Science.gov

Sample records for abnormal brain activity

  1. The MEG topography and the source model of abnormal neural activities associated with brain lesions

    SciTech Connect

    Ueno, S.; Iramina, K.; Ozaki, H.; Harada, K.

    1986-09-01

    A source model is proposed to simulate spatial distributions of abnormal MEG and EEG activities generated by abnormal neural activities such as the delta activity associated with brain tumors. Brain tumor itself is electrically silent and the spherical shell around the tumor might generate abnormal neural activities. The sources of these neural activities are represented by combinations of multiple current dipoles. The head is assumed to be a spherical volume conductor. Electrical potentials and magnetic fields over the surface of the spheres are calculated. The computer simulation shows that the MEG topography and EEG topography vary variously with combinations of location and orientation of the dipoles. In a special case, however, that the dipoles orient in the same direction or orient radially, the spatial patterns of the MEGs and EEGs generated by numerous dipoles are analogous to those generated by single dipoles.

  2. Abnormal brain activation during directed forgetting of negative memory in depressed patients.

    PubMed

    Yang, Wenjing; Chen, Qunlin; Liu, Peiduo; Cheng, Hongsheng; Cui, Qian; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang

    2016-01-15

    The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression. PMID:26639452

  3. Abnormal spontaneous brain activity in minimal hepatic encephalopathy: resting-state fMRI study

    PubMed Central

    Zhong, Wei-Jia; Zhou, Zhi-Ming; Zhao, Jian-Nong; Wu, Wei; Guo, Da-Jing

    2016-01-01

    PURPOSE We aimed to assess the abnormality of baseline spontaneous brain activity in minimal hepatic encephalopathy (MHE) by amplitude of low frequency fluctuation (ALFF) and fraction ALFF (fALFF). METHODS A total of 14 MHE patients and 14 healthy controls were included in our study. Both ALFF and fALFF of functional magnetic resonance imaging were calculated for statistical analysis. RESULTS Compared with healthy controls, patients with MHE had significantly decreased ALFF in the bilateral medial prefrontal cortex (MPFC), left superior frontal gyrus, right precentral gyrus, left opercular part of inferior frontal gyrus, left gyrus rectus, bilateral precuneus, and the posterior lobe of right cerebellum; and they had significantly decreased fALFF in the bilateral MPFC, right middle frontal gyrus, right superior temporal gyrus, and the posterior lobe of left cerebellum. CONCLUSION ALFF and fALFF changes in many brain regions demonstrate abnormality of the spontaneous neuronal activity in MHE. Especially the impairment of right precuneus and left MPFC may play a critical role in manifestation of MHE. Changes of ALFF and fALFF in the precuneus and the MPFC can be used as a potential marker for MHE. PMID:26742646

  4. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation.

    PubMed

    Israelashvili, Michal; Loewenstern, Yocheved; Bar-Gad, Izhar

    2015-07-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  5. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model

    PubMed Central

    Nakao, Kazuhito; Nakazawa, Kazu

    2014-01-01

    In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The “paradoxically” high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception. PMID:25018691

  6. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder.

    PubMed

    Yuksel, C; Du, F; Ravichandran, C; Goldbach, J R; Thida, T; Lin, P; Dora, B; Gelda, J; O'Connor, L; Sehovic, S; Gruber, S; Ongur, D; Cohen, B M

    2015-09-01

    Converging evidence suggests bioenergetic abnormalities in bipolar disorder (BD). In the brain, phosphocreatine (PCr) acts a reservoir of high-energy phosphate (HEP) bonds, and creatine kinases (CK) catalyze the transfer of HEP from adenosine triphosphate (ATP) to PCr and from PCr back to ATP, at times of increased need. This study examined the activity of this mechanism in BD by measuring the levels of HEP molecules during a stimulus paradigm that increased local energy demand. Twenty-three patients diagnosed with BD-I and 22 healthy controls (HC) were included. Levels of phosphorus metabolites were measured at baseline and during visual stimulation in the occipital lobe using (31)P magnetic resonance spectroscopy at 4T. Changes in metabolite levels showed different patterns between the groups. During stimulation, HC had significant reductions in PCr but not in ATP, as expected. In contrast, BD patients had significant reductions in ATP but not in PCr. In addition, PCr/ATP ratio was lower at baseline in patients, and there was a higher change in this measure during stimulation. This pattern suggests a disease-related failure to replenish ATP from PCr through CK enzyme catalysis during tissue activation. Further studies measuring the CK flux in BD are required to confirm and extend this finding. PMID:25754079

  7. Sources of abnormal EEG activity in the presence of brain lesions.

    PubMed

    Fernndez-Bouzas, A; Harmony, T; Bosch, J; Aubert, E; Fernndez, T; Valds, P; Silva, J; Marosi, E; Martnez-Lpez, M; Casin, G

    1999-04-01

    In routine clinical EEG, a common origin is assumed for delta and theta rhythms produced by brain lesions. In previous papers, we have provided some experimental support, based on High Resolution qEEG and dipole fitting in the frequency domain, for the hypothesis that delta and theta spectral power have independent origins related to lesion and edema respectively. This paper describes the results obtained with Frequency Domain VARETA (FD-VARETA) in a group of 13 patients with cortical space-occupying lesions, in order to: 1) Test the accuracy of FD-VARETA for the localization of brain lesions, and 2) To provide further support for the independent origin of delta and theta components. FD VARETA is a distributed inverse solution, constrained by the Montreal Neurological Institute probabilistic atlas that estimates the spectra of EEG sources. In all patients, logarithmic transformed source spectra were compared with age-matched normative values, defining the Z source spectrum. Maximum Z values were found in 10 patients within the delta band (1.56 to 3.12 Hz); the spatial extent of these sources in the atlas corresponded with the location of the tumors in the CT. In 2 patients with small metastases and large volumes of edema and in a patient showing only edema, maximum Z values were found between 4.29 and 5.12 Hz. The spatial extent of the sources at these frequencies was within the volume of the edema in the CT. These results provided strong support to the hypothesis that both delta and theta abnormal EEG activities are the counterparts of two different pathophysiological processes. PMID:10358783

  8. Abnormal Baseline Brain Activity in Patients with Pulsatile Tinnitus: A Resting-State fMRI Study

    PubMed Central

    Han, Lv; Zhaohui, Liu; Fei, Yan; Ting, Li; Pengfei, Zhao; Wang, Du; Cheng, Dong; Pengde, Guo; Xiaoyi, Han; Xiao, Wang; Rui, Li; Zhenchang, Wang

    2014-01-01

    Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT) patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI) technique. The present study used unilateral PT patients (n = 42) and age-, sex-, and education-matched normal control subjects (n = 42) to investigate the changes in structural and amplitude of low-frequency (ALFF) of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG) and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients. PMID:24872895

  9. Abnormal Activation of the Social Brain Network in Children with Autism Spectrum Disorder: An fMRI Study

    PubMed Central

    Kim, Sun-Young; Choi, Uk-Su; Park, Sung-Yeon; Oh, Se-Hong; Yoon, Hyo-Woon; Koh, Yun-Joo; Im, Woo-Young; Park, Jee-In; Song, Dong-Ho

    2015-01-01

    Objective The aim of this study is to investigate abnormal findings of social brain network in Korean children with autism spectrum disorder (ASD) compared with typically developing children (TDC). Methods Functional magnetic resonance imaging (fMRI) was performed to examine brain activations during the processing of emotional faces (happy, fearful, and neutral) in 17 children with ASD, 24 TDC. Results When emotional face stimuli were given to children with ASD, various areas of the social brain relevant to social cognition showed reduced activation. Specifically, ASD children exhibited less activation in the right amygdala (AMY), right superior temporal sulcus (STS) and right inferior frontal gyrus (IFG) than TDC group when fearful faces were shown. Activation of left insular cortex and right IFG in response to happy faces was less in the ASD group. Similar findings were also found in left superior insular gyrus and right insula in case of neutral stimulation. Conclusion These findings suggest that children with ASD have different processing of social and emotional experience at the neural level. In other words, the deficit of social cognition in ASD could be explained by the deterioration of the capacity for visual analysis of emotional faces, the subsequent inner imitation through mirror neuron system (MNS), and the ability to transmit it to the limbic system and to process the transmitted emotion. PMID:25670944

  10. Abnormal Intrinsic Brain Activity Patterns in Patients with Subcortical Ischemic Vascular Dementia

    PubMed Central

    Yin, Xuntao; Yang, Jun; Zhou, Daiquan; Gui, Li; Wang, Jian

    2014-01-01

    Objectives To investigate the amplitude of low-frequency fluctuations (ALFF) alteration of whole brain in patients with subcortical ischemic vascular dementia (SIVD). Materials and Methods Thirty patients with SIVD and 35 control subjects were included in this study. All of them underwent structural MRI and rs-fMRI scan. The structural data were processed using the voxel-based morphometry 8 toolbox (VBM8). The rs-fMRI data were processed using Statistical Parametric Mapping (SPM8) and Data Processing Assistant for Resting-State fMRI (DPARSF) software. Within-group analysis was performed with a one-sample Student's t-test to identify brain regions with ALFF value larger than the mean. Intergroup analysis was performed with a two-sample Student's t-test to identify ALFF differences of whole brain between SIVD and control subjects. Partial correlations between ALFF values and Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) scores were analyzed in the SIVD group across the parameters of age, gender, years of education, and GM volume. Results Within-group analysis showed that the bilateral anterior cingulate cortex (ACC), posterior cingulate cortex, medial prefrontal cortex (MPFC), inferior parietal lobe (IPL), occipital lobe, and adjacent precuneus had significantly higher standardized ALFF values than the global mean ALFF value in both groups. Compared to the controls, patients with SIVD presented lower ALFF values in the bilateral precuneus and higher ALFF values in the bilateral ACC, left insula and hippocampus. Including GM volume as an extra covariate, the ALFF inter-group difference exhibited highly similar spatial patterns to those without GM volume correcting. Close negative correlations were found between the ALFF values of left insula and the MoCA and MMSE scores of SIVD patients. Conclusion SIVD is associated with a unique spontaneous aberrant activity of rs-fMRI signals, and measurement of ALFF in the precuneus, ACC, insula, and hippocampus may aid in the detection of SIVD. PMID:24498389

  11. Abnormal intrinsic brain activity patterns in leukoaraiosis with and without cognitive impairment.

    PubMed

    Li, Chuanming; Yang, Jun; Yin, Xuntao; Liu, Chen; Zhang, Lin; Zhang, Xiaochun; Gui, Li; Wang, Jian

    2015-10-01

    The amplitude of low frequency fluctuations (ALFF) from resting-state functional MRI (rs-fMRI) signals can be used to detect intrinsic spontaneous brain activity and provide valuable insights into the pathomechanism of neural disease. In this study, we recruited 56 patients who had been diagnosed as having mild to severe leukoaraiosis. According to the neuropsychological tests, they were subdivided into a leukoaraiosis with cognitive impairment group (n = 28) and a leukoaraiosis without cognitive impairment group (n = 28). 28 volunteers were included as normal controls. We found that the three groups showed significant differences in ALFF in the brain regions of the right inferior occipital gyrus (IOG_R), left middle temporal gyrus (MTG_L), left precuneus (Pcu_L), right superior frontal gyrus (SFG_R) and right superior occipital gyrus (SOG_R). Compared with normal controls, the leukoaraiosis without cognitive impairment group exhibited significantly increased ALFF in the IOG_R, Pcu_L, SFG_R and SOG_R. While compared with leukoaraiosis without cognitive impairment group, the leukoaraiosis with cognitive impairment group showed significantly decreased ALFF in IOG_R, MTG_L, Pcu_L and SOG_R. A close negative correlation was found between the ALFF values of the MTG_L and the Montreal Cognitive Assessment (MoCA) scores. Our data demonstrate that white matter integrity and cognitive impairment are associated with different amplitude fluctuations of rs-fMRI signals. Leukoaraiosis is related to ALFF increases in IOG_R, Pcu_L, SFG_Orb_R and SOG_R. Decreased ALFF in MTG_L is characteristic of cognitive impairment and may aid in its early detection. PMID:26116811

  12. Abnormal Brain Activity in Social Reward Learning in Children with Autism Spectrum Disorder: An fMRI Study

    PubMed Central

    Choi, Uk-Su; Kim, Sun-Young; Sim, Hyeon Jeong; Lee, Seo-Young; Park, Sung-Yeon; Jeong, Joon-Sup; Seol, Kyeong In; Yoon, Hyo-Woon; Jhung, Kyungun; Park, Jee-In

    2015-01-01

    Purpose We aimed to determine whether Autism Spectrum Disorder (ASD) would show neural abnormality of the social reward system using functional MRI (fMRI). Materials and Methods 27 ASDs and 12 typically developing controls (TDCs) participated in this study. The social reward task was developed, and all participants performed the task during fMRI scanning. Results ASDs and TDCs with a social reward learning effect were selected on the basis of behavior data. We found significant differences in brain activation between the ASDs and TDCs showing a social reward learning effect. Compared with the TDCs, the ASDs showed reduced activity in the right dorsolateral prefrontal cortex, right orbitofrontal cortex, right parietal lobe, and occipital lobe; however, they showed increased activity in the right parahippocampal gyrus and superior temporal gyrus. Conclusion These findings suggest that there might be neural abnormality of the social reward learning system of ASDs. Although this study has several potential limitations, it presents novel findings in the different neural mechanisms of social reward learning in children with ASD and a possible useful biomarker of high-functioning ASDs. PMID:25837176

  13. Abnormal brain activation in excoriation (skin-picking) disorder: evidence from an executive planning fMRI study.

    PubMed

    Odlaug, Brian L; Hampshire, Adam; Chamberlain, Samuel R; Grant, Jon E

    2016-02-01

    BackgroundExcoriation (skin-picking) disorder (SPD) is a relatively common psychiatric condition whose neurobiological basis is unknown.AimsTo probe the function of fronto-striatal circuitry in SPD.MethodEighteen participants with SPD and 15 matched healthy controls undertook an executive planning task (Tower of London) during functional magnetic resonance imaging (fMRI). Activation during planning was compared between groups using region of interest and whole-brain permutation cluster approaches.ResultsThe SPD group exhibited significant functional underactivation in a cluster encompassing bilateral dorsal striatum (maximal in right caudate), bilateral anterior cingulate and right medial frontal regions. These abnormalities were, for the most part, outside the dorsal planning network typically activated by executive planning tasks.ConclusionsAbnormalities of neural regions involved in habit formation, action monitoring and inhibition appear involved in the pathophysiology of SPD. Implications exist for understanding the basis of excessive grooming and the relationship of SPD with putative obsessive-compulsive spectrum disorders. PMID:26159604

  14. Abnormal brain activation and connectivity to standardized disorder-related visual scenes in social anxiety disorder.

    PubMed

    Heitmann, Carina Yvonne; Feldker, Katharina; Neumeister, Paula; Zepp, Britta Maria; Peterburs, Jutta; Zwitserlood, Pienie; Straube, Thomas

    2016-04-01

    Our understanding of altered emotional processing in social anxiety disorder (SAD) is hampered by a heterogeneity of findings, which is probably due to the vastly different methods and materials used so far. This is why the present functional magnetic resonance imaging (fMRI) study investigated immediate disorder-related threat processing in 30 SAD patients and 30 healthy controls (HC) with a novel, standardized set of highly ecologically valid, disorder-related complex visual scenes. SAD patients rated disorder-related as compared with neutral scenes as more unpleasant, arousing and anxiety-inducing than HC. On the neural level, disorder-related as compared with neutral scenes evoked differential responses in SAD patients in a widespread emotion processing network including (para-)limbic structures (e.g. amygdala, insula, thalamus, globus pallidus) and cortical regions (e.g. dorsomedial prefrontal cortex (dmPFC), posterior cingulate cortex (PCC), and precuneus). Functional connectivity analysis yielded an altered interplay between PCC/precuneus and paralimbic (insula) as well as cortical regions (dmPFC, precuneus) in SAD patients, which emphasizes a central role for PCC/precuneus in disorder-related scene processing. Hyperconnectivity of globus pallidus with amygdala, anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) additionally underlines the relevance of this region in socially anxious threat processing. Our findings stress the importance of specific disorder-related stimuli for the investigation of altered emotion processing in SAD. Disorder-related threat processing in SAD reveals anomalies at multiple stages of emotion processing which may be linked to increased anxiety and to dysfunctionally elevated levels of self-referential processing reported in previous studies. Hum Brain Mapp 37:1559-1572, 2016. © 2016 Wiley Periodicals, Inc. PMID:26806013

  15. Schizophrenia and abnormal brain network hubs

    PubMed Central

    Rubinov, Mikail; Bullmore, Ed.

    2013-01-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia. PMID:24174905

  16. Brain Abnormalities in Neuromyelitis Optica Spectrum Disorder

    PubMed Central

    Kim, Woojun; Kim, Su-Hyun; Huh, So-Young; Kim, Ho Jin

    2012-01-01

    Neuromyelitis optica (NMO) is an idiopathic inflammatory syndrome of the central nervous system that is characterized by severe attacks of optic neuritis (ON) and myelitis. Until recently, NMO was considered a disease without brain involvement. However, since the discovery of NMO-IgG/antiaqaporin-4 antibody, the concept of NMO was broadened to NMO spectrum disorder (NMOSD), and brain lesions are commonly recognized. Furthermore, some patients present with brain symptoms as their first manifestation and develop recurrent brain symptoms without ON or myelitis. Brain lesions with characteristic locations and configurations can be helpful in the diagnosis of NMOSD. Due to the growing recognition of brain abnormalities in NMOSD, these have been included in the NMO and NMOSD diagnostic criteria or guidelines. Recent technical developments such as diffusion tensor imaging, MR spectroscopy, and voxel-based morphometry reveal new findings related to brain abnormalities in NMOSD that were not identified using conventional MRI. This paper focuses on the incidence and characteristics of the brain lesions found in NMOSD and the symptoms that they cause. Recent studies using advanced imaging techniques are also introduced. PMID:23259063

  17. Developmental disruptions underlying brain abnormalities in ciliopathies

    PubMed Central

    Guo, Jiami; Higginbotham, Holden; Li, Jingjun; Nichols, Jackie; Hirt, Josua; Ghukasyan, Vladimir; Anton, E.S.

    2015-01-01

    Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies. PMID:26206566

  18. Glucocorticoids, cytokines and brain abnormalities in depression

    PubMed Central

    Zunszain, Patricia A.; Anacker, Christoph; Cattaneo, Annamaria; Carvalho, Livia A.; Pariante, Carmine M.

    2010-01-01

    Major depression (MD) is a common psychiatric disorder with a complex and multifactor aetiology. Potential mechanisms associated with the pathogenesis of this disorder include monoamine deficits, hypothalamic-pituitary-adrenal (HPA) axis dysfunctions, inflammatory and/or neurodegenerative alterations. An increased secretion and reactivity of cortisol together with an altered feedback inhibition are the most widely observed HPA abnormalities in MD patients. Glucocorticoids, such as cortisol, are vital hormones that are released in response to stress, and regulate metabolism and immunity but also neuronal survival and neurogenesis. Interestingly depression is highly prevalent in infectious, autoimmune and neurodegenerative diseases and at the same time, depressed patients show higher levels of pro-inflammatory cytokines. Since communication occurs between the endocrine, immune and central nervous system, an activation of the inflammatory responses can affect neuroendocrine processes, and vice versa. Therefore, HPA axis hyperactivity and inflammation might be part of the same pathophysiological process: HPA axis hyperactivity is a marker of glucocorticoid resistance, implying ineffective action of glucocorticoid hormones on target tissues, which could lead to immune activation; and, equally, inflammation could stimulate HPA axis activity via both a direct action of cytokines on the brain and by inducing glucocorticoid resistance. In addition, increased levels of pro-inflammatory cytokines also induce the production of neurotoxic end products of the tryptophan–kynurenine pathway. Although the evidence for neurodegeneration in MD is controversial, depression is comorbid with many other conditions where neurodegeneration is present. Since several systems seem to be involved interacting with each other, we cannot unequivocally accept the simple model that glucocorticoids induce neurodegeneration, but rather that elevated cytokines, in the context of glucocorticoid resistance, are probably the offenders. Chronic inflammatory changes in the presence of glucocorticoid resistance may represent a common feature that could be responsible for the enhanced vulnerability of depressed patients to develop neurodegenerative changes later in life. However, further studies are needed to clarify the relative contribution of glucocorticoids and inflammatory signals to MD and other disorders. PMID:20406665

  19. Abnormal Asymmetry of Brain Connectivity in Schizophrenia

    PubMed Central

    Ribolsi, Michele; Daskalakis, Zafiris J.; Siracusano, Alberto; Koch, Giacomo

    2014-01-01

    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia. PMID:25566030

  20. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS.

    PubMed

    Seker, F B; Kilic, U; Caglayan, B; Ethemoglu, M S; Caglayan, A B; Ekimci, N; Demirci, S; Dogan, A; Oztezcan, S; Sahin, F; Yilmaz, B; Kilic, E

    2015-01-22

    Apart from its repressing effect on plasma lipid levels, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors exert neuroprotective functions in animal models of neurodegenerative disorders. In view of these promising observations, we were interested in whether HMG-CoA reductase inhibition would affect epileptiform activity in the brain. To elucidate this issue, atorvastatin, simvastatin and rosuvastatin were administered orally at a dose of 20 mg/kg each for 3 days and their anti-epileptic activities were tested and compared in rats. Epileptiform activity in the brain was induced by an intracortical penicillin G injection. Among HMG-CoA reductase inhibitors, simvastatin-treatment was less effective in terms of spike frequency as compared with atorvastatin- and rosuvastatin-treated animals. Atorvastatin treatment reduced spike frequencies and amplitudes significantly throughout the experiment. However, the most pronounced anti-epileptic effect was observed in rosuvastatin-treated animals, which was associated with improved blood-brain barrier (BBB) integrity, increased expression of endothelial nitric oxide synthase (eNOS) mRNA and decreased expressions of pro-apoptotic p53, Bax and caspase-3 mRNAs. Inhibition of eNOS activity with L-NG-Nitroarginine Methyl Ester (L-NAME) reversed the anti-epileptic effect of rosuvastatin significantly. However, L-NAME did not alter the effect of rosuvastatin on the levels of p53, Bax and caspase-3 mRNA expression. Here, we provide evidence that among HMG-CoA reductase inhibitors, rosuvastatin was the most effective statin on the reduction of epileptiform activity, which was associated with improved BBB permeability, increased expression of eNOS and decreased expressions of pro-apoptotic p53, Bax and caspase-3. Our observation also revealed that the anti-epileptic effect of rosuvastatin was dependent on the increased expression level of eNOS. The robust anti-epileptic effect encourages proof-of-concept studies with rosuvastatin in human epilepsy patients with hypercholesterolemia. PMID:25453767

  1. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  2. Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice

    PubMed Central

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi

    2012-01-01

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular consolidation mechanisms involved in translation initiation and elongation have previously been studied in the cortex using taste-learning paradigms. For example, the levels of phosphorylation of eukaryotic elongation factor 2 (eEF2) were found to be correlated with taste learning in the gustatory cortex (GC), minutes following learning. In order to isolate the role of the eEF2 phosphorylation state at Thr-56 in both molecular and system consolidation, we analyzed cortical-dependent taste learning in eEF2K (the only known kinase for eEF2) ki mice, which exhibit reduced levels of eEF2 phosphorylation but normal levels of eEF2 and eEF2K. These mice exhibit clear attenuation of cortical-dependent associative, but not of incidental, taste learning. In order to gain a better understanding of the underlying mechanisms, we compared brain activity as measured by MEMRI (manganese-enhanced magnetic resonance imaging) between eEF2K ki mice and WT mice during conditioned taste aversion (CTA) learning and observed clear differences between the two but saw no differences under basal conditions. Our results demonstrate that adequate levels of phosphorylation of eEF2 are essential for cortical-dependent associative learning and suggest that malfunction of memory processing at the systems level underlies this associative memory impairment. PMID:22366775

  3. Mapping Brain Abnormalities in Boys with Autism

    PubMed Central

    Brun, Caroline; Nicolson, Rob; Leporé, Natasha; Chou, Yi-Yu; Vidal, Christine N.; DeVito, Timothy J.; Drost, Dick J.; Williamson, Peter C.; Rajakumar, Nagalingam; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Children with autism spectrum disorder (ASD) exhibit characteristic cognitive and behavioral differences, but no systematic pattern of neuroanatomical differences has been consistently found. Recent neurodevelopmental models posit an abnormal early surge in subcortical white matter growth in at least some autistic children, perhaps normalizing by adulthood, but other studies report subcortical white matter deficits. To investigate the profile of these alterations in 3D, we mapped brain volumetric differences using a relatively new method, tensor-based morphometry (TBM). 3D T1-weighted brain MRIs of 24 male children with ASD (age: 9.5 years ± 3.2 SD) and 26 age-matched healthy controls (age: 10.3 ± 2.4 SD) were fluidly registered to match a common anatomical template. Autistic children had significantly enlarged frontal lobes (by 3.6% on the left and 5.1% on the right), and all other lobes of the brain were enlarged significantly, or at trend level. By analyzing the applied deformations statistically point-by-point, we detected significant gray matter volume deficits in bilateral parietal, left temporal and left occipital lobes (p=0.038, corrected), trend-level cerebral white matter volume excesses, and volume deficits in the cerebellar vermis, adjacent to volume excesses in other cerebellar regions. This profile of excesses and deficits in adjacent regions may (1) indicate impaired neuronal connectivity, resulting from aberrant myelination and/or an inflammatory process, and (2) help to understand inconsistent findings of regional brain tissue excesses and deficits in autism. PMID:19554561

  4. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination.

    PubMed

    Kirk, John; Plumb, Jonnie; Mirakhur, Meenakshi; McQuaid, Stephen

    2003-10-01

    Blood-brain barrier (BBB) hyperpermeability in multiple sclerosis (MS) is associated with lesion pathogenesis and has been linked to pathology in microvascular tight junctions (TJs). This study quantifies the uneven distribution of TJ pathology and its association with BBB leakage. Frozen sections from plaque and normal-appearing white matter (NAWM) in 14 cases were studied together with white matter from six neurological and five normal controls. Using single and double immunofluorescence and confocal microscopy, the TJ-associated protein zonula occludens-1 (ZO-1) was examined across lesion types and tissue categories, and in relation to fibrinogen leakage. Confocal image data sets were analysed for 2198 MS and 1062 control vessels. Significant differences in the incidence of TJ abnormalities were detected between the different lesion types in MS and between MS and control white matter. These were frequent in oil-red O (ORO)(+) active plaques, affecting 42% of vessel segments, but less frequent in ORO(-) inactive plaques (23%), NAWM (13%), and normal (3.7%) and neurological controls (8%). A similar pattern was found irrespective of the vessel size, supporting a causal role for diffusible inflammatory mediators. In both NAWM and inactive lesions, dual labelling showed that vessels with the most TJ abnormality also showed most fibrinogen leakage. This was even more pronounced in active lesions, where 41% of vessels in the highest grade for TJ alteration showed severe leakage. It is concluded that disruption of TJs in MS, affecting both paracellular and transcellular paths, contributes to BBB leakage. TJ abnormality and BBB leakage in inactive lesions suggests either failure of TJ repair or a continuing pathological process. In NAWM, it suggests either pre-lesional change or secondary damage. Clinically inapparent TJ pathology has prognostic implications and should be considered when planning disease-modifying therapy. PMID:14517850

  5. Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase-Defective eEF2K Mice

    ERIC Educational Resources Information Center

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi

    2012-01-01

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular

  6. Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase-Defective eEF2K Mice

    ERIC Educational Resources Information Center

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi

    2012-01-01

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular…

  7. Abnormal Baseline Brain Activity in Non-Depressed Parkinsons Disease and Depressed Parkinsons Disease: A Resting-State Functional Magnetic Resonance Imaging Study

    PubMed Central

    Wen, Xuyun; Wu, Xia; Liu, Jiangtao; Li, Ke; Yao, Li

    2013-01-01

    Depression is the most common psychiatric disorder observed in Parkinsons disease (PD) patients, however the neural contribution to the high rate of depression in the PD group is still unclear. In this study, we used resting-state functional magnetic resonance imaging (fMRI) to investigate the underlying neural mechanisms of depression in PD patients. Twenty-one healthy individuals and thirty-three patients with idiopathic PD, seventeen of whom were diagnosed with major depressive disorder, were recruited. An analysis of amplitude of low-frequency fluctuations (ALFF) was performed on the whole brain of all subjects. Our results showed that depressed PD patients had significantly decreased ALFF in the dorsolateral prefrontal cortex (DLPFC), the ventromedial prefrontal cortex (vMPFC) and the rostral anterior cingulated cortex (rACC) compared with non-depressed PD patients. A significant positive correlation was found between Hamilton Depression Rating Scale (HDRS) and ALFF in the DLPFC. The findings of changed ALFF in these brain regions implied depression in PD patients may be associated with abnormal activities of prefrontal-limbic network. PMID:23717467

  8. Abnormal norepinephrine metabolism in rat brain synaptosomes in phosphate depletion.

    PubMed

    Smogorzewski, M; Islam, A; Koureta, P; Massry, S G

    1993-01-01

    Abnormalities in the function of the central nervous system exist in phosphate depletion (PD). It is possible that this is due to an adverse effect of PD on the metabolism of neurotransmitters, such as norepinephrine (NE), in brain synaptosomes. We examined the effects of PD, produced by restriction of dietary phosphate intake on NE metabolism of brain synaptosomes. Synaptosomes from PD rats had significantly reduced NE content, uptake and release, elevated Km, but normal Vmax of tyrosine hydroxylase, normal Km and Vmax of monoamine oxidase, elevated resting levels of cytosolic calcium ([Ca2+]i), higher delta [Ca2+]i in response to KCl, higher delta [Ca2+]i/basal [Ca2+]i ratio, lower ATP content and reduced activity of Na(+)-K(+)-ATPase as compared to synaptosomes from pair-weighed rats. Treatment of PD rats with verapamil corrected all the synaptosomal derangements except for the elevated Km of tyrosine hydroxylase and NE content. Verapamil did not affect the metabolism of PW rats. The data demonstrate that PD causes significant derangements in NE metabolism of brain synaptosomes. Observations in the present study and in others indicate that these derangements in NE metabolism are due to the PD-induced abnormalities in the homeostasis of synaptosomal [Ca2+]i, ATP and phospholipids and in the activities of Na(+)-K(+)-ATPase and Ca(2+)-ATPase. PMID:8100685

  9. Abnormal Intrinsic Brain Activity Patterns in Patients with End-Stage Renal Disease Undergoing Peritoneal Dialysis: A Resting-State Functional MR Imaging Study.

    PubMed

    Luo, Song; Qi, Rong Feng; Wen, Ji Qiu; Zhong, Jian Hui; Kong, Xiang; Liang, Xue; Xu, Qiang; Zheng, Gang; Zhang, Zhe; Zhang, Long Jiang; Lu, Guang Ming

    2016-01-01

    Purpose To analyze the spontaneous brain activity patterns in patients with end-stage renal disease (ESRD) undergoing peritoneal dialysis (PD) by using resting-state functional magnetic resonance (MR) imaging with an amplitude of low-frequency fluctuations (ALFF) algorithm. Materials and Methods This study received institutional review board approval, and all subjects gave informed consent. Forty-four patients with ESRD, 24 of whom were undergoing PD (PD group; eight women; mean age, 34 years 8) and 20 who were not undergoing PD or hemodialysis (nondialysis group; six women; mean age, 37 years 9) and 24 healthy control subjects (eight women; mean age, 32 years 9 years) were included. All subjects underwent neuropsychologic tests, and patients with ESRD underwent laboratory testing. ALFF values were compared among the three groups. The relationship between ALFF values and clinical markers was investigated by using multiple regression analysis. Results Patients in both the PD and nondialysis groups showed lower ALFF values in default mode network regions than did healthy control subjects (P < .01, false discovery rate corrected). Patients in the PD group showed lower ALFF values than did those in the nondialysis group in the left superior parietal lobe (1.51 0.21 vs 2.01 0.40), left inferior parietal lobe (0.99 0.16 vs 1.13 0.22) and left precuneus (1.45 0.39 vs 1.77 0.41) (P < .01, corrected with simulation software). In patients in the PD group, neuropsychologic test scores correlated with ALFF values of the middle temporal gyrus and the parietal and occipital lobe, serum urea and creatinine levels negatively correlated with ALFF in some default mode network regions, and hemoglobin positively correlated with ALFF in the bilateral precuneus, precentral, and supplementary motor areas (P < .01 corrected). Conclusion Patients with ESRD who were undergoing PD showed more severe spontaneous brain activity abnormalities that correlate with cognitive impairments than did patients who were not undergoing dialysis. Elevated serum urea, creatinine, and lowered hemoglobin levels affect spontaneous brain activity in patients with ESRD. () RSNA, 2015. PMID:26053309

  10. Abnormal Brain Activation in Neurofibromatosis Type 1: A Link between Visual Processing and the Default Mode Network

    PubMed Central

    Violante, Inês R.; Ribeiro, Maria J.; Cunha, Gil; Bernardino, Inês; Duarte, João V.; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified. PMID:22723888

  11. Genes and brain malformations associated with abnormal neuron positioning.

    PubMed

    Moffat, Jeffrey J; Ka, Minhan; Jung, Eui-Man; Kim, Woo-Yang

    2015-01-01

    Neuronal positioning is a fundamental process during brain development. Abnormalities in this process cause several types of brain malformations and are linked to neurodevelopmental disorders such as autism, intellectual disability, epilepsy, and schizophrenia. Little is known about the pathogenesis of developmental brain malformations associated with abnormal neuron positioning, which has hindered research into potential treatments. However, recent advances in neurogenetics provide clues to the pathogenesis of aberrant neuronal positioning by identifying causative genes. This may help us form a foundation upon which therapeutic tools can be developed. In this review, we first provide a brief overview of neural development and migration, as they relate to defects in neuronal positioning. We then discuss recent progress in identifying genes and brain malformations associated with aberrant neuronal positioning during human brain development. PMID:26541977

  12. Brain Anatomical Abnormalities in High-Risk Individuals, First-Episode, and Chronic Schizophrenia: An Activation Likelihood Estimation Meta-analysis of Illness Progression

    PubMed Central

    Chan, Raymond C. K.; Di, Xin; McAlonan, Grainne M.; Gong, Qi-yong

    2011-01-01

    Objective: The present study reviewed voxel-based morphometry (VBM) studies on high-risk individuals with schizophrenia, patients experiencing their first-episode schizophrenia (FES), and those with chronic schizophrenia. We predicted that gray matter abnormalities would show progressive changes, with most extensive abnormalities in the chronic group relative to FES and least in the high-risk group. Method: Forty-one VBM studies were reviewed. Eight high-risk studies, 14 FES studies, and 19 chronic studies were analyzed using anatomical likelihood estimation meta-analysis. Results: Less gray matter in the high-risk group relative to controls was observed in anterior cingulate regions, left amygdala, and right insula. Lower gray matter volumes in FES compared with controls were also found in the anterior cingulate and right insula but not the amygdala. Lower gray matter volumes in the chronic group were most extensive, incorporating similar regions to those found in FES and high-risk groups but extending to superior temporal gyri, thalamus, posterior cingulate, and parahippocampal gryus. Subtraction analysis revealed less frontotemporal, striatal, and cerebellar gray matter in FES than the high-risk group; the high-risk group had less gray matter in left subcallosal gyrus, left amygdala, and left inferior frontal gyrus compared with FES. Subtraction analysis confirmed lower gray matter volumes through ventral-dorsal anterior cingulate, right insula, left amygdala and thalamus in chronic schizophrenia relative to FES. Conclusions: Frontotemporal brain structural abnormalities are evident in nonpsychotic individuals at high risk of developing schizophrenia. The present meta-analysis indicates that these gray matter abnormalities become more extensive through first-episode and chronic illness. Thus, schizophrenia appears to be a progressive cortico-striato-thalamic loop disorder. PMID:19633214

  13. Structural brain abnormalities in cervical dystonia

    PubMed Central

    2013-01-01

    Background Idiopathic cervical dystonia is characterized by involuntary spasms, tremors or jerks. It is not restricted to a disturbance in the basal ganglia system because non-conventional voxel-based MRI morphometry (VBM) and diffusion tensor imaging (DTI) have detected numerous regional changes in the brains of patients. In this study scans of 24 patients with cervical dystonia and 24 age-and sex-matched controls were analysed using VBM, DTI and magnetization transfer imaging (MTI) using a voxel-based approach and a region-of-interest analysis. Results were correlated with UDRS, TWSTRS and disease duration. Results We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia. Conclusions Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems. PMID:24131497

  14. Mapping brain volumetric abnormalities in never-treated pathological gamblers.

    PubMed

    Fuentes, Daniel; Rzezak, Patricia; Pereira, Fabricio R; Malloy-Diniz, Leandro F; Santos, Luciana C; Duran, Fbio L S; Barreiros, Maria A; Castro, Cludio C; Busatto, Geraldo F; Tavares, Hermano; Gorenstein, Clarice

    2015-06-30

    Several magnetic resonance imaging (MRI) studies to date have investigated brain abnormalities in association with the diagnosis of pathological gambling (PG), but very few of these have specifically searched for brain volume differences between PG patients and healthy volunteers (HV). To investigate brain volume differences between PG patients and HV, 30 male never-treated PG patients (DSM-IV-TR criteria) and 30 closely matched HV without history of psychiatric disorders in the past 2 years underwent structural magnetic resonance imaging with a 1.5-T instrument. Using Freesurfer software, we performed an exploratory whole-brain voxelwise volume comparison between the PG group and the HV group, with false-discovery rate correction for multiple comparisons (p < 0.05). Using a more flexible statistical threshold (p < 0.01, uncorrected for multiple comparisons), we also measured absolute and regional volumes of several brain structures separately. The voxelwise analysis showed no clusters of significant regional differences between the PG and HV groups. The additional analyses of absolute and regional brain volumes showed increased absolute global gray matter volumes in PG patients relative to the HV group, as well as relatively decreased volumes specifically in the left putamen, right thalamus and right hippocampus (corrected for total gray matter). Our findings indicate that structural brain abnormalities may contribute to the functional changes associated with the symptoms of PG, and they highlight the relevance of the brain reward system to the pathophysiology of this disorder. PMID:25952288

  15. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  16. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial

  17. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  18. Brain abnormalities in patients with Beckwith-Wiedemann syndrome.

    PubMed

    Gardiner, Kate; Chitayat, David; Choufani, Sanaa; Shuman, Cheryl; Blaser, Susan; Terespolsky, Deborah; Farrell, Sandra; Reiss, Rosemary; Wodak, Shoshana; Pu, Shuye; Ray, Peter N; Baskin, Berivan; Weksberg, Rosanna

    2012-06-01

    Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder with variability in clinical manifestations and molecular causes. In most cases, patients with BWS have normal development. Cases with developmental delay are usually attributed to neonatal hypoglycemia or chromosome abnormalities involving copy number variation for genes beyond the critical BWS region at 11p15.5. Brain abnormalities have not previously been recognized within the BWS phenotypic spectrum. We report on seven cases of BWS associated with posterior fossa abnormalities. Of these, two cases presented with Blake's pouch cyst, two with Dandy-Walker variant (DWV; hypoplasia of the inferior part of the vermis), one with Dandy-Walker malformation (DWM) and one with a complex of DWM, dysgenesis of the corpus callosum and brain stem abnormality. In all these cases, molecular findings involved the centromeric imprinted domain on chromosome locus 11p15.5, which includes imprinting center 2 (IC2) and the imprinted growth suppressor gene, CDKN1C. Three cases had loss of methylation at IC2, two had CDKN1C mutations, and one had loss of methylation at IC2 and a microdeletion. In one case no mutation/methylation abnormality was detected. These findings together with previously reported correlations suggest that genes in imprinted domain 2 at 11p15.5 are involved in normal midline development of several organs including the brain. Our data suggest that brain malformations may present as a finding within the BWS phenotype when the molecular etiology involves imprinted domain 2. Brain imaging may be useful in identifying such malformations in individuals with BWS and neurodevelopmental issues. PMID:22585446

  19. Abnormal brain activation of adolescent internet addict in a ball-throwing animation task: possible neural correlates of disembodiment revealed by fMRI.

    PubMed

    Kim, Yeoung-Rang; Son, Jung-Woo; Lee, Sang-Ick; Shin, Chul-Jin; Kim, Sie-Kyeong; Ju, Gawon; Choi, Won-Hee; Oh, Jong-Hyun; Lee, Seungbok; Jo, Seongwoo; Ha, Tae Hyon

    2012-10-01

    While adolescent internet addicts are immersed in cyberspace, they are easily able to experience 'disembodied state'. The purposes of this study were to investigate the difference of brain activity between adolescent internet addicts and normal adolescents in a state of disembodiment, and to find the correlation between the activities of disembodiment-related areas and the behavioral characteristics related to internet addiction. The fMRI images were taken while the addiction group (N=17) and the control group (N=17) were asked to perform the task composed with ball-throwing animations. The task reflected on either self-agency about ball-throwing or location of a ball. And each block was shown with either different (Changing View) or same animations (Fixed View). The disembodiment-related condition was the interaction between Agency Task and Changing View. Within-group analyses revealed that the addiction group exhibited higher activation in the thalamus, bilateral precentral area, bilateral middle frontal area, and the area around the right temporo-parietal junction. And between-group analyses showed that the addiction group exhibited higher activation in the area near the left temporo-parieto-occipital junction, right parahippocampal area, and other areas than the control group. Finally, the duration of internet use was significantly correlated with the activity of posterior area of left middle temporal gyrus in the addiction group. These results show that the disembodiment-related activation of the brain is easily manifested in adolescent internet addicts. Internet addiction of adolescents could be significantly unfavorable for their brain development related with identity formation. PMID:22687465

  20. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  1. Volume estimation of brain abnormalities in MRI data

    NASA Astrophysics Data System (ADS)

    Suprijadi, Pratama, S. H.; Haryanto, F.

    2014-02-01

    The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.

  2. Midline Brain Abnormalities Across Psychotic and Mood Disorders.

    PubMed

    Landin-Romero, Ramn; Amann, Benedikt L; Sarr, Salvador; Guerrero-Pedraza, Amalia; Vicens, Victor; Rodriguez-Cano, Elena; Vieta, Eduard; Salvador, Raymond; Pomarol-Clotet, Edith; Radua, Joaquim

    2016-01-01

    Patients with schizophrenia are known to have increased prevalence of abnormalities in midline brain structures, such as a failure of the septum pellucidum to fuse (cavum septum pellucidum) and the absence of the adhesio interthalamica. This is the first study to investigate the prevalence of these abnormalities across a large multidiagnostic sample. Presence of cavum septum pellucidum and absence of the adhesio interthalamica was assessed in 639 patients with chronic schizophrenia, delusional disorder, schizoaffective disorder, bipolar disorder, major depressive disorder, or a first episode of psychosis, mania or unipolar depression. This was compared with 223 healthy controls using logistic-regression-derived odds ratios (OR). Patients with psychotic or mood disorders showed an increased prevalence of both abnormalities (OR of cavum septum pellucidum = 2.1, OR of absence of the adhesio interthalamica = 2.6, OR of both cavum septum pellucidum and absence of the adhesio interthalamica = 3.8, all P < .001). This increased prevalence was separately observed in nearly all disorders as well as after controlling for potential confounding factors. This study supports a general increased prevalence of midline brain abnormalities across mood and psychotic disorders. This nonspecificity may suggest that these disorders share a common neurodevelopmental etiology. PMID:26187283

  3. Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO)--conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development.

    PubMed

    Girardi, G; Fraser, J; Lennen, R; Vontell, R; Jansen, M; Hutchison, G

    2015-08-01

    In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders. PMID:25245499

  4. Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO) - conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development

    PubMed Central

    Girardi, G; Fraser, J; Lennen, R; Vontell, R; Jansen, M; Hutchison, G

    2015-01-01

    In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders. PMID:25245499

  5. Abuse of amphetamines and structural abnormalities in the brain.

    PubMed

    Berman, Steven; O'Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D

    2008-10-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques including manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959

  6. Abuse of Amphetamines and Structural Abnormalities in Brain

    PubMed Central

    Berman, Steven; ONeill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.

    2009-01-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959

  7. Structural brain MRI abnormalities in pediatric patients with migraine.

    PubMed

    Rocca, Maria A; Messina, Roberta; Colombo, Bruno; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2014-02-01

    Morphometric MRI studies in adult patients with migraine have consistently demonstrated atrophy of several gray matter (GM) regions involved in pain processing. We explored the regional distribution of GM and white matter (WM) abnormalities in pediatric patients with episodic migraine and their correlations with disease clinical manifestations. Using a 3.0T scanner, brain T2-weighted and 3D T1-weighted scans were acquired from 12 pediatric migraine patients and 15 age-matched healthy controls. GM and WM volumetric abnormalities were estimated using voxel-based morphometry (p<0.05, family-wise error corrected). Compared to controls, pediatric migraine patients experienced a significant GM atrophy of several regions of the frontal and temporal lobes which are part of the pain-processing network. They also had an increased volume of the right putamen. The left fusiform gyrus had an increased volume in patients with aura compared to patients without aura and controls, whereas it was significantly atrophied in patients without aura when compared to the other two groups. No abnormalities of WM volume were detected. In migraine patients, regional GM atrophy was not correlated with disease duration and attack frequency, whereas a negative correlation was found between increased volume of the putamen and disease duration (r=-0.95, p<0.05). These results show that GM morphometric abnormalities do occur in pediatric patients with migraine. The presence of such abnormalities early in the disease course, and the absence of correlation with patient clinical characteristics suggest that they may represent a phenotypic biomarker of this condition. PMID:24305994

  8. Neuroanatomical abnormalities in chronic tinnitus in the human brain

    PubMed Central

    Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.

    2014-01-01

    In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904

  9. Chromosome abnormalities in chronic active hepatitis

    PubMed Central

    Stefanescu, D. T.; Moanga, M.; Teodorescu, M.; Brucher, J.

    1972-01-01

    An investigation on human peripheral blood lymphocyte chromosomes in chronic active hepatitis was carried out. A higher percentage of chromatid and chromosome lesions was recorded in all patients studied as compared with control groupsnormal individuals, healthy subjects who had suffered from acute viral hepatitis, patients with alcoholic liver disease, and patients with mechanical jaundice due to cancer. The possible origin of these abnormalities is discussed. PMID:5076805

  10. Neuroendocrine abnormalities in patients with traumatic brain injury

    NASA Technical Reports Server (NTRS)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture. Increased intracranial pressure, which releases vasopressin by altering normal hypothalamic anatomy, may represent a unique type of stress to neuroendocrine systems and may contribute to adrenal secretion by a mechanism that requires intact brainstem function. Endocrine function should be monitored in brain-injured patients with basilar skull fractures and protracted posttraumatic amnesia, and patients with SIADH or DI should be closely monitored for other endocrine abnormalities.

  11. Anatomical and functional brain abnormalities in unmedicated major depressive disorder

    PubMed Central

    Yang, Xiao; Ma, Xiaojuan; Li, Mingli; Liu, Ye; Zhang, Jian; Huang, Bin; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong

    2015-01-01

    Background Using magnetic resonance imaging (MRI) and resting-state functional magnetic resonance imaging (rsfMRI) to explore the mechanism of brain structure and function in unmedicated patients with major depressive disorder (MDD). Patients and methods Fifty patients with MDD and 50 matched healthy control participants free of psychotropic medication underwent high-resolution structural and rsfMRI scanning. Optimized diffeomorphic anatomical registration through exponentiated lie algebra and the Data Processing Assistant for rsfMRI were used to find potential differences in gray-matter volume (GMV) and regional homogeneity (ReHo) between the two groups. A Pearson correlation model was used to analyze associations of morphometric and functional changes with clinical symptoms. Results Compared to healthy controls, patients with MDD showed significant GMV increase in the left posterior cingulate gyrus and GMV decrease in the left lingual gyrus (P<0.001, uncorrected). In ReHo analysis, values were significantly increased in the left precuneus and decreased in the left putamen (P<0.001, uncorrected) in patients with MDD compared to healthy controls. There was no overlap between anatomical and functional changes. Linear correlation suggested no significant correlation between mean GMV values within regions with anatomical abnormality and ReHo values in regions with functional abnormality in the patient group. These changes were not significantly correlated with symptom severity. Conclusion Our study suggests a dissociation pattern of brain regions with anatomical and functional alterations in unmedicated patients with MDD, especially with regard to GMV and ReHo. PMID:26425096

  12. Abnormal Brain Iron Homeostasis in Human and Animal Prion Disorders

    PubMed Central

    Mohan, Maradumane L.; Cohen, Mark L.; Chen, Fusong; Kong, Qingzhong; Bartz, Jason; Singh, Neena

    2009-01-01

    Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrPSc), a ?-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrPC). Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s) leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion diseaseaffected human, hamster, and mouse brains show increased total and redox-active Fe (II) iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD)affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrPSc as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrPSc-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrPScferritin complexes induces a state of iron bio-insufficiency in prion diseaseaffected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These data implicate redox-iron in prion diseaseassociated neurotoxicity, a novel observation with significant implications for prion disease pathogenesis. PMID:19283067

  13. Blood-Brain Barrier Abnormalities Caused by HIV-1 gp120: Mechanistic and Therapeutic Implications

    PubMed Central

    Louboutin, Jean-Pierre; Strayer, David S.

    2012-01-01

    The blood-brain barrier (BBB) is compromised in many systemic and CNS diseases, including HIV-1 infection of the brain. We studied BBB disruption caused by HIV-1 envelope glycoprotein 120 (gp120) as a model. Exposure to gp120, whether acute [by direct intra-caudate-putamen (CP) injection] or chronic [using SV(gp120), an experimental model of ongoing production of gp120] disrupted the BBB, and led to leakage of vascular contents. Gp120 was directly toxic to brain endothelial cells. Abnormalities of the BBB reflect the activity of matrix metalloproteinases (MMPs). These target laminin and attack the tight junctions between endothelial cells and BBB basal laminae. MMP-2 and MMP-9 were upregulated following gp120-injection. Gp120 reduced laminin and tight junction proteins. Reactive oxygen species (ROS) activate MMPs. Injecting gp120 induced lipid peroxidation. Gene transfer of antioxidant enzymes protected against gp120-induced BBB abnormalities. NMDA upregulates the proform of MMP-9. Using the NMDA receptor (NMDAR-1) inhibitor, memantine, we observed partial protection from gp120-induced BBB injury. Thus, (1) HIV-envelope gp120 disrupts the BBB; (2) this occurs via lesions in brain microvessels, MMP activation and degradation of vascular basement membrane and vascular tight junctions; (3) NMDAR-1 activation plays a role in this BBB injury; and (4) antioxidant gene delivery as well as NMDAR-1 antagonists may protect the BBB. PMID:22448134

  14. Functional brain network abnormalities during verbal working memory performance in adolescents and young adults with dyslexia.

    PubMed

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional neuroanatomy underlying cognitive dysfunction in dyslexia. In this study, functional magnetic resonance imaging and multivariate analytic techniques were used to investigate patterns of functional connectivity during a verbal WM task in individuals with dyslexia (n=12) and control subjects (n=13). Dyslexics were not significantly slower than controls; however, they were less accurate with increasing WM demand. Independent component analysis identified 18 independent components (ICs) among which two ICs were selected for further analyses. These ICs included functional networks which were positively correlated with the delay period of the activation task in both healthy controls and dyslexics. Connectivity abnormalities in dyslexics were detected within both networks of interest: within a "phonological" left-lateralized prefrontal network, increased functional connectivity was found in left prefrontal and inferior parietal regions. Within an "executive" bilateral frontoparietal network, dyslexics showed a decreased connectivity pattern comprising bilateral dorsolateral prefrontal and posterior parietal regions, while increased connectivity was found in the left angular gyrus, the left hippocampal cortex and the right thalamus. The functional connectivity strength in the latter regions was associated with WM task accuracy and with the numbers of errors during a spelling test. These data suggest functional connectivity abnormalities in two spatiotemporally dissociable brain networks underlying WM dysfunction in individuals with dyslexia. PMID:19782695

  15. Mapping abnormal subcortical brain morphometry in an elderly HIV + cohort

    PubMed Central

    Wade, Benjamin S.C.; Valcour, Victor G.; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H.; Gutman, Boris A.; Thompson, Paul M.

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%. PMID:26640768

  16. The Brain Activity Map

    PubMed Central

    Alivisatos, A. Paul; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Greenspan, Ralph J.; McEuen, Paul L.; Roukes, Michael L.; Sejnowski, Terrence J.; Weiss, Paul S.; Yuste, Rafael

    2013-01-01

    Neuroscientists have made impressive advances in understanding the microscale function of single neurons and the macroscale activity of the human brain. One can probe molecular and biophysical aspects of individual neurons and also view the human brain in action with magnetic resonance imaging (MRI) or magnetoencephalography (MEG). However, the mechanisms of perception, cognition, and action remain mysterious because they emerge from the real-time interactions of large sets of neurons in densely interconnected, widespread neural circuits. PMID:23470729

  17. Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation.

    PubMed

    Eccles, J A; Garfinkel, S N; Harrison, N A; Ward, J; Taylor, R E; Bewley, A P; Critchley, H D

    2015-10-01

    Some patients experience skin sensations of infestation and contamination that are elusive to proximate dermatological explanation. We undertook a functional magnetic resonance imaging study of the brain to demonstrate, for the first time, that central processing of infestation-relevant stimuli is altered in patients with such abnormal skin sensations. We show differences in neural activity within amygdala, insula, middle temporal lobe and frontal cortices. Patients also demonstrated altered measures of self-representation, with poorer sensitivity to internal bodily (interoceptive) signals and greater susceptibility to take on an illusion of body ownership: the rubber hand illusion. Together, these findings highlight a potential model for the maintenance of abnormal skin sensations, encompassing heightened threat processing within amygdala, increased salience of skin representations within insula and compromised prefrontal capacity for self-regulation and appraisal. PMID:26260311

  18. Co-localisation of abnormal brain structure and function in specific language impairment

    PubMed Central

    Badcock, Nicholas A.; Bishop, Dorothy V.M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. PMID:22137677

  19. Abnormalities in brain systems supporting individuation and enumeration in autism.

    PubMed

    O'Hearn, Kirsten; Velanova, Katerina; Lynn, Andrew; Wright, Catherine; Hallquist, Michael; Minshew, Nancy; Luna, Beatriz

    2016-01-01

    Previous work indicates that adults with autism display a decreased capacity when rapidly enumerating small sets of elements (i.e., subitizing), compared to typically developing (TD) individuals. This ability is crucial for fundamental visual functions such as object individuation and parallel processing. Thus, the deficit in autism suggests limits in these skills. To examine the neural basis of this limitation, adults with and without high functioning autism rapidly enumerated 1 to 8 randomly located squares during a neuroimaging study. Typically, adults are thought to use parallel visual processes to quantify up to three or four elements, and serial processes to enumerate more (5+) elements. We hypothesized that parietal lobe regions associated with counting would be recruited with smaller sets of elements in adults with autism, compared to TD adults. Consistent with this hypothesis, activation in parietal regions increased with smaller set sizes in adults with autism compared to TD adults. Increased activation for three elements was evident in several regions, including those thought to underlie subitizing. In addition, regions specific to the counting range in TD adults were often equally active for set sizes in the subitizing range in the adults with autism. Finally, significant deactivation was evident in TD adults, presumably reflecting relative suppression of regions specialized for competing processes, but was not apparent in adults with autism. These differences in brain function in adults with autism on a simple enumeration task suggest atypical brain organization and function that is likely to impact most visual tasks, especially those with multiple elements. Autism Res 2015. 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26011184

  20. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain

    PubMed Central

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABAAR). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1–6, β1–3 or γ2 GABAAR subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABAAR subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABAARs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABAAR subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N=16) and comparison (N=14) subjects and found evidence of abnormal localization of the β1 and β2 GABAAR subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β252 kDa), 50 kDa (β250 kDa) and 48 kDa (β248 kDa). In the ER, we found increased total β2 GABAAR subunit (β2ALL) expression driven by increased β250 kDa, a decreased ratio of β248 kDa:β2ALL and an increased ratio of β250 kDa:β248 kDa. Decreased ratios of β1:β2ALL and β1:β250 kDa in both the ER and SYN fractions and an increased ratio of β252 kDa:β248 kDa at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABAARs. PMID:26241350

  1. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%. PMID:9596157

  2. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional

  3. Infantile Autism and Computerized Tomography Brain-Scan Findings: Specific versus Nonspecific Abnormalities.

    ERIC Educational Resources Information Center

    Balottin, Umberto; And Others

    1989-01-01

    The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)

  4. Functional brain networks and abnormal connectivity in the movement disorders

    PubMed Central

    Poston, Kathleen L.; Eidelberg, David

    2012-01-01

    Clinical manifestations of movement disorders, such as Parkinson’s disease (PD) and dystonia, arise from neurophysiological changes within the cortico-striato-pallidothalamocortical (CSPTC) and cerebello-thalamo-cortical (CbTC) circuits. Neuroimaging techniques that probe connectivity within these circuits can be used to understand how these disorders develop as well as identify potential targets for medical and surgical therapies. Indeed, network analysis of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has identified abnormal metabolic networks associated with the cardinal motor symptoms of PD, such as akinesia and tremor, as well as PD-related cognitive dysfunction. More recent task-based and resting state functional magnetic resonance imaging studies have reproduced several of the altered connectivity patterns identified in these abnormal PD-related networks. A similar network analysis approach in dystonia revealed abnormal disease related metabolic patterns in both manifesting and non-manifesting carriers of dystonia mutations. Other multimodal imaging approaches using magnetic resonance diffusion tensor imaging in patients with primary genetic dystonia suggest abnormal connectivity within the CbTC circuits mediate the clinical manifestations of this inherited neurodevelopmental disorder. Ongoing developments in functional imaging and future studies in early patients are likely to enhance our understanding of these movement disorders and guide novel targets for future therapies. PMID:22206967

  5. Structural brain imaging abnormalities associated with schizophrenia and partial trisomy of chromosome 5

    PubMed Central

    HONER, WILLIAM G.; BASSETT, ANNE S.; MacEWAN, G. WILLIAM; HURWITZ, TREVOR; LI, DAVID K.B.; HILAL, SADEK; PROHOVNIK, ISAK

    2011-01-01

    SYNOPSIS Chromosomal abnormalities occurring in association with mental illness provide a unique opportunity to study the interaction of genetic abnormalities and the brain in mental illness. Four individuals from a family in which schizophrenia was found to cosegregate with a partial trisomy of chromosome 5 were studied with computed tomography and magnetic resonance imaging. Temporal lobe atrophy was found in the two trisomic males and in the asymptomatic balanced translocation female. In addition, a large cavum septum pellucidum and a cavum vergae were found in the older trisomic individual. Scans from the normal male were free of abnormalities. These results suggest that molecular studies of the translocation breakpoints in this chromosomal abnormality may be of interest, and encourage further studies of brain structure in other chromosomal abnormalities associated with psychosis. PMID:1615118

  6. Abnormal deposits of chromium in the pathological human brain.

    PubMed Central

    Duckett, S

    1986-01-01

    Three patients presented with encephalopathies: an undiagnosed degenerative disease of the brain, a degenerative cerebral disease in a patient with a myeloma but without a myelomatous deposit in the CNS and a malignant astrocytoma. Perivascular pallidal deposits (vascular siderosis) containing chromium, phosphorus and calcium plus sometimes traces of other elements were present in the three cases. Such deposits were present in the pallidal parenchyma and around vessels in the cerebellum in one case. Calcium and phosphorus are always present in any CNS calcification but the presence of chromium has not been reported. Chromium and its compounds (ingested, injected or inhaled) are toxic to humans and animals in trace doses. Approximately 900 cases of chromium intoxication have been reported and usually have had dermatological or pulmonary lesions (including cancer) but there is no report of involvement of the CNS. Sublethal doses of chromium nitrate injected intraperitoneally in rats and rabbits results in the presence of chromium in the brain. A thorough investigation was made to find the source of the chromium in these patients. Chromium was found to be present in trace amounts in the radiological contrast agents administered to these patients and in the KCl replacement solution and in mylanta, an antacid, given to one case. The evidence that chromium induced pathological changes in these three brains is circumstantial but shows that chromium can penetrate the human brain. This study indicates that vascular siderosis found in the brains of the majority of middle-aged and elderly humans is not simply an anecdotal pathological curiosity, but that it can serve as a route of entry for toxic products into the brain. Images PMID:3958742

  7. Chronic cholinergic imbalances promote brain diffusion and transport abnormalities.

    PubMed

    Meshorer, Eran; Biton, Inbal E; Ben-Shaul, Yoram; Ben-Ari, Shani; Assaf, Yaniv; Soreq, Hermona; Cohen, Yoram

    2005-06-01

    Cholinergic imbalances occur after traumatic effects and in the initial stages of neurodegenerative diseases, but their long-lasting effects remained largely unexplained. To address this, we used TgS transgenic mice constitutively overexpressing synaptic acetylcholinesterase (AChE-S) and presenting a complex phenotype of progressive neurodeterioration. T1- and T2-weighted magnetic resonance (MR) brain images appeared similar. However, diffusion-weighted MRI showed decreased baseline water apparent diffusion coefficient in the brains of TgS animals. Furthermore, contrast-enhanced MRI after gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) injection demonstrated slower recovery of normal signals in the TgS brains than with controls. Perfusion MR imaging and difference T1 maps calculated from pre- postcontrast T1-weighted MR images indicated accumulation of more Gd-DTPA molecules in the TgS brains than in the parent strain, reflecting impaired blood-brain barrier (BBB) functioning in these transgenic mice. To explore the molecular mechanism(s) underlying these global phenotypes, we performed microarray analysis in the stress-controlling prefrontal cortex of TgS vs. strain-matched wild-type animals. Profound overexpression of numerous ion channels, transporters, and adhesion genes was confirmed by real time RT-PCR tests. Immunohistochemical and immunoblot analyses revealed corresponding increases in the level and cellular distributions of the chloride channel CLCN3 and the water channel AQP4, both of which contribute to BBB maintenance. Our study attributes to balanced cholinergic neurotransmission, a central role in the brain's maintenance of water diffusion and ion transport, and indicates that chronic impairments in this maintenance facilitate neurodeterioration through interference with BBB function. PMID:15923401

  8. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    ERIC Educational Resources Information Center

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.

  9. Childhood Onset Schizophrenia: Cortical Brain Abnormalities as Young Adults

    ERIC Educational Resources Information Center

    Greenstein, Deanna; Lerch, Jason; Shaw, Philip; Clasen, Liv; Giedd, Jay; Gochman, Peter; Rapoport, Judith; Gogtay, Nitin

    2006-01-01

    Background: Childhood onset schizophrenia (COS) is a rare but severe form of the adult onset disorder. While structural brain imaging studies show robust, widespread, and progressive gray matter loss in COS during adolescence, there have been no longitudinal studies of sufficient duration to examine comparability with the more common adult onset

  10. Thrombotic thrombocytopenic purpura: MR demonstration of reversible brain abnormalities

    SciTech Connect

    D'Aprile, P.; Carella, A.; Pagliarulo, R. ); Farchi, G. )

    1994-01-01

    We report a case of thrombotic thrombocytopenic purpura evaluated by MR, Multiple hyperintense foci on the TS-weighted images, observed principally in the brain stem and in the region of the basal nuclei, and neurologic signs disappeared after 15 days of therapy. 6 refs., 2 figs.

  11. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    ERIC Educational Resources Information Center

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  12. Cardiac Output as a Potential Risk Factor for Abnormal Brain Aging

    PubMed Central

    Jefferson, Angela L.

    2011-01-01

    Heart failure has served as a clinically useful model for understanding how cardiac dysfunction is associated with neuroanatomic and neuropsychological changes in aging adults, theoretically because systemic hypoperfusion disrupts cerebral perfusion, contributing to clinical brain injury. This review summarizes more recent data suggesting that subtle cardiac dysfunction or low normal levels of cardiac function, as quantified by cardiac output, are related to cognitive and neuroimaging markers of abnormal brain aging in the absence of heart failure or severe cardiomyopathy. Additional work is required, but such associations suggest that reduced cardiac output may be a risk factor for Alzheimers disease (AD) and abnormal brain aging through the propagation or exacerbation of neurovascular processes, microembolism due to thrombosis, and AD neuropathological processes. Such mechanistic pathways are discussed in the context of a theoretical model that posits a direct pathway of injury between cardiac output and abnormal brain aging (i.e., reduced systemic blood flow disrupts cerebral blood flow homeostasis), contributing to clinical brain injury, independent of shared risk factors for both cardiac dysfunction and abnormal brain aging. PMID:20413856

  13. Brain Abnormalities in HIV and Stimulant Users: Interventions and Prevention

    PubMed Central

    Chang, Linda; Shoptaw, Steven; Normand, Jacques

    2014-01-01

    The session, HIV and other Infectious Diseases, was chaired by Dr. Jacques Normand, Director of the AIDS Research Program of the U.S. National Institute on Drug Abuse. The two presenters (and their presentation topics) were: Dr. Linda Chang (Neural Correlates of Cognitive Deficits and Training Effects on Brain Function in HIV-infected Individuals) and Dr. Steven Shoptaw (HIV Prevention in Substance Users). PMID:25264417

  14. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior

    PubMed Central

    Hunt, Robert F.; Girskis, Kelly M.; Rubenstein, John L.; AlvarezBuylla, Arturo; Baraban, Scott C.

    2013-01-01

    Impaired GABAmediated neurotransmission has been implicated in many neurologic diseases including epilepsy, intellectual disability, and psychiatric disorders. Here we report that inhibitory neuron transplantation into the hippocampus of adult mice with confirmed epilepsy at the time of grafting dramatically reduced the occurrence of electrographic seizures and restored behavioral deficits in spatial learning, hyperactivity, and the aggressive response to handling. In the recipient brain, GABA progenitors migrated up to 1500 ?m from the injection site, expressed genes and proteins characteristic for interneurons, differentiated into functional inhibitory neurons, and received excitatory synaptic input. In contrast to hippocampus, cell grafts into basolateral amygdala rescued the hyperactivity deficit but did not alter seizure activity or other abnormal behaviors. Our results highlight a critical role for interneurons in epilepsy and suggest that interneuron cell transplantation is a powerful approach to halt seizures and rescue accompanying deficits in severely epileptic mice. PMID:23644485

  15. Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development.

    PubMed

    Muellner, Julia; Delmaire, Christine; Valabrégue, Romain; Schüpbach, Michael; Mangin, Jean-François; Vidailhet, Marie; Lehéricy, Stéphane; Hartmann, Andreas; Worbe, Yulia

    2015-04-15

    Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. PMID:25820811

  16. Abnormal brain structure in youth who commit homicide

    PubMed Central

    Cope, L.M.; Ermer, E.; Gaudet, L.M.; Steele, V.R.; Eckhardt, A.L.; Arbabshirani, M.R.; Caldwell, M.F.; Calhoun, V.D.; Kiehl, K.A.

    2014-01-01

    Background Violence that leads to homicide results in an extreme financial and emotional burden on society. Juveniles who commit homicide are often tried in adult court and typically spend the majority of their lives in prison. Despite the enormous costs associated with homicidal behavior, there have been no serious neuroscientific studies examining youth who commit homicide. Methods Here we use neuroimaging and voxel-based morphometry to examine brain gray matter in incarcerated male adolescents who committed homicide (n = 20) compared with incarcerated offenders who did not commit homicide (n = 135). Two additional control groups were used to understand further the nature of gray matter differences: incarcerated offenders who did not commit homicide matched on important demographic and psychometric variables (n = 20) and healthy participants from the community (n = 21). Results Compared with incarcerated adolescents who did not commit homicide (n = 135), incarcerated homicide offenders had reduced gray matter volumes in the medial and lateral temporal lobes, including the hippocampus and posterior insula. Feature selection and support vector machine learning classified offenders into the homicide and non-homicide groups with 81% overall accuracy. Conclusions Our results indicate that brain structural differences may help identify those at the highest risk for committing serious violent offenses. PMID:24936430

  17. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis.

    PubMed

    Holtzer, Roee; Verghese, Joe; Allali, Gilles; Izzetoglu, Meltem; Wang, Cuiling; Mahoney, Jeannette R

    2016-03-01

    The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait abnormalities (NGA) would moderate associations between brain activations, gait and cognitive performance. Using functional near-infrared spectroscopy we assessed changes in oxygenated hemoglobin levels in the pre-frontal cortex (PFC) during normal walk and walk while talk (WWT) conditions in a large cohort of non-demented older adults (n = 236; age = 75.5 ± 6.49 years; female = 51.7 %). NGA were defined as central (due to brain diseases) or peripheral (neuropathic gait) following a standardized neurological examination protocol. Double dissociations between brain activations and behavior emerged as a function of NGA. Higher oxygenation levels during WWT were related to better cognitive performance (estimate = 0.145; p < 0.001) but slower gait velocity (estimate = -6.336, p < 0.05) among normals. In contrast, higher oxygenation levels during WWT among individuals with peripheral NGA were associated with worse cognitive performance (estimate = -0.355; p < 0.001) but faster gait velocity (estimate = 14.855; p < 0.05). Increased activation in the PFC during locomotion may have a compensatory function that is designed to support gait among individuals with peripheral NGA. PMID:26613725

  18. Frequency of structural brain abnormalities among adult diagnosed with Attention - Deficit/Hyperactivity Disorder.

    PubMed

    Bakhshani, Nour-Mohammad; Babaei, Samaneh; Raghibi, Mahvash

    2014-01-01

    Although ADHD is known as a childhood disorder, it is prevalent among adults as well. Several studies have been conducted on the etiology of this disorder and its neurobiological and neuroanatomical manifestations in children, but the knowledge of adult ADHD is not enough. The present research was aimed at studying the structural brain abnormalities in adult ADHD cases. Fifteen adult patients diagnosed with ADHD, developed during their childhood, were selected for this study. In addition to clinical interview and Magnetic Resonance Imaging (MRI), all the participants were asked to fill the (ASRS-VI.I). The results indicated that about 40 % of adults with ADHD suffer from structural brain abnormalities. The results of MRI showed that 100% of the individuals with inattentive and combined types of ADHD were structurally damaged but MRI results did not reveal any structural brain abnormalities in hyperactive participants. The results of the present study are somewhat consistent with the results of previous studies. In general, any brain injury in the region related to cognitive processes (such as attention, memorization, and prevention) and brain circuits related to motor functions and motivation can contribute a role to the induction of ADHD symptoms. It is recommended to conduct more researches in the future with larger samples using other methods that are capable of assessing brain performance and the level and mechanism of the functions of neurotransmitters and neuronal modulators. PMID:24373266

  19. Absence of Glial α-Dystrobrevin Causes Abnormalities of the Blood-Brain Barrier and Progressive Brain Edema*

    PubMed Central

    Lien, Chun Fu; Mohanta, Sarajo Kumar; Frontczak-Baniewicz, Malgorzata; Swinny, Jerome D.; Zablocka, Barbara; Górecki, Dariusz C.

    2012-01-01

    The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction. PMID:23043099

  20. Immunological abnormalities in autoimmune chronic active hepatitis.

    PubMed

    Lin, R Y; Green, L J; Winny, D; Ramaswamy, G

    1989-11-01

    Autoimmune chronic active hepatitis is often associated with clinical and laboratory features that resemble those observed in systemic lupus erythematosus (SLE). We describe a 24-year-old woman with autoimmune chronic active hepatitis who was studied for serologic markers of autoimmunity and for immune clearance in terms of in vivo Fc receptor function. A markedly depressed immune clearance and splenic uptake of radiolabelled and IgG coated autologous erythrocytes was observed. The magnitude of this defect equaled or exceeded the most severe defects seen in a group of patients with SLE. This phenomenon was associated with markedly depressed serum C4 levels, a variably positive Sm antibody, and normal circulating immune complex concentrations. In addition, many clinical extrahepatic manifestations meeting criteria for classifying SLE were present. These findings further support the concept of autoimmune chronic active hepatitis and SLE being part of spectrum of overlapping autoimmune diseases. PMID:2600949

  1. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    PubMed Central

    Januonis, Skirmantas

    2005-01-01

    Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies. PMID:16029508

  2. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms.

    PubMed

    Goedert, M; Spillantini, M G; Cairns, N J; Crowther, R A

    1992-01-01

    Preparations of dispersed paired helical filaments (PHFs) from the brains of Alzheimer's disease and Down's syndrome patients display on gels three principal bands corresponding to abnormally modified forms of the microtubule-associated protein tau. Interpretation of the pattern is difficult because there are six tau isoforms in normal brain and phosphorylation changes their mobility. By enzymatic dephosphorylation at high temperature, we have shifted the three abnormal bands obtained from dispersed PHFs to align with the six nonphosphorylated tau isoforms. By using antibodies specific for some of the inserts that distinguish the various isoforms and label PHFs, we have established a correspondence between PHFs, abnormal bands, and isoforms. This identification of isoforms is a necessary step in unravelling the molecular pathogenesis of PHFs. PMID:1530909

  3. Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Tung, Kelly L.; Kaminsky, Olivia; McGough, James J.; Hanada, Grant; Loo, Sandra K.

    2014-01-01

    Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s Continuous Performance Test (CPT). Method: Our previous study found that ADHD adults had increased rightward EEG beta (16–21 Hz) asymmetry in inferior parietal brain regions during the CPT (p = 0.00001), and that this metric exhibited a lack of normal correlation (i.e., observed in controls) with beta asymmetry at temporal–parietal regions. We re-tested these effects in a new ADHD sample and with both new and old samples combined. We additionally examined: (a) EEG asymmetry in multiple frequency bands, (b) unilateral effects for all asymmetry findings, and (c) the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings by demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal–parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal–parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increase of attentional shifting and compensatory sustained/selective attention. PMID:25104941

  4. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    PubMed

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management. PMID:24788350

  5. How Can We Identify Ictal and Interictal Abnormal Activity?

    PubMed Central

    Fisher, Robert S.; Scharfman, Helen E.; deCurtis, Marco

    2015-01-01

    The International League Against Epilepsy (ILAE) defined a seizure as “a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain.” This definition has been used since the era of Hughlings Jackson, and does not take into account subsequent advances made in epilepsy and neuroscience research. The clinical diagnosis of a seizure is empirical, based upon constellations of certain signs and symptoms, while simultaneously ruling out a list of potential imitators of seizures. Seizures should be delimited in time, but the borders of ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) often are indistinct. EEG recording is potentially very helpful for confirmation, classification and localization. About a half-dozen common EEG patterns are encountered during seizures. Clinicians rely on researchers to answer such questions as why seizures start, spread and stop, whether seizures involve increased synchrony, the extent to which extra-cortical structures are involved, and how to identify the seizure network and at what points interventions are likely to be helpful. Basic scientists have different challenges in use of the word ‘seizure,’ such as distinguishing seizures from normal behavior, which would seem easy but can be very difficult because some rodents have EEG activity during normal behavior that resembles spike-wave discharge or bursts of rhythmic spiking. It is also important to define when a seizure begins and stops so that seizures can be quantified accurately for pre-clinical studies. When asking what causes seizures, the transition to a seizure and differentiating the pre-ictal, ictal and post-ictal state is also important because what occurs before a seizure could be causal and may warrant further investigation for that reason. These and other issues are discussed by three epilepsy researchers with clinical and basic science expertise. PMID:25012363

  6. Abnormal brain aging as a radical-related disease: A new target for nuclear medicine

    SciTech Connect

    Fujibayashi, Y.; Yamamoto, S.; Waki, A. |

    1996-05-01

    DNA damages caused by endogenously produced radicals are closely correlated with aging. Among them, mitochondrial DNA (mtDNA) deletions have been reported as a memory of DNA damage by oxygen radicals. In fact, clinical as well as experimental studies indicated the accumulation of deleted mtDNA in the brain, myocardium and son on, in aged subjects. In our previous work, radioiodinated radical trapping agent, p-iodophenyl-N-t-butylnitrone, and hypoxia imaging agent, Cu-62 diacetyl-bis-N-4-methyl-thiosemicarbazone have been developed for the diagnosis of radical-related diseases, such as ischemic, inflammation, cancer or aging. The aim of the present work was to evaluate these agents for brain aging studies. In our university, an unique animal model, a senescence accelerated model mouse (SAM), has been established. Among the various substrains, SAMP8 showing memory deterioration in its young age ({approximately}3 month) was basically evaluated as an abnormal brain aging model with mtDNA deletion. As controls, SAMR1 showing normal aging and ddY mice were used. MtDNA deletion n the brain was analyzed with polymerase-chain reaction (PCR) method, and relationship between mtDNA deletion and brain uptake of IPBN or Cu-62-ATSM was studied. In 1-3 month old SAMP8 brain, multiple mtDNa deletions were already found and their content was significantly higher than that of SAMR1 or age-matched ddY control. Thus, it was cleared that SAMP8 brain has high tendency to be attacked by endogenously produced oxygen radicals, possibly from its birth. Both IPBN and Cu-ATSM showed significantly higher accumulation in the SAMP8 brain than in the SAMR1 brain, indicating that these agents have high possibility for the early detection of abnormal brain aging as a radical-related disease.

  7. The temporal organization of functional brain connectivity is abnormal in schizophrenia but does not correlate with symptomatology.

    PubMed

    Schoen, Walter; Chang, Jae Seung; Lee, UnCheol; Bob, Petr; Mashour, George A

    2011-12-01

    Previous work employing graph theory and nonlinear analysis has found increased spatial and temporal disorder, respectively, of functional brain connectivity in schizophrenia. We present a new method combining graph theory and nonlinear techniques that measures the temporal disorder of functional brain connections. Multichannel electroencephalographic data were windowed and functional networks were reconstructed using the minimum spanning trees of correlation matrices. Using a method based on Shannon entropy, we found elevated connection entropy in gamma activity of patients with schizophrenia; however, gamma connection entropy remained elevated in patients with schizophrenia even after a reduction in symptoms due to treatment with antipsychotics. Our results are consistent with several possibilities: (1) aberrant functional connectivity is epiphenomenal to schizophrenia, (2) aberrant functional connectivity is a central feature but antipsychotics reduce symptoms by an independent mechanism, or (3) connection entropy is not an appropriately sensitive measure of brain abnormalities in schizophrenia. PMID:20541442

  8. Neuromagnetic source imaging of abnormal spontaneous activity in tinnitus patient modulated by electrical cortical stimulation.

    PubMed

    Ramirez, Rey Rene; Kopell, Brian Harris; Butson, Christopher R; Gaggl, Wolfgang; Friedland, David R; Baillet, Sylvain

    2009-01-01

    Electrical cortical stimulation (CS) of the auditory cortices has been shown to reduce the severity of debilitating tinnitus in some patients. In this study, we performed MEG source imaging of spontaneous brain activity during concurrent CS of the left secondary auditory cortex of a volunteer suffering from right unilateral tinnitus. CS produced MEG artifacts which were successfully sorted and removed using a combination of sensor and source level signal separation and classification techniques. This contribution provides the first proof of concept reporting on analysis of MEG data with concurrent CS. Effects of CS on ongoing brain activity were revealed at the MEG sensor and source levels and indicate CS significantly reduced ongoing brain activity in the lower frequency range (<40Hz), and emphasized its higher (>40Hz), gamma range components. Further, our results show that CS increased the spectral correlation across multiple frequency bands in the low and high gamma ranges, and between the alpha and beta bands of the MEG. Finally, MEG sources localized in the auditory cortices and nearby regions exhibited abnormal spectral activity that was suppressed by CS. These results provide promising evidence in favor of the Thalamocortical Dysrhytmia (TCD) hypothesis of tinnitus, and suggest that CS may prove to be an effective treatment of tinnitus when targeted to brain regions exhibiting abnormal spontaneous activity. PMID:19964017

  9. An abnormal resting-state functional brain network indicates progression towards Alzheimer's disease.

    PubMed

    Xiang, Jie; Guo, Hao; Cao, Rui; Liang, Hong; Chen, Junjie

    2013-10-25

    Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer's disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations (normal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer's disease) using the Alzheimer's Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer's disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the resting-state functional network gradually increased, while clustering coefficients gradually decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In addition, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzheimer's disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventually lead to diffuse brain injury and other cognitive impairments. PMID:25206600

  10. A mechanical model predicts morphological abnormalities in the developing human brain.

    PubMed

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  11. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  12. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  13. Polysubstance and Alcohol Dependence: Unique Abnormalities of Magnetic Resonance-Derived Brain Metabolite Levels

    PubMed Central

    Ab, Christoph; Mon, Anderson; Durazzo, Timothy C.; Pennington, David L.; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2012-01-01

    BACKGROUND Although comorbid substance misuse is common in alcohol dependence, and polysubstance abusers (PSU) represent the largest group of individuals seeking treatment for drug abuse today, we know little about potential brain abnormalities in this population. Brain magnetic resonance spectroscopy studies of mono-substance use disorders (e.g., alcohol or cocaine) reveal abnormal levels of cortical metabolites (reflecting neuronal integrity, cell membrane turnover/synthesis, cellular bioenergetics, gliosis) and altered concentrations of glutamate and ?-aminobutyric acid (GABA). The concurrent misuse of several substances may have unique and different effects on brain biology and function compared to any mono-substance misuse. METHODS High field brain magnetic resonance spectroscopy at 4 Tesla and neurocognitive testing were performed at one month of abstinence in 40 alcohol dependent individuals (ALC), 28 alcohol dependent PSU and 16 drug-free controls. Absolute metabolite concentrations were calculated in anterior cingulate (ACC), parieto-occipital (POC) and dorsolateral prefrontal cortices (DLPFC). RESULTS Compared to ALC, PSU demonstrated significant metabolic abnormalities in the DLPFC and strong trends to lower GABA in the ACC. Metabolite levels in ALC and light drinking controls were statistically equivalent. Within PSU, lower DLPFC GABA levels related to greater cocaine consumption. Several cortical metabolite concentrations were associated with cognitive performance. CONCLUSIONS While metabolite concentrations in ALC at one month of abstinence were largely normal, PSU showed persistent and functionally significant metabolic abnormalities, primarily in the DLPFC. Our results point to specific metabolic deficits as biomarkers in polysubstance misuse and as targets for pharmacological and behavioral PSU-specific treatment. PMID:23122599

  14. Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials

    PubMed Central

    Surez-Pellicioni, Macarena; Nez-Pea, Mara Isabel; Colom, ngels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN. PMID:24236212

  15. Brain white matter volume abnormalities in Lesch-Nyhan disease and its variants

    PubMed Central

    Varvaris, Mark; Vannorsdall, Tracy D.; Gordon, Barry; Harris, James C.; Jinnah, H.A.

    2015-01-01

    Objective: We sought to examine brain white matter abnormalities based on MRI in adults with Lesch-Nyhan disease (LND) or an attenuated variant (LNV) of this rare, X-linked neurodevelopmental disorder of purine metabolism. Methods: In this observational study, we compared 21 adults with LND, 17 with LNV, and 33 age-, sex-, and race-matched healthy controls using voxel-based morphometry and analysis of covariance to identify white matter volume abnormalities in both patient groups. Results: Patients with classic LND showed larger reductions of white (26%) than gray (17%) matter volume relative to healthy controls. Those with LNV showed comparable reductions of white (14%) and gray (15%) matter volume. Both patient groups demonstrated reduced volume in medial inferior white matter regions. Compared with LNV, the LND group showed larger reductions in inferior frontal white matter adjoining limbic and temporal regions and the motor cortex. These regions likely include such long association fibers as the superior longitudinal and uncinate fasciculi. Conclusions: Despite earlier reports that LND primarily involves the basal ganglia, this study reveals substantial white matter volume abnormalities. Moreover, white matter deficits are more severe than gray matter deficits in classic LND, and also characterize persons with LNV. The brain images acquired for these analyses cannot precisely localize white matter abnormalities or determine whether they involve changes in tract orientation or anisotropy. However, clusters of reduced white matter volume identified here affect regions that are consistent with the neurobehavioral phenotype. PMID:25503620

  16. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and

  17. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  18. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA lesioned rats.

    PubMed

    Kaminer, Jaime; Thakur, Pratibha; Evinger, Craig

    2015-05-01

    Parkinson's disease (PD) patients and the 6-hydroxydopamine (6-OHDA) lesioned rat model share blink abnormalities. In view of the evolutionarily conserved organization of blinking, characterization of blink reflex circuits in rodents may elucidate the neural mechanisms of PD reflex abnormalities. We examine the extent of this shared pattern of blink abnormalities by measuring blink reflex excitability, blink reflex plasticity, and spontaneous blinking in 6-OHDA lesioned rats. We also investigate whether 130-Hz subthalamic nucleus deep brain stimulation (STN DBS) affects blink abnormalities, as it does in PD patients. Like PD patients, 6-OHDA-lesioned rats exhibit reflex blink hyperexcitability, impaired blink plasticity, and a reduced spontaneous blink rate. At 130 Hz, but not 16 Hz, STN DBS eliminates reflex blink hyperexcitability and restores both short- and long-term blink plasticity. Replicating its lack of effect in PD patients, 130-Hz STN DBS does not reinstate a normal temporal pattern or rate to spontaneous blinking in 6-OHDA lesioned rats. These data show that the 6-OHDA lesioned rat is an ideal model system for investigating the neural bases of reflex abnormalities in PD and highlight the complexity of PD's effects on motor control, by showing that dopamine depletion does not affect all blink systems via the same neural mechanisms. PMID:25673748

  19. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  20. Predictors of normal and abnormal outcome in clinical brain dopamine transporter imaging.

    PubMed

    Jaakkola, Elina; Joutsa, Juho; Kaasinen, Valtteri

    2016-03-01

    Brain dopamine transporter (DAT) imaging with [(123)I]FP-CIT SPECT can be used to evaluate the integrity of the mesostriatal dopaminergic system in patients with clinically uncertain parkinsonism. To evaluate whether scanning a patient is clinically necessary, it is vital to understand possible factors that affect the scanning result. Therefore, we investigated an unselected sample of 538 consecutively scanned patients from a 6-year period, and the demographic data and indications for DAT SPECT were recorded. After scanning, the patients were divided into groups according to the scanning outcome. Multivariate binary logistic regression analyses were performed to investigate whether the pre-imaging variables had independent associations with the outcome of the scan. Three hundred and three (56.3 %) patients had abnormal scans showing a dopaminergic deficit. The independent factors associated with abnormal scans were older age (p = 0.002), asymmetry of motor symptoms (p = 0.005) and shorter symptom duration (p < 0.001). Re-evaluation of the previously established Parkinson's disease diagnosis was associated with a higher probability of an abnormal scan (74.4 % abnormal, p = 0.004), whereas the possibility of medication-induced parkinsonism was associated with a higher probability of a normal scan (35.4 %, p = 0.036). The probability of an abnormal outcome in clinical brain DAT imaging increases with known risk factors of neurodegenerative parkinsonism. However, a long duration of uncertain motor symptoms and suspicion of medication-induced parkinsonism are associated with a higher probability of a normal outcome. The findings reflect epidemiological factors in parkinsonism together with referral biases that may be used to improve the clinical use of DAT imaging. PMID:26676600

  1. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  2. Fueling and imaging brain activation.

    PubMed

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron-astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  3. Influence of History of Brain Disease or Brain Trauma on Psychopathological Abnormality in Young Male in Korea : Analysis of Multiphasic Personal Inventory Test

    PubMed Central

    Paik, Ho Kyu; Oh, Chang-Hyun; Choi, Kang; Kim, Chul-Eung; Yoon, Seung Hwan

    2011-01-01

    Objective The purpose of this study is to confirm whether brain disease or brain trauma actually affect psychopathology in young male group in Korea. Methods The authors manually reviewed the result of Korean military multiphasic personal inventory (KMPI) in the examination of conscription in Korea from January 2008 to May 2010. There were total 237 young males in this review. Normal volunteers group (n=150) was composed of those who do not have history of brain disease or brain trauma. Brain disease group (n=33) was consisted of those with history of brain disease. Brain trauma group (n=54) was consisted of those with history of brain trauma. The results of KMPI in each group were compared. Results Abnormal results of KMPI were found in both brain disease and trauma groups. In the brain disease group, higher tendencies of faking bad response, anxiety, depression, somatization, personality disorder, schizophrenic and paranoid psychopathy was observed and compared to the normal volunteers group. In the brain trauma group, higher tendencies of faking-good, depression, somatization and personality disorder was observed and compared to the normal volunteers group. Conclusion Young male with history of brain disease or brain trauma may have higher tendencies to have abnormal results of multiphasic personal inventory test compared to young male without history of brain disease or brain trauma, suggesting that damaged brain may cause psychopathology in young male group in Korea. PMID:22053230

  4. Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions.

    PubMed

    Lscher, Wolfgang

    2010-01-01

    Circling or rotational behavior is the most studied indicator of cerebral asymmetry in the rat. In humans, disturbances in cerebral asymmetry are involved in the etiology of several psychiatric disorders, including schizophrenia, Tourette syndrome and attention-deficit hyperactivity disorder. Abnormal rotational behavior in rodents is indicative of either an imbalance of forebrain dopamine systems, particularly an imbalance of nigrostriatal function, or an inner ear disease affecting the vestibular (balance) system. Abnormally enhanced circling behavior has been described in several mutant rat and mouse strains both with and without defects of the vestibular system. However, the relationship between vestibular defects and lateralized circling in rodents is only incompletely understood. In this review, we describe and discuss various spontaneous mutations associated with abnormal circling behavior in different rat strains and their potential relevance to model specific brain dysfunctions. The circling rat mutants described in this review illustrate how genetic animal models may serve to study multifaceted brain functions and dysfunctions, including disorders of the basal ganglia and vestibular system. PMID:19607857

  5. Abnormal Neural Activation to Faces in the Parents of Children with Autism.

    PubMed

    Yucel, G H; Belger, A; Bizzell, J; Parlier, M; Adolphs, R; Piven, J

    2015-12-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the "Broad Autism Phenotype " (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality ("BAP+"). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP. PMID:25056573

  6. Use of dynamic contrast-enhanced MRI to measure subtle blood-brain barrier abnormalities.

    PubMed

    Armitage, Paul A; Farrall, Andrew J; Carpenter, Trevor K; Doubal, Fergus N; Wardlaw, Joanna M

    2011-04-01

    There is growing interest in investigating the role of subtle changes in blood-brain barrier (BBB) function in common neurological disorders and the possible use of imaging techniques to assess these abnormalities. Some studies have used dynamic contrast-enhanced MR imaging (DCE-MRI) and these have demonstrated much smaller signal changes than obtained from more traditional applications of the technique, such as in intracranial tumors and multiple sclerosis. In this work, preliminary results are presented from a DCE-MRI study of patients with mild stroke classified according to the extent of visible underlying white matter abnormalities. These data are used to estimate typical signal enhancement profiles in different tissue types and by degrees of white matter abnormality. The effect of scanner noise, drift and different intrinsic tissue properties on signal enhancement data is also investigated and the likely implications for interpreting the enhancement profiles are discussed. No significant differences in average signal enhancement or contrast agent concentration were observed between patients with different degrees of white matter abnormality, although there was a trend towards greater signal enhancement with more abnormal white matter. Furthermore, the results suggest that many of the factors considered introduce uncertainty of a similar magnitude to expected effect sizes, making it unclear whether differences in signal enhancement are truly reflective of an underlying BBB abnormality or due to an unrelated effect. As the ultimate aim is to achieve a reliable quantification of BBB function in subtle disorders, this study highlights the factors which may influence signal enhancement and suggests that further work is required to address the challenging problems of quantifying contrast agent concentration in healthy and diseased living human tissue and of establishing a suitable model to enable quantification of relevant physiological parameters. Meanwhile, it is essential that future studies use an appropriate control group to minimize these influences. PMID:21030178

  7. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis.

    PubMed

    Pina-Camacho, Laura; Del Rey-Mejías, Ángel; Janssen, Joost; Bioque, Miquel; González-Pinto, Ana; Arango, Celso; Lobo, Antonio; Sarró, Salvador; Desco, Manuel; Sanjuan, Julio; Lacalle-Aurioles, Maria; Cuesta, Manuel J; Saiz-Ruiz, Jerónimo; Bernardo, Miguel; Parellada, Mara

    2016-03-01

    Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis. PMID:26371339

  8. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  9. Skeletal and Brain Abnormalities in Fucosidosis, a Rare Lysosomal Storage Disorder

    PubMed Central

    Malatt, Camille; Koning, Jeffrey L.; Naheedy, John

    2015-01-01

    Fucosidosis is a rare genetic lysosomal storage disorder caused by a deficiency in alpha- L-fucosidase. We present a case of a 4-year, 11-month-old girl with developmental delay, as well as skeletal and brain abnormalities as shown on X-ray and MRI. Her spinal X- rays demonstrated lumbar kyphosis and anterior beaking of lumbar vertebral bodies. Lower iliac segment constriction, increased angulation of the acetabular roof, and widening of the ribs were apparent on abdominal X-ray. Her brain MRI illustrated symmetric T1 hyperintensity and T2 hypointensity of the bilateral globi pallidi. The case report highlights clinical and imaging findings of this rare disease. PMID:26622931

  10. Motor Network Plasticity and Low-Frequency Oscillations Abnormalities in Patients with Brain Gliomas: A Functional MRI Study

    PubMed Central

    Niu, Chen; Zhang, Ming; Min, Zhigang; Rana, Netra; Zhang, Qiuli; Liu, Xin; Li, Min; Lin, Pan

    2014-01-01

    Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC) and supplementary motor area (SMA). Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD) of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05). We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.010.02 Hz; middle: 0.020.06 Hz; and high: 0.060.1 Hz), at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors. PMID:24806463

  11. Unsupervised abnormal crowd activity detection using interaction power model

    NASA Astrophysics Data System (ADS)

    Lin, Shengnan; Zhang, Hong; Cheng, Feiyang; Sun, Mingui; Yuan, Ding

    2014-11-01

    Abnormal event detection in crowded scenes is one of the most challenging tasks in the video surveillance for the public security control. Different from previous work based on learning. We proposed an unsupervised Interaction Power model with an adaptive threshold strategy to detect abnormal group activity by analyzing the steady state of individuals' behaviors in the crowed scene. Firstly, the optical flow field of the potential pedestrians is only calculated within the extracted foreground to reduce the computational cost. Secondly, each pedestrian can be divided into patches of the same size, and the interaction power of the pedestrians will be represented by the motion particles which describe the motion status at the center pixels of the patches. The motion status of each patch is computed by using the optical flows of the pixels within the patch. For each motion particle, its interaction power, defined as its steady state of the current behavior, is computed among all its neighboring motion particles. Finally, the dense crowds' steady state can be represented as a collection of motion particles' interaction power. Here, an adaptive threshold strategy is proposed to detect abnormal events by examining the frame power field which is a fixed-size random sampling of the interaction power of motion particles. Experimental results on the standard UMN dataset and online videos show that our method could detect the crowd anomalies and achieve a higher accuracy compared to the other competitive methods published recently.

  12. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. PMID:26603466

  13. Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes

    PubMed Central

    Chau, Vann; Synnes, Anne; Grunau, Ruth E.; Poskitt, Kenneth J.; Brant, Rollin

    2013-01-01

    Objective: Our objective was to determine the association of early brain maturation with neurodevelopmental outcome in premature neonates. Methods: Neonates born between 24 and 32 weeks’ gestation (April 2006 to August 2010) were prospectively studied with MRI early in life and again at term-equivalent age. Using diffusion tensor imaging and magnetic resonance spectroscopic imaging, fractional anisotropy (FA) (microstructure) and N-acetylaspartate (NAA)/choline (metabolism) were measured from the basal nuclei, white matter tracts, and superior white matter. Brain maturation is characterized by increasing FA and NAA/choline from early in life to term-equivalent age. In premature neonates, systemic illness and critical care therapies have been linked to abnormalities of these measures. Of the 177 neonates in this cohort, 5 died and 157 (91% of survivors) were assessed at 18 months’ corrected age (adjusted for prematurity) using the Bayley Scales of Infant and Toddler Development III motor, cognitive, and language composite scores (mean = 100, SD = 15). Results: Among these 157 infants, white matter injury was seen in 48 (30%). Severe white matter injury, in 10 neonates (6%), was associated with a decrease in motor (−18 points; p < 0.001) and cognitive (−8 points; p = 0.085) scores. With greater severity of adverse neurodevelopmental outcomes, slower increases in FA and NAA/choline were observed in the basal nuclei and brain white matter regions as neonates matured to term-equivalent age, independent of the presence of white matter injury. Conclusions: In the preterm neonate, abnormal brain maturation evolves through the period of neonatal intensive care and is associated with adverse neurodevelopmental outcomes. PMID:24212394

  14. Abnormal structural connectivity in the brain networks of children with hydrocephalus

    PubMed Central

    Yuan, Weihong; Holland, Scott K.; Shimony, Joshua S.; Altaye, Mekibib; Mangano, Francesco T.; Limbrick, David D.; Jones, Blaise V.; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C.

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect abnormalities of brain network connectivity associated with hydrocephalus at both global and regional levels, thus providing a new avenue for potential diagnosis and prognosis tool for children with hydrocephalus. PMID:26106573

  15. Abnormal structural connectivity in the brain networks of children with hydrocephalus.

    PubMed

    Yuan, Weihong; Holland, Scott K; Shimony, Joshua S; Altaye, Mekibib; Mangano, Francesco T; Limbrick, David D; Jones, Blaise V; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p<0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect abnormalities of brain network connectivity associated with hydrocephalus at both global and regional levels, thus providing a new avenue for potential diagnosis and prognosis tool for children with hydrocephalus. PMID:26106573

  16. Abnormal activation of the occipital lobes during emotion picture processing in major depressive disorder patients

    PubMed Central

    Li, Jianying; Xu, Cheng; Cao, Xiaohua; Gao, Qiang; Wang, Yan; Wang, Yanfang; Peng, Juyi; Zhang, Kerang

    2013-01-01

    A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for cognitive disorder in depressed patients. PMID:25206466

  17. Preliminary Evidence of Cognitive and Brain Abnormalities in Uncomplicated Adolescent Obesity

    PubMed Central

    Yau, Po Lai; Kang, Esther H.; Javier, David C.; Convit, Antonio

    2014-01-01

    Objective We ascertain whether pediatric obesity without clinically-significant insulin resistance (IR) impacts brain structure and function. Design and Methods Thirty obese and 30 matched lean adolescents, all without clinically-significant IR or a diagnosis of metabolic syndrome (MetS), received comprehensive endocrine, neuropsychological, and MRI evaluations. Results Relative to lean adolescents, obese non-IR adolescents had significantly lower academic achievement (i.e. arithmetic and spelling) and tended to score lower on working memory, attention, psychomotor efficiency and mental flexibility. In line with our prior work on adolescent MetS, memory was unaffected in uncomplicated obesity. We also uncovered reductions in the thickness of the orbitofrontal and anterior cingulate cortices as well as reductions of microstructural integrity in major white matter tracts without gross volume changes. Conclusions We document, for the first time, that adolescents with uncomplicated obesity already have subtle brain alterations and lower performance in selective cognitive domains. When interpreting these preliminary data in the context of our prior reports of similar, but more extensive brain findings in obese adolescents with MetS and T2DM, we conclude that uncomplicated obesity may also result in subtle brain alterations, suggesting a possible dose effect with more severe metabolic dysregulation giving rise to greater abnormalities. PMID:24891029

  18. Neural activation abnormalities during self-referential processing in schizophrenia: an fMRI study.

    PubMed

    Liu, Jiacheng; Corbera, Silvia; Wexler, Bruce Edward

    2014-06-30

    Impairments in self-awareness contribute to disability in schizophrenia. Studies have revealed activation abnormalities in schizophrenia in cortical midline structures associated with self-reference. We used functional magnetic resonance imaging to compare activation throughout the brain in people with schizophrenia and healthy controls (Kelly et al., 2002) while they indicated whether trait adjectives described attributes of themselves, their mother or a former president of the United States. Blood oxygenation level dependent signal in each condition was compared to resting fixation. Patients were less likely and slower to endorse positive self-attributes, and more likely and quicker to endorse negative self-attributes than controls. Activation abnormalities reported previously in cortical midline structures were again noted. In addition, patients showed greater signal increases in frontal, temporal gyri and insula, and smaller signal decreases in posterior regions than healthy controls when thinking about themselves. Group differences were less evident when subjects were thinking about their mothers and tended to go in the opposite direction when thinking about a president. Many of the areas showing abnormality have been shown in other studies to differ between patients and controls in structure and with other activation paradigms. We suggest that general neuropathology in schizophrenia alters the neural system configurations associated with self-representation. PMID:24795158

  19. Abnormal White Matter Blood-Oxygen-Level-Dependent Signals in Chronic Mild Traumatic Brain Injury.

    PubMed

    Astafiev, Serguei V; Shulman, Gordon L; Metcalf, Nicholas V; Rengachary, Jennifer; MacDonald, Christine L; Harrington, Deborah L; Maruta, Jun; Shimony, Joshua S; Ghajar, Jamshid; Diwakar, Mithun; Huang, Ming-Xiong; Lee, Roland R; Corbetta, Maurizio

    2015-08-15

    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI. PMID:25758167

  20. Brain Perfusion Single Photon Emission Computed Tomography Abnormalities in Patients with Minimal Hepatic Encephalopathy

    PubMed Central

    Sunil, Hejjaji Venkataramarao; Mittal, Bhagwant Rai; Kurmi, Roshan; Chawla, Yogesh K; Dhiman, Radha K

    2012-01-01

    Background Minimal hepatic encephalopathy (MHE) is the mildest form of hepatic encephalopathy (HE). Minimal hepatic encephalopathy patients do not demonstrate clinically overt symptoms of HE but present with abnormal neuropsychological and/or neurophysiological tests indicative of cerebral dysfunction. This study was performed in such patients to identify regions of abnormal cerebral perfusion and to correlate regional cerebral blood flow (rCBF) changes with psychometric hepatic encephalopathy score (PHES), Child-Turcotte-Pugh's score (CTP), and model for end-stage liver disease (MELD) score. We also compared abnormal patterns of rCBF in cirrhotic patients of alcoholic etiology with non-alcoholic etiology. Methods This prospective study was performed to evaluate rCBF in 50 cirrhotic patients and 13 controls using technetium-99m ethyl cysteinate dimer (Tc-99m ECD) brain single photon emission computed tomography. All the patients underwent a battery of psychometry tests, PHES. Minimal hepatic encephalopathy was diagnosed if PHES was ??5. The rCBF changes were evaluated using region of interest (ROI) based semi-quantitative method of region/cerebellum and region/cortex ratios in 16 regions of the brain. Results Cirrhotic patients with MHE showed impaired perfusion in the superior prefrontal cortex and increased perfusion in the thalamus, brain-stem, medial temporal cortex, and the hippocampus when compared with the controls. Cerebral perfusion in superior prefrontal cortex correlated negatively with MELD score (r=?0.323, P=0.022). We found significant positive correlation between PHES score and rCBF values in the left superior prefrontal cortex (r=0.385, P=0.006). Cirrhotic patients with alcohol etiology showed significantly decreased rCBF in right inferior prefrontal cortex, right superior prefrontal cortex, and the anterior cingulate cortex while increased rCBF was noted in the right medial temporal cortex and hippocampus. Conclusion Our results suggest that alterations in cognition in cirrhotic patients with MHE may be associated with impaired abnormalities of rCBF. PMID:25755420

  1. Effects of hyperbaric oxygen on eye tracking abnormalities in males after mild traumatic brain injury.

    PubMed

    Cifu, David X; Hoke, Kathy W; Wetzel, Paul A; Wares, Joanna R; Gitchel, George; Carne, William

    2014-01-01

    The effects of hyperbaric oxygen (HBO2) on eye movement abnormalities in 60 military servicemembers with at least one mild traumatic brain injury (TBI) from combat were examined in a single-center, randomized, double-blind, sham-controlled, prospective study at the Naval Medicine Operational Training Center. During the 10 wk of the study, each subject was delivered a series of 40, once a day, hyperbaric chamber compressions at a pressure of 2.0 atmospheres absolute (ATA). At each session, subjects breathed one of three preassigned oxygen fractions (10.5%, 75%, or 100%) for 1 h, resulting in an oxygen exposure equivalent to breathing either surface air, 100% oxygen at 1.5 ATA, or 100% oxygen at 2.0 ATA, respectively. Using a standardized, validated, computerized eye tracking protocol, fixation, saccades, and smooth pursuit eye movements were measured just prior to intervention and immediately postintervention. Between and within groups testing of pre- and postintervention means revealed no significant differences on eye movement abnormalities and no significant main effect for HBO2 at either 1.5 ATA or 2.0 ATA equivalent compared with the sham-control. This study demonstrated that neither 1.5 nor 2.0 ATA equivalent HBO2 had an effect on postconcussive eye movement abnormalities after mild TBI when compared with a sham-control. PMID:25436771

  2. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    PubMed Central

    Hayes, Jasmeet P.; Miller, Danielle R.; Lafleche, Ginette; Salat, David H.; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having spatially heterogeneous white matter abnormalities. Region-specific reduction in fractional anisotropy (FA) in the left retrolenticular part of the internal capsule was observed in the mTBI + LOC group as the number of blast exposures increased. A mediation analysis revealed that mTBI + LOC indirectly influenced verbal memory performance through its effect on white matter integrity. PTSD was not associated with spatially heterogeneous white matter abnormalities. However, there was a suggestion that at higher levels of PTSD symptom severity, LOC was associated with reduced FA in the left retrolenticular part of the internal capsule. These results support postmortem reports of diffuse axonal injury following mTBI and suggest that injuries with LOC involvement may be particularly detrimental to white matter integrity. Furthermore, these results suggest that LOC-associated white matter abnormalities in turn influence neurocognitive function. PMID:26106539

  3. Levetiracetam reduces abnormal network activations in temporal lobe epilepsy

    PubMed Central

    Wandschneider, Britta; Stretton, Jason; Sidhu, Meneka; Centeno, Maria; Kozk, Lajos R.; Symms, Mark; Thompson, Pamela J.; Duncan, John S.

    2014-01-01

    Objective: We used functional MRI (fMRI) and a left-lateralizing verbal and a right-lateralizing visual-spatial working memory (WM) paradigm to investigate the effects of levetiracetam (LEV) on cognitive network activations in patients with drug-resistant temporal lobe epilepsy (TLE). Methods: In a retrospective study, we compared task-related fMRI activations and deactivations in 53 patients with left and 54 patients with right TLE treated with (59) or without (48) LEV. In patients on LEV, activation patterns were correlated with the daily LEV dose. Results: We isolated task- and syndrome-specific effects. Patients on LEV showed normalization of functional network deactivations in the right temporal lobe in right TLE during the right-lateralizing visual-spatial task and in the left temporal lobe in left TLE during the verbal task. In a post hoc analysis, a significant dose-dependent effect was demonstrated in right TLE during the visual-spatial WM task: the lower the LEV dose, the greater the abnormal right hippocampal activation. At a less stringent threshold (p < 0.05, uncorrected for multiple comparisons), a similar dose effect was observed in left TLE during the verbal task: both hippocampi were more abnormally activated in patients with lower doses, but more prominently on the left. Conclusions: Our findings suggest that LEV is associated with restoration of normal activation patterns. Longitudinal studies are necessary to establish whether the neural patterns translate to drug response. Classification of evidence: This study provides Class III evidence that in patients with drug-resistant TLE, levetiracetam has a dose-dependent facilitation of deactivation of mesial temporal structures. PMID:25253743

  4. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  5. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutirrez, Julio; Ftterer, Agnes; Trachana, Varvara; Gutirrez del Burgo, Fernando; Martnez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Snchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  6. Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis

    PubMed Central

    Reig, Santiago; Parellada, Mara; Castro-Fornieles, Josefina; Janssen, Joost; Moreno, Dolores; Baeza, Inmaculada; Bargall, Nuria; Gonzlez-Pinto, Ana; Graell, Montserrat; Ortuo, Felipe; Otero, Soraya; Arango, Celso; Desco, Manuel

    2011-01-01

    The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of schizophrenia or other psychosis showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents. PMID:20478821

  7. Elevated Id2 expression results in precocious neural stem cell depletion and abnormal brain development.

    PubMed

    Park, Hee Jung; Hong, Mingi; Bronson, Roderick T; Israel, Mark A; Frankel, Wayne N; Yun, Kyuson

    2013-05-01

    Id2 is a helix-loop-helix transcription factor essential for normal development, and its expression is dysregulated in many human neurological conditions. Although it is speculated that elevated Id2 levels contribute to the pathogenesis of these disorders, it is unknown whether dysregulated Id2 expression is sufficient to perturb normal brain development or function. Here, we show that mice with elevated Id2 expression during embryonic stages develop microcephaly, and that females in particular are prone to generalized tonic-clonic seizures. Analyses of Id2 transgenic brains indicate that Id2 activity is highly cell context specific: elevated Id2 expression in naive neural stem cells (NSCs) in early neuroepithelium induces apoptosis and loss of NSCs and intermediate progenitors. Activation of Id2 in maturing neuroepithelium results in less severe phenotypes and is accompanied by elevation of G1 cyclin expression and p53 target gene expression. In contrast, activation of Id2 in committed intermediate progenitors has no significant phenotype. Functional analysis with Id2-overexpressing and Id2-null NSCs shows that Id2 negatively regulates NSC self-renewal in vivo, in contrast to previous cell culture experiments. Deletion of p53 function from Id2-transgenic brains rescues apoptosis and results in increased incidence of brain tumors. Furthermore, Id2 overexpression normalizes the increased self-renewal of p53-null NSCs, suggesting that Id2 activates and modulates the p53 pathway in NSCs. Together, these data suggest that elevated Id2 expression in embryonic brains can cause deregulated NSC self-renewal, differentiation, and survival that manifest in multiple neurological outcomes in mature brains, including microcephaly, seizures, and brain tumors. PMID:23390122

  8. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  9. [Lowe syndrome revealed by prenatal diagnosis of congenital cataract with brain abnormalities].

    PubMed

    Zphir, P; Decramer, S; Sartor, A; Vayssire, C

    2014-05-01

    Congenital cataract is a rare disease whose incidence is estimated to 0.5% of birth in France. A study of the literature shows that congenital cataract is idiopathic in 50% of cases, hereditary forms representing 25% of cases. Other causes of congenital cataract are represented by viral embryofoetopathies acquired during pregnancy, metabolic disorders and chromosomal aberrations within the scope of malformative syndromes. The authors report the case of a neonatal diagnosis of Lowe syndrome suspected by the discovery of bilateral cataract initially isolated. The morphological exploration was completed by secondary brain abnormalities (periventricular lesions). The etiological prenatal exploration was negative. Lowe syndrome is a rare cause of antenatal cataract, which so far only one case has been reported. PMID:24309025

  10. Sensory Abnormalities in Focal Hand Dystonia and Non-Invasive Brain Stimulation

    PubMed Central

    Quartarone, Angelo; Rizzo, Vincenzo; Terranova, Carmen; Milardi, Demetrio; Bruschetta, Daniele; Ghilardi, Maria Felice; Girlanda, Paolo

    2014-01-01

    It has been proposed that synchronous and convergent afferent input arising from repetitive motor tasks may play an important role in driving the maladaptive cortical plasticity seen in focal hand dystonia (FHD). This hypothesis receives support from several sources. First, it has been reported that in subjects with FHD, paired associative stimulation produces an abnormal increase in corticospinal excitability, which was not confined to stimulated muscles. These findings provide support for the role of excessive plasticity in FHD. Second, the genetic contribution to the dystonias is increasingly recognized indicating that repetitive, stereotyped afferent inputs may lead to late-onset dystonia, such as FHD, more rapidly in genetically susceptible individuals. It can be postulated, according to the two factor hypothesis that dystonia is triggered and maintained by the concurrence of environmental factors such as repetitive training and subtle abnormal mechanisms of plasticity within somatosensory loop. In the present review, we examine the contribution of sensory-motor integration in the pathophysiology of primary dystonia. In addition, we will discuss the role of non-invasive brain stimulation as therapeutic approach in FHD. PMID:25538594

  11. Abnormalities in auditory efferent activities in children with selective mutism.

    PubMed

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. PMID:24107432

  12. Brain and arterial abnormalities following prenatal X-ray irradiation in mice assessed by magnetic resonance imaging and angiography.

    PubMed

    Saito, Shigeyoshi; Sawada, Kazuhiko; Mori, Yuki; Yoshioka, Yoshichika; Murase, Kenya

    2015-05-01

    The present study aimed to quantitatively characterize changes in the whole brain and arterial morphology in response to prenatal ionizing irradiation. Magnetic resonance imaging (MRI) and angiography (MRA) were used to evaluate brain and arterial abnormalities in 8-week-old male mice prenatally exposed to X-ray radiation at a dose of 0.5 or 1.0 Gy on embryonic day (E) 13. Irradiated mice demonstrated decreased brain volume, increased ventricular volume, and arterial malformation. Additionally, MRA signal intensity and arterial thickness in the anterior cerebral artery, middle cerebral artery, and basilar artery were lower in radiation-exposed mice than in control mice. MRI and MRA are useful tools for assessing brain and arterial abnormalities after prenatal exposure to radiation. PMID:25534523

  13. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    PubMed

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders. PMID:16876824

  14. A prospective study of gray matter abnormalities in mild traumatic brain injury

    PubMed Central

    Ling, Josef M.; Klimaj, Stefan; Toulouse, Trent

    2013-01-01

    Objective: To examine the underlying pathophysiology of mild traumatic brain injury through changes in gray matter diffusion and atrophy during the semiacute stage. Methods: Fifty patients and 50 sex-, age-, and education-matched controls were evaluated with a clinical and neuroimaging battery approximately 14 days postinjury, with 26 patients returning for follow-up 4 months postinjury. Clinical measures included tests of attention, processing speed, executive function, working memory, memory, and self-reported postconcussive symptoms. Measures of diffusion (fractional anisotropy [FA], mean diffusivity) and atrophy were obtained for cortical and subcortical structures to characterize effects of injury as a function of time. Results: Patients reported more cognitive, somatic, and emotional complaints during the semiacute injury phase, which were significantly reduced 4 months postinjury. Patients showed evidence of increased FA in the bilateral superior frontal cortex during the semiacute phase, with the left superior frontal cortex remaining elevated 4 months postinjury. There were no significant differences between patients and matched controls on neuropsychological testing or measures of gray matter atrophy/mean diffusivity at either time point. Conclusions: Increased cortical FA is largely consistent with an emerging animal literature of gray matter abnormalities after neuronal injury. Potential mechanistic explanations for increased FA include cytotoxic edema or reactive gliosis. In contrast, there was no evidence of cortical or subcortical atrophy in the current study, suggesting that frank neuronal or neuropil loss does not occur early in the chronic disease course for patients with typical mild traumatic brain injury. PMID:24259552

  15. Metabolic Abnormalities in Lobar and Subcortical Brain Regions of Abstinent Polysubstance Users: Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Abé, Christoph; Mon, Anderson; Hoefer, Michael E.; Durazzo, Timothy C.; Pennington, David L.; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2013-01-01

    Aims: The aim of the study was to explore neurometabolic and associated cognitive characteristics of patients with polysubstance use (PSU) in comparison with patients with predominant alcohol use using proton magnetic resonance spectroscopy. Methods: Brain metabolite concentrations were examined in lobar and subcortical brain regions of three age-matched groups: 1-month-abstinent alcohol-dependent PSU, 1-month-abstinent individuals dependent on alcohol alone (ALC) and light drinking controls (CON). Neuropsychological testing assessed cognitive function. Results: While CON and ALC had similar metabolite levels, persistent metabolic abnormalities (primarily higher myo-inositol) were present in temporal gray matter, cerebellar vermis and lenticular nuclei of PSU. Moreover, lower cortical gray matter concentration of the neuronal marker N-acetylaspartate within PSU correlated with higher cocaine (but not alcohol) use quantities and with a reduced cognitive processing speed. Conclusions: These metabolite group differences reflect cellular/astroglial injury and/or dysfunction in alcohol-dependent PSU. Associations of other metabolite concentrations with neurocognitive performance suggest their functional relevance. The metabolic alterations in PSU may represent polydrug abuse biomarkers and/or potential targets for pharmacological and behavioral PSU-specific treatment. PMID:23797281

  16. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  17. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    PubMed

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. PMID:23856299

  18. Abnormal Activity of Neurons in Abducens Nucleus of Strabismic Monkeys

    PubMed Central

    Walton, Mark M. G.; Mustari, Michael J.; Willoughby, Christy L.; McLoon, Linda K.

    2015-01-01

    Purpose. Infantile strabismus is characterized by persistent misalignment of the eyes. Mounting evidence suggests that the disorder is associated with abnormalities at the neural level, but few details are known. This study investigated the signals carried by abducens neurons in monkeys with experimentally induced strabismus. We wanted to know whether the firing rates of individual neurons are exclusively related to the position and velocity of one eye and whether the overall level of activity of the abducens nucleus was in the normal range. Methods. We recorded 58 neurons in right and left abducens nuclei while strabismic monkeys (one esotrope and one exotrope) performed a saccade task. We analyzed the firing rates associated with static horizontal eye position and saccades by fitting the data with a dynamic equation that included position and velocity terms for each eye. Results were compared to previously published data in normal monkeys. Results. For both strabismic monkeys the overall tonic activity was 50 to 100 spikes/s lower, for every suprathreshold eye position, than what has previously been reported for normal monkeys. This was mostly the result of lower baseline activity; the slopes of rateposition curves were similar to those in previous reports in normal monkeys. The saccade velocity sensitivities were similar to those of normal monkeys, 0.35 for the esotrope and 0.40 for the exotrope. For most neurons the firing rate was more closely related to the position and velocity of the ipsilateral eye. Conclusions. These data suggest that strabismus can be associated with reduced neural activity in the abducens nucleus. PMID:25414191

  19. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    ERIC Educational Resources Information Center

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.…

  20. Autism Spectrum Disorder as Early Neurodevelopmental Disorder: Evidence from the Brain Imaging Abnormalities in 2-3Years Old Toddlers

    ERIC Educational Resources Information Center

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships

  1. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    ERIC Educational Resources Information Center

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.

  2. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Black, Joel A.; Dib-Hajj, Sulayman; Baker, David; Newcombe, Jia; Cuzner, M. Louise; Waxman, Stephen G.

    2000-10-01

    Clinical abnormalities in multiple sclerosis (MS) have classically been considered to be caused by demyelination and/or axonal degeneration; the possibility of molecular changes in neurons, such as the deployment of abnormal repertoires of ion channels that would alter neuronal electrogenic properties, has not been considered. Sensory Neuron-Specific sodium channel SNS displays a depolarized voltage dependence, slower activation and inactivation kinetics, and more rapid recovery from inactivation than classical "fast" sodium channels. SNS is selectively expressed in spinal sensory and trigeminal ganglion neurons within the peripheral nervous system and is not expressed within the normal brain. Here we show that sodium channel SNS mRNA and protein, which are not present within the cerebellum of control mice, are expressed within cerebellar Purkinje cells in a mouse model of MS, chronic relapsing experimental allergic encephalomyelitis. We also demonstrate SNS mRNA and protein expression within Purkinje cells from tissue obtained postmortem from patients with MS, but not in control subjects with no neurological disease. These results demonstrate a change in sodium channel expression in neurons within the brain in an animal model of MS and in humans with MS and suggest that abnormal patterns of neuronal ion channel expression may contribute to clinical abnormalities such as ataxia in these disorders.

  3. Abnormal Subcortical Brain Morphology in Patients with Knee Osteoarthritis: A Cross-sectional Study

    PubMed Central

    Mao, Cui Ping; Bai, Zhi Lan; Zhang, Xiao Na; Zhang, Qiu Juan; Zhang, Lei

    2016-01-01

    Despite the involvement of subcortical brain structures in the pathogenesis of chronic pain and persistent pain as the defining symptom of knee osteoarthritis (KOA), little attention has been paid to the morphometric measurements of these subcortical nuclei in patients with KOA. The purpose of this study is to explore the potential morphological abnormalities of subcortical brain structures in patients with KOA as compared to the healthy control subjects by using high-resolution MRI. Structural MR data were acquired from 26 patients with KOA and 31 demographically similar healthy individuals. The MR data were analyzed by using FMRIB’s integrated registration and segmentation tool. Both volumetric analysis and surface-based shape analysis were performed to characterize the subcortical morphology. The normalized volumes of bilateral caudate nucleus were significantly smaller in the KOA group than in the control group (P = 0.004). There was also a trend toward smaller volume of the hippocampus in KOA as compared to the control group (P = 0.027). Detailed surface analyses further localized these differences with a greater involvement of the left hemisphere (P < 0.05, corrected) for the caudate nucleus. Hemispheric asymmetry (right larger than left) of the caudate nucleus was found in both KOA and control groups. Besides, no significant correlation was found between the structural data and pain intensities. Our results indicated that patients with KOA had statistically significant smaller normalized volumes of bilateral caudate nucleus and a trend toward smaller volume of the hippocampus as compared to the control subjects. Further investigations are necessary to characterize the role of caudate nucleus in the course of chronicity of pain associated with KOA. PMID:26834629

  4. Are Structural Brain Abnormalities Associated With Suicidal Behavior In Patients With Psychotic Disorders?

    PubMed Central

    Giakoumatos, Christoforos I; Tandon, Neeraj; Shah, Jai; Mathew, Ian T; Brady, Roscoe O; Clementz, Brett A; Pearlson, Godfrey D; Thaker, Gunvant K; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S

    2014-01-01

    Suicide represents a major health problem world-wide. Nevertheless, the understanding of the neurobiological underpinnings of suicidal behavior remains far from complete. We compared suicide attempters to non-attempters, and high vs. low lethality attempters, to identify brain regions associated with suicidal behavior in patients with psychotic disorders. 489 individuals with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder I and 262 healthy controls enrolled in the B-SNIP study were studied. Groups were compared by attempt history and the highest medical lethality of previous suicide attempts. 97 patients had a history of a high lethality attempt, 51 of a low lethality attempt and 341 had no attempt history. Gray matter volumes were obtained from 3T structural MRI scans using FreeSurfer. ANCOVAs were used to examine differences between groups, followed by Hochberg multiple comparison correction. Compared to non-attempters, attempters had significantly less gray matter volume in bilateral inferior temporal and superior temporal cortices, left superior parietal, thalamus and supramarginal regions, right insula, superior frontal and rostral middle frontal regions. Among attempters, a history of high lethality attempts was associated with significantly smaller volumes in the left lingual gyrus and right cuneus. Compared to non-attempters, low lethality attempters had significant decreases in the left supramarginal gyrus, thalamus and the right insula. Structural brain abnormalities may distinguish suicide attempters from non-attempters and high from low lethality attempters among individuals with psychotic disorders. Regions in which differences were observed are part of neural circuitries that mediate inhibition, impulsivity and emotion, visceral, visual and auditory perception. PMID:23866739

  5. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study

    PubMed Central

    Slobounov, Semyon M.; Zhang, K.; Pennell, D.; Ray, W.; Johnson, B.; Sebastianelli, W.

    2010-01-01

    Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting. PMID:20039023

  6. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study.

    PubMed

    Slobounov, Semyon M; Zhang, K; Pennell, D; Ray, W; Johnson, B; Sebastianelli, W

    2010-04-01

    Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting. PMID:20039023

  7. Brain Activity and Human Unilateral Chewing

    PubMed Central

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2013-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  8. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  9. Mutations in the ?-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities.

    PubMed

    Breuss, Martin; Heng, Julian Ik-Tsen; Poirier, Karine; Tian, Guoling; Jaglin, Xavier Hubert; Qu, Zhengdong; Braun, Andreas; Gstrein, Thomas; Ngo, Linh; Haas, Matilda; Bahi-Buisson, Nadia; Moutard, Marie-Laure; Passemard, Sandrine; Verloes, Alain; Gressens, Pierre; Xie, Yunli; Robson, Kathryn J H; Rani, Deepa Selvi; Thangaraj, Kumarasamy; Clausen, Tim; Chelly, Jamel; Cowan, Nicholas Justin; Keays, David Anthony

    2012-12-27

    The formation of the mammalian cortex requires the generation, migration, and differentiation of neurons. The vital role that the microtubule cytoskeleton plays in these cellular processes is reflected by the discovery that mutations in various tubulin isotypes cause different neurodevelopmental diseases, including lissencephaly (TUBA1A), polymicrogyria (TUBA1A, TUBB2B, TUBB3), and an ocular motility disorder (TUBB3). Here, we show that Tubb5 is expressed in neurogenic progenitors in the mouse and that its depletion in vivo perturbs the cell cycle of progenitors and alters the position of migrating neurons. We report the occurrence of three microcephalic patients with structural brain abnormalities harboring de novo mutations in TUBB5 (M299V, V353I, and E401K). These mutant proteins, which affect the chaperone-dependent assembly of tubulin heterodimers in different ways, disrupt neurogenic division and/or migration in vivo. Our results provide insight into the functional repertoire of the tubulin gene family, specifically implicating TUBB5 in embryonic neurogenesis and microcephaly. PMID:23246003

  10. Neural tube defects and abnormal brain development in F52-deficient mice.

    PubMed Central

    Wu, M; Chen, D F; Sasaoka, T; Tonegawa, S

    1996-01-01

    F52 is a myristoylated, alanine-rich substrate for protein kinase C. We have generated F52-deficient mice by the gene targeting technique. These mutant mice manifest severe neural tube defects that are not associated with other complex malformations, a phenotype reminiscent of common human neural tube defects. The neural tube defects observed include both exencephaly and spina bifida, and the phenotype exhibits partial penetrance with about 60% of homozygous embryos developing neural tube defects. Exencephaly is the prominent type of defect and leads to high prenatal lethality. Neural tube defects are observed in a smaller percentage of heterozygous embryos (about 10%). Abnormal brain development and tail formation occur in homozygous mutants and are likely to be secondary to the neural tube defects. Disruption of F52 in mice therefore identifies a gene whose mutation results in isolated neural tube defects and may provide an animal model for common human neural tube defects. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8700893

  11. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

    PubMed Central

    van Erp, T G M; Hibar, D P; Rasmussen, J M; Glahn, D C; Pearlson, G D; Andreassen, O A; Agartz, I; Westlye, L T; Haukvik, U K; Dale, A M; Melle, I; Hartberg, C B; Gruber, O; Kraemer, B; Zilles, D; Donohoe, G; Kelly, S; McDonald, C; Morris, D W; Cannon, D M; Corvin, A; Machielsen, M W J; Koenders, L; de Haan, L; Veltman, D J; Satterthwaite, T D; Wolf, D H; Gur, R C; Gur, R E; Potkin, S G; Mathalon, D H; Mueller, B A; Preda, A; Macciardi, F; Ehrlich, S; Walton, E; Hass, J; Calhoun, V D; Bockholt, H J; Sponheim, S R; Shoemaker, J M; van Haren, N E M; Pol, H E H; Ophoff, R A; Kahn, R S; Roiz-Santiañez, R; Crespo-Facorro, B; Wang, L; Alpert, K I; Jönsson, E G; Dimitrova, R; Bois, C; Whalley, H C; McIntosh, A M; Lawrie, S M; Hashimoto, R; Thompson, P M; Turner, J A

    2016-01-01

    The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=−0.46), amygdala (d=−0.31), thalamus (d=−0.31), accumbens (d=−0.25) and intracranial volumes (d=−0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness. PMID:26033243

  12. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium.

    PubMed

    van Erp, T G M; Hibar, D P; Rasmussen, J M; Glahn, D C; Pearlson, G D; Andreassen, O A; Agartz, I; Westlye, L T; Haukvik, U K; Dale, A M; Melle, I; Hartberg, C B; Gruber, O; Kraemer, B; Zilles, D; Donohoe, G; Kelly, S; McDonald, C; Morris, D W; Cannon, D M; Corvin, A; Machielsen, M W J; Koenders, L; de Haan, L; Veltman, D J; Satterthwaite, T D; Wolf, D H; Gur, R C; Gur, R E; Potkin, S G; Mathalon, D H; Mueller, B A; Preda, A; Macciardi, F; Ehrlich, S; Walton, E; Hass, J; Calhoun, V D; Bockholt, H J; Sponheim, S R; Shoemaker, J M; van Haren, N E M; Pol, H E H; Ophoff, R A; Kahn, R S; Roiz-Santiañez, R; Crespo-Facorro, B; Wang, L; Alpert, K I; Jönsson, E G; Dimitrova, R; Bois, C; Whalley, H C; McIntosh, A M; Lawrie, S M; Hashimoto, R; Thompson, P M; Turner, J A

    2016-04-01

    The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness. PMID:26033243

  13. BRAIN ABNORMALITIES IN YOUNG ADULTS AT GENETIC RISK FOR AUTOSOMAL DOMINANT ALZHEIMER’S DISEASE: A CROSS-SECTIONAL STUDY

    PubMed Central

    Reiman, Eric M.; Quiroz, Yakeel T.; Fleisher, Adam S.; Chen, Kewei; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Fagan, Anne M.; Shah, Aarti R.; Alvarez, Sergio; Arbelaez, Andrés; Giraldo, Margarita; Acosta-Baena, Natalia; Sperling, Reisa A.; Dickerson, Brad; Stern, Chantal E.; Tirado, Victoria; Munoz, Claudia; Reiman, Rebecca A.; Huentelman, Matthew J.; Alexander, Gene E.; Langbaum, Jessica B.S.; Kosik, Kenneth S.; Tariot, Pierre N.; Lopera, Francisco

    2013-01-01

    Summary Background We previously detected functional brain imaging abnormalities in young adults at genetic risk for late-onset Alzheimer’s disease (AD). Here, we sought to characterize structural and functional magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and plasma biomarker abnormalities in young adults at risk for autosomal dominant early-onset AD. Biomarker measurements were characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the world’s largest known autosomal dominant early-onset AD kindred, more than two decades before the carriers’ estimated median age of 44 at the onset of mild cognitive impairment (MCI) and before their estimated age of 28 at the onset of amyloid-β (Aβ) plaque deposition. Methods Biomarker data for this cross-sectional study were acquired in Antioquia, Colombia between July and August, 2010. Forty-four participants from the Colombian Alzheimer’s Prevention Initiative (API) Registry had structural MRIs, functional MRIs during associative memory encoding/novel viewing and control tasks, and cognitive assessments. They included 20 mutation carriers and 24 non-carriers, who were cognitively normal, 18-26 years old and matched for their gender, age, and educational level. Twenty of the participants, including 10 mutation carriers and 10 non-carriers, had lumbar punctures and venipunctures. Primary outcome measures included task-dependent hippocampal/parahippocampal activations and precuneus/posterior cingulate deactivations, regional gray matter reductions, CSF Aβ1-42, total tau and phospho-tau181 levels, and plasma Aβ1-42 levels and Aβ1-42/Aβ1-40 ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and AD-related search regions. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. Findings The mutation carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological test scores, or proportion of apolipoprotein E (APOE) ε4 carriers. Compared to the non-carriers, carriers had higher CSF Aβ1-42 levels (p=0·008), plasma Aβ1-42 levels (p=0·01), and plasma Aβ1-42/Aβ1-40 ratios (p=0·001), consistent with Aβ1-42 overproduction. They also had greater hippocampal/parahippocampal activations (as low as p=0·008, after correction for multiple comparisons), less precuneus/posterior cingulate deactivations (as low as p=0·001, after correction), less gray matter in several regions (p-values <0·005, uncorrected, and corrected p=0·008 in the parietal search region), similar to findings in the later preclinical and clinical stages of autosomal dominant and late-onset AD. Interpretation Young adults at genetic risk for autosomal dominant AD have functional and structural MRI abnormalities, along with CSF and plasma biomarker findings consistent with Aβ1-42 over-production. While the extent to which the underlying brain changes are progressive or developmental remain to be determined, this study demonstrates the earliest known biomarker changes in cognitively normal people at genetic risk for autosomal dominant AD. Funding Banner Alzheimer’s Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Boston University Department of Psychology, Colciencias (1115-408-20512, 1115-545-31651), National Institute on Aging (R01 AG031581, P30 AG19610, UO1 AG024904, RO1 AG025526, RF1AG041705), National Institute of Neurological Disorders and Stroke (F31-NS078786) and state of Arizona. PMID:23137948

  14. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS)

    PubMed Central

    2011-01-01

    Background Bardet-Biedl syndrome (BBS) is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1) normal intracranial volume; 2) reduced white matter in all regions of the brain, but most in the occipital region; 3) preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4) reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5) increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes of the brain in patients with BBS, which parallel the findings, described in BBS mutant mouse models. Some of these brain abnormalities may be progressive and associated with the reported neurological and behavioral problems. Further future correlation of these MRI scan findings with detailed neurologic and neuropsychological exams together with genotype data will provide better understanding of the pathophysiology of BBS. PMID:21794117

  15. Abnormal Brain Dynamics Underlie Speech Production in Children with Autism Spectrum Disorder.

    PubMed

    Pang, Elizabeth W; Valica, Tatiana; MacDonald, Matt J; Taylor, Margot J; Brian, Jessica; Lerch, Jason P; Anagnostou, Evdokia

    2016-02-01

    A large proportion of children with autism spectrum disorder (ASD) have speech and/or language difficulties. While a number of structural and functional neuroimaging methods have been used to explore the brain differences in ASD with regards to speech and language comprehension and production, the neurobiology of basic speech function in ASD has not been examined. Magnetoencephalography (MEG) is a neuroimaging modality with high spatial and temporal resolution that can be applied to the examination of brain dynamics underlying speech as it can capture the fast responses fundamental to this function. We acquired MEG from 21 children with high-functioning autism (mean age: 11.43 years) and 21 age- and sex-matched controls as they performed a simple oromotor task, a phoneme production task and a phonemic sequencing task. Results showed significant differences in activation magnitude and peak latencies in primary motor cortex (Brodmann Area 4), motor planning areas (BA 6), temporal sequencing and sensorimotor integration areas (BA 22/13) and executive control areas (BA 9). Our findings of significant functional brain differences between these two groups on these simple oromotor and phonemic tasks suggest that these deficits may be foundational and could underlie the language deficits seen in ASD. Autism Res 2016, 9: 249-261. 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26363154

  16. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    PubMed Central

    Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollmann, Robert; Ferguson, David JP; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, William F; Chen, Lieping; McLeod, Rima

    2008-01-01

    Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus, CD4+ and CD8+ T cells, and activated microglia in perivascular areas and brain parenchyma. Genetically resistant, chronically infected mice had substantially less inflammation. Conclusion In outbred mice, chronic, adult acquired T. gondii infection causes neurologic and behavioral abnormalities secondary to inflammation and loss of brain parenchyma. Perivascular inflammation is prominent particularly contiguous to the aqueduct of Sylvius and hippocampus. Even resistant mice have perivascular inflammation. This mouse model of chronic T. gondii infection raises questions of whether persistence of this parasite in brain can cause inflammation or neurodegeneration in genetically susceptible hosts. PMID:18947414

  17. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  18. The restless brain: how intrinsic activity organizes brain function.

    PubMed

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  19. High Fat Diet Produces Brain Insulin Resistance, Synaptodendritic Abnormalities and Altered Behavior in Mice

    PubMed Central

    Arnold, Steven E.; Lucki, Irwin; Brookshire, Bethany R.; Carlson, Gregory C.; Browne, Carolyn A.; Kazi, Hala; Bang, Sookhee; Choi, Bo-Ran; Chen, Yong; McMullen, Mary F.; Kim, Sangwon F.

    2014-01-01

    Insulin resistance and other features of the metabolic syndrome are increasingly recognized for their effects on cognitive health. To ascertain mechanisms by which this occurs, we fed mice a very high fat diet (60% kcal by fat) for 17 days or a moderate high fat diet (HFD, 45% kcal by fat) for 8 weeks and examined changes in brain insulin signaling responses, hippocampal synaptodendritic protein expression, and spatial working memory. Compared to normal control diet mice, cerebral cortex tissues of HFD mice were insulin-resistant as evidenced by failed activation of Akt, S6 and GSK3? with ex-vivo insulin stimulation. Importantly, we found that expression of brain IPMK, which is necessary for mTOR/Akt signaling, remained decreased in HFD mice upon activation of AMPK. HFD mouse hippocampus exhibited increased expression of serine-phosphorylated insulin receptor substrate 1 (IRS1-pS616), a marker of insulin resistance, as well as decreased expression of PSD-95, a scaffolding protein enriched in post-synaptic densities, and synaptopodin, an actin-associated protein enriched in spine apparatuses. Spatial working memory was impaired as assessed by decreased spontaneous alternation in a T-maze. These findings indicate that HFD is associated with telencephalic insulin resistance and deleterious effects on synaptic integrity and cognitive behaviors. PMID:24686304

  20. Conditional Tat protein brain expression in the GT-tg bigenic mouse induces cerebral fractional anisotropy abnormalities

    PubMed Central

    Carey, Amanda N.; Liu, Xiaoxu; Mintzopoulos, Dionyssios; Paris, Jason J.; McLaughlin, Jay P.; Kaufman, Marc J.

    2015-01-01

    Cerebral white matter changes including tissue water diffusion abnormalities detected with diffusion tensor magnetic resonance imaging (DTI) are commonly found in humans with Human Immunodeficiency Virus (HIV) infection, as well as in animal models of the disorder. The severities of some of these abnormalities have been reported to correlate with measures of disease progression or severity, or with the degree of cognitive dysfunction. Accordingly, DTI may be a useful translational biomarker. HIV-Tat protein appears to be an important factor in the viral pathogenesis of HIV-associated neurotoxicity. We previously reported cerebral gray matter density reductions in the GT-tg bigenic mouse treated with doxycycline (Dox) to conditionally induce Tat protein expression. Presently, we administered intraperitoneal (i.p.) Dox (100 mg/kg/day) for 7 days to GT-tg mice to determine whether induction of conditional Tat expression led to the development of cerebral DTI abnormalities. Perfused and fixed brains from eight GT-tg mice administered Dox and eight control mice administered saline i.p. were extracted and underwent DTI scans on a 9.4 Tesla scanner. A whole brain analysis detected fractional anisotropy (FA) reductions in several areas including insular and endopiriform regions, as well as within the dorsal striatum. These findings suggest that exposure to Tat protein is sufficient to induce FA abnormalities, and further support the use of the GT-tg mouse to model some effects of HIV. PMID:25619988

  1. [Brain, psyche and physical activity].

    PubMed

    Hollmann, W; Strder, H K

    2000-11-01

    Modern technical and biochemical methods allow investigation of hemodynamic and metabolic responses of the human brain during muscular work. Following a general introduction to the topic results from selected studies on endogenous opioid peptides, pain sensitivity and psyche, regional cerebral blood flow and cerebral glucose metabolism, amino acid transport across the blood-brain barrier, impact of physical work on the serotonergic system, influence of oxygen partial pressure on neurotransmitters and hormones during exercise, role of the brain as performance limiting factor as well as age-related changes in cerebral blood flow and hypothalamo-pituitary-adrenal/-gonadal axis function will be presented. PMID:11149280

  2. Deficiency of the Chromatin Regulator Brpf1 Causes Abnormal Brain Development*

    PubMed Central

    You, Linya; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo. PMID:25568313

  3. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development.

    PubMed

    You, Linya; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-03-13

    Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo. PMID:25568313

  4. The Genetic and Environmental Determinants of the Association Between Brain Abnormalities and Schizophrenia: The Schizophrenia Twins and Relatives Consortium

    PubMed Central

    van Haren, Neeltje E.M.; Rijsdijk, Fruhling; Schnack, Hugo G.; Picchioni, Marco M.; Toulopoulou, Timothea; Weisbrod, Matthias; Sauer, Heinrich; van Erp, Theo G.; Cannon, Tyrone D.; Huttunen, Matti O.; Boomsma, Dorret I.; Hulshoff Pol, Hilleke E.; Murray, Robin M.; Kahn, Rene S.

    2012-01-01

    Background Structural brain abnormalities are consistently found in schizophrenia (Sz) and have been associated with the familial risk for the disorder. We aim to define the relative contributions of genetic and nongenetic factors to the association between structural brain abnormalities and Sz in a uniquely powered cohort (Schizophrenia Twins and Relatives consortium). Methods An international multicenter magnetic resonance imaging collaboration was set up to pool magnetic resonance imaging scans from twin pairs in Utrecht (The Netherlands), Helsinki (Finland), London (United Kingdom), and Jena (Germany). A sample of 684 subjects took part, consisting of monozygotic twins (n = 410, with 51 patients from concordant and 52 from discordant pairs) and dizygotic twins (n = 274, with 39 patients from discordant pairs). The additive genetic, common, and unique environmental contributions to the association between brain volumes and risk for Sz were estimated by structural equation modeling. Results The heritabilities of most brain volumes were significant and ranged between 52% (temporal cortical gray matter) and 76% (cerebrum). Heritability of cerebral gray matter did not reach significance (34%). Significant phenotypic correlations were found between Sz and reduced volumes of the cerebrum (?.22 [?.30/?.14]) and white matter (?.17 [?.25/?.09]) and increased volume of the third ventricle (.18 [.08/.28]). These were predominantly due to overlapping genetic effects (77%, 94%, and 83%, respectively). Conclusions Some of the genes that transmit the risk for Sz also influence cerebral (white matter) volume. PMID:22341827

  5. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    PubMed Central

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  6. Activities That Build the Young Child's Brain.

    ERIC Educational Resources Information Center

    Gellens, Suzanne R.

    This book presents 350 classroom-tested activities for use with children to create an environment that will stimulate young children's brains. Designed to be used by families, classroom teachers, family childcare providers, or others caring for young children, the book includes information on current brain research and describes interest areas in

  7. Children with reading disorder show modality independent brain abnormalities during semantic tasks.

    PubMed

    Booth, James R; Bebko, Genna; Burman, Douglas D; Bitan, Tali

    2007-03-01

    Neuroimaging studies have suggested that left inferior frontal gyrus, left inferior parietal lobule and left middle temporal gyrus are critical for semantic processing in normal children. The goal of the present functional magnetic resonance imaging (fMRI) study was to determine whether these regions are systematically related to semantic processing in children (9- to 15-year-old) diagnosed with reading disorders (RD). Semantic judgments required participants to indicate whether two words were related in meaning. The strength of semantic association varied continuously from higher association pairs (e.g., king-queen) to lower association pairs (e.g. net-ship). We found that the correlation between association strength and activation was significantly weaker for RD children compared to controls in left middle temporal gyrus and left inferior parietal lobule for both the auditory and the visual modalities and in left inferior frontal gyrus for the visual modality. These results suggest that the RD children have abnormalities in semantic search/retrieval in the inferior frontal gyrus, integration of semantic information in the inferior parietal lobule and semantic lexical representations in the middle temporal gyrus. These deficits appear to be general to the semantic system and independent of modality. PMID:17010394

  8. Children with reading disorder show modality independent brain abnormalities during semantic tasks

    PubMed Central

    Booth, James R.; Bebko, Genna; Burman, Douglas D.; Bitan, Tali

    2009-01-01

    Neuroimaging studies have suggested that left inferior frontal gyrus, left inferior parietal lobule and left middle temporal gyrus are critical for semantic processing in normal children. The goal of the present functional magnetic resonance imaging (fMRI) study was to determine whether these regions are systematically related to semantic processing in children (9- to 15-year-old) diagnosed with reading disorders (RD). Semantic judgments required participants to indicate whether two words were related in meaning. The strength of semantic association varied continuously from higher association pairs (e.g., kingqueen) to lower association pairs (e.g. netship). We found that the correlation between association strength and activation was significantly weaker for RD children compared to controls in left middle temporal gyrus and left inferior parietal lobule for both the auditory and the visual modalities and in left inferior frontal gyrus for the visual modality. These results suggest that the RD children have abnormalities in semantic search/retrieval in the inferior frontal gyrus, integration of semantic information in the inferior parietal lobule and semantic lexical representations in the middle temporal gyrus. These deficits appear to be general to the semantic system and independent of modality. PMID:17010394

  9. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  10. Understanding the brain by controlling neural activity.

    PubMed

    Krug, Kristine; Salzman, C Daniel; Waddell, Scott

    2015-09-19

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  11. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Ulu?, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater during the perception of unnatural (versus natural) motion (P < 0.01). To explore the microstructural basis for these functional changes, the regions with significant interaction effects (i.e. those with group differences in activation across perceptual conditions) were used as seeds for tractographic analysis of diffusion tensor imaging scans acquired in the same subjects. Fibre pathways specifically connecting each of the significant functional magnetic resonance imaging clusters to the cerebellum were reconstructed. Of the various reconstructed pathways that were analysed, the ponto-cerebellar projection alone differed between groups, with reduced fibre integrity in dystonia (P < 0.001). In aggregate, the findings suggest that the normal pattern of brain activation in response to motion perception is disrupted in DYT1 dystonia. Thus, it is unlikely that the circuit changes that underlie this disorder are limited to primary sensorimotor pathways. PMID:26419798

  12. Prenatal-postnatal correlations of brain abnormalities: how lesions and diagnoses change over time

    PubMed Central

    Senapati, Gunjan; Levine, Deborah

    2013-01-01

    A combination of prenatal ultrasound and MRI can be used to detect and characterize many primary and secondary CNS abnormalities in the developing fetus. While this information is useful in prenatal patient counseling, it is important to understand the factors that can influence change in diagnosis and prognosis over time. The etiology of the abnormality, the conspicuity of associated findings, the change in appearance over time, and the opinion of subspecialty experts all can influence the diagnosis. Additionally, technical factors of imaging acquisition may allow the detection of an abnormality in the postnatal period and not prenatally. Having an understanding of the normal fetal central nervous system anatomy at varying gestational ages will aid in the imaging detection and interpretation of CNS pathology. Understanding how these appearances and diagnoses can change over time will aid in the discussion of prognosis with expectant parents, which is crucial in fetal CNS abnormalities. PMID:24078783

  13. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    PubMed Central

    Hashimoto, Nobuhiko; Nakaaki, Shutaro; Kawaguchi, Akiko; Sato, Junko; Kasai, Harumasa; Nakamae, Takashi; Narumoto, Jin; Miyata, Jun; Furukawa, Toshi A; Mimura, Masaru

    2014-01-01

    Background Although several functional imaging studies have demonstrated that behavior therapy (BT) modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD), the structural abnormalities underlying BT-resistant OCD remain unknown. Methods In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24) and nonresponders (n=15) to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion These results suggest that the brain structures in several areas, including the orbitofrontal cortex, anterior cingulate cortex, and cingulate bundles, are related to the lack of a response to BT in patients with OCD. The use of a voxel-based morphometry approach may be advantageous to understanding differences in brain abnormalities between responders and nonresponders to BT. PMID:25349476

  14. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs

    PubMed Central

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-01-01

    AIM: To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. METHODS: After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. RESULTS: Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. CONCLUSION: After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity. PMID:25400453

  15. Distributed abnormalities of brain white matter architecture in patients with dominant optic atrophy and OPA1 mutations.

    PubMed

    Rocca, Maria A; Bianchi-Marzoli, Stefania; Messina, Roberta; Cascavilla, Maria Lucia; Zeviani, Massimo; Lamperti, Costanza; Milesi, Jacopo; Carta, Arturo; Cammarata, Gabriella; Leocani, Letizia; Lamantea, Eleonora; Bandello, Francesco; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2015-05-01

    Using advanced MRI techniques, we investigated the presence and topographical distribution of brain grey matter (GM) and white matter (WM) alterations in dominant optic atrophy (DOA) patients with genetically proven OPA1 mutation as well as their correlation with clinical and neuro-ophthalmologic findings. Nineteen DOA patients underwent neurological, neuro-ophthalmologic and brainstem auditory evoked potentials (BAEP) evaluations. Voxel-wise methods were applied to assess regional GM and WM abnormalities in patients compared to 20 healthy controls. Visual acuity was reduced in 16 patients. Six DOA patients (4 with missense mutations) had an abnormal I peripheral component (auditory nerve) at BAEP. Compared to controls, DOA patients had significant atrophy of the optic nerves (p < 0.0001). Voxel-based morphometry (VBM) analysis showed that, compared to controls, DOA patients had significant WM atrophy of the chiasm and optic tracts; whereas no areas of GM atrophy were found. Tract-based spatial statistics (TBSS) analysis showed that compared to controls, DOA patients had significantly lower mean diffusivity, axial and radial diffusivity in the WM of the cerebellum, brainstem, thalamus, fronto-occipital-temporal lobes, including the cingulum, corpus callosum, corticospinal tract and optic radiation bilaterally. No abnormalities of fractional anisotropy were detected. No correlations were found between volumetric and diffusivity abnormalities quantified with MRI and clinical and neuro-ophthalmologic measures of disease severity. Consistently with pathological studies, tissue loss in DOA patients is limited to anterior optic pathways reflecting retinal ganglion cell degeneration. Distributed abnormalities of diffusivity indexes might reflect abnormal intracellular mitochondrial morphology as well as alteration of protein levels due to OPA1 mutations. PMID:25794858

  16. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability.

    PubMed

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; El Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes; de Diego-Otero, Yolanda

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-?B-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-?Bp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-?B-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  17. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    PubMed Central

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  18. Intrinsic brain activity as a diagnostic biomarker in children with benign epilepsy with centrotemporal spikes.

    PubMed

    Zhu, Yihong; Yu, Yang; Shinkareva, Svetlana V; Ji, Gong-Jun; Wang, Jue; Wang, Zhong-Jin; Zang, Yu-Feng; Liao, Wei; Tang, Ye-Lei

    2015-10-01

    Benign epilepsy with centrotemporal spikes (BECTS) is often associated with neural circuit dysfunction, particularly during the transient active state characterized by interictal epileptiform discharges (IEDs). Little is known, however, about the functional neural circuit abnormalities in BECTS without IEDs, or if such abnormalities could be used to differentiate BECTS patients without IEDs from healthy controls (HCs) for early diagnosis. To this end, we conducted resting-state functional magnetic resonance imaging (RS-fMRI) and simultaneous Electroencephalogram (EEG) in children with BECTS (n?=?43) and age-matched HC (n?=?28). The simultaneous EEG recordings distinguished BECTS with IEDs (n?=?20) from without IEDs (n?=?23). Intrinsic brain activity was measured in all three groups using the amplitude of low frequency fluctuation at rest. Compared to HC, BECTS patients with IEDs exhibited an intrinsic activity abnormality in the thalamus, suggesting that thalamic dysfunction could contribute to IED emergence while patients without IEDs exhibited intrinsic activity abnormalities in middle frontal gyrus and superior parietal gyrus. Using multivariate pattern classification analysis, we were able to differentiate BECTS without IEDs from HCs with 88.23% accuracy. BECTS without epileptic transients can be distinguished from HC and BECTS with IEDs by unique regional abnormalities in resting brain activity. Both transient abnormalities as reflected by IEDs and chronic abnormalities as reflected by RS-fMRI may contribute to BECTS development and expression. Intrinsic brain activity and multivariate pattern classification techniques are promising tools to diagnose and differentiate BECTS syndromes. Hum Brain Mapp 36:3878-3889, 2015. 2015 Wiley Periodicals, Inc. PMID:26173095

  19. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    PubMed Central

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  20. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies.

    PubMed

    Aoki, Y; Kasai, K; Yamasue, H

    2012-01-01

    Abnormal trajectory of brain development has been suggested by previous structural magnetic resonance imaging and head circumference findings in autism spectrum disorders (ASDs); however, the neurochemical backgrounds remain unclear. To elucidate neurochemical processes underlying aberrant brain growth in ASD, we conducted a comprehensive literature search and a meta-analysis of (1)H-magnetic resonance spectroscopy ((1)H-MRS) studies in ASD. From the 22 articles identified as satisfying the criteria, means and s.d. of measure of N-acetylaspartate (NAA), creatine, choline-containing compounds, myo-Inositol and glutamate+glutamine in frontal, temporal, parietal, amygdala-hippocampus complex, thalamus and cerebellum were extracted. Random effect model analyses showed significantly lower NAA levels in all the examined brain regions but cerebellum in ASD children compared with typically developed children (n=1295 at the maximum in frontal, P<0.05 Bonferroni-corrected), although there was no significant difference in metabolite levels in adulthood. Meta-regression analysis further revealed that the effect size of lower frontal NAA levels linearly declined with older mean age in ASD (n=844, P<0.05 Bonferroni-corrected). The significance of all frontal NAA findings was preserved after considering between-study heterogeneities (P<0.05 Bonferroni-corrected). This first meta-analysis of (1)H-MRS studies in ASD demonstrated robust developmental changes in the degree of abnormality in NAA levels, especially in frontal lobes of ASD. Previously reported larger-than-normal brain size in ASD children and the coincident lower-than-normal NAA levels suggest that early transient brain expansion in ASD is mainly caused by an increase in non-neuron tissues, such as glial cell proliferation. PMID:22832731

  1. Autism spectrum disorder as early neurodevelopmental disorder: evidence from the brain imaging abnormalities in 2-3 years old toddlers.

    PubMed

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-07-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships in adolescents and adults with ASD, literature is still limited in information about the neurobiology of ASD in the early age of life. Brain images of 50 toddlers with ASD and 28 age, gender, and developmental quotient matched toddlers with developmental delay (DD) (control group) between ages 2 and 3 years were captured using combined magnetic resonance-based structural imaging and diffusion tensor imaging (DTI). Structural magnetic resonance imaging was applied to assess overall gray matter (GM) and white matter (WM) volumes, and regional alterations were assessed by voxel-based morphometry. DTI was used to investigate the white matter tract integrity. Compared with DD, significant increases were observed in ASD, primarily in global GM and WM volumes and in right superior temporal gyrus regional GM and WM volumes. Higher fractional anisotropy value was also observed in the corpus callosum, posterior cingulate cortex, and limbic lobes of ASD. The converging findings of structural and white matter abnormalities in ASD suggest that alterations in neural-anatomy of different brain regions may be involved in behavioral and cognitive deficits associated with ASD, especially in an early age of 2-3 years old toddlers. PMID:24419870

  2. Complex Regional Pain Syndrome is associated with structural abnormalities in pain-related regions of the human brain

    PubMed Central

    Barad, Meredith J; Ueno, Takefumi; Younger, Jarred; Chatterjee, Neil; Mackey, Sean

    2014-01-01

    Complex regional pain syndrome (CRPS) is a chronic condition that involves significant hyperalgesia of the affected limb, typically accompanied by localized autonomic abnormalities, and frequently motor dysfunction. Although central brain systems are thought to play a role in the development and maintenance of CRPS, these systems have not been well characterized. In this study, we used structural magnetic resonance imaging (sMRI) to characterize differences in gray matter volume between patients with right upper extremity CRPS and matched controls . Analyses were carried out using a whole brain voxel-based morphometry (VBM) approach. The CRPS group showed decreased gray matter volume in several pain-affect regions, including the dorsal insula, left orbitofrontal cortex, and several aspects of the cingulate cortex. Greater gray matter volume in CRPS patients was seen in the bilateral dorsal putamen and right hypothalamus. Correlation analyses with self-reported pain were then performed on the CRPS group. Pain duration was associated with decreased gray matter in the left dorsolateral prefrontal cortex. Pain intensity was positively correlated with volume in the left posterior hippocampus and left amygdala, and negatively correlated with the bilateral dorsolateral prefrontal cortex. Our findings demonstrate that CRPS is associated with abnormal brain system morphology, particularly pain-related sensory, affect, motor, and autonomic systems. PMID:24212070

  3. NCAM-deficient mice show prominent abnormalities in serotonergic and BDNF systems in brain - Restoration by chronic amitriptyline.

    PubMed

    Aonurm-Helm, Anu; Anier, Kaili; Zharkovsky, Tamara; Castrn, Eero; Rantamki, Tomi; Stepanov, Vladimir; Jrv, Jaak; Zharkovsky, Alexander

    2015-12-01

    Mood disorders are associated with alterations in serotonergic system, deficient BDNF (brain-derived neurotrophic factor) signaling and abnormal synaptic plasticity. Increased degradation and reduced functions of NCAM (neural cell adhesion molecule) have recently been associated with depression and NCAM deficient mice show depression-related behavior and impaired learning. The aim of the present study was to investigate potential changes in serotonergic and BDNF systems in NCAM knock-out mice. Serotonergic nerve fiber density and SERT (serotonin transporter) protein levels were robustly reduced in the hippocampus, prefrontal cortex and basolateral amygdala of adult NCAM(-)(/-) mice. This SERT reduction was already evident during early postnatal development. [(3)H]MADAM binding experiments further demonstrated reduced availability of SERT in cell membranes of NCAM(-)(/-) mice. Moreover, the levels of serotonin and its major metabolite 5-HIAA were down regulated in the brains of NCAM(-)(/-) mice. NCAM(-)(/-) mice also showed a dramatic reduction in the BDNF protein levels in the hippocampus and prefrontal cortex. This BDNF deficiency was associated with reduced phosphorylation of its receptor TrkB. Importantly, chronic administration of antidepressant amitriptyline partially or completely restored these changes in serotonergic and BDNF systems, respectively. In conclusion, NCAM deficiency lead to prominent and persistent abnormalities in brain serotonergic and BDNF systems, which likely contributes to the behavioral and neurobiological phenotype of NCAM(-/-) mice. PMID:26499173

  4. Characterization of Subtle Brain Abnormalities in a Mouse Model of Hedgehog Pathway Antagonist-Induced Cleft Lip and Palate

    PubMed Central

    Lipinski, Robert J.; Holloway, Hunter T.; O'Leary-Moore, Shonagh K.; Ament, Jacob J.; Pecevich, Stephen J.; Cofer, Gary P.; Budin, Francois; Everson, Joshua L.; Johnson, G. Allan; Sulik, Kathleen K.

    2014-01-01

    Subtle behavioral and cognitive deficits have been documented in patient cohorts with orofacial clefts (OFCs). Recent neuroimaging studies argue that these traits are associated with structural brain abnormalities but have been limited to adolescent and adult populations where brain plasticity during infancy and childhood may be a confounding factor. Here, we employed high resolution magnetic resonance microscopy to examine primary brain morphology in a mouse model of OFCs. Transient in utero exposure to the Hedgehog (Hh) signaling pathway antagonist cyclopamine resulted in a spectrum of facial dysmorphology, including unilateral and bilateral cleft lip and palate, cleft of the secondary palate only, and a non-cleft phenotype marked by midfacial hypoplasia. Relative to controls, cyclopamine-exposed fetuses exhibited volumetric differences in several brain regions, including hypoplasia of the pituitary gland and olfactory bulbs, hyperplasia of the forebrain septal region, and expansion of the third ventricle. However, in affected fetuses the corpus callosum was intact and normal division of the forebrain was observed. This argues that temporally-specific Hh signaling perturbation can result in typical appearing OFCs in the absence of holoprosencephalya condition classically associated with Hh pathway inhibition and frequently co-occurring with OFCs. Supporting the premise that some forms of OFCs co-occur with subtle brain malformations, these results provide a possible ontological basis for traits identified in clinical populations. They also argue in favor of future investigations into genetic and/or environmental modulation of the Hh pathway in the etiopathogenesis of orofacial clefting. PMID:25047453

  5. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury.

    PubMed

    Miller, Danielle R; Hayes, Jasmeet P; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2016-01-01

    Blast-related mild traumatic brain injury (mTBI) is a common injury among Iraq and Afghanistan military veterans due to the frequent use of improvised explosive devices. A significant minority of individuals with mTBI report chronic postconcussion symptoms (PCS), which include physical, emotional, and cognitive complaints. However, chronic PCS are nonspecific and are also associated with mental health disorders such as posttraumatic stress disorder (PTSD). Identifying the mechanisms that contribute to chronic PCS is particularly challenging in blast-related mTBI, where the incidence of comorbid PTSD is high. In this study, we examined whether blast-related mTBI is associated with diffuse white matter changes, and whether these neural changes are associated with chronic PCS. Ninety Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans were assigned to one of three groups including a blast-exposed no - TBI group, a blast-related mTBI without loss of consciousness (LOC) group (mTBI - LOC), and a blast-related mTBI with LOC group (mTBI + LOC). PCS were measured with the Rivermead Postconcussion Questionnaire. Results showed that participants in the mTBI + LOC group had more spatially heterogeneous white matter abnormalities than those in the no - TBI group. These white matter abnormalities were significantly associated with physical PCS severity even after accounting for PTSD symptoms, but not with cognitive or emotional PCS severity. A mediation analysis revealed that mTBI + LOC significantly influenced physical PCS severity through its effect on white matter integrity. These results suggest that white matter abnormalities are associated with chronic PCS independent of PTSD symptom severity and that these abnormalities are an important mechanism explaining the relationship between mTBI and chronic physical PCS. Hum Brain Mapp 37:220-229, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. PMID:26497829

  6. Cardiac repolarization abnormalities and increased sympathetic activity in scleroderma.

    PubMed Central

    Ciftci, Orcun; Onat, Ahmet Mesut; Yavuz, Bunyamin; Akdogan, Ali; Aytemir, Kudret; Tokgozoglu, Lale; Sahiner, Levent; Deniz, Ali; Ureten, Kemal; Kizilca, Guler; Calguneri, Meral; Oto, Ali

    2007-01-01

    BACKGROUND: Cardiac involvement in scleroderma is a poor prognostic sign and is usually underdiagnosed, particularly in asymptomatic patient. This paper focuses on QT dynamicity and heart rate variability (HRV) in patients with scleroderma and controls in an attempt to investigate the cardiac autonomic system and ventricular repolarization. METHODS: Sixty patients with scleroderma and 30 age- and sex-matched healthy controls who had no cardiovascular risk factors were included in this study. All patients and the controls underwent a 24-hour holter recording as well as a transthoracic echocardiography. HRV and QT dynamicity parameters were calculated. RESULTS: In HRV analysis, autonomic balance was changed in favor of the sympathetic system in patients with diffuse scleroderma. In QT dynamicity analysis, QT/RR slopes were significantly steeper in patients with diffuse scleroderma compared to patients with limited scleroderma and controls (QTapex/RR: 0.24 +/- 0.16, 0.15 +/- 0.03, 0.14 +/- 0.03 respectively p < 0.001; QTend/RR: 0.26 +/- 0.17, 0.14 +/- 0.04, 0.13 +/- 0.05, respectively p < 0.001). CONCLUSIONS: Patients with diffuse scleroderma may have asymptomatic cardiac repolarization abnormalities and autonomic dysfunction. Our results may indicate that QT dynamicity and HRV can be useful noninvasive methods that may detect impaired state of autonomic balance and cardiac repolarization in patients with diffuse scleroderma. PMID:17393947

  7. Red-Backed Vole Brain Promotes Highly Efficient In Vitro Amplification of Abnormal Prion Protein from Macaque and Human Brains Infected with Variant Creutzfeldt-Jakob Disease Agent

    PubMed Central

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood. PMID:24205298

  8. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    USGS Publications Warehouse

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood.

  9. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies

    PubMed Central

    Vingtdeux, Valérie; Davies, Peter; Dickson, Dennis W.

    2011-01-01

    Tauopathies represent a class of neurodegenerative disorders characterized by abnormal tau phosphorylation and aggregation into neuronal paired helical filaments (PHFs) and neurofibrillary tangles. AMP-activated protein kinase (AMPK) is a metabolic sensor expressed in most mammalian cell types. In the brain, AMPK controls neuronal maintenance and is overactivated during metabolic stress. Here, we show that activated AMPK (p-AMPK) is abnormally accumulated in cerebral neurons in 3R+4R and 3R tauopathies, such as Alzheimer's disease (AD), tangle-predominant dementia, Guam Parkinson dementia complex, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17, and to a lesser extent in some neuronal and glial populations in the 4R tauopathies, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease. In AD brains, p-AMPK accumulation decorated neuropil threads and dystrophic neurites surrounding amyloid plaques, and appeared in more than 90% of neurons bearing pre-tangles and tangles. Granular p-AMPK immunoreactivity was also observed in several tauopathies in apparently unaffected neurons devoid of tau inclusion, suggesting that AMPK activation preceded tau accumulation. Less p-AMPK pathology was observed in PSP and CBD, where minimal p-AMPK accumulation was also found in tangle-positive glial cells. p-AMPK was not found in purified PHFs, indicating that p-AMPK did not co-aggregate with tau in tangles. Finally, in vitro assays showed that AMPK can directly phosphorylate tau at Thr-231 and Ser-396/404. Thus, activated AMPK abnormally accumulated in tangle- and pre-tangle-bearing neurons in all major tauopathies. By controlling tau phosphorylation, AMPK might regulate neurodegeneration and therefore could represent a novel common determinant in tauopathies. PMID:20957377

  10. Whole-brain activity mapping onto a zebrafish brain atlas.

    PubMed

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signalregulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  11. Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia

    PubMed Central

    Jimenez, Amy M.; Lee, Junghee; Wynn, Jonathan K.; Cohen, Mark S.; Engel, Stephen A.; Glahn, David C.; Nuechterlein, Keith H.; Reavis, Eric A.; Green, Michael F.

    2016-01-01

    Early visual perception and attention are impaired in schizophrenia, and these deficits can be observed on target detection tasks. These tasks activate distinct ventral and dorsal brain networks which support stimulus-driven and goal-directed attention, respectively. We used single and dual target rapid serial visual presentation (RSVP) tasks during fMRI with an ROI approach to examine regions within these networks associated with target detection and the attentional blink (AB) in 21 schizophrenia outpatients and 25 healthy controls. In both tasks, letters were targets and numbers were distractors. For the dual target task, the second target (T2) was presented at three different lags after the first target (T1) (lag1 = 100 ms, lag3 = 300 ms, lag7 = 700ms). For both single and dual target tasks, patients identified fewer targets than controls. For the dual target task, both groups showed the expected AB effect with poorer performance at lag 3 than at lags 1 or 7, and there was no group by lag interaction. During the single target task, patients showed abnormally increased deactivation of the temporo-parietal junction (TPJ), a key region of the ventral network. When attention demands were increased during the dual target task, patients showed overactivation of the posterior intraparietal cortex, a key dorsal network region, along with failure to deactivate TPJ. Results suggest inefficient and faulty suppression of salience-oriented processing regions, resulting in increased sensitivity to stimuli in general, and difficulty distinguishing targets from non-targets. PMID:27014135

  12. Abnormal resting state FMRI activity predicts processing speed deficits in first-episode psychosis.

    PubMed

    Argyelan, Miklos; Gallego, Juan A; Robinson, Delbert G; Ikuta, Toshikazu; Sarpal, Deepak; John, Majnu; Kingsley, Peter B; Kane, John; Malhotra, Anil K; Szeszko, Philip R

    2015-06-01

    Little is known regarding the neuropsychological significance of resting state functional magnetic resonance imaging (rs-fMRI) activity early in the course of psychosis. Moreover, no studies have used different approaches for analysis of rs-fMRI activity and examined gray matter thickness in the same cohort. In this study, 41 patients experiencing a first-episode of psychosis (including N=17 who were antipsychotic drug-naive at the time of scanning) and 41 individually age- and sex-matched healthy volunteers completed rs-fMRI and structural MRI exams and neuropsychological assessments. We computed correlation matrices for 266 regions-of-interest across the brain to assess global connectivity. In addition, independent component analysis (ICA) was used to assess group differences in the expression of rs-fMRI activity within 20 predefined publicly available templates. Patients demonstrated lower overall rs-fMRI global connectivity compared with healthy volunteers without associated group differences in gray matter thickness assessed within the same regions-of-interest used in this analysis. Similarly, ICA revealed worse rs-fMRI expression scores across all 20 networks in patients compared with healthy volunteers, with posthoc analyses revealing significant (p<0.05; corrected) abnormalities within the caudate nucleus and planum temporale. Worse processing speed correlated significantly with overall lower global connectivity using the region-of-interest approach and lower expression scores within the planum temporale using ICA. Our findings implicate dysfunction in rs-fMRI activity in first-episode psychosis prior to extensive antipsychotic treatment using different analytic approaches (in the absence of concomitant gray matter structural differences) that predict processing speed. PMID:25567423

  13. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study.

    PubMed

    Conforti, Renata; de Cristofaro, Mario; Cristofano, Adriana; Brogna, Barbara; Sardaro, Angela; Tedeschi, Gioacchino; Cirillo, Sossio; Di Costanzo, Alfonso

    2016-02-01

    This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7-20 years. White matter lesions (WMLs) were rated by semi-quantitative method, the signal intensity of white matter poster-superior to trigones (WMPST) by reference to standard images and brain atrophy by ventricular/brain ratio (VBR). At the end of MRI follow-up, the scores relative to lobar, temporal and periventricular WMLs, to WMPST signal intensity and to VBR were significantly increased compared to baseline, and MRI changes were more evident in some families than in others. No correlation was found between the MRI changes and age, onset, disease duration, muscular involvement, CTG repetition and follow-up duration. These results demonstrated that white matter involvement and brain atrophy were progressive in DM1 and suggested that progression rate varied from patient to patient, regardless of age, disease duration and genetic defect. PMID:26755488

  14. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation

    PubMed Central

    Prabowo, A.; Anink, J.; Lammens, M; Nellist, M.; van den Ouweland, A. M. W.; Adle-Biassette, H.; Sarnat, H.B.; Flores-Sarnat, L.; Crino, P.B.; Aronica, E.

    2012-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in either the TSC1 or TSC2 genes and characterized by developmental brain abnormalities. We defined the spectrum of brain abnormalities in fetal TSC brain ranging from 23 to 38 gestational weeks. We hypothesized (1) prenatal activation of the target-of-rapamycin complex 1 (TORC1) signaling pathway and (2) activation of inflammatory pathways in fetal brain lesions. Immunocytochemical analysis of cortical tubers, as well as subependymal lesions in all cases confirmed the cell-associated activation of the TORC1 signaling pathway in both the cortical tubers and subependymal lesions (including a congenital subependymal giant cell astrocytoma) with expression of pS6, p4EBP1 and c-myc proteins, as well as of p70 S6 kinase 1. The lesions contained macrophages and T-lymphocytes; giant cells within the lesions expressed inflammatory response markers including major histocompatibility complex (MHC) class I and II, Toll like receptor (TLR) 2 and 4 and advanced glycation end products (RAGE). These observations indicate that brain malformations in TSC are likely a consequence of increased mTOR activation during embryonic brain development. We also provide evidence supporting the possible immunogenicity of giant cells and the early activation of inflammatory pathways in TSC brain. PMID:22805177

  15. Nanotools for Neuroscience and Brain Activity Mapping

    PubMed Central

    Alivisatos, A. Paul; Andrews, Anne M.; Boyden, Edward S.; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Fraser, Scott E.; Lippincott-Schwartz, Jennifer; Looger, Loren L.; Masmanidis, Sotiris; McEuen, Paul L.; Nurmikko, Arto V.; Park, Hongkun; Peterka, Darcy S.; Reid, Clay; Roukes, Michael L.; Scherer, Axel; Schnitzer, Mark; Sejnowski, Terrence J.; Shepard, Kenneth L.; Tsao, Doris; Turrigiano, Gina; Weiss, Paul S.; Xu, Chris; Yuste, Rafael; Zhuang, Xiaowei

    2013-01-01

    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function. PMID:23514423

  16. Divergent structural brain abnormalities between different genetic subtypes of children with PraderWilli syndrome

    PubMed Central

    2013-01-01

    Background PraderWilli syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses. Methods High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite. Results Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD. Conclusions Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD. PMID:24144356

  17. Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.

    PubMed

    Renjith, Arokia; Manjula, P; Mohan Kumar, P

    2015-01-01

    Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method. PMID:26493726

  18. Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease

    PubMed Central

    Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M.; Leonardo, Cassandra D.; Ye, Jieping; Thompson, Paul M.; for the Alzheimer’s Disease Neuroimaging Initiative

    2015-01-01

    Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791

  19. Microstructural abnormalities of the brain white matter in attention-deficit/hyperactivity disorder

    PubMed Central

    Chen, Lizhou; Huang, Xiaoqi; Lei, Du; He, Ning; Hu, Xinyu; Chen, Ying; Li, Yuanyuan; Zhou, Jinbo; Guo, Lanting; Kemp, Graham J.; Gong, Qiyong

    2015-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and behavioural symptoms and executive functions. Methods We assessed children and adolescents with ADHD and healthy controls using psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, between the 2 groups. Results Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as executive function in patients with ADHD. Limitations This study was limited by its cross-sectional design and small sample size. The cluster size of the significant result was small. Conclusion Our findings suggest that white matter abnormalities within the limbic network could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD. PMID:25853285

  20. Predictors of Abnormal Neuroimaging of the Brain in Children With Epilepsy Aged 1 Month to 2 Years: Useful Clues in a Resource-Limited Setting.

    PubMed

    Sanmaneechai, Oranee; Danchaivijitr, Nasuda; Likasitwattanakul, Surachai

    2015-10-01

    Neuroimaging should be performed on infants with seizure. However, there are economic limitations in performing neuroimaging in a resource-limited setting. The younger the age, the higher the risk of having abnormal neuroimaging. The aim was to determine frequency and predictors of abnormal neuroimaging in children with epilepsy aged 1 month to 2 years. History, physical examination, electroencephalogram (EEG), and neuroimaging were reviewed. Thirty-seven of 49 (76%) had neuroimaging studies; 19 computed tomography (CT), 14 magnetic resonance imaging (MRI), and 4 had both. Abnormal neuroimaging was found in 19 (51%). Predictors of abnormal neuroimages are developmental delay, abnormal head circumference, and abnormal neurologic examination. Eight children (21%) had lesions on neuroimaging studies that altered or influenced management. Of 8 patients with normal examination and EEG, 1 had a brain tumor and another had arteriovenous malformation. Neuroimaging should be considered as an essential aid in the evaluation of infants with epilepsy, even in a resource-limited setting. PMID:25792429

  1. Thinking Patterns, Brain Activity and Strategy Choice

    NASA Astrophysics Data System (ADS)

    Nishimura, Kazuo; Okada, Akira; Inagawa, Michiyo; Tobinaga, Yoshikazu

    2012-03-01

    In this study we analyzed the relationship between thinking patterns, behavior and associated brain activity. Subjects completed a self-report assessing whether they could voluntarily stop thinking or not, and were then divided into two groups: those with the ability to stop thinking and those without. We measured subjects' brain activity using magnetoencephalography while giving them a series of tasks intended to encourage or discourage spontaneous thinking. Our findings revealed differences between the two groups in terms of which portions of the brain were active during the two types of task. A second questionnaire confirmed a relationship between the ability to stop thinking and strategy choices in a dilemma game. We found that subjects without the ability to stop thinking had a tendency to choose cooperative behavior.

  2. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  3. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal

  4. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  5. Air Pollution, Cognitive Deficits and Brain Abnormalities: A Pilot Study with Children and Dogs

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Mora-Tiscareno, Antonieta; Ontiveros, Esperanza; Gomez-Garza, Gilberto; Barragan-Mejia, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R.; Henriquez-Roldan, Carlos; Perez-Guille, Beatriz; Torres-Jardon, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E.; Gonzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C.; Engle, Randall W.

    2008-01-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n:55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic…

  6. Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder

    ERIC Educational Resources Information Center

    Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.

    2008-01-01

    The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation

  7. Air Pollution, Cognitive Deficits and Brain Abnormalities: A Pilot Study with Children and Dogs

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Mora-Tiscareno, Antonieta; Ontiveros, Esperanza; Gomez-Garza, Gilberto; Barragan-Mejia, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R.; Henriquez-Roldan, Carlos; Perez-Guille, Beatriz; Torres-Jardon, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E.; Gonzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C.; Engle, Randall W.

    2008-01-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n:55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic

  8. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior

  9. Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance.

    PubMed

    Minkova, Lora; Eickhoff, Simon B; Abdulkadir, Ahmed; Kaller, Christoph P; Peter, Jessica; Scheller, Elisa; Lahr, Jacob; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs. Hum Brain Mapp 37:67-80, 2016. © 2015 Wiley Periodicals, Inc. PMID:26453902

  10. Modulation of Brain Activity during Phonological Familiarization

    ERIC Educational Resources Information Center

    Majerus, S.; Van der Linden, M.; Collette, F.; Laureys, S.; Poncelet, M.; Degueldre, C.; Delfiore, G.; Luxen, A.; Salmon, E.

    2005-01-01

    We measured brain activity in 12 adults for the repetition of auditorily presented words and nonwords, before and after repeated exposure to their phonological form. The nonword phoneme combinations were either of high (HF) or low (LF) phonotactic frequency. After familiarization, we observed, for both word and nonword conditions, decreased

  11. Brain Activity on Navigation in Virtual Environments.

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.

    2001-01-01

    Assessed the cognitive processing that takes place in virtual environments by measuring electrical brain activity using Fast Fourier Transform analysis. University students performed the same task in a real and a virtual environment, and eye movement measurements showed that all subjects were more attentive when navigating in the virtual world.

  12. Differential Impact of Hyponatremia and Hepatic Encephalopathy on Health-Related Quality of Life and Brain Metabolite Abnormalities in Cirrhosis

    PubMed Central

    Ahluwalia, Vishwadeep; Wade, James B; Thacker, Leroy; Kraft, Kenneth A; Sterling, Richard K; Stravitz, R Todd; Fuchs, Michael; Bouneva, Iliana; Puri, Puneet; Luketic, Velimir; Sanyal, Arun J; Gilles, HoChong; Heuman, Douglas M; Bajaj, Jasmohan S

    2013-01-01

    Background Hyponatremia (HN) and hepatic encephalopathy (HE) together can impair health-related quality-of-life (HRQOL) and cognition in cirrhosis. Aim To study effect of hyponatremia on cognition, HRQOL and brain MR spectroscopy (MRS) independent of HE. Methods Four cirrhotic groups(no HE/HN, HE alone, HN alone (sodium<130mEq/L),HE+HN) underwent cognitive testing, HRQOL using Sickness Impact Profile (SIP: higher score is worse; has psycho-social and physical sub-scores) and brain MRS (myoinositol(mI) and glutamate+glutamine(Glx)), which were compared across groups. A subset underwent HRQOL testing before/after diuretic withdrawal. Results 82 cirrhotics (30 no HE/HN, 25 HE, 17 HE+HN and 10 HN, MELD 12, 63% Hepatitis C) were included. Cirrhotics with HN alone and without HE/HN had better cognition compared to HE groups (median abnormal tests no-HE/HN:3, HN:3.5, HE:6.5,HE+HN:7, p=0.008). Despite better cognition, HN only patients had worse HRQOL in total and psychosocial SIP while both HN groups (with/without HE) had a significantly worse physical SIP(p<0.0001, all comparisons). Brain MRS showed lowest Glx in HN and highest in HE groups (p<0.02). mI levels were comparably decreased in the three affected (HE,HE+HN and HN) groups compared to no HE/HN and were associated with poor HRQOL. Six HE+HN cirrhotics underwent diuretic withdrawal which improved serum sodium and total/psycho-social SIP scores. Conclusions Hyponatremic cirrhotics without HE have poor HRQOL despite better cognition than those with concomitant HE. Glx levels were lowest in HN without HE but mI was similar across affected groups. HRQOL improved after diuretic withdrawal. Hyponatremia has a complex, non-linear relationship with brain Glx and mI, cognition and HRQOL. PMID:23665182

  13. Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes.

    PubMed

    Katsel, Pavel; Davis, Kenneth L; Li, Celeste; Tan, Weilun; Greenstein, Elizabeth; Kleiner Hoffman, Lisa B; Haroutunian, Vahram

    2008-11-01

    The goal of this study was to determine what signaling pathways may elicit myelin-specific gene expression deficits in schizophrenia (SZ). Microarray analyses indicated that genes associated with canonical cell cycle pathways were significantly affected in the anterior cingulate gyrus (ACG), the region exhibiting the most profound myelin-specific gene expression changes, in persons with SZ (N=16) as compared with controls (N=19). Detected gene expression changes of key regulators of G1/S phase transition and genes central to oligodendrocyte differentiation were validated using qPCR in the ACG in an independent cohort (Ns=45/34). The relative abundance of phosphorylated retinoblastoma protein (pRb) was increased in the white matter underlying the ACG in SZ subjects (Ns=12). The upregulation of cyclin D1 gene expression and the downregulation of p57(Kip2), accompanied by increased cyclin D/CDK4-dependent phosphorylation of pRb, acting as a checkpoint for G1/S phase transition, suggest abnormal cell cycle re-entry in postmitotic oligodendrocytes in SZ. Furthermore, gene expression profiling of brain samples from myelin mutant animal models, quaking and myelin-associated glycoprotein (MAG) null mice, showed that cell cycle gene expression changes were not a necessary consequence of the reduced gene expression of structural myelin proteins, such as MAG. While, quaking, a known modulator of cell cycle activity during oligodendrocyte differentiation impairs the expression of multiple myelin genes, including those that are affected in SZ. These data suggest that the normal patterns of cell cycle gene and protein expression are disrupted in SZ and that this disruption may contribute to the oligodendroglial deficits observed in SZ. PMID:18322470

  14. Regional homogeneity of resting-state brain abnormalities in violent juvenile offenders: a biomarker of brain immaturity?

    PubMed

    Chen, Chen; Zhou, Jiansong; Liu, Chunhong; Witt, Katrina; Zhang, Yingdong; Jing, Bin; Li, Chun; Wang, Xiaoping; Li, Lingjiang

    2015-01-01

    The authors investigated whether male violent juvenile offenders demonstrate any differences in local functional connectivity indicative of delayed maturation of the brain that may serve as a biomarker of violence. Twenty-nine violent juvenile offenders and 28 age-matched controls were recruited. Regional homogeneity (ReHo) method was used to analyze resting-state magnetic resonance images. Violent offenders showed significantly lower ReHo values in the right caudate, right medial prefrontal cortex, and left precuneus, and higher values in the right supramarginal gyrus than the controls. These regions had both high sensitivity and specificity in distinguishing between the two groups suggesting that dysfunction in these regions can be used to correctly classify those individuals who are violent. Dysfunction in the right medial prefrontal-caudate circuit may, therefore, represent an important biomarker of violence juvenile males. PMID:25716485

  15. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallars, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  16. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  17. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  18. Asymmetric Di-methyl Arginine is Strongly Associated with Cognitive Dysfunction and Brain MR Spectroscopic Abnormalities in Cirrhosis

    PubMed Central

    Bajaj, Jasmohan S; Ahluwalia, Vishwadeep; Wade, James B; Sanyal, Arun J; White, Melanie B; Noble, Nicole A; Monteith, Pamela; Fuchs, Michael; Sterling, Richard K; Luketic, Velimir; Bouneva, Iliana; Stravitz, Richard T; Puri, Puneet; Kraft, Kenneth A; Gilles, HoChong; Heuman, Douglas M

    2012-01-01

    Background Asymmetric di-methyl arginine (ADMA) is an inhibitor of nitric oxide synthase that accumulates in liver disease and may contribute to hepatic encephalopathy(HE). Aim To evaluate the association of ADMA with cognition and brain MR spectroscopy(MRS) in cirrhosis. Methods Cirrhotic patients with/without prior HE and non-cirrhotic controls underwent cognitive testing and ADMA determination. A subgroup underwent brain MRS [Glutamine/glutamate(Glx), myoinositol(mI), N-acetyl-aspartate(NAA) in parietal white, occipital gray and anterior cingulate(ACC)]. We also tested cognition and ADMA in a cirrhotic subgroup before and 1 month after transjugular intrahepatic portosystemic shunting (TIPS). Cognition and MRS values were correlated with ADMA and compared between groups using multi-variable regression. ADMA levels were compared between those who did/did not develop post-TIPS HE. Results 90 cirrhotics (MELD13, 54 prior HE) and 16 controls were included. Controls had better cognition and lower ADMA, Glx and higher mI compared to cirrhotics. Prior HE patients had worse cognition, higher ADMA and Glx and lower mI compared to non-HE cirrhotics. ADMA was positively correlated with MELD (r=0.58,p<0.0001), abnormal cognitive test number(r=0.66,p<0.0001) and Glx and NAAA (white matter,ACC) and negatively with mI. On regression, ADMA predicted number of abnormal tests and mean Z-score independent of prior HE and MELD. 12 patients underwent TIPS;7 developed HE post-TIPS. ADMA increased post-TIPS in patients who developed HE(p=0.019) but not in others(p=0.89). Conclusions A strong association of ADMA with cognition and prior HE was found independent of MELD score in cirrhosis. PMID:22889958

  19. Defective glycine cleavage system in nonketotic hyperglycinemia. Occurrence of a less active glycine decarboxylase and an abnormal aminomethyl carrier protein.

    PubMed Central

    Hiraga, K; Kochi, H; Hayasaka, K; Kikuchi, G; Nyhan, W L

    1981-01-01

    The activities of then glycine cleavage system in the liver and brain of patient with nonketotic hyperglycinemia was extremely low as compared with those of control human liver and brain. The activities of glycine decarboxylase (P-protein) and the aminomethyl carrier protein (H-protein), two of the four protein components of the glycine cleavage system, were considerably reduced in both the liver and brain; the extent of reduction was greater in the H-protein. The activity of the T-protein was normal. Purified H-protein from the patient did not react with lipoamide dehydrogenase, and titration of thiol groups with [2,3-14C]N-ethylmaleimide suggested that this H-protein is devoid of lipoic acid. This structural abnormality in the H-protein is considered to constitute the primary molecular lesion in this patient with non-ketotic hyperglycinemia. Immunochemical studies using an antibody specific for P-protein showed that the patient was due to reduction of the catalytic activity of the protein rather than a decrease in the actual amount of the P-protein. Partial inactivation of P-protein could result secondarily from impaired metabolism of glycine resulting from deficiency in the activity of H-protein. However, the H-protein from the patient could stimulate the P-protein catalyzed exchange of the carboxyl carbon of glycine with 14CO2, although the specific activity of the purified H-protein from the patient was only 4% of that of control human H-protein. The content of H-protein in the liver of the patient was approximately 35% of that of control human liver. Images PMID:6790577

  20. Intracranial Intra-arachnoid Diverticula and Cyst-like Abnormalities of the Brain.

    PubMed

    Platt, Simon; Hicks, Jill; Matiasek, Lara

    2016-03-01

    Primary intracranial cystic or cyst-like lesions include intra-arachnoid, epidermoid, dermoid, and choroid plexus cysts. Differentiation of these cystic lesions can usually be accomplished by imaging studies alone; however, some cysts are similar in appearance and require histopathology for definitive diagnosis. Clinical signs often reflect the location of the cysts within the intracranial cavity rather than the type of cyst. If clinical signs are significant and progressive, surgical removal is warranted and may be successful, although cystic contents could be harmful if allowed to contact surrounding brain parenchyma or meninges. PMID:26704659

  1. Post mTBI fatigue is associated with abnormal brain functional connectivity

    PubMed Central

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants’ fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject’s fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  2. Post mTBI fatigue is associated with abnormal brain functional connectivity.

    PubMed

    Nordin, Love Engstrm; Mller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20?minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants' fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject's fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  3. Temporal organization of ongoing brain activity

    NASA Astrophysics Data System (ADS)

    Lombardi, F.; de Arcangelis, L.

    2014-10-01

    Ongoing brain activity results from the mutual interaction of hundred billions non-linear units and represents a significant part of the overall brain activity. Although its complex dynamics has been widely investigated, a large number of fundamental questions are still open, many of them concerning its temporal structure. Why does a certain population of neurons fires synchronously? Are these synchronized bursts following each other randomly or are they correlated according to some organizing principle? Far from addressing the fundamental problem of its functions, in the present article we focus on the problem of temporal correlations of ongoing cortical activity. We first overview the major features of its temporal structure and review recent experimental results, with particular emphasis on alternative approaches inspired in the theory of stochastic processes; then we introduce a neuronal network model inspired in self organized criticality and compare numerical results with experimental findings.

  4. Identifying natural images from human brain activity

    PubMed Central

    Kay, Kendrick N.; Naselaris, Thomas; Prenger, Ryan J.; Gallant, Jack L.

    2013-01-01

    A challenging goal in neuroscience is to be able to read out, or decode, mental content from brain activity. Recent functional magnetic resonance imaging (fMRI) studies have decoded orientation1,2, position3, and object category4,5 from activity in visual cortex. However, these studies typically used relatively simple stimuli (e.g. gratings) or images drawn from fixed categories (e.g. faces, houses), and decoding was based on prior measurements of brain activity evoked by those same stimuli or categories. To overcome these limitations, we develop a decoding method based on quantitative receptive field models that characterize the relationship between visual stimuli and fMRI activity in early visual areas. These models describe the tuning of individual voxels for space, orientation, and spatial frequency, and are estimated directly from responses evoked by natural images. We show that these receptive field models make it possible to identify, from a large set of completely novel natural images, which specific image was seen by an observer. Identification is not a mere consequence of the retinotopic organization of visual areas; simpler receptive field models that describe only spatial tuning yield much poorer identification performance. Our results suggest that it may soon be possible to reconstruct a picture of a persons visual experience from brain activity measurements alone. PMID:18322462

  5. Central motor conduction in multiple sclerosis: evaluation of abnormalities revealed by transcutaneous magnetic stimulation of the brain.

    PubMed Central

    Ingram, D A; Thompson, A J; Swash, M

    1988-01-01

    Magnetic stimulation of the brain and spinal column was used to assess conduction in the descending central motor pathways controlling arm and leg muscles of 20 patients with multiple sclerosis, and 10 normal subjects. The multiple sclerosis patients had relapsing and remitting disease but all were ambulant and in stable clinical remission. Increased central motor conduction times (CMCTs), up to three times normal, were frequently encountered in multiple sclerosis patients and in leg muscles these correlated closely with clinical signs of upper motor neuron disturbance; in the upper limb muscles a higher proportion of subclinical lesions was present. Weak muscles were almost invariably associated with abnormal central conduction but increased CMCTs were also found for 52 of the 104 muscles with normal strength. CMCTs for lower limb muscles were directly related (p less than 0.005) to functional motor disability (Kurtzke and Ambulatory Index Scales). No patient developed clinical evidence of relapse during follow-up of at least 8 months. Magnetic brain stimulation is easy to perform, painless, and safe, and provides clinically relevant information in the diagnosis and monitoring of multiple sclerosis patients. PMID:2837538

  6. Brain MR spectroscopic abnormalities in "MRI-negative" tuberous sclerosis complex patients.

    PubMed

    Wu, William E; Kirov, Ivan I; Tal, Assaf; Babb, James S; Milla, Sarah; Oved, Joseph; Weiner, Howard L; Devinsky, Orrin; Gonen, Oded

    2013-05-01

    Since approximately 5-10% of the ~50,000 tuberous sclerosis complex (TSC) patients in the US are "MRI-negative," our goal was to test the hypothesis that they nevertheless exhibit metabolic abnormalities. To test this, we used proton MR spectroscopy to obtain and compare gray and white matter (GM and WM) levels of the neuronal marker, N-acetylaspartate (NAA), the glial marker, myo-inositol (mI), and its associated creatine (Cr), and choline (Cho) between two "MRI-negative" female TSC patients (ages 5 and 43 years) and their matched controls. The NAA, Cr, Cho and mI concentrations, 9.8, 6.3, 1.4, and 5.7 mM, in the pediatric control were similar to those of the patients, whereas the adult patient revealed a 17% WM NAA decrease and 16% WM Cho increase from their published means for healthy adults - both outside their respective 90% prediction intervals. These findings suggest that longer disease duration and/or TSC2 gene mutation may cause axonal dysfunction and demyelination. PMID:23524469

  7. Myoinositol and glutamate complex neurometabolite abnormality after mild traumatic brain injury

    PubMed Central

    Kierans, Andrea S.; Kirov, Ivan I.; Gonen, Oded; Haemer, Gillian; Nisenbaum, Eric; Babb, James S.; Grossman, Robert I.

    2014-01-01

    Objective: To obtain quantitative neurometabolite measurements, specifically myoinositol (mI) and glutamate plus glutamine (Glx), markers of glial and neuronal excitation, in deep gray matter structures after mild traumatic brain injury (mTBI) using proton magnetic resonance spectroscopy (1H-MRS) and to compare these measurements against normal healthy control subjects. Methods: This study approved by the institutional review board is Health Insurance Portability and Accountability Act compliant. T1-weighted MRI and multi-voxel 1H-MRS imaging were acquired at 3 tesla from 26 patients with mTBI an average of 22 days postinjury and from 13 age-matched healthy controls. Two-way analysis of variance was used to compare patients and controls for mean N-acetylaspartate, choline, creatine (Cr), Glx, and mI levels as well as the respective ratios to Cr within the caudate, globus pallidus, putamen, and thalamus. Results: Quantitative putaminal mI was higher in patients with mTBI compared with controls (p = 0.02). Quantitative neurometabolite ratios of putaminal mI and Glx relative to Cr, mI/Cr, and Glx/Cr were also higher among patients with mTBI compared with controls (p = 0.01 and 0.02, respectively). No other differences in neurometabolite levels or ratios were observed in any other brain region evaluated. Conclusion: Increased putaminal mI, mI/Cr, and Glx/Cr in patients after mTBI compared with control subjects supports the notion of a complex glial and excitatory response to injury without concomitant neuronal loss, evidenced by preserved N-acetylaspartate levels in this region. PMID:24401686

  8. Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations.

    PubMed

    Thompson, P M; Toga, A W

    1997-09-01

    This paper describes the design, implementation and preliminary results of a technique for creating a comprehensive probabilistic atlas of the human brain based on high-dimensional vector field transformations. The goal of the atlas is to detect and quantify distributed patterns of deviation from normal anatomy, in a 3-D brain image from any given subject. The algorithm analyzes a reference population of normal scans and automatically generates color-coded probability maps of the anatomy of new subjects. Given a 3-D brain image of a new subject, the algorithm calculates a set of high-dimensional volumetric maps (with typically 384(2) x 256 x 3 approximately 10(8) degrees of freedom) elastically deforming this scan into structural correspondence with other scans, selected one by one from an anatomic image database. The family of volumetric warps thus constructed encodes statistical properties and directional biases of local anatomical variation throughout the architecture of the brain. A probability space of random transformations, based on the theory of anisotropic Gaussian random fields, is then developed to reflect the observed variability in stereotaxic space of the points whose correspondences are found by the warping algorithm. A complete system of 384(2) x 256 probability density functions is computed, yielding confidence limits in stereotaxic space for the location of every point represented in the 3-D image lattice of the new subject's brain. Color-coded probability maps are generated, densely defined throughout the anatomy of the new subject. These indicate locally the probability of each anatomic point being unusually situated, given the distributions of corresponding points in the scans of normal subjects. 3-D MRI and high-resolution cryosection volumes are analyzed from subjects with metastatic tumors and Alzheimer's disease. Gradual variations and continuous deformations of the underlying anatomy are simulated and their dynamic effects on regional probability maps are animated in video format (on the accompanying CD-ROM). Applications of the deformable probabilistic atlas include the transfer of multi-subject 3-D functional, vascular and histologic maps onto a single anatomic template, the mapping of 3-D atlases onto the scans of new subjects, and the rapid detection, quantification and mapping of local shape changes in 3-D medical images in disease and during normal or abnormal growth and development. PMID:9873911

  9. Task-Induced Brain Activity Patterns in Type 2 Diabetes: A Potential Biomarker for Cognitive Decline

    PubMed Central

    Marder, Thomas J.; Flores, Veronica L.; Bolo, Nicolas R.; Hoogenboom, Wouter S.; Simonson, Donald C.; Jacobson, Alan M.; Foote, Sarah E.; Shenton, Martha E.; Sperling, Reisa A.

    2014-01-01

    Patients with type 2 diabetes demonstrate reduced functional connectivity within the resting state default mode network (DMN), which may signal heightened risk for cognitive decline. In other populations at risk for cognitive decline, additional magnetic resonance imaging abnormalities are evident during task performance, including impaired deactivation of the DMN and reduced activation of task-relevant regions. We investigated whether middle-aged type 2 diabetic patients show these brain activity patterns during encoding and recognition tasks. Compared with control participants, we observed both reduced 1) activation of the dorsolateral prefrontal cortex during encoding and 2) deactivation of the DMN during recognition in type 2 diabetic patients, despite normal cognition. During recognition, activation in several task-relevant regions, including the dorsolateral prefrontal cortex and DMN regions, was positively correlated with HbA1c and insulin resistance, suggesting that these important markers of glucose metabolism impact the brains response to a cognitive challenge. Plasma glucose ?11 mmol/L was associated with impaired deactivation of the DMN, suggesting that acute hyperglycemia contributes to brain abnormalities. Since elderly type 2 diabetic patients often demonstrate cognitive impairments, it is possible that these task-induced brain activity patterns observed in middle age may signal impending cognitive decline. PMID:24705405

  10. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    PubMed

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation. PMID:24946038

  11. Solar activity cycle and the incidence of foetal chromosome abnormalities detected at prenatal diagnosis

    NASA Astrophysics Data System (ADS)

    Halpern, Gabrielle J.; Stoupel, Eliahu G.; Barkai, Gad; Chaki, Rina; Legum, Cyril; Fejgin, Moshe D.; Shohat, Mordechai

    1995-06-01

    We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.

  12. Targeted training modifies oscillatory brain activity in schizophrenia patients

    PubMed Central

    Popov, Tzvetan G.; Carolus, Almut; Schubring, David; Popova, Petia; Miller, Gregory A.; Rockstroh, Brigitte S.

    2015-01-01

    Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ). Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditoryverbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG) oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4weeks of auditoryverbal training (N=19), similarly intense facial affect discrimination training (N=19), or 4weeks of treatment as usual (TAU, N=19). Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b). Abnormally small alpha decrease 300800ms around S2 improved more after targeted auditoryverbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects. PMID:26082889

  13. Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study

    PubMed Central

    Umeda, Satoshi; Harrison, Neil A.; Gray, Marcus A.; Mathias, Christopher J.; Critchley, Hugo D.

    2015-01-01

    Postural tachycardia syndrome (PoTS), a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety, and depression. Although the estimated prevalence of PoTS is approximately 5–10 times as common as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI) with voxel-based morphometry (VBM) applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure to examine variation in regional brain structure associated with PoTS. We recruited 11 patients with established PoTS and 23 age-matched normal controls. Group comparison of gray matter volume revealed diminished gray matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation) and increased vulnerability to psychiatric symptoms in PoTS patients. PMID:25852449

  14. Automated Detection of Brain Abnormalities in Neonatal Hypoxia Ischemic Injury from MR Images

    PubMed Central

    Ghosh, Nirmalya; Sun, Yu; Bhanu, Bir; Ashwal, Stephen; Obenaus, Andre

    2014-01-01

    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HII). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to check the temporal efficacy of our computational approaches. Sensitivity, specificity, similarity were used as performance metrics based on manual (‘gold standard’) injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while HRS for 33% data. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects. PMID:25000294

  15. Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study.

    PubMed

    Umeda, Satoshi; Harrison, Neil A; Gray, Marcus A; Mathias, Christopher J; Critchley, Hugo D

    2015-01-01

    Postural tachycardia syndrome (PoTS), a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety, and depression. Although the estimated prevalence of PoTS is approximately 5-10 times as common as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI) with voxel-based morphometry (VBM) applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure to examine variation in regional brain structure associated with PoTS. We recruited 11 patients with established PoTS and 23 age-matched normal controls. Group comparison of gray matter volume revealed diminished gray matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation) and increased vulnerability to psychiatric symptoms in PoTS patients. PMID:25852449

  16. Physical activity before and during pregnancy and risk of abnormal glucose tolerance among Hispanic women

    PubMed Central

    Chasan-Taber, L.; Silveira, M.; Lynch, K.E.; Pekow, P.; Braun, B.; Manson, J.E.; Solomon, C.G.; Markenson, G.

    2016-01-01

    Aim Women diagnosed with abnormal glucose tolerance and gestational diabetes mellitus are at increased risk for subsequent type 2 diabetes, with higher risks in Hispanic women. Studies suggest that physical activity may be associated with a reduced risk of these disorders; however, studies in Hispanic women are sparse. Methods We prospectively evaluated this association among 1241 Hispanic participants in Proyecto Buena Salud. The Pregnancy Physical Activity Questionnaire was used to assess pre, early, and mid pregnancy physical activity. Medical records were abstracted for pregnancy outcomes. Results A total of 175 women (14.1%) were diagnosed with abnormal glucose tolerance and 57 women (4.6%) were diagnosed with gestational diabetes. Increasing age and body mass index were strongly and positively associated with risk of gestational diabetes. We did not observe statistically significant associations between total physical activity or meeting exercise guidelines and risk. However, after adjusting for age, BMI, gestational weight gain, and other important risk factors, women in the top quartile of moderate-intensity activity in early pregnancy had a decreased risk of abnormal glucose tolerance (odds ratio = 0.48, 95% Confidence Interval 0.270.88, Ptrend = 0.03) as compared to those in the lowest quartile. Similarly, women with the highest levels of occupational activity in early pregnancy had a decreased risk of abnormal glucose tolerance (odds ratio = 0.48, 95% Confidence Interval 0.280.85, Ptrend = 0.02) as compared to women who were unemployed. Conclusion In this Hispanic population, total physical activity and meeting exercise guidelines were not associated with risk. However, high levels of moderate-intensity and occupational activity were associated with risk reduction. PMID:24161237

  17. Autism Spectrum Disorder as Early Neurodevelopmental Disorder: Evidence from the Brain Imaging Abnormalities in 2-3 Years Old Toddlers

    ERIC Educational Resources Information Center

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships…

  18. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    PubMed

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. PMID:26508861

  19. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    PubMed Central

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. PMID:26508861

  20. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  1. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders

    PubMed Central

    Huang, Tzyy-Nan; Hsueh, Yi-Ping

    2015-01-01

    T-brain-1 (TBR1) is a brain-specific T-box transcription factor. In 1995, Tbr1 was first identified from a subtractive hybridization that compared mouse embryonic and adult telencephalons. Previous studies of Tbr1−∕− mice have indicated critical roles for TBR1 in the development of the cerebral cortex, amygdala, and olfactory bulb. Neuronal migration and axonal projection are two important developmental features controlled by TBR1. Recently, recurrent de novo disruptive mutations in the TBR1 gene have been found in patients with autism spectrum disorders (ASDs). Human genetic studies have identified TBR1 as a high-confidence risk factor for ASDs. Because only one allele of the TBR1 gene is mutated in these patients, Tbr1+∕− mice serve as a good genetic mouse model to explore the mechanism by which de novo TBR1 mutation leads to ASDs. Although neuronal migration and axonal projection defects of cerebral cortex are the most prominent phenotypes in Tbr1−∕− mice, these features are not found in Tbr1+∕− mice. Instead, inter- and intra-amygdalar axonal projections and NMDAR expression and activity in amygdala are particularly susceptible to Tbr1 haploinsufficiency. The studies indicated that both abnormal brain wiring (abnormal amygdalar connections) and excitation/inhibition imbalance (NMDAR hypoactivity), two prominent models for ASD etiology, are present in Tbr1+∕− mice. Moreover, calcium/calmodulin-dependent serine protein kinase (CASK) was found to interact with TBR1. The CASK–TBR1 complex had been shown to directly bind the promoter of the Grin2b gene, which is also known as Nmdar2b, and upregulate Grin2b expression. This molecular function of TBR1 provides an explanation for NMDAR hypoactivity in Tbr1+∕− mice. In addition to Grin2b, cell adhesion molecules—including Ntng1, Cdh8, and Cntn2—are also regulated by TBR1 to control axonal projections of amygdala. Taken together, the studies of Tbr1 provide an integrated picture of ASD etiology at the cellular and circuit levels. PMID:26578866

  2. Risperidone Administered During Asymptomatic Period of Adolescence Prevents the Emergence of Brain Structural Pathology and Behavioral Abnormalities in an Animal Model of Schizophrenia

    PubMed Central

    Piontkewitz, Yael; Arad, Michal; Weiner, Ina

    2011-01-01

    Schizophrenia is a disorder of a neurodevelopmental origin manifested symptomatically after puberty. Structural neuroimaging studies show that neuroanatomical aberrations precede onset of symptoms, raising a question of whether schizophrenia can be prevented. Early treatment with atypical antipsychotics may reduce the risk of transition to psychosis, but it remains unknown whether neuroanatomical abnormalities can be prevented. We have recently shown, using in vivo structural magnetic resonance imaging, that treatment with the atypical antipsychotic clozapine during an asymptomatic period of adolescence prevents the emergence of schizophrenia-like brain structural abnormalities in adult rats exposed to prenatal immune challenge, in parallel to preventing behavioral abnormalities. Here we assessed the preventive efficacy of the atypical antipsychotic risperidone (RIS). Pregnant rats were injected on gestational day 15 with the viral mimic polyriboinosinic-polyribocytidylic acid (poly I:C) or saline. Their male offspring received daily RIS (0.045 or 1.2 mg/kg) or vehicle injection in peri-adolescence (postnatal days [PND] 34–47). Structural brain changes and behavior were assessed at adulthood (from PND 90). Adult offspring of poly I:C–treated dams exhibited hallmark structural abnormalities associated with schizophrenia, enlarged lateral ventricles and smaller hippocampus. Both of these abnormalities were absent in the offspring of poly I:C dams that received RIS at peri-adolescence. This was paralleled by prevention of schizophrenia-like behavioral abnormalities, attentional deficit, and hypersensitivity to amphetamine in these offspring. We conclude that pharmacological intervention during peri-adolescence can prevent the emergence of behavioral abnormalities and brain structural pathology resulting from in utero insult. Furthermore, highly selective 5HT2A receptor antagonists may be promising targets for psychosis prevention. PMID:20439320

  3. Magnetic Resonance Microscopy Defines Ethanol-Induced Brain Abnormalities In Prenatal Mice: Effects Of Acute Insult On Gestational Day 7

    PubMed Central

    Godin, Elizabeth A.; OLeary-Moore, Shonagh K.; Khan, Amber A.; Parnell, Scott E.; Ament, Jacob J.; Dehart, Deborah B.; Johnson, Brice W.; Johnson, G. Allan; Styner, Martin A.; Sulik, Kathleen K.

    2012-01-01

    Background This magnetic resonance microscopy (MRM)-based report is the 2nd in a series designed to illustrate the spectrum of craniofacial and central nervous system (CNS) dysmorphia resulting from single- and multiple-day maternal ethanol treatment. The study described in this report examined the consequences of ethanol exposure on gestational day (GD) 7 in mice, a time in development when gastrulation and neural plate development begins; corresponding to the mid- to late 3rd week post-fertilization in humans. Acute GD 7 ethanol exposure in mice has previously been shown to result in CNS defects consistent with holoprosencephaly (HPE) and craniofacial anomalies typical of those in Fetal Alcohol Syndrome (FAS). MRM has facilitated further definition of the range of GD 7 ethanol-induced defects. Methods C57Bl/6J female mice were intraperitoneally administered vehicle or 2 injections of 2.9 g/kg ethanol on day 7 of pregnancy. Stage-matched control and ethanol-exposed GD 17 fetuses selected for imaging were immersion fixed in a Bouins/Prohance solution. MRM was conducted at either 7.0 Tesla (T) or 9.4 T. Resulting 29 m isotropic spatial resolution scans were segmented and reconstructed to provide 3D images. Linear and volumetric brain measures, as well as morphological features, were compared for control and ethanol-exposed fetuses. Following MRM, selected specimens were processed for routine histology and light microscopic examination. Results GD 7 ethanol exposure resulted in a spectrum of median facial and forebrain deficiencies, as expected. This range of abnormalities falls within the HPE spectrum; a spectrum for which facial dysmorphology is consistent with and typically is predictive of that of the forebrain. In addition, other defects including median facial cleft, cleft palate, micrognathia, pituitary agenesis and third ventricular dilatation were identified. MRM analyses also revealed cerebral cortical dysplasia/heterotopias resulting from this acute, early insult and facilitated a subsequent focused histological investigation of these defects. Conclusions Individual MRM scans and 3D reconstructions of fetal mouse brains have facilitated demonstration of a broad range of GD 7 ethanol-induced morphological abnormality. These results, including the discovery of cerebral cortical heterotopias, elucidate the teratogenic potential of ethanol insult during the 3rd week of human prenatal development. PMID:19860813

  4. Decreased calcium-activated potassium channels by hypoxia causes abnormal firing in the spontaneous firing medial vestibular nuclei neurons.

    PubMed

    Xie, Hong; Zhang, Yu-qin; Pan, Xin-liang; Wu, Shu-hui; Chen, Xiang; Wang, Jie; Liu, Hua; Qian, Xiao-zhong; Liu, Zhi-guo; Liu, Lie-Ju

    2015-10-01

    Vertebrobasilar insufficiency (VBI) presents complex varied clinical symptoms, including vertigo and hearing loss. Little is known, however, about how Ca(2+)-activated K(+) channel attributes to the medial vestibular nucleus (MVN) neural activity in VBI. To address this issue, we performed whole-cell patch clamp and quantitative polymerase chain reaction (qPCR) to examine the effects of hypoxia on neural activity and the changes of the large conductance Ca(2+) activated K(+) channels (BKCa channels) in the MVN neurons in brain slices of male C57BL/6 mice. Brief hypoxic stimuli of the brain slices containing MVN were administrated by switching the normoxic artificial cerebrospinal fluid (ACSF) equilibrated with 21% O2/5% CO2 to hypoxic ACSF equilibrated with 5% O2/5% CO2 (balance N2). 3-min hypoxia caused a depolarization in the resting membrane potential (RM) in 8/11 non-spontaneous firing MVN neurons. 60/72 spontaneous firing MVN neurons showed a dramatic increase in firing frequency and a depolarization in the RM following brief hypoxia. The amplitude of the afterhyperpolarization (AHPA) was significantly decreased in both type A and type B spontaneous firing MVN neurons. Hypoxia-induced firing response was alleviated by pretreatment with NS1619, a selective BKCa activator. Furthermore, brief hypoxia caused a decrease in the amplitude of iberiotoxin-sensitive outward currents and mRNA level of BKCa in MVN neurons. These results suggest that BKCa channels protect against abnormal MVN neuronal activity induced by hypoxia, and might be a key target for treatment of vertigo and hearing loss in VBI. PMID:25173490

  5. Predicting risky choices from brain activity patterns.

    PubMed

    Helfinstein, Sarah M; Schonberg, Tom; Congdon, Eliza; Karlsgodt, Katherine H; Mumford, Jeanette A; Sabb, Fred W; Cannon, Tyrone D; London, Edythe D; Bilder, Robert M; Poldrack, Russell A

    2014-02-18

    Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights. PMID:24550270

  6. Predicting risky choices from brain activity patterns

    PubMed Central

    Helfinstein, Sarah M.; Schonberg, Tom; Congdon, Eliza; Karlsgodt, Katherine H.; Mumford, Jeanette A.; Sabb, Fred W.; Cannon, Tyrone D.; London, Edythe D.; Bilder, Robert M.; Poldrack, Russell A.

    2014-01-01

    Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights. PMID:24550270

  7. Causality-weighted active learning for abnormal event identification based on the topic model

    NASA Astrophysics Data System (ADS)

    Fan, Yawen; Zheng, Shibao; Yang, Hua; Zhang, Chongyang; Su, Hang

    2012-07-01

    Abnormal event identification in crowded scenes is a fundamental task for video surveillance. However, it is still challenging for most current approaches because of the general insufficiency of labeled data for training, particularly for abnormal data. We propose a novel active-supervised joint topic model for learning activity and training sample collection. First, a multi-class topic model is constructed based on the initial training data. Then the remaining unlabeled data stream is surveyed. The system actively decides whether it can label a new sample by itself or if it has to ask a human annotator. After each query, the current model is incrementally updated. To alleviate class imbalance, causality-weighted method is applied to both likelihood and uncertainty sampling for active learning. Furthermore, a combination of a new measure termed query entropy and the overall classification accuracy is used for assessing the model performance. Experimental results on two real-world traffic videos for abnormal event identification tasks demonstrate the effectiveness of the proposed method.

  8. Scale-free brain activity: past, present, and future.

    PubMed

    He, Biyu J

    2014-09-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, 'scale-free'). This characteristic of scale-free brain activity distinguishes it from brain oscillations. Although scale-free brain activity and brain oscillations coexist, our understanding of the former remains limited. Recent research has shed light on the spatiotemporal organization, functional significance, and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights into, and analytical tools for, cognitive neuroscience. PMID:24788139

  9. Scale-free brain activity: past, present and future

    PubMed Central

    He, Biyu J.

    2014-01-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography, magnetoencephalography and functional magnetic resonance imaging signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, “scale-free”). This characteristic of scale-free brain activity distinguishes it from brain oscillations. While scale-free brain activity and brain oscillations coexist, our understanding of the former remains very limited. Recent research has shed light on the spatiotemporal organization, functional significance and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights and analytical tools for cognitive neuroscience. PMID:24788139

  10. Regulation of brain aromatase activity in rats

    SciTech Connect

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of /sup 3/H/sub 2/O formed during the conversion of (1 beta-/sup 3/H)androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats.

  11. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression.

    PubMed

    Drevets, Wayne C; Price, Joseph L; Furey, Maura L

    2008-09-01

    The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger "default system" of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies. PMID:18704495

  12. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression

    PubMed Central

    Price, Joseph L.; Furey, Maura L.

    2008-01-01

    The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger “default system” of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies. PMID:18704495

  13. The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses

    PubMed Central

    2010-01-01

    Background Proton Magnetic Resonance (MR) Spectroscopy (MRS) is a widely available technique for those clinical centres equipped with MR scanners. Unlike the rest of MR-based techniques, MRS yields not images but spectra of metabolites in the tissues. In pathological situations, the MRS profile changes and this has been particularly described for brain tumours. However, radiologists are frequently not familiar to the interpretation of MRS data and for this reason, the usefulness of decision-support systems (DSS) in MRS data analysis has been explored. Results This work presents the INTERPRET DSS version 3.0, analysing the improvements made from its first release in 2002. Version 3.0 is aimed to be a program that 1st, can be easily used with any new case from any MR scanner manufacturer and 2nd, improves the initial analysis capabilities of the first version. The main improvements are an embedded database, user accounts, more diagnostic discrimination capabilities and the possibility to analyse data acquired under additional data acquisition conditions. Other improvements include a customisable graphical user interface (GUI). Most diagnostic problems included have been addressed through a pattern-recognition based approach, in which classifiers based on linear discriminant analysis (LDA) were trained and tested. Conclusions The INTERPRET DSS 3.0 allows radiologists, medical physicists, biochemists or, generally speaking, any person with a minimum knowledge of what an MR spectrum is, to enter their own SV raw data, acquired at 1.5 T, and to analyse them. The system is expected to help in the categorisation of MR Spectra from abnormal brain masses. PMID:21114820

  14. TRANSLATION OF BRAIN ACTIVITY INTO SLEEP

    PubMed Central

    Krueger, James M.

    2012-01-01

    Cytokines including tumor necrosis factor alpha (TNF) play a role in sleep regulation in health and disease. Hypothalamic and cerebral cortical levels of TNF mRNA or TNF protein have diurnal variations with higher levels associated with greater sleep propensity. Sleep loss is associated with enhanced brain TNF. Central or systemic TNF injections enhance sleep. Inhibition of TNF using the soluble TNF receptor, or anti-TNF antibodies, or a TNF siRNA reduces spontaneous sleep. Mice lacking the TNF 55 kD receptor have less spontaneous sleep. Injection of TNF into sleep regulatory circuits, e.g. the hypothalamus, promotes sleep. In normal humans, plasma levels of TNF co-vary with EEG slow wave activity (SWA) and in multiple disease states plasma TNF increases in parallel with sleep propensity. Downstream mechanisms of TNF-enhanced sleep include nitric oxide, adenosine, prostaglandins and activation of nuclear factor kappa B. Neuronal use induces cortical neurons to express TNF and if applied directly to cortical columns TNF induces a functional sleep-like state within the column. TNF mechanistically has several synaptic functions. TNF-sleep data led to the idea that sleep is a fundamental property of neuronal/glial networks such as cortical columns and is dependent upon past activity within such assemblies. This view of brain organization of sleep has profound implications for sleep function that are briefly reviewed herein. PMID:24795496

  15. Segmentation of the brain from 3D MRI using a hierarchical active surface template

    NASA Astrophysics Data System (ADS)

    Snell, John W.; Merickel, Michael B.; Ortega, James M.; Goble, John C.; Brookeman, James R.; Kassell, Neal F.

    1994-05-01

    The accurate segmentation of the brain from three-dimensional medical imagery is important as the basis for visualization, morphometry, surgical planning and intraoperative navigation. The complex and variable nature of brain anatomy makes recognition of the brain boundaries a difficult problem and frustrates segmentation schemes based solely on local image features. We have developed a deformable surface model of the brain as a mechanism for utilizing a priori anatomical knowledge in the segmentation process. The active surface template uses an energy minimization scheme to find a globally consistent surface configuration given a set of potentially ambiguous image features. Solution of the entire 3D problem at once produces superior results to those achieved using a slice by slice approach. We have achieved good results with MR image volumes of both normal and abnormal subjects. Evaluation of the segmentation results has been performed using cadaver studies.

  16. Order/disorder in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Rosso, O. A.; Figliola, Y. A.

    2004-04-01

    The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore, the concomitant studies require methods capable of describing the quantitative variation of the signal in both time and frequency. Here we present a quantitative EEG (qEEG) analysis, based on the Orthogonal Discrete Wavelet Transform (ODWT), of generalized epileptic tonic-clonic EEG signals. Two quantifiers: the Relative Wavelet Energy (RWE) and the Normalized Total Wavelet Entropy (NTWS) have been used. The RWE gives information about the relative energy associated with the different frequency bands present in the EEG and their corresponding degree of importance. The NTWS is a measure of the order/disorder degree in the EEG signal. These two quantifiers were computing in EEG signals as provided by scalp electrodes of epileptic patients. We showed that the epileptic recruitment rhythm observed for generalized epileptic tonic-clonic seizures is accurately described by the RWE quantifier. In addition, a significant decrease in the NTWS was observed in the recruitment epoch, indicating a more rhythmic and ordered behavior in the brain electrical activity.

  17. Pooled analysis of brain activity in Irritable Bowel Syndrome and controls during rectal balloon distension

    PubMed Central

    Sheehan, James; Gaman, Alexander; Vangel, Mark; Kuo, Braden

    2010-01-01

    Background Brain-imaging literature of Irritable Bowel Syndrome (IBS) suggests an abnormal brain-gut communication. We analyzed the literature to evaluate and compare the aspects of brain activity in individuals with IBS and control subjects experiencing controlled rectal stimulation. Methods PubMed was searched until September 2010. Data from 16 articles reporting brain activity during rectal balloon distensions in IBS compared to control groups was analyzed. Prevalence rates and pairwise activations were assessed using binomial distributions for 11 selected regions of interest. The data was aggregated to adjust for center effect. Key Results There was considerable variability in the literature regarding regions and their activity patterns in controls and individuals with IBS. There was no significant difference found in the thalamus, ACC, PCC, and PFC, however results show limited evidence of consensus for the Anterior Insula (AI) (p = 0.22). Pairwise activity results suggest that pairs involving the AI tend to have more consistent activity together than pairs which do not involve the AI (Posterior Insula and AI, p = 0.08; Posterior Cingulate Cortex and AI, p = 0.16), however no pairwise evaluation reached significance. Conclusions & Inferences Our pooled analysis demonstrates that the literature reports are quite heterogeneous but there is some evidence that there may be patterns of higher activity more common in individuals with IBS than in controls. A consensus, though, regarding study designs, analysis approach and reporting could create a clearer understanding of brain involvement in IBS pathophysiology. PMID:21118328

  18. Brain Activity with Reading Sentences and Emoticons

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe a person's brain activity when he/she sees an emoticon at the end of a sentence. An emoticon consists of some characters that resemble the human face and expresses a sender's emotion. With the help of a computer network, we use e-mail, messenger, avatars and so on, in order to convey what we wish to, to a receiver. Moreover, we send an emotional expression by using an emoticon at the end of a sentence. In this research, we investigate the effect of an emoticon as nonverbal information, using an fMRI study. The experimental results show that the right and left inferior frontal gyrus were activated and we detect a sentence with an emoticon as the verbal and nonverval information.

  19. Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia

    PubMed Central

    Caminiti, Silvia P.; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F.

    2015-01-01

    Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms. PMID:26594631

  20. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. PMID:26353878

  1. High-Resolution Magnetic Resonance Microscopy and Diffusion Tensor Imaging to Assess Brain Structural Abnormalities in the Murine Mucopolysaccharidosis VII Model

    PubMed Central

    Poptani, Harish; Kumar, Manoj; Nasrallah, Ilya M; Kim, Sungheon; Ittyerah, Ranjit; Pickup, Stephen; Li, Joel; Parente, Michael K; Wolfe, John H.

    2014-01-01

    High-resolution microscopic magnetic resonance imaging (?MRI) and diffusion tensor imaging (DTI) were performed to characterize brain structural abnormalities in a mouse model of mucopolysaccharidosis type VII (MPS VII). ?MRI demonstrated a decrease in the volume of anterior commissure and corpus callosum and a slight increase in the volume of the hippocampus in MPS VII vs. wild-type mice. DTI indices were analyzed in gray and white matter. In vivo and ex vivo DTI demonstrated significantly reduced fractional anisotropy in the anterior commissure, corpus callosum, external capsule and hippocampus in MPS VII vs. control brains. Significantly increased mean diffusivity was also found in the anterior commissure and corpus callosum from ex-vivo DTI. Significantly reduced linear anisotropy was observed from the hippocampus from in-vivo DTI, whereas significantly decreased planar anisotropy and spherical anisotropy were observed in the external capsule from only ex-vivo DTI. There were corresponding morphological differences in the brains of MPS VII mice by hematoxylin and eosin staining. Luxol fast blue staining demonstrated less intense staining of the corpus callosum and external capsule; myelin abnormalities in the corpus callosum were also demonstrated quantitatively in toluidine blue-stained sections and confirmed by electron microscopy. These results demonstrate the potential for ?MRI and DTI for quantitative assessment of brain pathology in murine models of brain diseases. PMID:24335527

  2. High Prevalence of Chronic Pituitary and Target-Organ Hormone Abnormalities after Blast-Related Mild Traumatic Brain Injury

    PubMed Central

    Wilkinson, Charles W.; Pagulayan, Kathleen F.; Petrie, Eric C.; Mayer, Cynthia L.; Colasurdo, Elizabeth A.; Shofer, Jane B.; Hart, Kim L.; Hoff, David; Tarabochia, Matthew A.; Peskind, Elaine R.

    2011-01-01

    Studies of traumatic brain injury from all causes have found evidence of chronic hypopituitarism, defined by deficient production of one or more pituitary hormones at least 1?year after injury, in 2550% of cases. Most studies found the occurrence of posttraumatic hypopituitarism (PTHP) to be unrelated to injury severity. Growth hormone deficiency (GHD) and hypogonadism were reported most frequently. Hypopituitarism, and in particular adult GHD, is associated with symptoms that resemble those of PTSD, including fatigue, anxiety, depression, irritability, insomnia, sexual dysfunction, cognitive deficiencies, and decreased quality of life. However, the prevalence of PTHP after blast-related mild TBI (mTBI), an extremely common injury in modern military operations, has not been characterized. We measured concentrations of 12 pituitary and target-organ hormones in two groups of male US Veterans of combat in Iraq or Afghanistan. One group consisted of participants with blast-related mTBI whose last blast exposure was at least 1?year prior to the study. The other consisted of Veterans with similar military deployment histories but without blast exposure. Eleven of 26, or 42% of participants with blast concussions were found to have abnormal hormone levels in one or more pituitary axes, a prevalence similar to that found in other forms of TBI. Five members of the mTBI group were found with markedly low age-adjusted insulin-like growth factor-I (IGF-I) levels indicative of probable GHD, and three had testosterone and gonadotropin concentrations consistent with hypogonadism. If symptoms characteristic of both PTHP and PTSD can be linked to pituitary dysfunction, they may be amenable to treatment with hormone replacement. Routine screening for chronic hypopituitarism after blast concussion shows promise for appropriately directing diagnostic and therapeutic decisions that otherwise may remain unconsidered and for markedly facilitating recovery and rehabilitation. PMID:22347210

  3. Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

    PubMed

    El Chehadeh, Salima; Faivre, Laurence; Mosca-Boidron, Anne-Laure; Malan, Valérie; Amiel, Jeanne; Nizon, Mathilde; Touraine, Renaud; Prieur, Fabienne; Pasquier, Laurent; Callier, Patrick; Lefebvre, Mathilde; Marle, Nathalie; Dubourg, Christèle; Julia, Sophie; Sarret, Catherine; Francannet, Christine; Laffargue, Fanny; Boespflug-Tanguy, Odile; David, Albert; Isidor, Bertrand; Le Caignec, Cédric; Vigneron, Jacqueline; Leheup, Bruno; Lambert, Laetitia; Philippe, Christophe; Cuisset, Jean-Marie; Andrieux, Joris; Plessis, Ghislaine; Toutain, Annick; Goldenberg, Alice; Cormier-Daire, Valérie; Rio, Marlène; Bonnefont, Jean-Paul; Thevenon, Julien; Echenne, Bernard; Journel, Hubert; Afenjar, Alexandra; Burglen, Lydie; Bienvenu, Thierry; Addor, Marie-Claude; Lebon, Sébastien; Martinet, Danièle; Baumann, Clarisse; Perrin, Laurence; Drunat, Séverine; Jouk, Pierre-Simon; Devillard, Françoise; Coutton, Charles; Lacombe, Didier; Delrue, Marie-Ange; Philip, Nicole; Moncla, Anne; Badens, Catherine; Perreton, Nathalie; Masurel, Alice; Thauvin-Robinet, Christel; Portes, Vincent Des; Guibaud, Laurent

    2016-01-01

    Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment. © 2015 Wiley Periodicals, Inc. PMID:26420639

  4. Investigating a new neuromodulation treatment for brain disorders using synchronized activation of multimodal pathways

    PubMed Central

    Markovitz, Craig D.; Smith, Benjamin T.; Gloeckner, Cory D.; Lim, Hubert H.

    2015-01-01

    Neuromodulation is an increasingly accepted treatment for neurological and psychiatric disorders but is limited by its invasiveness or its inability to target deep brain structures using noninvasive techniques. We propose a new concept called Multimodal Synchronization Therapy (mSync) for achieving targeted activation of the brain via noninvasive and precisely timed activation of auditory, visual, somatosensory, motor, cognitive, and limbic pathways. In this initial study in guinea pigs, we investigated mSync using combined activation of just the auditory and somatosensory pathways, which induced differential and timing dependent plasticity in neural firing within deep brain and cortical regions of the auditory system. Furthermore, by varying the location of somatosensory stimulation across the body, we increased or decreased spiking activity across different neurons. These encouraging results demonstrate the feasibility of systematically modulating the brain using mSync. Considering that hearing disorders such as tinnitus and hyperacusis have been linked to abnormal and hyperactive firing patterns within the auditory system, these results open up the possibility for using mSync to decrease this pathological activity by varying stimulation parameters. Incorporating multiple types of pathways beyond just auditory and somatosensory inputs and using other activation patterns may enable treatment of various brain disorders. PMID:25804410

  5. Brain activity and human unilateral chewing: an FMRI study.

    PubMed

    Quintero, A; Ichesco, E; Myers, C; Schutt, R; Gerstner, G E

    2013-02-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  6. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice

    PubMed Central

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F.; Charbonneau, Noe L.; Smaldone, Silvia; Carlson, Eric J.; Ramirez, Francesco; Keene, Douglas R.; Sakai, Lynn Y.

    2015-01-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can sequester BMP complexes in a latent state. PMID:26114882

  7. On a Quantum Model of Brain Activities

    NASA Astrophysics Data System (ADS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  8. Electrophysiological Imaging of Brain Activity and Connectivity Challenges and Opportunities

    PubMed Central

    He, Bin; Yang, Lin; Wilke, Christopher; Yuan, Han

    2011-01-01

    Unlocking the dynamic inner workings of the brain continues to remain a grand challenge of the 21st century. To this end, functional neuroimaging modalities represent an outstanding approach to better understand the mechanisms of both normal and abnormal brain function. The ability to image brain function with ever increasing spatial and temporal resolution utilizing minimal or non-invasive procedures has made a significant leap over the past several decades. Further delineation of functional networks could lead to improved understanding of brain function in both normal as well as diseased states. This article reviews recent advancements and current challenges in dynamic functional neuroimaging techniques, including electrophysiological source imaging, multimodal neuroimaging integrating fMRI with EEG/MEG, and functional connectivity imaging. PMID:21478071

  9. Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing

    PubMed Central

    Caldwell, Brendan M.; Harenski, Carla L.; Harenski, Keith A.; Fede, Samantha J.; Steele, Vaughn R.; Koenigs, Michael R.; Kiehl, Kent A.

    2015-01-01

    Investigations into the neurobiology of moral cognition are often done by examining clinical populations characterized by diminished moral emotions and a proclivity toward immoral behavior. Psychopathy is the most common disorder studied for this purpose. Although cocaine abuse is highly co-morbid with psychopathy and cocaine-dependent individuals exhibit many of the same abnormalities in socio-affective processing as psychopaths, this population has received relatively little attention in moral psychology. To address this issue, the authors used functional magnetic resonance imaging (fMRI) to record hemodynamic activity in 306 incarcerated male adults, stratified into regular cocaine users (n = 87) and a matched sample of non-cocaine users (n = 87), while viewing pictures that did or did not depict immoral actions and determining whether each depicted scenario occurred indoors or outdoors. Consistent with expectations, cocaine users showed abnormal neural activity in several frontostriatial regions during implicit moral picture processing compared to their non-cocaine using peers. This included reduced moral/non-moral picture discrimination in the vACC, vmPFC, lOFC, and left vSTR. Additionally, psychopathy was negatively correlated with activity in an overlapping region of the ACC and right lateralized vSTR. These results suggest that regular cocaine abuse may be associated with affective deficits which can impact relatively high-level processes like moral cognition. PMID:26528169

  10. Phospholipase A2 activity is associated with structural brain changes in schizophrenia.

    PubMed

    Smesny, Stefan; Milleit, Berko; Nenadic, Igor; Preul, Christoph; Kinder, Daniel; Lasch, Jrgen; Willhardt, Ingo; Sauer, Heinrich; Gaser, Christian

    2010-10-01

    Regional structural brain changes are among the most robust biological findings in schizophrenia, yet the underlying pathophysiological changes remain poorly understood. Recent evidence suggests that abnormal neuronal/dendritic plasticity is related to alterations in membrane lipids. We examined whether serum activity of membrane lipid remodelling/repairing cytosolic phospholipase A(2) (PLA(2)) were related to regional brain structure in magnetic resonance images (MRI). The study involved 24 schizophrenia patients, who were either drug-nave or off antipsychotic medication, and 25 healthy controls. Using voxel-based morphometry (VBM) analysis of T1-high-resolution MRI-images, we correlated both gray matter and white matter changes with serum PLA(2)-activity. PLA(2) activity was increased in patients, consistent with previous findings. VBM group comparison of patients vs. controls showed abnormalities of frontal and medial temporal cortices/hippocampus, and left middle/superior temporal gyrus in first-episode patients. Group comparison of VBM/PLA(2)-correlations revealed a distinct pattern of disease-related interactions between gray/white matter changes in patients and PLA(2)-activity: in first-episode patients (n=13), PLA(2)-activity was associated with structural alterations in the left prefrontal cortex and the bilateral thalamus. Recurrent-episode patients (n=11) showed a wide-spread pattern of associations between PLA(2)-activity and structural changes in the left (less right) prefrontal and inferior parietal cortex, the left (less right) thalamus and caudate nucleus, the left medial temporal and orbitofrontal cortex and anterior cingulum, and the cerebellum. Our findings demonstrate a potential association between membrane lipid biochemistry and focal brain structural abnormalities in schizophrenia. Differential patterns in first-episode vs. chronic patients might be related to PLA(2)-increase at disease-onset reflecting localized regenerative activity, whereas correlations in recurrent-episode patients might point to less specific neurodegenerative aspects of disease progression. PMID:20478385

  11. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'

    PubMed Central

    2014-01-01

    While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia. PMID:25598821

  12. Supervised learning for neural manifold using spatiotemporal brain activity

    NASA Astrophysics Data System (ADS)

    Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen

    2015-12-01

    Objective. Determining the means by which perceived stimuli are compactly represented in the human brain is a difficult task. This study aimed to develop techniques for the construction of the neural manifold as a representation of visual stimuli. Approach. We propose a supervised locally linear embedding method to construct the embedded manifold from brain activity, taking into account similarities between corresponding stimuli. In our experiments, photographic portraits were used as visual stimuli and brain activity was calculated from magnetoencephalographic data using a source localization method. Main results. The results of 10 × 10-fold cross-validation revealed a strong correlation between manifolds of brain activity and the orientation of faces in the presented images, suggesting that high-level information related to image content can be revealed in the brain responses represented in the manifold. Significance. Our experiments demonstrate that the proposed method is applicable to investigation into the inherent patterns of brain activity.

  13. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders.

    PubMed

    Paakki, Jyri-Johan; Rahko, Jukka; Long, Xiangyu; Moilanen, Irma; Tervonen, Osmo; Nikkinen, Juha; Starck, Tuomo; Remes, Jukka; Hurtig, Tuula; Haapsamo, Helena; Jussila, Katja; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Zang, Yufeng; Kiviniemi, Vesa

    2010-03-19

    Measures assessing resting-state brain activity with blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) can reveal cognitive disorders at an early stage. Analysis of regional homogeneity (ReHo) measures the local synchronization of spontaneous fMRI signals and has been successfully utilized in detecting alterations in subjects with attention-deficit hyperactivity disorder (ADHD), depression, schizophrenia, Parkinson's disease and Alzheimer's dementia. Resting-state brain activity was investigated in 28 adolescents with autism spectrum disorders (ASD) and 27 typically developing controls being imaged with BOLD fMRI and analyzed with the ReHo method. The hypothesis was that ReHo of resting-state brain activity would be different between ASD subjects and controls in brain areas previously shown to display functional alterations in stimulus or task based fMRI studies. Compared with the controls, the subjects with ASD had significantly decreased ReHo in right superior temporal sulcus region, right inferior and middle frontal gyri, bilateral cerebellar crus I, right insula and right postcentral gyrus. Significantly increased ReHo was discovered in right thalamus, left inferior frontal and anterior subcallosal gyrus and bilateral cerebellar lobule VIII. We conclude that subjects with ASD have right dominant ReHo alterations of resting-state brain activity, i.e., areas known to exhibit abnormal stimulus or task related functionality. Our results demonstrate that there is potential in utilizing the ReHo method in fMRI analyses of ASD. PMID:20053346

  14. Cerebral blood volume changes during brain activation

    PubMed Central

    Krieger, Steffen Norbert; Streicher, Markus Nikolar; Trampel, Robert; Turner, Robert

    2012-01-01

    Cerebral blood volume (CBV) changes significantly with brain activation, whether measured using positron emission tomography, functional magnetic resonance imaging (fMRI), or optical microscopy. If cerebral vessels are considered to be impermeable, the contents of the skull incompressible, and the skull itself inextensible, task- and hypercapnia-related changes of CBV could produce intolerable changes of intracranial pressure. Because it is becoming clear that CBV may be useful as a well-localized marker of neural activity changes, a resolution of this apparent paradox is needed. We have explored the idea that much of the change in CBV is facilitated by exchange of water between capillaries and surrounding tissue. To this end, we developed a novel hemodynamic boundary-value model and found approximate solutions using a numerical algorithm. We also constructed a macroscopic experimental model of a single capillary to provide biophysical insight. Both experiment and theory model capillary membranes as elastic and permeable. For a realistic change of input pressure, a relative pipe volume change of 215% was observed when using the experimental setup, compared with the value of approximately 171% when this quantity was calculated from the mathematical model. Volume, axial flow, and pressure changes are in the expected range. PMID:22569192

  15. Artifact suppression and analysis of brain activities with electroencephalography signals

    PubMed Central

    Rashed-Al-Mahfuz, Md.; Islam, Md. Rabiul; Hirose, Keikichi; Molla, Md. Khademul Islam

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component. PMID:25206446

  16. Antidiabetic drugs restore abnormal transport of amyloid-? across the blood-brain barrier and memory impairment in db/db mice.

    PubMed

    Chen, Fang; Dong, Rong Rong; Zhong, Kai Long; Ghosh, Arijit; Tang, Su Su; Long, Yan; Hu, Mei; Miao, Ming Xing; Liao, Jian Min; Sun, Hong Bing; Kong, Ling Yi; Hong, Hao

    2016-02-01

    Previous studies have shown significant changes in amyloid-? (A?) transport across the blood-brain barrier (BBB) under diabetic conditions with hypoinsulinemia, which is involved in diabetes-associated cognitive impairment. Present study employed db/db mice with hyperinsulinemia to investigate changes in A? transport across the BBB, hippocampal synaptic plasticity, and restorative effects of antidiabetic drugs. Our results showed that db/db mice exhibited similar changes in A? transport across the BBB to that of insulin-deficient mice. Chronic treatment of db/db mice with antidiabetic drugs such as metformin, glibenclamide and insulin glargine significantly decreased A? influx across the BBB determined by intra-arterial infusion of (125)I-A?1-40, and expression of the receptor for advanced glycation end products (RAGE) participating in A? influx. Insulin glargine, but not, metformin or glibenclamide increased A? efflux across the BBB determined by stereotaxic intra-cerebral infusion of (125)I-A?1-40, and expression of the low-density lipoprotein receptor related protein 1 (LRP1) participating in A? efflux. Moreover, treatment with these drugs significantly decreased hippocampal A?1-40 or A?1-42 and inhibited neuronal apoptosis. The drugs also ameliorated memory impairment confirmed by improved performance on behavioral tasks. However, insulin glargine or glibenclamide, but not metformin, restored hippocampal synaptic plasticity characterized by enhancing invivo long-term potentiation (LTP). Further study found that these three drugs significantly restrained NF-?B, but only insulin glargine enhanced peroxisome proliferator-activated receptor ? (PPAR?) activity at the BBB in db/db mice. Our data indicate that the antidiabetic drugs can partially restore abnormal A? transport across the BBB and memory impairment under diabetic context. PMID:26211973

  17. Potential Moderators of Physical Activity on Brain Health

    PubMed Central

    Leckie, Regina L.; Weinstein, Andrea M.; Hodzic, Jennifer C.; Erickson, Kirk I.

    2012-01-01

    Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE), brain derived neurotrophic factor (BDNF), and catechol-O-methyltransferase (COMT) along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA), as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function. PMID:23304508

  18. Brain activation associated with active and passive lower limb stepping

    PubMed Central

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Riener, Robert; Michels, Lars; Kollias, Spyros

    2014-01-01

    Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy. PMID:25389396

  19. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    PubMed

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti-glutamate receptor antibodies is discussed separately in this very comprehensive review, with regards to: the human diseases in which these anti-glutamate receptor antibodies were found thus far, their presence and production in the nervous system, their association with various psychiatric/behavioral/cognitive/motor impairments, their possible association with certain infectious organisms, their detrimental effects in vitro as well as in vivo in animal models in mice, rats or rabbits, and their diverse and unique mechanisms of action. The review also covers the very encouraging positive responses to immunotherapy of some patients that have either of the above-mentioned anti-glutamate receptor antibodies, and that suffer from various neurological diseases/problems. All the above are also summarized in the review's five schematic and useful figures, for each type of anti-glutamate receptor antibodies separately. The review ends with a summary of all the main findings, and with recommended guidelines for diagnosis, therapy, drug design and future investigations. In the nut shell, the human studies, the in vitro studies, as well as the in vivo studies in animal models in mice, rats and rabbit revealed the following findings regarding the five different types of anti-glutamate receptor antibodies: (1) Anti-AMPA-GluR3B antibodies are present in ~25-30% of patients with different types of Epilepsy. When these anti-glutamate receptor antibodies (or other types of autoimmune antibodies) are found in Epilepsy patients, and when these autoimmune antibodies are suspected to induce or aggravate the seizures and/or the cognitive/psychiatric/behavioral impairments that sometimes accompany the seizures, the Epilepsy is called 'Autoimmune Epilepsy'. In some patients with 'Autoimmune Epilepsy' the anti-AMPA-GluR3B antibodies associate significantly with psychiatric/cognitive/behavior abnormalities. In vitro and/or in animal models, the anti-AMPA-GluR3B antibodies by themselves induce many pathological effects: they activate glutamate/AMPA receptors, kill neurons by 'Excitotoxicity',

  20. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells.

    PubMed

    Rega, Laura R; Polishchuk, Elena; Montefusco, Sandro; Napolitano, Gennaro; Tozzi, Giulia; Zhang, Jinzhong; Bellomo, Francesco; Taranta, Anna; Pastore, Anna; Polishchuk, Roman; Piemonte, Fiorella; Medina, Diego L; Catz, Sergio D; Ballabio, Andrea; Emma, Francesco

    2016-04-01

    Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis. PMID:26994576

  1. Accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis

    SciTech Connect

    Botvinick, E.H.; Frais, M.A.; Shosa, D.W.; O'Connell, J.W.; Pacheco-Alvarez, J.A.; Scheinman, M.; Hattner, R.S.; Morady, F.; Faulkner, D.B.

    1982-08-01

    The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex and then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.

  2. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    PubMed Central

    2010-01-01

    Background The Rett Syndrome (RTT) brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1) or are involved in synaptic vesicle cycling (dynamin 1). RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP) analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited. PMID:20420693

  3. Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study.

    PubMed

    Klauser, Paul; Zhou, Juan; Lim, Joseph K W; Poh, Joann S; Zheng, Hui; Tng, Han Ying; Krishnan, Ranga; Lee, Jimmy; Keefe, Richard S E; Adcock, R Alison; Wood, Stephen J; Fornito, Alex; Chee, Michael W L

    2015-11-01

    There is cumulative evidence that young people in an "at-risk mental state" (ARMS) for psychosis show structural brain abnormalities in frontolimbic areas, comparable to, but less extensive than those reported in established schizophrenia. However, most available data come from ARMS samples from Australia, Europe, and North America while large studies from other populations are missing. We conducted a structural brain magnetic resonance imaging study from a relatively large sample of 69 ARMS individuals and 32 matched healthy controls (HC) recruited from Singapore as part of the Longitudinal Youth At-Risk Study (LYRIKS). We used 2 complementary approaches: a voxel-based morphometry and a surface-based morphometry analysis to extract regional gray and white matter volumes (GMV and WMV) and cortical thickness (CT). At the whole-brain level, we did not find any statistically significant difference between ARMS and HC groups concerning total GMV and WMV or regional GMV, WMV, and CT. The additional comparison of 2 regions of interest, hippocampal, and ventricular volumes, did not return any significant difference either. Several characteristics of the LYRIKS sample like Asian origins or the absence of current illicit drug use could explain, alone or in conjunction, the negative findings and suggest that there may be no dramatic volumetric or CT abnormalities in ARMS. PMID:25745033

  4. Retina Restored and Brain Abnormalities Ameliorated by Single-Copy Knock-In of Human NR2E1 in Null Mice

    PubMed Central

    Schmouth, J.-F.; Banks, K. G.; Mathelier, A.; Gregory-Evans, C. Y.; Castellarin, M.; Holt, R. A.; Gregory-Evans, K.; Wasserman, W. W.

    2012-01-01

    Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified. PMID:22290436

  5. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies.

    PubMed

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian N; Lorentzen, Anne K; Eickhoff, Simon B; Siebner, Hartwig R

    2016-02-01

    Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task-related sensorimotor activation in dystonia, but the results appear to be rather variable across studies. Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity across studies. Activation likelihood estimates were based on previously reported regional maxima of task-related increases or decreases in dystonia patients compared to healthy controls. The meta-analyses encompassed data from 179 patients with dystonia reported in 18 functional neuroimaging studies using a range of sensorimotor tasks. Patients with dystonia showed bilateral increases in task-related activation in the parietal operculum and ventral postcentral gyrus as well as right middle temporal gyrus. Decreases in task-related activation converged in left supplementary motor area and left postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between-group differences in task-related activity were retrieved in a sub-analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased sensorimotor activation emerged in the caudal cingulate motor zone. The results show that dystonia is consistently associated with abnormal somatosensory processing in the primary and secondary somatosensory cortex along with abnormal sensorimotor activation of mesial premotor and right lateral temporal cortex. Hum Brain Mapp 37:547-557, 2016. © 2015 Wiley Periodicals, Inc. PMID:26549606

  6. Altered sensorimotor activation patterns in idiopathic dystonia—an activation likelihood estimation meta‐analysis of functional brain imaging studies

    PubMed Central

    Herz, Damian M.; Haagensen, Brian N.; Lorentzen, Anne K.; Eickhoff, Simon B.; Siebner, Hartwig R.

    2015-01-01

    Abstract Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task‐related sensorimotor activation in dystonia, but the results appear to be rather variable across studies. Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta‐analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia‐related alterations in task‐related activity across studies. Activation likelihood estimates were based on previously reported regional maxima of task‐related increases or decreases in dystonia patients compared to healthy controls. The meta‐analyses encompassed data from 179 patients with dystonia reported in 18 functional neuroimaging studies using a range of sensorimotor tasks. Patients with dystonia showed bilateral increases in task‐related activation in the parietal operculum and ventral postcentral gyrus as well as right middle temporal gyrus. Decreases in task‐related activation converged in left supplementary motor area and left postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between‐group differences in task‐related activity were retrieved in a sub‐analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased sensorimotor activation emerged in the caudal cingulate motor zone. The results show that dystonia is consistently associated with abnormal somatosensory processing in the primary and secondary somatosensory cortex along with abnormal sensorimotor activation of mesial premotor and right lateral temporal cortex. Hum Brain Mapp 37:547–557, 2016. © 2015 Wiley Periodicals, Inc. PMID:26549606

  7. Abnormal n-6 fatty acid metabolism in cystic fibrosis is caused by activation of AMP-activated protein kinase

    PubMed Central

    Umunakwe, Obi C.; Seegmiller, Adam C.

    2014-01-01

    Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism. PMID:24859760

  8. Abnormal dynamics of activation of object use information in apraxia: evidence from eyetracking.

    PubMed

    Lee, Chia-Iin; Mirman, Daniel; Buxbaum, Laurel J

    2014-07-01

    Action representations associated with object use may be incidentally activated during visual object processing, and the time course of such activations may be influenced by lexical-semantic context (e.g., Lee, Middleton, Mirman, Kalnine, & Buxbaum (2012). Journal of Experimental Psychology: Human Perception and Performance, 39(1), 257-270). In this study we used the "visual world" eye-tracking paradigm to examine whether a deficit in producing skilled object-use actions (apraxia) is associated with abnormalities in incidental activation of action information, and assessed the neuroanatomical substrates of any such deficits. Twenty left hemisphere stroke patients, ten of whom were apraxic, performed a task requiring identification of a named object in a visual display containing manipulation-related and unrelated distractor objects. Manipulation relationships among objects were not relevant to the identification task. Objects were cued with neutral ("S/he saw the."), or action-relevant ("S/he used the.") sentences. Non-apraxic participants looked at use-related non-target objects significantly more than at unrelated non-target objects when cued both by neutral and action-relevant sentences, indicating that action information is incidentally activated. In contrast, apraxic participants showed delayed activation of manipulation-based action information during object identification when cued by neutral sentences. The magnitude of delayed activation in the neutral sentence condition was reliably predicted by lower scores on a test of gesture production to viewed objects, as well as by lesion loci in the inferior parietal and posterior temporal lobes. However, when cued by a sentence containing an action verb, apraxic participants showed fixation patterns that were statistically indistinguishable from non-apraxic controls. In support of grounded theories of cognition, these results suggest that apraxia and temporal-parietal lesions may be associated with abnormalities in incidental activation of action information from objects. Further, they suggest that the previously-observed facilitative role of action verbs in the retrieval of object-related action information extends to participants with apraxia. PMID:24746946

  9. Abnormal dynamics of activation of object use information in apraxia: evidence from eyetracking

    PubMed Central

    Lee, Chia-lin; Mirman, Daniel; Buxbaum, Laurel J.

    2014-01-01

    Action representations associated with object use may be incidentally activated during visual object processing, and the time course of such activations may be influenced by lexical-semantic context (e.g., Lee, Middleton, Mirman, Kalénine, & Buxbaum, 2012). In this study we used the “visual world” eye-tracking paradigm to examine whether a deficit in producing skilled object-use actions (apraxia) is associated with abnormalities in incidental activation of action information, and assessed the neuroanatomical substrates of any such deficits. Twenty left hemisphere stroke patients, ten of whom were apraxic, performed a task requiring identification of a named object in a visual display containing manipulation-related and unrelated distractor objects. Manipulation relationships among objects were not relevant to the identification task. Objects were cued with neutral (“S/he saw the….”), or action-relevant (“S/he used the….”) sentences. Non-apraxic participants looked at use-related non-target objects significantly more than at unrelated non-target objects when cued both by neutral and action-relevant sentences, indicating that action information is incidentally activated. In contrast, apraxic participants showed delayed activation of manipulation-based action information during object identification when cued by neutral sentences. The magnitude of delayed activation in the neutral sentence condition was reliably predicted by lower scores on a test of gesture production to viewed objects, as well as by lesion loci in the inferior parietal and posterior temporal lobes. However, when cued by a sentence containing an action verb, apraxic participants showed fixation patterns that were statistically indistinguishable from non-apraxic controls. In support of grounded theories of cognition, these results suggest that apraxia and temporal-parietal lesions may be associated with abnormalities in incidental activation of action information from objects. Further, they suggest that the previously-observed facilitative role of action verbs in the retrieval of object-related action information extends to participants with apraxia. PMID:24746946

  10. Abnormally upregulated αB-crystallin was highly coincidental with the astrogliosis in the brains of scrapie-infected hamsters and human patients with prion diseases.

    PubMed

    Wang, Ke; Zhang, Jin; Xu, Yin; Ren, Ke; Xie, Wu-Ling; Yan, Yu-E; Zhang, Bao-Yun; Shi, Qi; Liu, Yong; Dong, Xiao-Ping

    2013-11-01

    αB-crystallin is a member of the small heat shock protein family constitutively presenting in brains at a relatively low level. To address the alteration of αB-crystallin in prion disease, the αB-crystallin levels in the brains of scrapie agent 263 K-infected hamsters were analyzed. The levels of αB-crystallin were remarkably increased in the brains of 263 K-infected hamsters, showing a time-dependent manner along with incubation time. Immunohistochemical (IHC) and immunofluorescent (IFA) assays illustrated more αB-crystallin-positive signals in the regions of the cortex and thalamus containing severe astrogliosis. Double-stained IFA verified that the αB-crystallin signals colocalized with the enlarged glial fibrillary acidic protein-positive astrocytes, but not with neuronal nuclei-positive cells. IHC and IFA of the serial brain sections of infected hamsters showed no colocalization and correlation between PrP(Sc) deposits and αB-crystallin increase. Moreover, increased αB-crystallin deposits were observed in the brain sections of parietal lobe of a sporadic Creutzfeldt-Jakob disease (sCJD) case, parietal lobe and thalamus of a G114V genetic CJD case, and thalamus of a fatal family insomnia (FFI) case, but not in a parietal lobe of FFI where only very mild astrogliosis was addressed. Additionally, the molecular interaction between αB-crystallin and PrP was only observed in the reactions of recombinant proteins purified from Escherichia coli, but not either in that of brain homogenates or in that of the cultured cell lysates expressing human PrP and αB-crystallin. Our data indicate that brain αB-crystallin is abnormally upregulated in various prion diseases, which is coincidental with astrogliosis. Direct interaction between αB-crystallin and PrP seems not to be essential during the pathogenesis of prion infection. PMID:23832485

  11. Abnormal cortical sensory activation in dystonia: an fMRI study.

    PubMed

    Butterworth, Stephen; Francis, Sue; Kelly, Edward; McGlone, Francis; Bowtell, Richard; Sawle, Guy V

    2003-06-01

    Despite the obvious motor manifestations of focal dystonia, it is recognised that the sensory system plays an important role in this condition. This functional magnetic resonance imaging study examines the sensory representations of individual digits both within the subregions of the primary sensory cortex (SI) and in other nonprimary sensory areas. Patients with focal dystonia and controls were scanned during vibrotactile stimulation of both the index (digit 2) and little (digit 5) fingers of their dominant hand (which was the affected hand in all the dystonic subjects). The activation maps obtained were analysed for location, size, and magnitude of activation and three-dimensional (3-D) orientation of digit representations. Data from both groups were compared. There were significant differences in the average 3-D separation between the two digit representations in area 1 of SI between subject groups (9.6 +/- 1.2 mm for controls and 4.1 +/- 0.2 mm for dystonic subjects). There were also strong trends for reversed ordering of the representation of the two digits in both the secondary sensory cortex and posterior parietal area between the two groups. In addition, in dystonic subjects, there was significant under activation in the secondary somatosensory cortex (SII/area 40) for both digits and in the posterior parietal area for digit 5. These results indicate the presence of widespread activation abnormalities in the cortical sensory system in dystonia. PMID:12784271

  12. Abnormal bloodbrain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI???

    PubMed Central

    Cramer, S.P.; Simonsen, H.; Frederiksen, J.L.; Rostrup, E.; Larsson, H.B.W.

    2013-01-01

    Objectives To investigate whether bloodbrain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics. Methods Dynamic contrast-enhanced MRI was used to measure BBB permeability in 27 patients with MS and compared to 24 matched healthy controls. Results Permeability measured as Ktrans was significantly higher in periventricular normal appearing white matter (NAWM) and thalamic gray matter in MS patients when compared to healthy controls, with periventricular NAWM showing the most pronounced difference. Recent relapse coincided with significantly higher permeability in periventricular NAWM, thalamic gray matter, and MS lesions. Immunomodulatory treatment and recent relapse were significant predictors of permeability in MS lesions and periventricular NAWM. Our results suggest that after an MS relapse permeability gradually decreases, possibly an effect of immunomodulatory treatment. Conclusions Our results emphasize the importance of BBB pathology in MS, which we find to be most prominent in the periventricular NAWM, an area prone to development of MS lesions. Both the facts that recent relapse appears to cause widespread BBB disruption and that immunomodulatory treatment seems to attenuate this effect indicate that BBB permeability is intricately linked to the presence of MS relapse activity. This may reveal further insights into the pathophysiology of MS. PMID:24371801

  13. Correspondence between Resting-State Activity and Brain Gene Expression.

    PubMed

    Wang, Guang-Zhong; Belgard, T Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M; Lu, Hanzhang; Geschwind, Daniel H; Konopka, Genevieve

    2015-11-18

    The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional amplitude of low-frequency fluctuations (fALFF) from two independent human fMRI resting-state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, thesedata support a population-level relationship between regional steady-state brain gene expression and resting-state brain activity. PMID:26590343

  14. The influence of natural magnetic field inhomogeneity areas of active geological faults on the dynamics of functional state of human brain

    NASA Astrophysics Data System (ADS)

    Pobachenko, S. V.; Grigoriev, P. E.; Sokolov, M. V.; Shitov, A. V.

    2015-11-01

    The results of the expedition studies of the dynamics of the functional human state within the zone of active geological fault, which is characterized by abnormal parameters of the spatial distribution of values of the magnetic field vector are presented. It is shown that these geophysical modifications have pronounced effect on the fluctuations of the electrical activity of human brain.

  15. Physical activity, inflammation, and volume of the aging brain.

    PubMed

    Braskie, M N; Boyle, C P; Rajagopalan, P; Gutman, B A; Toga, A W; Raji, C A; Tracy, R P; Kuller, L H; Becker, J T; Lopez, O L; Thompson, P M

    2014-07-25

    Physical activity influences inflammation, and both affect brain structure and Alzheimer's disease (AD) risk. We hypothesized that older adults with greater reported physical activity intensity and lower serum levels of the inflammatory marker tumor necrosis factor ? (TNF?) would have larger regional brain volumes on subsequent magnetic resonance imaging (MRI) scans. In 43 cognitively intact older adults (79.34.8 years) and 39 patients with AD (81.95.1 years at the time of MRI) participating in the Cardiovascular Health Study, we examined year-1 reported physical activity intensity, year-5 blood serum TNF? measures, and year-9 volumetric brain MRI scans. We examined how prior physical activity intensity and TNF? related to subsequent total and regional brain volumes. Physical activity intensity was measured using the modified Minnesota Leisure Time Physical Activities questionnaire at year 1 of the study, when all subjects included here were cognitively intact. Stability of measures was established for exercise intensity over 9 years and TNF? over 3 years in a subset of subjects who had these measurements at multiple time points. When considered together, more intense physical activity intensity and lower serum TNF? were both associated with greater total brain volume on follow-up MRI scans. TNF?, but not physical activity, was associated with regional volumes of the inferior parietal lobule, a region previously associated with inflammation in AD patients. Physical activity and TNF? may independently influence brain structure in older adults. PMID:24836855

  16. Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science

    PubMed Central

    2015-01-01

    Background Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations. Methods Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined. Results Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation. Conclusions In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research. PMID:26629908

  17. Focused ultrasound modulates region-specific brain activity

    PubMed Central

    Yoo, Seung-Schik; Bystritsky, Alexander; Lee, Jong-Hwan; Zhang, Yongzhi; Fischer, Krisztina; Min, Byoung-Kyong; McDannold, Nathan J.; Pascual-Leone, Alvaro; Jolesz, Ferenc A.

    2012-01-01

    We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. PMID:21354315

  18. Matrix Hyaluronan-Activated CD44 Signaling Promotes Keratinocyte Activities and Improves Abnormal Epidermal Functions

    PubMed Central

    Bourguignon, Lilly Y.W.

    2015-01-01

    Hyaluronan (HA), a major component of the extracellular matrix, is enriched in skin tissues, particularly the epidermis. HA binds to a ubiquitous, abundant, and functionally important family of cell surface receptors, CD44. This article reviews the current evidence for HA/CD44-mediated activation of RhoGTPase signaling and calcium mobilization, leading to the regulation of keratinocyte activities and various epidermal functions. It further discusses the role of HA-mediated CD44 interactions with unique downstream effectors, such as RhoGTPases (RhoA and Rac1), Rho-kinase, protein kinase-N?, and phosphoinositide-specific phospholipases (phospholipases C? and C?1) in coordinating certain intracellular signaling pathways, such as calcium mobilization, phosphatidylinositol 3-kinaseAKT activation, cortactin-actin binding, and actin-associated cytoskeleton reorganization; generating the onset of important keratinocyte activities, such as cell adhesion, proliferation, migration, and differentiation; and performing epidermal functions. Topical application of selective HA fragments (large versus small HA) to the skin of wild-type mice (but not CD44 knockout mice) improves keratinocyte-associated epidermal functions and accelerates permeability barrier recovery and skin wound healing. Consequently, specific HA fragment (large versus small HA)mediated signaling events (through the CD44 receptor) are required for keratinocyte activities, which offer new HA-based therapeutic options for patients experiencing epidermal dysfunction and skin damage as well as aging-related skin diseases, such as epidermal thinning (atrophy), permeability barrier dysfunction, and chronic nonhealing wounds. PMID:24819962

  19. Anticholinesterase Effect on Motor Kinematic Measures and Brain Activation in Parkinsons Disease

    PubMed Central

    Mentis, Marc J.; Delalot, Dominique; Naqvi, Hassan; Gordon, Mark F.; Gudesblatt, Mark; Edwards, Christine; Donatelli, Luke; Dhawan, Vijay; Eidelberg, David

    2015-01-01

    Anticholinesterase (AChE) drugs are being prescribed off label for nonmotor symptoms in Parkinsons disease (PD). Theoretically, these drugs can impair motor function. A small literature suggests AChE therapy has little effect on clinical motor evaluation; however, no study has made objective motor kinematic measures or evaluated brain function. We hypothesized that even if clinical examination was normal in PD patients on dopamine therapy, (1) sensitive kinematic measures would be abnormal during AChE therapy or (2) normal kinematic measures would be maintained by compensatory brain activation. We carried out a randomized, double-blind, placebo-controlled trial of 8 weeks donepezil (10 mg/day) in 17 PD subjects. Subjects carried out a computerized motor task during a positron emission tomography (PET) scan before starting the drug and again after 8 weeks of donepezil or placebo. Kinematic measures of motor function and PET scans were analyzed to compare the effects of donepezil and placebo. Neither placebo nor donepezil altered motor kinematic measures. Furthermore, movement integrity while on donepezil was maintained without compensatory brain activity. Donepezil 10 mg/day can be given for nonmotor symptoms in PD without adverse motor effects or compensatory brain activity. PMID:16228997

  20. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Bchel, Christian; Conrod, Patricia; Fauth-Bhler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jrgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lematre, Herv; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tom; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Strhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  1. [Study on the steroid sulfatase (STS) activity in normal individuals and patients with abnormal sexual differentiation].

    PubMed

    Shinohara, M

    1989-03-20

    The STS (steroid sulfatase) gene which has been assigned to the short arm of human X chromosome (band p22) is thought to have escaped from Lyon's inactivation. For that reason, the STS enzyme activities differ between male and female according to the number of X chromosomes in cells. In this report, the STS enzyme activities were studied in different human tissues such as placentas, lymphocytes, and cultured fibroblasts of normal individuals and sex anomaly patients. Tritium labelled dehydroepiandrosterone sulfate (DHA-S) was used as the reaction substrate. The placental STS activities between normal male and female subjects showed a significant difference in spite of wide variances that were ascertained not to be the effects of methodological alterations involving enzyme purification, substrate concentration, and activity calculation (units per mg of protein or DNA). Further, lymphocytes and fibroblasts which had low levels of enzyme concentration compared with placentas, the STS enzyme activities were also significantly different between both sexes. These results confirmed that the STS gene in cells of tissue tested here seemed to be inactive at the gene level and followed the gene dosage effect to some extent. The enzyme activity was also studied in 17 patients with sex anomalies using lymphocytes and cultured fibroblasts. The cells of 45,X Turner Syndrome and of Klinefelter syndrome with 47,XXY or other karyotypes, showed slightly lower levels of enzyme activity when compared with control values of normal males or females. The enzyme activity in intersexual disturbances, especially XX male and XX true hermaphrodites, showed intermediate levels between normal male and female values. This result may give support to the concept that at least one X chromosome in these diseases is genetically abnormal due to X-Y interchanges, something that has been partly proved recently by analysis of H-Y antigen and Y-specific DNA probes. The present study on the STS enzyme activity revealed the presence of a gene dosage effect of STS gene between males and females not precise but rather rough in quantity, and it pointed out problem, some of which were related to genetic and environmental factors modifying the STS gene expression in normal individuals as well as sex anomaly patients. PMID:2767285

  2. Altered Spontaneous Brain Activity in Patients with Acute Spinal Cord Injury Revealed by Resting-State Functional MRI

    PubMed Central

    Zhu, Ling; Wu, Guangyao; Zhou, Xin; Li, Jielan; Wen, Zhi; Lin, Fuchun

    2015-01-01

    Background Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging. Methods A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity. Results Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores. Conclusion Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for assessment of neuronal damage and the prediction of clinical outcomes in acute SCI. PMID:25768010

  3. ASPM regulates Wnt signaling pathway activity in the developing brain.

    PubMed

    Buchman, Joshua J; Durak, Omer; Tsai, Li-Huei

    2011-09-15

    Autosomal recessive primary microcephaly (MCPH) is a neural developmental disorder in which patients display significantly reduced brain size. Mutations in Abnormal Spindle Microcephaly (ASPM) are the most common cause of MCPH. Here, we investigate the underlying functions of Aspm in brain development and find that Aspm expression is critical for proper neurogenesis and neuronal migration. The Wnt signaling pathway is known for its roles in embryogenesis, and genome-wide siRNA screens indicate that ASPM is a positive regulator of Wnt signaling. We demonstrate that knockdown of Aspm results in decreased Wnt-mediated transcription, and that expression of stabilized ?-catenin can rescue this deficit. Finally, coexpression of stabilized ?-catenin can rescue defects observed upon in vivo knockdown of Aspm. Our findings provide an impetus to further explore Aspm's role in facilitating Wnt-mediated neurogenesis programs, which may contribute to psychiatric illness etiology when perturbed. PMID:21937711

  4. Linking neuronal brain activity to the glucose metabolism

    PubMed Central

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. Methods First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Results Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. Conclusions The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported. PMID:23988084

  5. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements

    PubMed Central

    Brücke, Christof; Huebl, Julius; Horn, Andreas; Brown, Peter; Krauss, Joachim K.; Schneider, Gerd-Helge; Kühn, Andrea A.

    2016-01-01

    Deep brain stimulation of the globus pallidus internus alleviates involuntary movements in patients with dystonia. However, the mechanism is still not entirely understood. One hypothesis is that deep brain stimulation suppresses abnormally enhanced synchronized oscillatory activity within the motor cortico-basal ganglia network. Here, we explore deep brain stimulation-induced modulation of pathological low frequency (4–12 Hz) pallidal activity that has been described in local field potential recordings in patients with dystonia. Therefore, local field potentials were recorded from 16 hemispheres in 12 patients undergoing deep brain stimulation for severe dystonia using a specially designed amplifier allowing simultaneous high frequency stimulation at therapeutic parameter settings and local field potential recordings. For coherence analysis electroencephalographic activity (EEG) over motor areas and electromyographic activity (EMG) from affected neck muscles were recorded before and immediately after cessation of high frequency stimulation. High frequency stimulation led to a significant reduction of mean power in the 4–12 Hz band by 24.8 ± 7.0% in patients with predominantly phasic dystonia. A significant decrease of coherence between cortical EEG and pallidal local field potential activity in the 4–12 Hz range was revealed for the time period of 30 s after switching off high frequency stimulation. Coherence between EMG activity and pallidal activity was mainly found in patients with phasic dystonic movements where it was suppressed after high frequency stimulation. Our findings suggest that high frequency stimulation may suppress pathologically enhanced low frequency activity in patients with phasic dystonia. These dystonic features are the quickest to respond to high frequency stimulation and may thus directly relate to modulation of pathological basal ganglia activity, whereas improvement in tonic features may depend on long-term plastic changes within the motor network. PMID:25212852

  6. Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol.

    PubMed Central

    Hallman, M; Spragg, R; Harrell, J H; Moser, K M; Gluck, L

    1982-01-01

    Autopsy findings suggest that lung surfactant is damaged in the adult respiratory distress syndrome. In the present study 225 bronchoalveolar lavage specimens (78 from 36 patients, 1-78 yr old with respiratory failure, 135 from another 128 patients with other respiratory disease, and 12 from healthy controls) were assayed for the lung profile [lecithin/sphingomyelin (L/S) ratio, saturated lecithin, phosphatidylinositol, and phosphatidylglycerol]. Bronchoalveolar lavage fluid was further analyzed for phospholipids and for phosphatidic acid phosphohydrolase, phospholipase A2, and phosphatidylinositol phosphodiesterase activities. A lipid-protein complex was isolated and analyzed for surface activity, and plasma was measured for myoinositol. There were only small differences seen in the recovery of total phospholipid between respiratory failure patients and normal controls. However, in respiratory failure, phospholipids in bronchoalveolar lavage were qualitatively different from those recovered either from normal controls or from patients with other lung disease: the LO/S ratio, phosphatidylglycerol, and disaturated lecithin were low, whereas sphingomyelin and phosphatidylserine were prominent. These abnormalities were present early in respiratory failure and tended to normalize during recovery. Low L/S ratio (less than 2), and low phosphatidylglycerol (1% or less of glycerophospholipids) in bronchoalveolar lavage was always associated with respiratory failure. Abnormal lavage phospholipids were not due to plasma contamination. The phospholipase studies revealed little evidence of increased catabolism of phospholipids. In respiratory failure, the lipid-protein complexes from lung lavage were not surface active, whereas that from healthy controls had surface properties similar to lung surfactant. Phospholipids from patients with respiratory failure were similar to those from respiratory distress syndrome in the newborn. However, the latter condition is characterized by fast recovery of surfactant deficiency and by high plasma myoinositol that suppresses the synthesis of surfactant phosphatidylglycerol and increases phosphatidylinositol (Pediatr. Res. 1981. 15: 720). On the other hand, in adult respiratory distress syndrome, the abnormality in surfactant phospholipids may last for weeks and in most cases is associated with low phosphatidylinositol, low phosphatidylglycerol, and low plasma myoinositol. PMID:6896715

  7. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  8. The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes.

    PubMed

    Curry, Cynthia J; Rosenfeld, Jill A; Grant, Erica; Gripp, Karen W; Anderson, Carol; Aylsworth, Arthur S; Saad, Taha Ben; Chizhikov, Victor V; Dybose, Giedre; Fagerberg, Christina; Falco, Michelle; Fels, Christina; Fichera, Marco; Graakjaer, Jesper; Greco, Donatella; Hair, Jennifer; Hopkins, Elizabeth; Huggins, Marlene; Ladda, Roger; Li, Chumei; Moeschler, John; Nowaczyk, Malgorzata J M; Ozmore, Jillian R; Reitano, Santina; Romano, Corrado; Roos, Laura; Schnur, Rhonda E; Sell, Susan; Suwannarat, Pim; Svaneby, Dea; Szybowska, Marta; Tarnopolsky, Mark; Tervo, Raymond; Tsai, Anne Chun-Hui; Tucker, Megan; Vallee, Stephanie; Wheeler, Ferrin C; Zand, Dina J; Barkovich, A James; Aradhya, Swaroop; Shaffer, Lisa G; Dobyns, William B

    2013-08-01

    Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34 additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most commonly in those with duplications of YWHAE and flanking genes such as CRK. The typical neurobehavioral phenotype was usually seen in those with the larger duplications. We did not confirm the association of early overgrowth with involvement of YWHAE and CRK, or growth failure with duplications of LIS1. Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome. PMID:23813913

  9. The impact of microglial activation on blood-brain barrier in brain diseases

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza

    2014-01-01

    The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894

  10. Abnormal Tc-99m-MDP/GA-67 scan patterns in association with active chronic osteomyelitis

    SciTech Connect

    Tumeh, S.S.; Aliabadi, P.; Weissman, B.; McNeil, B.J.

    1985-05-01

    In this study the authors reviewed data from 136 patients (pts) in order to refine the interpretive criteria used to diagnose active osteomyelitis (AOM) in patients with previous bone disease (e.g., old osteomyelitis, fractures, orthopedic devices excluding prostheses). They evaluated bone (Tc-99mMDP) and gallium 67 studies and obtained followup in all pts. AOM was diagnosed by surgery or biopsy and culture in 49 pts and was excluded by the same criteria in 16 pts. An additional 71 pts had the diagnosis excluded by followup clinical criteria. Five patterns were found. T1: abnormal Tc-99m-MDP, normal Ga-67. T2: diffuse increased uptake of both radiopharmaceuticals with Tc-99m-MDP greater than Ga-67. T3: different geographic distribution, but similar intensities of uptake of both. T4: very similar uptake and distribution of both. T5: Ga-67 exceeded Tc-99m-MDP. The authors conclude that T5 is diagnostic of AOM, T3 and T4 raise the probability of AOM than before scanning, T1 and T2 decrease it.

  11. Look at Epilepsy: Electrical Outbursts in the Brain

    MedlinePLUS

    ... our exit disclaimer . Subscribe A Look at Epilepsy Electrical Outbursts in the Brain When you hear the ... or minutes. Seizures arise from abnormal bursts of electrical activity in the brain that trigger jerky movements, ...

  12. Functional magnetic resonance imaging reveals abnormal brain connectivity in EGR3 gene transfected rat model of schizophrenia.

    PubMed

    Song, Tianbin; Nie, Binbin; Ma, Ensen; Che, Jing; Sun, Shilong; Wang, Yuli; Shan, Baoci; Liu, Yawu; Luo, Senlin; Ma, Guolin; Li, Kefeng

    2015-05-01

    Schizophrenia is characterized by the disorder of "social brain". However, the alternation of connectivity density in brain areas of schizophrenia patients remains largely unknown. In this study, we successfully created a rat model of schizophrenia by the transfection of EGR3 gene into rat brain. We then investigated the connectivity density of schizophrenia susceptible regions in rat brain using functional magnetic resonance imaging (fMRI) in combination with multivariate Granger causality (GC) model. We found that the average signal strength in prefrontal lobe and hippocampus of schizophrenia model group was significantly higher than the control group. Bidirectional Granger causality connection was observed between hippocampus and thalamic in schizophrenia model group. Both connectivity density and Granger causality connection were changed in prefrontal lobe, hippocampus and thalamus after risperidone treatment. Our results indicated that fMRI in combination with GC connection analysis may be used as an important method in diagnosis of schizophrenia and evaluation the effect of antipsychotic treatment. These findings support the connectivity disorder hypothesis of schizophrenia and increase our understanding of the neural mechanisms of schizophrenia. PMID:25817788

  13. Differential effects of chronic lead intoxication on circadian rhythm of ambulatory activity and on regional brain norepinephrine levels in rats

    SciTech Connect

    Shafiq-ur-Rehman; Khushnood-ur-Rehman; Kabir-ud-Din; Chandra, O.

    1986-01-01

    Changes in biochemical mechanisms and amine concentrations in the brain have been manifested in the form of varying disorders and abnormalities in behavior, including motor-activity, which has been proved with a number of psychoactive drugs. It has been reported that increased level of cerebral norepinephrine (NE) has been shown to be associated with motor hyper-activity, and in lead exposed rats. No study is available which could account for the pattern of changes in spontaneous ambulatory responses in an open field situation together with the steady state regional levels of NE in the brain of chronically lead exposed rats. Therefore, it seemed to be worthwhile to study the circadian rhythm of ambulatory activity and its association with NE levels in various brain regions of rats exposed to lead.

  14. Inference of brain pathway activities for Alzheimer's disease classification

    PubMed Central

    2015-01-01

    Background Alzheimer's disease (AD) is a neurodegenerative and progressive disorder that results in brain malfunctions. Resting-state (RS) functional magnetic resonance imaging (fMRI) techniques have been successfully applied for quantifying brain activities of both Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients. Region-based approaches are widely utilized to classify patients from cognitively normal subjects (CN). Nevertheless, region-based approaches have a few limitations, reproducibility owing to selection of disease-specific brain regions, and heterogeneity of brain activities during disease progression. For coping with these issues, network-based approaches have been suggested in the field of molecular bioinformatics. In comparison with individual gene-based approaches, they acquired more accurate results in diverse disease classification, and reproducibility was confirmed by replication studies. In our work, we applied a similar methodology integrating brain pathway information into pathway activity inference, and permitting classification of both aMCI and AD patients based on pathway activities rather than single region activities. Results After aggregating the 59 brain pathways from literature, we estimated brain pathway activities by using exhaustive search algorithms between patients and cognitively normal subjects, and identified discriminatory pathways according to disease progression. We used three different data sets and each data set consists of two different groups. Our results show that the pathway-based approach (AUC = 0.89, 0.9, 0.75) outperformed the region-based approach (AUC = 0.69, 0.8, 0.68). Also, our approach provided enhanced diagnostic power achieving higher accuracy, sensitivity, and specificity (pathway-based approach: accuracy = 83%; sensitivity = 86%; specificity = 78%, region-based approach: accuracy = 74%; sensitivity = 78%; specificity = 76%). Conclusions We proposed a novel method inferring brain pathway activities for disease classification. Our approach shows better classification performance than region-based approach in four classification models. We expect that brain pathway-based approach would be helpful for precise classification of brain disorders, and provide new opportunities for uncovering disrupted brain pathways caused by disease. Moreover, discriminatory pathways between patients and cognitively normal subjects may facilitate the interpretation of functional alterations during disease progression. PMID:26044913

  15. The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth.

    PubMed

    Satterthwaite, Theodore D; Connolly, John J; Ruparel, Kosha; Calkins, Monica E; Jackson, Chad; Elliott, Mark A; Roalf, David R; Ryan Hopsona, Karthik Prabhakaran; Behr, Meckenzie; Qiu, Haijun; Mentch, Frank D; Chiavacci, Rosetta; Sleiman, Patrick M A; Gur, Ruben C; Hakonarson, Hakon; Gur, Raquel E

    2016-01-01

    The Philadelphia Neurodevelopmental Cohort (PNC) is a large-scale study of child development that combines neuroimaging, diverse clinical and cognitive phenotypes, and genomics. Data from this rich resource is now publicly available through the Database of Genotypes and Phenotypes (dbGaP). Here we focus on the data from the PNC that is available through dbGaP and describe how users can access this data, which is evolving to be a significant resource for the broader neuroscience community for studies of normal and abnormal neurodevelopment. PMID:25840117

  16. Activation of NF-?B Mediates Astrocyte Swelling and Brain Edema in Traumatic Brain Injury

    PubMed Central

    Jayakumar, Arumugam R.; Tong, Xiao Y.; Ruiz-Cordero, Roberto; Bregy, Amade; Bethea, John R.; Bramlett, Helen M.

    2014-01-01

    Abstract Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). While astrocyte swelling (cytotoxic edema) represents a major component of the brain edema in the early phase of TBI, its mechanisms are unclear. One factor known to be activated by trauma is nuclear factor-?B (NF-?B). Because this factor has been implicated in the mechanism of cell swelling/brain edema in other neurological conditions, we examined whether NF-?B might also be involved in the mediation of post-traumatic astrocyte swelling/brain edema. Here we show an increase in NF-?B activation in cultured astrocytes at 1 and 3?h after trauma (fluid percussion injury, FPI), and that BAY 117082, an inhibitor of NF-?B, significantly blocked the trauma-induced astrocyte swelling. Increased activities of nicotinamide adenine dinucleotide phosphate-oxidase and the Na+, K+, 2Cl- cotransporter were also observed in cultured astrocytes after trauma, and BAY 117082 reduced these effects. We also examined the role of NF-?B in the mechanism of cell swelling by using astrocyte cultures derived from transgenic (Tg) mice with a functional inactivation of astrocytic NF-?B. Exposure of cultured astrocytes from wild-type mice to in vitro trauma (3?h) caused a significant increase in cell swelling. By contrast, traumatized astrocyte cultures derived from NF-?B Tg mice showed no swelling. We also found increased astrocytic NF-?B activation and brain water content in rats after FPI, while BAY 11-7082 significantly reduced such effects. Our findings strongly suggest that activation of astrocytic NF-?B represents a key element in the process by which cytotoxic brain edema occurs after TBI. PMID:24471369

  17. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  18. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  19. In vivo recordings of brain activity using organic transistors

    PubMed Central

    Khodagholy, Dion; Doublet, Thomas; Quilichini, Pascale; Gurfinkel, Moshe; Leleux, Pierre; Ghestem, Antoine; Ismailova, Esma; Herv, Thierry; Sanaur, Sbastien; Bernard, Christophe; Malliaras, George G.

    2013-01-01

    In vivo electrophysiological recordings of neuronal circuits are necessary for diagnostic purposes and for brain-machine interfaces. Organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. Here we demonstrate the engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain. The device, tested in vivo on epileptiform discharges, displayed superior signal-to-noise ratio due to local amplification compared with surface electrodes. The organic transistor was able to record on the surface low-amplitude brain activities, which were poorly resolved with surface electrodes. This study introduces a new class of biocompatible, highly flexible devices for recording brain activity with superior signal-to-noise ratio that hold great promise for medical applications. PMID:23481383

  20. Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms.

    PubMed

    Northoff, Georg

    2016-01-15

    Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice. PMID:26048657

  1. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  2. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Cutler, Roy G.; Kelly, Jeremiah; Storie, Kristin; Pedersen, Ward A.; Tammara, Anita; Hatanpaa, Kimmo; Troncoso, Juan C.; Mattson, Mark P.

    2004-02-01

    Alzheimer's disease (AD) is an age-related disorder characterized by deposition of amyloid -peptide (A) and degeneration of neurons in brain regions such as the hippocampus, resulting in progressive cognitive dysfunction. The pathogenesis of AD is tightly linked to A deposition and oxidative stress, but it remains unclear as to how these factors result in neuronal dysfunction and death. We report alterations in sphingolipid and cholesterol metabolism during normal brain aging and in the brains of AD patients that result in accumulation of long-chain ceramides and cholesterol. Membrane-associated oxidative stress occurs in association with the lipid alterations, and exposure of hippocampal neurons to A induces membrane oxidative stress and the accumulation of ceramide species and cholesterol. Treatment of neurons with -tocopherol or an inhibitor of sphingomyelin synthesis prevents accumulation of ceramides and cholesterol and protects them against death induced by A. Our findings suggest a sequence of events in the pathogenesis of AD in which A induces membrane-associated oxidative stress, resulting in perturbed ceramide and cholesterol metabolism which, in turn, triggers a neurodegenerative cascade that leads to clinical disease. amyloid | apoptosis | hippocampus | lipid peroxidation | sphingomyelin

  3. Fluctuations in Neuronal Activity: Clues to Brain Function

    NASA Astrophysics Data System (ADS)

    Prez Velazquez, Jos L.; Guevara, Ramn; Belkas, Jason; Wennberg, Richard; Senjanovi, Goran; Garca Dominguez, Luis

    2005-08-01

    Recordings from neuronal preparations, either in vitro or in the intact brain, are characterized by fluctuations, what is commonly considered as "noise". Due to the current recording and analysis methods, it is not feasible to separate what we term noise, from the "meaningful" neuronal activity. We propose that fluctuations serve to maintain brain activity in an optimal state for cognitive processing, not allowing it to fall into long-term periodic behaviour. We have studied fluctuations in magnetoencephalographic (MEG) recordings from normal subjects and epileptic patients, in electroencephalographic (EEG) recordings from children with impact injury, as well as in intracerebral electrophysiological recordings in freely moving rats. Specifically, we have determined phase locking patterns between brain areas from these recordings, which display fluctuations at different scales. We submit the idea that the variability in phase synchronization affords a more complete search of all possible phase differences in a hypothetical phase-locking state space that contributes to brain information processing. In brain pathologies, like epileptiform activity here studied, different levels of fluctuations in phase synchrony may favour the generation of stable synchronized states that characterize epileptic seizures. While the border between noise and high-dimensional dynamics is fuzzy, the scrutiny of neuronal fluctuations at different levels will provide important insights to the unravelling of the relation between brain and behaviour.

  4. Synchronous brain activity across individuals underlies shared psychological perspectives

    PubMed Central

    Lahnakoski, Juha M.; Glerean, Enrico; Jskelinen, Iiro P.; Hyn, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-01-01

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a social (detective) and once a non-social (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regionsmost robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortexwhen the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687

  5. Brain modularity controls the critical behavior of spontaneous activity

    NASA Astrophysics Data System (ADS)

    Russo, R.; Herrmann, H. J.; de Arcangelis, L.

    2014-03-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  6. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-01-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure. PMID:24621482

  7. A Multi-Modal Assessment of Melanin and Melanocyte Activity in Abnormally Pigmented Hypertrophic Scar

    PubMed Central

    Travis, Taryn E.; Ghassemi, Pejhman; Ramella-Roman, Jessica C.; Prindeze, Nicholas J.; Paul, Dereck W.; Moffatt, Lauren T.; Jordan, Marion H.; Shupp, Jeffrey W.

    2014-01-01

    Objective Using a validated swine model of human scar formation, hyper- and hypopigmented scar samples were examined for their histological and optical properties to help elucidate the mechanisms and characteristics of dyspigmentation. Methods Full thickness wounds were created on the flanks of red Duroc pigs and allowed to heal. Biopsies from areas of hyperpigmentation, hypopigmentation, and uninjured tissue were fixed and embedded for histological examination using Azure B and primary antibodies to S100B, HMB45, and ?-MSH. Spatial Frequency Domain Imaging (SFDI) was then used to examine the optical properties of scars. Results Hyperpigmentation was first noticeable in healing wounds around weeks 23, gradually becoming darker. There was no significant difference in S100B staining for the presence of melanocytes between hyperpigmented and hypopigmented scar samples. Azure B staining of melanin was significantly greater in histological sections from hyperpigmented areas than sections from both uninjured skin and hypopigmented scar (p<0.0001). There was significantly greater staining for ?-MSH in hyperpigmented samples compared to hypopigmented samples (p=0.0121) and HMB45 staining was positive for melanocytes in hyperpigmented scar. SFDI at a wavelength of 632 nm resulted in an absorption coefficient map correlating with visibly hyperpigmented areas of scars. Conclusions In a red Duroc model of hypertrophic scar formation, melanocyte number is similar in hyper- and hypopigmented tissues. Hyperpigmented tissues, however, show a greater amount of melanin and ?-MSH, along with immunohistochemical evidence of stimulated melanocytes. These observations encourage further investigation of melanocyte stimulation and the inflammatory environment within a wound that may influence melanocyte activity. Additionally, SFDI can be used to identify areas of melanin content in mature, pigmented scars, which may lead to its usefulness in wounds at earlier time points before markedly apparent pigmentation abnormalities. PMID:25162947

  8. A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar.

    PubMed

    Travis, Taryn E; Ghassemi, Pejhman; Ramella-Roman, Jessica C; Prindeze, Nicholas J; Paul, Dereck W; Moffatt, Lauren T; Jordan, Marion H; Shupp, Jeffrey W

    2015-01-01

    Using a validated swine model of human scar formation, hyperpigmented and hypopigmented scar samples were examined for their histological and optical properties to help elucidate the mechanisms and characteristics of dyspigmentation. Full-thickness wounds were created on the flanks of red Duroc pigs and allowed to heal. Biopsies from areas of hyperpigmentation, hypopigmentation, and uninjured tissue were fixed and embedded for histological examination using Azure B and primary antibodies to S100B, HMB45, and ?-melanocyte-stimulating hormone (?-MSH). Spatial frequency domain imaging (SFDI) was then used to examine the optical properties of scars. Hyperpigmentation was first noticeable in healing wounds around weeks 2 to 3, gradually becoming darker. There was no significant difference in S100B staining for the presence of melanocytes between hyperpigmented and hypopigmented scar samples. Azure B staining of melanin was significantly greater in histological sections from hyperpigmented areas than in sections from both uninjured skin and hypopigmented scar (P < .0001). There was significantly greater staining for ?-MSH in hyperpigmented samples compared with hypopigmented samples (P = .0121), and HMB45 staining was positive for melanocytes in hyperpigmented scar. SFDI at a wavelength of 632 nm resulted in an absorption coefficient map correlating with visibly hyperpigmented areas of scars. In a red Duroc model of hypertrophic scar formation, melanocyte number is similar in hyperpigmented and hypopigmented tissues. Hyperpigmented tissues, however, show a greater amount of melanin and ?-MSH, along with immunohistochemical evidence of stimulated melanocytes. These observations encourage further investigation of melanocyte stimulation and the inflammatory environment within a wound that may influence melanocyte activity. Additionally, SFDI can be used to identify areas of melanin content in mature, pigmented scars, which may lead to its usefulness in wounds at earlier time points before markedly apparent pigmentation abnormalities. PMID:25162947

  9. A familial case of Coffin-Lowry syndrome caused by RPS6KA3 C.898C>T mutation associated with multiple abnormal brain imaging findings.

    PubMed

    Tos, T; Alp, M Y; Aksoy, A; Ceylaner, S; Hanauer, A

    2015-01-01

    Coffin-Lowry syndrome (CLS) is a rare X linked mental retardation syndrome characterised by severe psychomotor and growth retardation, distinct facial phenotype, and progressive skeletal malformations. It is caused by mutations in the RPS6KA3 gene located at Xp22.2. In this report we describe a family with CLS consists of three affected males, and two affected females, arising from c.898C>T mutation in RPS6KA3 gene. A 6 year-old, and a 3 year-old boy both had distinct clinical features of Coffin-Lowry syndrome; severe mental and motor retardation, microcephaly, prominent forehead, hypertelorism, large mouth, large ears, large soft hands, puffy tapered fingers, and pectus carinatum. In addition, they had multiple abnormal brain MRI findings. Other siblings presented with a mild and variable phenotype. PMID:26043507

  10. Using perturbations to identify the brain circuits underlying active vision

    PubMed Central

    Wurtz, Robert H.

    2015-01-01

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision—the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized. PMID:26240420

  11. Using perturbations to identify the brain circuits underlying active vision.

    PubMed

    Wurtz, Robert H

    2015-09-19

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision--the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized. PMID:26240420

  12. Idiosyncratic brain activation patterns are associated with poor social comprehension in autism.

    PubMed

    Byrge, Lisa; Dubois, Julien; Tyszka, J Michael; Adolphs, Ralph; Kennedy, Daniel P

    2015-04-01

    Autism spectrum disorder (ASD) features profound social deficits but neuroimaging studies have failed to find any consistent neural signature. Here we connect these two facts by showing that idiosyncratic patterns of brain activation are associated with social comprehension deficits. Human participants with ASD (N = 17) and controls (N = 20) freely watched a television situation comedy (sitcom) depicting seminaturalistic social interactions ("The Office", NBC Universal) in the scanner. Intersubject correlations in the pattern of evoked brain activation were reduced in the ASD group-but this effect was driven entirely by five ASD subjects whose idiosyncratic responses were also internally unreliable. The idiosyncrasy of these five ASD subjects was not explained by detailed neuropsychological profile, eye movements, or data quality; however, they were specifically impaired in understanding the social motivations of characters in the sitcom. Brain activation patterns in the remaining ASD subjects were indistinguishable from those of control subjects using multiple multivariate approaches. Our findings link neurofunctional abnormalities evoked by seminaturalistic stimuli with a specific impairment in social comprehension, and highlight the need to conceive of ASD as a heterogeneous classification. PMID:25855192

  13. Idiosyncratic Brain Activation Patterns Are Associated with Poor Social Comprehension in Autism

    PubMed Central

    Tyszka, J. Michael; Adolphs, Ralph; Kennedy, Daniel P.

    2015-01-01

    Autism spectrum disorder (ASD) features profound social deficits but neuroimaging studies have failed to find any consistent neural signature. Here we connect these two facts by showing that idiosyncratic patterns of brain activation are associated with social comprehension deficits. Human participants with ASD (N = 17) and controls (N = 20) freely watched a television situation comedy (sitcom) depicting seminaturalistic social interactions (The Office, NBC Universal) in the scanner. Intersubject correlations in the pattern of evoked brain activation were reduced in the ASD groupbut this effect was driven entirely by five ASD subjects whose idiosyncratic responses were also internally unreliable. The idiosyncrasy of these five ASD subjects was not explained by detailed neuropsychological profile, eye movements, or data quality; however, they were specifically impaired in understanding the social motivations of characters in the sitcom. Brain activation patterns in the remaining ASD subjects were indistinguishable from those of control subjects using multiple multivariate approaches. Our findings link neurofunctional abnormalities evoked by seminaturalistic stimuli with a specific impairment in social comprehension, and highlight the need to conceive of ASD as a heterogeneous classification. PMID:25855192

  14. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    PubMed

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities. PMID:26354912

  15. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  16. Motor impairments related to brain injury timing in early hemiparesis Part II: abnormal upper extremity joint torque synergies

    PubMed Central

    Sukal-Moulton, Theresa; Krosschell, Kristin J.; Gaebler-Spira, Deborah J.; Dewald, Julius P.A.

    2014-01-01

    Background Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In part I of this paper series it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. Objective The goal of this study was to characterize how timing of brain injury impacts joint torque synergies, or losses of independent joint control. Method Twenty-four individuals with hemiparesis were divided into three groups based on the timing of their injury: before birth (PRE-natal, n=8), around the time of birth (PERI-natal, n=8) and after 6 months of age (POST-natal, n=8). Individuals with hemiparesis, as well as 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity were concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. Results There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. Conclusion The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may utilize relatively preserved ipsilateral corticospinal motor pathways. PMID:23911972

  17. Lateralization of Brain Activation in Fluent and Non-Fluent Preschool Children: A Magnetoencephalographic Study of Picture-Naming

    PubMed Central

    Sowman, Paul F.; Crain, Stephen; Harrison, Elisabeth; Johnson, Blake W.

    2014-01-01

    The neural causes of stuttering remain unknown. One explanation comes from neuroimaging studies that have reported abnormal lateralization of activation in the brains of people who stutter. However, these findings are generally based on data from adults with a long history of stuttering, raising the possibility that the observed lateralization anomalies are compensatory rather than causal. The current study investigated lateralization of brain activity in language-related regions of interest in young children soon after the onset of stuttering. We tested 24 preschool-aged children, half of whom had a positive diagnosis of stuttering. All children participated in a picture-naming experiment whilst their brain activity was recorded by magnetoencephalography. Source analysis performed during an epoch prior to speech onset was used to assess lateralized activation in three regions of interest. Activation was significantly lateralized to the left hemisphere in both groups and not different between groups. This study shows for the first time that significant speech preparatory brain activation can be identified in young children during picture-naming and supports the contention that, in stutterers, aberrant lateralization of brain function may be the result of neuroplastic adaptation that occurs as the condition becomes chronic. PMID:24904388

  18. DHA and EPA reverse cystic fibrosis-related FA abnormalities by suppressing FA desaturase expression and activity

    PubMed Central

    Njoroge, Sarah W.; Laposata, Michael; Katrangi, Waddah; Seegmiller, Adam C.

    2012-01-01

    Patients and models of cystic fibrosis (CF) exhibit consistent abnormalities of polyunsaturated fatty acid composition, including decreased linoleate (LA) and docosahexaenoate (DHA) and variably increased arachidonate (AA), related in part to increased expression and activity of fatty acid desaturases. These abnormalities and the consequent CF-related pathologic manifestations can be reversed in CF mouse models by dietary supplementation with DHA. However, the mechanism is unknown. This study investigates this mechanism by measuring the effect of exogenous DHA and eicosapentaenoate (EPA) supplementation on fatty acid composition and metabolism, as well as on metabolic enzyme expression, in a cell culture model of CF. We found that both DHA and EPA suppress the expression and activity of ?5- and ?6-desaturases, leading to decreased flux through the n-3 and n-6 PUFA metabolic pathways and decreased production of AA. The findings also uncover other metabolic abnormalities, including increased fatty acid uptake and markedly increased retroconversion of DHA to EPA, in CF cells. These results indicate that the fatty acid abnormalities of CF are related to intrinsic alterations of PUFA metabolism and that they may be reversed by supplementation with DHA and EPA. PMID:22095831

  19. Resting-state activity in development and maintenance of normal brain function.

    PubMed

    Pizoli, Carolyn E; Shah, Manish N; Snyder, Abraham Z; Shimony, Joshua S; Limbrick, David D; Raichle, Marcus E; Schlaggar, Bradley L; Smyth, Matthew D

    2011-07-12

    One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level-dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization. PMID:21709227

  20. Brain activity in predominantly-inattentive subtype attention-deficit/hyperactivity disorder during an auditory oddball attention task.

    PubMed

    Orinstein, Alyssa J; Stevens, Michael C

    2014-08-30

    Previous functional neuroimaging studies have found brain activity abnormalities in attention-deficit/hyperactivity disorder (ADHD) on numerous cognitive tasks. However, little is known about brain dysfunction unique to the predominantly-inattentive subtype of ADHD (ADHD-I), despite debate as to whether DSM-IV-defined ADHD subtypes differ in etiology. This study compared brain activity of 18 ADHD-I adolescents (ages 12-18) and 20 non-psychiatric age-matched control participants on a functional magnetic resonance image (fMRI) auditory oddball attention task. ADHD-I participants had significant activation deficits to infrequent target stimuli in bilateral superior temporal gyri, bilateral insula, several midline cingulate/medial frontal gyrus regions, right posterior parietal cortex, thalamus, cerebellum, and brainstem. To novel stimuli, ADHD-I participants had reduced activation in bilateral lateral temporal lobe structures. There were no brain regions where ADHD-I participants had greater hemodynamic activity to targets or novels than controls. Brain activity deficits in ADHD-I participants were found in several regions important to attentional orienting and working memory-related cognitive processes involved in target identification. These results differ from those in previously studied adolescents with combined-subtype ADHD, who had a lesser magnitude of activation abnormalities in frontoparietal regions and relatively more discrete regional deficits to novel stimuli. The divergent findings suggest different etiological factors might underlie attention deficits in different DSM-IV-defined ADHD subtypes, and they have important implications for the DSM-V reconceptualization of subtypes as varying clinical presentations of the same core disorder. PMID:24953999

  1. Brain dead donor kidneys are immunologically active: is intervention justified?

    PubMed Central

    Vergoulas, G; Boura, P; Efstathiadis, G

    2009-01-01

    The improvement in the field of kidney transplantation, during the last decades, has brought kindey transplantation to the top of patient preference as the best kidney replacement therapy1. The use of marginal kidney grafts, which are highly immunogenic has become common practice because of lack of kidney donors. Inflammatory activity in the kidneys after brain death is an ongoing phenomenon. The inappropriate treatment of brain dead donor may result to primary non function (PNF) of the graft, delayed graft function (DGF) or to long term graft dysfunction and shortened graft survival. Therefore correct handling of the brain dead donor is of paramount importance. The impact of various pharmacologic agents (catecholamines, glucocorticoids, carbamylated recombinant human erythropoietin, recombinant soluble P-selectin glycoprotein ligant, heme oxygenase-1, carbon monoxide, and mycophenolate mofetil) on the immunogemicity of brain dead donor kidneys is discussed. PMID:20011083

  2. Developmental changes in infant brain activity during naturalistic social experiences.

    PubMed

    Jones, Emily J H; Venema, Kaitlin; Lowy, Rachel; Earl, Rachel K; Webb, Sara Jane

    2015-11-01

    Between 6 and 12 months, typically developing infants undergo a socio-cognitive "revolution." The Interactive Specialization (IS) theory of brain development predicts that these behavioral changes will be underpinned by developmental increases in the power and topographic extent of socially selective cortical responses. To test this hypothesis, we used EEG to examine developmental changes in cortical selectivity for ecologically valid dynamic social versus non-social stimuli in a large cohort of 6- and 12-month-old infants. Consistent with the Interactive Specialization model, results showed that differences in EEG ? activity between social and non-social stimuli became more pronounced and widespread with age. Differences in EEG activity were most clearly elicited by a live naturalistic interaction, suggesting that measuring brain activity in ecologically valid contexts is central to mapping social brain development in infancy. PMID:26219834

  3. Brain feminization requires active repression of masculinization via DNA methylation

    PubMed Central

    Nugent, Bridget M.; Wright, Christopher L.; Shetty, Amol C.; Hodes, Georgia E.; Lenz, Kathryn M.; Mahurkar, Anup; Russo, Scott J.; Devine, Scott E.; McCarthy, Margaret M.

    2015-01-01

    The developing mammalian brain is destined for a female phenotype unless exposed to gonadal hormones during a perinatal sensitive period. It has been assumed that the undifferentiated brain is masculinized by direct induction of transcription by ligand-activated nuclear steroid receptors. We found that a primary effect of gonadal steroids in the highly sexually-dimorphic preoptic area (POA) is to reduce activity of DNA methyltransferase (Dnmt) enzymes, thereby decreasing DNA methylation and releasing masculinizing genes from epigenetic repression. Pharmacological inhibition of Dnmts mimicked gonadal steroids, resulting in masculinized neuronal markers and male sexual behavior in females. Conditional knockout of the de novo Dnmt isoform, Dnmt3a, also masculinized sexual behavior in female mice. RNA sequencing revealed gene and isoform variants modulated by methylation that may underlie the divergent reproductive behaviors of males versus females. Our data show that brain feminization is maintained by the active suppression of masculinization via DNA methylation. PMID:25821913

  4. Lasting Neurobehavioral Abnormalities in Rats After Neonatal Activation of Serotonin 1A and 1B Receptors: Possible Mechanisms for Serotonin Dysfunction in Autistic Spectrum Disorders

    PubMed Central

    Khatri, Nidhi; Simpson, Kimberly L.; Lin, Rick C.S.; Paul, Ian A.

    2013-01-01

    Rationale Perinatal exposure of rats to selective serotonin reuptake inhibitors (SSRIs) produces sensory and social abnormalities paralleling those seen in Autistic Spectrum Disorders (ASD). However, the possible mechanism(s) by which this exposure produces behavioral abnormalities is unclear. Objective We hypothesized that the lasting effects of neonatal SSRI exposure are a consequence of abnormal stimulation of 5-HT1A and/or 5-HT1B receptors during brain development. We examined whether such stimulation would result in lasting sensory and social deficits in rats in a manner similar to SSRIs using both direct agonist stimulation of receptors as well as selective antagonism of these receptors during SSRI exposure. Methods Male and female rat pups were treated from postnatal day 8 to 21. In Experiment 1, pups received citalopram (20mg/kg/d), saline, 8-OH-DPAT (0.5 mg/kg/d) or CGS-12066B (10 mg/kg/d). In Experiment 2, a separate cohort of pups received an citalopram (20 mg/kg/d), or saline which was combined with either WAY-100635 (0.6 mg/kg/d) or GR-127935 (6 mg/kg/d) or vehicle. Rats were then tested in paradigms designed to assess sensory and social response behaviors at different time points during development. Results Direct and indirect neonatal stimulation of 5-HT1A or 5-HT1B receptors disrupts sensory processing, produces neophobia, increases stereotypic activity, and impairs social interactions in manner analogous to that observed in ASD. Conclusion Increased stimulation of 5-HT1A and 5-HT1B receptors plays a significant role in the production of lasting social and sensory deficits in adult animals exposed as neonates to SSRIs. PMID:23975037

  5. On a Mathematical Model of Brain Activities

    SciTech Connect

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-12-03

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an 'expexted view of the world'. Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from 'excited' to 'nonexcited'. For that reason a statistical model of the recognition process should reflect both--the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail.

  6. Structural brain abnormalities in patients with Parkinson's disease with visual hallucinations: a comparative voxel-based analysis.

    PubMed

    Gama, Romulo Lopes; Bruin, Veralice Meireles Sales; Tvora, Daniel Gurgel Fernandes; Duran, Fbio L S; Bittencourt, Lia; Tufik, Sergio

    2014-06-01

    The objective is to evaluate clinical characteristics and cerebral alterations in Parkinson's disease (PD) patients with diurnal visual hallucinations (VHs). Assessment was performed using magnetic resonance image (MRI) and voxel-based morphometry (VBM). Thirty-nine patients with PD (53.8%) and ten controls were studied. Voxel based morphology analysis was performed. Eleven patients presented diurnal VHs and among these, six had cognitive dysfunction. Patients with VHs performed worse in the mentation-related UPDRS I (p=0.005) and motor-related UPDRS III (p=0.02). Patients with VHs showed significant clusters of reduced grey matter volume compared to controls in the left opercula frontal gyrus and left superior frontal gyrus. PD without hallucinations demonstrated reduced grey matter volume in the left superior frontal gyrus compared to controls. Comparisons between patients with VHs regarding the presence of cognitive dysfunction showed that cases with cognitive dysfunction as compared to those without cognitive dysfunction showed significant clusters of reduced grey matter volume in the left opercular frontal gyrus. Cases without cognitive dysfunction had reduced grey matter substance in the left insula and left trigonal frontal gyrus. Judging from our findings, an abnormal frontal cortex, particularly left sided insula, frontal opercular, trigonal frontal gyrus and orbital frontal would make PD patients vulnerable to hallucinations. Compromise of the left operculum distinguished cases with VHs and cognitive dysfunction. Our findings reinforce the theoretical concept of a top-down visual processing in the genesis of VHs in PD. PMID:24732953

  7. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations

    PubMed Central

    Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058

  8. Brain activation during cognitive planning in twins discordant or concordant for obsessivecompulsive symptoms

    PubMed Central

    van t Ent, Dennis; Cath, Danielle C.; Wagner, Judith; Boomsma, Dorret I.; de Geus, Eco J. C.

    2010-01-01

    Neuroimaging studies have indicated abnormalities in cortico-striatal-thalamo-cortical circuits in patients with obsessivecompulsive disorder compared with controls. However, there are inconsistencies between studies regarding the exact set of brain structures involved and the direction of anatomical and functional changes. These inconsistencies may reflect the differential impact of environmental and genetic risk factors for obsessivecompulsive disorder on different parts of the brain. To distinguish between functional brain changes underlying environmentally and genetically mediated obsessivecompulsive disorder, we compared task performance and brain activation during a Tower of London planning paradigm in monozygotic twins discordant (n?=?38) or concordant (n?=?100) for obsessivecompulsive symptoms. Twins who score high on obsessivecompulsive symptoms can be considered at high risk for obsessivecompulsive disorder. We found that subjects at high risk for obsessivecompulsive disorder did not differ from the low-risk subjects behaviourally, but we obtained evidence that the high-risk subjects differed from the low-risk subjects in the patterns of brain activation accompanying task execution. These regions can be separated into those that were affected by mainly environmental risk (dorsolateral prefrontal cortex and lingual cortex), genetic risk (frontopolar cortex, inferior frontal cortex, globus pallidus and caudate nucleus) and regions affected by both environmental and genetic risk factors (cingulate cortex, premotor cortex and parts of the parietal cortex). Our results suggest that neurobiological changes related to obsessivecompulsive symptoms induced by environmental factors involve primarily the dorsolateral prefrontal cortex, whereas neurobiological changes induced by genetic factors involve orbitofrontalbasal ganglia structures. Regions showing similar changes in high-risk twins from discordant and concordant pairs may be part of compensatory networks that keep planning performance intact, in spite of cortico-striatal-thalamo-cortical deficits. PMID:20823085

  9. Methamphetamine Causes Microglial Activation in the Brains of Human Abusers

    PubMed Central

    Sekine, Yoshimoto; Ouchi, Yasuomi; Sugihara, Genichi; Takei, Nori; Yoshikawa, Etsuji; Nakamura, Kazuhiko; Iwata, Yasuhide; Tsuchiya, Kenji J.; Suda, Shiro; Suzuki, Katsuaki; Kawai, Masayoshi; Takebayashi, Kiyokazu; Yamamoto, Shigeyuki; Matsuzaki, Hideo; Ueki, Takatoshi; Mori, Norio; Gold, Mark S.; Cadet, Jean L.

    2008-01-01

    Methamphetamine is a popular addictive drug whose use is associated with multiple neuropsychiatric adverse events and toxic to the dopaminergic and serotonergic systems of the brain. Methamphetamine-induced neuropathology is associated with increased expression of microglial cells that are thought to participate in either pro-toxic or protective mechanisms in the brain. Although reactive microgliosis has been observed in animal models of methamphetamine neurotoxicity, no study has reported on the status of microglial activation in human methamphetamine abusers. The present study reports on 12 abstinent methamphetamine abusers and 12 age-, gender-, education-matched control subjects who underwent positron emission tomography using a radiotracer for activated microglia, [11C](R)-(1-[2-chlorophenyl]-N-methyl-N-[1-methylpropyl]-3-isoquinoline carboxamide) ([11C](R)-PK11195). Compartment analysis was used to estimate quantitative levels of binding potentials of [11C](R)-PK11195 in brain regions with dopaminergic and/or serotonergic innervation. The mean levels of [11C](R)-PK11195 binding were higher in methamphetamine abusers than those in control subjects in all brain regions (> 250% higher, p < 0.01 for all). In addition, the binding levels in the midbrain, striatum, thalamus, and orbitofrontal and insular cortices (p < 0.05) correlated inversely with the duration of methamphetamine abstinence. These results suggest that chronic self-administration of methamphetamine can cause reactive microgliosis in the brains of human methamphetamine abusers, a level of activation that appears to subside over longer periods of abstinence. PMID:18509037

  10. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  11. Amusia results in abnormal brain activity following inappropriate intonation during speech comprehension.

    PubMed

    Jiang, Cunmei; Hamm, Jeff P; Lim, Vanessa K; Kirk, Ian J; Chen, Xuhai; Yang, Yufang

    2012-01-01

    Pitch processing is a critical ability on which humans' tonal musical experience depends, and which is also of paramount importance for decoding prosody in speech. Congenital amusia refers to deficits in the ability to properly process musical pitch, and recent evidence has suggested that this musical pitch disorder may impact upon the processing of speech sounds. Here we present the first electrophysiological evidence demonstrating that individuals with amusia who speak Mandarin Chinese are impaired in classifying prosody as appropriate or inappropriate during a speech comprehension task. When presented with inappropriate prosody stimuli, control participants elicited a larger P600 and smaller N100 relative to the appropriate condition. In contrast, amusics did not show significant differences between the appropriate and inappropriate conditions in either the N100 or the P600 component. This provides further evidence that the pitch perception deficits associated with amusia may also affect intonation processing during speech comprehension in those who speak a tonal language such as Mandarin, and suggests music and language share some cognitive and neural resources. PMID:22859982

  12. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting

  13. Cdk5 activity in the brain - multiple paths of regulation.

    PubMed

    Shah, Kavita; Lahiri, Debomoy K

    2014-06-01

    Cyclin dependent kinase-5 (Cdk5), a family member of the cyclin-dependent kinases, plays a pivotal role in the central nervous system. During embryogenesis, Cdk5 is indispensable for brain development and, in the adult brain, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation. However, Cdk5 activity becomes deregulated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, which leads to neurotoxicity. Therefore, precise control over Cdk5 activity is essential for its physiological functions. This Commentary covers the various mechanisms of Cdk5 regulation, including several recently identified protein activators and inhibitors of Cdk5 that control its activity in normal and diseased brains. We also discuss the autoregulatory activity of Cdk5 and its regulation at the transcriptional, post-transcriptional and post-translational levels. We finally highlight physiological and pathological roles of Cdk5 in the brain. Specific modulation of these protein regulators is expected to provide alternative strategies for the development of effective therapeutic interventions that are triggered by deregulation of Cdk5. PMID:24879856

  14. Regional distribution of SGLT activity in rat brain in vivo.

    PubMed

    Yu, Amy S; Hirayama, Bruce A; Timbol, Gerald; Liu, Jie; Diez-Sampedro, Ana; Kepe, Vladimir; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Wright, Ernest M; Barrio, Jorge R

    2013-02-01

    Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, ?-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes. PMID:23151803

  15. Altered Brain Activation during Emotional Face Processing in Relation to Both Diagnosis and Polygenic Risk of Bipolar Disorder

    PubMed Central

    Tesli, Martin; Kauppi, Karolina; Bettella, Francesco; Brandt, Christine Lycke; Kaufmann, Tobias; Espeseth, Thomas; Mattingsdal, Morten; Agartz, Ingrid; Melle, Ingrid; Djurovic, Srdjan; Westlye, Lars T.; Andreassen, Ole A.

    2015-01-01

    Objectives Bipolar disorder (BD) is a highly heritable disorder with polygenic inheritance. Among the most consistent findings from functional magnetic imaging (fMRI) studies are limbic hyperactivation and dorsal hypoactivation. However, the relation between reported brain functional abnormalities and underlying genetic risk remains elusive. This is the first cross-sectional study applying a whole-brain explorative approach to investigate potential influence of BD case-control status and polygenic risk on brain activation. Methods A BD polygenic risk score (PGRS) was estimated from the Psychiatric Genomics Consortium BD case-control study, and assigned to each individual in our independent sample (N=85 BD cases and 121 healthy controls (HC)), all of whom participated in an fMRI emotional faces matching paradigm. Potential differences in BOLD response across diagnostic groups were explored at whole-brain level in addition to amygdala as a region of interest. Putative effects of BD PGRS on brain activation were also investigated. Results At whole-brain level, BD cases presented with significantly lower cuneus/precuneus activation than HC during negative face processing (Z-threshold=2.3 as cluster-level correction). The PGRS was associated positively with increased right inferior frontal gyrus (rIFG) activation during negative face processing. For amygdala activation, there were no correlations with diagnostic status or PGRS. Conclusions These findings are in line with previous reports of reduced precuneus and altered rIFG activation in BD. While these results demonstrate the ability of PGRS to reveal underlying genetic risk of altered brain activation in BD, the lack of convergence of effects at diagnostic and PGRS level suggests that this relation is a complex one. PMID:26222050

  16. Bipolar I disorder and major depressive disorder show similar brain activation during depression

    PubMed Central

    Cerullo, Michael A; Eliassen, James C; Smith, Christopher T; Fleck, David E; Nelson, Erik B; Strawn, Jeffrey R; Lamy, Martine; DelBello, Melissa P; Adler, Caleb M; Strakowski, Stephen M

    2014-01-01

    Objectives Despite different treatments and course of illness, depressive symptoms appear similar in major depressive disorder (MDD) and bipolar I disorder (BP-I). This similarity of depressive symptoms suggests significant overlap in brain pathways underlying neurovegetative, mood, and cognitive symptoms of depression. These shared brain regions might be expected to exhibit similar activation in individuals with MDD and BP-I during functional magnetic resonance imaging (fMRI). Methods fMRI was used to compare regional brain activation in participants with BP-I (n = 25) and MDD (n = 25) during a depressive episode as well as 25 healthy comparison (HC) participants. During the scans, participants performed an attentional task that incorporated emotional pictures. Results During the viewing of emotional images, subjects with BP-I showed decreased activation in the middle occipital gyrus, lingual gyrus, and middle temporal gyrus compared to both subjects with MDD and HC participants. During attentional processing, participants with MDD had increased activation in the parahippocampus, parietal lobe, and postcentral gyrus. However, among these regions, only the postcentral gyrus also showed differences between MDD and HC participants. Conclusions No differences in cortico-limbic regions were found between participants with BP-I and MDD during depression. Instead, the major differences occurred in primary and secondary visual processing regions with decreased activation in these regions in BP-I compared to major depression. These differences were driven by abnormal decreases in activation seen in the participants with BP-I. Posterior activation changes are a common finding in studies across mood states in participants with BP-I. PMID:24990479

  17. Language modulates brain activity underlying representation of kinship terms

    PubMed Central

    Wu, Haiyan; Ge, Yue; Tang, Honghong; Luo, Yue-Jia; Mai, Xiaoqin; Liu, Chao

    2015-01-01

    Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages. PMID:26685907

  18. Language modulates brain activity underlying representation of kinship terms.

    PubMed

    Wu, Haiyan; Ge, Yue; Tang, Honghong; Luo, Yue-Jia; Mai, Xiaoqin; Liu, Chao

    2015-01-01

    Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages. PMID:26685907

  19. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    PubMed

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P < 0.05) was observed during hypergravity exposure compared with baseline. Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P < 0.05) compared with baseline and an increase in deoxyhemoglobin levels (P < 0.05) with increasing +Gz level. No significant correlation was found between prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a short-arm human centrifuge as a countermeasure. PMID:23372141

  20. Cardiovascular fitness modulates brain activation associated with spatial learning.

    PubMed

    Holzschneider, Kathrin; Wolbers, Thomas; Röder, Brigitte; Hötting, Kirsten

    2012-02-01

    Aerobic exercise has beneficial effects on cognitive functioning in aging humans, especially on executive functions associated with frontal brain regions. In rodents, exercise has been shown to induce structural and neurophysiological changes especially in the hippocampus and to improve spatial learning. The present study investigated the relationship between cardiovascular fitness, spatial learning and associated patterns of brain activation cross-sectionally and longitudinally in a sample of middle-aged men and women (40-55 years) that took part in a six-month exercise intervention and an additional spatial training. Spatial learning capacities before and after the interventions were measured with a virtual maze task. During this task, participants were repeatedly moved through a virtual town and were instructed to infer the spatial layout of the environment. Brain activations during encoding of the virtual town were assessed with functional magnetic resonance imaging (fMRI). The fMRI data revealed that brain activations during successful spatial learning were modulated by the individual fitness level in a neural network, comprising the hippocampus, retrosplenial cortex, cuneus, precuneus, parahippocampal gyrus, caudate nucleus, insula, putamen, and further frontal, temporal, occipital and cingulate regions. Moreover, physical exercising induced changes in cardiovascular fitness that correlated positively with changes in brain activations in the medial frontal gyrus and the cuneus. However, overall spatial learning performance did not vary with cardiovascular fitness. These data suggest that cardiovascular fitness has an impact on brain regions associated with spatial learning in humans and hence, could be a potent intervention to prevent age-related cognitive decline. PMID:22027496

  1. Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy

    PubMed Central

    Liu, Ning; Cui, Xu; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearsons correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research. PMID:25798327

  2. Brain

    MedlinePLUS

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  3. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  4. [Constitutional peculiarities of the bioelectric activity of the brain].

    PubMed

    Kusnezowa, S M; Kudrizkaja, O W

    1990-01-01

    Based on the data obtained in exploring the processes of background bioelectric activity of the brain by means of Karhunen-Leve decomposition, the authors have revealed constitutional peculiarities of EEG characterizing the systemic mechanisms of hereditary disposition either to longevity or to cerebral vascular pathology. PMID:2327148

  5. Smart Moves: Powering up the Brain with Physical Activity

    ERIC Educational Resources Information Center

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive…

  6. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,

  7. Brain Activation during the Course of Sentence Comprehension

    ERIC Educational Resources Information Center

    Ikuta, Naho; Sugiura, Motoaki; Sassa, Yuko; Watanabe, Jobu; Akitsuki, Yuko; Iwata, Kazuki; Miura, Naoki; Okamoto, Hideyuki; Watanabe, Yoshihiko; Sato, Shigeru; Horie, Kaoru; Matsue, Yoshihiko; Kawashima, Ryuta

    2006-01-01

    The purpose of this study is to determine, by functional magnetic resonance imaging, how the activated regions of the brain change as a Japanese sentence is presented in a grammatically correct order. In this study, we presented constituents of a sentence to Japanese participants one by one at regular intervals. The results showed that the left

  8. Prefrontal Brain Activity Predicts Temporally Extended Decision-Making Behavior

    ERIC Educational Resources Information Center

    Yarkoni, Tal; Braver, Todd S.; Gray, Jeremy R.; Green, Leonard

    2005-01-01

    Although functional neuroimaging studies of human decision-making processes are increasingly common, most of the research in this area has relied on passive tasks that generate little individual variability. Relatively little attention has been paid to the ability of brain activity to predict overt behavior. Using functional magnetic resonance…

  9. Smart Moves: Powering up the Brain with Physical Activity

    ERIC Educational Resources Information Center

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive

  10. BRAIN CHOLINESTERASE ACTIVITY OF BOBWHITE ACUTELY EXPOSED TO CHLORPYRIFOS

    EPA Science Inventory

    Northern bobwhite, Colinus virginianus, were orally dosed with the organophosphorus insecticide chlorpyrifos to examine effects on brain cholinesterase (AChE) activity. wo-week-old quail were acutely exposed and euthanized at selected times following gavage-dosing, ranging from 1...

  11. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  12. Blue Light Stimulates Cognitive Brain Activity in Visually Blind Individuals

    PubMed Central

    Vandewalle, Gilles; Collignon, Olivier; Hull, Joseph T.; Daneault, Vronique; Albouy, Genevive; Lepore, Franco; Phillips, Christophe; Doyon, Julien; Czeisler, Charles A.; Dumont, Marie; Lockley, Steven W.; Carrier, Julie

    2015-01-01

    Light regulates multiple non-image-forming (or non-visual) circadian, neuroendocrine and neurobehavioral functions, via outputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so that light is an important regulator of wakefulness and cognition. The roles of rods, cones and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose non-randomly about the presence of light despite their complete lack of sight. Furthermore, 2s of blue light modified EEG activity when administered simultaneously to auditory stimulations. FMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation, as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function. PMID:23859643

  13. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease

    PubMed Central

    Villain, Nicolas; Fouquet, Marine; Baron, Jean-Claude; Mézenge, Florence; Landeau, Brigitte; De La Sayette, Vincent; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2010-01-01

    Hippocampal atrophy, posterior cingulate and frontal glucose hypometabolism, and white-matter tract disruption are well-described early macroscopic events in Alzheimer’s disease. The relationships between these three types of alterations have been documented in previous studies, but their chronology still remains to be established. The present study used multi-modal Fluorodeoxyglucose - Positron Emission Tomography and Magnetic Resonance Imaging longitudinal data to address this question in patients with amnestic Mild Cognitive Impairment. We found unidirectional, specific sequential relationships between: i) baseline hippocampal atrophy and both cingulum bundle (r=0.70; p=3.10−3) and uncinate fasciculus (r=0.75; p=7.10−4) rate of atrophy; ii) baseline cingulum bundle atrophy and rate of decline of posterior (r=0.72; p=2.10−3) and anterior (r=0.74; p=1.10−3) cingulate metabolism; and iii) baseline uncinate white matter atrophy and subgenual metabolism rate of change (r=0.65; p=6.10−3). Baseline local grey matter atrophy was not found to contribute to hypometabolism progression within the posterior and anterior cingulate as well as subgenual cortices. These findings suggest that hippocampal atrophy progressively leads to disruption of the cingulum bundle and uncinate fasciculus, which in turn leads to glucose hypometabolism of the cingulate and subgenual cortices, respectively. This study reinforces the relevance of remote mechanisms above local interactions to account for the patterns of brain alteration observed in amnestic Mild Cognitive Impairment, and provides new avenues to assess the sequence of events in complex diseases characterized by multiple manifestations. PMID:20688814

  14. Delayed and disorganised brain activation detected with magnetoencephalography after mild traumatic brain injury

    PubMed Central

    da Costa, Leodante; Robertson, Amanda; Bethune, Allison; MacDonald, Matt J; Shek, Pang N; Taylor, Margot J; Pang, Elizabeth W

    2015-01-01

    Background Awareness to neurocognitive issues after mild traumatic brain injury (mTBI) is increasing, but currently no imaging markers are available for mTBI. Advanced structural imaging recently showed microstructural tissue changes and axonal injury, mild but likely sufficient to lead to functional deficits. Magnetoencephalography (MEG) has high temporal and spatial resolution, combining structural and electrophysiological information, and can be used to examine brain activation patterns of regions involved with specific tasks. Methods 16 adults with mTBI and 16 matched controls were submitted to neuropsychological testing (Wechsler Abbreviated Scale of Intelligence (WASI); Conners; Alcohol Use Disorders Identification Test (AUDIT); Generalised Anxiety Disorder Seven-item Scale (GAD-7); Patient Health Questionnaire (PHQ-9); Symptom Checklist and Symptom Severity Score (SCAT2)) and MEG while tested for mental flexibility (Intra-Extra Dimensional set-shifting tasks). Three-dimensional maps were generated using synthetic aperture magnetometry beamforming analyses to identify differences in regional activation and activation times. Reaction times and accuracy between groups were compared using 22 mixed analysis of variance. Findings While accuracy was similar, patients with mTBI reaction time was delayed and sequence of activation of brain regions disorganised, with involvement of extra regions such as the occipital lobes, not used by controls. Examination of activation time showed significant delays in the right insula and left posterior parietal cortex in patients with mTBI. Conclusions Patients with mTBI showed significant delays in the activation of important areas involved in executive function. Also, more regions of the brain are involved in an apparent compensatory effort. Our study suggests that MEG can detect subtle neural changes associated with cognitive dysfunction and thus, may eventually be useful for capturing and tracking the onset and course of cognitive symptoms associated with mTBI. PMID:25324505

  15. Alzheimer Disease in a Mouse Model: MR Imaging–guided Focused Ultrasound Targeted to the Hippocampus Opens the Blood-Brain Barrier and Improves Pathologic Abnormalities and Behavior

    PubMed Central

    Dubey, Sonam; Yeung, Sharon; Hough, Olivia; Eterman, Naomi; Aubert, Isabelle; Hynynen, Kullervo

    2014-01-01

    Purpose To validate whether repeated magnetic resonance (MR) imaging–guided focused ultrasound treatments targeted to the hippocampus, a brain structure relevant for Alzheimer disease (ADAlzheimer disease), could modulate pathologic abnormalities, plasticity, and behavior in a mouse model. Materials and Methods All animal procedures were approved by the Animal Care Committee and are in accordance with the Canadian Council on Animal Care. Seven-month-old transgenic (TgCRND8) (Tg) mice and their nontransgenic (non-Tg) littermates were entered in the study. Mice were treated weekly with MR imaging–guided focused ultrasound in the bilateral hippocampus (1.68 MHz, 10-msec bursts, 1-Hz burst repetition frequency, 120-second total duration). After 1 month, spatial memory was tested in the Y maze with the novel arm prior to sacrifice and immunohistochemical analysis. The data were compared by using unpaired t tests and analysis of variance with Tukey post hoc analysis. Results Untreated Tg mice spent 61% less time than untreated non-Tg mice exploring the novel arm of the Y maze because of spatial memory impairments (P < .05). Following MR imaging–guided focused ultrasound, Tg mice spent 99% more time exploring the novel arm, performing as well as their non-Tg littermates. Changes in behavior were correlated with a reduction of the number and size of amyloid plaques in the MR imaging–guided focused ultrasound–treated animals (P < .01). Further, after MR imaging–guided focused ultrasound treatment, there was a 250% increase in the number of newborn neurons in the hippocampus (P < .01). The newborn neurons had longer dendrites and more arborization after MR imaging–guided focused ultrasound, as well (P < .01). Conclusion Repeated MR imaging–guided focused ultrasound treatments led to spatial memory improvement in a Tg mouse model of ADAlzheimer disease. The behavior changes may be mediated by decreased amyloid pathologic abnormalities and increased neuronal plasticity. © RSNA, 2014 PMID:25222068

  16. Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment

    PubMed Central

    Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin

    2015-01-01

    Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554

  17. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  18. Trying to trust: Brain activity during interpersonal social attitude change.

    PubMed

    Filkowski, Megan M; Anderson, Ian W; Haas, Brian W

    2016-04-01

    Interpersonal trust and distrust are important components of human social interaction. Although several studies have shown that brain function is associated with either trusting or distrusting others, very little is known regarding brain function during the control of social attitudes, including trust and distrust. This study was designed to investigate the neural mechanisms involved when people attempt to control their attitudes of trust or distrust toward another person. We used a novel control-of-attitudes fMRI task, which involved explicit instructions to control attitudes of interpersonal trust and distrust. Control of trust or distrust was operationally defined as changes in trustworthiness evaluations of neutral faces before and after the control-of-attitudes fMRI task. Overall, participants (n = 60) evaluated faces paired with the distrust instruction as being less trustworthy than faces paired with the trust instruction following the control-of-distrust task. Within the brain, both the control-of-trust and control-of-distrust conditions were associated with increased temporoparietal junction, precuneus (PrC), inferior frontal gyrus (IFG), and medial prefrontal cortex activity. Individual differences in the control of trust were associated with PrC activity, and individual differences in the control of distrust were associated with IFG activity. Together, these findings identify a brain network involved in the explicit control of distrust and trust and indicate that the PrC and IFG may serve to consolidate interpersonal social attitudes. PMID:26567160

  19. Gastric distention activates satiety circuitry in the human brain.

    PubMed

    Wang, Gene-Jack; Tomasi, Dardo; Backus, Walter; Wang, Ruiliang; Telang, Frank; Geliebter, Allan; Korner, Judith; Bauman, Angela; Fowler, Joanna S; Thanos, Panayotis K; Volkow, Nora D

    2008-02-15

    Gastric distention during meal ingestion activates vagal afferents, which send signals from the stomach to the brain and result in the perception of fullness and satiety. Distention is one of the mechanisms that modulates food intake. We measured regional brain activation during dynamic gastric balloon distention in 18 health subjects using functional magnetic resonance imaging and the blood oxygenation level-dependent (BOLD) responses. The BOLD signal was significantly changed by both inflow and outflow changes in the balloon's volume. For lower balloon volumes, water inflow was associated with activation of sensorimotor cortices and right insula. The larger volume condition additionally activated left posterior amygdala, left posterior insula and the left precuneus. The response in the left amygdala and insula was negatively associated with changes in self-reports of fullness and positively with changes in plasma ghrelin concentration, whereas those in the right amygdala and insula were negatively associated with the subject's body mass index. The widespread activation induced by gastric distention corroborates the influence of vagal afferents on cortical and subcortical brain activity. These findings provide evidence that the left amygdala and insula process interoceptive signals of fullness produced by gastric distention involved in the controls of food intake. PMID:18155924

  20. Active Lessons for Active Brains: Teaching Boys and Other Experiential Learners, Grades 3-10

    ERIC Educational Resources Information Center

    James, Abigail Norfleet; Allison, Sandra Boyd; McKenzie, Caitlin Zimmerman

    2011-01-01

    If you're tired of repeating yourself to students who aren't listening, try a little less talk and a lot more action. The authors follow the best-selling "Teaching the Male Brain and Teaching the Female Brain" with this ready-to-use collection of mathematics, language arts, science, and classroom management strategies. Designed for active,…

  1. Active Lessons for Active Brains: Teaching Boys and Other Experiential Learners, Grades 3-10

    ERIC Educational Resources Information Center

    James, Abigail Norfleet; Allison, Sandra Boyd; McKenzie, Caitlin Zimmerman

    2011-01-01

    If you're tired of repeating yourself to students who aren't listening, try a little less talk and a lot more action. The authors follow the best-selling "Teaching the Male Brain and Teaching the Female Brain" with this ready-to-use collection of mathematics, language arts, science, and classroom management strategies. Designed for active,

  2. The effects of hyperammonemia in learning and brain metabolic activity.

    PubMed

    Arias, Natalia; Fidalgo, Camino; Felipo, Vicente; Arias, Jorge L

    2014-03-01

    Ammonia is thought to be central in the development of hepatic encephalopathy. However, the specific relation of ammonia with brain energy depletions and learning has not been studied. Our work attempts to reproduce an increase in rat cerebral ammonia level, study the hyperamonemic animals' performance of two learning tasks, an allocentric (ALLO) and a cue guided (CG) task, and elucidate the contribution of hyperammonemia to the differential energy requirements of the brain limbic system regions involved in these tasks. To assess these goals, four groups of animals were used: a control (CHA) CG group (n?=?10), a CHA ALLO group (n?=?9), a hyperammonemia (HA) CG group (n?=?7), and HA ALLO group (n?=?8). Oxidative metabolism of the target brain regions were assessed by histochemical labelling of cytochrome oxidase (C.O.). The behavioural results revealed that the hyperammonemic rats were not able to reach the behavioural criterion in either of the two tasks, in contrast to the CHA groups. The metabolic brain consumption revealed increased C.O. activity in the anterodorsal thalamus when comparing the HA ALLO group with the CHA ALLO group. Significant differences between animals trained in the CG task were observed in the prelimbic, infralimbic, parietal, entorhinal and perirhinal cortices, the anterolateral and anteromedial striatum, and the basolateral and central amygdala. Our findings may provide fresh insights to reveal how the differential damage to the brain limbic structures involved in these tasks differs according to the degree of task difficulty. PMID:24415107

  3. Somatic Activation of AKT3 Causes Hemispheric Developmental Brain Malformations

    PubMed Central

    Poduri, Annapurna; Evrony, Gilad D.; Cai, Xuyu; Elhosary, Princess Christina; Beroukhim, Rameen; Lehtinen, Maria K.; Hills, L. Benjamin; Heinzen, Erin L.; Hill, Anthony; Hill, R. Sean; Barry, Brenda J.; Bourgeois, Blaise F.D.; Riviello, James J.; Barkovich, A. James; Black, Peter M.; Ligon, Keith L.; Walsh, Christopher A.

    2012-01-01

    Summary Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged, malformed cerebral hemisphere, typically causing epilepsy that requires surgical resection. We studied resected HMG tissue to test whether the condition might reflect somatic mutations affecting genes critical to brain development. We found that 2/8 HMG samples showed trisomy of chromosome 1q, encompassing many genes, including AKT3, which is known to regulate brain size. A third case showed a known activating mutation in AKT3 (c.49G?A, creating p.E17K) that was not present in the patients blood cells. Remarkably, the E17K mutation in AKT3 is exactly paralogous to E17K mutations in AKT1 and AKT2 recently discovered in somatic overgrowth syndromes. We show that AKT3 is the most abundant AKT paralogue in brain during neurogenesis and that phosphorylated AKT is abundant in cortical progenitor cells. Our data suggest that somatic mutations limited to brain could represent an important cause of complex neurogenetic disease. PMID:22500628

  4. Somatic activation of AKT3 causes hemispheric developmental brain malformations.

    PubMed

    Poduri, Annapurna; Evrony, Gilad D; Cai, Xuyu; Elhosary, Princess Christina; Beroukhim, Rameen; Lehtinen, Maria K; Hills, L Benjamin; Heinzen, Erin L; Hill, Anthony; Hill, R Sean; Barry, Brenda J; Bourgeois, Blaise F D; Riviello, James J; Barkovich, A James; Black, Peter M; Ligon, Keith L; Walsh, Christopher A

    2012-04-12

    Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged, malformed cerebral hemisphere, typically causing epilepsy that requires surgical resection. We studied resected HMG tissue to test whether the condition might reflect somatic mutations affecting genes critical to brain development. We found that two out of eight HMG samples showed trisomy of chromosome 1q, which encompasses many genes, including AKT3, a gene known to regulate brain size. A third case showed a known activating mutation in AKT3 (c.49G?A, creating p.E17K) that was not present in the patient's blood cells. Remarkably, the E17K mutation in AKT3 is exactly paralogous to E17K mutations in AKT1 and AKT2 recently discovered in somatic overgrowth syndromes. We show that AKT3 is the most abundant AKT paralog in the brain during neurogenesis and that phosphorylated AKT is abundant in cortical progenitor cells. Our data suggest that somatic mutations limited to the brain could represent an important cause of complex neurogenetic disease. PMID:22500628

  5. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  6. Early Computed Tomography Frontal Abnormalities Predict Long-Term Neurobehavioral Problems But Not Affective Problems after Moderate to Severe Traumatic Brain Injury.

    PubMed

    Spikman, Jacoba M; Timmerman, Marieke E; Coers, Annemiek; van der Naalt, Joukje

    2016-01-01

    Behavioral problems are serious consequences of moderate to severe traumatic brain injury (TBI) and have a negative impact on outcome. There may be two types: neurobehavioral problems, manifesting as inadequate social behavior resulting from prefrontal system damage, and affective behavioral problems, resulting from emotional distress as a reaction to the brain injury. In the present study we investigated whether these two types of behavioral problems, as indicated by proxies, could be distinguished in a group of chronic TBI patients and whether early indicators of prefrontal damage on imaging could predict long-term neurobehavioral problems. Computed tomography (CT) imaging data on admission were used to identify frontal lesions. Three hundred twenty-three moderate to severe TBI survivors received 2 to 16 years post-trauma an aftercare survey with seven questions asking for changes in behavior and affect, presented both to patients and their proxies. One hundred eighty-six patients (59%) answered the behavioral questions; 42% had frontal lesions on CT. Ordinal common factor analysis on proxy scores yielded two factors, with behavior and affective items clearly separated and the anger item mediocre related to both factors. Three scales were created: Behavior, Affective and Anger. Frontal patients scored significantly higher on the Behavior and Anger scales. Logistic regression analysis showed a fourfold increase of long-term neurobehavioral problems in patients with frontal lesions. Long-term neurobehavioral problems were significantly correlated to one-year outcome and return to work in the long term. We conclude that in patients with moderate to severe TBI neurobehavioral and affective problems can be distinguished. Early CT frontal abnormalities predict long-term neurobehavioral problems, but not affective problems. PMID:26058315

  7. Differential brain activation according to chronic social reward frustration.

    PubMed

    Siegrist, Johannes; Menrath, Ingo; Stcker, Tony; Klein, Martina; Kellermann, Thilo; Shah, N Jon; Zilles, Karl; Schneider, Frank

    2005-11-28

    Neural correlates of reward frustration are increasingly studied in humans. In line with prediction error theory, omission of an expected reward is associated with relative decreases of cerebral activation in dopaminergic brain areas. We investigated whether a history of chronic work-related reward frustration influences this reward-dependent activation pattern by means of functional magnetic resonance imaging. Solving arithmetic tasks was followed by either monetary reward or omission of reward. Hyperactivations in the medial prefrontal, anterior cingulate and dorsolateral prefrontal cortex were observed in a group of healthy adults with high susceptibility to reward frustration as compared with a group with low susceptibility. Findings indicate a compromised ability of adapting brain activation among those suffering form chronic social reward frustration. PMID:16272875

  8. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  9. Emotions promote social interaction by synchronizing brain activity across individuals.

    PubMed

    Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jskelinen, Iiro P; Hari, Riitta; Sams, Mikko

    2012-06-12

    Sharing others' emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas "tick together" in participants who are viewing similar emotional events in a movie. Participants' brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness-unpleasantness (i.e., valence) and of arousal-calmness. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel-based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals' brain areas supporting emotional sensations and understanding of another's actions, whereas high arousal directs individuals' attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534

  10. Measuring relative timings of brain activities using fMRI.

    PubMed

    Katwal, Santosh B; Gore, John C; Gatenby, J Christopher; Rogers, Baxter P

    2013-02-01

    Functional MRI (fMRI) has previously been shown to be able to measure hundreds of milliseconds differences in timings of activities in different brain regions, even though the underlying blood oxygenation level-dependent (BOLD) response is delayed and dispersed on the order of seconds. This capability may contribute towards the study of communication within the brain by assessing the temporal sequences of various brain processes (mental chronometry). The practical limit of fMRI for detecting the relative timing of brain activity is not known. We aimed to detect fine differences in the timings of brain activities beyond those previously measured from fMRI data in human subjects. We introduced known delays between the onsets of visual stimuli in a controlled, sparse event-related design and investigated if the temporal shifts in the corresponding average BOLD signals were detectable. To maximize sensitivity, we used high spatial and temporal resolution fMRI at ultrahigh field (7 T), in conjunction with a novel data-driven technique for voxel selection using graph-based visualizations of self-organizing maps and Granger causality to measure relative timing. This approach detected timing differences as small as 28ms in visual cortex in individual subjects. For signal extraction, the self-organizing map approach outperformed other common techniques including independent component analysis, voxelwise univariate linear regression analysis and a separate localizer scan. For relative timing measurement, Granger causality outperformed time-to-peak calculations derived from an inverse logit curve fit. We conclude that high-resolution imaging at ultrahigh field, signal extraction via self-organizing map, and appropriate use of Granger causality permit the detection of small timing differences in fMRI data, despite the intrinsically slow hemodynamic response. PMID:23110880

  11. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  12. Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression

    PubMed Central

    Almeida, Jorge RC; Forbes, Erika E; LaBarbara, Edmund J; Phillips, Mary L

    2013-01-01

    Objectives Recent research has found abnormalities in reward-related neural activation in bipolar disorder (BD), during both manic and euthymic phases. However, reward-related neural activation in currently depressed individuals with BD and that in currently depressed individuals with major depressive disorder (MDD) have yet to be directly compared. Here, we studied these groups, examining the neural activation elicited during a guessing task in fronto-striatal regions identified by previous studies. Methods We evaluated neural activation during a reward task using fMRI in two groups of depressed individuals, one with bipolar I disorder (BD-I) (n = 23) and one with MDD (n = 40), with similar levels of illness severity, and a group of healthy individuals (n = 37). Results Reward expectancy-related activation in the anterior cingulate cortex was observed in the healthy individuals, but was significantly reduced in depressed patients (BD-I and MDD together). Anticipation-related activation was increased in the left ventrolateral prefrontal cortex in the BD-I depressed group compared with the other two groups. There were no significant differences in prediction error-related activation in the ventral striatum across the three groups. Conclusions The findings extend previous research which has identified dysfunction within the ventrolateral prefrontal cortex in BD, and show that abnormally elevated activity in this region during anticipation of either reward or loss may distinguish depressed individuals with BD-I from those with MDD. Altered activation of the anterior cingulate cortex during reward expectancy characterizes both types of depression. These findings have important implications for identifying both common and distinct properties of the neural circuitry underlying BD-I and MDD. PMID:24148027

  13. Brain cholinesterase activity of apparently normal wild birds

    USGS Publications Warehouse

    Hill, E.F.

    1988-01-01

    Organophosphorus and carbamate pesticides are potent anticholinesterase substances that have killed large numbers of wild birds of various species. Cause of death is diagnosed by demonstration of depressed brain cholinesterase (ChE) activity in combination with chemical detection of anticholinesterase residue in the affected specimen. ChE depression is determined by comparison of the affected specimen to normal ChE activity for a sample of control specimens of the same species, but timely procurement of controls is not always possible. Therefore, a reference file of normal whole brain ChE activity is provided for 48 species of wild birds from North America representing 11 orders and 23 families for use as emergency substitutes in diagnosis of anticholinesterase poisoning. The ChE values, based on 83 sets of wild control specimens from across the United States, are reproducible provided the described procedures are duplicated. Overall, whole brain ChE activity varied nearly three-fold among the 48 species represented, but it was usually similar for closely related species. However, some species were statistically separable in most families and some species of the same genus differed as much as 50%.

  14. Musicians differ from nonmusicians in brain activation despite performance matching.

    PubMed

    Gaab, Nadine; Schlaug, Gottfried

    2003-11-01

    Brain activation patterns in a group of musicians and a group of nonmusicians (matched in performance score to the musician group) were compared during a pitch memory task using a sparse-temporal sampling functional magnetic resonance imaging experiment. Both groups showed bilateral activaton (left more than right) of the superior temporal gyrus, supramarginal gyrus, posterior middle and inferior frontal gyrus, and superior parietal lobe. Musicians showed greater right posterior temporal and supramarginal activation, whereas nonmusicians had greater activation of the left secondary auditory cortex. PMID:14681161

  15. Dopa decarboxylase activity of the living human brain

    SciTech Connect

    Gjedde, A.; Reith, J.; Dyve, S.; Leger, G.; Guttman, M.; Diksic, M.; Evans, A.; Kuwabara, H. )

    1991-04-01

    Monoaminergic neurons use dopa decarboxylase to form dopamine from L-3,4-dihydroxyphenylalanine (L-dopa). We measured regional dopa decarboxylase activity in brains of six healthy volunteers with 6-({sup 18}F)fluoro-L-dopa and positron emission tomography. We calculated the enzyme activity, relative to its Km, with a kinetic model that yielded the relative rate of conversion of 6-({sup 18}F)fluoro-L-dopa to ({sup 18}F)fluorodopamine. Regional values of relative dopa decarboxylase activity ranged from nil in occipital cortex to 1.9 h-1 in caudate nucleus and putamen, in agreement with values obtained in vitro.

  16. Persistent Asymmetric Brain MIBG Activity Related to a Cerebrovascular Infarct.

    PubMed

    Bai, Xia; Zhuang, Hongming

    2016-04-01

    A 13-year-old woman with a history of left malignant carotid body paraganglioma status postsurgical resection underwent I-MIBG scan for staging. The images demonstrated no definite evidence of MIBG-avid disease. However, there was asymmetric activity in the region of the brain with relatively less activity on the left compared with the contralateral right side on the head images, which was related to prior infarct revealed from the patient's history. This asymmetric MIBG activity persisted 8 years later. PMID:26571441

  17. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury

    PubMed Central

    Scheibel, Randall S.; Newsome, Mary R.; Wilde, Elisabeth A.; McClelland, Michelle M.; Hanten, Gerri; Krawczyk, Daniel C.; Cook, Lori G.; Chu, Zili D.; Vsquez, Ana C.; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V.; Levin, Harvey S.

    2011-01-01

    The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions. PMID:21777109

  18. Abnormal Cognition, Sleep, EEG and Brain Metabolism in a Novel Knock-In Alzheimer Mouse, PLB1

    PubMed Central

    Platt, Bettina; Drever, Benjamin; Koss, David; Stoppelkamp, Sandra; Jyoti, Amar; Plano, Andrea; Utan, Aneli; Merrick, Georgina; Ryan, Duncan; Melis, Valeria; Wan, Hong; Mingarelli, Marco; Porcu, Emanuele; Scrocchi, Louise; Welch, Andy; Riedel, Gernot

    2011-01-01

    Late-stage neuropathological hallmarks of Alzheimer's disease (AD) are ?-amyloid (?A) and hyperphosphorylated tau peptides, aggregated into plaques and tangles, respectively. Corresponding phenotypes have been mimicked in existing transgenic mice, however, the translational value of aggressive over-expression has recently been questioned. As controlled gene expression may offer animal models with better predictive validity, we set out to design a transgenic mouse model that circumvents complications arising from pronuclear injection and massive over-expression, by targeted insertion of human mutated amyloid and tau transgenes, under the forebrain- and neurone-specific CaMKII? promoter, termed PLB1Double. Crossing with an existing presenilin 1 line resulted in PLB1Triple mice. PLB1Triple mice presented with stable gene expression and age-related pathology of intra-neuronal amyloid and hyperphosphorylated tau in hippocampus and cortex from 6 months onwards. At this early stage, pre-clinical 18FDG PET/CT imaging revealed cortical hypometabolism with increased metabolic activity in basal forebrain and ventral midbrain. Quantitative EEG analyses yielded heightened delta power during wakefulness and REM sleep, and time in wakefulness was already reliably enhanced at 6 months of age. These anomalies were paralleled by impairments in long-term and short-term hippocampal plasticity and preceded cognitive deficits in recognition memory, spatial learning, and sleep fragmentation all emerging at ?12 months. These data suggest that prodromal AD phenotypes can be successfully modelled in transgenic mice devoid of fibrillary plaque or tangle development. PLB1Triple mice progress from a mild (MCI-like) state to a more comprehensive AD-relevant phenotype, which are accessible using translational tools such as wireless EEG and microPET/CT. PMID:22096518

  19. Time delay between cardiac and brain activity during sleep transitions

    NASA Astrophysics Data System (ADS)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  20. Borderline personality traits and brain activity during emotional perspective taking.

    PubMed

    Haas, Brian W; Miller, Joshua D

    2015-10-01

    Borderline personality disorder (BPD) is characterized by disturbances in emotional, behavioral, and social functioning. The relation between BPD and empathy, which may affect the functional difficulties associated with this disorder, is complex because there is some evidence of heightened empathic processing and some evidence of reduced empathic processing in BPD. The current study was designed to investigate the association between BPD traits and brain activity during an empathic processing task (emotion perspective taking) in a nonclinical sample (N = 82). Participants completed the Five-Factor Borderline Inventory and underwent functional MRI while conducting an emotional perspective-taking task. Higher BPD trait scores were associated with hypoactivity in two brain regions involved in cognitive empathy (superior temporal sulcus and the temporoparietal junction). These data provide support to existing models describing the heterogeneous nature of BPD and suggest that reduced neural activity may in part affect altered empathic processing in BPD. PMID:26168407

  1. Gp120 activates children's brain endothelial cells via CD4.

    PubMed

    Stins, M F; Shen, Y; Huang, S H; Gilles, F; Kalra, V K; Kim, K S

    2001-04-01

    Encephalopathy represents a common and serious manifestation of HIV-1 infection in children, but its pathogenesis is unclear. We demonstrated that gp120 activated human brain microvascular endothelial cells (HBMEC) derived from children in up-regulating ICAM-1 and VCAM-1 expression, IL-6 secretion and increased monocyte transmigration across monolayers. Another novel observation was our demonstration of CD4 in isolated HBMEC and on microvessels of children's brain cryosections. Gp120-induced monocyte migration was inhibited by anti-gp120 and anti-CD4 antibodies. This is the first demonstration that gp120 activates HBMEC via CD4, which may contribute to the development of HIV-1 encephalopathy in children. PMID:11517385

  2. Noise in brain activity engenders perception and influences discrimination sensitivity.

    PubMed

    Bernasconi, Fosco; De Lucia, Marzia; Tzovara, Athina; Manuel, Aurelie L; Murray, Micah M; Spierer, Lucas

    2011-12-01

    Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ~100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception. PMID:22159111

  3. Brain activity correlates with emotional perception induced by dynamic avatars.

    PubMed

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics. PMID:26220746

  4. Ear of stimulation determines schizophrenia-normal brain activity differences in an auditory paired-stimuli paradigm.

    PubMed

    Clementz, Brett A; Dzau, Jacqueline R; Blumenfeld, Laura D; Matthews, Scott; Kissler, Johanna

    2003-11-01

    Schizophrenia patients have abnormalities of auditory information processing, theoretically associated with dysfunction of neuronal excitation. Auditory paired-stimuli (S1-S2) paradigms are used to evaluate the nature of these abnormalities. It is unknown whether patients' abnormalities during S1-S2 paradigms are attributable to specific hemispheric differences in cortical processing. The present studies used whole head magnetoencephalography and monaural or binaural versions of the paired-stimuli paradigm to evaluate auditory processing among 38 schizophrenia and 38 normal subjects. The strengths of auditory-evoked brain responses over time were quantified using distributed source reconstructions with L2 minimum norm constraint and realistic head models. For left ear stimuli, schizophrenia and normal groups did not differ on either left or right hemisphere activity over auditory cortex. For right ear and binaural stimuli, schizophrenia patients had less activity over left auditory cortex from 80 to 120 ms post-stimulus but did not differ from normal on activity over right auditory cortex. Additionally, in response to monaural stimulation, schizophrenia patients had significantly less activity than normal over right temporal parietal junction from 60 to 120 ms post-stimulus. These data are consistent with four propositions about schizophrenia: (i). right auditory cortex is functioning normally; (ii). processing of simple auditory stimuli is abnormal in left auditory cortex, probably specifically in supra-granular layers; (iii). auditory localization abilities are deficient; and (iv). auditory cortex abnormalities are not a function of deficient hemispheric communication because they are evident early in processing as long as stimuli are delivered directly to left hemisphere. PMID:14656334

  5. Human brain activity with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Chance, Britton

    1999-09-01

    Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out. Experimental results measured with fNIRI are demonstrated in this paper. It was shown that fNIRI technique is able to reveal the occipital activity during visual stimulation, and co-register well with results of fMRI in the motor cortex activity during finger tapping. In the studies of the effects of left prefrontal lobe on forming memory for new associations, it is shown that left prefrontal lobe activated more under deep conditions than that under shallow encoding, especially the dorsal part. In the studies of emotional thinking, it was shown that the responses were different between positive- negative emotional thinking and negative-positive emotional thinking. In mental arithmetic studies, higher activation was found in the first task than in the second, regardless of the difficulty, and higher activation was measured in subtraction of 17 than in subtraction of 3.

  6. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    PubMed Central

    Zhu, Haitao; Zhu, Jinlong; Zhao, Tiezhu; Wu, Yong; Liu, Hongyi; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2014-01-01

    Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE) and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks. PMID:25136558

  7. Individual Variability in Brain Activity: A Nuisance or an Opportunity?

    PubMed

    Van Horn, John Darrell; Grafton, Scott T; Miller, Michael B

    2008-12-01

    Functional imaging research has been heavily influenced by results based on population-level inference. However, group average results may belie the unique patterns of activity present in the individual that ordinarily are considered random noise. Recent advances in the evolution of MRI hardware have led to significant improvements in the stability and reproducibility of blood oxygen level dependent (BOLD) measurements. These enhancements provide a unique opportunity for closer examination of individual patterns of brain activity. Three objectives can be accomplished by considering brain scans at the individual level; (1) Mapping functional anatomy at a fine grained analysis; (2) Determining if an individual scan is normative with respect to a reference population; and (3) Understanding the sources of intersubject variability in brain activity. In this review, we detail these objectives, briefly discuss their histories and present recent trends in the analyses of individual variability. Finally, we emphasize the unique opportunities and challenges for understanding individual differences through international collaboration among Pacific Rim investigators. PMID:19777073

  8. Early Oxygen-Utilization and Brain Activity in Preterm Infants

    PubMed Central

    de Vries, Linda S.; Groenendaal, Floris; Toet, Mona C.; Lemmers, Petra M. A.; Vosse van de, Ren E.; van Bel, Frank; Benders, Manon J. N. L.

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in ?V (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (?=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (?=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (?=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (?=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343

  9. Neuroimaging and Neuroenergetics: Brain Activations as Information-Driven Reorganization of Energy Flows

    ERIC Educational Resources Information Center

    Strelnikov, Kuzma

    2010-01-01

    There is increasing focus on the neurophysiological underpinnings of brain activations, giving birth to an emerging branch of neuroscience--neuroenergetics. However, no common definition of "brain activation" exists thus far. In this article, we define brain activation as the information-driven reorganization of energy flows in a population of…

  10. Neuroimaging and Neuroenergetics: Brain Activations as Information-Driven Reorganization of Energy Flows

    ERIC Educational Resources Information Center

    Strelnikov, Kuzma

    2010-01-01

    There is increasing focus on the neurophysiological underpinnings of brain activations, giving birth to an emerging branch of neuroscience--neuroenergetics. However, no common definition of "brain activation" exists thus far. In this article, we define brain activation as the information-driven reorganization of energy flows in a population of

  11. Assisting people with multiple disabilities actively correct abnormal standing posture with a Nintendo Wii balance board through controlling environmental stimulation.

    PubMed

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed. PMID:20381997

  12. Permeability of the blood-brain barrier depends on brain temperature

    PubMed Central

    Kiyatkin, Eugene A.; Sharma, Hari S.

    2009-01-01

    Increased permeability of the blood-brain barrier (BBB) has been reported in different conditions accompanied by hyperthermia, but the role of brain temperature per se in modulating brain barrier functions has not been directly examined. To delineate the contribution of this factor, we examined albumin immunoreactivity in several brain structures (cortex, hippocampus, thalamus and hypothalamus) of pentobarbital-anesthetized rats (50 mg/kg, ip), which were passively warmed to different levels of brain temperature (32–42°C). Similar brain structures were also examined for the expression of glial fibrillary acidic protein (GFAP), an index of astrocytic activation, water and ion content, and morphological cell abnormalities. Data were compared with those obtained from drug-free awake rats with normal brain temperatures (36–37°C). The numbers of albumin- and GFAP-positive cells strongly correlates with brain temperature, gradually increasing from ~38.5°C and plateauing at 41–42°C. Brains maintained at hyperthermia also showed larger content of brain water and Na+, K+ and Cl− as well as structural abnormalities of brain cells, all suggesting acute brain edema. The latter alterations were seen at ~39°C, gradually progressed with temperature increase, and peaked at maximum hyperthermia. Temperature-dependent changes in albumin immunoreactivity tightly correlated with GFAP immunoreactivity, brain water, and numbers of abnormal cells; they were found in each tested area, but showed some structural specificity. Notably, a mild BBB leakage, selective glial activation, and specific cellular abnormalities were also found in the hypothalamus and piriform cortex during extreme hypothermia (32–33°C); in contrast to hyperthermia these changes were associated with decreased levels of brain water, Na+ and K+, suggesting acute brain dehydration. Therefore, brain temperature per se is an important factor in regulating BBB permeability, alterations in brain water homeostasis, and subsequent structural abnormalities of brain cells. PMID:19362131

  13. Brain mechanical property measurement using MRE with intrinsic activation

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2012-11-01

    Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed intrinsic activation, that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of six asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when the MRE procedures were repeated on the same day. Cardiac pulsation, termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MRE to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination.

  14. Understanding Brain Tumors

    MedlinePLUS

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  15. Retrieving Binary Answers Using Whole-Brain Activity Pattern Classification

    PubMed Central

    Nawa, Norberto E.; Ando, Hiroshi

    2015-01-01

    Multivariate pattern analysis (MVPA) has been successfully employed to advance our understanding of where and how information regarding different mental states is represented in the human brain, bringing new insights into how these states come to fruition, and providing a promising complement to the mass-univariate approach. Here, we employed MVPA to classify whole-brain activity patterns occurring in single fMRI scans, in order to retrieve binary answers from experiment participants. Five healthy volunteers performed two types of mental task while in the MRI scanner: counting down numbers and recalling positive autobiographical events. Data from these runs were used to train individual machine learning based classifiers that predicted which mental task was being performed based on the voxel-based brain activity patterns. On a different day, the same volunteers reentered the scanner and listened to six statements (e.g., “the month you were born is an odd number”), and were told to countdown numbers if the statement was true (yes) or recall positive events otherwise (no). The previously trained classifiers were then used to assign labels (yes/no) to the scans collected during the 24-second response periods following each one of the statements. Mean classification accuracies at the single scan level were in the range of 73.6 to 80.8%, significantly above chance for all participants. When applying a majority vote on the scans within each response period, i.e., the most frequent label (yes/no) in the response period becomes the answer to the previous statement, 5.0 to 5.8 sentences, out of 6, were correctly classified in each one of the runs, on average. These results indicate that binary answers can be retrieved from whole-brain activity patterns, suggesting that MVPA provides an alternative way to establish basic communication with unresponsive patients when other techniques are not successful. PMID:26778992

  16. Spatiotemporal dynamics of large-scale brain activity

    NASA Astrophysics Data System (ADS)

    Neuman, Jeremy

    Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some light on this issue.

  17. Reduction of CTRP9, a novel anti-platelet adipokine, contributes to abnormal platelet activity in diabetic animals.

    PubMed

    Wang, Wenqing; Lau, Wayne Bond; Wang, Yajing; Ma, Xinliang; Li, Rong

    2016-01-01

    Platelet hyper-reactivity is a crucial cause of accelerated atherosclerosis increasing risk of thrombotic vascular events in diabetic patients. The mechanisms leading to abnormal platelet activity during diabetes are complex and not fully defined. The current study attempted to clarify the role of CTRP9, a novel adiponectin paralog, in enhanced platelet activity and determined whether CTRP9 may inhibit platelet activity. Adult male C57BL/6J mice were randomized to receive high-fat diet (HFD) or normal diet (ND). 8weeks after HFD, animals were sacrificed, and both plasma CTRP9 and platelet aggregation were determined. HFD-fed animals increased weight gain significantly, and became hyperglycemic and hyperinsulinemic 8weeks post-HFD. Compared to ND animals, HFD animals exhibited significantly decreased plasma CTRP9 concentration and increased platelet response to ADP, evidenced by augmented aggregation amplitude, steeper aggregation slope, larger area under the curve, and shorter lag time (P<0.01). A significant negative correlation between plasma CTRP9 concentration and platelet aggregation amplitude was observed. More importantly, in vitro pre-treatment with CTRP9 significantly inhibited ADP-stimulated platelet activation in platelet samples from both ND and HFD animals. Taken together, our results suggest reduced plasma CTRP9 concentration during diabetes plays a causative role in platelet hyper-activity, contributing to platelet-induced cardiovascular damage during this pathologic condition. Enhancing CTRP9 production and/or exogenous supplementation of CTRP9 may protect against diabetic cardiovascular injury via inhibition of abnormal platelet activity. PMID:26754066

  18. Prefrontal brain magnetic activity: effects of memory task demands.

    PubMed

    Maest, Fernando; Campo, Pablo; Capilla, Almudena; Simos, Panagiotis G; Pal, Nuria; Fernandez, Santiago; Fernndez, Alberto; Amo, Carlos; Gonzlez-Marqus, Javier; Ortiz, Toms

    2005-05-01

    Changes in spatiotemporal profiles of brain magnetic activity were investigated in healthy volunteers as a function of varying demands for phonological storage of spoken pseudowords. Greater activity for the phonological memory task was restricted to the dorsolateral prefrontal cortex (DLPFC) in the left hemisphere. During performance of the memory task, activity was initially found in the left superior temporal gyrus (between 100 and 200 ms), followed by activity in the ventrolateral prefrontal, motor, and premotor cortices (between 200 and 300 ms). Activity in DLPFCs was first observed consistently across participants later, between 300 and 400 ms. The data are consistent with the purported role of posterior temporal cortices in phonological analysis and in the online storage of phonological information, the contribution of ventrolateral and motor processing areas in establishment and short-term maintenance of articulatory representations through rehearsal, and the role of DLPFCs in the executive control of the maintenance operation. PMID:15910116

  19. Mapping brain activity at scale with cluster computing.

    PubMed

    Freeman, Jeremy; Vladimirov, Nikita; Kawashima, Takashi; Mu, Yu; Sofroniew, Nicholas J; Bennett, Davis V; Rosen, Joshua; Yang, Chao-Tsung; Looger, Loren L; Ahrens, Misha B

    2014-09-01

    Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights. PMID:25068736

  20. Restraint stress activates nesfatin-1-immunoreactive brain nuclei in rats

    PubMed Central

    Goebel, Miriam; Stengel, Andreas; Wang, Lixin; Taché, Yvette

    2009-01-01

    Nesfatin-1 is a newly discovered peptide that was reported to reduce food intake when injected centrally. We recently described its wide distribution in rat brain autonomic nuclei which implies potential recruitment of nesfatin-1 by stress. We investigated whether restraint, a mixed psychological and physical stressor activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Male Sprague-Dawley rats were either subjected to 30 min restraint or left undisturbed and 90 min later brains were processed for double immunohistochemical labeling of Fos and nesfatin-1. Restraint induced significant Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling revealed that Fos-ir neurons comprised 95% of nesfatin-1-ir cells in the SON, 90% in the VLM, 80% in the LC, 48% in the caudal NTS, 57% in the rRPa, 48% in the anterior parvicellular PVN, 27% in the medial magnocellular PVN, 18% in the lateral magnocellular PVN and 10% in the medial parvicellular PVN. These data demonstrate that nesfatin-1 neurons are part of the hypothalamic and hindbrain neuronal cell groups activated by restraint suggesting a possible role of nesfatin-1 in the response to stress. PMID:19733157

  1. Enhancing Hebbian Learning to Control Brain Oscillatory Activity.

    PubMed

    Soekadar, Surjo R; Witkowski, Matthias; Birbaumer, Niels; Cohen, Leonardo G

    2015-09-01

    Sensorimotor rhythms (SMR, 8-15 Hz) are brain oscillations associated with successful motor performance, imagery, and imitation. Voluntary modulation of SMR can be used to control brain-machine interfaces (BMI) in the absence of any physical movements. The mechanisms underlying acquisition of such skill are unknown. Here, we provide evidence for a causal link between function of the primary motor cortex (M1), active during motor skill learning and retention, and successful acquisition of abstract skills such as control over SMR. Thirty healthy participants were trained on 5 consecutive days to control SMR oscillations. Each participant was randomly assigned to one of 3 groups that received either 20 min of anodal, cathodal, or sham transcranial direct current stimulation (tDCS) over M1. Learning SMR control across training days was superior in the anodal tDCS group relative to the other 2. Cathodal tDCS blocked the beneficial effects of training, as evidenced with sham tDCS. One month later, the newly acquired skill remained superior in the anodal tDCS group. Thus, application of weak electric currents of opposite polarities over M1 differentially modulates learning SMR control, pointing to this primary cortical region as a common substrate for acquisition of physical motor skills and learning to control brain oscillatory activity. PMID:24626608

  2. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    PubMed Central

    Laing, Mark; Rees, Adrian; Vuong, Quoc C.

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies. PMID:26483710

  3. Reduced brain activation in violent adolescents during response inhibition

    PubMed Central

    Qiao, Yi; Mei, Yi; Du, XiaoXia; Xie, Bin; Shao, Yang

    2016-01-01

    Deficits in inhibitory control have been linked to aggression and violent behaviour. This study aimed to observe whether violent adolescents show different brain activation patterns during response inhibition and to ascertain the roles these brain regions play. A self-report method and modified overt aggression scale (MOAS) were used to evaluate violent behaviour. Functional magnetic resonance imaging was performed in 22 violent adolescents and 17 matched healthy subjects aged 12 to 18 years. While scanning, a go/no-go task was performed. Between-group comparisons revealed that activation in the bilateral middle and superior temporal gyrus, hippocampus, and right orbitofrontal area (BA11) regions were significantly reduced in the violent group compared with the control group. Meanwhile, the violent group had more widespread activation in the prefrontal cortex than that observed in the control group. Activation of the prefrontal cortex in the violent group was widespread but lacking in focus, failing to produce intensive activation in some functionally related regions during response inhibition. PMID:26888566

  4. Reduced brain activation in violent adolescents during response inhibition.

    PubMed

    Qiao, Yi; Mei, Yi; Du, XiaoXia; Xie, Bin; Shao, Yang

    2016-01-01

    Deficits in inhibitory control have been linked to aggression and violent behaviour. This study aimed to observe whether violent adolescents show different brain activation patterns during response inhibition and to ascertain the roles these brain regions play. A self-report method and modified overt aggression scale (MOAS) were used to evaluate violent behaviour. Functional magnetic resonance imaging was performed in 22 violent adolescents and 17 matched healthy subjects aged 12 to 18 years. While scanning, a go/no-go task was performed. Between-group comparisons revealed that activation in the bilateral middle and superior temporal gyrus, hippocampus, and right orbitofrontal area (BA11) regions were significantly reduced in the violent group compared with the control group. Meanwhile, the violent group had more widespread activation in the prefrontal cortex than that observed in the control group. Activation of the prefrontal cortex in the violent group was widespread but lacking in focus, failing to produce intensive activation in some functionally related regions during response inhibition. PMID:26888566

  5. Source localization of brain activity using helium-free interferometer

    SciTech Connect

    Dammers, Jürgen Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.

  6. Glucosylceramide synthase decrease in frontal cortex of Alzheimer brain correlates with abnormal increase in endogenous ceramides: consequences to morphology and viability on enzyme suppression in cultured primary neurons.

    PubMed

    Marks, Neville; Berg, Martin J; Saito, Mariko; Saito, Mitsuo

    2008-01-29

    Abnormal increase in native long-chain ceramides (lcCer) in AD implicates roles in neuronal atrophy and cognitive dysfunction especially in view of divergent roles this second messenger plays in cell function. Since clearance is mediated by glucosylceramide synthase (GCS, EC 2.4.1.80) levels of the enzyme were compared for 18 samples of AD Brodmann area 9/10 frontal cortex with 11 age-matched controls. Western analysis for (ir)GCS showed a significant decrease in AD brain (p<0.01) consistent with the hypothesis that enzyme dysfunction contributes to neuronal decay. To examine kinetics and consequences to morphology, cerebellar granule cells were treated in vitro with d-threo-P4 (P4). This potent inhibitor of GCS induced a time- and concentration-dependent increase in lcCer parallel to loss of viability and dramatic changes in neuron/neurite morphology via caspase-independent pathways distinct from those of apoptosis or necrosis. Fluorescent labeling with NBD-sphingolipids or immunostaining with anti-synaptic or cytoskeletal markers showed unusual formation of globular swellings along neurites rich in synaptophysin that may resemble formation of dystrophic neurites in AD. Effects of the inhibitor were verified by changes in lcCer mass and turnover of (14)[C]-acetate and -galactose or NBD-labeled anabolic products. Addition of a panel of inhibitors of other pathways confirms GCS as the major route for clearance in the present model. Pretreatment with GM(1) whose turnover is compromised was protective and pointed to useful therapeutic applications by supplementing existing membrane stores prior to GSC dysfunction. PMID:18155680

  7. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    NASA Astrophysics Data System (ADS)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  8. Abnormal error-related antisaccade activation in premanifest and early manifest Huntington disease

    PubMed Central

    Rupp, J.; Dzemidzic, M.; Blekher, T.; Bragulat, V.; West, J.; Jackson, J.; Hui, S.; Wojcieszek, J.; Saykin, A.J.; Kareken, D.; Foroud, T.

    2010-01-01

    Objective Individuals with the trinucleotide CAG expansion (CAG+) that causes Huntington disease (HD) have impaired performance on antisaccade (AS) tasks that require directing gaze in the mirror opposite direction of visual targets. This study aimed to identify the neural substrates underlying altered antisaccadic performance. Method Three groups of participants were recruited: 1) Imminent and early manifest HD (early HD, n=8); 2) premanifest (presymptomatic) CAG+ (preHD, n=10); and 3) CAG unexpanded (CAG−) controls (n=12). All participants completed a uniform study visit that included a neurological evaluation, neuropsychological battery, molecular testing, and functional magnetic resonance imaging during an AS task. The blood oxygenation level dependent (BOLD) response was obtained during saccade preparation and saccade execution for both correct and incorrect responses using regression analysis. Results Significant group differences in BOLD response were observed when comparing incorrect AS to correct AS execution. Specifically, as the percentage of incorrect AS increased, BOLD responses in the CAG− group decreased progressively in a well-documented reward detection network that includes the pre-supplementary motor area and dorsal anterior cingulate cortex. In contrast, AS errors in the preHD and early HD groups lacked this relationship with BOLD signal in the error detection network, and BOLD responses to AS errors were smaller in the two CAG+ groups as compared with the CAG− group. Conclusions These results are the first to suggest that abnormalities in an error-related response network may underlie early changes in AS eye movements in premanifest and early manifest HD. PMID:21401260

  9. Effects of cranial electrotherapy stimulation on resting state brain activity

    PubMed Central

    Feusner, Jamie D; Madsen, Sarah; Moody, Teena D; Bohon, Cara; Hembacher, Emily; Bookheimer, Susan Y; Bystritsky, Alexander

    2012-01-01

    Cranial electrotherapy stimulation (CES) is a U.S. Food and Drug Administration (FDA)-approved treatment for insomnia, depression, and anxiety consisting of pulsed, low-intensity current applied to the earlobes or scalp. Despite empirical evidence of clinical efficacy, its mechanism of action is largely unknown. The goal was to characterize the acute effects of CES on resting state brain activity. Our primary hypothesis was that CES would result in deactivation in cortical and subcortical regions. Eleven healthy controls were administered CES applied to the earlobes at subsensory thresholds while being scanned with functional magnetic resonance imaging in the resting state. We tested 0.5- and 100-Hz stimulation, using blocks of 22 sec on alternating with 22 sec of baseline (device was off). The primary outcome measure was differences in blood oxygen level dependent data associated with the device being on versus baseline. The secondary outcome measures were the effects of stimulation on connectivity within the default mode, sensorimotor, and fronto-parietal networks. Both 0.5- and 100-Hz stimulation resulted in significant deactivation in midline frontal and parietal regions. 100-Hz stimulation was associated with both increases and decreases in connectivity within the default mode network (DMN). Results suggest that CES causes cortical brain deactivation, with a similar pattern for high- and low-frequency stimulation, and alters connectivity in the DMN. These effects may result from interference from high- or low-frequency noise. Small perturbations of brain oscillations may therefore have significant effects on normal resting state brain activity. These results provide insight into the mechanism of action of CES, and may assist in the future development of optimal parameters for effective treatment. PMID:22741094

  10. Resting-State Brain Activity in Adult Males Who Stutter

    PubMed Central

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  11. Measuring emotion in advertising research: prefrontal brain activity.

    PubMed

    Silberstein, Richard B; Nield, Geoffrey E

    2012-01-01

    With the current interest in the role of emotion in advertising and advertising research, there has been an increasing interest in the use of various brain activity measures to access nonverbal emotional responses. One such approach relies on measuring the difference between left and right hemisphere prefrontal cortical activity to assess like and dislike. This approach is based on electroencephalography (EEG) and neuroimaging work, suggesting that the approach/withdrawal (frequently but not always associated with like/dislike) dimension of emotion is indicated by the balance of activity between the left and right prefrontal cortex. Much of this work was initiated by Richard Davidson in the early 1990s. An early study by Davidson et al. measured brain electrical activity to assess patterns of activation during the experience of happiness and disgust. The authors reported that disgust was found to be associated with increased right-sided activation in the frontal and anterior temporal regions compared with happiness. In contrast, happiness was found to be accompanied by left-sided activation in the anterior temporal region compared with disgust. Early reports suggested that frontal laterality indexes motivational valence with positive emotions (happy, like) associated with left greater than the right frontal activity and vice versa. Although these findings appear to be consistent with personality traits (e.g., optimism pessimism), state changes in frontal laterality appears to index approach withdraw rather than emotional valence. Interestingly, the behavioral and motivational correlates of prefrontal asymmetric activity are not restricted to humans or even primates but have been observed in numerous species such as birds and fish (see [4]). Henceforth, we use the term motivational valence (MV) rather than the more cumbersome term approach withdraw. PMID:22678836

  12. Localization of brain activities using multiway analysis of EEG tensor via EMD and reassigned TF representation.

    PubMed

    Pouryazdian, Saeed; Beheshti, Soosan; Krishnan, Sridhar

    2015-08-01

    Electroencephalogram (EEG) is widely used for monitoring, diagnosis purposes and also for study of brain's physiological, mental and functional abnormalities. Processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. EEG signal processing tends to describe and quantify these variations in such a way that they are localized in temporal, spectral and spatial domain. Here we use multi-way (Tensor) analysis for localizing the EEG events. We used EMD process for decomposing EEG into distinct oscillatory modes, which are then mapped to TF plane using the near optimal Reassigned Spectrogram. Temporal, Spatial and Spectral information of the Multichannel EEG are then used to generate a three-way Frequency-Time-Space EEG tensor. Exploiting EMD also enables us to detrend the EEG recordings. Simulation results on both synthetic and real EEG data show that tensor analysis greatly improve separation and localization of overlapping events in EEG and it could be effectively exploited for detecting and characterizing the evoked potentials. PMID:26736213

  13. Brain activation patterns during visual episodic memory processing among first-degree relatives of schizophrenia subjects

    PubMed Central

    Stolz, Erin R.; Pancholi, Krishna; Goradia, Dhruman; Paul, Sarah; Keshavan, Matcheri S.; Nimgaonkar, Vishwajit; Prasad, Konasale

    2012-01-01

    Episodic memory deficits are proposed as a potential intermediate phenotype of schizophrenia. We examined deficits in visual episodic memory and associated brain activation differences among early course schizophrenia (n=22), first-degree relatives (n=16) and healthy controls without personal or family history of psychotic disorders (n=28). Study participants underwent functional magnetic resonance imaging on a 3T scanner while performing visual episodic memory encoding and retrieval task. We examined in-scanner behavioral performance evaluating response time and accuracy of performance. Whole-brain BOLD response differences were analyzed using SPM5 correcting for multiple comparisons. There was an incremental increase in response time among the study groups (Healthy Controlsabnormalities in visual episodic memory retrieval but not for encoding in the prefrontal cortex and thalamus. PMID:22992490

  14. Pattern of brain activation during social cognitive tasks is related to social competence in siblings discordant for schizophrenia.

    PubMed

    Villarreal, Mirta F; Drucaroff, Lucas J; Goldschmidt, Micaela G; de Achval, Delfina; Costanzo, Elsa Y; Castro, Mariana N; Ladrn-de-Guevara, M Soledad; Busatto Filho, Geraldo; Nemeroff, Charles B; Guinjoan, Salvador M

    2014-09-01

    Measures of social competence are closely related to actual community functioning in patients with schizophrenia. However, the neurobiological mechanisms underlying competence in schizophrenia are not fully understood. We hypothesized that social deficits in schizophrenia are explained, at least in part, by abnormally lateralized patterns of brain activation in response to tasks engaging social cognition, as compared to healthy individuals. We predicted such patterns would be partly heritable, and therefore affected in patients' nonpsychotic siblings as well. We used a functional magnetic resonance image paradigm to characterize brain activation induced by theory of mind tasks, and two tests of social competence, the Test of Adaptive Behavior in Schizophrenia (TABS), and the Social Skills Performance Assessment (SSPA) in siblings discordant for schizophrenia and comparable healthy controls (n=14 per group). Healthy individuals showed the strongest correlation between social competence and activation of right hemisphere structures involved in social cognitive processing, whereas in patients, the correlation pattern was lateralized to left hemisphere areas. Unaffected siblings of patients exhibited a pattern intermediate between the other groups. These results support the hypothesis that schizophrenia may be characterized by an abnormal functioning of nondominant hemisphere structures involved in the processing of socially salient information. PMID:24927685

  15. Classification of Types of Stuttering Symptoms Based on Brain Activity

    PubMed Central

    Jiang, Jing; Lu, Chunming; Peng, Danling; Zhu, Chaozhe; Howell, Peter

    2012-01-01

    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type. PMID:22761887

  16. Synchronization-based approach for detecting functional activation of brain

    NASA Astrophysics Data System (ADS)

    Hong, Lei; Cai, Shi-Min; Zhang, Jie; Zhuo, Zhao; Fu, Zhong-Qian; Zhou, Pei-Ling

    2012-09-01

    In this paper, we investigate a synchronization-based, data-driven clustering approach for the analysis of functional magnetic resonance imaging (fMRI) data, and specifically for detecting functional activation from fMRI data. We first define a new measure of similarity between all pairs of data points (i.e., time series of voxels) integrating both complete phase synchronization and amplitude correlation. These pairwise similarities are taken as the coupling between a set of Kuramoto oscillators, which in turn evolve according to a nearest-neighbor rule. As the network evolves, similar data points naturally synchronize with each other, and distinct clusters will emerge. The clustering behavior of the interaction network of the coupled oscillators, therefore, mirrors the clustering property of the original multiple time series. The clustered regions whose cross-correlation coefficients are much greater than other regions are considered as the functionally activated brain regions. The analysis of fMRI data in auditory and visual areas shows that the recognized brain functional activations are in complete correspondence with those from the general linear model of statistical parametric mapping, but with a significantly lower time complexity. We further compare our results with those from traditional K-means approach, and find that our new clustering approach can distinguish between different response patterns more accurately and efficiently than the K-means approach, and therefore more suitable in detecting functional activation from event-related experimental fMRI data.

  17. Brain Activity Associated with Emoticons: An fMRI Study

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  18. The sequential structure of brain activation predicts skill.

    PubMed

    Anderson, John R; Bothell, Daniel; Fincham, Jon M; Moon, Jungaa

    2016-01-29

    In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation. PMID:26707716

  19. Brain activation during self- and other-reflection in bipolar disorder with a history of psychosis: Comparison to schizophrenia

    PubMed Central

    Zhang, Liwen; Opmeer, Esther M.; Ruhé, Henricus G.; Aleman, André; van der Meer, Lisette

    2015-01-01

    Objectives Reflecting on the self and on others activates specific brain areas and contributes to metacognition and social cognition. The aim of the current study is to investigate brain activation during self- and other-reflection in patients with bipolar disorder (BD). In addition, we examined whether potential abnormal brain activation in BD patients could distinguish BD from patients with schizophrenia (SZ). Methods During functional magnetic resonance imaging (fMRI), 17 BD patients, 17 SZ patients and 21 healthy controls (HCs) performed a self-reflection task. The task consisted of sentences divided into three conditions: self-reflection, other-reflection and semantic control. Results BD patients showed less activation in the posterior cingulate cortex (PCC) extending to the precuneus during other-reflection compared to HCs (p = 0.028 FWE corrected on cluster-level within the regions of interest). In SZ patients, the level of activation in this area was in between BD patients and HCs, with no significant differences between patients with SZ and BD. There were no group differences in brain activation during self-reflection. Moreover, there was a positive correlation between the PCC/precuneus activation during other-reflection and cognitive insight in SZ patients, but not in BD patients. Conclusions BD patients showed less activation in the PCC/precuneus during other-reflection. This may support an account of impaired integration of emotion and memory (evaluation of past and current other-related information) in BD patients. Correlation differences of the PCC/precuneus activation with the cognitive insight in patients with BD and SZ might reflect an important difference between these disorders, which may help to further explore potentially distinguishing markers. PMID:26106544

  20. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  1. A Cognitive Neuroscience View of Schizophrenic Symptoms: Abnormal Activation of a System for Social Perception and Communication

    PubMed Central

    Wible, Cynthia G.; Preus, Alexander P.; Hashimoto, Ryuichiro

    2009-01-01

    We will review converging evidence that language related symptoms of the schizophrenic syndrome such as auditory verbal hallucinations arise at least in part from processing abnormalities in posterior language regions. These language regions are either adjacent to or overlapping with regions in the (posterior) temporal cortex and temporo-parietal occipital junction that are part of a system for processing social cognition, emotion, and self representation or agency. The inferior parietal and posterior superior temporal regions contain multi-modal representational systems that may also provide rapid feedback and feed-forward activation to unimodal regions such as auditory cortex. We propose that the over-activation of these regions could not only result in erroneous activation of semantic and speech (auditory word) representations, resulting in thought disorder and voice hallucinations, but could also result in many of the other symptoms of schizophrenia. These regions are also part of the so-called “default network”, a network of regions that are normally active; and their activity is also correlated with activity within the hippocampal system. PMID:19809534

  2. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats.

    PubMed

    Cipriani, Sabrina; Mencarelli, Andrea; Palladino, Giuseppe; Fiorucci, Stefano

    2010-04-01

    The farnesoid X receptor (FXR) is a bile acid activated nuclear receptor. Zucker (fa/fa) rats, harboring a loss of function mutation of the leptin receptor, develop diabetes, insulin resistance, obesity, and liver steatosis. In this study, we investigated the effect of FXR activation by 6-ethyl-chenodeoxycholic acid, (6E-CDCA, 10 mg/kg) on insulin resistance and liver and muscle lipid metabolism in fa/fa rats and compared its activity with rosiglitazone (10 mg/kg) alone or in combination with 6E-CDCA (5 mg/kg each). In comparison to lean (fa/+), fa/fa rats on a normal diet developed insulin resistance and liver steatosis. FXR activation protected against body weight gain and liver and muscle fat deposition and reversed insulin resistance as assessed by insulin responsive substrate-1 phosphorylation on serine 312 in liver and muscles. Activation of FXR reduced liver expression of genes involved in fatty acid synthesis, lipogenesis, and gluconeogenesis. In the muscles, FXR treatment reduced free fatty acid synthesis. Rosiglitazone reduced blood insulin, glucose, triglyceride, free fatty acid, and cholesterol plasma levels but promoted body weight gain (20%) and liver fat deposition. FXR activation reduced high density lipoprotein plasma levels. In summary, FXR administration reversed insulin resistance and correct lipid metabolism abnormalities in an obesity animal model. PMID:19783811

  3. Antiparkinsonian therapies and brain mitochondrial complex I activity.

    PubMed

    Przedborski, S; Jackson-Lewis, V; Fahn, S

    1995-05-01

    Alterations in complex I activity, one of the enzymatic units of the mitochondrial respiratory chain, have been demonstrated in different tissues from patients with Parkinson's disease (PD). Subsequently, we showed that the chronic administration of levodopa can cause alterations in mitochondrial respiratory chain activity in rats, which suggests that the observed deficit in complex I activity in PD might be, at least in part, related to chronic levodopa therapy. Our study assessed the in vitro effects of different antiparkinsonian agents on complex I activity in rat brain. As previously reported, both levodopa and dopamine inhibit complex I activity in a dose-dependent manner. In contrast, the two major metabolites of dopamine, homovanillic acid and 3,4-dihydroxyphenylacetic acid as well as 3-O-methyl-dopa, had little or no effect on complex I activities. Bromocriptine, pergolide, trihexyphenidyl, molindone, and clozapine were all without significant inhibitory effects on mitochondrial function. Although vitamin C and deprenyl did not alter complex I activity, they did prevent the inhibitory effect of both levodopa and dopamine on complex I activity. This work indicates that among the different and usual antiparkinsonian agents, only levodopa and dopamine induced reductions in complex I activity. It also indicates that vitamin C and deprenyl are both effective in preventing the levodopa-induced complex I inhibition. This latter finding provides further support to the use of antioxidants and monoamine oxidase inhibitors as therapeutic strategies in attempts to slow the progression of PD. PMID:7651449

  4. Fetal brain mTOR signaling activation in tuberous sclerosis complex.

    PubMed

    Tsai, Victoria; Parker, Whitney E; Orlova, Ksenia A; Baybis, Marianna; Chi, Anthony W S; Berg, Benjamin D; Birnbaum, Jacqueline F; Estevez, Jacqueline; Okochi, Kei; Sarnat, Harvey B; Flores-Sarnat, Laura; Aronica, Eleonora; Crino, Peter B

    2014-02-01

    Tuberous sclerosis complex (TSC) is characterized by developmental malformations of the cerebral cortex known as tubers, comprised of cells that exhibit enhanced mammalian target of rapamycin (mTOR) signaling. To date, there are no reports of mTORC1 and mTORC2 activation in fetal tubers or in neural progenitor cells lacking Tsc2. We demonstrate mTORC1 activation by immunohistochemical detection of substrates phospho-p70S6K1 (T389) and phospho-S6 (S235/236), and mTORC2 activation by substrates phospho-PKC? (S657), phospho-Akt (Ser473), and phospho-SGK1 (S422) in fetal tubers. Then, we show that Tsc2 shRNA knockdown (KD) in mouse neural progenitor cells (mNPCs) in vitro results in enhanced mTORC1 (phospho-S6, phospho-4E-BP1) and mTORC2 (phospho-Akt and phospho-NDRG1) signaling, as well as a doubling of cell size that is rescued by rapamycin, an mTORC1 inhibitor. Tsc2 KD in vivo in the fetal mouse brain by in utero electroporation causes disorganized cortical lamination and increased cell volume that is prevented with rapamycin. We demonstrate for the first time that mTORC1 and mTORC2 signaling is activated in fetal tubers and in mNPCs following Tsc2 KD. These results suggest that inhibition of mTOR pathway signaling during embryogenesis could prevent abnormal brain development in TSC. PMID:23081885

  5. Voxel-wise meta-analyses of brain blood flow and local synchrony abnormalities in medication-free patients with major depressive disorder

    PubMed Central

    Chen, Zi-Qi; Du, Ming-Ying; Zhao, You-Jin; Huang, Xiao-Qi; Li, Jing; Lui, Su; Hu, Jun-Mei; Sun, Huai-Qiang; Liu, Jia; Kemp, Graham J.; Gong, Qi-Yong

    2015-01-01

    Background Published meta-analyses of resting-state regional cerebral blood flow (rCBF) studies of major depressive di