas the adult patient revealed a 17% WM NAA decrease and 16% WM Cho increase from their published means for healthy adults - both outside their respective 90% prediction intervals. These findings suggest that longer disease duration and/or TSC2 gene mutation may cause axonal dysfunction and demyelination. PMID:23524469

  12. A small number of abnormal brain connections predicts adult autism spectrum disorder.

    PubMed

    Yahata, Noriaki; Morimoto, Jun; Hashimoto, Ryuichiro; Lisi, Giuseppe; Shibata, Kazuhisa; Kawakubo, Yuki; Kuwabara, Hitoshi; Kuroda, Miho; Yamada, Takashi; Megumi, Fukuda; Imamizu, Hiroshi; Náñez, José E; Takahashi, Hidehiko; Okamoto, Yasumasa; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Yuka; Watanabe, Takeo; Kawato, Mitsuo

    2016-01-01

    Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum. PMID:27075704

  13. A small number of abnormal brain connections predicts adult autism spectrum disorder

    PubMed Central

    Yahata, Noriaki; Morimoto, Jun; Hashimoto, Ryuichiro; Lisi, Giuseppe; Shibata, Kazuhisa; Kawakubo, Yuki; Kuwabara, Hitoshi; Kuroda, Miho; Yamada, Takashi; Megumi, Fukuda; Imamizu, Hiroshi; Náñez Sr, José E.; Takahashi, Hidehiko; Okamoto, Yasumasa; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Yuka; Watanabe, Takeo; Kawato, Mitsuo

    2016-01-01

    Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum. PMID:27075704

  14. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. PMID:26796967

  15. Facial emotion recognition impairments are associated with brain volume abnormalities in individuals with HIV.

    PubMed

    Clark, Uraina S; Walker, Keenan A; Cohen, Ronald A; Devlin, Kathryn N; Folkers, Anna M; Pina, Matthew J; Tashima, Karen T

    2015-04-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV-associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  16. Facial Emotion Recognition Impairments are Associated with Brain Volume Abnormalities in Individuals with HIV

    PubMed Central

    Clark, Uraina S.; Walker, Keenan A.; Cohen, Ronald A.; Devlin, Kathryn N.; Folkers, Anna M.; Pina, Mathew M.; Tashima, Karen T.

    2015-01-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV− associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  17. Face inversion superiority in a case of prosopagnosia following congenital brain abnormalities: what can it tell us about the specificity and origin of face-processing mechanisms?

    PubMed

    Schmalzl, Laura; Palermo, Romina; Harris, Irina M; Coltheart, Max

    2009-05-01

    In the current study we describe J.M., a 15-year-old boy with a history of congenital brain abnormalities and concomitant visual-processing impairments. J.M.'s most prominent deficit is his impaired face recognition, but formal testing also revealed deficits in other domains of visual processing. One aspect that emerged from J.M.'s visual-processing assessment was a tendency to focus on local features and to rely on them for the encoding and identification of visual stimuli including geometric figures, objects, words, and inverted faces. In spite of this general tendency, he was impaired on tasks requiring the encoding of local features in upright faces. Moreover, his ability to distinguish between features in upright faces was significantly worse than that for inverted faces, the opposite pattern to that typically found in normal participants. What is it that keeps J.M. from applying his otherwise intact feature-based processing to upright faces? As proposed in previous reports of face inversion superiority in individuals with acquired face recognition impairments, we suggest that J.M.'s "inverted-face inversion effect" speaks for a specialized cognitive system that is mandatorily engaged by upright (but not inverted) faces, even when it is impaired and therefore maladaptive. In addition, since J.M. suffered from congenital brain abnormalities affecting the normal development of his face-processing skills, his performance suggests that specialized and mandatorily activated face-processing mechanisms are not entirely experience dependent, and that they can remain modular during development even if they don't function properly and are therefore maladaptive. PMID:19657795

  18. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. PMID:26206149

  19. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    PubMed

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation. PMID:24946038

  20. Solar activity cycle and the incidence of foetal chromosome abnormalities detected at prenatal diagnosis

    NASA Astrophysics Data System (ADS)

    Halpern, Gabrielle J.; Stoupel, Eliahu G.; Barkai, Gad; Chaki, Rina; Legum, Cyril; Fejgin, Moshe D.; Shohat, Mordechai

    1995-06-01

    We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.

  1. Automated Detection of Brain Abnormalities in Neonatal Hypoxia Ischemic Injury from MR Images

    PubMed Central

    Ghosh, Nirmalya; Sun, Yu; Bhanu, Bir; Ashwal, Stephen; Obenaus, Andre

    2014-01-01

    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HII). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to check the temporal efficacy of our computational approaches. Sensitivity, specificity, similarity were used as performance metrics based on manual (‘gold standard’) injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while HRS for 33% data. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects. PMID:25000294

  2. Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study

    PubMed Central

    Umeda, Satoshi; Harrison, Neil A.; Gray, Marcus A.; Mathias, Christopher J.; Critchley, Hugo D.

    2015-01-01

    Postural tachycardia syndrome (PoTS), a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety, and depression. Although the estimated prevalence of PoTS is approximately 5–10 times as common as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI) with voxel-based morphometry (VBM) applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure to examine variation in regional brain structure associated with PoTS. We recruited 11 patients with established PoTS and 23 age-matched normal controls. Group comparison of gray matter volume revealed diminished gray matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation) and increased vulnerability to psychiatric symptoms in PoTS patients. PMID:25852449

  3. Autism Spectrum Disorder as Early Neurodevelopmental Disorder: Evidence from the Brain Imaging Abnormalities in 2-3 Years Old Toddlers

    ERIC Educational Resources Information Center

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships…

  4. Physical activity, air pollution and the brain.

    PubMed

    Bos, Inge; De Boever, Patrick; Int Panis, Luc; Meeusen, Romain

    2014-11-01

    This review introduces an emerging research field that is focused on studying the effect of exposure to air pollution during exercise on cognition, with specific attention to the impact on concentrations of brain-derived neurotrophic factor (BDNF) and inflammatory markers. It has been repeatedly demonstrated that regular physical activity enhances cognition, and evidence suggests that BDNF, a neurotrophin, plays a key role in the mechanism. Today, however, air pollution is an environmental problem worldwide and the high traffic density, especially in urban environments and cities, is a major cause of this problem. During exercise, the intake of air pollution increases considerably due to an increased ventilation rate and particle deposition fraction. Recently, air pollution exposure has been linked to adverse effects on the brain such as cognitive decline and neuropathology. Inflammation and oxidative stress seem to play an important role in inducing these health effects. We believe that there is a need to investigate whether the well-known benefits of regular physical activity on the brain also apply when physical activity is performed in polluted air. We also report our findings about exercising in an environment with ambient levels of air pollutants. Based on the latter results, we hypothesize that traffic-related air pollution exposure during exercise may inhibit the positive effect of exercise on cognition. PMID:25119155

  5. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    PubMed Central

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. PMID:26508861

  6. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    PubMed

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. PMID:26508861

  7. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  8. Risperidone Administered During Asymptomatic Period of Adolescence Prevents the Emergence of Brain Structural Pathology and Behavioral Abnormalities in an Animal Model of Schizophrenia

    PubMed Central

    Piontkewitz, Yael; Arad, Michal; Weiner, Ina

    2011-01-01

    Schizophrenia is a disorder of a neurodevelopmental origin manifested symptomatically after puberty. Structural neuroimaging studies show that neuroanatomical aberrations precede onset of symptoms, raising a question of whether schizophrenia can be prevented. Early treatment with atypical antipsychotics may reduce the risk of transition to psychosis, but it remains unknown whether neuroanatomical abnormalities can be prevented. We have recently shown, using in vivo structural magnetic resonance imaging, that treatment with the atypical antipsychotic clozapine during an asymptomatic period of adolescence prevents the emergence of schizophrenia-like brain structural abnormalities in adult rats exposed to prenatal immune challenge, in parallel to preventing behavioral abnormalities. Here we assessed the preventive efficacy of the atypical antipsychotic risperidone (RIS). Pregnant rats were injected on gestational day 15 with the viral mimic polyriboinosinic-polyribocytidylic acid (poly I:C) or saline. Their male offspring received daily RIS (0.045 or 1.2 mg/kg) or vehicle injection in peri-adolescence (postnatal days [PND] 34–47). Structural brain changes and behavior were assessed at adulthood (from PND 90). Adult offspring of poly I:C–treated dams exhibited hallmark structural abnormalities associated with schizophrenia, enlarged lateral ventricles and smaller hippocampus. Both of these abnormalities were absent in the offspring of poly I:C dams that received RIS at peri-adolescence. This was paralleled by prevention of schizophrenia-like behavioral abnormalities, attentional deficit, and hypersensitivity to amphetamine in these offspring. We conclude that pharmacological intervention during peri-adolescence can prevent the emergence of behavioral abnormalities and brain structural pathology resulting from in utero insult. Furthermore, highly selective 5HT2A receptor antagonists may be promising targets for psychosis prevention. PMID:20439320

  9. Magnetic Resonance Microscopy Defines Ethanol-Induced Brain Abnormalities In Prenatal Mice: Effects Of Acute Insult On Gestational Day 7

    PubMed Central

    Godin, Elizabeth A.; OLeary-Moore, Shonagh K.; Khan, Amber A.; Parnell, Scott E.; Ament, Jacob J.; Dehart, Deborah B.; Johnson, Brice W.; Johnson, G. Allan; Styner, Martin A.; Sulik, Kathleen K.

    2012-01-01

    Background This magnetic resonance microscopy (MRM)-based report is the 2nd in a series designed to illustrate the spectrum of craniofacial and central nervous system (CNS) dysmorphia resulting from single- and multiple-day maternal ethanol treatment. The study described in this report examined the consequences of ethanol exposure on gestational day (GD) 7 in mice, a time in development when gastrulation and neural plate development begins; corresponding to the mid- to late 3rd week post-fertilization in humans. Acute GD 7 ethanol exposure in mice has previously been shown to result in CNS defects consistent with holoprosencephaly (HPE) and craniofacial anomalies typical of those in Fetal Alcohol Syndrome (FAS). MRM has facilitated further definition of the range of GD 7 ethanol-induced defects. Methods C57Bl/6J female mice were intraperitoneally administered vehicle or 2 injections of 2.9 g/kg ethanol on day 7 of pregnancy. Stage-matched control and ethanol-exposed GD 17 fetuses selected for imaging were immersion fixed in a Bouins/Prohance solution. MRM was conducted at either 7.0 Tesla (T) or 9.4 T. Resulting 29 m isotropic spatial resolution scans were segmented and reconstructed to provide 3D images. Linear and volumetric brain measures, as well as morphological features, were compared for control and ethanol-exposed fetuses. Following MRM, selected specimens were processed for routine histology and light microscopic examination. Results GD 7 ethanol exposure resulted in a spectrum of median facial and forebrain deficiencies, as expected. This range of abnormalities falls within the HPE spectrum; a spectrum for which facial dysmorphology is consistent with and typically is predictive of that of the forebrain. In addition, other defects including median facial cleft, cleft palate, micrognathia, pituitary agenesis and third ventricular dilatation were identified. MRM analyses also revealed cerebral cortical dysplasia/heterotopias resulting from this acute, early insult and facilitated a subsequent focused histological investigation of these defects. Conclusions Individual MRM scans and 3D reconstructions of fetal mouse brains have facilitated demonstration of a broad range of GD 7 ethanol-induced morphological abnormality. These results, including the discovery of cerebral cortical heterotopias, elucidate the teratogenic potential of ethanol insult during the 3rd week of human prenatal development. PMID:19860813

  10. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders

    PubMed Central

    Huang, Tzyy-Nan; Hsueh, Yi-Ping

    2015-01-01

    T-brain-1 (TBR1) is a brain-specific T-box transcription factor. In 1995, Tbr1 was first identified from a subtractive hybridization that compared mouse embryonic and adult telencephalons. Previous studies of Tbr1−∕− mice have indicated critical roles for TBR1 in the development of the cerebral cortex, amygdala, and olfactory bulb. Neuronal migration and axonal projection are two important developmental features controlled by TBR1. Recently, recurrent de novo disruptive mutations in the TBR1 gene have been found in patients with autism spectrum disorders (ASDs). Human genetic studies have identified TBR1 as a high-confidence risk factor for ASDs. Because only one allele of the TBR1 gene is mutated in these patients, Tbr1+∕− mice serve as a good genetic mouse model to explore the mechanism by which de novo TBR1 mutation leads to ASDs. Although neuronal migration and axonal projection defects of cerebral cortex are the most prominent phenotypes in Tbr1−∕− mice, these features are not found in Tbr1+∕− mice. Instead, inter- and intra-amygdalar axonal projections and NMDAR expression and activity in amygdala are particularly susceptible to Tbr1 haploinsufficiency. The studies indicated that both abnormal brain wiring (abnormal amygdalar connections) and excitation/inhibition imbalance (NMDAR hypoactivity), two prominent models for ASD etiology, are present in Tbr1+∕− mice. Moreover, calcium/calmodulin-dependent serine protein kinase (CASK) was found to interact with TBR1. The CASK–TBR1 complex had been shown to directly bind the promoter of the Grin2b gene, which is also known as Nmdar2b, and upregulate Grin2b expression. This molecular function of TBR1 provides an explanation for NMDAR hypoactivity in Tbr1+∕− mice. In addition to Grin2b, cell adhesion molecules—including Ntng1, Cdh8, and Cntn2—are also regulated by TBR1 to control axonal projections of amygdala. Taken together, the studies of Tbr1 provide an integrated picture of ASD etiology at the cellular and circuit levels. PMID:26578866

  11. Decreased calcium-activated potassium channels by hypoxia causes abnormal firing in the spontaneous firing medial vestibular nuclei neurons.

    PubMed

    Xie, Hong; Zhang, Yu-qin; Pan, Xin-liang; Wu, Shu-hui; Chen, Xiang; Wang, Jie; Liu, Hua; Qian, Xiao-zhong; Liu, Zhi-guo; Liu, Lie-Ju

    2015-10-01

    Vertebrobasilar insufficiency (VBI) presents complex varied clinical symptoms, including vertigo and hearing loss. Little is known, however, about how Ca(2+)-activated K(+) channel attributes to the medial vestibular nucleus (MVN) neural activity in VBI. To address this issue, we performed whole-cell patch clamp and quantitative polymerase chain reaction (qPCR) to examine the effects of hypoxia on neural activity and the changes of the large conductance Ca(2+) activated K(+) channels (BKCa channels) in the MVN neurons in brain slices of male C57BL/6 mice. Brief hypoxic stimuli of the brain slices containing MVN were administrated by switching the normoxic artificial cerebrospinal fluid (ACSF) equilibrated with 21% O2/5% CO2 to hypoxic ACSF equilibrated with 5% O2/5% CO2 (balance N2). 3-min hypoxia caused a depolarization in the resting membrane potential (RM) in 8/11 non-spontaneous firing MVN neurons. 60/72 spontaneous firing MVN neurons showed a dramatic increase in firing frequency and a depolarization in the RM following brief hypoxia. The amplitude of the afterhyperpolarization (AHPA) was significantly decreased in both type A and type B spontaneous firing MVN neurons. Hypoxia-induced firing response was alleviated by pretreatment with NS1619, a selective BKCa activator. Furthermore, brief hypoxia caused a decrease in the amplitude of iberiotoxin-sensitive outward currents and mRNA level of BKCa in MVN neurons. These results suggest that BKCa channels protect against abnormal MVN neuronal activity induced by hypoxia, and might be a key target for treatment of vertigo and hearing loss in VBI. PMID:25173490

  12. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    PubMed

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing. PMID:26966964

  13. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia.

    PubMed

    Bitanihirwe, Byron K Y; Peleg-Raibstein, Daria; Mouttet, Forouhar; Feldon, Joram; Meyer, Urs

    2010-11-01

    Based on the human epidemiological association between prenatal infection and higher risk of schizophrenia, a number of animal models have been established to explore the long-term brain and behavioral consequences of prenatal immune challenge. Accumulating evidence suggests that the vulnerability to specific forms of schizophrenia-related abnormalities is critically influenced by the precise timing of the prenatal immunological insult. In the present study, we tested the hypothesis whether late prenatal immune challenge in mice may induce long-term behavioral and neurochemical dysfunctions primarily associated with the negative symptoms of schizophrenia. We found that prenatal exposure to the viral mimic polyriboinosinic-polyribocytidilic acid (Poly-I:C; 5 mg/kg, i.v.) on gestation day (GD) 17 led to significant deficits in social interaction, anhedonic behavior, and alterations in the locomotor and stereotyped behavioral responses to acute apomorphine (APO) treatment in both male and female offspring. In addition, male but not female offspring born to immune challenged mothers displayed behavioral/cognitive inflexibility as indexed by the presence of an abnormally enhanced latent inhibition (LI) effect. Prenatal immune activation in late gestation also led to numerous, partly sex-specific changes in basal neurotransmitter levels, including reduced dopamine (DA) and glutamate contents in the prefrontal cortex and hippocampus, as well as reduced γ-aminobutyric acid (GABA) and glycine contents in the hippocampus and prefrontal cortex, respectively. The constellation of behavioral and neurochemical abnormalities emerging after late prenatal Poly-I:C exposure in mice leads us to conclude that this immune-based experimental model provides a powerful neurodevelopmental animal model especially for (but not limited to) the negative symptoms of schizophrenia. PMID:20736993

  14. Predicting risky choices from brain activity patterns.

    PubMed

    Helfinstein, Sarah M; Schonberg, Tom; Congdon, Eliza; Karlsgodt, Katherine H; Mumford, Jeanette A; Sabb, Fred W; Cannon, Tyrone D; London, Edythe D; Bilder, Robert M; Poldrack, Russell A

    2014-02-18

    Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights. PMID:24550270

  15. Predicting risky choices from brain activity patterns

    PubMed Central

    Helfinstein, Sarah M.; Schonberg, Tom; Congdon, Eliza; Karlsgodt, Katherine H.; Mumford, Jeanette A.; Sabb, Fred W.; Cannon, Tyrone D.; London, Edythe D.; Bilder, Robert M.; Poldrack, Russell A.

    2014-01-01

    Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights. PMID:24550270

  16. Dopamine D1-stimulated adenylyl cyclase activity in cerebral cortex of autopsied human brain.

    PubMed

    Tong, J; Ross, B M; Sherwin, A L; Kish, S J

    2001-08-01

    Although the cerebral cortical dopamine D(1) receptor is considered to play a role in normal and abnormal brain function, little information is available on its characteristics in human brain. We compared dopamine-stimulated adenylyl cyclase (AC) activity in homogenates of cerebral cortex (frontal, temporal, parietal, occipital and cingulate cortex) of autopsied brain of neurologically normal subjects to that in striatum. Cerebral cortical AC activity was modestly and dose-dependently stimulated by dopamine (maximal 20-30%) with low microM EC50s and such stimulation was inhibited by the selective dopamine D1 receptor antagonist SCH23390. The magnitude of the maximal stimulation by dopamine was similar in autopsied and biopsied cerebral cortex. The extent of maximal stimulation was similar to that in dopamine-rich striatum (caudate, putamen and nucleus accumbens), despite much lower density of dopamine D1 receptors in cerebral cortex vs. striatum. The EC50 for dopamine stimulation in cerebral cortex (approximately 1 microM) was lower than that for caudate and putamen (approximately 3 microM). No detectable dopamine stimulation was observed in cerebellar cortex, thalamus or hippocampus. Dopamine stimulation in both cerebral cortex and striatum was independent of calcium activation. We conclude that dopamine stimulated AC can be measured in cerebral cortex of human brain allowing for the possibility that this process can be examined in human brain disorders in which dopaminergic abnormalities are suspected. PMID:11408090

  17. Brain abnormalities in male children and adolescents with hemophilia: detection with MR imaging. The Hemophilia Growth and Development Study Group.

    PubMed

    Wilson, D A; Nelson, M D; Fenstermacher, M J; Bohan, T P; Hopper, K D; Tilton, A; Mitchell, W G; Contant, C F; Maeder, M A; Donfield, S M

    1992-11-01

    Cranial magnetic resonance (MR) imaging was performed in 124 male patients (aged 7-19 years), from 14 institutions, in whom a diagnosis of moderate to severe hemophilia was made. Blood tests in all subjects were negative for human immunodeficiency virus. Findings in MR studies were abnormal in 25 (20.2%) subjects. Six lesions in five subjects were classified as congenital. The most commonly identified congenital lesion was a posterior fossa collection of cerebrospinal fluid (five cases). Twenty-two subjects had acquired lesions that were probably related to the hemophilia or its treatment. The most commonly acquired lesions were single- or multifocal areas of high signal intensity within the white matter on T2-weighted images noted in 14 (11.3%) subjects. Two subjects had large focal areas of brain atrophy, and six had some degree of diffuse cerebral cortical atrophy. Three subjects (2.4%) had hemorrhagic lesions. To the authors' knowledge, the unexpected finding of small, focal, nonhemorrhagic white matter lesions has not previously been reported. PMID:1410372

  18. Scale-free brain activity: past, present and future

    PubMed Central

    He, Biyu J.

    2014-01-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography, magnetoencephalography and functional magnetic resonance imaging signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, “scale-free”). This characteristic of scale-free brain activity distinguishes it from brain oscillations. While scale-free brain activity and brain oscillations coexist, our understanding of the former remains very limited. Recent research has shed light on the spatiotemporal organization, functional significance and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights and analytical tools for cognitive neuroscience. PMID:24788139

  19. Resting brain activity in disorders of consciousness

    PubMed Central

    Lindquist, Martin A.; Caffo, Brian S.; Sair, Haris I.; Stevens, Robert D.

    2015-01-01

    Objective: To quantitatively synthesize results from neuroimaging studies that evaluated patterns of resting functional activity in patients with disorders of consciousness (DOC). Methods: We performed a systematic review and coordinate-based meta-analysis of studies published up to May 2014. Studies were included if they compared resting-state functional neuroimaging data acquired in patients with DOC (coma, minimally conscious state, emergence from minimally conscious state, or vegetative state) with a group of healthy controls. Coordinate-based meta-analysis was performed in studies that included voxel-based comparisons at the whole-brain level and if analysis was accomplished with data-driven approaches. Results: A total of 36 studies (687 patients, 637 healthy controls) were included in the systematic review. Reported DOC were vegetative state (43.2%), coma (23.4%), minimally conscious state (22.8%), and emergence from minimally conscious state (1.6%); the most common etiologies of DOC were traumatic brain injury (37.7%) and anoxic brain injury (36.9%). Functional neuroimaging was accomplished using fMRI (16 studies), PET (15 studies), SPECT (4 studies), and both PET and SPECT in one study. Meta-analysis in 13 studies (272 patients, 259 healthy controls) revealed consistently reduced activity in patients with DOC in bilateral medial dorsal nucleus of the thalamus, left cingulate, posterior cingulate, precuneus, and middle frontal and medial temporal gyri. Conclusions: In patients with DOC evaluated in the resting state, functional neuroimaging indicates markedly reduced activity within midline cortical and subcortical sites, anatomical structures that have been linked to the default-mode network. Studies are needed to determine the relation between activation (and coherence) within these structures and the emergence of conscious awareness. PMID:25713001

  20. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression

    PubMed Central

    Price, Joseph L.; Furey, Maura L.

    2008-01-01

    The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger “default system” of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies. PMID:18704495

  1. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression.

    PubMed

    Drevets, Wayne C; Price, Joseph L; Furey, Maura L

    2008-09-01

    The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger "default system" of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies. PMID:18704495

  2. Regulation of brain aromatase activity in rats

    SciTech Connect

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of /sup 3/H/sub 2/O formed during the conversion of (1 beta-/sup 3/H)androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats.

  3. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    PubMed

    Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2013-01-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias. PMID:24324705

  4. Meclozine Facilitates Proliferation and Differentiation of Chondrocytes by Attenuating Abnormally Activated FGFR3 Signaling in Achondroplasia

    PubMed Central

    Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2013-01-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias. PMID:24324705

  5. TRANSLATION OF BRAIN ACTIVITY INTO SLEEP

    PubMed Central

    Krueger, James M.

    2012-01-01

    Cytokines including tumor necrosis factor alpha (TNF) play a role in sleep regulation in health and disease. Hypothalamic and cerebral cortical levels of TNF mRNA or TNF protein have diurnal variations with higher levels associated with greater sleep propensity. Sleep loss is associated with enhanced brain TNF. Central or systemic TNF injections enhance sleep. Inhibition of TNF using the soluble TNF receptor, or anti-TNF antibodies, or a TNF siRNA reduces spontaneous sleep. Mice lacking the TNF 55 kD receptor have less spontaneous sleep. Injection of TNF into sleep regulatory circuits, e.g. the hypothalamus, promotes sleep. In normal humans, plasma levels of TNF co-vary with EEG slow wave activity (SWA) and in multiple disease states plasma TNF increases in parallel with sleep propensity. Downstream mechanisms of TNF-enhanced sleep include nitric oxide, adenosine, prostaglandins and activation of nuclear factor kappa B. Neuronal use induces cortical neurons to express TNF and if applied directly to cortical columns TNF induces a functional sleep-like state within the column. TNF mechanistically has several synaptic functions. TNF-sleep data led to the idea that sleep is a fundamental property of neuronal/glial networks such as cortical columns and is dependent upon past activity within such assemblies. This view of brain organization of sleep has profound implications for sleep function that are briefly reviewed herein. PMID:24795496

  6. Spread of epileptic activity in human brain

    NASA Astrophysics Data System (ADS)

    Milton, John

    1997-03-01

    For many patients with medically refractory epilepsy surgical resection of the site of seizure onset (epileptic focus) offers the best hope for cure. Determination of the nature of seizure propagation should lead to improved methods for locating the epileptic focus (and hence reduce patient morbidity) and possibly to new treatment modalities directed at blocking seizure spread. Theoretical studies of neural networks emphasize the role of traveling waves for the propagation of activity. However, the nature of seizure propagation in human brain remains poorly characterized. The spread of epileptic activity in patients undergoing presurgical evaluation for epilepsy surgery was measured by placing subdural grids of electrodes (interelectrode spacings of 3-10 mm) over the frontal and temporal lobes. The exact location of each electrode relative to the surface of the brain was determined using 3--D MRI imaging techniques. Thus it is possible to monitor the spread of epileptic activity in both space and time. The observations are discussed in light of models for seizure propagation.

  7. Abnormal N-glycosylation pattern for brain nucleotide pyrophosphatase-5 (NPP-5) in Mecp2-mutant murine models of Rett syndrome.

    PubMed

    Cortelazzo, Alessio; De Felice, Claudio; Guerranti, Roberto; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Scalabrì, Francesco; Madonna, Michele; Filosa, Stefania; Della Giovampaola, Cinzia; Capone, Antonietta; Durand, Thierry; Mirasole, Cristiana; Zolla, Lello; Valacchi, Giuseppe; Ciccoli, Lucia; Guy, Jacky; D'Esposito, Maurizio; Hayek, Joussef

    2016-04-01

    Neurological disorders can be associated with protein glycosylation abnormalities. Rett syndrome is a devastating genetic brain disorder, mainly caused by de novo loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. Although its pathogenesis appears to be closely associated with a redox imbalance, no information on glycosylation is available. Glycoprotein detection strategies (i.e., lectin-blotting) were applied to identify target glycosylation changes in the whole brain of Mecp2 mutant murine models of the disease. Remarkable glycosylation pattern changes for a peculiar 50kDa protein, i.e., the N-linked brain nucleotide pyrophosphatase-5 were evidenced, with decreased N-glycosylation in the presymptomatic and symptomatic mutant mice. Glycosylation changes were rescued by selected brain Mecp2 reactivation. Our findings indicate that there is a causal link between the amount of Mecp2 and the N-glycosylation of NPP-5. PMID:26476268

  8. Order/disorder in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Rosso, O. A.; Figliola, Y. A.

    2004-04-01

    The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore, the concomitant studies require methods capable of describing the quantitative variation of the signal in both time and frequency. Here we present a quantitative EEG (qEEG) analysis, based on the Orthogonal Discrete Wavelet Transform (ODWT), of generalized epileptic tonic-clonic EEG signals. Two quantifiers: the Relative Wavelet Energy (RWE) and the Normalized Total Wavelet Entropy (NTWS) have been used. The RWE gives information about the relative energy associated with the different frequency bands present in the EEG and their corresponding degree of importance. The NTWS is a measure of the order/disorder degree in the EEG signal. These two quantifiers were computing in EEG signals as provided by scalp electrodes of epileptic patients. We showed that the epileptic recruitment rhythm observed for generalized epileptic tonic-clonic seizures is accurately described by the RWE quantifier. In addition, a significant decrease in the NTWS was observed in the recruitment epoch, indicating a more rhythmic and ordered behavior in the brain electrical activity.

  9. Brain Activity with Reading Sentences and Emoticons

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe a person's brain activity when he/she sees an emoticon at the end of a sentence. An emoticon consists of some characters that resemble the human face and expresses a sender's emotion. With the help of a computer network, we use e-mail, messenger, avatars and so on, in order to convey what we wish to, to a receiver. Moreover, we send an emotional expression by using an emoticon at the end of a sentence. In this research, we investigate the effect of an emoticon as nonverbal information, using an fMRI study. The experimental results show that the right and left inferior frontal gyrus were activated and we detect a sentence with an emoticon as the verbal and nonverval information.

  10. Brain activities during synchronized tapping task.

    PubMed

    Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake

    2015-08-01

    This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670

  11. Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia

    PubMed Central

    Caminiti, Silvia P.; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F.

    2015-01-01

    Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms. PMID:26594631

  12. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. PMID:26353878

  13. Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-01-01

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases. PMID:25348604

  14. High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury.

    PubMed

    Wilkinson, Charles W; Pagulayan, Kathleen F; Petrie, Eric C; Mayer, Cynthia L; Colasurdo, Elizabeth A; Shofer, Jane B; Hart, Kim L; Hoff, David; Tarabochia, Matthew A; Peskind, Elaine R

    2012-01-01

    Studies of traumatic brain injury from all causes have found evidence of chronic hypopituitarism, defined by deficient production of one or more pituitary hormones at least 1 year after injury, in 25-50% of cases. Most studies found the occurrence of posttraumatic hypopituitarism (PTHP) to be unrelated to injury severity. Growth hormone deficiency (GHD) and hypogonadism were reported most frequently. Hypopituitarism, and in particular adult GHD, is associated with symptoms that resemble those of PTSD, including fatigue, anxiety, depression, irritability, insomnia, sexual dysfunction, cognitive deficiencies, and decreased quality of life. However, the prevalence of PTHP after blast-related mild TBI (mTBI), an extremely common injury in modern military operations, has not been characterized. We measured concentrations of 12 pituitary and target-organ hormones in two groups of male US Veterans of combat in Iraq or Afghanistan. One group consisted of participants with blast-related mTBI whose last blast exposure was at least 1 year prior to the study. The other consisted of Veterans with similar military deployment histories but without blast exposure. Eleven of 26, or 42% of participants with blast concussions were found to have abnormal hormone levels in one or more pituitary axes, a prevalence similar to that found in other forms of TBI. Five members of the mTBI group were found with markedly low age-adjusted insulin-like growth factor-I (IGF-I) levels indicative of probable GHD, and three had testosterone and gonadotropin concentrations consistent with hypogonadism. If symptoms characteristic of both PTHP and PTSD can be linked to pituitary dysfunction, they may be amenable to treatment with hormone replacement. Routine screening for chronic hypopituitarism after blast concussion shows promise for appropriately directing diagnostic and therapeutic decisions that otherwise may remain unconsidered and for markedly facilitating recovery and rehabilitation. PMID:22347210

  15. Brain perfusion abnormalities in Alzheimer's disease: comparison between patients with focal temporal lobe dysfunction and patients with diffuse cognitive impairment

    PubMed Central

    Cappa, A; Calcagni, M; Villa, G; Giordano, A; Marra, C; De Rossi, G; Puopolo, M; Gainotti, G

    2001-01-01

    OBJECTIVES—Patients with Alzheimer's disease (AD) showing a selective impairment of episodic and semantic memory have recently been classified as affected by focal temporal lobe dysfunction (FTLD) and considered as a distinct subgroup of patients affected by a particular form of AD. The aim was to compare the cerebral perfusion of patients with AD with FTLD and patients with AD with the more typical profile of diffuse cognitive impairment (dAD).
METHODS—Ten patients with AD with FTLD, 14 patients with AD with dAD, and 12 normal controls were studied. All the 24 patients with AD underwent a complete neuropsychological assessment. SPECT examination with [99mTc]-HMPAO, using a four head brain dedicated tomograph, was performed in patients and controls. Tracer uptake was quantified in 27 regions of interest (ROIs), including lateral and mesial temporal areas. Mean counts in the 27 ROIs of controls, patients with FTLD and those with dAD were compared using an ANOVA for repeated measures with Bonferroni's correction. A logistic regression analysis, followed by a receiver operating characteristic (ROC) analysis, was also applied to select SPECT patterns which significantly differentiated patients with FTLD and those with dAD.
RESULTS—Two scintigraphic patterns of abnormalities, shaping a double dissociation between the FTLD and dAD groups, emerged: a bilateral mesial temporal hypoperfusion, characteristic of FTLD and a posterior parietal (and temporal parietal) hypoperfusion characteristic of patients with dAD.
CONCLUSIONS—These scintigraphic findings provide further support to the hypothesis that FTLD is not a mere stage but a distinct anatomoclinical form of AD. The combination of neuropsychological tests and [99mTc]-HMPAO SPECT may be very useful in identifying patients with FTLD from the wider group of patients with dAD. This issue is particularly worthwhile, as there is increasing evidence that patients with FTLD have a slower rate of cognitive decline.

 PMID:11118243

  16. Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

    PubMed

    El Chehadeh, Salima; Faivre, Laurence; Mosca-Boidron, Anne-Laure; Malan, Valérie; Amiel, Jeanne; Nizon, Mathilde; Touraine, Renaud; Prieur, Fabienne; Pasquier, Laurent; Callier, Patrick; Lefebvre, Mathilde; Marle, Nathalie; Dubourg, Christèle; Julia, Sophie; Sarret, Catherine; Francannet, Christine; Laffargue, Fanny; Boespflug-Tanguy, Odile; David, Albert; Isidor, Bertrand; Le Caignec, Cédric; Vigneron, Jacqueline; Leheup, Bruno; Lambert, Laetitia; Philippe, Christophe; Cuisset, Jean-Marie; Andrieux, Joris; Plessis, Ghislaine; Toutain, Annick; Goldenberg, Alice; Cormier-Daire, Valérie; Rio, Marlène; Bonnefont, Jean-Paul; Thevenon, Julien; Echenne, Bernard; Journel, Hubert; Afenjar, Alexandra; Burglen, Lydie; Bienvenu, Thierry; Addor, Marie-Claude; Lebon, Sébastien; Martinet, Danièle; Baumann, Clarisse; Perrin, Laurence; Drunat, Séverine; Jouk, Pierre-Simon; Devillard, Françoise; Coutton, Charles; Lacombe, Didier; Delrue, Marie-Ange; Philip, Nicole; Moncla, Anne; Badens, Catherine; Perreton, Nathalie; Masurel, Alice; Thauvin-Robinet, Christel; Portes, Vincent Des; Guibaud, Laurent

    2016-01-01

    Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment. © 2015 Wiley Periodicals, Inc. PMID:26420639

  17. Investigating a new neuromodulation treatment for brain disorders using synchronized activation of multimodal pathways

    PubMed Central

    Markovitz, Craig D.; Smith, Benjamin T.; Gloeckner, Cory D.; Lim, Hubert H.

    2015-01-01

    Neuromodulation is an increasingly accepted treatment for neurological and psychiatric disorders but is limited by its invasiveness or its inability to target deep brain structures using noninvasive techniques. We propose a new concept called Multimodal Synchronization Therapy (mSync) for achieving targeted activation of the brain via noninvasive and precisely timed activation of auditory, visual, somatosensory, motor, cognitive, and limbic pathways. In this initial study in guinea pigs, we investigated mSync using combined activation of just the auditory and somatosensory pathways, which induced differential and timing dependent plasticity in neural firing within deep brain and cortical regions of the auditory system. Furthermore, by varying the location of somatosensory stimulation across the body, we increased or decreased spiking activity across different neurons. These encouraging results demonstrate the feasibility of systematically modulating the brain using mSync. Considering that hearing disorders such as tinnitus and hyperacusis have been linked to abnormal and hyperactive firing patterns within the auditory system, these results open up the possibility for using mSync to decrease this pathological activity by varying stimulation parameters. Incorporating multiple types of pathways beyond just auditory and somatosensory inputs and using other activation patterns may enable treatment of various brain disorders. PMID:25804410

  18. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice

    PubMed Central

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F.; Charbonneau, Noe L.; Smaldone, Silvia; Carlson, Eric J.; Ramirez, Francesco; Keene, Douglas R.; Sakai, Lynn Y.

    2015-01-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can sequester BMP complexes in a latent state. PMID:26114882

  19. Brain activity and human unilateral chewing: an FMRI study.

    PubMed

    Quintero, A; Ichesco, E; Myers, C; Schutt, R; Gerstner, G E

    2013-02-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  20. Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing

    PubMed Central

    Caldwell, Brendan M.; Harenski, Carla L.; Harenski, Keith A.; Fede, Samantha J.; Steele, Vaughn R.; Koenigs, Michael R.; Kiehl, Kent A.

    2015-01-01

    Investigations into the neurobiology of moral cognition are often done by examining clinical populations characterized by diminished moral emotions and a proclivity toward immoral behavior. Psychopathy is the most common disorder studied for this purpose. Although cocaine abuse is highly co-morbid with psychopathy and cocaine-dependent individuals exhibit many of the same abnormalities in socio-affective processing as psychopaths, this population has received relatively little attention in moral psychology. To address this issue, the authors used functional magnetic resonance imaging (fMRI) to record hemodynamic activity in 306 incarcerated male adults, stratified into regular cocaine users (n = 87) and a matched sample of non-cocaine users (n = 87), while viewing pictures that did or did not depict immoral actions and determining whether each depicted scenario occurred indoors or outdoors. Consistent with expectations, cocaine users showed abnormal neural activity in several frontostriatial regions during implicit moral picture processing compared to their non-cocaine using peers. This included reduced moral/non-moral picture discrimination in the vACC, vmPFC, lOFC, and left vSTR. Additionally, psychopathy was negatively correlated with activity in an overlapping region of the ACC and right lateralized vSTR. These results suggest that regular cocaine abuse may be associated with affective deficits which can impact relatively high-level processes like moral cognition. PMID:26528169

  1. Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing.

    PubMed

    Caldwell, Brendan M; Harenski, Carla L; Harenski, Keith A; Fede, Samantha J; Steele, Vaughn R; Koenigs, Michael R; Kiehl, Kent A

    2015-01-01

    Investigations into the neurobiology of moral cognition are often done by examining clinical populations characterized by diminished moral emotions and a proclivity toward immoral behavior. Psychopathy is the most common disorder studied for this purpose. Although cocaine abuse is highly co-morbid with psychopathy and cocaine-dependent individuals exhibit many of the same abnormalities in socio-affective processing as psychopaths, this population has received relatively little attention in moral psychology. To address this issue, the authors used functional magnetic resonance imaging (fMRI) to record hemodynamic activity in 306 incarcerated male adults, stratified into regular cocaine users (n = 87) and a matched sample of non-cocaine users (n = 87), while viewing pictures that did or did not depict immoral actions and determining whether each depicted scenario occurred indoors or outdoors. Consistent with expectations, cocaine users showed abnormal neural activity in several frontostriatial regions during implicit moral picture processing compared to their non-cocaine using peers. This included reduced moral/non-moral picture discrimination in the vACC, vmPFC, lOFC, and left vSTR. Additionally, psychopathy was negatively correlated with activity in an overlapping region of the ACC and right lateralized vSTR. These results suggest that regular cocaine abuse may be associated with affective deficits which can impact relatively high-level processes like moral cognition. PMID:26528169

  2. On a Quantum Model of Brain Activities

    NASA Astrophysics Data System (ADS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  3. Early Brain Activity Relates to Subsequent Brain Growth in Premature Infants.

    PubMed

    Benders, Manon J; Palmu, Kirsi; Menache, Caroline; Borradori-Tolsa, Cristina; Lazeyras, Francois; Sizonenko, Stephane; Dubois, Jessica; Vanhatalo, Sampsa; Hüppi, Petra S

    2015-09-01

    Recent experimental studies have shown that early brain activity is crucial for neuronal survival and the development of brain networks; however, it has been challenging to assess its role in the developing human brain. We employed serial quantitative magnetic resonance imaging to measure the rate of growth in circumscribed brain tissues from preterm to term age, and compared it with measures of electroencephalographic (EEG) activity during the first postnatal days by 2 different methods. EEG metrics of functional activity were computed: EEG signal peak-to-peak amplitude and the occurrence of developmentally important spontaneous activity transients (SATs). We found that an increased brain activity in the first postnatal days correlates with a faster growth of brain structures during subsequent months until term age. Total brain volume, and in particular subcortical gray matter volume, grew faster in babies with less cortical electrical quiescence and with more SAT events. The present findings are compatible with the idea that (1) early cortical network activity is important for brain growth, and that (2) objective measures may be devised to follow early human brain activity in a biologically reasoned way in future research as well as during intensive care treatment. PMID:24867393

  4. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'

    PubMed Central

    2014-01-01

    While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia. PMID:25598821

  5. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'.

    PubMed

    Northoff, Georg

    2014-12-01

    While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia. PMID:25598821

  6. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain.

    PubMed

    Kurbatskaya, Ksenia; Phillips, Emma C; Croft, Cara L; Dentoni, Giacomo; Hughes, Martina M; Wade, Matthew A; Al-Sarraj, Safa; Troakes, Claire; O'Neill, Michael J; Perez-Nievas, Beatriz G; Hanger, Diane P; Noble, Wendy

    2016-01-01

    Alterations in calcium homeostasis are widely reported to contribute to synaptic degeneration and neuronal loss in Alzheimer's disease. Elevated cytosolic calcium concentrations lead to activation of the calcium-sensitive cysteine protease, calpain, which has a number of substrates known to be abnormally regulated in disease. Analysis of human brain has shown that calpain activity is elevated in AD compared to controls, and that calpain-mediated proteolysis regulates the activity of important disease-associated proteins including the tau kinases cyclin-dependent kinase 5 and glycogen kinase synthase-3. Here, we sought to investigate the likely temporal association between these changes during the development of sporadic AD using Braak staged post-mortem brain. Quantification of protein amounts in these tissues showed increased activity of calpain-1 from Braak stage III onwards in comparison to controls, extending previous findings that calpain-1 is upregulated at end-stage disease, and suggesting that activation of calcium-sensitive signalling pathways are sustained from early stages of disease development. Increases in calpain-1 activity were associated with elevated activity of the endogenous calpain inhibitor, calpastatin, itself a known calpain substrate. Activation of the tau kinases, glycogen-kinase synthase-3 and cyclin-dependent kinase 5 were also found to occur in Braak stage II-III brain, and these preceded global elevations in tau phosphorylation and the loss of post-synaptic markers. In addition, we identified transient increases in total amyloid precursor protein and pre-synaptic markers in Braak stage II-III brain, that were lost by end stage Alzheimer's disease, that may be indicative of endogenous compensatory responses to the initial stages of neurodegeneration. These findings provide insight into the molecular events that underpin the progression of Alzheimer's disease, and further highlight the rationale for investigating novel treatment strategies that are based on preventing abnormal calcium homeostasis or blocking increases in the activity of calpain or important calpain substrates. PMID:27036949

  7. What is the importance of abnormal “background” activity in seizure generation?

    PubMed Central

    Staba, Richard; Worrell, Gregory

    2014-01-01

    Investigations of interictal epileptiform spikes and seizures have played a central role in the study of epilepsy. The background EEG activity, however, has received less attention. In this chapter we discuss the characteristic features of the background activity of the brain when individuals are at rest and awake (resting wake) and during sleep. The characteristic rhythms of the background EEG are presented, and the presence of 1/f β behavior of the EEG power spectral density is discussed and its possible origin and functional significance. The interictal EEG findings of focal epilepsy and the impact of interictal epileptiform spikes on cognition are also discussed. PMID:25012365

  8. Supervised learning for neural manifold using spatiotemporal brain activity

    NASA Astrophysics Data System (ADS)

    Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen

    2015-12-01

    Objective. Determining the means by which perceived stimuli are compactly represented in the human brain is a difficult task. This study aimed to develop techniques for the construction of the neural manifold as a representation of visual stimuli. Approach. We propose a supervised locally linear embedding method to construct the embedded manifold from brain activity, taking into account similarities between corresponding stimuli. In our experiments, photographic portraits were used as visual stimuli and brain activity was calculated from magnetoencephalographic data using a source localization method. Main results. The results of 10 × 10-fold cross-validation revealed a strong correlation between manifolds of brain activity and the orientation of faces in the presented images, suggesting that high-level information related to image content can be revealed in the brain responses represented in the manifold. Significance. Our experiments demonstrate that the proposed method is applicable to investigation into the inherent patterns of brain activity.

  9. Changes of Enzyme Activities and Compositions of Abnormal Fruiting Bodies Grown under Artificial Environmental Conditions in Pleurotus ostreatus

    PubMed Central

    Cho, Soo Muk; June, Chang Sung; Weon, Hang Yeon; Park, Jeong Sik; Choi, Sun Gyu; Cheong, Jong Chun; Sung, Jae Mo

    2005-01-01

    This study investigated the biochemical changes of abnormal fruiting bodies grown under artificial environmental conditions in P. ostreatus. Abnormal mushroom growth during cultivation damages the production of good quality mushroom. This study showed that different environmental conditions produced morphological changes in the fruiting bodies of P. ostreatus. The fruiting bodies with morphological changes were collected and examined for differences in biochemical properties, enzyme activities, and carbohydrates composition. The enzyme activities assay showed that glucanase and chitinase activities decreased when the temperature was below or above the optimum cultivation temperature for P. ostreatus. The biochemical compositions of the abnormal mushroom were significantly different from the normal fruiting bodies. It was suggested that the changes in the biochemical composition of abnormal mushroom were caused by the unfavorable environmental conditions during mushroom cultivation. PMID:24049471

  10. Smooth C(alkyl)-H bond activation in rhodium complexes comprising abnormal carbene ligands.

    PubMed

    Krüger, Anneke; Häller, L Jonas L; Müller-Bunz, Helge; Serada, Olha; Neels, Antonia; Macgregor, Stuart A; Albrecht, Martin

    2011-10-14

    Rhodation of trimethylene-bridged diimidazolium salts induces the intramolecular activation of an alkane-type C-H bond and yields mono- and dimetallic complexes containing a formally monoanionic C,C,C-tridentate dicarbene ligand bound to each rhodium centre. Mechanistic investigation of the C(alkyl)-H bond activation revealed a significant rate enhancement when the carbene ligands are bound to the rhodium centre via C4 (instantaneous activation) as compared to C2-bound carbene homologues (activation incomplete after 2 days). The slow C-H activation in normal C2-bound carbene complexes allowed intermediates to be isolated and suggests a critical role of acetate in mediating the bond activation process. Computational modelling supported by spectroscopic analyses indicate that halide dissociation as well as formation of the agostic intermediate is substantially favoured with C4-bound carbenes. It is these processes that discriminate the C4- and C2-bound systems rather than the subsequent C-H bond activation, where the computed barriers are very similar in each case. The tridentate dicarbene ligand undergoes selective H/D exchange at the C5 position of the C4-bound carbene exclusively. A mechanism has been proposed for this process, which is based on the electronic separation of the abnormal carbene ligand into a cationic N-C-N amidinium unit and a metalla-allyl type M-C-C fragment. PMID:21879093

  11. Increased Brain Activity May Compensate for Amyloid Pathology in Older Brains

    MedlinePlus

    ... to Alzheimer’s, frequently have increased activity in the hippocampus compared to their cognitively healthy peers, scientists questioned ... beta-amyloid, greater activity in the visual and memory areas of the brain correlated directly with success ...

  12. Cerebral blood volume changes during brain activation

    PubMed Central

    Krieger, Steffen Norbert; Streicher, Markus Nikolar; Trampel, Robert; Turner, Robert

    2012-01-01

    Cerebral blood volume (CBV) changes significantly with brain activation, whether measured using positron emission tomography, functional magnetic resonance imaging (fMRI), or optical microscopy. If cerebral vessels are considered to be impermeable, the contents of the skull incompressible, and the skull itself inextensible, task- and hypercapnia-related changes of CBV could produce intolerable changes of intracranial pressure. Because it is becoming clear that CBV may be useful as a well-localized marker of neural activity changes, a resolution of this apparent paradox is needed. We have explored the idea that much of the change in CBV is facilitated by exchange of water between capillaries and surrounding tissue. To this end, we developed a novel hemodynamic boundary-value model and found approximate solutions using a numerical algorithm. We also constructed a macroscopic experimental model of a single capillary to provide biophysical insight. Both experiment and theory model capillary membranes as elastic and permeable. For a realistic change of input pressure, a relative pipe volume change of 21±5% was observed when using the experimental setup, compared with the value of approximately 17±1% when this quantity was calculated from the mathematical model. Volume, axial flow, and pressure changes are in the expected range. PMID:22569192

  13. Antidiabetic drugs restore abnormal transport of amyloid-? across the blood-brain barrier and memory impairment in db/db mice.

    PubMed

    Chen, Fang; Dong, Rong Rong; Zhong, Kai Long; Ghosh, Arijit; Tang, Su Su; Long, Yan; Hu, Mei; Miao, Ming Xing; Liao, Jian Min; Sun, Hong Bing; Kong, Ling Yi; Hong, Hao

    2016-02-01

    Previous studies have shown significant changes in amyloid-? (A?) transport across the blood-brain barrier (BBB) under diabetic conditions with hypoinsulinemia, which is involved in diabetes-associated cognitive impairment. Present study employed db/db mice with hyperinsulinemia to investigate changes in A? transport across the BBB, hippocampal synaptic plasticity, and restorative effects of antidiabetic drugs. Our results showed that db/db mice exhibited similar changes in A? transport across the BBB to that of insulin-deficient mice. Chronic treatment of db/db mice with antidiabetic drugs such as metformin, glibenclamide and insulin glargine significantly decreased A? influx across the BBB determined by intra-arterial infusion of (125)I-A?1-40, and expression of the receptor for advanced glycation end products (RAGE) participating in A? influx. Insulin glargine, but not, metformin or glibenclamide increased A? efflux across the BBB determined by stereotaxic intra-cerebral infusion of (125)I-A?1-40, and expression of the low-density lipoprotein receptor related protein 1 (LRP1) participating in A? efflux. Moreover, treatment with these drugs significantly decreased hippocampal A?1-40 or A?1-42 and inhibited neuronal apoptosis. The drugs also ameliorated memory impairment confirmed by improved performance on behavioral tasks. However, insulin glargine or glibenclamide, but not metformin, restored hippocampal synaptic plasticity characterized by enhancing invivo long-term potentiation (LTP). Further study found that these three drugs significantly restrained NF-?B, but only insulin glargine enhanced peroxisome proliferator-activated receptor ? (PPAR?) activity at the BBB in db/db mice. Our data indicate that the antidiabetic drugs can partially restore abnormal A? transport across the BBB and memory impairment under diabetic context. PMID:26211973

  14. Artifact suppression and analysis of brain activities with electroencephalography signals

    PubMed Central

    Rashed-Al-Mahfuz, Md.; Islam, Md. Rabiul; Hirose, Keikichi; Molla, Md. Khademul Islam

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component. PMID:25206446

  15. Artifact suppression and analysis of brain activities with electroencephalography signals.

    PubMed

    Rashed-Al-Mahfuz, Md; Islam, Md Rabiul; Hirose, Keikichi; Molla, Md Khademul Islam

    2013-06-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component. PMID:25206446

  16. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells.

    PubMed

    Rega, Laura R; Polishchuk, Elena; Montefusco, Sandro; Napolitano, Gennaro; Tozzi, Giulia; Zhang, Jinzhong; Bellomo, Francesco; Taranta, Anna; Pastore, Anna; Polishchuk, Roman; Piemonte, Fiorella; Medina, Diego L; Catz, Sergio D; Ballabio, Andrea; Emma, Francesco

    2016-04-01

    Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis. PMID:26994576

  17. Diffusion abnormalities of the corpus callosum in patients receiving bevacizumab for malignant brain tumors: suspected treatment toxicity.

    PubMed

    Futterer, Stephen F; Nemeth, Alexander J; Grimm, Sean A; Ragin, Ann B; Chandler, James P; Muro, Kenji; Marymont, Maryanne H; Raizer, Jeffrey J

    2014-05-01

    Bevacizumab has been reported to cause diffusion restriction in the tumor bed of patients with malignant gliomas. This study evaluated prolonged diffusion restriction, in the corpus callosum (CC), of patients with malignant brain tumors treated with bevacizumab. We retrospectively reviewed our database of patients treated with bevacizumab for malignant brain tumors looking for those with restricted diffusion in the CC. CC ADC ratio measurements were obtained prior to and following treatment. Correlation was made with biopsy (n = 3) and MR perfusion (n = 7) and PET (n = 4). The temporal evolution of these changes relative to therapy was examined with mixed effects regression analysis. Nine patients (eight malignant gliomas, one malignant meningioma) out of 146 patients were found to have developed areas of diffusion restriction in the CC. These areas tended to enlarge and coalesce over serial MRIs and persisted for up to 22 months. Hypoperfusion was demonstrated in MR perfusion in 7/7. PET was hypometabolic in all 4. Biopsy of the CC showed no tumor in 3/3. ADC ratio measurements indicated a significant overall effect of time (F(16,60) = 11.2; p < 0.0001), consistent with persistent diffusion restriction over the measured time periods. Bevacizumab causes prolonged diffusion restriction in the CC. The negative MR perfusion, FDG PET and histopathology suggest this is a toxicity of bevacizumab and not active tumor. Awareness of these changes can assist in patient care. PMID:24574050

  18. Brain activation associated with active and passive lower limb stepping

    PubMed Central

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Riener, Robert; Michels, Lars; Kollias, Spyros

    2014-01-01

    Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy. PMID:25389396

  19. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    PubMed Central

    Garrett, Amy; Reiss, Allan; Howe, Meghan; Kelley, Ryan; Singh, Manpreet; Adleman, Nancy; Karchemskiy, Asya; Chang, Kiki

    2012-01-01

    Objective Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late phase of activation, suggesting different temporal characteristics of brain responses. Method Twenty euthymic adolescents with familial BD (14 male) and twenty-one healthy control subjects (13 male) underwent fMRI scanning during presentation of happy, sad, and neutral facial expressions. Whole brain voxel-wise analyses were conducted in SPM5, using a 3-way analysis of variance (ANOVA) with factors group (BD and healthy control [HC]), facial expression (happy, sad, and neutral versus scrambled), and phase (early and late, corresponding to the first and second half of each block of faces). Results There were no significant group differences in task performance, age, gender, or IQ. Significant activation from the Main Effect of Group included greater DLPFC activation in the HC group, and greater amygdala/hippocampal activation in the BD group. The interaction of Group X Phase identified clusters in the superior temporal sulcus/insula and visual cortex, where activation increased from the early to late phase of the block for the BD but not the HC group. Conclusions These findings are consistent with previous studies that suggest deficient prefrontal cortex regulation of heightened amygdala response to emotional stimuli in pediatric BD. Increasing activation over time in superior temporal and visual cortices suggests difficulty processing or disengaging attention from emotional faces in BD. PMID:22840553

  20. Abnormal n-6 fatty acid metabolism in cystic fibrosis is caused by activation of AMP-activated protein kinase

    PubMed Central

    Umunakwe, Obi C.; Seegmiller, Adam C.

    2014-01-01

    Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism. PMID:24859760

  1. A Two-Stage Model for In Vivo Assessment of Brain Tumor Perfusion and Abnormal Vascular Structure Using Arterial Spin Labeling

    PubMed Central

    Hales, Patrick W.; Phipps, Kim P.; Kaur, Ramneek; Clark, Christopher A.

    2013-01-01

    The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL) has emerged as an increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of ‘biphasic’ behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner. PMID:24098395

  2. Retina Restored and Brain Abnormalities Ameliorated by Single-Copy Knock-In of Human NR2E1 in Null Mice

    PubMed Central

    Schmouth, J.-F.; Banks, K. G.; Mathelier, A.; Gregory-Evans, C. Y.; Castellarin, M.; Holt, R. A.; Gregory-Evans, K.; Wasserman, W. W.

    2012-01-01

    Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified. PMID:22290436

  3. Abnormal dynamics of activation of object use information in apraxia: evidence from eyetracking

    PubMed Central

    Lee, Chia-lin; Mirman, Daniel; Buxbaum, Laurel J.

    2014-01-01

    Action representations associated with object use may be incidentally activated during visual object processing, and the time course of such activations may be influenced by lexical-semantic context (e.g., Lee, Middleton, Mirman, Kalénine, & Buxbaum, 2012). In this study we used the “visual world” eye-tracking paradigm to examine whether a deficit in producing skilled object-use actions (apraxia) is associated with abnormalities in incidental activation of action information, and assessed the neuroanatomical substrates of any such deficits. Twenty left hemisphere stroke patients, ten of whom were apraxic, performed a task requiring identification of a named object in a visual display containing manipulation-related and unrelated distractor objects. Manipulation relationships among objects were not relevant to the identification task. Objects were cued with neutral (“S/he saw the….”), or action-relevant (“S/he used the….”) sentences. Non-apraxic participants looked at use-related non-target objects significantly more than at unrelated non-target objects when cued both by neutral and action-relevant sentences, indicating that action information is incidentally activated. In contrast, apraxic participants showed delayed activation of manipulation-based action information during object identification when cued by neutral sentences. The magnitude of delayed activation in the neutral sentence condition was reliably predicted by lower scores on a test of gesture production to viewed objects, as well as by lesion loci in the inferior parietal and posterior temporal lobes. However, when cued by a sentence containing an action verb, apraxic participants showed fixation patterns that were statistically indistinguishable from non-apraxic controls. In support of grounded theories of cognition, these results suggest that apraxia and temporal-parietal lesions may be associated with abnormalities in incidental activation of action information from objects. Further, they suggest that the previously-observed facilitative role of action verbs in the retrieval of object-related action information extends to participants with apraxia. PMID:24746946

  4. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies.

    PubMed

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian N; Lorentzen, Anne K; Eickhoff, Simon B; Siebner, Hartwig R

    2016-02-01

    Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task-related sensorimotor activation in dystonia, but the results appear to be rather variable across studies. Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity across studies. Activation likelihood estimates were based on previously reported regional maxima of task-related increases or decreases in dystonia patients compared to healthy controls. The meta-analyses encompassed data from 179 patients with dystonia reported in 18 functional neuroimaging studies using a range of sensorimotor tasks. Patients with dystonia showed bilateral increases in task-related activation in the parietal operculum and ventral postcentral gyrus as well as right middle temporal gyrus. Decreases in task-related activation converged in left supplementary motor area and left postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between-group differences in task-related activity were retrieved in a sub-analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased sensorimotor activation emerged in the caudal cingulate motor zone. The results show that dystonia is consistently associated with abnormal somatosensory processing in the primary and secondary somatosensory cortex along with abnormal sensorimotor activation of mesial premotor and right lateral temporal cortex. Hum Brain Mapp 37:547-557, 2016. © 2015 Wiley Periodicals, Inc. PMID:26549606

  5. Altered sensorimotor activation patterns in idiopathic dystonia—an activation likelihood estimation meta‐analysis of functional brain imaging studies

    PubMed Central

    Herz, Damian M.; Haagensen, Brian N.; Lorentzen, Anne K.; Eickhoff, Simon B.; Siebner, Hartwig R.

    2015-01-01

    Abstract Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task‐related sensorimotor activation in dystonia, but the results appear to be rather variable across studies. Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta‐analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia‐related alterations in task‐related activity across studies. Activation likelihood estimates were based on previously reported regional maxima of task‐related increases or decreases in dystonia patients compared to healthy controls. The meta‐analyses encompassed data from 179 patients with dystonia reported in 18 functional neuroimaging studies using a range of sensorimotor tasks. Patients with dystonia showed bilateral increases in task‐related activation in the parietal operculum and ventral postcentral gyrus as well as right middle temporal gyrus. Decreases in task‐related activation converged in left supplementary motor area and left postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between‐group differences in task‐related activity were retrieved in a sub‐analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased sensorimotor activation emerged in the caudal cingulate motor zone. The results show that dystonia is consistently associated with abnormal somatosensory processing in the primary and secondary somatosensory cortex along with abnormal sensorimotor activation of mesial premotor and right lateral temporal cortex. Hum Brain Mapp 37:547–557, 2016. © 2015 Wiley Periodicals, Inc. PMID:26549606

  6. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine): a PET-FDG study

    SciTech Connect

    Brunetti, A.; Berg, G.; Di Chiro, G.; Cohen, R.M.; Yarchoan, R.; Pizzo, P.A.; Broder, S.; Eddy, J.; Fulham, M.J.; Finn, R.D.

    1989-05-01

    Brain glucose metabolism was evaluated in four patients with acquired immunodeficiency syndrome (AIDS) dementia complex using (/sup 18/F)fluorodeoxyglucose (FDG) and positron emission tomography (PET) scans at the beginning of therapy with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine), and later in the course of therapy. In two patients, baseline, large focal cortical abnormalities of glucose utilization were reversed during the course of therapy. In the other two patients, the initial PET study did not reveal pronounced focal alterations, while the post-treatment scans showed markedly increased cortical glucose metabolism. The improved cortical glucose utilization was accompanied in all patients by immunologic and neurologic improvement. PET-FDG studies can detect cortical metabolic abnormalities associated with AIDS dementia complex, and may be used to monitor the metabolic improvement in response to AZT treatment.

  7. Brain MRI abnormalities and spectrum of neurological and clinical findings in three patients with proximal 16p11.2 microduplication.

    PubMed

    Filges, Isabel; Sparagana, Steven; Sargent, Michael; Selby, Kathryn; Schlade-Bartusiak, Kamilla; Lueder, Gregg T; Robichaux-Viehoever, Amy; Schlaggar, Bradley L; Shimony, Joshua S; Shinawi, Marwan

    2014-08-01

    The phenotype of recurrent ∼600 kb microdeletion and microduplication on proximal 16p11.2 is characterized by a spectrum of neurodevelopmental impairments including developmental delay and intellectual disability, epilepsy, autism and psychiatric disorders which are all subject to incomplete penetrance and variable expressivity. A variety of brain MRI abnormalities were reported in patients with 16p11.2 rearrangements, but no systematic correlation has been studied among patients with similar brain anomalies, their neurodevelopmental and clinical phenotypes. We present three patients with the proximal 16p11.2 microduplication exhibiting significant developmental delay, anxiety disorder and other variable clinical features. Our patients have abnormal brain MRI findings of cerebral T2 hyperintense foci (3/3) and ventriculomegaly (2/3). The neuroradiological or neurological findings in two cases prompted an extensive diagnostic work-up. One patient has exhibited neurological regression and progressive vision impairment and was diagnosed with juvenile neuronal ceroid-lipofuscinosis. We compare the clinical course and phenotype of these patients in regard to the clinical significance of the cerebral lesions and the need for MRI surveillance. We conclude that in all three patients the lesions were not progressive, did not show any sign of malignant transformation and could not be correlated to specific clinical features. We discuss potential etiologic mechanisms that may include overexpression of genes within the duplicated region involved in control of cell proliferation and complex molecular mechanisms such as the MAPK/ERK pathway. Systematic studies in larger cohorts are needed to confirm our observation and to establish the prevalence and clinical significance of these neuroanatomical abnormalities in patients with 16p11.2 duplications. PMID:24891046

  8. Abnormally upregulated αB-crystallin was highly coincidental with the astrogliosis in the brains of scrapie-infected hamsters and human patients with prion diseases.

    PubMed

    Wang, Ke; Zhang, Jin; Xu, Yin; Ren, Ke; Xie, Wu-Ling; Yan, Yu-E; Zhang, Bao-Yun; Shi, Qi; Liu, Yong; Dong, Xiao-Ping

    2013-11-01

    αB-crystallin is a member of the small heat shock protein family constitutively presenting in brains at a relatively low level. To address the alteration of αB-crystallin in prion disease, the αB-crystallin levels in the brains of scrapie agent 263 K-infected hamsters were analyzed. The levels of αB-crystallin were remarkably increased in the brains of 263 K-infected hamsters, showing a time-dependent manner along with incubation time. Immunohistochemical (IHC) and immunofluorescent (IFA) assays illustrated more αB-crystallin-positive signals in the regions of the cortex and thalamus containing severe astrogliosis. Double-stained IFA verified that the αB-crystallin signals colocalized with the enlarged glial fibrillary acidic protein-positive astrocytes, but not with neuronal nuclei-positive cells. IHC and IFA of the serial brain sections of infected hamsters showed no colocalization and correlation between PrP(Sc) deposits and αB-crystallin increase. Moreover, increased αB-crystallin deposits were observed in the brain sections of parietal lobe of a sporadic Creutzfeldt-Jakob disease (sCJD) case, parietal lobe and thalamus of a G114V genetic CJD case, and thalamus of a fatal family insomnia (FFI) case, but not in a parietal lobe of FFI where only very mild astrogliosis was addressed. Additionally, the molecular interaction between αB-crystallin and PrP was only observed in the reactions of recombinant proteins purified from Escherichia coli, but not either in that of brain homogenates or in that of the cultured cell lysates expressing human PrP and αB-crystallin. Our data indicate that brain αB-crystallin is abnormally upregulated in various prion diseases, which is coincidental with astrogliosis. Direct interaction between αB-crystallin and PrP seems not to be essential during the pathogenesis of prion infection. PMID:23832485

  9. Abnormal bloodbrain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI???

    PubMed Central

    Cramer, S.P.; Simonsen, H.; Frederiksen, J.L.; Rostrup, E.; Larsson, H.B.W.

    2013-01-01

    Objectives To investigate whether bloodbrain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics. Methods Dynamic contrast-enhanced MRI was used to measure BBB permeability in 27 patients with MS and compared to 24 matched healthy controls. Results Permeability measured as Ktrans was significantly higher in periventricular normal appearing white matter (NAWM) and thalamic gray matter in MS patients when compared to healthy controls, with periventricular NAWM showing the most pronounced difference. Recent relapse coincided with significantly higher permeability in periventricular NAWM, thalamic gray matter, and MS lesions. Immunomodulatory treatment and recent relapse were significant predictors of permeability in MS lesions and periventricular NAWM. Our results suggest that after an MS relapse permeability gradually decreases, possibly an effect of immunomodulatory treatment. Conclusions Our results emphasize the importance of BBB pathology in MS, which we find to be most prominent in the periventricular NAWM, an area prone to development of MS lesions. Both the facts that recent relapse appears to cause widespread BBB disruption and that immunomodulatory treatment seems to attenuate this effect indicate that BBB permeability is intricately linked to the presence of MS relapse activity. This may reveal further insights into the pathophysiology of MS. PMID:24371801

  10. Anxiety and abnormal eating behaviors associated with cyclical readiness testing in a naval hospital active duty population.

    PubMed

    Carlton, Janis R; Manos, Gail H; Van Slyke, John A

    2005-08-01

    Studies of abnormal eating behaviors in active duty military personal have found rates similar to or higher than the general population. We have reviewed these studies and extended the research to examine abnormal eating behaviors in a heterogeneous population at a major military medical center. We found high rates of body dissatisfaction, abnormal eating behaviors, and worry about passing the semiannual personal fitness assessment in both men and women. Abnormal eating behaviors were associated with worrying about the personal fitness assessment, and these measures were associated with body mass index and gender. Our data extend previous research indicating that cyclic or external pressure to maintain body weight within specified standards can produce unsafe eating and dieting behaviors. We recommend changes to the current system to incorporate treatment programs aimed at recognizing and treating eating disorders with a goal of producing more fit and healthy service members. PMID:16173205

  11. IL-1β and Inflammasome Activity Link Inflammation to Abnormal Fetal Airway Development.

    PubMed

    Stouch, Ashley N; McCoy, Alyssa M; Greer, Rachel M; Lakhdari, Omar; Yull, Fiona E; Blackwell, Timothy S; Hoffman, Hal M; Prince, Lawrence S

    2016-04-15

    Inflammation in the developing preterm lung leads to disrupted airway morphogenesis and chronic lung disease in human neonates. However, the molecular mechanisms linking inflammation and the pathways controlling airway morphogenesis remain unclear. In this article, we show that IL-1β released by activated fetal lung macrophages is the key inflammatory mediator that disrupts airway morphogenesis. In mouse lung explants, blocking IL-1β expression, posttranslational processing, and signaling protected the formation of new airways from the inhibitory effects ofEscherichia coliLPS. Consistent with a critical role for IL-1β, mice expressing a gain-of-functionNlrp3allele and subsequent overactive inflammasome activity displayed abnormal saccular-stage lung morphogenesis and died soon after birth. Although the early-stage fetal lung appeared capable of mounting an NF-κB-mediated immune response, airway formation became more sensitive to inflammation later in development. This period of susceptibility coincided with higher expression of multiple inflammasome components that could increase the ability to release bioactive IL-1β. Macrophages fromNlrp3gain-of-function mice also expressed higher levels of more mature cell surface markers, additionally linking inflammasome activation with macrophage maturation. These data identify developmental expression of the inflammasome and IL-1β release by fetal lung macrophages as key mechanisms and potential therapeutic targets for neonatal lung disease. PMID:26951798

  12. Altered Spontaneous Brain Activity in Patients with Hemifacial Spasm: A Resting-State Functional MRI Study

    PubMed Central

    Tu, Ye; Wei, Yongxu; Sun, Kun; Zhao, Weiguo; Yu, Buwei

    2015-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS), a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo) analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG), left medial cingulate cortex (MCC), left lingual gyrus, right superior temporal gyrus (STG) and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC), right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027), and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028). This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS. PMID:25603126

  13. Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science

    PubMed Central

    2015-01-01

    Background Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations. Methods Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined. Results Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation. Conclusions In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research. PMID:26629908

  14. The influence of natural magnetic field inhomogeneity areas of active geological faults on the dynamics of functional state of human brain

    NASA Astrophysics Data System (ADS)

    Pobachenko, S. V.; Grigoriev, P. E.; Sokolov, M. V.; Shitov, A. V.

    2015-11-01

    The results of the expedition studies of the dynamics of the functional human state within the zone of active geological fault, which is characterized by abnormal parameters of the spatial distribution of values of the magnetic field vector are presented. It is shown that these geophysical modifications have pronounced effect on the fluctuations of the electrical activity of human brain.

  15. Matrix Hyaluronan-Activated CD44 Signaling Promotes Keratinocyte Activities and Improves Abnormal Epidermal Functions

    PubMed Central

    Bourguignon, Lilly Y.W.

    2015-01-01

    Hyaluronan (HA), a major component of the extracellular matrix, is enriched in skin tissues, particularly the epidermis. HA binds to a ubiquitous, abundant, and functionally important family of cell surface receptors, CD44. This article reviews the current evidence for HA/CD44-mediated activation of RhoGTPase signaling and calcium mobilization, leading to the regulation of keratinocyte activities and various epidermal functions. It further discusses the role of HA-mediated CD44 interactions with unique downstream effectors, such as RhoGTPases (RhoA and Rac1), Rho-kinase, protein kinase-Nγ, and phosphoinositide-specific phospholipases (phospholipases Cε and Cγ1) in coordinating certain intracellular signaling pathways, such as calcium mobilization, phosphatidylinositol 3-kinase–AKT activation, cortactin-actin binding, and actin-associated cytoskeleton reorganization; generating the onset of important keratinocyte activities, such as cell adhesion, proliferation, migration, and differentiation; and performing epidermal functions. Topical application of selective HA fragments (large versus small HA) to the skin of wild-type mice (but not CD44 knockout mice) improves keratinocyte-associated epidermal functions and accelerates permeability barrier recovery and skin wound healing. Consequently, specific HA fragment (large versus small HA)–mediated signaling events (through the CD44 receptor) are required for keratinocyte activities, which offer new HA-based therapeutic options for patients experiencing epidermal dysfunction and skin damage as well as aging-related skin diseases, such as epidermal thinning (atrophy), permeability barrier dysfunction, and chronic nonhealing wounds. PMID:24819962

  16. Physical activity, inflammation, and volume of the aging brain.

    PubMed

    Braskie, M N; Boyle, C P; Rajagopalan, P; Gutman, B A; Toga, A W; Raji, C A; Tracy, R P; Kuller, L H; Becker, J T; Lopez, O L; Thompson, P M

    2014-07-25

    Physical activity influences inflammation, and both affect brain structure and Alzheimer's disease (AD) risk. We hypothesized that older adults with greater reported physical activity intensity and lower serum levels of the inflammatory marker tumor necrosis factor α (TNFα) would have larger regional brain volumes on subsequent magnetic resonance imaging (MRI) scans. In 43 cognitively intact older adults (79.3±4.8 years) and 39 patients with AD (81.9±5.1 years at the time of MRI) participating in the Cardiovascular Health Study, we examined year-1 reported physical activity intensity, year-5 blood serum TNFα measures, and year-9 volumetric brain MRI scans. We examined how prior physical activity intensity and TNFα related to subsequent total and regional brain volumes. Physical activity intensity was measured using the modified Minnesota Leisure Time Physical Activities questionnaire at year 1 of the study, when all subjects included here were cognitively intact. Stability of measures was established for exercise intensity over 9 years and TNFα over 3 years in a subset of subjects who had these measurements at multiple time points. When considered together, more intense physical activity intensity and lower serum TNFα were both associated with greater total brain volume on follow-up MRI scans. TNFα, but not physical activity, was associated with regional volumes of the inferior parietal lobule, a region previously associated with inflammation in AD patients. Physical activity and TNFα may independently influence brain structure in older adults. PMID:24836855

  17. Focused ultrasound modulates region-specific brain activity.

    PubMed

    Yoo, Seung-Schik; Bystritsky, Alexander; Lee, Jong-Hwan; Zhang, Yongzhi; Fischer, Krisztina; Min, Byoung-Kyong; McDannold, Nathan J; Pascual-Leone, Alvaro; Jolesz, Ferenc A

    2011-06-01

    We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. PMID:21354315

  18. [Study on the steroid sulfatase (STS) activity in normal individuals and patients with abnormal sexual differentiation].

    PubMed

    Shinohara, M

    1989-03-20

    The STS (steroid sulfatase) gene which has been assigned to the short arm of human X chromosome (band p22) is thought to have escaped from Lyon's inactivation. For that reason, the STS enzyme activities differ between male and female according to the number of X chromosomes in cells. In this report, the STS enzyme activities were studied in different human tissues such as placentas, lymphocytes, and cultured fibroblasts of normal individuals and sex anomaly patients. Tritium labelled dehydroepiandrosterone sulfate (DHA-S) was used as the reaction substrate. The placental STS activities between normal male and female subjects showed a significant difference in spite of wide variances that were ascertained not to be the effects of methodological alterations involving enzyme purification, substrate concentration, and activity calculation (units per mg of protein or DNA). Further, lymphocytes and fibroblasts which had low levels of enzyme concentration compared with placentas, the STS enzyme activities were also significantly different between both sexes. These results confirmed that the STS gene in cells of tissue tested here seemed to be inactive at the gene level and followed the gene dosage effect to some extent. The enzyme activity was also studied in 17 patients with sex anomalies using lymphocytes and cultured fibroblasts. The cells of 45,X Turner Syndrome and of Klinefelter syndrome with 47,XXY or other karyotypes, showed slightly lower levels of enzyme activity when compared with control values of normal males or females. The enzyme activity in intersexual disturbances, especially XX male and XX true hermaphrodites, showed intermediate levels between normal male and female values. This result may give support to the concept that at least one X chromosome in these diseases is genetically abnormal due to X-Y interchanges, something that has been partly proved recently by analysis of H-Y antigen and Y-specific DNA probes. The present study on the STS enzyme activity revealed the presence of a gene dosage effect of STS gene between males and females not precise but rather rough in quantity, and it pointed out problem, some of which were related to genetic and environmental factors modifying the STS gene expression in normal individuals as well as sex anomaly patients. PMID:2767285

  19. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  20. Altered Spontaneous Brain Activity in Patients with Acute Spinal Cord Injury Revealed by Resting-State Functional MRI

    PubMed Central

    Zhu, Ling; Wu, Guangyao; Zhou, Xin; Li, Jielan; Wen, Zhi; Lin, Fuchun

    2015-01-01

    Background Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging. Methods A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity. Results Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores. Conclusion Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for assessment of neuronal damage and the prediction of clinical outcomes in acute SCI. PMID:25768010

  1. Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol.

    PubMed Central

    Hallman, M; Spragg, R; Harrell, J H; Moser, K M; Gluck, L

    1982-01-01

    Autopsy findings suggest that lung surfactant is damaged in the adult respiratory distress syndrome. In the present study 225 bronchoalveolar lavage specimens (78 from 36 patients, 1-78 yr old with respiratory failure, 135 from another 128 patients with other respiratory disease, and 12 from healthy controls) were assayed for the lung profile [lecithin/sphingomyelin (L/S) ratio, saturated lecithin, phosphatidylinositol, and phosphatidylglycerol]. Bronchoalveolar lavage fluid was further analyzed for phospholipids and for phosphatidic acid phosphohydrolase, phospholipase A2, and phosphatidylinositol phosphodiesterase activities. A lipid-protein complex was isolated and analyzed for surface activity, and plasma was measured for myoinositol. There were only small differences seen in the recovery of total phospholipid between respiratory failure patients and normal controls. However, in respiratory failure, phospholipids in bronchoalveolar lavage were qualitatively different from those recovered either from normal controls or from patients with other lung disease: the LO/S ratio, phosphatidylglycerol, and disaturated lecithin were low, whereas sphingomyelin and phosphatidylserine were prominent. These abnormalities were present early in respiratory failure and tended to normalize during recovery. Low L/S ratio (less than 2), and low phosphatidylglycerol (1% or less of glycerophospholipids) in bronchoalveolar lavage was always associated with respiratory failure. Abnormal lavage phospholipids were not due to plasma contamination. The phospholipase studies revealed little evidence of increased catabolism of phospholipids. In respiratory failure, the lipid-protein complexes from lung lavage were not surface active, whereas that from healthy controls had surface properties similar to lung surfactant. Phospholipids from patients with respiratory failure were similar to those from respiratory distress syndrome in the newborn. However, the latter condition is characterized by fast recovery of surfactant deficiency and by high plasma myoinositol that suppresses the synthesis of surfactant phosphatidylglycerol and increases phosphatidylinositol (Pediatr. Res. 1981. 15: 720). On the other hand, in adult respiratory distress syndrome, the abnormality in surfactant phospholipids may last for weeks and in most cases is associated with low phosphatidylinositol, low phosphatidylglycerol, and low plasma myoinositol. PMID:6896715

  2. fMRI and Brain Activation after Sport Concussion: A Tale of Two Cases

    PubMed Central

    Hutchison, Michael G.; Schweizer, Tom A.; Tam, Fred; Graham, Simon J.; Comper, Paul

    2013-01-01

    Sport-related concussions are now recognized as a major public health concern: the number of participants in sport and recreation is growing, possibly playing their games faster, and there is heightened public awareness of injuries to some high-profile athletes. However, many clinicians still rely on subjective symptom reports for the clinical determination of recovery. Relying on subjective symptom reports can be problematic, as it has been shown that some concussed athletes may downplay their symptoms. The use of neuropsychological (NP) testing has enabled clinicians to measure the effects and extent of impairment following concussion more precisely, providing more objective metrics for determining recovery. Nevertheless, there is a remaining concern that brain abnormalities may exist beyond the point at which individuals achieve recovery in self-reported symptoms and cognition measured by NP testing. Our understanding of brain recovery after concussion is important, not only from a neuroscience perspective, but also from the perspective of clinical decision-making for safe return-to-play. A number of advanced neuroimaging tools, including blood oxygen level dependent functional magnetic resonance imaging (fMRI), have independently yielded early information on abnormal brain functioning. In the two cases presented in this article, we report contrasting brain activation patterns and recovery profiles using fMRI. Importantly, fMRI was conducted using adapted versions of the most sensitive computerized NP tests administered in our current clinical practice to determine impairments and recovery after sport-related concussion. One of the cases is consistent with the concept of lagging brain recovery. PMID:24782819

  3. ASPM regulates Wnt signaling pathway activity in the developing brain

    PubMed Central

    Buchman, Joshua J.; Durak, Omer; Tsai, Li-Huei

    2011-01-01

    Autosomal recessive primary microcephaly (MCPH) is a neural developmental disorder in which patients display significantly reduced brain size. Mutations in Abnormal Spindle Microcephaly (ASPM) are the most common cause of MCPH. Here, we investigate the underlying functions of Aspm in brain development and find that Aspm expression is critical for proper neurogenesis and neuronal migration. The Wnt signaling pathway is known for its roles in embryogenesis, and genome-wide siRNA screens indicate that ASPM is a positive regulator of Wnt signaling. We demonstrate that knockdown of Aspm results in decreased Wnt-mediated transcription, and that expression of stabilized β-catenin can rescue this deficit. Finally, coexpression of stabilized β-catenin can rescue defects observed upon in vivo knockdown of Aspm. Our findings provide an impetus to further explore Aspm's role in facilitating Wnt-mediated neurogenesis programs, which may contribute to psychiatric illness etiology when perturbed. PMID:21937711

  4. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure. PMID:25687701

  5. Linking neuronal brain activity to the glucose metabolism

    PubMed Central

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. Methods First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Results Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. Conclusions The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported. PMID:23988084

  6. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish.

    PubMed

    Jin, Yuanxiang; Zhu, Zhihong; Wang, Yueyi; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei

    2016-06-01

    The fungicide imazalil (IMZ) is used extensively to protect vegetable fields, fruit plantations and post-harvest crops from rot. Likely due to its wide-spread use, IMZ is frequently detected in vegetable, fruit, soil and even surface water samples. Even though several previous studies have reported on the neurotoxicity of IMZ, its effects on the neurobehavior of zebrafish have received little attention to date. In this study, we show that the heartbeat and hatchability of zebrafish were significantly influenced by IMZ concentrations of 300 μg L(-1) or higher. Moreover, in zebrafish larvae, locomotor behaviors such as average swimming speed and swimming distance were significantly decreased after exposure to 300 μg L(-1) IMZ for 96 h, and acetylcholinesterase (AChE) expression and activity were consistently inhibited in IMZ-treated fish. Our results further suggest that IMZ could act as a neuroendocrine disruptor by decreasing the expression of neurotoxicity-related genes such as Glial fibrillary acidic protein (Gfap), Myelin basic protein (Mbp) and Sonic hedgehog a (Shha) during early developmental stages of zebrafish. In conclusion, we show that exposure to IMZ has the potential to induce developmental toxicity and locomotor behavior abnormalities during zebrafish development. PMID:27035382

  7. Abnormal Tc-99m-MDP/GA-67 scan patterns in association with active chronic osteomyelitis

    SciTech Connect

    Tumeh, S.S.; Aliabadi, P.; Weissman, B.; McNeil, B.J.

    1985-05-01

    In this study the authors reviewed data from 136 patients (pts) in order to refine the interpretive criteria used to diagnose active osteomyelitis (AOM) in patients with previous bone disease (e.g., old osteomyelitis, fractures, orthopedic devices excluding prostheses). They evaluated bone (Tc-99mMDP) and gallium 67 studies and obtained followup in all pts. AOM was diagnosed by surgery or biopsy and culture in 49 pts and was excluded by the same criteria in 16 pts. An additional 71 pts had the diagnosis excluded by followup clinical criteria. Five patterns were found. T1: abnormal Tc-99m-MDP, normal Ga-67. T2: diffuse increased uptake of both radiopharmaceuticals with Tc-99m-MDP greater than Ga-67. T3: different geographic distribution, but similar intensities of uptake of both. T4: very similar uptake and distribution of both. T5: Ga-67 exceeded Tc-99m-MDP. The authors conclude that T5 is diagnostic of AOM, T3 and T4 raise the probability of AOM than before scanning, T1 and T2 decrease it.

  8. Brain Activity Patterns Uniquely Supporting Visual Feature Integration after Traumatic Brain Injury

    PubMed Central

    Raja Beharelle, Anjali; Tisserand, Danielle; Stuss, Donald T.; McIntosh, Anthony R.; Levine, Brian

    2011-01-01

    Traumatic brain injury (TBI) patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI), which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate to-severe TBI to those of controls during performance on a visual feature integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a Target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls. PMID:22180740

  9. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements

    PubMed Central

    Brücke, Christof; Huebl, Julius; Horn, Andreas; Brown, Peter; Krauss, Joachim K.; Schneider, Gerd-Helge; Kühn, Andrea A.

    2016-01-01

    Deep brain stimulation of the globus pallidus internus alleviates involuntary movements in patients with dystonia. However, the mechanism is still not entirely understood. One hypothesis is that deep brain stimulation suppresses abnormally enhanced synchronized oscillatory activity within the motor cortico-basal ganglia network. Here, we explore deep brain stimulation-induced modulation of pathological low frequency (4–12 Hz) pallidal activity that has been described in local field potential recordings in patients with dystonia. Therefore, local field potentials were recorded from 16 hemispheres in 12 patients undergoing deep brain stimulation for severe dystonia using a specially designed amplifier allowing simultaneous high frequency stimulation at therapeutic parameter settings and local field potential recordings. For coherence analysis electroencephalographic activity (EEG) over motor areas and electromyographic activity (EMG) from affected neck muscles were recorded before and immediately after cessation of high frequency stimulation. High frequency stimulation led to a significant reduction of mean power in the 4–12 Hz band by 24.8 ± 7.0% in patients with predominantly phasic dystonia. A significant decrease of coherence between cortical EEG and pallidal local field potential activity in the 4–12 Hz range was revealed for the time period of 30 s after switching off high frequency stimulation. Coherence between EMG activity and pallidal activity was mainly found in patients with phasic dystonic movements where it was suppressed after high frequency stimulation. Our findings suggest that high frequency stimulation may suppress pathologically enhanced low frequency activity in patients with phasic dystonia. These dystonic features are the quickest to respond to high frequency stimulation and may thus directly relate to modulation of pathological basal ganglia activity, whereas improvement in tonic features may depend on long-term plastic changes within the motor network. PMID:25212852

  10. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  11. Chronic excessive erythrocytosis induces endothelial activation and damage in mouse brain.

    PubMed

    Ogunshola, O O; Djonov, V; Staudt, R; Vogel, J; Gassmann, M

    2006-03-01

    Excessive erythrocytosis results in severely increased blood viscosity, which may have significant detrimental effects on endothelial cells and, ultimately, function of the vascular endothelium. Because blood-brain barrier stability is crucial for normal physiological function, we used our previously characterized erythropoietin-overexpressing transgenic (tg6) mouse line (which has a hematocrit of 0.8-0.9) to investigate the effect of excessive erythrocytosis on vessel number, structure, and integrity in vivo. These mice have abnormally high levels of nitric oxide (NO), a potent proinflammatory molecule, suggesting altered vascular permeability and function. In this study, we observed that brain vessel density of tg6 mice was significantly reduced (16%) and vessel diameter was significantly increased (15%) compared with wild-type mice. Although no significant increases in vascular permeability under normoxic or acute hypoxic conditions (8% O2 for 4 h) were detected, electron-microscopic analysis revealed altered morphological characteristics of the tg6 endothelium. Tg6 brain vascular endothelial cells appeared to be activated, with increased luminal protrusions reminiscent of ongoing inflammatory processes. Consistent with this observation, we detected increased levels of intercellular adhesion molecule-1 and von Willebrand factor, markers of endothelial activation and damage, in brain tissue. We propose that chronic excessive erythrocytosis and sustained high hematocrit cause endothelial damage, which may, ultimately, increase susceptibility to vascular disease. PMID:16254128

  12. The impact of microglial activation on blood-brain barrier in brain diseases

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza

    2014-01-01

    The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894

  13. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    PubMed

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti-glutamate receptor antibodies is discussed separately in this very comprehensive review, with regards to: the human diseases in which these anti-glutamate receptor antibodies were found thus far, their presence and production in the nervous system, their association with various psychiatric/behavioral/cognitive/motor impairments, their possible association with certain infectious organisms, their detrimental effects in vitro as well as in vivo in animal models in mice, rats or rabbits, and their diverse and unique mechanisms of action. The review also covers the very encouraging positive responses to immunotherapy of some patients that have either of the above-mentioned anti-glutamate receptor antibodies, and that suffer from various neurological diseases/problems. All the above are also summarized in the review's five schematic and useful figures, for each type of anti-glutamate receptor antibodies separately. The review ends with a summary of all the main findings, and with recommended guidelines for diagnosis, therapy, drug design and future investigations. In the nut shell, the human studies, the in vitro studies, as well as the in vivo studies in animal models in mice, rats and rabbit revealed the following findings regarding the five different types of anti-glutamate receptor antibodies: (1) Anti-AMPA-GluR3B antibodies are present in ~25-30% of patients with different types of Epilepsy. When these anti-glutamate receptor antibodies (or other types of autoimmune antibodies) are found in Epilepsy patients, and when these autoimmune antibodies are suspected to induce or aggravate the seizures and/or the cognitive/psychiatric/behavioral impairments that sometimes accompany the seizures, the Epilepsy is called 'Autoimmune Epilepsy'. In some patients with 'Autoimmune Epilepsy' the anti-AMPA-GluR3B antibodies associate significantly with psychiatric/cognitive/behavior abnormalities. In vitro and/or in animal models, the anti-AMPA-GluR3B antibodies by themselves induce many pathological effects: they activate glutamate/AMPA receptors, kill neurons by 'Excitotoxicity', and/or by complement activation modulated by complement regulatory proteins, cause multiple brain damage, aggravate chemoconvulsant-induced seizures, and also induce behavioral/motor impairments. Some patients with 'Autoimmune Epilepsy' that have anti-AMPA-GluR3B antibodies respond well (although sometimes transiently) to immunotherapy, and thanks to that have reduced seizures and overall improved neurological functions. (2) Anti-NMDA-NR1 antibodies are present in patients with autoimmune 'Anti-NMDA-receptor Encephalitis'. In humans, in animal models and in vitro the anti-NMDA-NR1 antibodies can be very pathogenic since they can cause a pronounced decrease of surface NMDA receptors expressed in hippocampal neurons, and also decrease the cluster density and synaptic localization of the NMDA receptors. The anti-NMDA-NR1 antibodies induce these effects by crosslinking and internalization of the NMDA receptors. Such changes can impair glutamate signaling via the NMDA receptors and lead to various neuronal/behavior/cognitive/psychiatric abnormalities. Anti-NMDA-NR1 antibodies are frequently present in high levels in the CSF of the patients with 'Anti-NMDA-receptor encephalitis' due to their intrathecal production. Many patients with 'Anti-NMDA receptor Encephalitis' respond well to several modes of immunotherapy. (3) Anti-NMDA-NR2A/B antibodies are present in a substantial number of patients with Systemic Lupus Erythematosus (SLE) with or without neuropsychiatric problems. The exact percentage of SLE patients having anti-NMDA-NR2A/B antibodies varies in different studies from 14 to 35%, and in one study such antibodies were found in 81% of patients with diffuse 'Neuropshychiatric SLE', and in 44% of patients with focal 'Neuropshychiatric SLE'. Anti-NMDA-NR2A/B antibodies are also present in subpopulations of patients with Epilepsy of several types, Encephalitis of several types (e.g., chronic progressive limbic Encephalitis, Paraneoplastic Encephalitis or Herpes Simplex Virus Encephalitis), Schizophrenia, Mania, Stroke, or Sjorgen syndrome. In some patients, the anti-NMDA-NR2A/B antibodies are present in both the serum and the CSF. Some of the anti-NMDA-NR2A/B antibodies cross-react with dsDNA, while others do not. Some of the anti-NMDA-NR2A/B antibodies associate with neuropsychiatric/cognitive/behavior/mood impairments in SLE patients, while others do not. The anti-NMDA-NR2A/B antibodies can undoubtedly be very pathogenic, since they can kill neurons by activating NMDA receptors and inducing 'Excitotoxicity', damage the brain, cause dramatic decrease of membranal NMDA receptors expressed in hippocampal neurons, and also induce behavioral cognitive impairments in animal models. Yet, the concentration of the anti-NMDA-NR2A/B antibodies seems to determine if they have positive or negative effects on the activity of glutamate receptors and on the survival of neurons. Thus, at low concentration, the anti-NMDA-NR2A/B antibodies were found to be positive modulators of receptor function and increase the size of NMDA receptor-mediated excitatory postsynaptic potentials, whereas at high concentration they are pathogenic as they promote 'Excitotoxcity' through enhanced mitochondrial permeability transition. (4) Anti-mGluR1 antibodies were found thus far in very few patients with Paraneoplastic Cerebellar Ataxia, and in these patients they are produced intrathecally and therefore present in much higher levels in the CSF than in the serum. The anti-mGluR1 antibodies can be very pathogenic in the brain since they can reduce the basal neuronal activity, block the induction of long-term depression of Purkinje cells, and altogether cause cerebellar motor coordination deficits by a combination of rapid effects on both the acute and the plastic responses of Purkinje cells, and by chronic degenerative effects. Strikingly, within 30 min after injection of anti-mGluR1 antibodies into the brain of mice, the mice became ataxic. Anti-mGluR1 antibodies derived from patients with Ataxia also caused disturbance of eye movements in animal models. Immunotherapy can be very effective for some Cerebellar Ataxia patients that have anti-mGluR1 antibodies. (5) Anti-mGluR5 antibodies were found thus far in the serum and CSF of very few patients with Hodgkin lymphoma and Limbic Encephalopathy (Ophelia syndrome). The sera of these patients that contained anti-GluR5 antibodies reacted with the neuropil of the hippocampus and cell surface of live rat hippocampal neurons, and immunoprecipitation from cultured neurons and mass spectrometry demonstrated that the antigen was indeed mGluR5. Taken together, all these evidences show that anti-glutamate receptor antibodies are much more frequent among various neurological diseases than ever realized before, and that they are very detrimental to the nervous system. As such, they call for diagnosis, therapeutic removal or silencing and future studies. What we have learned by now about the broad family of anti-glutamate receptor antibodies is so exciting, novel, unique and important, that it makes all future efforts worthy and essential. PMID:25081016

  14. Thyroid abnormalities.

    PubMed

    Weetman, Anthony P

    2014-09-01

    Thyroid abnormalities and nonthyroidal illness complicate human immunodeficiency virus (HIV) infection. Among the effects that result from HIV and other opportunistic infections, distinctive features of HIV infection include early lowering of reverse tri-iodothyromine (T3) levels, with normal free T3 levels. Later, some patients develop an isolated low free thyroxine level. After highly active antiretroviral therapy, the immune system reconstitutes in a way that leads to dysregulation of the autoimmune response and the appearance of Graves disease in 1% to 2% of patients. Opportunistic thyroid infections with unusual organisms are most commonly asymptomatic, but can lead to acute or subacute thyroiditis. PMID:25169567

  15. Differential effects of chronic lead intoxication on circadian rhythm of ambulatory activity and on regional brain norepinephrine levels in rats

    SciTech Connect

    Shafiq-ur-Rehman; Khushnood-ur-Rehman; Kabir-ud-Din; Chandra, O.

    1986-01-01

    Changes in biochemical mechanisms and amine concentrations in the brain have been manifested in the form of varying disorders and abnormalities in behavior, including motor-activity, which has been proved with a number of psychoactive drugs. It has been reported that increased level of cerebral norepinephrine (NE) has been shown to be associated with motor hyper-activity, and in lead exposed rats. No study is available which could account for the pattern of changes in spontaneous ambulatory responses in an open field situation together with the steady state regional levels of NE in the brain of chronically lead exposed rats. Therefore, it seemed to be worthwhile to study the circadian rhythm of ambulatory activity and its association with NE levels in various brain regions of rats exposed to lead.

  16. Brain state-triggered stimulus delivery: An efficient tool for probing ongoing brain activity

    PubMed Central

    Andermann, ML; Kauramäki, J; Palomäki, T; Moore, CI; Hari, R; Jääskeläinen, IP; Sams, M

    2012-01-01

    What is the relationship between variability in ongoing brain activity preceding a sensory stimulus and subsequent perception of that stimulus? A challenge in the study of this key topic in systems neuroscience is the relative rarity of certain brain ‘states’—left to chance, they may seldom align with sensory presentation. We developed a novel method for studying the influence of targeted brain states on subsequent perceptual performance by online identification of spatiotemporal brain activity patterns of interest, and brain-state triggered presentation of subsequent stimuli. This general method was applied to an electroencephalography study of human auditory selective listening. We obtained online, time-varying estimates of the instantaneous direction of neural bias (towards processing left or right ear sounds). Detection of target sounds was influenced by pre-target fluctuations in neural bias, within and across trials. We propose that brain state-triggered stimulus delivery will enable efficient, statistically tractable studies of rare patterns of ongoing activity in single neurons and distributed neural circuits, and their influence on subsequent behavioral and neural responses. PMID:23275858

  17. Brain activity during complex imagined gait rasks in Parkinson disease

    PubMed Central

    Peterson, Daniel S.; Pickett, Kristen A.; Duncan, Ryan; Perlmutter, Joel; Earhart, Gammon M.

    2013-01-01

    Objective Motor imagery during functional magnetic resonance imaging (fMRI) allows assessment of brain activity during tasks, like walking, that cannot be completed in a scanner. We used gait imagery to assess the neural pathophysiology of locomotion in Parkinson disease (PD). Methods Brain activity was measured in five locomotor regions (supplementary motor area (SMA), globus pallidus (GP), putamen, mesencephalic locomotor region, cerebellar locomotor region) during simple (forward) and complex (backward, turning) gait imagery. Brain activity was correlated to overground walking velocity. Results Across tasks, PD exhibited reduced activity in the globus pallidus compared to controls. People with PD, but not controls, exhibited more activity in the SMA during imagined turning compared to forward or backward walking. In PD, walking speed was correlated to brain activity in several regions. Conclusions Altered SMA activity in PD during imagined turning may represent compensatory neural adaptations during complex gait. The lowered activity and positive correlation to locomotor function in GP suggests reduced activity in this region may relate to locomotor dysfunction. Significance This study elucidates changes in neural activity during gait in PD, underscoring the importance of testing simple and complex tasks. Results support a positive relationship between activity in locomotor regions and walking ability. PMID:24210997

  18. Inference of brain pathway activities for Alzheimer's disease classification

    PubMed Central

    2015-01-01

    Background Alzheimer's disease (AD) is a neurodegenerative and progressive disorder that results in brain malfunctions. Resting-state (RS) functional magnetic resonance imaging (fMRI) techniques have been successfully applied for quantifying brain activities of both Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients. Region-based approaches are widely utilized to classify patients from cognitively normal subjects (CN). Nevertheless, region-based approaches have a few limitations, reproducibility owing to selection of disease-specific brain regions, and heterogeneity of brain activities during disease progression. For coping with these issues, network-based approaches have been suggested in the field of molecular bioinformatics. In comparison with individual gene-based approaches, they acquired more accurate results in diverse disease classification, and reproducibility was confirmed by replication studies. In our work, we applied a similar methodology integrating brain pathway information into pathway activity inference, and permitting classification of both aMCI and AD patients based on pathway activities rather than single region activities. Results After aggregating the 59 brain pathways from literature, we estimated brain pathway activities by using exhaustive search algorithms between patients and cognitively normal subjects, and identified discriminatory pathways according to disease progression. We used three different data sets and each data set consists of two different groups. Our results show that the pathway-based approach (AUC = 0.89, 0.9, 0.75) outperformed the region-based approach (AUC = 0.69, 0.8, 0.68). Also, our approach provided enhanced diagnostic power achieving higher accuracy, sensitivity, and specificity (pathway-based approach: accuracy = 83%; sensitivity = 86%; specificity = 78%, region-based approach: accuracy = 74%; sensitivity = 78%; specificity = 76%). Conclusions We proposed a novel method inferring brain pathway activities for disease classification. Our approach shows better classification performance than region-based approach in four classification models. We expect that brain pathway-based approach would be helpful for precise classification of brain disorders, and provide new opportunities for uncovering disrupted brain pathways caused by disease. Moreover, discriminatory pathways between patients and cognitively normal subjects may facilitate the interpretation of functional alterations during disease progression. PMID:26044913

  19. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury.

    PubMed

    Jayakumar, Arumugam R; Tong, Xiao Y; Ruiz-Cordero, Roberto; Bregy, Amade; Bethea, John R; Bramlett, Helen M; Norenberg, Michael D

    2014-07-15

    Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). While astrocyte swelling (cytotoxic edema) represents a major component of the brain edema in the early phase of TBI, its mechanisms are unclear. One factor known to be activated by trauma is nuclear factor-κB (NF-κB). Because this factor has been implicated in the mechanism of cell swelling/brain edema in other neurological conditions, we examined whether NF-κB might also be involved in the mediation of post-traumatic astrocyte swelling/brain edema. Here we show an increase in NF-κB activation in cultured astrocytes at 1 and 3 h after trauma (fluid percussion injury, FPI), and that BAY 11-7082, an inhibitor of NF-κB, significantly blocked the trauma-induced astrocyte swelling. Increased activities of nicotinamide adenine dinucleotide phosphate-oxidase and the Na(+), K(+), 2Cl(-) cotransporter were also observed in cultured astrocytes after trauma, and BAY 11-7082 reduced these effects. We also examined the role of NF-κB in the mechanism of cell swelling by using astrocyte cultures derived from transgenic (Tg) mice with a functional inactivation of astrocytic NF-κB. Exposure of cultured astrocytes from wild-type mice to in vitro trauma (3 h) caused a significant increase in cell swelling. By contrast, traumatized astrocyte cultures derived from NF-κB Tg mice showed no swelling. We also found increased astrocytic NF-κB activation and brain water content in rats after FPI, while BAY 11-7082 significantly reduced such effects. Our findings strongly suggest that activation of astrocytic NF-κB represents a key element in the process by which cytotoxic brain edema occurs after TBI. PMID:24471369

  20. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Cutler, Roy G.; Kelly, Jeremiah; Storie, Kristin; Pedersen, Ward A.; Tammara, Anita; Hatanpaa, Kimmo; Troncoso, Juan C.; Mattson, Mark P.

    2004-02-01

    Alzheimer's disease (AD) is an age-related disorder characterized by deposition of amyloid -peptide (A) and degeneration of neurons in brain regions such as the hippocampus, resulting in progressive cognitive dysfunction. The pathogenesis of AD is tightly linked to A deposition and oxidative stress, but it remains unclear as to how these factors result in neuronal dysfunction and death. We report alterations in sphingolipid and cholesterol metabolism during normal brain aging and in the brains of AD patients that result in accumulation of long-chain ceramides and cholesterol. Membrane-associated oxidative stress occurs in association with the lipid alterations, and exposure of hippocampal neurons to A induces membrane oxidative stress and the accumulation of ceramide species and cholesterol. Treatment of neurons with -tocopherol or an inhibitor of sphingomyelin synthesis prevents accumulation of ceramides and cholesterol and protects them against death induced by A. Our findings suggest a sequence of events in the pathogenesis of AD in which A induces membrane-associated oxidative stress, resulting in perturbed ceramide and cholesterol metabolism which, in turn, triggers a neurodegenerative cascade that leads to clinical disease. amyloid | apoptosis | hippocampus | lipid peroxidation | sphingomyelin

  1. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  2. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  3. In vivo recordings of brain activity using organic transistors

    PubMed Central

    Khodagholy, Dion; Doublet, Thomas; Quilichini, Pascale; Gurfinkel, Moshe; Leleux, Pierre; Ghestem, Antoine; Ismailova, Esma; Hervé, Thierry; Sanaur, Sébastien; Bernard, Christophe; Malliaras, George G.

    2013-01-01

    In vivo electrophysiological recordings of neuronal circuits are necessary for diagnostic purposes and for brain-machine interfaces. Organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. Here we demonstrate the engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain. The device, tested in vivo on epileptiform discharges, displayed superior signal-to-noise ratio due to local amplification compared with surface electrodes. The organic transistor was able to record on the surface low-amplitude brain activities, which were poorly resolved with surface electrodes. This study introduces a new class of biocompatible, highly flexible devices for recording brain activity with superior signal-to-noise ratio that hold great promise for medical applications. PMID:23481383

  4. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  5. Regional organisation of brain activity during paradoxical sleep (PS).

    PubMed

    Maquet, P; Ruby, P; Schwartz, S; Laureys, S; Albouy, G; Dang-Vu, T; Desseilles, M; Boly, M; Melchior, G; Peigneux, P

    2004-07-01

    Human brain function is regionally organised during paradoxical sleep (PS) in a very different way than during wakefulness or slow wave sleep. The important activity in the pons and in the limbic/paralimbic areas constitutes the key feature of the functional neuroanatomy of PS, together with a relative quiescence of prefrontal and parietal associative cortices. Two questions are still outstanding. What neurocognitive and neurophysiological mechanisms may explain this original organization of brain function during PS? How the pattern of regional brain function may relate to dream content? Although some clues are already available, the experimental answer to both questions is still pending. PMID:15493545

  6. A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar.

    PubMed

    Travis, Taryn E; Ghassemi, Pejhman; Ramella-Roman, Jessica C; Prindeze, Nicholas J; Paul, Dereck W; Moffatt, Lauren T; Jordan, Marion H; Shupp, Jeffrey W

    2015-01-01

    Using a validated swine model of human scar formation, hyperpigmented and hypopigmented scar samples were examined for their histological and optical properties to help elucidate the mechanisms and characteristics of dyspigmentation. Full-thickness wounds were created on the flanks of red Duroc pigs and allowed to heal. Biopsies from areas of hyperpigmentation, hypopigmentation, and uninjured tissue were fixed and embedded for histological examination using Azure B and primary antibodies to S100B, HMB45, and α-melanocyte-stimulating hormone (α-MSH). Spatial frequency domain imaging (SFDI) was then used to examine the optical properties of scars. Hyperpigmentation was first noticeable in healing wounds around weeks 2 to 3, gradually becoming darker. There was no significant difference in S100B staining for the presence of melanocytes between hyperpigmented and hypopigmented scar samples. Azure B staining of melanin was significantly greater in histological sections from hyperpigmented areas than in sections from both uninjured skin and hypopigmented scar (P < .0001). There was significantly greater staining for α-MSH in hyperpigmented samples compared with hypopigmented samples (P = .0121), and HMB45 staining was positive for melanocytes in hyperpigmented scar. SFDI at a wavelength of 632 nm resulted in an absorption coefficient map correlating with visibly hyperpigmented areas of scars. In a red Duroc model of hypertrophic scar formation, melanocyte number is similar in hyperpigmented and hypopigmented tissues. Hyperpigmented tissues, however, show a greater amount of melanin and α-MSH, along with immunohistochemical evidence of stimulated melanocytes. These observations encourage further investigation of melanocyte stimulation and the inflammatory environment within a wound that may influence melanocyte activity. Additionally, SFDI can be used to identify areas of melanin content in mature, pigmented scars, which may lead to its usefulness in wounds at earlier time points before markedly apparent pigmentation abnormalities. PMID:25162947

  7. Exploiting Complexity Information for Brain Activation Detection

    PubMed Central

    Zhang, Yan; Liang, Jiali; Lin, Qiang; Hu, Zhenghui

    2016-01-01

    We present a complexity-based approach for the analysis of fMRI time series, in which sample entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it changes through experimental paradigms. We calculate the complexity of sequential fMRI data for each voxel in two distinct experimental paradigms and use a nonparametric statistical strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between them. The results are compared with the well known general linear model based Statistical Parametric Mapping package (SPM12), where a decided difference has been observed. This is because SampEn method detects brain complexity changes in two experiments of different conditions and the data-driven method SampEn evaluates just the complexity of specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to different meanings, and the neutral-blank design produces higher predictability than threat-neutral. Complexity information can be considered as a complementary method to the existing fMRI analysis strategies, and it may help improving the understanding of human brain functions from a different perspective. PMID:27045838

  8. A familial case of Coffin-Lowry syndrome caused by RPS6KA3 C.898C>T mutation associated with multiple abnormal brain imaging findings.

    PubMed

    Tos, T; Alp, M Y; Aksoy, A; Ceylaner, S; Hanauer, A

    2015-01-01

    Coffin-Lowry syndrome (CLS) is a rare X linked mental retardation syndrome characterised by severe psychomotor and growth retardation, distinct facial phenotype, and progressive skeletal malformations. It is caused by mutations in the RPS6KA3 gene located at Xp22.2. In this report we describe a family with CLS consists of three affected males, and two affected females, arising from c.898C>T mutation in RPS6KA3 gene. A 6 year-old, and a 3 year-old boy both had distinct clinical features of Coffin-Lowry syndrome; severe mental and motor retardation, microcephaly, prominent forehead, hypertelorism, large mouth, large ears, large soft hands, puffy tapered fingers, and pectus carinatum. In addition, they had multiple abnormal brain MRI findings. Other siblings presented with a mild and variable phenotype. PMID:26043507

  9. Synchronous brain activity across individuals underlies shared psychological perspectives.

    PubMed

    Lahnakoski, Juha M; Glerean, Enrico; Jääskeläinen, Iiro P; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-10-15

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a 'social' (detective) and once a 'non-social' (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions--most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex--when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687

  10. Fluctuations in Neuronal Activity: Clues to Brain Function

    NASA Astrophysics Data System (ADS)

    Pérez Velazquez, José L.; Guevara, Ramón; Belkas, Jason; Wennberg, Richard; Senjanoviè, Goran; García Dominguez, Luis

    2005-08-01

    Recordings from neuronal preparations, either in vitro or in the intact brain, are characterized by fluctuations, what is commonly considered as "noise". Due to the current recording and analysis methods, it is not feasible to separate what we term noise, from the "meaningful" neuronal activity. We propose that fluctuations serve to maintain brain activity in an optimal state for cognitive processing, not allowing it to fall into long-term periodic behaviour. We have studied fluctuations in magnetoencephalographic (MEG) recordings from normal subjects and epileptic patients, in electroencephalographic (EEG) recordings from children with impact injury, as well as in intracerebral electrophysiological recordings in freely moving rats. Specifically, we have determined phase locking patterns between brain areas from these recordings, which display fluctuations at different scales. We submit the idea that the variability in phase synchronization affords a more complete search of all possible phase differences in a hypothetical phase-locking state space that contributes to brain information processing. In brain pathologies, like epileptiform activity here studied, different levels of fluctuations in phase synchrony may favour the generation of stable synchronized states that characterize epileptic seizures. While the border between noise and high-dimensional dynamics is fuzzy, the scrutiny of neuronal fluctuations at different levels will provide important insights to the unravelling of the relation between brain and behaviour.

  11. Brain modularity controls the critical behavior of spontaneous activity

    NASA Astrophysics Data System (ADS)

    Russo, R.; Herrmann, H. J.; de Arcangelis, L.

    2014-03-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  12. Using perturbations to identify the brain circuits underlying active vision

    PubMed Central

    Wurtz, Robert H.

    2015-01-01

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision—the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized. PMID:26240420

  13. Using perturbations to identify the brain circuits underlying active vision.

    PubMed

    Wurtz, Robert H

    2015-09-19

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision--the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized. PMID:26240420

  14. Idiosyncratic brain activation patterns are associated with poor social comprehension in autism.

    PubMed

    Byrge, Lisa; Dubois, Julien; Tyszka, J Michael; Adolphs, Ralph; Kennedy, Daniel P

    2015-04-01

    Autism spectrum disorder (ASD) features profound social deficits but neuroimaging studies have failed to find any consistent neural signature. Here we connect these two facts by showing that idiosyncratic patterns of brain activation are associated with social comprehension deficits. Human participants with ASD (N = 17) and controls (N = 20) freely watched a television situation comedy (sitcom) depicting seminaturalistic social interactions ("The Office", NBC Universal) in the scanner. Intersubject correlations in the pattern of evoked brain activation were reduced in the ASD group-but this effect was driven entirely by five ASD subjects whose idiosyncratic responses were also internally unreliable. The idiosyncrasy of these five ASD subjects was not explained by detailed neuropsychological profile, eye movements, or data quality; however, they were specifically impaired in understanding the social motivations of characters in the sitcom. Brain activation patterns in the remaining ASD subjects were indistinguishable from those of control subjects using multiple multivariate approaches. Our findings link neurofunctional abnormalities evoked by seminaturalistic stimuli with a specific impairment in social comprehension, and highlight the need to conceive of ASD as a heterogeneous classification. PMID:25855192

  15. Idiosyncratic Brain Activation Patterns Are Associated with Poor Social Comprehension in Autism

    PubMed Central

    Tyszka, J. Michael; Adolphs, Ralph; Kennedy, Daniel P.

    2015-01-01

    Autism spectrum disorder (ASD) features profound social deficits but neuroimaging studies have failed to find any consistent neural signature. Here we connect these two facts by showing that idiosyncratic patterns of brain activation are associated with social comprehension deficits. Human participants with ASD (N = 17) and controls (N = 20) freely watched a television situation comedy (sitcom) depicting seminaturalistic social interactions (“The Office”, NBC Universal) in the scanner. Intersubject correlations in the pattern of evoked brain activation were reduced in the ASD group—but this effect was driven entirely by five ASD subjects whose idiosyncratic responses were also internally unreliable. The idiosyncrasy of these five ASD subjects was not explained by detailed neuropsychological profile, eye movements, or data quality; however, they were specifically impaired in understanding the social motivations of characters in the sitcom. Brain activation patterns in the remaining ASD subjects were indistinguishable from those of control subjects using multiple multivariate approaches. Our findings link neurofunctional abnormalities evoked by seminaturalistic stimuli with a specific impairment in social comprehension, and highlight the need to conceive of ASD as a heterogeneous classification. PMID:25855192

  16. Coordinate-based (ALE) meta-analysis of brain activation in patients with fibromyalgia.

    PubMed

    Dehghan, Mahboobeh; Schmidt-Wilcke, Tobias; Pfleiderer, Bettina; Eickhoff, Simon B; Petzke, Frank; Harris, Richard E; Montoya, Pedro; Burgmer, Markus

    2016-05-01

    There are an increasing number of neuroimaging studies that allow a better understanding of symptoms, neural correlates and associated conditions of fibromyalgia. However, the results of these studies are difficult to compare, as they include a heterogeneous group of patients, use different stimulation paradigms, tasks, and the statistical evaluation of neuroimaging data shows high variability. Therefore, this meta-analytic approach aimed at evaluating potential alterations in neuronal brain activity or structure related to pain processing in fibromyalgia syndrome (FMS) patients, using quantitative coordinate-based "activation likelihood estimation" (ALE) meta-analysis. 37 FMS papers met the inclusion criteria for an ALE analysis (1,264 subjects, 274 activation foci). A pooled ALE analysis of different modalities of neuroimaging and additional analyses according functional and structural changes indicated differences between FMS patients and controls in the insula, amygdala, anterior/mid cingulate cortex, superior temporal gyrus, the primary and secondary somatosensory cortex, and lingual gyrus. Our analysis showed consistent results across FMS studies with potential abnormalities especially in pain-related brain areas. Given that similar alterations have already been demonstrated in patients with other chronic pain conditions and the lack of adequate control groups of chronic pain subjects in most FMS studies, it is not clear however, whether these findings are associated with chronic pain in general or are unique features of patients with FMS. Hum Brain Mapp 37:1749-1758, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864780

  17. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  18. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    PubMed

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities. PMID:26354912

  19. Congenital Abnormalities

    MedlinePlus

    ... Life Family Life Family Life Medical Home Family Dynamics Media Work & Play Getting Involved in Your Community ... Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic material inherited from one generation ...

  20. Lateralization of Brain Activation in Fluent and Non-Fluent Preschool Children: A Magnetoencephalographic Study of Picture-Naming

    PubMed Central

    Sowman, Paul F.; Crain, Stephen; Harrison, Elisabeth; Johnson, Blake W.

    2014-01-01

    The neural causes of stuttering remain unknown. One explanation comes from neuroimaging studies that have reported abnormal lateralization of activation in the brains of people who stutter. However, these findings are generally based on data from adults with a long history of stuttering, raising the possibility that the observed lateralization anomalies are compensatory rather than causal. The current study investigated lateralization of brain activity in language-related regions of interest in young children soon after the onset of stuttering. We tested 24 preschool-aged children, half of whom had a positive diagnosis of stuttering. All children participated in a picture-naming experiment whilst their brain activity was recorded by magnetoencephalography. Source analysis performed during an epoch prior to speech onset was used to assess lateralized activation in three regions of interest. Activation was significantly lateralized to the left hemisphere in both groups and not different between groups. This study shows for the first time that significant speech preparatory brain activation can be identified in young children during picture-naming and supports the contention that, in stutterers, aberrant lateralization of brain function may be the result of neuroplastic adaptation that occurs as the condition becomes chronic. PMID:24904388

  1. Brain activation and functional connectivity in premanifest Huntington's disease during states of intrinsic and phasic alertness.

    PubMed

    Wolf, Robert Christian; Grön, Georg; Sambataro, Fabio; Vasic, Nenad; Wolf, Nadine Donata; Thomann, Philipp Arthur; Saft, Carsten; Landwehrmeyer, G Bernhard; Orth, Michael

    2012-09-01

    Previous functional neuroimaging studies have shown brain activation abnormalities in clinically presymptomatic carriers of the Huntington's disease (preHD) gene mutation when performing complex cognitive tasks. However, little is known about the neural correlates of attentional processes in preHD. In this study, we used functional magnetic resonance imaging to investigate basic aspects of attentional processing in preHD individuals (n = 18) compared to healthy participants (n = 18) during an alertness task. Uni- and multivariate statistical techniques were used to assess task-related regional brain activation and functional network connectivity. Compared to healthy controls, preHD individuals near to the estimated onset of clinical signs showed lower activation of right frontostriatal regions during phasic alertness (P < 0.001, uncorrected). Decreased striatal activation in this preHD subgroup was also evident when compared with those preHD individuals far from the estimated onset of HD signs. Lower putaminal activity was associated with longer reaction times and with proximity to onset. In addition, preHD participants near to onset had lower functional connectivity of motor regions when compared with controls and preHD individuals far from onset. Our data suggest that while alertness-related performance remains normal, the underlying frontostriatal activity and motor cortex connectivity decline only when approaching the onset of unequivocal signs of HD. However, these attentional network changes might not be the sole explanation for the differences in cognitive task performance previously observed in preHD. PMID:22887827

  2. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  3. Resting-state activity in development and maintenance of normal brain function.

    PubMed

    Pizoli, Carolyn E; Shah, Manish N; Snyder, Abraham Z; Shimony, Joshua S; Limbrick, David D; Raichle, Marcus E; Schlaggar, Bradley L; Smyth, Matthew D

    2011-07-12

    One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level-dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization. PMID:21709227

  4. Brain feminization requires active repression of masculinization via DNA methylation

    PubMed Central

    Nugent, Bridget M.; Wright, Christopher L.; Shetty, Amol C.; Hodes, Georgia E.; Lenz, Kathryn M.; Mahurkar, Anup; Russo, Scott J.; Devine, Scott E.; McCarthy, Margaret M.

    2015-01-01

    The developing mammalian brain is destined for a female phenotype unless exposed to gonadal hormones during a perinatal sensitive period. It has been assumed that the undifferentiated brain is masculinized by direct induction of transcription by ligand-activated nuclear steroid receptors. We found that a primary effect of gonadal steroids in the highly sexually-dimorphic preoptic area (POA) is to reduce activity of DNA methyltransferase (Dnmt) enzymes, thereby decreasing DNA methylation and releasing masculinizing genes from epigenetic repression. Pharmacological inhibition of Dnmts mimicked gonadal steroids, resulting in masculinized neuronal markers and male sexual behavior in females. Conditional knockout of the de novo Dnmt isoform, Dnmt3a, also masculinized sexual behavior in female mice. RNA sequencing revealed gene and isoform variants modulated by methylation that may underlie the divergent reproductive behaviors of males versus females. Our data show that brain feminization is maintained by the active suppression of masculinization via DNA methylation. PMID:25821913

  5. Brain feminization requires active repression of masculinization via DNA methylation.

    PubMed

    Nugent, Bridget M; Wright, Christopher L; Shetty, Amol C; Hodes, Georgia E; Lenz, Kathryn M; Mahurkar, Anup; Russo, Scott J; Devine, Scott E; McCarthy, Margaret M

    2015-05-01

    The developing mammalian brain is destined for a female phenotype unless exposed to gonadal hormones during a perinatal sensitive period. It has been assumed that the undifferentiated brain is masculinized by direct induction of transcription by ligand-activated nuclear steroid receptors. We found that a primary effect of gonadal steroids in the highly sexually dimorphic preoptic area (POA) is to reduce activity of DNA methyltransferase (Dnmt) enzymes, thereby decreasing DNA methylation and releasing masculinizing genes from epigenetic repression. Pharmacological inhibition of Dnmts mimicked gonadal steroids, resulting in masculinized neuronal markers and male sexual behavior in female rats. Conditional knockout of the de novo Dnmt isoform, Dnmt3a, also masculinized sexual behavior in female mice. RNA sequencing revealed gene and isoform variants modulated by methylation that may underlie the divergent reproductive behaviors of males versus females. Our data show that brain feminization is maintained by the active suppression of masculinization via DNA methylation. PMID:25821913

  6. Lasting Neurobehavioral Abnormalities in Rats After Neonatal Activation of Serotonin 1A and 1B Receptors: Possible Mechanisms for Serotonin Dysfunction in Autistic Spectrum Disorders

    PubMed Central

    Khatri, Nidhi; Simpson, Kimberly L.; Lin, Rick C.S.; Paul, Ian A.

    2013-01-01

    Rationale Perinatal exposure of rats to selective serotonin reuptake inhibitors (SSRIs) produces sensory and social abnormalities paralleling those seen in Autistic Spectrum Disorders (ASD). However, the possible mechanism(s) by which this exposure produces behavioral abnormalities is unclear. Objective We hypothesized that the lasting effects of neonatal SSRI exposure are a consequence of abnormal stimulation of 5-HT1A and/or 5-HT1B receptors during brain development. We examined whether such stimulation would result in lasting sensory and social deficits in rats in a manner similar to SSRIs using both direct agonist stimulation of receptors as well as selective antagonism of these receptors during SSRI exposure. Methods Male and female rat pups were treated from postnatal day 8 to 21. In Experiment 1, pups received citalopram (20mg/kg/d), saline, 8-OH-DPAT (0.5 mg/kg/d) or CGS-12066B (10 mg/kg/d). In Experiment 2, a separate cohort of pups received an citalopram (20 mg/kg/d), or saline which was combined with either WAY-100635 (0.6 mg/kg/d) or GR-127935 (6 mg/kg/d) or vehicle. Rats were then tested in paradigms designed to assess sensory and social response behaviors at different time points during development. Results Direct and indirect neonatal stimulation of 5-HT1A or 5-HT1B receptors disrupts sensory processing, produces neophobia, increases stereotypic activity, and impairs social interactions in manner analogous to that observed in ASD. Conclusion Increased stimulation of 5-HT1A and 5-HT1B receptors plays a significant role in the production of lasting social and sensory deficits in adult animals exposed as neonates to SSRIs. PMID:23975037

  7. On a Mathematical Model of Brain Activities

    SciTech Connect

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-12-03

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an 'expexted view of the world'. Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from 'excited' to 'nonexcited'. For that reason a statistical model of the recognition process should reflect both--the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail.

  8. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations

    PubMed Central

    Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058

  9. Interactions between occlusion and human brain function activities.

    PubMed

    Ohkubo, C; Morokuma, M; Yoneyama, Y; Matsuda, R; Lee, J S

    2013-02-01

    There are few review articles in the area of human research that focus on the interactions between occlusion and brain function. This systematic review discusses the effect of occlusion on the health of the entire body with a focus on brain function. Available relevant articles in English from 1999 to 2011 were assessed in an online database and as hard copies in libraries. The selected 19 articles were classified into the following five categories: chewing and tongue movements, clenching and grinding, occlusal splints and occlusal interference, prosthetic rehabilitation, and pain and stimulation. The relationships between the brain activity observed in the motor and sensory cortices and movements of the oral and maxillofacial area, such as those produced by gum chewing, tapping and clenching, were investigated. It was found that the sensorimotor cortex was also affected by the placement of the occlusal interference devices, splints and implant prostheses. Brain activity may change depending on the strength of the movements in the oral and maxillofacial area. Therefore, mastication and other movements stimulate the activity in the cerebral cortex and may be helpful in preventing degradation of a brain function. However, these findings must be verified by evidence gathered from more subjects. PMID:22624951

  10. Methamphetamine Causes Microglial Activation in the Brains of Human Abusers

    PubMed Central

    Sekine, Yoshimoto; Ouchi, Yasuomi; Sugihara, Genichi; Takei, Nori; Yoshikawa, Etsuji; Nakamura, Kazuhiko; Iwata, Yasuhide; Tsuchiya, Kenji J.; Suda, Shiro; Suzuki, Katsuaki; Kawai, Masayoshi; Takebayashi, Kiyokazu; Yamamoto, Shigeyuki; Matsuzaki, Hideo; Ueki, Takatoshi; Mori, Norio; Gold, Mark S.; Cadet, Jean L.

    2008-01-01

    Methamphetamine is a popular addictive drug whose use is associated with multiple neuropsychiatric adverse events and toxic to the dopaminergic and serotonergic systems of the brain. Methamphetamine-induced neuropathology is associated with increased expression of microglial cells that are thought to participate in either pro-toxic or protective mechanisms in the brain. Although reactive microgliosis has been observed in animal models of methamphetamine neurotoxicity, no study has reported on the status of microglial activation in human methamphetamine abusers. The present study reports on 12 abstinent methamphetamine abusers and 12 age-, gender-, education-matched control subjects who underwent positron emission tomography using a radiotracer for activated microglia, [11C](R)-(1-[2-chlorophenyl]-N-methyl-N-[1-methylpropyl]-3-isoquinoline carboxamide) ([11C](R)-PK11195). Compartment analysis was used to estimate quantitative levels of binding potentials of [11C](R)-PK11195 in brain regions with dopaminergic and/or serotonergic innervation. The mean levels of [11C](R)-PK11195 binding were higher in methamphetamine abusers than those in control subjects in all brain regions (> 250% higher, p < 0.01 for all). In addition, the binding levels in the midbrain, striatum, thalamus, and orbitofrontal and insular cortices (p < 0.05) correlated inversely with the duration of methamphetamine abstinence. These results suggest that chronic self-administration of methamphetamine can cause reactive microgliosis in the brains of human methamphetamine abusers, a level of activation that appears to subside over longer periods of abstinence. PMID:18509037

  11. Amusia results in abnormal brain activity following inappropriate intonation during speech comprehension.

    PubMed

    Jiang, Cunmei; Hamm, Jeff P; Lim, Vanessa K; Kirk, Ian J; Chen, Xuhai; Yang, Yufang

    2012-01-01

    Pitch processing is a critical ability on which humans' tonal musical experience depends, and which is also of paramount importance for decoding prosody in speech. Congenital amusia refers to deficits in the ability to properly process musical pitch, and recent evidence has suggested that this musical pitch disorder may impact upon the processing of speech sounds. Here we present the first electrophysiological evidence demonstrating that individuals with amusia who speak Mandarin Chinese are impaired in classifying prosody as appropriate or inappropriate during a speech comprehension task. When presented with inappropriate prosody stimuli, control participants elicited a larger P600 and smaller N100 relative to the appropriate condition. In contrast, amusics did not show significant differences between the appropriate and inappropriate conditions in either the N100 or the P600 component. This provides further evidence that the pitch perception deficits associated with amusia may also affect intonation processing during speech comprehension in those who speak a tonal language such as Mandarin, and suggests music and language share some cognitive and neural resources. PMID:22859982

  12. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  13. Identification of hematomas in mild traumatic brain injury using an index of quantitative brain electrical activity.

    PubMed

    Prichep, Leslie S; Naunheim, Rosanne; Bazarian, Jeffrey; Mould, W Andrew; Hanley, Daniel

    2015-01-01

    Rapid identification of traumatic intracranial hematomas following closed head injury represents a significant health care need because of the potentially life-threatening risk they present. This study demonstrates the clinical utility of an index of brain electrical activity used to identify intracranial hematomas in traumatic brain injury (TBI) presenting to the emergency department (ED). Brain electrical activity was recorded from a limited montage located on the forehead of 394 closed head injured patients who were referred for CT scans as part of their standard ED assessment. A total of 116 of these patients were found to be CT positive (CT+), of which 46 patients with traumatic intracranial hematomas (CT+) were identified for study. A total of 278 patients were found to be CT negative (CT-) and were used as controls. CT scans were subjected to quantitative measurements of volume of blood and distance of bleed from recording electrodes by blinded independent experts, implementing a validated method for hematoma measurement. Using an algorithm based on brain electrical activity developed on a large independent cohort of TBI patients and controls (TBI-Index), patients were classified as either positive or negative for structural brain injury. Sensitivity to hematomas was found to be 95.7% (95% CI = 85.2, 99.5), specificity was 43.9% (95% CI = 38.0, 49.9). There was no significant relationship between the TBI-Index and distance of the bleed from recording sites (F = 0.044, p = 0.833), or volume of blood measured F = 0.179, p = 0.674). Results of this study are a validation and extension of previously published retrospective findings in an independent population, and provide evidence that a TBI-Index for structural brain injury is a highly sensitive measure for the detection of potentially life-threatening traumatic intracranial hematomas, and could contribute to the rapid, quantitative evaluation and treatment of such patients. PMID:25054838

  14. Antithrombin III Basel. Identification of a Pro-Leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity.

    PubMed

    Chang, J Y; Tran, T H

    1986-01-25

    Antithrombin III Basel is a hereditary abnormal antithrombin with normal progressive inhibition activity (normal reactive site) and reduced heparin cofactor activity (impaired heparin binding site). Structures of antithrombin III Basel and normal antithrombin III isolated from the same patient were compared by peptide mapping using the dimethylaminoazobenzene isothiocyanate precolumn derivatization technique. Of the approximately 50 tryptic peptides of normal and abnormal antithrombin III, one peptide comprising residues 40-46 had a different retention time in reversed-phase high performance liquid chromatography. The amino acid sequence of the peptide from antithrombin III Basel had a single substitution of Pro (normal) by Leu (abnormal) at position 41. This substitution is close to an Arg (residue 47) and a Trp (residue 49) which have previously been shown to be critical for heparin binding by antithrombin III. Although additional amino acid substitutions in antithrombin III Basel cannot be ruled out, this Pro-Leu replacement could cause a conformational change by increasing both the helical structure and the hydrophobicity around residue 41. These data suggest that: (i) the heparin binding site of antithrombin III encompasses the region containing residues 41, 47, and 49; and (ii) the impaired heparin cofactor activity of antithrombin III Basel is likely due to a conformational change of the heparin binding site induced by the Pro-Leu substitution at position 41. PMID:3080419

  15. Cdk5 activity in the brain - multiple paths of regulation.

    PubMed

    Shah, Kavita; Lahiri, Debomoy K

    2014-06-01

    Cyclin dependent kinase-5 (Cdk5), a family member of the cyclin-dependent kinases, plays a pivotal role in the central nervous system. During embryogenesis, Cdk5 is indispensable for brain development and, in the adult brain, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation. However, Cdk5 activity becomes deregulated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, which leads to neurotoxicity. Therefore, precise control over Cdk5 activity is essential for its physiological functions. This Commentary covers the various mechanisms of Cdk5 regulation, including several recently identified protein activators and inhibitors of Cdk5 that control its activity in normal and diseased brains. We also discuss the autoregulatory activity of Cdk5 and its regulation at the transcriptional, post-transcriptional and post-translational levels. We finally highlight physiological and pathological roles of Cdk5 in the brain. Specific modulation of these protein regulators is expected to provide alternative strategies for the development of effective therapeutic interventions that are triggered by deregulation of Cdk5. PMID:24879856

  16. Language modulates brain activity underlying representation of kinship terms.

    PubMed

    Wu, Haiyan; Ge, Yue; Tang, Honghong; Luo, Yue-Jia; Mai, Xiaoqin; Liu, Chao

    2015-01-01

    Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages. PMID:26685907

  17. Language modulates brain activity underlying representation of kinship terms

    PubMed Central

    Wu, Haiyan; Ge, Yue; Tang, Honghong; Luo, Yue-Jia; Mai, Xiaoqin; Liu, Chao

    2015-01-01

    Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages. PMID:26685907

  18. Altered Brain Activation during Emotional Face Processing in Relation to Both Diagnosis and Polygenic Risk of Bipolar Disorder

    PubMed Central

    Tesli, Martin; Kauppi, Karolina; Bettella, Francesco; Brandt, Christine Lycke; Kaufmann, Tobias; Espeseth, Thomas; Mattingsdal, Morten; Agartz, Ingrid; Melle, Ingrid; Djurovic, Srdjan; Westlye, Lars T.; Andreassen, Ole A.

    2015-01-01

    Objectives Bipolar disorder (BD) is a highly heritable disorder with polygenic inheritance. Among the most consistent findings from functional magnetic imaging (fMRI) studies are limbic hyperactivation and dorsal hypoactivation. However, the relation between reported brain functional abnormalities and underlying genetic risk remains elusive. This is the first cross-sectional study applying a whole-brain explorative approach to investigate potential influence of BD case-control status and polygenic risk on brain activation. Methods A BD polygenic risk score (PGRS) was estimated from the Psychiatric Genomics Consortium BD case-control study, and assigned to each individual in our independent sample (N=85 BD cases and 121 healthy controls (HC)), all of whom participated in an fMRI emotional faces matching paradigm. Potential differences in BOLD response across diagnostic groups were explored at whole-brain level in addition to amygdala as a region of interest. Putative effects of BD PGRS on brain activation were also investigated. Results At whole-brain level, BD cases presented with significantly lower cuneus/precuneus activation than HC during negative face processing (Z-threshold=2.3 as cluster-level correction). The PGRS was associated positively with increased right inferior frontal gyrus (rIFG) activation during negative face processing. For amygdala activation, there were no correlations with diagnostic status or PGRS. Conclusions These findings are in line with previous reports of reduced precuneus and altered rIFG activation in BD. While these results demonstrate the ability of PGRS to reveal underlying genetic risk of altered brain activation in BD, the lack of convergence of effects at diagnostic and PGRS level suggests that this relation is a complex one. PMID:26222050

  19. Synchrotron X-ray fluorescence reveals abnormal metal distributions in brain and spinal cord in spinocerebellar ataxia: a case report.

    PubMed

    Popescu, Bogdan F Gh; Robinson, Christopher A; Chapman, L Dean; Nichol, Helen

    2009-09-01

    For the first time, synchrotron rapid-scanning X-ray fluorescence (RS-XRF) was used to simultaneously localize and quantify iron, copper, and zinc in spinal cord and brain in a case of spinocerebellar ataxia (SCA). In the normal medulla, a previously undescribed copper enrichment was seen associated with spinocerebellar fibers and amiculum olivae. This region was virtually devoid of all metals in the SCA case. Regions with neuronal loss and gliosis in the cerebellar cortex, inferior olivary, and dentate nuclei and areas showing loss of myelinated fibers were also low in all metals in SCA compared to control. In contrast, the ventral columns of the spinal cord that exhibited only moderate myelin pallor had increased metal levels. Iron and zinc were also elevated in the globus pallidus pars externa in SCA relative to control. We hypothesize that metals increase as part of the initial neurodegenerative process, but once degeneration is advanced, the metal levels drop. This implies a role for multiple metals in SCA neurodegeneration, but further study is required to establish a causative role. We suggest that if these findings are generally true of at least some cases of SCA, not only iron but also copper and zinc should be considered as possible therapeutic targets. PMID:19308649

  20. Human brain activity time-locked to narrative event boundaries.

    PubMed

    Speer, Nicole K; Zacks, Jeffrey M; Reynolds, Jeremy R

    2007-05-01

    Readers structure narrative text into a series of events in order to understand and remember the text. In this study, subjects read brief narratives describing everyday activities while brain activity was recorded with functional magnetic resonance imaging. Subjects later read the stories again to divide them into large and small events. During the initial reading, points later identified as boundaries between events were associated with transient increases in activity in a number of brain regions whose activity was mediated by changes in the narrated situation, such as changes in characters' goals. These results indicate that the segmentation of narrated activities into events is a spontaneous part of reading, and that this process of segmentation is likely dependent on neural responses to changes in the narrated situation. PMID:17576286

  1. Cardiovascular fitness modulates brain activation associated with spatial learning.

    PubMed

    Holzschneider, Kathrin; Wolbers, Thomas; Röder, Brigitte; Hötting, Kirsten

    2012-02-01

    Aerobic exercise has beneficial effects on cognitive functioning in aging humans, especially on executive functions associated with frontal brain regions. In rodents, exercise has been shown to induce structural and neurophysiological changes especially in the hippocampus and to improve spatial learning. The present study investigated the relationship between cardiovascular fitness, spatial learning and associated patterns of brain activation cross-sectionally and longitudinally in a sample of middle-aged men and women (40-55 years) that took part in a six-month exercise intervention and an additional spatial training. Spatial learning capacities before and after the interventions were measured with a virtual maze task. During this task, participants were repeatedly moved through a virtual town and were instructed to infer the spatial layout of the environment. Brain activations during encoding of the virtual town were assessed with functional magnetic resonance imaging (fMRI). The fMRI data revealed that brain activations during successful spatial learning were modulated by the individual fitness level in a neural network, comprising the hippocampus, retrosplenial cortex, cuneus, precuneus, parahippocampal gyrus, caudate nucleus, insula, putamen, and further frontal, temporal, occipital and cingulate regions. Moreover, physical exercising induced changes in cardiovascular fitness that correlated positively with changes in brain activations in the medial frontal gyrus and the cuneus. However, overall spatial learning performance did not vary with cardiovascular fitness. These data suggest that cardiovascular fitness has an impact on brain regions associated with spatial learning in humans and hence, could be a potent intervention to prevent age-related cognitive decline. PMID:22027496

  2. Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy

    PubMed Central

    Liu, Ning; Cui, Xu; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson’s correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research. PMID:25798327

  3. Active tactile exploration enabled by a brain-machine-brain interface

    PubMed Central

    O’Doherty, Joseph E.; Lebedev, Mikhail A.; Ifft, Peter J.; Zhuang, Katie Z.; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A. L.

    2011-01-01

    Brain-machine interfaces (BMIs)1,2 use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. While BMIs aim to restore the normal sensorimotor functions of the limbs, so far they have lacked tactile sensation. Here we demonstrate the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and enables the signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex (S1). Monkeys performed an active-exploration task in which an actuator (a computer cursor or a virtual-reality hand) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in primary motor cortex (M1). ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search and discriminate one out of three visually undistinguishable objects, using the virtual hand to identify the unique artificial texture (AT) associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic, or even virtual prostheses. PMID:21976021

  4. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  5. [Localization of brain electrical activity sources and hemodynamic activity foci during motor imagery].

    PubMed

    Frolov, A A; Gusek, D; Bobrov, P D; Mokienko, O A; Chernikova, L A; Konovalov, R N

    2014-01-01

    Studied are sources of brain activity contributing to EEG patterns which correspond to motor imagery. The accuracy of their classification determines the efficiency of brain-computer interface (BCI) allowing for controlling external technical devices directly by brain signals without involving muscle activity. Sources of brain activity are identified by Independent Component Analysis. Those independent components for which the BCI classification accuracy are at maximum are treated as relevant for motor imagery task. Two of the most relevant sources demonstrate strictly exposed event related desynchronization and synchronization of mu--rhythm during imagery of contra--and ipsilateral hands. These sources are localized by solving inverse EEG problem taking into account individual geometry of brain and its covers provided by anatomical MRI images. The sources are shown to be localized in BA 3A relating to proprioceptive sensitivity of the contralateral hand. Their positions are closed to foci of BOLD activity obtained by fMRI. PMID:25702459

  6. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  7. Prefrontal Brain Activity Predicts Temporally Extended Decision-Making Behavior

    ERIC Educational Resources Information Center

    Yarkoni, Tal; Braver, Todd S.; Gray, Jeremy R.; Green, Leonard

    2005-01-01

    Although functional neuroimaging studies of human decision-making processes are increasingly common, most of the research in this area has relied on passive tasks that generate little individual variability. Relatively little attention has been paid to the ability of brain activity to predict overt behavior. Using functional magnetic resonance…

  8. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,

  9. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  10. Smart Moves: Powering up the Brain with Physical Activity

    ERIC Educational Resources Information Center

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive…

  11. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…

  12. Smart Moves: Powering up the Brain with Physical Activity

    ERIC Educational Resources Information Center

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive

  13. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  14. BRAIN CHOLINESTERASE ACTIVITY OF BOBWHITE ACUTELY EXPOSED TO CHLORPYRIFOS

    EPA Science Inventory

    Northern bobwhite, Colinus virginianus, were orally dosed with the organophosphorus insecticide chlorpyrifos to examine effects on brain cholinesterase (AChE) activity. wo-week-old quail were acutely exposed and euthanized at selected times following gavage-dosing, ranging from 1...

  15. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  16. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease

    PubMed Central

    Villain, Nicolas; Fouquet, Marine; Baron, Jean-Claude; Mézenge, Florence; Landeau, Brigitte; De La Sayette, Vincent; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2010-01-01

    Hippocampal atrophy, posterior cingulate and frontal glucose hypometabolism, and white-matter tract disruption are well-described early macroscopic events in Alzheimer’s disease. The relationships between these three types of alterations have been documented in previous studies, but their chronology still remains to be established. The present study used multi-modal Fluorodeoxyglucose - Positron Emission Tomography and Magnetic Resonance Imaging longitudinal data to address this question in patients with amnestic Mild Cognitive Impairment. We found unidirectional, specific sequential relationships between: i) baseline hippocampal atrophy and both cingulum bundle (r=0.70; p=3.10−3) and uncinate fasciculus (r=0.75; p=7.10−4) rate of atrophy; ii) baseline cingulum bundle atrophy and rate of decline of posterior (r=0.72; p=2.10−3) and anterior (r=0.74; p=1.10−3) cingulate metabolism; and iii) baseline uncinate white matter atrophy and subgenual metabolism rate of change (r=0.65; p=6.10−3). Baseline local grey matter atrophy was not found to contribute to hypometabolism progression within the posterior and anterior cingulate as well as subgenual cortices. These findings suggest that hippocampal atrophy progressively leads to disruption of the cingulum bundle and uncinate fasciculus, which in turn leads to glucose hypometabolism of the cingulate and subgenual cortices, respectively. This study reinforces the relevance of remote mechanisms above local interactions to account for the patterns of brain alteration observed in amnestic Mild Cognitive Impairment, and provides new avenues to assess the sequence of events in complex diseases characterized by multiple manifestations. PMID:20688814

  17. Blue Light Stimulates Cognitive Brain Activity in Visually Blind Individuals

    PubMed Central

    Vandewalle, Gilles; Collignon, Olivier; Hull, Joseph T.; Daneault, Véronique; Albouy, Geneviève; Lepore, Franco; Phillips, Christophe; Doyon, Julien; Czeisler, Charles A.; Dumont, Marie; Lockley, Steven W.; Carrier, Julie

    2015-01-01

    Light regulates multiple non-image-forming (or non-visual) circadian, neuroendocrine and neurobehavioral functions, via outputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so that light is an important regulator of wakefulness and cognition. The roles of rods, cones and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose non-randomly about the presence of light despite their complete lack of sight. Furthermore, 2s of blue light modified EEG activity when administered simultaneously to auditory stimulations. FMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation, as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function. PMID:23859643

  18. Alzheimer Disease in a Mouse Model: MR Imaging–guided Focused Ultrasound Targeted to the Hippocampus Opens the Blood-Brain Barrier and Improves Pathologic Abnormalities and Behavior

    PubMed Central

    Dubey, Sonam; Yeung, Sharon; Hough, Olivia; Eterman, Naomi; Aubert, Isabelle; Hynynen, Kullervo

    2014-01-01

    Purpose To validate whether repeated magnetic resonance (MR) imaging–guided focused ultrasound treatments targeted to the hippocampus, a brain structure relevant for Alzheimer disease (ADAlzheimer disease), could modulate pathologic abnormalities, plasticity, and behavior in a mouse model. Materials and Methods All animal procedures were approved by the Animal Care Committee and are in accordance with the Canadian Council on Animal Care. Seven-month-old transgenic (TgCRND8) (Tg) mice and their nontransgenic (non-Tg) littermates were entered in the study. Mice were treated weekly with MR imaging–guided focused ultrasound in the bilateral hippocampus (1.68 MHz, 10-msec bursts, 1-Hz burst repetition frequency, 120-second total duration). After 1 month, spatial memory was tested in the Y maze with the novel arm prior to sacrifice and immunohistochemical analysis. The data were compared by using unpaired t tests and analysis of variance with Tukey post hoc analysis. Results Untreated Tg mice spent 61% less time than untreated non-Tg mice exploring the novel arm of the Y maze because of spatial memory impairments (P < .05). Following MR imaging–guided focused ultrasound, Tg mice spent 99% more time exploring the novel arm, performing as well as their non-Tg littermates. Changes in behavior were correlated with a reduction of the number and size of amyloid plaques in the MR imaging–guided focused ultrasound–treated animals (P < .01). Further, after MR imaging–guided focused ultrasound treatment, there was a 250% increase in the number of newborn neurons in the hippocampus (P < .01). The newborn neurons had longer dendrites and more arborization after MR imaging–guided focused ultrasound, as well (P < .01). Conclusion Repeated MR imaging–guided focused ultrasound treatments led to spatial memory improvement in a Tg mouse model of ADAlzheimer disease. The behavior changes may be mediated by decreased amyloid pathologic abnormalities and increased neuronal plasticity. © RSNA, 2014 PMID:25222068

  19. Prestimulus brain activity predicts primacy in list learning.

    PubMed

    Galli, Giulia; Choy, Tsee Leng; Otten, Leun J

    2012-09-01

    Brain activity immediately before an event can predict whether the event will later be remembered. This indicates that memory formation is influenced by anticipatory mechanisms engaged ahead of stimulus presentation. Here, we asked whether anticipatory processes affect the learning of short word lists, and whether such activity varies as a function of serial position. Participants memorized lists of intermixed visual and auditory words with either an elaborative or rote rehearsal strategy. At the end of each list, a distraction task was performed followed by free recall. Recall performance was better for words in initial list positions and following elaborative rehearsal. Electrical brain activity before auditory words predicted later recall in the elaborative rehearsal condition. Crucially, anticipatory activity only affected recall when words occurred in initial list positions. This indicates that anticipatory processes, possibly related to general semantic preparation, contribute to primacy effects. PMID:22888370

  20. Prestimulus brain activity predicts primacy in list learning

    PubMed Central

    Galli, Giulia; Choy, Tsee Leng; Otten, Leun J.

    2012-01-01

    Brain activity immediately before an event can predict whether the event will later be remembered. This indicates that memory formation is influenced by anticipatory mechanisms engaged ahead of stimulus presentation. Here, we asked whether anticipatory processes affect the learning of short word lists, and whether such activity varies as a function of serial position. Participants memorized lists of intermixed visual and auditory words with either an elaborative or rote rehearsal strategy. At the end of each list, a distraction task was performed followed by free recall. Recall performance was better for words in initial list positions and following elaborative rehearsal. Electrical brain activity before auditory words predicted later recall in the elaborative rehearsal condition. Crucially, anticipatory activity only affected recall when words occurred in initial list positions. This indicates that anticipatory processes, possibly related to general semantic preparation, contribute to primacy effects. PMID:22888370

  1. Delayed and disorganised brain activation detected with magnetoencephalography after mild traumatic brain injury

    PubMed Central

    da Costa, Leodante; Robertson, Amanda; Bethune, Allison; MacDonald, Matt J; Shek, Pang N; Taylor, Margot J; Pang, Elizabeth W

    2015-01-01

    Background Awareness to neurocognitive issues after mild traumatic brain injury (mTBI) is increasing, but currently no imaging markers are available for mTBI. Advanced structural imaging recently showed microstructural tissue changes and axonal injury, mild but likely sufficient to lead to functional deficits. Magnetoencephalography (MEG) has high temporal and spatial resolution, combining structural and electrophysiological information, and can be used to examine brain activation patterns of regions involved with specific tasks. Methods 16 adults with mTBI and 16 matched controls were submitted to neuropsychological testing (Wechsler Abbreviated Scale of Intelligence (WASI); Conners; Alcohol Use Disorders Identification Test (AUDIT); Generalised Anxiety Disorder Seven-item Scale (GAD-7); Patient Health Questionnaire (PHQ-9); Symptom Checklist and Symptom Severity Score (SCAT2)) and MEG while tested for mental flexibility (Intra-Extra Dimensional set-shifting tasks). Three-dimensional maps were generated using synthetic aperture magnetometry beamforming analyses to identify differences in regional activation and activation times. Reaction times and accuracy between groups were compared using 2×2 mixed analysis of variance. Findings While accuracy was similar, patients with mTBI reaction time was delayed and sequence of activation of brain regions disorganised, with involvement of extra regions such as the occipital lobes, not used by controls. Examination of activation time showed significant delays in the right insula and left posterior parietal cortex in patients with mTBI. Conclusions Patients with mTBI showed significant delays in the activation of important areas involved in executive function. Also, more regions of the brain are involved in an apparent compensatory effort. Our study suggests that MEG can detect subtle neural changes associated with cognitive dysfunction and thus, may eventually be useful for capturing and tracking the onset and course of cognitive symptoms associated with mTBI. PMID:25324505

  2. Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment

    PubMed Central

    Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin

    2015-01-01

    Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554

  3. Brain activities associated with gaming urge of online gaming addiction.

    PubMed

    Ko, Chih-Hung; Liu, Gin-Chung; Hsiao, Sigmund; Yen, Ju-Yu; Yang, Ming-Jen; Lin, Wei-Chen; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2009-04-01

    The aim of this study was to identify the neural substrates of online gaming addiction through evaluation of the brain areas associated with the cue-induced gaming urge. Ten participants with online gaming addiction and 10 control subjects without online gaming addiction were tested. They were presented with gaming pictures and the paired mosaic pictures while undergoing functional magnetic resonance imaging (fMRI) scanning. The contrast in blood-oxygen-level dependent (BOLD) signals when viewing gaming pictures and when viewing mosaic pictures was calculated with the SPM2 software to evaluate the brain activations. Right orbitofrontal cortex, right nucleus accumbens, bilateral anterior cingulate and medial frontal cortex, right dorsolateral prefrontal cortex, and right caudate nucleus were activated in the addicted group in contrast to the control group. The activation of the region-of-interest (ROI) defined by the above brain areas was positively correlated with self-reported gaming urge and recalling of gaming experience provoked by the WOW pictures. The results demonstrate that the neural substrate of cue-induced gaming urge/craving in online gaming addiction is similar to that of the cue-induced craving in substance dependence. The above-mentioned brain regions have been reported to contribute to the craving in substance dependence, and here we show that the same areas were involved in online gaming urge/craving. Thus, the results suggest that the gaming urge/craving in online gaming addiction and craving in substance dependence might share the same neurobiological mechanism. PMID:18996542

  4. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  5. Trying to trust: Brain activity during interpersonal social attitude change.

    PubMed

    Filkowski, Megan M; Anderson, Ian W; Haas, Brian W

    2016-04-01

    Interpersonal trust and distrust are important components of human social interaction. Although several studies have shown that brain function is associated with either trusting or distrusting others, very little is known regarding brain function during the control of social attitudes, including trust and distrust. This study was designed to investigate the neural mechanisms involved when people attempt to control their attitudes of trust or distrust toward another person. We used a novel control-of-attitudes fMRI task, which involved explicit instructions to control attitudes of interpersonal trust and distrust. Control of trust or distrust was operationally defined as changes in trustworthiness evaluations of neutral faces before and after the control-of-attitudes fMRI task. Overall, participants (n = 60) evaluated faces paired with the distrust instruction as being less trustworthy than faces paired with the trust instruction following the control-of-distrust task. Within the brain, both the control-of-trust and control-of-distrust conditions were associated with increased temporoparietal junction, precuneus (PrC), inferior frontal gyrus (IFG), and medial prefrontal cortex activity. Individual differences in the control of trust were associated with PrC activity, and individual differences in the control of distrust were associated with IFG activity. Together, these findings identify a brain network involved in the explicit control of distrust and trust and indicate that the PrC and IFG may serve to consolidate interpersonal social attitudes. PMID:26567160

  6. Altered brain activity for phonological manipulation in dyslexic Japanese children.

    PubMed

    Kita, Yosuke; Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi

    2013-12-01

    Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children. PMID:24052613

  7. Brain activation during sight gags and language-dependent humor.

    PubMed

    Watson, Karli K; Matthews, Benjamin J; Allman, John M

    2007-02-01

    Humor is a hallmark of human discourse. People use it to relieve stress and to facilitate social bonding, as well as for pure enjoyment in the absence of any apparent adaptive value. Although recent studies have revealed that humor acts as an intrinsic reward, which explains why people actively seek to experience and create humor, few have addressed the cognitive aspects of humor. We used event-related functional magnetic resonance imaging to differentiate brain activity induced by the hedonic similarities and cognitive differences inherent in 2 kinds of humor: visual humor (sight gags) and language-based humor. Our findings indicate that the brain networks recruited during a humorous experience differ according to the type of humor being processed, with high-level visual areas activated during visual humor and classic language areas activated during language-dependent humor. Our results additionally highlight a common network activated by both types of humor that includes the amygdalar and midbrain regions, which presumably reflect the euphoric component of humor. Furthermore, we found that humor activates anterior cingulate cortex and frontoinsular cortex, 2 regions in the brain that are known to have phylogenetically recent neuronal circuitry. These results suggest that humor may have coevolved with another cognitive specialization of the great apes and humans: the ability to navigate through a shifting and complex social space. PMID:16514105

  8. Exploring the brain in pain: activations, deactivations and their relation

    PubMed Central

    Kong, Jian; Loggia, Marco L; Zyloney, Carolyn; Tu, Peichi; LaViolette, Peter; Gollub, Randy L

    2009-01-01

    The majority of neuroimaging studies on pain focus on the study of BOLD activations, and more rarely on deactivations. In this study, in a relatively large cohort of subjects (N=61), we assess: a) the extent of brain activation and deactivation during the application of two different heat pain levels (HIGH and LOW) and b) the relations between these two directions of fMRI signal change. Furthermore, in a subset of our subjects (N=12), we assess c) the functional connectivity of pain-activated or -deactivated regions during resting states. As previously observed, we find that pain stimuli induce intensity dependent (HIGH pain > LOW pain) fMRI signal increases across the pain matrix. Simultaneously, the noxious stimuli induce activity decreases in several brain regions, including some of the ‘core structures’ of the default network (DMN). In contrast to what we observe with the signal increases, the extent of deactivations is greater for LOW than HIGH pain stimuli. The functional dissociation between activated and deactivated networks is further supported by correlational and functional connectivity analyses. Our results illustrate the absence of a linear relationship between pain activations and deactivations, and therefore suggest that these brain signal changes underlie different aspects of the pain experience. PMID:20005043

  9. Active Lessons for Active Brains: Teaching Boys and Other Experiential Learners, Grades 3-10

    ERIC Educational Resources Information Center

    James, Abigail Norfleet; Allison, Sandra Boyd; McKenzie, Caitlin Zimmerman

    2011-01-01

    If you're tired of repeating yourself to students who aren't listening, try a little less talk and a lot more action. The authors follow the best-selling "Teaching the Male Brain and Teaching the Female Brain" with this ready-to-use collection of mathematics, language arts, science, and classroom management strategies. Designed for active,

  10. Active Lessons for Active Brains: Teaching Boys and Other Experiential Learners, Grades 3-10

    ERIC Educational Resources Information Center

    James, Abigail Norfleet; Allison, Sandra Boyd; McKenzie, Caitlin Zimmerman

    2011-01-01

    If you're tired of repeating yourself to students who aren't listening, try a little less talk and a lot more action. The authors follow the best-selling "Teaching the Male Brain and Teaching the Female Brain" with this ready-to-use collection of mathematics, language arts, science, and classroom management strategies. Designed for active,…

  11. Somatic activation of AKT3 causes hemispheric developmental brain malformations.

    PubMed

    Poduri, Annapurna; Evrony, Gilad D; Cai, Xuyu; Elhosary, Princess Christina; Beroukhim, Rameen; Lehtinen, Maria K; Hills, L Benjamin; Heinzen, Erin L; Hill, Anthony; Hill, R Sean; Barry, Brenda J; Bourgeois, Blaise F D; Riviello, James J; Barkovich, A James; Black, Peter M; Ligon, Keith L; Walsh, Christopher A

    2012-04-12

    Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged, malformed cerebral hemisphere, typically causing epilepsy that requires surgical resection. We studied resected HMG tissue to test whether the condition might reflect somatic mutations affecting genes critical to brain development. We found that two out of eight HMG samples showed trisomy of chromosome 1q, which encompasses many genes, including AKT3, a gene known to regulate brain size. A third case showed a known activating mutation in AKT3 (c.49G→A, creating p.E17K) that was not present in the patient's blood cells. Remarkably, the E17K mutation in AKT3 is exactly paralogous to E17K mutations in AKT1 and AKT2 recently discovered in somatic overgrowth syndromes. We show that AKT3 is the most abundant AKT paralog in the brain during neurogenesis and that phosphorylated AKT is abundant in cortical progenitor cells. Our data suggest that somatic mutations limited to the brain could represent an important cause of complex neurogenetic disease. PMID:22500628

  12. Somatic Activation of AKT3 Causes Hemispheric Developmental Brain Malformations

    PubMed Central

    Poduri, Annapurna; Evrony, Gilad D.; Cai, Xuyu; Elhosary, Princess Christina; Beroukhim, Rameen; Lehtinen, Maria K.; Hills, L. Benjamin; Heinzen, Erin L.; Hill, Anthony; Hill, R. Sean; Barry, Brenda J.; Bourgeois, Blaise F.D.; Riviello, James J.; Barkovich, A. James; Black, Peter M.; Ligon, Keith L.; Walsh, Christopher A.

    2012-01-01

    Summary Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged, malformed cerebral hemisphere, typically causing epilepsy that requires surgical resection. We studied resected HMG tissue to test whether the condition might reflect somatic mutations affecting genes critical to brain development. We found that 2/8 HMG samples showed trisomy of chromosome 1q, encompassing many genes, including AKT3, which is known to regulate brain size. A third case showed a known activating mutation in AKT3 (c.49G→A, creating p.E17K) that was not present in the patient’s blood cells. Remarkably, the E17K mutation in AKT3 is exactly paralogous to E17K mutations in AKT1 and AKT2 recently discovered in somatic overgrowth syndromes. We show that AKT3 is the most abundant AKT paralogue in brain during neurogenesis and that phosphorylated AKT is abundant in cortical progenitor cells. Our data suggest that somatic mutations limited to brain could represent an important cause of complex neurogenetic disease. PMID:22500628

  13. 3β-HSD ACTIVATES DHEA IN THE SONGBIRD BRAIN

    PubMed Central

    Schlinger, Barney A.; Pradhan, Devaleena S.; Soma, Kiran K.

    2008-01-01

    Dehydroepiandrosterone (DHEA) is an abundant circulating prohormone in humans, with a variety of reported actions on central and peripheral tissues. Despite its abundance, the functions of DHEA are relatively unknown because common animal models (laboratory rats and mice) have very low DHEA levels in the blood. Over the past decade, we have obtained considerable evidence from avian studies demonstrating that (1) DHEA is an important circulating prohormone in songbirds and (2) the enzyme 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD), responsible for converting DHEA into a more active androgen, is expressed at high levels in the songbird brain. Here, we first review biochemical and molecular studies demonstrating the widespread activity and expression of 3β-HSD in the adult and developing songbird brain. Studies examining neural 3β-HSD activity show effects of sex, stress, and season that are region-specific. Second, we review studies showing seasonal and stress-related changes in circulating DHEA in captive and wild songbird species. Third, we describe evidence that DHEA treatment can stimulate song behavior and the growth of neural circuits controlling song behavior. Importantly, brain 3β-HSD and aromatase can work in concert to locally metabolize DHEA into active androgens and estrogens, which are critical for controlling behavior and robust adult neuroplasticity in songbirds. DHEA is likely secreted by the avian gonads and/or adrenals, as is the case in humans, but DHEA may also be synthesized de novo in the songbird brain from cholesterol or other precursors. Irrespective of its source, DHEA seems to be an important neurohormone in songbirds, and 3β-HSD is a key enzyme in the songbird brain. PMID:17643555

  14. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  15. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  16. Interindividual synchronization of brain activity during live verbal communication.

    PubMed

    Spiegelhalder, Kai; Ohlendorf, Sabine; Regen, Wolfram; Feige, Bernd; Tebartz van Elst, Ludger; Weiller, Cornelius; Hennig, Jürgen; Berger, Mathias; Tüscher, Oliver

    2014-01-01

    Verbal social interaction plays an important role both in the etiology and treatment of psychiatric disorders. However, the neural basis of social interaction has primarily been studied in the individual brain, neglecting the inter-individual perspective. Here, we show inter-individual neuronal coupling of brain activity during live verbal interaction, by investigating 11 pairs of good female friends who were instructed to speak about autobiographical life events during simultaneous fMRI acquisition. The analysis revealed that the time course of neural activity in areas associated with speech production was coupled with the time course of neural activity in the interlocutor's auditory cortex. This shows the feasibility of the new methodology, which may help elucidate basic reciprocal mechanisms of social interaction and the underpinnings of disordered communication. In particular, it may serve to study the process of psychotherapy on a neuronal level. PMID:24144548

  17. Differential brain activation according to chronic social reward frustration.

    PubMed

    Siegrist, Johannes; Menrath, Ingo; Stöcker, Tony; Klein, Martina; Kellermann, Thilo; Shah, N Jon; Zilles, Karl; Schneider, Frank

    2005-11-28

    Neural correlates of reward frustration are increasingly studied in humans. In line with prediction error theory, omission of an expected reward is associated with relative decreases of cerebral activation in dopaminergic brain areas. We investigated whether a history of chronic work-related reward frustration influences this reward-dependent activation pattern by means of functional magnetic resonance imaging. Solving arithmetic tasks was followed by either monetary reward or omission of reward. Hyperactivations in the medial prefrontal, anterior cingulate and dorsolateral prefrontal cortex were observed in a group of healthy adults with high susceptibility to reward frustration as compared with a group with low susceptibility. Findings indicate a compromised ability of adapting brain activation among those suffering form chronic social reward frustration. PMID:16272875

  18. Motor Cortex Microcircuit Simulation Based on Brain Activity Mapping

    PubMed Central

    Chadderdon, George L.; Mohan, Ashutosh; Suter, Benjamin A.; Neymotin, Samuel A.; Kerr, Cliff C.; Francis, Joseph T.; Shepherd, Gordon M. G.; Lytton, William W.

    2016-01-01

    The deceptively simple laminar structure of neocortex belies the complexity of intra- and interlaminar connectivity. We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. Subsequent dynamical analysis confirmed this observation, in addition to revealing network dynamics that cannot be readily predicted through analysis of the wiring diagram alone. Activation thresholds depended on the stimulated layer. Low stimulation produced transient activation, while stronger activation produced sustained oscillations where the threshold for sustained responses varied by layer: 13% in layer 2/3, 54% in layer 5A, 25% in layer 5B, and 17% in layer 6. The frequency and phase of the resulting oscillation also depended on stimulation layer. By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping. PMID:24708371

  19. Exome sequencing identifies a de novo SCN2A mutation in a patient with intractable seizures, severe intellectual disability, optic atrophy, muscular hypotonia, and brain abnormalities.

    PubMed

    Baasch, Anna-Lena; Hüning, Irina; Gilissen, Christian; Klepper, Joerg; Veltman, Joris A; Gillessen-Kaesbach, Gabriele; Hoischen, Alexander; Lohmann, Katja

    2014-04-01

    Epilepsy is a phenotypically and genetically highly heterogeneous disorder with >200 genes linked to inherited forms of the disease. To identify the underlying genetic cause in a patient with intractable seizures, optic atrophy, severe intellectual disability (ID), brain abnormalities, and muscular hypotonia, we performed exome sequencing in a 5-year-old girl and her unaffected parents. In the patient, we detected a novel, de novo missense mutation in the SCN2A (c.5645G>T; p.R1882L) gene encoding the αII -subunit of the voltage-gated sodium channel Nav 1.2. A literature review revealed 33 different SCN2A mutations in 14 families with benign forms of epilepsy and in 21 cases with severe phenotypes. Although almost all benign mutations were inherited, the majority of severe mutations occurred de novo. Of interest, de novo SCN2A mutations have also been reported in five patients without seizures but with ID (n = 3) and/or autism (n = 3). In the present study, we successfully used exome sequencing to detect a de novo mutation in a genetically heterogeneous disorder with epilepsy and ID. Using this approach, we expand the phenotypic spectrum of SCN2A mutations. Our own and literature data indicate that SCN2A-linked severe phenotypes are more likely to be caused by de novo mutations. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here. PMID:24579881

  20. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  1. Emotions promote social interaction by synchronizing brain activity across individuals

    PubMed Central

    Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko

    2012-01-01

    Sharing others’ emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas “tick together” in participants who are viewing similar emotional events in a movie. Participants’ brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness–unpleasantness (i.e., valence) and of arousal–calmness. Pearson’s correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel–based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals’ brain areas supporting emotional sensations and understanding of another’s actions, whereas high arousal directs individuals’ attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534

  2. Measuring relative timings of brain activities using fMRI.

    PubMed

    Katwal, Santosh B; Gore, John C; Gatenby, J Christopher; Rogers, Baxter P

    2013-02-01

    Functional MRI (fMRI) has previously been shown to be able to measure hundreds of milliseconds differences in timings of activities in different brain regions, even though the underlying blood oxygenation level-dependent (BOLD) response is delayed and dispersed on the order of seconds. This capability may contribute towards the study of communication within the brain by assessing the temporal sequences of various brain processes (mental chronometry). The practical limit of fMRI for detecting the relative timing of brain activity is not known. We aimed to detect fine differences in the timings of brain activities beyond those previously measured from fMRI data in human subjects. We introduced known delays between the onsets of visual stimuli in a controlled, sparse event-related design and investigated if the temporal shifts in the corresponding average BOLD signals were detectable. To maximize sensitivity, we used high spatial and temporal resolution fMRI at ultrahigh field (7 T), in conjunction with a novel data-driven technique for voxel selection using graph-based visualizations of self-organizing maps and Granger causality to measure relative timing. This approach detected timing differences as small as 28ms in visual cortex in individual subjects. For signal extraction, the self-organizing map approach outperformed other common techniques including independent component analysis, voxelwise univariate linear regression analysis and a separate localizer scan. For relative timing measurement, Granger causality outperformed time-to-peak calculations derived from an inverse logit curve fit. We conclude that high-resolution imaging at ultrahigh field, signal extraction via self-organizing map, and appropriate use of Granger causality permit the detection of small timing differences in fMRI data, despite the intrinsically slow hemodynamic response. PMID:23110880

  3. Episodic memory in schizophrenia: the influence of strategy use on behavior and brain activation.

    PubMed

    Bonner-Jackson, Aaron; Yodkovik, Naomi; Csernansky, John G; Barch, Deanna M

    2008-10-30

    Individuals with schizophrenia demonstrate behavioral and neurobiological deficits in episodic memory. However, recent work suggests that episodic memory deficits in schizophrenia may be mitigated through specific encoding strategies. The current study directly compared brain activity and memory performance associated with two different verbal encoding orientations in the same group of schizophrenia participants, in order to more fully characterize the role of strategy in memory processing in this population. Participants included 18 individuals with schizophrenia and 15 healthy comparison participants. Participants encoded words under two conditions during separate fMRI scanning runs. During Incidental encoding, participants were required to make abstract/concrete judgments for each word. During Intentional encoding, participants were instructed to memorize each word for a later memory test. Free recall and a recognition task (utilizing the Remember/Know paradigm) were performed outside of the scanner. Consistent with prior work, schizophrenia participants recognized more words encoded Incidentally than Intentionally, although free recall remained substantially impaired. Schizophrenia participants were also less likely to give Remember judgments for old words and more likely to give Guess judgments for both old and new words. When functional magnetic resonance imaging data were examined, we found that Incidental encoding was associated with substantially fewer between-group differences (Control>Schizophrenia) than Intentional encoding. Furthermore, schizophrenia participants exhibited intact activity during encoding of items that were subsequently retrieved. Our results suggest that use of an Incidental encoding strategy improved recognition memory among individuals with schizophrenia and resulted in a pattern of encoding-related brain activity that was more similar to that seen in control participants. However, we found that Incidental encoding did not improve free recall in schizophrenia participants and abnormal brain activity in some regions was observed, despite improvements in recognition memory. PMID:18790618

  4. Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter Catsup

    PubMed Central

    Groth, Casper; Sasamura, Takeshi; Khanna, Mansi R.; Whitley, Michael; Fortini, Mark E.

    2013-01-01

    Developmental patterning requires the precise interplay of numerous intercellular signaling pathways to ensure that cells are properly specified during tissue formation and organogenesis. The spatiotemporal function of the Notch signaling pathway is strongly influenced by the biosynthesis and intracellular trafficking of signaling components. Receptors and ligands must be trafficked to the cell surface where they interact, and their subsequent endocytic internalization and endosomal trafficking is crucial for both signal propagation and its down-modulation. In a forward genetic screen for mutations that alter intracellular Notch receptor trafficking in Drosophila epithelial tissues, we recovered mutations that disrupt the Catsup gene, which encodes the Drosophila ortholog of the mammalian ZIP7 zinc transporter. Loss of Catsup function causes Notch to accumulate abnormally in the endoplasmic reticulum (ER) and Golgi compartments, resulting in impaired Notch signaling. In addition, Catsup mutant cells exhibit elevated ER stress, suggesting that impaired zinc homeostasis causes increased levels of misfolded proteins within the secretory compartment. PMID:23785054

  5. Brain cholinesterase activity of apparently normal wild birds

    USGS Publications Warehouse

    Hill, E.F.

    1988-01-01

    Organophosphorus and carbamate pesticides are potent anticholinesterase substances that have killed large numbers of wild birds of various species. Cause of death is diagnosed by demonstration of depressed brain cholinesterase (ChE) activity in combination with chemical detection of anticholinesterase residue in the affected specimen. ChE depression is determined by comparison of the affected specimen to normal ChE activity for a sample of control specimens of the same species, but timely procurement of controls is not always possible. Therefore, a reference file of normal whole brain ChE activity is provided for 48 species of wild birds from North America representing 11 orders and 23 families for use as emergency substitutes in diagnosis of anticholinesterase poisoning. The ChE values, based on 83 sets of wild control specimens from across the United States, are reproducible provided the described procedures are duplicated. Overall, whole brain ChE activity varied nearly three-fold among the 48 species represented, but it was usually similar for closely related species. However, some species were statistically separable in most families and some species of the same genus differed as much as 50%.

  6. Dopa decarboxylase activity of the living human brain

    SciTech Connect

    Gjedde, A.; Reith, J.; Dyve, S.; Leger, G.; Guttman, M.; Diksic, M.; Evans, A.; Kuwabara, H. )

    1991-04-01

    Monoaminergic neurons use dopa decarboxylase to form dopamine from L-3,4-dihydroxyphenylalanine (L-dopa). We measured regional dopa decarboxylase activity in brains of six healthy volunteers with 6-({sup 18}F)fluoro-L-dopa and positron emission tomography. We calculated the enzyme activity, relative to its Km, with a kinetic model that yielded the relative rate of conversion of 6-({sup 18}F)fluoro-L-dopa to ({sup 18}F)fluorodopamine. Regional values of relative dopa decarboxylase activity ranged from nil in occipital cortex to 1.9 h-1 in caudate nucleus and putamen, in agreement with values obtained in vitro.

  7. Persistent Asymmetric Brain MIBG Activity Related to a Cerebrovascular Infarct.

    PubMed

    Bai, Xia; Zhuang, Hongming

    2016-04-01

    A 13-year-old woman with a history of left malignant carotid body paraganglioma status postsurgical resection underwent I-MIBG scan for staging. The images demonstrated no definite evidence of MIBG-avid disease. However, there was asymmetric activity in the region of the brain with relatively less activity on the left compared with the contralateral right side on the head images, which was related to prior infarct revealed from the patient's history. This asymmetric MIBG activity persisted 8 years later. PMID:26571441

  8. Borderline personality traits and brain activity during emotional perspective taking.

    PubMed

    Haas, Brian W; Miller, Joshua D

    2015-10-01

    Borderline personality disorder (BPD) is characterized by disturbances in emotional, behavioral, and social functioning. The relation between BPD and empathy, which may affect the functional difficulties associated with this disorder, is complex because there is some evidence of heightened empathic processing and some evidence of reduced empathic processing in BPD. The current study was designed to investigate the association between BPD traits and brain activity during an empathic processing task (emotion perspective taking) in a nonclinical sample (N = 82). Participants completed the Five-Factor Borderline Inventory and underwent functional MRI while conducting an emotional perspective-taking task. Higher BPD trait scores were associated with hypoactivity in two brain regions involved in cognitive empathy (superior temporal sulcus and the temporoparietal junction). These data provide support to existing models describing the heterogeneous nature of BPD and suggest that reduced neural activity may in part affect altered empathic processing in BPD. PMID:26168407

  9. Time delay between cardiac and brain activity during sleep transitions

    NASA Astrophysics Data System (ADS)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  10. Gp120 activates children's brain endothelial cells via CD4.

    PubMed

    Stins, M F; Shen, Y; Huang, S H; Gilles, F; Kalra, V K; Kim, K S

    2001-04-01

    Encephalopathy represents a common and serious manifestation of HIV-1 infection in children, but its pathogenesis is unclear. We demonstrated that gp120 activated human brain microvascular endothelial cells (HBMEC) derived from children in up-regulating ICAM-1 and VCAM-1 expression, IL-6 secretion and increased monocyte transmigration across monolayers. Another novel observation was our demonstration of CD4 in isolated HBMEC and on microvessels of children's brain cryosections. Gp120-induced monocyte migration was inhibited by anti-gp120 and anti-CD4 antibodies. This is the first demonstration that gp120 activates HBMEC via CD4, which may contribute to the development of HIV-1 encephalopathy in children. PMID:11517385

  11. Noise in brain activity engenders perception and influences discrimination sensitivity.

    PubMed

    Bernasconi, Fosco; De Lucia, Marzia; Tzovara, Athina; Manuel, Aurelie L; Murray, Micah M; Spierer, Lucas

    2011-12-01

    Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ~100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception. PMID:22159111

  12. Ear of stimulation determines schizophrenia-normal brain activity differences in an auditory paired-stimuli paradigm.

    PubMed

    Clementz, Brett A; Dzau, Jacqueline R; Blumenfeld, Laura D; Matthews, Scott; Kissler, Johanna

    2003-11-01

    Schizophrenia patients have abnormalities of auditory information processing, theoretically associated with dysfunction of neuronal excitation. Auditory paired-stimuli (S1-S2) paradigms are used to evaluate the nature of these abnormalities. It is unknown whether patients' abnormalities during S1-S2 paradigms are attributable to specific hemispheric differences in cortical processing. The present studies used whole head magnetoencephalography and monaural or binaural versions of the paired-stimuli paradigm to evaluate auditory processing among 38 schizophrenia and 38 normal subjects. The strengths of auditory-evoked brain responses over time were quantified using distributed source reconstructions with L2 minimum norm constraint and realistic head models. For left ear stimuli, schizophrenia and normal groups did not differ on either left or right hemisphere activity over auditory cortex. For right ear and binaural stimuli, schizophrenia patients had less activity over left auditory cortex from 80 to 120 ms post-stimulus but did not differ from normal on activity over right auditory cortex. Additionally, in response to monaural stimulation, schizophrenia patients had significantly less activity than normal over right temporal parietal junction from 60 to 120 ms post-stimulus. These data are consistent with four propositions about schizophrenia: (i). right auditory cortex is functioning normally; (ii). processing of simple auditory stimuli is abnormal in left auditory cortex, probably specifically in supra-granular layers; (iii). auditory localization abilities are deficient; and (iv). auditory cortex abnormalities are not a function of deficient hemispheric communication because they are evident early in processing as long as stimuli are delivered directly to left hemisphere. PMID:14656334

  13. Functional interactions between intrinsic brain activity and behavior.

    PubMed

    Sadaghiani, Sepideh; Kleinschmidt, Andreas

    2013-10-15

    The brain continuously maintains a remarkably high level of intrinsic activity. This activity is non-stationary and its dynamics reveal highly structured patterns across several spatial scales, from fine-grained functional architecture in sensory cortices to large-scale networks. The mechanistic function of this activity is only poorly understood. The central goal of the current review is to provide an integrated summary of recent studies on structure, dynamics and behavioral consequences of spontaneous brain activity. In light of these empirical observations we propose that the structure of ongoing activity and its itinerant nature can be understood as an indispensible memory system modeling the statistical structure of the world. We review the dynamic properties of ongoing activity, and how they are malleable over short to long temporal scales that permit adapting over a range of short- to long-term cognitive challenges. We conclude by reviewing how the functional significance of ongoing activity manifests in its impact on human action, perception, and higher cognitive function. PMID:23643921

  14. Human brain activity with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Chance, Britton

    1999-09-01

    Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out. Experimental results measured with fNIRI are demonstrated in this paper. It was shown that fNIRI technique is able to reveal the occipital activity during visual stimulation, and co-register well with results of fMRI in the motor cortex activity during finger tapping. In the studies of the effects of left prefrontal lobe on forming memory for new associations, it is shown that left prefrontal lobe activated more under deep conditions than that under shallow encoding, especially the dorsal part. In the studies of emotional thinking, it was shown that the responses were different between positive- negative emotional thinking and negative-positive emotional thinking. In mental arithmetic studies, higher activation was found in the first task than in the second, regardless of the difficulty, and higher activation was measured in subtraction of 17 than in subtraction of 3.

  15. Assisting people with multiple disabilities actively correct abnormal standing posture with a Nintendo Wii balance board through controlling environmental stimulation.

    PubMed

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed. PMID:20381997

  16. Brain activation to cocaine cues and motivation/treatment status.

    PubMed

    Prisciandaro, James J; McRae-Clark, Aimee L; Myrick, Hugh; Henderson, Scott; Brady, Kathleen T

    2014-03-01

    Motivation to change is believed to be a key factor in therapeutic success in substance use disorders; however, the neurobiological mechanisms through which motivation to change impacts decreased substance use remain unclear. Existing research is conflicting, with some investigations supporting decreased and others reporting increased frontal activation to drug cues in individuals seeking treatment for substance use disorders. The present study investigated the relationship between motivation to change cocaine use and cue-elicited brain activity in cocaine-dependent individuals using two conceptualizations of 'motivation to change': (1) current treatment status (i.e. currently receiving versus not receiving outpatient treatment for cocaine dependence) and (2) self-reported motivation to change substance use, using the Stages of Change Readiness and Treatment Eagerness Scale. Thirty-eight cocaine-dependent individuals (14 currently in treatment) completed a diagnostic assessment and an fMRI cocaine cue-reactivity task. Whole-brain analyses demonstrated that both treatment-seeking and motivated participants had lower activation to cocaine cues in a wide variety of brain regions in the frontal, occipital, temporal and cingulate cortices relative to non-treatment-seeking and less motivated participants. Future research is needed to explain the mechanism by which treatment and/or motivation impacts neural cue reactivity, as such work could potentially aid in the development of more effective therapeutic techniques for substance-dependent patients. PMID:22458561

  17. Individual Variability in Brain Activity: A Nuisance or an Opportunity?

    PubMed

    Van Horn, John Darrell; Grafton, Scott T; Miller, Michael B

    2008-12-01

    Functional imaging research has been heavily influenced by results based on population-level inference. However, group average results may belie the unique patterns of activity present in the individual that ordinarily are considered random noise. Recent advances in the evolution of MRI hardware have led to significant improvements in the stability and reproducibility of blood oxygen level dependent (BOLD) measurements. These enhancements provide a unique opportunity for closer examination of individual patterns of brain activity. Three objectives can be accomplished by considering brain scans at the individual level; (1) Mapping functional anatomy at a fine grained analysis; (2) Determining if an individual scan is normative with respect to a reference population; and (3) Understanding the sources of intersubject variability in brain activity. In this review, we detail these objectives, briefly discuss their histories and present recent trends in the analyses of individual variability. Finally, we emphasize the unique opportunities and challenges for understanding individual differences through international collaboration among Pacific Rim investigators. PMID:19777073

  18. Chromosome Abnormalities

    MedlinePlus

    ... of a condition caused by numerical abnormalities is Down syndrome, which is marked by mental retardation, learning difficulties, ... muscle tone (hypotonia) in infancy. An individual with Down syndrome has three copies of chromosome 21 rather than ...