Science.gov

Sample records for abnormal brain activity

  1. Abnormal Brain Activity Changes in Patients with Migraine: A Short-Term Longitudinal Study

    PubMed Central

    Zhao, Ling; Yan, Xuemei; Dun, Wanghuan; Yang, Jing; Huang, Liyu; Kai, Yuan; Yu, Dahua; Qin, Wei; Jie, Tian

    2014-01-01

    Background and Purpose Whether or not migraine can cause cumulative brain alterations due to frequent migraine-related nociceptive input in patients is largely unclear. The aim of this study was to characterize longitudinal changes in brain activity between repeated observations within a short time interval in a group of female migraine patients, using resting-state functional magnetic resonance imaging. Methods Nineteen patients and 20 healthy controls (HC) participated in the study. Regional homogeneity (ReHo) and functional interregional connectivity were assessed to determine the focal and global features of brain dysfunction in migraine. The relationship between changes in headache parameters and longitudinal brain alterations were also investigated. Results All patients reported that their headache activity increased over time. Abnormal ReHo changes in the patient group relative to the HC were found in the putamen, orbitofrontal cortex, secondary somatosensory cortex, brainstem, and thalamus. Moreover, these brain regions exhibited longitudinal ReHo changes at the 6-week follow-up examination. These headache activity changes were accompanied by disproportionately dysfunctional connectivity in the putamen in the migraine patients, as revealed by functional connectivity analysis, suggesting that the putamen plays an important role in integrating diverse information among other migraine-related brain regions. Conclusions The results obtained in this study suggest that progressive brain aberrations in migraine progress as a result of increased headache attacks. PMID:25045376

  2. Abnormal brain activation during directed forgetting of negative memory in depressed patients.

    PubMed

    Yang, Wenjing; Chen, Qunlin; Liu, Peiduo; Cheng, Hongsheng; Cui, Qian; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang

    2016-01-15

    The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression. PMID:26639452

  3. Abnormal Activation of the Social Brain Network in Children with Autism Spectrum Disorder: An fMRI Study

    PubMed Central

    Kim, Sun-Young; Choi, Uk-Su; Park, Sung-Yeon; Oh, Se-Hong; Yoon, Hyo-Woon; Koh, Yun-Joo; Im, Woo-Young; Park, Jee-In; Song, Dong-Ho

    2015-01-01

    Objective The aim of this study is to investigate abnormal findings of social brain network in Korean children with autism spectrum disorder (ASD) compared with typically developing children (TDC). Methods Functional magnetic resonance imaging (fMRI) was performed to examine brain activations during the processing of emotional faces (happy, fearful, and neutral) in 17 children with ASD, 24 TDC. Results When emotional face stimuli were given to children with ASD, various areas of the social brain relevant to social cognition showed reduced activation. Specifically, ASD children exhibited less activation in the right amygdala (AMY), right superior temporal sulcus (STS) and right inferior frontal gyrus (IFG) than TDC group when fearful faces were shown. Activation of left insular cortex and right IFG in response to happy faces was less in the ASD group. Similar findings were also found in left superior insular gyrus and right insula in case of neutral stimulation. Conclusion These findings suggest that children with ASD have different processing of social and emotional experience at the neural level. In other words, the deficit of social cognition in ASD could be explained by the deterioration of the capacity for visual analysis of emotional faces, the subsequent inner imitation through mirror neuron system (MNS), and the ability to transmit it to the limbic system and to process the transmitted emotion. PMID:25670944

  4. Abnormal Brain Activity in Social Reward Learning in Children with Autism Spectrum Disorder: An fMRI Study

    PubMed Central

    Choi, Uk-Su; Kim, Sun-Young; Sim, Hyeon Jeong; Lee, Seo-Young; Park, Sung-Yeon; Jeong, Joon-Sup; Seol, Kyeong In; Yoon, Hyo-Woon; Jhung, Kyungun; Park, Jee-In

    2015-01-01

    Purpose We aimed to determine whether Autism Spectrum Disorder (ASD) would show neural abnormality of the social reward system using functional MRI (fMRI). Materials and Methods 27 ASDs and 12 typically developing controls (TDCs) participated in this study. The social reward task was developed, and all participants performed the task during fMRI scanning. Results ASDs and TDCs with a social reward learning effect were selected on the basis of behavior data. We found significant differences in brain activation between the ASDs and TDCs showing a social reward learning effect. Compared with the TDCs, the ASDs showed reduced activity in the right dorsolateral prefrontal cortex, right orbitofrontal cortex, right parietal lobe, and occipital lobe; however, they showed increased activity in the right parahippocampal gyrus and superior temporal gyrus. Conclusion These findings suggest that there might be neural abnormality of the social reward learning system of ASDs. Although this study has several potential limitations, it presents novel findings in the different neural mechanisms of social reward learning in children with ASD and a possible useful biomarker of high-functioning ASDs. PMID:25837176

  5. Abnormal spontaneous brain activity in medication-naïve ADHD children: a resting state fMRI study.

    PubMed

    Yang, Hong; Wu, Qi-Zhu; Guo, Lan-Ting; Li, Qian-Qian; Long, Xiang-Yu; Huang, Xiao-Qi; Chan, Raymond C K; Gong, Qi-Yong

    2011-09-15

    Abnormal baseline brain functional connectivity in attention-deficit/hyperactivity disorder (ADHD) has been revealed in a number of studies by using resting-state functional MRI (rfMRI). The aim of this study was to investigate the spontaneous frontal activities in medication-naïve ADHD boys using the rfMRI derived index, amplitude of low-frequency fluctuation (ALFF). In total 17 ADHD boys and 17 matched controls were recruited to undergo rfMRI scan on a 3.0T MRI system. For each subject, six oblique slices covering the frontal areas were acquired with a rapid sampling rate (TR=400ms). Functional images were processed in AFNI for calculation of ALFF and then group comparison was performed using voxel-based t-test. With a corrected threshold of p<0.05 determined by AlphaSim, we found that in comparison with controls, ADHD patients demonstrated higher ALFF values in the left superior frontal gyrus and sensorimotor cortex (SMC), and lower ALFF values in the bilateral anterior, middle cingulate and the right middle frontal gyrus (MFG). Significant correlations were found between patients' WSCT measures and the peak ALFF located in the right MFG (r=0.69, p=0.02), and the left SMC (r=0.65, p=0.03). Our results revealed abnormal frontal activities at resting state associated with underlying physiopathology of ADHD, and suggested the ALFF analysis to be a potential approach in further exploration of this disorder. PMID:21810451

  6. Developmental disruptions underlying brain abnormalities in ciliopathies

    PubMed Central

    Guo, Jiami; Higginbotham, Holden; Li, Jingjun; Nichols, Jackie; Hirt, Josua; Ghukasyan, Vladimir; Anton, E.S.

    2015-01-01

    Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies. PMID:26206566

  7. Abnormal Asymmetry of Brain Connectivity in Schizophrenia

    PubMed Central

    Ribolsi, Michele; Daskalakis, Zafiris J.; Siracusano, Alberto; Koch, Giacomo

    2014-01-01

    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia. PMID:25566030

  8. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  9. Abnormal Brain Activation in Excoriation (Skin Picking) Disorder: Evidence from an Executive Planning fMRI Study

    E-print Network

    Odlaug, Brian L.; Hampshire, Adam; Chamberlain, Samuel R.; Grant, Jon E.

    2015-01-01

    , appear to be involved in the pathophysiology of SPD. The findings have implications for understanding the brain basis of excessive grooming and the relationship of SPD with putative obsessive compulsive spectrum disorders....

  10. Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase-Defective eEF2K Mice

    ERIC Educational Resources Information Center

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi

    2012-01-01

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular…

  11. Abnormal norepinephrine metabolism in rat brain synaptosomes in phosphate depletion.

    PubMed

    Smogorzewski, M; Islam, A; Koureta, P; Massry, S G

    1993-01-01

    Abnormalities in the function of the central nervous system exist in phosphate depletion (PD). It is possible that this is due to an adverse effect of PD on the metabolism of neurotransmitters, such as norepinephrine (NE), in brain synaptosomes. We examined the effects of PD, produced by restriction of dietary phosphate intake on NE metabolism of brain synaptosomes. Synaptosomes from PD rats had significantly reduced NE content, uptake and release, elevated Km, but normal Vmax of tyrosine hydroxylase, normal Km and Vmax of monoamine oxidase, elevated resting levels of cytosolic calcium ([Ca2+]i), higher delta [Ca2+]i in response to KCl, higher delta [Ca2+]i/basal [Ca2+]i ratio, lower ATP content and reduced activity of Na(+)-K(+)-ATPase as compared to synaptosomes from pair-weighed rats. Treatment of PD rats with verapamil corrected all the synaptosomal derangements except for the elevated Km of tyrosine hydroxylase and NE content. Verapamil did not affect the metabolism of PW rats. The data demonstrate that PD causes significant derangements in NE metabolism of brain synaptosomes. Observations in the present study and in others indicate that these derangements in NE metabolism are due to the PD-induced abnormalities in the homeostasis of synaptosomal [Ca2+]i, ATP and phospholipids and in the activities of Na(+)-K(+)-ATPase and Ca(2+)-ATPase. PMID:8100685

  12. Abnormal Intrinsic Brain Activity Patterns in Patients with End-Stage Renal Disease Undergoing Peritoneal Dialysis: A Resting-State Functional MR Imaging Study.

    PubMed

    Luo, Song; Qi, Rong Feng; Wen, Ji Qiu; Zhong, Jian Hui; Kong, Xiang; Liang, Xue; Xu, Qiang; Zheng, Gang; Zhang, Zhe; Zhang, Long Jiang; Lu, Guang Ming

    2016-01-01

    Purpose To analyze the spontaneous brain activity patterns in patients with end-stage renal disease (ESRD) undergoing peritoneal dialysis (PD) by using resting-state functional magnetic resonance (MR) imaging with an amplitude of low-frequency fluctuations (ALFF) algorithm. Materials and Methods This study received institutional review board approval, and all subjects gave informed consent. Forty-four patients with ESRD, 24 of whom were undergoing PD (PD group; eight women; mean age, 34 years ± 8) and 20 who were not undergoing PD or hemodialysis (nondialysis group; six women; mean age, 37 years ± 9) and 24 healthy control subjects (eight women; mean age, 32 years ± 9 years) were included. All subjects underwent neuropsychologic tests, and patients with ESRD underwent laboratory testing. ALFF values were compared among the three groups. The relationship between ALFF values and clinical markers was investigated by using multiple regression analysis. Results Patients in both the PD and nondialysis groups showed lower ALFF values in default mode network regions than did healthy control subjects (P < .01, false discovery rate corrected). Patients in the PD group showed lower ALFF values than did those in the nondialysis group in the left superior parietal lobe (1.51 ± 0.21 vs 2.01 ± 0.40), left inferior parietal lobe (0.99 ± 0.16 vs 1.13 ± 0.22) and left precuneus (1.45 ± 0.39 vs 1.77 ± 0.41) (P < .01, corrected with simulation software). In patients in the PD group, neuropsychologic test scores correlated with ALFF values of the middle temporal gyrus and the parietal and occipital lobe, serum urea and creatinine levels negatively correlated with ALFF in some default mode network regions, and hemoglobin positively correlated with ALFF in the bilateral precuneus, precentral, and supplementary motor areas (P < .01 corrected). Conclusion Patients with ESRD who were undergoing PD showed more severe spontaneous brain activity abnormalities that correlate with cognitive impairments than did patients who were not undergoing dialysis. Elevated serum urea, creatinine, and lowered hemoglobin levels affect spontaneous brain activity in patients with ESRD. (©) RSNA, 2015. PMID:26053309

  13. Abnormal Brain Activation in Neurofibromatosis Type 1: A Link between Visual Processing and the Default Mode Network

    PubMed Central

    Violante, Inês R.; Ribeiro, Maria J.; Cunha, Gil; Bernardino, Inês; Duarte, João V.; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified. PMID:22723888

  14. DETECTION & MAPPING OF ABNORMAL BRAIN STRUCTURE IN METHAMPHETAMINE USERS

    E-print Network

    Thompson, Paul

    DETECTION & MAPPING OF ABNORMAL BRAIN STRUCTURE IN METHAMPHETAMINE USERS 1 P.M. Thompson, 1 K of Medicine, Los Angeles CA 90095 We detected a pattern of brain structure deficits in chronic methamphetamine surface vertex, we fitted a general linear model to assess methamphetamine effects on gray matter density

  15. r Human Brain Mapping 00:000000 (2011) r Brain Growth Rate Abnormalities Visualized in

    E-print Network

    Thompson, Paul

    2011-01-01

    r Human Brain Mapping 00:000­000 (2011) r Brain Growth Rate Abnormalities Visualized in Adolescents 2 Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, California r r Abstract: Autism spectrum disorder is a heterogeneous disorder of brain

  16. Brain Growth Rate Abnormalities Visualized in Adolescents with Autism

    PubMed Central

    Hua, Xue; Thompson, Paul M.; Leow, Alex D.; Madsen, Sarah K.; Caplan, Rochelle; Alger, Jeffry R.; O’Neill, Joseph; Joshi, Kishori; Smalley, Susan L.; Toga, Arthur W.; Levitt, Jennifer G.

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous disorder of brain development with wide-ranging cognitive deficits. Typically diagnosed before age 3, ASD is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared to those of typically developing children and adolescents. Using tensor-based morphometry (TBM), we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and 7 typically developing boys (mean age/inter-scan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole-brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (p = 0.03, corrected), especially in the parietal (p = 0.008), temporal (p = 0.03) and occipital lobes (p =0.02). We also visualized abnormal overgrowth in autism in some gray matter structures, such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. TBM revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. PMID:22021093

  17. Mapping brain volumetric abnormalities in never-treated pathological gamblers.

    PubMed

    Fuentes, Daniel; Rzezak, Patricia; Pereira, Fabricio R; Malloy-Diniz, Leandro F; Santos, Luciana C; Duran, Fábio L S; Barreiros, Maria A; Castro, Cláudio C; Busatto, Geraldo F; Tavares, Hermano; Gorenstein, Clarice

    2015-06-30

    Several magnetic resonance imaging (MRI) studies to date have investigated brain abnormalities in association with the diagnosis of pathological gambling (PG), but very few of these have specifically searched for brain volume differences between PG patients and healthy volunteers (HV). To investigate brain volume differences between PG patients and HV, 30 male never-treated PG patients (DSM-IV-TR criteria) and 30 closely matched HV without history of psychiatric disorders in the past 2 years underwent structural magnetic resonance imaging with a 1.5-T instrument. Using Freesurfer software, we performed an exploratory whole-brain voxelwise volume comparison between the PG group and the HV group, with false-discovery rate correction for multiple comparisons (p < 0.05). Using a more flexible statistical threshold (p < 0.01, uncorrected for multiple comparisons), we also measured absolute and regional volumes of several brain structures separately. The voxelwise analysis showed no clusters of significant regional differences between the PG and HV groups. The additional analyses of absolute and regional brain volumes showed increased absolute global gray matter volumes in PG patients relative to the HV group, as well as relatively decreased volumes specifically in the left putamen, right thalamus and right hippocampus (corrected for total gray matter). Our findings indicate that structural brain abnormalities may contribute to the functional changes associated with the symptoms of PG, and they highlight the relevance of the brain reward system to the pathophysiology of this disorder. PMID:25952288

  18. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  19. Structural brain abnormalities in cervical dystonia

    PubMed Central

    2013-01-01

    Background Idiopathic cervical dystonia is characterized by involuntary spasms, tremors or jerks. It is not restricted to a disturbance in the basal ganglia system because non-conventional voxel-based MRI morphometry (VBM) and diffusion tensor imaging (DTI) have detected numerous regional changes in the brains of patients. In this study scans of 24 patients with cervical dystonia and 24 age-and sex-matched controls were analysed using VBM, DTI and magnetization transfer imaging (MTI) using a voxel-based approach and a region-of-interest analysis. Results were correlated with UDRS, TWSTRS and disease duration. Results We found structural alterations in the basal ganglia; thalamus; motor cortex; premotor cortex; frontal, temporal and parietal cortices; visual system; cerebellum and brainstem of the patients with dystonia. Conclusions Cervical dystonia is a multisystem disease involving several networks such as the motor, sensory and visual systems. PMID:24131497

  20. Brain abnormalities in patients with Beckwith-Wiedemann syndrome.

    PubMed

    Gardiner, Kate; Chitayat, David; Choufani, Sanaa; Shuman, Cheryl; Blaser, Susan; Terespolsky, Deborah; Farrell, Sandra; Reiss, Rosemary; Wodak, Shoshana; Pu, Shuye; Ray, Peter N; Baskin, Berivan; Weksberg, Rosanna

    2012-06-01

    Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder with variability in clinical manifestations and molecular causes. In most cases, patients with BWS have normal development. Cases with developmental delay are usually attributed to neonatal hypoglycemia or chromosome abnormalities involving copy number variation for genes beyond the critical BWS region at 11p15.5. Brain abnormalities have not previously been recognized within the BWS phenotypic spectrum. We report on seven cases of BWS associated with posterior fossa abnormalities. Of these, two cases presented with Blake's pouch cyst, two with Dandy-Walker variant (DWV; hypoplasia of the inferior part of the vermis), one with Dandy-Walker malformation (DWM) and one with a complex of DWM, dysgenesis of the corpus callosum and brain stem abnormality. In all these cases, molecular findings involved the centromeric imprinted domain on chromosome locus 11p15.5, which includes imprinting center 2 (IC2) and the imprinted growth suppressor gene, CDKN1C. Three cases had loss of methylation at IC2, two had CDKN1C mutations, and one had loss of methylation at IC2 and a microdeletion. In one case no mutation/methylation abnormality was detected. These findings together with previously reported correlations suggest that genes in imprinted domain 2 at 11p15.5 are involved in normal midline development of several organs including the brain. Our data suggest that brain malformations may present as a finding within the BWS phenotype when the molecular etiology involves imprinted domain 2. Brain imaging may be useful in identifying such malformations in individuals with BWS and neurodevelopmental issues. PMID:22585446

  1. Abnormal brain activation of adolescent internet addict in a ball-throwing animation task: possible neural correlates of disembodiment revealed by fMRI.

    PubMed

    Kim, Yeoung-Rang; Son, Jung-Woo; Lee, Sang-Ick; Shin, Chul-Jin; Kim, Sie-Kyeong; Ju, Gawon; Choi, Won-Hee; Oh, Jong-Hyun; Lee, Seungbok; Jo, Seongwoo; Ha, Tae Hyon

    2012-10-01

    While adolescent internet addicts are immersed in cyberspace, they are easily able to experience 'disembodied state'. The purposes of this study were to investigate the difference of brain activity between adolescent internet addicts and normal adolescents in a state of disembodiment, and to find the correlation between the activities of disembodiment-related areas and the behavioral characteristics related to internet addiction. The fMRI images were taken while the addiction group (N=17) and the control group (N=17) were asked to perform the task composed with ball-throwing animations. The task reflected on either self-agency about ball-throwing or location of a ball. And each block was shown with either different (Changing View) or same animations (Fixed View). The disembodiment-related condition was the interaction between Agency Task and Changing View. Within-group analyses revealed that the addiction group exhibited higher activation in the thalamus, bilateral precentral area, bilateral middle frontal area, and the area around the right temporo-parietal junction. And between-group analyses showed that the addiction group exhibited higher activation in the area near the left temporo-parieto-occipital junction, right parahippocampal area, and other areas than the control group. Finally, the duration of internet use was significantly correlated with the activity of posterior area of left middle temporal gyrus in the addiction group. These results show that the disembodiment-related activation of the brain is easily manifested in adolescent internet addicts. Internet addiction of adolescents could be significantly unfavorable for their brain development related with identity formation. PMID:22687465

  2. Volume estimation of brain abnormalities in MRI data

    NASA Astrophysics Data System (ADS)

    Suprijadi, Pratama, S. H.; Haryanto, F.

    2014-02-01

    The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.

  3. Neuroanatomical abnormalities in chronic tinnitus in the human brain

    PubMed Central

    Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.

    2014-01-01

    In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904

  4. Absence of Glial ?-Dystrobrevin Causes Abnormalities of the Blood-Brain Barrier and Progressive Brain Edema*

    PubMed Central

    Lien, Chun Fu; Mohanta, Sarajo Kumar; Frontczak-Baniewicz, Malgorzata; Swinny, Jerome D.; Zablocka, Barbara; Górecki, Dariusz C.

    2012-01-01

    The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that ?-dystrobrevin (?-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of ?-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing ?-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in ?-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, ?-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, ?-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction. PMID:23043099

  5. Neuroendocrine abnormalities in patients with traumatic brain injury

    NASA Technical Reports Server (NTRS)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture. Increased intracranial pressure, which releases vasopressin by altering normal hypothalamic anatomy, may represent a unique type of stress to neuroendocrine systems and may contribute to adrenal secretion by a mechanism that requires intact brainstem function. Endocrine function should be monitored in brain-injured patients with basilar skull fractures and protracted posttraumatic amnesia, and patients with SIADH or DI should be closely monitored for other endocrine abnormalities.

  6. Anatomical and functional brain abnormalities in unmedicated major depressive disorder

    PubMed Central

    Yang, Xiao; Ma, Xiaojuan; Li, Mingli; Liu, Ye; Zhang, Jian; Huang, Bin; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong

    2015-01-01

    Background Using magnetic resonance imaging (MRI) and resting-state functional magnetic resonance imaging (rsfMRI) to explore the mechanism of brain structure and function in unmedicated patients with major depressive disorder (MDD). Patients and methods Fifty patients with MDD and 50 matched healthy control participants free of psychotropic medication underwent high-resolution structural and rsfMRI scanning. Optimized diffeomorphic anatomical registration through exponentiated lie algebra and the Data Processing Assistant for rsfMRI were used to find potential differences in gray-matter volume (GMV) and regional homogeneity (ReHo) between the two groups. A Pearson correlation model was used to analyze associations of morphometric and functional changes with clinical symptoms. Results Compared to healthy controls, patients with MDD showed significant GMV increase in the left posterior cingulate gyrus and GMV decrease in the left lingual gyrus (P<0.001, uncorrected). In ReHo analysis, values were significantly increased in the left precuneus and decreased in the left putamen (P<0.001, uncorrected) in patients with MDD compared to healthy controls. There was no overlap between anatomical and functional changes. Linear correlation suggested no significant correlation between mean GMV values within regions with anatomical abnormality and ReHo values in regions with functional abnormality in the patient group. These changes were not significantly correlated with symptom severity. Conclusion Our study suggests a dissociation pattern of brain regions with anatomical and functional alterations in unmedicated patients with MDD, especially with regard to GMV and ReHo. PMID:26425096

  7. Abnormal Brain Iron Homeostasis in Human and Animal Prion Disorders

    PubMed Central

    Mohan, Maradumane L.; Cohen, Mark L.; Chen, Fusong; Kong, Qingzhong; Bartz, Jason; Singh, Neena

    2009-01-01

    Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrPSc), a ?-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrPC). Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s) leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion disease–affected human, hamster, and mouse brains show increased total and redox-active Fe (II) iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD)–affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrPSc as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrPSc-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrPSc–ferritin complexes induces a state of iron bio-insufficiency in prion disease–affected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These data implicate redox-iron in prion disease–associated neurotoxicity, a novel observation with significant implications for prion disease pathogenesis. PMID:19283067

  8. Mapping abnormal subcortical brain morphometry in an elderly HIV + cohort

    PubMed Central

    Wade, Benjamin S.C.; Valcour, Victor G.; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H.; Gutman, Boris A.; Thompson, Paul M.

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.

  9. The MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels

    PubMed Central

    Oien, Derek B.; Osterhaus, Greg L.; Latif, Shaheen A.; Pinkston, Jonathan W.; Fulks, Jenny; Johnson, Michael; Fowler, Stephen C.; Moskovitz, Jackob

    2008-01-01

    Oxidative stress can cause methionine oxidation that has been implicated in various proteins malfunctions, if not adequately reduced by the methionine sulfoxide reductase system. Recent evidence has found oxidized methionine residues in neurodegenerative conditions. Previously, we have described elevated levels of brain pathologies and an abnormal walking pattern in the methionine sulfoxide reductase A knockout (MsrA?/?) mouse. Here we show that MsrA?/? mice have compromised complex task learning capabilities relative to wild-type mice. Likewise, MsrA?/? mice exhibit lower locomotor activity and altered gait that exacerbated with age. Furthermore, MsrA?/? mice were less responsive to amphetamine treatment. Consequently, brain dopamine levels were determined. Surprisingly, relative to wild-type mice, MsrA?/? brains contained significantly higher levels of dopamine up to 12 months of age, while lower level of dopamine was observed at 16 months of age. Moreover, striatal regions of MsrA?/? mice showed an increase of dopamine release parallel to observed dopamine levels. Similarly, the expression pattern of tyrosine hydroxylase activating protein correlated with the age-dependent dopamine levels. Thus, it is suggested that dopamine regulation and signaling pathway are impaired in MsrA?/? mice, which may contribute to their abnormal bio-behavior. These observations may be relevant to age-related neurological diseases associated with oxidative stress. PMID:18466776

  10. Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation.

    PubMed

    Eccles, J A; Garfinkel, S N; Harrison, N A; Ward, J; Taylor, R E; Bewley, A P; Critchley, H D

    2015-10-01

    Some patients experience skin sensations of infestation and contamination that are elusive to proximate dermatological explanation. We undertook a functional magnetic resonance imaging study of the brain to demonstrate, for the first time, that central processing of infestation-relevant stimuli is altered in patients with such abnormal skin sensations. We show differences in neural activity within amygdala, insula, middle temporal lobe and frontal cortices. Patients also demonstrated altered measures of self-representation, with poorer sensitivity to internal bodily (interoceptive) signals and greater susceptibility to take on an illusion of body ownership: the rubber hand illusion. Together, these findings highlight a potential model for the maintenance of abnormal skin sensations, encompassing heightened threat processing within amygdala, increased salience of skin representations within insula and compromised prefrontal capacity for self-regulation and appraisal. PMID:26260311

  11. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain

    PubMed Central

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by ?-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABAAR). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the ?1–6, ?1–3 or ?2 GABAAR subunits in the superior temporal gyrus (STG) in schizophrenia, the ?1, ?1 and ?2 GABAAR subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABAARs in schizophrenia, this study used western blot analysis to measure the expression of ?1, ?2, ?1, ?2 and ?2 GABAAR subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N=16) and comparison (N=14) subjects and found evidence of abnormal localization of the ?1 and ?2 GABAAR subunits and subunit isoforms in schizophrenia. The ?2 subunit is expressed as three isoforms at 52?kDa (?252?kDa), 50?kDa (?250?kDa) and 48?kDa (?248?kDa). In the ER, we found increased total ?2 GABAAR subunit (?2ALL) expression driven by increased ?250?kDa, a decreased ratio of ?248?kDa:?2ALL and an increased ratio of ?250?kDa:?248?kDa. Decreased ratios of ?1:?2ALL and ?1:?250?kDa in both the ER and SYN fractions and an increased ratio of ?252?kDa:?248?kDa at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABAARs. PMID:26241350

  12. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  13. Structural brain imaging abnormalities associated with schizophrenia and partial trisomy of chromosome 5

    PubMed Central

    HONER, WILLIAM G.; BASSETT, ANNE S.; MacEWAN, G. WILLIAM; HURWITZ, TREVOR; LI, DAVID K.B.; HILAL, SADEK; PROHOVNIK, ISAK

    2011-01-01

    SYNOPSIS Chromosomal abnormalities occurring in association with mental illness provide a unique opportunity to study the interaction of genetic abnormalities and the brain in mental illness. Four individuals from a family in which schizophrenia was found to cosegregate with a partial trisomy of chromosome 5 were studied with computed tomography and magnetic resonance imaging. Temporal lobe atrophy was found in the two trisomic males and in the asymptomatic balanced translocation female. In addition, a large cavum septum pellucidum and a cavum vergae were found in the older trisomic individual. Scans from the normal male were free of abnormalities. These results suggest that molecular studies of the translocation breakpoints in this chromosomal abnormality may be of interest, and encourage further studies of brain structure in other chromosomal abnormalities associated with psychosis. PMID:1615118

  14. Brain morphological abnormalities in 49,XXXXY syndrome: A pediatric magnetic resonance imaging study???

    PubMed Central

    Blumenthal, Jonathan D.; Baker, Eva H.; Lee, Nancy Raitano; Wade, Benjamin; Clasen, Liv S.; Lenroot, Rhoshel K.; Giedd, Jay N.

    2013-01-01

    As a group, people with the sex chromosome aneuploidy 49,XXXXY have characteristic physical and cognitive/behavioral tendencies, although there is high individual variation. In this study we use magnetic resonance imaging (MRI) to examine brain morphometry in 14 youth with 49,XXXXY compared to 42 age-matched healthy controls. Total brain size was significantly smaller (t = 9.0, p < .001), and rates of brain abnormalities such as colpocephaly, plagiocephaly, periventricular cysts, and minor craniofacial abnormalities were significantly increased. White matter lesions were identified in 50% of subjects, supporting the inclusion of 49,XXXXY in the differential diagnosis of small multifocal white matter lesions. Further evidence of abnormal development of white matter was provided by the smaller cross sectional area of the corpus callosum. These results suggest that increased dosage of genes on the X chromosome has adverse effects on white matter development. PMID:23667827

  15. Abnormal deposits of chromium in the pathological human brain.

    PubMed Central

    Duckett, S

    1986-01-01

    Three patients presented with encephalopathies: an undiagnosed degenerative disease of the brain, a degenerative cerebral disease in a patient with a myeloma but without a myelomatous deposit in the CNS and a malignant astrocytoma. Perivascular pallidal deposits (vascular siderosis) containing chromium, phosphorus and calcium plus sometimes traces of other elements were present in the three cases. Such deposits were present in the pallidal parenchyma and around vessels in the cerebellum in one case. Calcium and phosphorus are always present in any CNS calcification but the presence of chromium has not been reported. Chromium and its compounds (ingested, injected or inhaled) are toxic to humans and animals in trace doses. Approximately 900 cases of chromium intoxication have been reported and usually have had dermatological or pulmonary lesions (including cancer) but there is no report of involvement of the CNS. Sublethal doses of chromium nitrate injected intraperitoneally in rats and rabbits results in the presence of chromium in the brain. A thorough investigation was made to find the source of the chromium in these patients. Chromium was found to be present in trace amounts in the radiological contrast agents administered to these patients and in the KCl replacement solution and in mylanta, an antacid, given to one case. The evidence that chromium induced pathological changes in these three brains is circumstantial but shows that chromium can penetrate the human brain. This study indicates that vascular siderosis found in the brains of the majority of middle-aged and elderly humans is not simply an anecdotal pathological curiosity, but that it can serve as a route of entry for toxic products into the brain. Images PMID:3958742

  16. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    ERIC Educational Resources Information Center

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  17. Abnormal brain aging as a radical-related disease: A new target for nuclear medicine

    SciTech Connect

    Fujibayashi, Y.; Yamamoto, S.; Waki, A. |

    1996-05-01

    DNA damages caused by endogenously produced radicals are closely correlated with aging. Among them, mitochondrial DNA (mtDNA) deletions have been reported as a memory of DNA damage by oxygen radicals. In fact, clinical as well as experimental studies indicated the accumulation of deleted mtDNA in the brain, myocardium and son on, in aged subjects. In our previous work, radioiodinated radical trapping agent, p-iodophenyl-N-t-butylnitrone, and hypoxia imaging agent, Cu-62 diacetyl-bis-N-4-methyl-thiosemicarbazone have been developed for the diagnosis of radical-related diseases, such as ischemic, inflammation, cancer or aging. The aim of the present work was to evaluate these agents for brain aging studies. In our university, an unique animal model, a senescence accelerated model mouse (SAM), has been established. Among the various substrains, SAMP8 showing memory deterioration in its young age ({approximately}3 month) was basically evaluated as an abnormal brain aging model with mtDNA deletion. As controls, SAMR1 showing normal aging and ddY mice were used. MtDNA deletion n the brain was analyzed with polymerase-chain reaction (PCR) method, and relationship between mtDNA deletion and brain uptake of IPBN or Cu-62-ATSM was studied. In 1-3 month old SAMP8 brain, multiple mtDNa deletions were already found and their content was significantly higher than that of SAMR1 or age-matched ddY control. Thus, it was cleared that SAMP8 brain has high tendency to be attacked by endogenously produced oxygen radicals, possibly from its birth. Both IPBN and Cu-ATSM showed significantly higher accumulation in the SAMP8 brain than in the SAMR1 brain, indicating that these agents have high possibility for the early detection of abnormal brain aging as a radical-related disease.

  18. Gray matter abnormalities in pediatric mild traumatic brain injury.

    PubMed

    Mayer, Andrew R; Hanlon, Faith M; Ling, Josef M

    2015-05-15

    Pediatric mild traumatic brain injury (pmTBI) is the most prevalent neurological insult in children and is associated with both acute and chronic neuropsychiatric sequelae. However, little is known about underlying pathophysiology changes in gray matter diffusion and atrophy from a prospective stand-point. Fifteen semi-acute pmTBI patients and 15 well-matched healthy controls were evaluated with a clinical and neuroimaging battery, with a subset of participants returning for a second visit. Clinical measures included tests of attention, processing speed, executive function, working memory, memory, and self-reported post-concussive symptoms. Measures of diffusion (fractional anisotropy [FA]) and atrophy were also obtained for cortical and subcortical gray matter structures to characterize effects of injury as a function of time. Patients exhibited decreased scores in the domains of attention and processing speed relative to controls during the semi-acute injury stage, in conjunction with increased anisotropic diffusion in the left superior temporal gyrus and right thalamus. Evidence of increased diffusion in these regions was also present at four months post-injury, with performance on cognitive tests partially normalizing. In contrast, signs of cortical atrophy in bilateral frontal areas and other left-hemisphere cortical areas only emerged at four months post-injury for patients. Current results suggest potentially differential time-courses of recovery for neurobehavioral markers, anisotropic diffusion and atrophy following pmTBI. Importantly, these data suggest that relying on patient self-report or standard clinical assessments may underestimate the time for true injury recovery. PMID:25313896

  19. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  20. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  1. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  2. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    PubMed Central

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is associated with numerous frontal lobe structural deficits, a conclusion that is not strongly supported following direct comparison of diagnostically pure groups. The results are important for future etiological studies, particularly those seeking to identify how early expression of specific brain structure abnormalities could potentiate the risk for antisocial behaviour. PMID:22663946

  3. Abnormal Neural Activation to Faces in the Parents of Children with Autism.

    PubMed

    Yucel, G H; Belger, A; Bizzell, J; Parlier, M; Adolphs, R; Piven, J

    2015-12-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the "Broad Autism Phenotype " (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality ("BAP+"). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP. PMID:25056573

  4. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  5. Fueling and imaging brain activation.

    PubMed

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron-astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  6. Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction.

    PubMed

    Pitel, Anne Lise; Segobin, Shailendra H; Ritz, Ludivine; Eustache, Francis; Beaunieux, Hélène

    2015-07-01

    Two brain networks are particularly affected by the harmful effect of chronic and excessive alcohol consumption: the circuit of Papez and the frontocerebellar circuit, in both of which the thalamus plays a key role. Shrinkage of the thalamus is more severe in alcoholics with Korsakoff's syndrome (KS) than in those without neurological complication (AL). In accordance with the gradient effect of thalamic abnormalities between AL and KS, the pattern of brain dysfunction in the Papez's circuit results in anterograde amnesia in KS and only mild-to-moderate episodic memory disorders in AL. On the opposite, dysfunction of the frontocerebellar circuit results in a similar pattern of working memory and executive deficits in the AL and KS. Several hypotheses, mutually compatible, can be drawn to explain that the severe thalamic shrinkage observed in KS has different consequences in the neuropsychological profile associated with the two brain networks. PMID:25108034

  7. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  8. Decoding Patterns of Human Brain Activity

    E-print Network

    Tong, Frank

    Decoding Patterns of Human Brain Activity Frank Tong and Michael S. Pratte Psychology Department be decoded from noninvasive measures of human brain activity. Analyses of brain activ- ity patterns can models can be used to investigate how the brain encodes complex visual scenes or abstract semantic

  9. Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions.

    PubMed

    Löscher, Wolfgang

    2010-01-01

    Circling or rotational behavior is the most studied indicator of cerebral asymmetry in the rat. In humans, disturbances in cerebral asymmetry are involved in the etiology of several psychiatric disorders, including schizophrenia, Tourette syndrome and attention-deficit hyperactivity disorder. Abnormal rotational behavior in rodents is indicative of either an imbalance of forebrain dopamine systems, particularly an imbalance of nigrostriatal function, or an inner ear disease affecting the vestibular (balance) system. Abnormally enhanced circling behavior has been described in several mutant rat and mouse strains both with and without defects of the vestibular system. However, the relationship between vestibular defects and lateralized circling in rodents is only incompletely understood. In this review, we describe and discuss various spontaneous mutations associated with abnormal circling behavior in different rat strains and their potential relevance to model specific brain dysfunctions. The circling rat mutants described in this review illustrate how genetic animal models may serve to study multifaceted brain functions and dysfunctions, including disorders of the basal ganglia and vestibular system. PMID:19607857

  10. Brain abnormalities in bipolar disorder detected by quantitative T1? mapping.

    PubMed

    Johnson, C P; Follmer, R L; Oguz, I; Warren, L A; Christensen, G E; Fiedorowicz, J G; Magnotta, V A; Wemmie, J A

    2015-02-01

    Abnormal metabolism has been reported in bipolar disorder, however, these studies have been limited to specific regions of the brain. To investigate whole-brain changes potentially associated with these processes, we applied a magnetic resonance imaging technique novel to psychiatric research, quantitative mapping of T1 relaxation in the rotating frame (T1?). This method is sensitive to proton chemical exchange, which is affected by pH, metabolite concentrations and cellular density with high spatial resolution relative to alternative techniques such as magnetic resonance spectroscopy and positron emission tomography. Study participants included 15 patients with bipolar I disorder in the euthymic state and 25 normal controls balanced for age and gender. T1? maps were generated and compared between the bipolar and control groups using voxel-wise and regional analyses. T1? values were found to be elevated in the cerebral white matter and cerebellum in the bipolar group. However, volumes of these areas were normal as measured by high-resolution T1- and T2-weighted magnetic resonance imaging. Interestingly, the cerebellar T1? abnormalities were normalized in participants receiving lithium treatment. These findings are consistent with metabolic or microstructural abnormalities in bipolar disorder and draw attention to roles of the cerebral white matter and cerebellum. This study highlights the potential utility of high-resolution T1? mapping in psychiatric research. PMID:25560762

  11. Neural activation abnormalities during self-referential processing in schizophrenia: an fMRI study.

    PubMed

    Liu, Jiacheng; Corbera, Silvia; Wexler, Bruce Edward

    2014-06-30

    Impairments in self-awareness contribute to disability in schizophrenia. Studies have revealed activation abnormalities in schizophrenia in cortical midline structures associated with self-reference. We used functional magnetic resonance imaging to compare activation throughout the brain in people with schizophrenia and healthy controls (Kelly et al., 2002) while they indicated whether trait adjectives described attributes of themselves, their mother or a former president of the United States. Blood oxygenation level dependent signal in each condition was compared to resting fixation. Patients were less likely and slower to endorse positive self-attributes, and more likely and quicker to endorse negative self-attributes than controls. Activation abnormalities reported previously in cortical midline structures were again noted. In addition, patients showed greater signal increases in frontal, temporal gyri and insula, and smaller signal decreases in posterior regions than healthy controls when thinking about themselves. Group differences were less evident when subjects were thinking about their mothers and tended to go in the opposite direction when thinking about a president. Many of the areas showing abnormality have been shown in other studies to differ between patients and controls in structure and with other activation paradigms. We suggest that general neuropathology in schizophrenia alters the neural system configurations associated with self-representation. PMID:24795158

  12. Abnormal Gangliosides are Localized in Lipid Rafts in Sanfilippo (MPS3a) Mouse Brain

    PubMed Central

    Dawson, G.; Fuller, M.; Helmsley, K. M.; Hopwood, J. J.

    2013-01-01

    Allogenic stem cell transplantation can reduce lysosomal storage of heparan sulfate-derived oligosaccharides by up to 27 % in Sanfilippo MPS3a brain, but does not reduce the abnormal storage of sialolactosylceramide (GM3) or improve neurological symptoms, suggesting that ganglioside storage is in a non-lysosomal compartment. To investigate this further we isolated the Triton X100-insoluble at 4 °C, lipid raft (LR) fraction from a sucrose-density gradient from cerebral hemispheres of a 7 month old mouse model of Sanfilippo MPS3a and age-matched control mouse brain. HPLC/MS/MS analysis revealed the expected enrichment of normal complex gangliosides, ceramides, galatosylceramides and sphingomyelin enrichment in this LR fraction. The abnormal HS-derived oligosaccharide storage material was in the Triton X100-soluble at 4 °C fractions (8–12), whereas both GM3 and sialo [GalNAc]lactosylceramide (GM2) were found exclusively in the LR fraction (fractions 3 and 4) and were >90 % C18:0 fatty acid, suggesting a neuronal origin. Further analysis also revealed a >threefold increase in the late-endosome marker bis (monoacylglycerol) phosphate (>70 % as C22:6/22:6-BMP) in non-LR fractions 8–12 whereas different forms of the proposed BMP precursor, phosphatidylglycerol (PG) were in both LR and non-LR fractions and were less elevated in MPS3a brain. Thus heparan sulfate-derived oligosaccharide storage is associated with abnormal lipid accumulation in both lysosomal (BMP) and non-lysosomal (GM3 and GM2) compartments. PMID:22484966

  13. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  14. Skeletal and Brain Abnormalities in Fucosidosis, a Rare Lysosomal Storage Disorder

    PubMed Central

    Malatt, Camille; Koning, Jeffrey L.; Naheedy, John

    2015-01-01

    Fucosidosis is a rare genetic lysosomal storage disorder caused by a deficiency in alpha- L-fucosidase. We present a case of a 4-year, 11-month-old girl with developmental delay, as well as skeletal and brain abnormalities as shown on X-ray and MRI. Her spinal X- rays demonstrated lumbar kyphosis and anterior beaking of lumbar vertebral bodies. Lower iliac segment constriction, increased angulation of the acetabular roof, and widening of the ribs were apparent on abdominal X-ray. Her brain MRI illustrated symmetric T1 hyperintensity and T2 hypointensity of the bilateral globi pallidi. The case report highlights clinical and imaging findings of this rare disease. PMID:26622931

  15. Abnormal structural connectivity in the brain networks of children with hydrocephalus

    PubMed Central

    Yuan, Weihong; Holland, Scott K.; Shimony, Joshua S.; Altaye, Mekibib; Mangano, Francesco T.; Limbrick, David D.; Jones, Blaise V.; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C.

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect abnormalities of brain network connectivity associated with hydrocephalus at both global and regional levels, thus providing a new avenue for potential diagnosis and prognosis tool for children with hydrocephalus. PMID:26106573

  16. Preliminary Evidence of Cognitive and Brain Abnormalities in Uncomplicated Adolescent Obesity

    PubMed Central

    Yau, Po Lai; Kang, Esther H.; Javier, David C.; Convit, Antonio

    2014-01-01

    Objective We ascertain whether pediatric obesity without clinically-significant insulin resistance (IR) impacts brain structure and function. Design and Methods Thirty obese and 30 matched lean adolescents, all without clinically-significant IR or a diagnosis of metabolic syndrome (MetS), received comprehensive endocrine, neuropsychological, and MRI evaluations. Results Relative to lean adolescents, obese non-IR adolescents had significantly lower academic achievement (i.e. arithmetic and spelling) and tended to score lower on working memory, attention, psychomotor efficiency and mental flexibility. In line with our prior work on adolescent MetS, memory was unaffected in uncomplicated obesity. We also uncovered reductions in the thickness of the orbitofrontal and anterior cingulate cortices as well as reductions of microstructural integrity in major white matter tracts without gross volume changes. Conclusions We document, for the first time, that adolescents with uncomplicated obesity already have subtle brain alterations and lower performance in selective cognitive domains. When interpreting these preliminary data in the context of our prior reports of similar, but more extensive brain findings in obese adolescents with MetS and T2DM, we conclude that “uncomplicated” obesity may also result in subtle brain alterations, suggesting a possible dose effect with more severe metabolic dysregulation giving rise to greater abnormalities. PMID:24891029

  17. Levetiracetam reduces abnormal network activations in temporal lobe epilepsy

    PubMed Central

    Wandschneider, Britta; Stretton, Jason; Sidhu, Meneka; Centeno, Maria; Kozák, Lajos R.; Symms, Mark; Thompson, Pamela J.; Duncan, John S.

    2014-01-01

    Objective: We used functional MRI (fMRI) and a left-lateralizing verbal and a right-lateralizing visual-spatial working memory (WM) paradigm to investigate the effects of levetiracetam (LEV) on cognitive network activations in patients with drug-resistant temporal lobe epilepsy (TLE). Methods: In a retrospective study, we compared task-related fMRI activations and deactivations in 53 patients with left and 54 patients with right TLE treated with (59) or without (48) LEV. In patients on LEV, activation patterns were correlated with the daily LEV dose. Results: We isolated task- and syndrome-specific effects. Patients on LEV showed normalization of functional network deactivations in the right temporal lobe in right TLE during the right-lateralizing visual-spatial task and in the left temporal lobe in left TLE during the verbal task. In a post hoc analysis, a significant dose-dependent effect was demonstrated in right TLE during the visual-spatial WM task: the lower the LEV dose, the greater the abnormal right hippocampal activation. At a less stringent threshold (p < 0.05, uncorrected for multiple comparisons), a similar dose effect was observed in left TLE during the verbal task: both hippocampi were more abnormally activated in patients with lower doses, but more prominently on the left. Conclusions: Our findings suggest that LEV is associated with restoration of normal activation patterns. Longitudinal studies are necessary to establish whether the neural patterns translate to drug response. Classification of evidence: This study provides Class III evidence that in patients with drug-resistant TLE, levetiracetam has a dose-dependent facilitation of deactivation of mesial temporal structures. PMID:25253743

  18. Abnormal White Matter Blood-Oxygen-Level-Dependent Signals in Chronic Mild Traumatic Brain Injury.

    PubMed

    Astafiev, Serguei V; Shulman, Gordon L; Metcalf, Nicholas V; Rengachary, Jennifer; MacDonald, Christine L; Harrington, Deborah L; Maruta, Jun; Shimony, Joshua S; Ghajar, Jamshid; Diwakar, Mithun; Huang, Ming-Xiong; Lee, Roland R; Corbetta, Maurizio

    2015-08-15

    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI. PMID:25758167

  19. Brain Perfusion Single Photon Emission Computed Tomography Abnormalities in Patients with Minimal Hepatic Encephalopathy

    PubMed Central

    Sunil, Hejjaji Venkataramarao; Mittal, Bhagwant Rai; Kurmi, Roshan; Chawla, Yogesh K; Dhiman, Radha K

    2012-01-01

    Background Minimal hepatic encephalopathy (MHE) is the mildest form of hepatic encephalopathy (HE). Minimal hepatic encephalopathy patients do not demonstrate clinically overt symptoms of HE but present with abnormal neuropsychological and/or neurophysiological tests indicative of cerebral dysfunction. This study was performed in such patients to identify regions of abnormal cerebral perfusion and to correlate regional cerebral blood flow (rCBF) changes with psychometric hepatic encephalopathy score (PHES), Child-Turcotte-Pugh's score (CTP), and model for end-stage liver disease (MELD) score. We also compared abnormal patterns of rCBF in cirrhotic patients of alcoholic etiology with non-alcoholic etiology. Methods This prospective study was performed to evaluate rCBF in 50 cirrhotic patients and 13 controls using technetium-99m ethyl cysteinate dimer (Tc-99m ECD) brain single photon emission computed tomography. All the patients underwent a battery of psychometry tests, PHES. Minimal hepatic encephalopathy was diagnosed if PHES was ??5. The rCBF changes were evaluated using region of interest (ROI) based semi-quantitative method of region/cerebellum and region/cortex ratios in 16 regions of the brain. Results Cirrhotic patients with MHE showed impaired perfusion in the superior prefrontal cortex and increased perfusion in the thalamus, brain-stem, medial temporal cortex, and the hippocampus when compared with the controls. Cerebral perfusion in superior prefrontal cortex correlated negatively with MELD score (r=?0.323, P=0.022). We found significant positive correlation between PHES score and rCBF values in the left superior prefrontal cortex (r=0.385, P=0.006). Cirrhotic patients with alcohol etiology showed significantly decreased rCBF in right inferior prefrontal cortex, right superior prefrontal cortex, and the anterior cingulate cortex while increased rCBF was noted in the right medial temporal cortex and hippocampus. Conclusion Our results suggest that alterations in cognition in cirrhotic patients with MHE may be associated with impaired abnormalities of rCBF. PMID:25755420

  20. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    PubMed Central

    Hayes, Jasmeet P.; Miller, Danielle R.; Lafleche, Ginette; Salat, David H.; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having spatially heterogeneous white matter abnormalities. Region-specific reduction in fractional anisotropy (FA) in the left retrolenticular part of the internal capsule was observed in the mTBI + LOC group as the number of blast exposures increased. A mediation analysis revealed that mTBI + LOC indirectly influenced verbal memory performance through its effect on white matter integrity. PTSD was not associated with spatially heterogeneous white matter abnormalities. However, there was a suggestion that at higher levels of PTSD symptom severity, LOC was associated with reduced FA in the left retrolenticular part of the internal capsule. These results support postmortem reports of diffuse axonal injury following mTBI and suggest that injuries with LOC involvement may be particularly detrimental to white matter integrity. Furthermore, these results suggest that LOC-associated white matter abnormalities in turn influence neurocognitive function. PMID:26106539

  1. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  2. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  3. Detecting Botnet Activities Based on Abnormal DNS traffic

    E-print Network

    Manasrah, Ahmed M; Abouabdalla, Omar Amer; Ramadass, Sureswaran

    2009-01-01

    IThe botnet is considered as a critical issue of the Internet due to its fast growing mechanism and affect. Recently, Botnets have utilized the DNS and query DNS server just like any legitimate hosts. In this case, it is difficult to distinguish between the legitimate DNS traffic and illegitimate DNS traffic. It is important to build a suitable solution for botnet detection in the DNS traffic and consequently protect the network from the malicious Botnets activities. In this paper, a simple mechanism is proposed to monitors the DNS traffic and detects the abnormal DNS traffic issued by the botnet based on the fact that botnets appear as a group of hosts periodically. The proposed mechanism is also able to classify the DNS traffic requested by group of hosts (group behavior) and single hosts (individual behavior), consequently detect the abnormal domain name issued by the malicious Botnets. Finally, the experimental results proved that the proposed mechanism is robust and able to classify DNS traffic, and effi...

  4. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    E-print Network

    Gibson, Joanne H

    Background: The Rett Syndrome (RTT) brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results: Using ...

  5. Abnormalities in auditory efferent activities in children with selective mutism.

    PubMed

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. PMID:24107432

  6. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  7. Abnormal brain processing of cutaneous pain in patients with chronic migraine.

    PubMed

    de Tommaso, Marina; Valeriani, Massimiliano; Guido, Marco; Libro, Giuseppe; Specchio, Luigi Maria; Tonali, Pietro; Puca, Francomichele

    2003-01-01

    Syndromes with chronic daily headache include chronic migraine (CM). The reason for the transformation of migraine into chronic daily headache is still unknown. In this study, we aimed to evaluate heat pain thresholds and event-related potentials following CO(2)-laser thermal stimulation (LEPS) in hand and facial regions in patients with CM, to show changes in nociceptive brain responses related to dysfunction of pain elaboration at the cortical level. The results were compared with findings from normal control subjects and from subjects who suffer from migraine without aura. The effects of stimulus intensity, subjective pain perception and attention were monitored and compared with features of the LEPS. Twenty-five CM patients, 15 subjects suffering from migraine without aura and 15 normal control subjects were enrolled in the study. LEPS amplitude variation was reduced in CM patients with respect to the perceived stimulus intensity, in comparison with migraine without aura patients and control subjects. In both headache groups, the distraction from the painful laser stimulus induced by an arithmetic task failed to suppress the LEPS amplitude, in comparison with control subjects. These results suggest an abnormal cortical processing of nociceptive input in CM patients, which could lead to the chronic state of pain. In both headache groups, an inability to reduce pain elaboration during an alternative cognitive task emerged as an abnormal behaviour probably predisposing to migraine. PMID:12507697

  8. Sensory Abnormalities in Focal Hand Dystonia and Non-Invasive Brain Stimulation

    PubMed Central

    Quartarone, Angelo; Rizzo, Vincenzo; Terranova, Carmen; Milardi, Demetrio; Bruschetta, Daniele; Ghilardi, Maria Felice; Girlanda, Paolo

    2014-01-01

    It has been proposed that synchronous and convergent afferent input arising from repetitive motor tasks may play an important role in driving the maladaptive cortical plasticity seen in focal hand dystonia (FHD). This hypothesis receives support from several sources. First, it has been reported that in subjects with FHD, paired associative stimulation produces an abnormal increase in corticospinal excitability, which was not confined to stimulated muscles. These findings provide support for the role of excessive plasticity in FHD. Second, the genetic contribution to the dystonias is increasingly recognized indicating that repetitive, stereotyped afferent inputs may lead to late-onset dystonia, such as FHD, more rapidly in genetically susceptible individuals. It can be postulated, according to the two factor hypothesis that dystonia is triggered and maintained by the concurrence of environmental factors such as repetitive training and subtle abnormal mechanisms of plasticity within somatosensory loop. In the present review, we examine the contribution of sensory-motor integration in the pathophysiology of primary dystonia. In addition, we will discuss the role of non-invasive brain stimulation as therapeutic approach in FHD. PMID:25538594

  9. Cognitive impairment as marker of diffuse brain abnormalities in early relapsing remitting multiple sclerosis

    PubMed Central

    Deloire, M; Salort, E; Bonnet, M; Arimone, Y; Boudineau, M; Amieva, H; Barroso, B; Ouallet, J; Pachai, C; Galliaud, E; Petry, K; Dousset, V; Fabrigoule, C; Brochet, B

    2005-01-01

    Objectives: To establish the frequency of cognitive impairment in a population based sample of patients with recently diagnosed relapsing-remitting multiple sclerosis (RRMS), and to determine the relation between cognitive abnormalities and the extent of macroscopic and microscopic tissue damage revealed by magnetic resonance imaging (MRI) and magnetisation transfer (MT) imaging. Methods: 58 patients with RRMS consecutively diagnosed in the previous six months in Aquitaine and 70 healthy controls underwent a battery of neuropsychological tests. Lesion load and atrophy indices (brain parenchymal fraction and ventricular fraction) were measured on brain MRI. MT ratio (MTR) histograms were obtained from lesions, normal appearing white matter (NAWM), and normal appearing grey matter (NAGM). Gadolinium enhanced lesions were counted. Results: 44 RRMS patients could be individually matched with healthy controls for age, sex, and education. Patients performed worse in tests of verbal and spatial memory, attention, information processing speed, inhibition, and conceptualisation. Measures of attention and information processing speed were correlated with lesion load, mean NAWM MTR, and the peak location of the NAGM MTR histogram in the patients. Multivariate regression analysis showed that lesion load and mean NAWM MTR were among the MR indices that were most significantly associated with impairment of attention and information processing speed in these early RRMS cases. Conclusions: Cognitive impairment appears to be common in the early stages of RRMS, mainly affecting attention, information processing speed, memory, inhibition, and conceptualisation. The severity of these deficits reflects the extent of the lesions and the severity of tissue disorganisation outside lesions. PMID:15774439

  10. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  11. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    PubMed

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders. PMID:16876824

  12. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Black, Joel A.; Dib-Hajj, Sulayman; Baker, David; Newcombe, Jia; Cuzner, M. Louise; Waxman, Stephen G.

    2000-10-01

    Clinical abnormalities in multiple sclerosis (MS) have classically been considered to be caused by demyelination and/or axonal degeneration; the possibility of molecular changes in neurons, such as the deployment of abnormal repertoires of ion channels that would alter neuronal electrogenic properties, has not been considered. Sensory Neuron-Specific sodium channel SNS displays a depolarized voltage dependence, slower activation and inactivation kinetics, and more rapid recovery from inactivation than classical "fast" sodium channels. SNS is selectively expressed in spinal sensory and trigeminal ganglion neurons within the peripheral nervous system and is not expressed within the normal brain. Here we show that sodium channel SNS mRNA and protein, which are not present within the cerebellum of control mice, are expressed within cerebellar Purkinje cells in a mouse model of MS, chronic relapsing experimental allergic encephalomyelitis. We also demonstrate SNS mRNA and protein expression within Purkinje cells from tissue obtained postmortem from patients with MS, but not in control subjects with no neurological disease. These results demonstrate a change in sodium channel expression in neurons within the brain in an animal model of MS and in humans with MS and suggest that abnormal patterns of neuronal ion channel expression may contribute to clinical abnormalities such as ataxia in these disorders.

  13. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    ERIC Educational Resources Information Center

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.…

  14. Autism Spectrum Disorder as Early Neurodevelopmental Disorder: Evidence from the Brain Imaging Abnormalities in 2-3 Years Old Toddlers

    ERIC Educational Resources Information Center

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships…

  15. Cognitive control dysfunction and abnormal frontal cortex activation in stimulant drug users and their biological siblings

    PubMed Central

    Smith, D G; Jones, P S; Bullmore, E T; Robbins, T W; Ersche, K D

    2013-01-01

    Cognitive and neural abnormalities are known to accompany chronic drug abuse, with impairments in cognition and changes in cortical structure seen in stimulant-dependent individuals. However, premorbid differences have also been observed in the brains and behavior of individuals at risk for substance abuse, before they develop dependence. Endophenotype research has emerged as a useful method for assessing preclinical traits that may be risk factors for pathology by studying patient populations and their undiagnosed first-degree relatives. This study used the color-word Stroop task to assess executive functioning in stimulant-dependent individuals, their unaffected biological siblings and unrelated healthy control volunteers using a functional magnetic resonance imaging paradigm. Both the stimulant-dependent and sibling participants demonstrated impairments in cognitive control and processing speed on the task, registering significantly longer response latencies. However, the two groups generated very different neural responses, with the sibling participants exhibiting a significant decrease in activation in the inferior frontal gyrus compared with both stimulant-dependent individuals and control participants. Both target groups also demonstrated a decrease in hemispheric laterality throughout the task, exhibiting a disproportionate increase in right hemispheric activation, which was associated with their behavioral inefficiencies. These findings not only suggest a possible risk factor for stimulant abuse of poor inhibitory control and cortical inefficiency but they also demonstrate possible adaptations in the brains of stimulant users. PMID:23673468

  16. Are Structural Brain Abnormalities Associated With Suicidal Behavior In Patients With Psychotic Disorders?

    PubMed Central

    Giakoumatos, Christoforos I; Tandon, Neeraj; Shah, Jai; Mathew, Ian T; Brady, Roscoe O; Clementz, Brett A; Pearlson, Godfrey D; Thaker, Gunvant K; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S

    2014-01-01

    Suicide represents a major health problem world-wide. Nevertheless, the understanding of the neurobiological underpinnings of suicidal behavior remains far from complete. We compared suicide attempters to non-attempters, and high vs. low lethality attempters, to identify brain regions associated with suicidal behavior in patients with psychotic disorders. 489 individuals with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder I and 262 healthy controls enrolled in the B-SNIP study were studied. Groups were compared by attempt history and the highest medical lethality of previous suicide attempts. 97 patients had a history of a high lethality attempt, 51 of a low lethality attempt and 341 had no attempt history. Gray matter volumes were obtained from 3T structural MRI scans using FreeSurfer. ANCOVAs were used to examine differences between groups, followed by Hochberg multiple comparison correction. Compared to non-attempters, attempters had significantly less gray matter volume in bilateral inferior temporal and superior temporal cortices, left superior parietal, thalamus and supramarginal regions, right insula, superior frontal and rostral middle frontal regions. Among attempters, a history of high lethality attempts was associated with significantly smaller volumes in the left lingual gyrus and right cuneus. Compared to non-attempters, low lethality attempters had significant decreases in the left supramarginal gyrus, thalamus and the right insula. Structural brain abnormalities may distinguish suicide attempters from non-attempters and high from low lethality attempters among individuals with psychotic disorders. Regions in which differences were observed are part of neural circuitries that mediate inhibition, impulsivity and emotion, visceral, visual and auditory perception. PMID:23866739

  17. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study.

    PubMed

    Slobounov, Semyon M; Zhang, K; Pennell, D; Ray, W; Johnson, B; Sebastianelli, W

    2010-04-01

    Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting. PMID:20039023

  18. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    PubMed Central

    Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollmann, Robert; Ferguson, David JP; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, William F; Chen, Lieping; McLeod, Rima

    2008-01-01

    Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or ?PD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus, CD4+ and CD8+ T cells, and activated microglia in perivascular areas and brain parenchyma. Genetically resistant, chronically infected mice had substantially less inflammation. Conclusion In outbred mice, chronic, adult acquired T. gondii infection causes neurologic and behavioral abnormalities secondary to inflammation and loss of brain parenchyma. Perivascular inflammation is prominent particularly contiguous to the aqueduct of Sylvius and hippocampus. Even resistant mice have perivascular inflammation. This mouse model of chronic T. gondii infection raises questions of whether persistence of this parasite in brain can cause inflammation or neurodegeneration in genetically susceptible hosts. PMID:18947414

  19. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  20. BRAIN ABNORMALITIES IN YOUNG ADULTS AT GENETIC RISK FOR AUTOSOMAL DOMINANT ALZHEIMER’S DISEASE: A CROSS-SECTIONAL STUDY

    PubMed Central

    Reiman, Eric M.; Quiroz, Yakeel T.; Fleisher, Adam S.; Chen, Kewei; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Fagan, Anne M.; Shah, Aarti R.; Alvarez, Sergio; Arbelaez, Andrés; Giraldo, Margarita; Acosta-Baena, Natalia; Sperling, Reisa A.; Dickerson, Brad; Stern, Chantal E.; Tirado, Victoria; Munoz, Claudia; Reiman, Rebecca A.; Huentelman, Matthew J.; Alexander, Gene E.; Langbaum, Jessica B.S.; Kosik, Kenneth S.; Tariot, Pierre N.; Lopera, Francisco

    2013-01-01

    Summary Background We previously detected functional brain imaging abnormalities in young adults at genetic risk for late-onset Alzheimer’s disease (AD). Here, we sought to characterize structural and functional magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and plasma biomarker abnormalities in young adults at risk for autosomal dominant early-onset AD. Biomarker measurements were characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the world’s largest known autosomal dominant early-onset AD kindred, more than two decades before the carriers’ estimated median age of 44 at the onset of mild cognitive impairment (MCI) and before their estimated age of 28 at the onset of amyloid-? (A?) plaque deposition. Methods Biomarker data for this cross-sectional study were acquired in Antioquia, Colombia between July and August, 2010. Forty-four participants from the Colombian Alzheimer’s Prevention Initiative (API) Registry had structural MRIs, functional MRIs during associative memory encoding/novel viewing and control tasks, and cognitive assessments. They included 20 mutation carriers and 24 non-carriers, who were cognitively normal, 18-26 years old and matched for their gender, age, and educational level. Twenty of the participants, including 10 mutation carriers and 10 non-carriers, had lumbar punctures and venipunctures. Primary outcome measures included task-dependent hippocampal/parahippocampal activations and precuneus/posterior cingulate deactivations, regional gray matter reductions, CSF A?1-42, total tau and phospho-tau181 levels, and plasma A?1-42 levels and A?1-42/A?1-40 ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and AD-related search regions. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. Findings The mutation carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological test scores, or proportion of apolipoprotein E (APOE) ?4 carriers. Compared to the non-carriers, carriers had higher CSF A?1-42 levels (p=0·008), plasma A?1-42 levels (p=0·01), and plasma A?1-42/A?1-40 ratios (p=0·001), consistent with A?1-42 overproduction. They also had greater hippocampal/parahippocampal activations (as low as p=0·008, after correction for multiple comparisons), less precuneus/posterior cingulate deactivations (as low as p=0·001, after correction), less gray matter in several regions (p-values <0·005, uncorrected, and corrected p=0·008 in the parietal search region), similar to findings in the later preclinical and clinical stages of autosomal dominant and late-onset AD. Interpretation Young adults at genetic risk for autosomal dominant AD have functional and structural MRI abnormalities, along with CSF and plasma biomarker findings consistent with A?1-42 over-production. While the extent to which the underlying brain changes are progressive or developmental remain to be determined, this study demonstrates the earliest known biomarker changes in cognitively normal people at genetic risk for autosomal dominant AD. Funding Banner Alzheimer’s Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Boston University Department of Psychology, Colciencias (1115-408-20512, 1115-545-31651), National Institute on Aging (R01 AG031581, P30 AG19610, UO1 AG024904, RO1 AG025526, RF1AG041705), National Institute of Neurological Disorders and Stroke (F31-NS078786) and state of Arizona. PMID:23137948

  1. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  2. Lag threads organize the brain’s intrinsic activity

    PubMed Central

    Mitra, Anish; Snyder, Abraham Z.; Blazey, Tyler; Raichle, Marcus E.

    2015-01-01

    It has been widely reported that intrinsic brain activity, in a variety of animals including humans, is spatiotemporally structured. Specifically, propagated slow activity has been repeatedly demonstrated in animals. In human resting-state fMRI, spontaneous activity has been understood predominantly in terms of zero-lag temporal synchrony within widely distributed functional systems (resting-state networks). Here, we use resting-state fMRI from 1,376 normal, young adults to demonstrate that multiple, highly reproducible, temporal sequences of propagated activity, which we term “lag threads,” are present in the brain. Moreover, this propagated activity is largely unidirectional within conventionally understood resting-state networks. Modeling experiments show that resting-state networks naturally emerge as a consequence of shared patterns of propagation. An implication of these results is that common physiologic mechanisms may underlie spontaneous activity as imaged with fMRI in humans and slowly propagated activity as studied in animals. PMID:25825720

  3. Activities That Build the Young Child's Brain.

    ERIC Educational Resources Information Center

    Gellens, Suzanne R.

    This book presents 350 classroom-tested activities for use with children to create an environment that will stimulate young children's brains. Designed to be used by families, classroom teachers, family childcare providers, or others caring for young children, the book includes information on current brain research and describes interest areas in…

  4. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Ulu?, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater during the perception of unnatural (versus natural) motion (P < 0.01). To explore the microstructural basis for these functional changes, the regions with significant interaction effects (i.e. those with group differences in activation across perceptual conditions) were used as seeds for tractographic analysis of diffusion tensor imaging scans acquired in the same subjects. Fibre pathways specifically connecting each of the significant functional magnetic resonance imaging clusters to the cerebellum were reconstructed. Of the various reconstructed pathways that were analysed, the ponto-cerebellar projection alone differed between groups, with reduced fibre integrity in dystonia (P < 0.001). In aggregate, the findings suggest that the normal pattern of brain activation in response to motion perception is disrupted in DYT1 dystonia. Thus, it is unlikely that the circuit changes that underlie this disorder are limited to primary sensorimotor pathways. PMID:26419798

  5. The Genetic and Environmental Determinants of the Association Between Brain Abnormalities and Schizophrenia: The Schizophrenia Twins and Relatives Consortium

    PubMed Central

    van Haren, Neeltje E.M.; Rijsdijk, Fruhling; Schnack, Hugo G.; Picchioni, Marco M.; Toulopoulou, Timothea; Weisbrod, Matthias; Sauer, Heinrich; van Erp, Theo G.; Cannon, Tyrone D.; Huttunen, Matti O.; Boomsma, Dorret I.; Hulshoff Pol, Hilleke E.; Murray, Robin M.; Kahn, Rene S.

    2012-01-01

    Background Structural brain abnormalities are consistently found in schizophrenia (Sz) and have been associated with the familial risk for the disorder. We aim to define the relative contributions of genetic and nongenetic factors to the association between structural brain abnormalities and Sz in a uniquely powered cohort (Schizophrenia Twins and Relatives consortium). Methods An international multicenter magnetic resonance imaging collaboration was set up to pool magnetic resonance imaging scans from twin pairs in Utrecht (The Netherlands), Helsinki (Finland), London (United Kingdom), and Jena (Germany). A sample of 684 subjects took part, consisting of monozygotic twins (n = 410, with 51 patients from concordant and 52 from discordant pairs) and dizygotic twins (n = 274, with 39 patients from discordant pairs). The additive genetic, common, and unique environmental contributions to the association between brain volumes and risk for Sz were estimated by structural equation modeling. Results The heritabilities of most brain volumes were significant and ranged between 52% (temporal cortical gray matter) and 76% (cerebrum). Heritability of cerebral gray matter did not reach significance (34%). Significant phenotypic correlations were found between Sz and reduced volumes of the cerebrum (?.22 [?.30/?.14]) and white matter (?.17 [?.25/?.09]) and increased volume of the third ventricle (.18 [.08/.28]). These were predominantly due to overlapping genetic effects (77%, 94%, and 83%, respectively). Conclusions Some of the genes that transmit the risk for Sz also influence cerebral (white matter) volume. PMID:22341827

  6. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs

    PubMed Central

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-01-01

    AIM: To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. METHODS: After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. RESULTS: Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. CONCLUSION: After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity. PMID:25400453

  7. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  8. Understanding the brain by controlling neural activity.

    PubMed

    Krug, Kristine; Salzman, C Daniel; Waddell, Scott

    2015-09-19

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  9. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation

    PubMed Central

    Prabowo, A.; Anink, J.; Lammens, M; Nellist, M.; van den Ouweland, A. M. W.; Adle-Biassette, H.; Sarnat, H.B.; Flores-Sarnat, L.; Crino, P.B.; Aronica, E.

    2012-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in either the TSC1 or TSC2 genes and characterized by developmental brain abnormalities. We defined the spectrum of brain abnormalities in fetal TSC brain ranging from 23 to 38 gestational weeks. We hypothesized (1) prenatal activation of the target-of-rapamycin complex 1 (TORC1) signaling pathway and (2) activation of inflammatory pathways in fetal brain lesions. Immunocytochemical analysis of cortical tubers, as well as subependymal lesions in all cases confirmed the cell-associated activation of the TORC1 signaling pathway in both the cortical tubers and subependymal lesions (including a congenital subependymal giant cell astrocytoma) with expression of pS6, p4EBP1 and c-myc proteins, as well as of p70 S6 kinase 1. The lesions contained macrophages and T-lymphocytes; giant cells within the lesions expressed inflammatory response markers including major histocompatibility complex (MHC) class I and II, Toll like receptor (TLR) 2 and 4 and advanced glycation end products (RAGE). These observations indicate that brain malformations in TSC are likely a consequence of increased mTOR activation during embryonic brain development. We also provide evidence supporting the possible immunogenicity of giant cells and the early activation of inflammatory pathways in TSC brain. PMID:22805177

  10. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    PubMed Central

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  11. Functional brain abnormalities during finger-tapping in HIV-infected older adults: A magnetoencephalography study

    PubMed Central

    Wilson, Tony W.; Heinrichs-Graham, Elizabeth; Robertson, Kevin R.; Sandkovsky, Uriel; O’Neill, Jennifer; Knott, Nichole L.; Fox, Howard S.; Swindells, Susan

    2013-01-01

    Despite the availability of combination antiretroviral therapy, at least mild cognitive dysfunction is commonly observed in HIV-infected patients, with an estimated prevalence of 35-70%. Neuropsychological studies of these HIV-associated neurocognitive disorders (HAND) have documented aberrations across a broad range of functional domains, although the basic pathophysiology remains unresolved. Some of the most common findings have been deficits in fine motor control and reduced psychomotor speed, but to date no neuroimaging studies have evaluated basic motor control in HAND. In this study, we used magnetoencephalography (MEG) to evaluate the neurophysiological processes that underlie motor planning in older HIV-infected adults and a matched, uninfected control group. MEG is a noninvasive and direct measure of neural activity with good spatiotemporal precision. During the MEG recording, participants fixated on a central crosshair and performed a finger-tapping task with the dominant hand. All MEG data was corrected for head movements, preprocessed, and imaged in the time-frequency domain using beamforming methodology. All analyses focused on the pre-movement beta desynchronization, which is known to be an index of movement planning. Our results demonstrated that HIV-1-infected patients have deficient beta desynchronization relative to controls within the left/right precentral gyri, and the supplementary motor area. In contrast, HIV-infected persons showed abnormally strong beta responses compared to controls in the right dorsolateral prefrontal cortex and medial prefrontal areas. In addition, the amplitude of beta activity in the primary and supplementary motor areas correlated with scores on the Grooved Pegboard test in HIV-infected adults. These results demonstrate that primary motor and sensory regions may be particularly vulnerable to HIV-associated damage, and that prefrontal cortices may serve a compensatory role in maintaining motor performance levels in infected patients. PMID:23749418

  12. Autism spectrum disorder as early neurodevelopmental disorder: evidence from the brain imaging abnormalities in 2-3 years old toddlers.

    PubMed

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-07-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships in adolescents and adults with ASD, literature is still limited in information about the neurobiology of ASD in the early age of life. Brain images of 50 toddlers with ASD and 28 age, gender, and developmental quotient matched toddlers with developmental delay (DD) (control group) between ages 2 and 3 years were captured using combined magnetic resonance-based structural imaging and diffusion tensor imaging (DTI). Structural magnetic resonance imaging was applied to assess overall gray matter (GM) and white matter (WM) volumes, and regional alterations were assessed by voxel-based morphometry. DTI was used to investigate the white matter tract integrity. Compared with DD, significant increases were observed in ASD, primarily in global GM and WM volumes and in right superior temporal gyrus regional GM and WM volumes. Higher fractional anisotropy value was also observed in the corpus callosum, posterior cingulate cortex, and limbic lobes of ASD. The converging findings of structural and white matter abnormalities in ASD suggest that alterations in neural-anatomy of different brain regions may be involved in behavioral and cognitive deficits associated with ASD, especially in an early age of 2-3 years old toddlers. PMID:24419870

  13. Prenatal-postnatal correlations of brain abnormalities: how lesions and diagnoses change over time

    PubMed Central

    Senapati, Gunjan; Levine, Deborah

    2013-01-01

    A combination of prenatal ultrasound and MRI can be used to detect and characterize many primary and secondary CNS abnormalities in the developing fetus. While this information is useful in prenatal patient counseling, it is important to understand the factors that can influence change in diagnosis and prognosis over time. The etiology of the abnormality, the conspicuity of associated findings, the change in appearance over time, and the opinion of subspecialty experts all can influence the diagnosis. Additionally, technical factors of imaging acquisition may allow the detection of an abnormality in the postnatal period and not prenatally. Having an understanding of the normal fetal central nervous system anatomy at varying gestational ages will aid in the imaging detection and interpretation of CNS pathology. Understanding how these appearances and diagnoses can change over time will aid in the discussion of prognosis with expectant parents, which is crucial in fetal CNS abnormalities. PMID:24078783

  14. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies.

    PubMed

    Aoki, Y; Kasai, K; Yamasue, H

    2012-01-01

    Abnormal trajectory of brain development has been suggested by previous structural magnetic resonance imaging and head circumference findings in autism spectrum disorders (ASDs); however, the neurochemical backgrounds remain unclear. To elucidate neurochemical processes underlying aberrant brain growth in ASD, we conducted a comprehensive literature search and a meta-analysis of (1)H-magnetic resonance spectroscopy ((1)H-MRS) studies in ASD. From the 22 articles identified as satisfying the criteria, means and s.d. of measure of N-acetylaspartate (NAA), creatine, choline-containing compounds, myo-Inositol and glutamate+glutamine in frontal, temporal, parietal, amygdala-hippocampus complex, thalamus and cerebellum were extracted. Random effect model analyses showed significantly lower NAA levels in all the examined brain regions but cerebellum in ASD children compared with typically developed children (n=1295 at the maximum in frontal, P<0.05 Bonferroni-corrected), although there was no significant difference in metabolite levels in adulthood. Meta-regression analysis further revealed that the effect size of lower frontal NAA levels linearly declined with older mean age in ASD (n=844, P<0.05 Bonferroni-corrected). The significance of all frontal NAA findings was preserved after considering between-study heterogeneities (P<0.05 Bonferroni-corrected). This first meta-analysis of (1)H-MRS studies in ASD demonstrated robust developmental changes in the degree of abnormality in NAA levels, especially in frontal lobes of ASD. Previously reported larger-than-normal brain size in ASD children and the coincident lower-than-normal NAA levels suggest that early transient brain expansion in ASD is mainly caused by an increase in non-neuron tissues, such as glial cell proliferation. PMID:22832731

  15. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    USGS Publications Warehouse

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood.

  16. Cardiac repolarization abnormalities and increased sympathetic activity in scleroderma.

    PubMed Central

    Ciftci, Orcun; Onat, Ahmet Mesut; Yavuz, Bunyamin; Akdogan, Ali; Aytemir, Kudret; Tokgozoglu, Lale; Sahiner, Levent; Deniz, Ali; Ureten, Kemal; Kizilca, Guler; Calguneri, Meral; Oto, Ali

    2007-01-01

    BACKGROUND: Cardiac involvement in scleroderma is a poor prognostic sign and is usually underdiagnosed, particularly in asymptomatic patient. This paper focuses on QT dynamicity and heart rate variability (HRV) in patients with scleroderma and controls in an attempt to investigate the cardiac autonomic system and ventricular repolarization. METHODS: Sixty patients with scleroderma and 30 age- and sex-matched healthy controls who had no cardiovascular risk factors were included in this study. All patients and the controls underwent a 24-hour holter recording as well as a transthoracic echocardiography. HRV and QT dynamicity parameters were calculated. RESULTS: In HRV analysis, autonomic balance was changed in favor of the sympathetic system in patients with diffuse scleroderma. In QT dynamicity analysis, QT/RR slopes were significantly steeper in patients with diffuse scleroderma compared to patients with limited scleroderma and controls (QTapex/RR: 0.24 +/- 0.16, 0.15 +/- 0.03, 0.14 +/- 0.03 respectively p < 0.001; QTend/RR: 0.26 +/- 0.17, 0.14 +/- 0.04, 0.13 +/- 0.05, respectively p < 0.001). CONCLUSIONS: Patients with diffuse scleroderma may have asymptomatic cardiac repolarization abnormalities and autonomic dysfunction. Our results may indicate that QT dynamicity and HRV can be useful noninvasive methods that may detect impaired state of autonomic balance and cardiac repolarization in patients with diffuse scleroderma. PMID:17393947

  17. Nanotools for Neuroscience and Brain Activity Mapping

    PubMed Central

    Alivisatos, A. Paul; Andrews, Anne M.; Boyden, Edward S.; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Fraser, Scott E.; Lippincott-Schwartz, Jennifer; Looger, Loren L.; Masmanidis, Sotiris; McEuen, Paul L.; Nurmikko, Arto V.; Park, Hongkun; Peterka, Darcy S.; Reid, Clay; Roukes, Michael L.; Scherer, Axel; Schnitzer, Mark; Sejnowski, Terrence J.; Shepard, Kenneth L.; Tsao, Doris; Turrigiano, Gina; Weiss, Paul S.; Xu, Chris; Yuste, Rafael; Zhuang, Xiaowei

    2013-01-01

    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function. PMID:23514423

  18. Cardiac abnormalities in systemic lupus erythematosus: prevalence and relationship to disease activity.

    PubMed

    Ong, M L; Veerapen, K; Chambers, J B; Lim, M N; Manivasagar, M; Wang, F

    1992-01-01

    We conducted a prospective longitudinal study to determine the nature and prevalence of cardiac abnormalities in systemic lupus erythematosus and to study their natural history and relationship with disease activity. Forty consecutive inpatients with systemic lupus erythematosus were studied during their admission and subsequently 6 to 12 months later. On each occasion a clinical cardiovascular examination was carried out, disease activity was scored using the "Lupus Activity Criteria Count" and a Doppler echocardiographic examination was carried out. 72.5% of patients had an abnormal echocardiogram in the first study while 51.7% were abnormal during the follow-up study. Valvar disease occurred in 37.5% of patients. The mitral valve was most commonly affected. Libman-Sacks endocarditis was rare (2.5%). Pericardial effusions were seen in 36.2% of echocardiograms. The majority (76.0%) of these were associated with hypoalbuminaemia. 80.0% of patients had active disease during the first examination and 41.4% at follow-up. There was no correlation between activity of disease and prevalence of cardiac abnormalities at either examination. We conclude that cardiac disease is common in systemic lupus erythematosus. Prevalence of cardiac abnormality did not correlate with disease activity. PMID:1548111

  19. Divergent structural brain abnormalities between different genetic subtypes of children with Prader–Willi syndrome

    PubMed Central

    2013-01-01

    Background Prader–Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses. Methods High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite. Results Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD. Conclusions Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD. PMID:24144356

  20. Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.

    PubMed

    Renjith, Arokia; Manjula, P; Mohan Kumar, P

    2015-11-01

    Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method. PMID:26493726

  1. Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease

    PubMed Central

    Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M.; Leonardo, Cassandra D.; Ye, Jieping; Thompson, Paul M.; for the Alzheimer’s Disease Neuroimaging Initiative

    2015-01-01

    Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791

  2. Brain Activity on Navigation in Virtual Environments.

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.

    2001-01-01

    Assessed the cognitive processing that takes place in virtual environments by measuring electrical brain activity using Fast Fourier Transform analysis. University students performed the same task in a real and a virtual environment, and eye movement measurements showed that all subjects were more attentive when navigating in the virtual world.…

  3. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    PubMed Central

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ? 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  4. Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes.

    PubMed

    Katsel, Pavel; Davis, Kenneth L; Li, Celeste; Tan, Weilun; Greenstein, Elizabeth; Kleiner Hoffman, Lisa B; Haroutunian, Vahram

    2008-11-01

    The goal of this study was to determine what signaling pathways may elicit myelin-specific gene expression deficits in schizophrenia (SZ). Microarray analyses indicated that genes associated with canonical cell cycle pathways were significantly affected in the anterior cingulate gyrus (ACG), the region exhibiting the most profound myelin-specific gene expression changes, in persons with SZ (N=16) as compared with controls (N=19). Detected gene expression changes of key regulators of G1/S phase transition and genes central to oligodendrocyte differentiation were validated using qPCR in the ACG in an independent cohort (Ns=45/34). The relative abundance of phosphorylated retinoblastoma protein (pRb) was increased in the white matter underlying the ACG in SZ subjects (Ns=12). The upregulation of cyclin D1 gene expression and the downregulation of p57(Kip2), accompanied by increased cyclin D/CDK4-dependent phosphorylation of pRb, acting as a checkpoint for G1/S phase transition, suggest abnormal cell cycle re-entry in postmitotic oligodendrocytes in SZ. Furthermore, gene expression profiling of brain samples from myelin mutant animal models, quaking and myelin-associated glycoprotein (MAG) null mice, showed that cell cycle gene expression changes were not a necessary consequence of the reduced gene expression of structural myelin proteins, such as MAG. While, quaking, a known modulator of cell cycle activity during oligodendrocyte differentiation impairs the expression of multiple myelin genes, including those that are affected in SZ. These data suggest that the normal patterns of cell cycle gene and protein expression are disrupted in SZ and that this disruption may contribute to the oligodendroglial deficits observed in SZ. PMID:18322470

  5. Abnormal task modulation of oscillatory neural activity in schizophrenia

    PubMed Central

    Dias, Elisa C.; Bickel, Stephan; Epstein, Michael L.; Sehatpour, Pejman; Javitt, Daniel C.

    2013-01-01

    Schizophrenia patients have deficits in cognitive function that are a core feature of the disorder. AX-CPT is commonly used to study cognition in schizophrenia, and patients have characteristic pattern of behavioral and ERP response. In AX-CPT subjects respond when a flashed cue “A” is followed by a target “X,” ignoring other letter combinations. Patients show reduced hit rate to “go” trials, and increased false alarms to sequences that require inhibition of a prepotent response. EEG recordings show reduced sensory (P1/N1), as well as later cognitive components (N2, P3, CNV). Behavioral deficits correlate most strongly with sensory dysfunction. Oscillatory analyses provide critical information regarding sensory/cognitive processing over and above standard ERP analyses. Recent analyses of induced oscillatory activity in single trials during AX-CPT in healthy volunteers showed characteristic response patterns in theta, alpha, and beta frequencies tied to specific sensory and cognitive processes. Alpha and beta modulated during the trials and beta modulation over the frontal cortex correlated with reaction time. In this study, EEG data was obtained from 18 schizophrenia patients and 13 controls during AX-CPT performance, and single trial decomposition of the signal yielded power in the target wavelengths. Significant task-related event-related desynchronization (ERD) was observed in both alpha and beta frequency bands over parieto-occipital cortex related to sensory encoding of the cue. This modulation was reduced in patients for beta, but not for alpha. In addition, significant beta ERD was observed over motor cortex, related to motor preparation for the response, and was also reduced in patients. These findings demonstrate impaired dynamic modulation of beta frequency rhythms in schizophrenia, and suggest that failures of oscillatory activity may underlie impaired sensory information processing in schizophrenia that in turn contributes to cognitive deficits. PMID:23986729

  6. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  7. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  8. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  9. Neurobiology of Disease Structural Abnormalities in the Brains of Human Subjects

    E-print Network

    Thompson, Paul

    Methamphetamine Paul M. Thompson,1 Kiralee M. Hayashi,1 Sara L. Simon,2 Jennifer A. Geaga,1 Michael S. Hong,1, the profile of structural deficits in the human brain associated with chronic methamphetamine (MA) abuse-based maps suggest that chronic methamphetamine abuse causes a selective pattern of cerebral deterioration

  10. Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder

    ERIC Educational Resources Information Center

    Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.

    2008-01-01

    The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation…

  11. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  12. Air Pollution, Cognitive Deficits and Brain Abnormalities: A Pilot Study with Children and Dogs

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Mora-Tiscareno, Antonieta; Ontiveros, Esperanza; Gomez-Garza, Gilberto; Barragan-Mejia, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R.; Henriquez-Roldan, Carlos; Perez-Guille, Beatriz; Torres-Jardon, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E.; Gonzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C.; Engle, Randall W.

    2008-01-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n:55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic…

  13. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    PubMed Central

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. PMID:26508861

  14. Differential Impact of Hyponatremia and Hepatic Encephalopathy on Health-Related Quality of Life and Brain Metabolite Abnormalities in Cirrhosis

    PubMed Central

    Ahluwalia, Vishwadeep; Wade, James B; Thacker, Leroy; Kraft, Kenneth A; Sterling, Richard K; Stravitz, R Todd; Fuchs, Michael; Bouneva, Iliana; Puri, Puneet; Luketic, Velimir; Sanyal, Arun J; Gilles, HoChong; Heuman, Douglas M; Bajaj, Jasmohan S

    2013-01-01

    Background Hyponatremia (HN) and hepatic encephalopathy (HE) together can impair health-related quality-of-life (HRQOL) and cognition in cirrhosis. Aim To study effect of hyponatremia on cognition, HRQOL and brain MR spectroscopy (MRS) independent of HE. Methods Four cirrhotic groups(no HE/HN, HE alone, HN alone (sodium<130mEq/L),HE+HN) underwent cognitive testing, HRQOL using Sickness Impact Profile (SIP: higher score is worse; has psycho-social and physical sub-scores) and brain MRS (myoinositol(mI) and glutamate+glutamine(Glx)), which were compared across groups. A subset underwent HRQOL testing before/after diuretic withdrawal. Results 82 cirrhotics (30 no HE/HN, 25 HE, 17 HE+HN and 10 HN, MELD 12, 63% Hepatitis C) were included. Cirrhotics with HN alone and without HE/HN had better cognition compared to HE groups (median abnormal tests no-HE/HN:3, HN:3.5, HE:6.5,HE+HN:7, p=0.008). Despite better cognition, HN only patients had worse HRQOL in total and psychosocial SIP while both HN groups (with/without HE) had a significantly worse physical SIP(p<0.0001, all comparisons). Brain MRS showed lowest Glx in HN and highest in HE groups (p<0.02). mI levels were comparably decreased in the three affected (HE,HE+HN and HN) groups compared to no HE/HN and were associated with poor HRQOL. Six HE+HN cirrhotics underwent diuretic withdrawal which improved serum sodium and total/psycho-social SIP scores. Conclusions Hyponatremic cirrhotics without HE have poor HRQOL despite better cognition than those with concomitant HE. Glx levels were lowest in HN without HE but mI was similar across affected groups. HRQOL improved after diuretic withdrawal. Hyponatremia has a complex, non-linear relationship with brain Glx and mI, cognition and HRQOL. PMID:23665182

  15. Classification of whole brain fMRI activation patterns

    E-print Network

    Balc?, Serdar Kemal

    2008-01-01

    Functional magnetic resonance imaging (fMRI) is an imaging technology which is primarily used to perform brain activation studies by measuring neural activity in the brain. It is an interesting question whether patterns ...

  16. Temporal organization of ongoing brain activity

    NASA Astrophysics Data System (ADS)

    Lombardi, F.; de Arcangelis, L.

    2014-10-01

    Ongoing brain activity results from the mutual interaction of hundred billions non-linear units and represents a significant part of the overall brain activity. Although its complex dynamics has been widely investigated, a large number of fundamental questions are still open, many of them concerning its temporal structure. Why does a certain population of neurons fires synchronously? Are these synchronized bursts following each other randomly or are they correlated according to some organizing principle? Far from addressing the fundamental problem of its functions, in the present article we focus on the problem of temporal correlations of ongoing cortical activity. We first overview the major features of its temporal structure and review recent experimental results, with particular emphasis on alternative approaches inspired in the theory of stochastic processes; then we introduce a neuronal network model inspired in self organized criticality and compare numerical results with experimental findings.

  17. Asymmetric Di-methyl Arginine is Strongly Associated with Cognitive Dysfunction and Brain MR Spectroscopic Abnormalities in Cirrhosis

    PubMed Central

    Bajaj, Jasmohan S; Ahluwalia, Vishwadeep; Wade, James B; Sanyal, Arun J; White, Melanie B; Noble, Nicole A; Monteith, Pamela; Fuchs, Michael; Sterling, Richard K; Luketic, Velimir; Bouneva, Iliana; Stravitz, Richard T; Puri, Puneet; Kraft, Kenneth A; Gilles, HoChong; Heuman, Douglas M

    2012-01-01

    Background Asymmetric di-methyl arginine (ADMA) is an inhibitor of nitric oxide synthase that accumulates in liver disease and may contribute to hepatic encephalopathy(HE). Aim To evaluate the association of ADMA with cognition and brain MR spectroscopy(MRS) in cirrhosis. Methods Cirrhotic patients with/without prior HE and non-cirrhotic controls underwent cognitive testing and ADMA determination. A subgroup underwent brain MRS [Glutamine/glutamate(Glx), myoinositol(mI), N-acetyl-aspartate(NAA) in parietal white, occipital gray and anterior cingulate(ACC)]. We also tested cognition and ADMA in a cirrhotic subgroup before and 1 month after transjugular intrahepatic portosystemic shunting (TIPS). Cognition and MRS values were correlated with ADMA and compared between groups using multi-variable regression. ADMA levels were compared between those who did/did not develop post-TIPS HE. Results 90 cirrhotics (MELD13, 54 prior HE) and 16 controls were included. Controls had better cognition and lower ADMA, Glx and higher mI compared to cirrhotics. Prior HE patients had worse cognition, higher ADMA and Glx and lower mI compared to non-HE cirrhotics. ADMA was positively correlated with MELD (r=0.58,p<0.0001), abnormal cognitive test number(r=0.66,p<0.0001) and Glx and NAAA (white matter,ACC) and negatively with mI. On regression, ADMA predicted number of abnormal tests and mean Z-score independent of prior HE and MELD. 12 patients underwent TIPS;7 developed HE post-TIPS. ADMA increased post-TIPS in patients who developed HE(p=0.019) but not in others(p=0.89). Conclusions A strong association of ADMA with cognition and prior HE was found independent of MELD score in cirrhosis. PMID:22889958

  18. Targeted training modifies oscillatory brain activity in schizophrenia patients

    PubMed Central

    Popov, Tzvetan G.; Carolus, Almut; Schubring, David; Popova, Petia; Miller, Gregory A.; Rockstroh, Brigitte S.

    2015-01-01

    Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ). Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory–verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG) oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory–verbal training (N = 19), similarly intense facial affect discrimination training (N = 19), or 4 weeks of treatment as usual (TAU, N = 19). Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b). Abnormally small alpha decrease 300–800 ms around S2 improved more after targeted auditory–verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects. PMID:26082889

  19. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  20. Regional homogeneity of resting-state brain abnormalities in violent juvenile offenders: a biomarker of brain immaturity?

    PubMed

    Chen, Chen; Zhou, Jiansong; Liu, Chunhong; Witt, Katrina; Zhang, Yingdong; Jing, Bin; Li, Chun; Wang, Xiaoping; Li, Lingjiang

    2015-01-01

    The authors investigated whether male violent juvenile offenders demonstrate any differences in local functional connectivity indicative of delayed maturation of the brain that may serve as a biomarker of violence. Twenty-nine violent juvenile offenders and 28 age-matched controls were recruited. Regional homogeneity (ReHo) method was used to analyze resting-state magnetic resonance images. Violent offenders showed significantly lower ReHo values in the right caudate, right medial prefrontal cortex, and left precuneus, and higher values in the right supramarginal gyrus than the controls. These regions had both high sensitivity and specificity in distinguishing between the two groups suggesting that dysfunction in these regions can be used to correctly classify those individuals who are violent. Dysfunction in the right medial prefrontal-caudate circuit may, therefore, represent an important biomarker of violence juvenile males. PMID:25716485

  1. Solar activity cycle and the incidence of foetal chromosome abnormalities detected at prenatal diagnosis

    NASA Astrophysics Data System (ADS)

    Halpern, Gabrielle J.; Stoupel, Eliahu G.; Barkai, Gad; Chaki, Rina; Legum, Cyril; Fejgin, Moshe D.; Shohat, Mordechai

    1995-06-01

    We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.

  2. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders

    PubMed Central

    Huang, Tzyy-Nan; Hsueh, Yi-Ping

    2015-01-01

    T-brain-1 (TBR1) is a brain-specific T-box transcription factor. In 1995, Tbr1 was first identified from a subtractive hybridization that compared mouse embryonic and adult telencephalons. Previous studies of Tbr1??? mice have indicated critical roles for TBR1 in the development of the cerebral cortex, amygdala, and olfactory bulb. Neuronal migration and axonal projection are two important developmental features controlled by TBR1. Recently, recurrent de novo disruptive mutations in the TBR1 gene have been found in patients with autism spectrum disorders (ASDs). Human genetic studies have identified TBR1 as a high-confidence risk factor for ASDs. Because only one allele of the TBR1 gene is mutated in these patients, Tbr1+?? mice serve as a good genetic mouse model to explore the mechanism by which de novo TBR1 mutation leads to ASDs. Although neuronal migration and axonal projection defects of cerebral cortex are the most prominent phenotypes in Tbr1??? mice, these features are not found in Tbr1+?? mice. Instead, inter- and intra-amygdalar axonal projections and NMDAR expression and activity in amygdala are particularly susceptible to Tbr1 haploinsufficiency. The studies indicated that both abnormal brain wiring (abnormal amygdalar connections) and excitation/inhibition imbalance (NMDAR hypoactivity), two prominent models for ASD etiology, are present in Tbr1+?? mice. Moreover, calcium/calmodulin-dependent serine protein kinase (CASK) was found to interact with TBR1. The CASK–TBR1 complex had been shown to directly bind the promoter of the Grin2b gene, which is also known as Nmdar2b, and upregulate Grin2b expression. This molecular function of TBR1 provides an explanation for NMDAR hypoactivity in Tbr1+?? mice. In addition to Grin2b, cell adhesion molecules—including Ntng1, Cdh8, and Cntn2—are also regulated by TBR1 to control axonal projections of amygdala. Taken together, the studies of Tbr1 provide an integrated picture of ASD etiology at the cellular and circuit levels. PMID:26578866

  3. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9?h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9?h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. PMID:26206149

  4. Exploring the motivational brain: effects of implicit power motivation on brain activation

    E-print Network

    Schultheiss, Oliver C.

    Exploring the motivational brain: effects of implicit power motivation on brain activation the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals

  5. Brain MR spectroscopic abnormalities in "MRI-negative" tuberous sclerosis complex patients.

    PubMed

    Wu, William E; Kirov, Ivan I; Tal, Assaf; Babb, James S; Milla, Sarah; Oved, Joseph; Weiner, Howard L; Devinsky, Orrin; Gonen, Oded

    2013-05-01

    Since approximately 5-10% of the ~50,000 tuberous sclerosis complex (TSC) patients in the US are "MRI-negative," our goal was to test the hypothesis that they nevertheless exhibit metabolic abnormalities. To test this, we used proton MR spectroscopy to obtain and compare gray and white matter (GM and WM) levels of the neuronal marker, N-acetylaspartate (NAA), the glial marker, myo-inositol (mI), and its associated creatine (Cr), and choline (Cho) between two "MRI-negative" female TSC patients (ages 5 and 43 years) and their matched controls. The NAA, Cr, Cho and mI concentrations, 9.8, 6.3, 1.4, and 5.7 mM, in the pediatric control were similar to those of the patients, whereas the adult patient revealed a 17% WM NAA decrease and 16% WM Cho increase from their published means for healthy adults - both outside their respective 90% prediction intervals. These findings suggest that longer disease duration and/or TSC2 gene mutation may cause axonal dysfunction and demyelination. PMID:23524469

  6. Scale-free brain activity: past, present, and future.

    PubMed

    He, Biyu J

    2014-09-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, 'scale-free'). This characteristic of scale-free brain activity distinguishes it from brain oscillations. Although scale-free brain activity and brain oscillations coexist, our understanding of the former remains limited. Recent research has shed light on the spatiotemporal organization, functional significance, and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights into, and analytical tools for, cognitive neuroscience. PMID:24788139

  7. Scale-free brain activity: past, present and future

    PubMed Central

    He, Biyu J.

    2014-01-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography, magnetoencephalography and functional magnetic resonance imaging signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, “scale-free”). This characteristic of scale-free brain activity distinguishes it from brain oscillations. While scale-free brain activity and brain oscillations coexist, our understanding of the former remains very limited. Recent research has shed light on the spatiotemporal organization, functional significance and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights and analytical tools for cognitive neuroscience. PMID:24788139

  8. Facial emotion recognition impairments are associated with brain volume abnormalities in individuals with HIV.

    PubMed

    Clark, Uraina S; Walker, Keenan A; Cohen, Ronald A; Devlin, Kathryn N; Folkers, Anna M; Pina, Matthew J; Tashima, Karen T

    2015-04-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV-associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  9. Predicting risky choices from brain activity patterns

    PubMed Central

    Helfinstein, Sarah M.; Schonberg, Tom; Congdon, Eliza; Karlsgodt, Katherine H.; Mumford, Jeanette A.; Sabb, Fred W.; Cannon, Tyrone D.; London, Edythe D.; Bilder, Robert M.; Poldrack, Russell A.

    2014-01-01

    Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights. PMID:24550270

  10. Predicting risky choices from brain activity patterns.

    PubMed

    Helfinstein, Sarah M; Schonberg, Tom; Congdon, Eliza; Karlsgodt, Katherine H; Mumford, Jeanette A; Sabb, Fred W; Cannon, Tyrone D; London, Edythe D; Bilder, Robert M; Poldrack, Russell A

    2014-02-18

    Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights. PMID:24550270

  11. Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia

    PubMed Central

    Caminiti, Silvia P.; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F.

    2015-01-01

    Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms. PMID:26594631

  12. Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study

    PubMed Central

    Umeda, Satoshi; Harrison, Neil A.; Gray, Marcus A.; Mathias, Christopher J.; Critchley, Hugo D.

    2015-01-01

    Postural tachycardia syndrome (PoTS), a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety, and depression. Although the estimated prevalence of PoTS is approximately 5–10 times as common as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI) with voxel-based morphometry (VBM) applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure to examine variation in regional brain structure associated with PoTS. We recruited 11 patients with established PoTS and 23 age-matched normal controls. Group comparison of gray matter volume revealed diminished gray matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation) and increased vulnerability to psychiatric symptoms in PoTS patients. PMID:25852449

  13. Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study.

    PubMed

    Umeda, Satoshi; Harrison, Neil A; Gray, Marcus A; Mathias, Christopher J; Critchley, Hugo D

    2015-01-01

    Postural tachycardia syndrome (PoTS), a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety, and depression. Although the estimated prevalence of PoTS is approximately 5-10 times as common as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI) with voxel-based morphometry (VBM) applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure to examine variation in regional brain structure associated with PoTS. We recruited 11 patients with established PoTS and 23 age-matched normal controls. Group comparison of gray matter volume revealed diminished gray matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation) and increased vulnerability to psychiatric symptoms in PoTS patients. PMID:25852449

  14. Regulation of brain aromatase activity in rats

    SciTech Connect

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of /sup 3/H/sub 2/O formed during the conversion of (1 beta-/sup 3/H)androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats.

  15. MnSOD activity protects mitochondrial morphology of quiescent fibroblasts from age associated abnormalities

    PubMed Central

    Sarsour, Ehab H.; Goswami, Monali; Kalen, Amanda L.; Goswami, Prabhat C.

    2010-01-01

    Previously, we have shown manganese superoxide dismutase (MnSOD) activity protects quiescent human normal skin fibroblasts (NHFs) from age associated loss in proliferative capacity. The loss in proliferative capacity of aged vs. young quiescent cells is often characterized as the chronological life span, which is clearly distinct from replicative senescence. We investigate the hypothesis that MnSOD activity protects the mitochondrial morphology from age associated damage and preserves the chronological life span of quiescent fibroblasts. Aged quiescent NHFs exhibited abnormalities in mitochondrial morphology including abnormal cristae formation and increased number of vacuoles. These results correlate with the levels of cellular reactive oxygen species (ROS) and mitochondrial morphology in MnSOD homozygous and heterozygous knockout mouse embryonic fibroblasts. The abnormalities in mitochondrial morphology in aged quiescent NHFs cultured in presence of 21% oxygen concentration were more severe than NHFs cultured in 4% oxygen environment. The alteration in mitochondrial morphology was associated with a significant increase in cell population doubling: 54 h in 21% compared to 44 h in 4% oxygen environment. Overexpression of MnSOD decreased ROS levels, and preserved mitochondrial morphology in aged quiescent NHFs. These results demonstrate that MnSOD activity protects mitochondrial morphology and preserves the proliferative capacities of quiescent NHFs from age associated loss. PMID:20206302

  16. Blood coagulation factor Va abnormality associated with resistance to activated protein C in venous thrombophilia.

    PubMed

    Sun, X; Evatt, B; Griffin, J H

    1994-06-01

    A coagulation test abnormality, termed activated protein C (APC) resistance, involving poor anticoagulant response to APC is currently the most common laboratory finding among venous thrombophilic patients. Because the anticoagulant activity of APC involves inactivation of factors Va and VIIIa, studies were made to assess the presence of abnormal factors V or VIII. Diluted aliquots of plasma from two unrelated patients with APC resistance and thrombosis were added to either factor VIII-deficient or factor V-deficient plasma and APC resistance assays were performed. The results suggested that patients' factor V but not factor VIII rendered the substrate plasma APC resistant. When factor V that had been partially purified from normal or APC resistant patients' plasmas using immunoaffinity chromatography was added to factor V-deficient plasma, APC resistance assays showed that patients' factor V or factor Va, but not normal factor V, rendered the substrate plasma resistant to APC. Studies of the inactivation of each partially purified thrombin-activated factor Va by APC suggested that half of the patients' factor Va was resistant to APC. These results support the hypothesis that the APC resistance of some venous thrombophilic plasmas is caused by abnormal factor Va. PMID:8193349

  17. Investigating a new neuromodulation treatment for brain disorders using synchronized activation of multimodal pathways.

    PubMed

    Markovitz, Craig D; Smith, Benjamin T; Gloeckner, Cory D; Lim, Hubert H

    2015-01-01

    Neuromodulation is an increasingly accepted treatment for neurological and psychiatric disorders but is limited by its invasiveness or its inability to target deep brain structures using noninvasive techniques. We propose a new concept called Multimodal Synchronization Therapy (mSync) for achieving targeted activation of the brain via noninvasive and precisely timed activation of auditory, visual, somatosensory, motor, cognitive, and limbic pathways. In this initial study in guinea pigs, we investigated mSync using combined activation of just the auditory and somatosensory pathways, which induced differential and timing dependent plasticity in neural firing within deep brain and cortical regions of the auditory system. Furthermore, by varying the location of somatosensory stimulation across the body, we increased or decreased spiking activity across different neurons. These encouraging results demonstrate the feasibility of systematically modulating the brain using mSync. Considering that hearing disorders such as tinnitus and hyperacusis have been linked to abnormal and hyperactive firing patterns within the auditory system, these results open up the possibility for using mSync to decrease this pathological activity by varying stimulation parameters. Incorporating multiple types of pathways beyond just auditory and somatosensory inputs and using other activation patterns may enable treatment of various brain disorders. PMID:25804410

  18. Investigating a new neuromodulation treatment for brain disorders using synchronized activation of multimodal pathways

    PubMed Central

    Markovitz, Craig D.; Smith, Benjamin T.; Gloeckner, Cory D.; Lim, Hubert H.

    2015-01-01

    Neuromodulation is an increasingly accepted treatment for neurological and psychiatric disorders but is limited by its invasiveness or its inability to target deep brain structures using noninvasive techniques. We propose a new concept called Multimodal Synchronization Therapy (mSync) for achieving targeted activation of the brain via noninvasive and precisely timed activation of auditory, visual, somatosensory, motor, cognitive, and limbic pathways. In this initial study in guinea pigs, we investigated mSync using combined activation of just the auditory and somatosensory pathways, which induced differential and timing dependent plasticity in neural firing within deep brain and cortical regions of the auditory system. Furthermore, by varying the location of somatosensory stimulation across the body, we increased or decreased spiking activity across different neurons. These encouraging results demonstrate the feasibility of systematically modulating the brain using mSync. Considering that hearing disorders such as tinnitus and hyperacusis have been linked to abnormal and hyperactive firing patterns within the auditory system, these results open up the possibility for using mSync to decrease this pathological activity by varying stimulation parameters. Incorporating multiple types of pathways beyond just auditory and somatosensory inputs and using other activation patterns may enable treatment of various brain disorders. PMID:25804410

  19. Adaptive active auditory brain computer interface.

    PubMed

    Hong, Bo; Lou, Bin; Guo, Jing; Gao, Shangkai

    2009-01-01

    An active paradigm was employed to produce reliable and prominent target response in an auditory brain computer interface (BCI), in which subject's voluntary recognition of the property of a target human voice enhances the discriminability between target and non-target EEG response. Furthermore, to adaptively decide the optimal number of trials being averaged for SVM classification, a statistical approach was proposed to convert each sample's margin in support vector space into probabilities of each voice choice being the target. In a testing of 8 subjects' EEG data from the active auditory BCI experiment, the proposed adaptive approach needs only about 4-6 trials to reach the equivalent accuracy of 15-trial averaging. The improved information transfer rate suggests the advantage of adaptive strategy in an active auditory BCI. PMID:19964644

  20. Neuroimaging and neuroenergetics: Brain activations as information-driven reorganization of energy flows

    E-print Network

    Neuroimaging and neuroenergetics: Brain activations as information-driven reorganization of energy informa- tion and changes of energy turnover in the brain, we consider the brain activations recorded 25 January 2010 Keywords: Neuroimaging Neuroenergetics Brain activation Cortical response Deviance

  1. TRANSLATION OF BRAIN ACTIVITY INTO SLEEP

    PubMed Central

    Krueger, James M.

    2012-01-01

    Cytokines including tumor necrosis factor alpha (TNF) play a role in sleep regulation in health and disease. Hypothalamic and cerebral cortical levels of TNF mRNA or TNF protein have diurnal variations with higher levels associated with greater sleep propensity. Sleep loss is associated with enhanced brain TNF. Central or systemic TNF injections enhance sleep. Inhibition of TNF using the soluble TNF receptor, or anti-TNF antibodies, or a TNF siRNA reduces spontaneous sleep. Mice lacking the TNF 55 kD receptor have less spontaneous sleep. Injection of TNF into sleep regulatory circuits, e.g. the hypothalamus, promotes sleep. In normal humans, plasma levels of TNF co-vary with EEG slow wave activity (SWA) and in multiple disease states plasma TNF increases in parallel with sleep propensity. Downstream mechanisms of TNF-enhanced sleep include nitric oxide, adenosine, prostaglandins and activation of nuclear factor kappa B. Neuronal use induces cortical neurons to express TNF and if applied directly to cortical columns TNF induces a functional sleep-like state within the column. TNF mechanistically has several synaptic functions. TNF-sleep data led to the idea that sleep is a fundamental property of neuronal/glial networks such as cortical columns and is dependent upon past activity within such assemblies. This view of brain organization of sleep has profound implications for sleep function that are briefly reviewed herein. PMID:24795496

  2. Spread of epileptic activity in human brain

    NASA Astrophysics Data System (ADS)

    Milton, John

    1997-03-01

    For many patients with medically refractory epilepsy surgical resection of the site of seizure onset (epileptic focus) offers the best hope for cure. Determination of the nature of seizure propagation should lead to improved methods for locating the epileptic focus (and hence reduce patient morbidity) and possibly to new treatment modalities directed at blocking seizure spread. Theoretical studies of neural networks emphasize the role of traveling waves for the propagation of activity. However, the nature of seizure propagation in human brain remains poorly characterized. The spread of epileptic activity in patients undergoing presurgical evaluation for epilepsy surgery was measured by placing subdural grids of electrodes (interelectrode spacings of 3-10 mm) over the frontal and temporal lobes. The exact location of each electrode relative to the surface of the brain was determined using 3--D MRI imaging techniques. Thus it is possible to monitor the spread of epileptic activity in both space and time. The observations are discussed in light of models for seizure propagation.

  3. Words in the brain: lexical determinants of word-induced brain activity

    E-print Network

    Coulson, Seana

    Words in the brain: lexical determinants of word-induced brain activity Lee Osterhout*, Mark Allen Abstract Many studies have shown that open- and closed-class words elicit different patterns of brain), grammatical category (articles, nouns, verbs, etc.), and word length. Although the two word classes did elicit

  4. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'

    PubMed Central

    2014-01-01

    While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia. PMID:25598821

  5. Brain Activity with Reading Sentences and Emoticons

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe a person's brain activity when he/she sees an emoticon at the end of a sentence. An emoticon consists of some characters that resemble the human face and expresses a sender's emotion. With the help of a computer network, we use e-mail, messenger, avatars and so on, in order to convey what we wish to, to a receiver. Moreover, we send an emotional expression by using an emoticon at the end of a sentence. In this research, we investigate the effect of an emoticon as nonverbal information, using an fMRI study. The experimental results show that the right and left inferior frontal gyrus were activated and we detect a sentence with an emoticon as the verbal and nonverval information.

  6. High-Resolution Magnetic Resonance Microscopy and Diffusion Tensor Imaging to Assess Brain Structural Abnormalities in the Murine Mucopolysaccharidosis VII Model

    PubMed Central

    Poptani, Harish; Kumar, Manoj; Nasrallah, Ilya M; Kim, Sungheon; Ittyerah, Ranjit; Pickup, Stephen; Li, Joel; Parente, Michael K; Wolfe, John H.

    2014-01-01

    High-resolution microscopic magnetic resonance imaging (?MRI) and diffusion tensor imaging (DTI) were performed to characterize brain structural abnormalities in a mouse model of mucopolysaccharidosis type VII (MPS VII). ?MRI demonstrated a decrease in the volume of anterior commissure and corpus callosum and a slight increase in the volume of the hippocampus in MPS VII vs. wild-type mice. DTI indices were analyzed in gray and white matter. In vivo and ex vivo DTI demonstrated significantly reduced fractional anisotropy in the anterior commissure, corpus callosum, external capsule and hippocampus in MPS VII vs. control brains. Significantly increased mean diffusivity was also found in the anterior commissure and corpus callosum from ex-vivo DTI. Significantly reduced linear anisotropy was observed from the hippocampus from in-vivo DTI, whereas significantly decreased planar anisotropy and spherical anisotropy were observed in the external capsule from only ex-vivo DTI. There were corresponding morphological differences in the brains of MPS VII mice by hematoxylin and eosin staining. Luxol fast blue staining demonstrated less intense staining of the corpus callosum and external capsule; myelin abnormalities in the corpus callosum were also demonstrated quantitatively in toluidine blue-stained sections and confirmed by electron microscopy. These results demonstrate the potential for ?MRI and DTI for quantitative assessment of brain pathology in murine models of brain diseases. PMID:24335527

  7. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders.

    PubMed

    Paakki, Jyri-Johan; Rahko, Jukka; Long, Xiangyu; Moilanen, Irma; Tervonen, Osmo; Nikkinen, Juha; Starck, Tuomo; Remes, Jukka; Hurtig, Tuula; Haapsamo, Helena; Jussila, Katja; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Zang, Yufeng; Kiviniemi, Vesa

    2010-03-19

    Measures assessing resting-state brain activity with blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) can reveal cognitive disorders at an early stage. Analysis of regional homogeneity (ReHo) measures the local synchronization of spontaneous fMRI signals and has been successfully utilized in detecting alterations in subjects with attention-deficit hyperactivity disorder (ADHD), depression, schizophrenia, Parkinson's disease and Alzheimer's dementia. Resting-state brain activity was investigated in 28 adolescents with autism spectrum disorders (ASD) and 27 typically developing controls being imaged with BOLD fMRI and analyzed with the ReHo method. The hypothesis was that ReHo of resting-state brain activity would be different between ASD subjects and controls in brain areas previously shown to display functional alterations in stimulus or task based fMRI studies. Compared with the controls, the subjects with ASD had significantly decreased ReHo in right superior temporal sulcus region, right inferior and middle frontal gyri, bilateral cerebellar crus I, right insula and right postcentral gyrus. Significantly increased ReHo was discovered in right thalamus, left inferior frontal and anterior subcallosal gyrus and bilateral cerebellar lobule VIII. We conclude that subjects with ASD have right dominant ReHo alterations of resting-state brain activity, i.e., areas known to exhibit abnormal stimulus or task related functionality. Our results demonstrate that there is potential in utilizing the ReHo method in fMRI analyses of ASD. PMID:20053346

  8. Electrophysiological Imaging of Brain Activity and Connectivity – Challenges and Opportunities

    PubMed Central

    He, Bin; Yang, Lin; Wilke, Christopher; Yuan, Han

    2011-01-01

    Unlocking the dynamic inner workings of the brain continues to remain a grand challenge of the 21st century. To this end, functional neuroimaging modalities represent an outstanding approach to better understand the mechanisms of both normal and abnormal brain function. The ability to image brain function with ever increasing spatial and temporal resolution utilizing minimal or non-invasive procedures has made a significant leap over the past several decades. Further delineation of functional networks could lead to improved understanding of brain function in both normal as well as diseased states. This article reviews recent advancements and current challenges in dynamic functional neuroimaging techniques, including electrophysiological source imaging, multimodal neuroimaging integrating fMRI with EEG/MEG, and functional connectivity imaging. PMID:21478071

  9. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice

    PubMed Central

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F.; Charbonneau, Noe L.; Smaldone, Silvia; Carlson, Eric J.; Ramirez, Francesco; Keene, Douglas R.; Sakai, Lynn Y.

    2015-01-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can sequester BMP complexes in a latent state. PMID:26114882

  10. [The information theory of brain systemic activity].

    PubMed

    Sudakov, K V

    2011-01-01

    Information equivalents of initial requirements and their satisfaction are shown to induce formation of discrete information systemoquanta of psychic activity on morphofunctional structures of the action result acceptor in the course of build-up of cerebral archtectonics of the functional systems governing the behaviour and psychic activity. Consecutive stages of induction of information systemoquanta of action result acceptors are described. Predominant motivations are supposed to play the leading role in the psychic activity through their involvement in the induction of information systemoquanta and their retrieval from memory. The role of emotions in the subjective information estimation of systemic cerebral activity is considered. It is argued that parameters of achievement of adaptive results by a subject are imprinted on acceptor structures via reverse afferentation in the form of specific information images. Enrichment of action results acceptors with information and extraction of information systemoquanta by prevailing motivations are believed to make up the basis of consciousness and thinking. The hypothesis of holographic organization of acceptors of the results of systemic brain action is considered. PMID:22312900

  11. Abnormal dynamics of activation of object use information in apraxia: evidence from eyetracking

    PubMed Central

    Lee, Chia-lin; Mirman, Daniel; Buxbaum, Laurel J.

    2014-01-01

    Action representations associated with object use may be incidentally activated during visual object processing, and the time course of such activations may be influenced by lexical-semantic context (e.g., Lee, Middleton, Mirman, Kalénine, & Buxbaum, 2012). In this study we used the “visual world” eye-tracking paradigm to examine whether a deficit in producing skilled object-use actions (apraxia) is associated with abnormalities in incidental activation of action information, and assessed the neuroanatomical substrates of any such deficits. Twenty left hemisphere stroke patients, ten of whom were apraxic, performed a task requiring identification of a named object in a visual display containing manipulation-related and unrelated distractor objects. Manipulation relationships among objects were not relevant to the identification task. Objects were cued with neutral (“S/he saw the….”), or action-relevant (“S/he used the….”) sentences. Non-apraxic participants looked at use-related non-target objects significantly more than at unrelated non-target objects when cued both by neutral and action-relevant sentences, indicating that action information is incidentally activated. In contrast, apraxic participants showed delayed activation of manipulation-based action information during object identification when cued by neutral sentences. The magnitude of delayed activation in the neutral sentence condition was reliably predicted by lower scores on a test of gesture production to viewed objects, as well as by lesion loci in the inferior parietal and posterior temporal lobes. However, when cued by a sentence containing an action verb, apraxic participants showed fixation patterns that were statistically indistinguishable from non-apraxic controls. In support of grounded theories of cognition, these results suggest that apraxia and temporal-parietal lesions may be associated with abnormalities in incidental activation of action information from objects. Further, they suggest that the previously-observed facilitative role of action verbs in the retrieval of object-related action information extends to participants with apraxia. PMID:24746946

  12. Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing

    PubMed Central

    Caldwell, Brendan M.; Harenski, Carla L.; Harenski, Keith A.; Fede, Samantha J.; Steele, Vaughn R.; Koenigs, Michael R.; Kiehl, Kent A.

    2015-01-01

    Investigations into the neurobiology of moral cognition are often done by examining clinical populations characterized by diminished moral emotions and a proclivity toward immoral behavior. Psychopathy is the most common disorder studied for this purpose. Although cocaine abuse is highly co-morbid with psychopathy and cocaine-dependent individuals exhibit many of the same abnormalities in socio-affective processing as psychopaths, this population has received relatively little attention in moral psychology. To address this issue, the authors used functional magnetic resonance imaging (fMRI) to record hemodynamic activity in 306 incarcerated male adults, stratified into regular cocaine users (n = 87) and a matched sample of non-cocaine users (n = 87), while viewing pictures that did or did not depict immoral actions and determining whether each depicted scenario occurred indoors or outdoors. Consistent with expectations, cocaine users showed abnormal neural activity in several frontostriatial regions during implicit moral picture processing compared to their non-cocaine using peers. This included reduced moral/non-moral picture discrimination in the vACC, vmPFC, lOFC, and left vSTR. Additionally, psychopathy was negatively correlated with activity in an overlapping region of the ACC and right lateralized vSTR. These results suggest that regular cocaine abuse may be associated with affective deficits which can impact relatively high-level processes like moral cognition. PMID:26528169

  13. Supervised learning for neural manifold using spatiotemporal brain activity

    NASA Astrophysics Data System (ADS)

    Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen

    2015-12-01

    Objective. Determining the means by which perceived stimuli are compactly represented in the human brain is a difficult task. This study aimed to develop techniques for the construction of the neural manifold as a representation of visual stimuli. Approach. We propose a supervised locally linear embedding method to construct the embedded manifold from brain activity, taking into account similarities between corresponding stimuli. In our experiments, photographic portraits were used as visual stimuli and brain activity was calculated from magnetoencephalographic data using a source localization method. Main results. The results of 10 × 10-fold cross-validation revealed a strong correlation between manifolds of brain activity and the orientation of faces in the presented images, suggesting that high-level information related to image content can be revealed in the brain responses represented in the manifold. Significance. Our experiments demonstrate that the proposed method is applicable to investigation into the inherent patterns of brain activity.

  14. On a Quantum Model of Brain Activities

    NASA Astrophysics Data System (ADS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  15. Increased Brain Activity May Compensate for Amyloid Pathology in Older Brains

    MedlinePLUS

    ... to Alzheimer’s, frequently have increased activity in the hippocampus compared to their cognitively healthy peers, scientists questioned ... beta-amyloid, greater activity in the visual and memory areas of the brain correlated directly with success ...

  16. Abnormal cortical sensorimotor activity during “Target” sound detection in subjects with acute acoustic trauma sequelae: an fMRI study

    PubMed Central

    Job, Agnès; Pons, Yoann; Lamalle, Laurent; Jaillard, Assia; Buck, Karl; Segebarth, Christoph; Delon-Martin, Chantal

    2012-01-01

    The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory “oddball” attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related areas such as the insula, anterior cingulate and prefrontal cortex, in premotor area, in cross-modal sensory associative areas, and, interestingly, in a region of the Rolandic operculum that has recently been shown to be involved in tympanic movements due to air pressure. We propose further investigations of this brain area and fine middle ear investigations, because our results might suggest a model in which AAT tinnitus may arise as a proprioceptive illusion caused by abnormal excitability of middle-ear muscle spindles possibly link with the acoustic reflex and associated with emotional and sensorimotor disturbances. PMID:22574285

  17. Antidiabetic drugs restore abnormal transport of amyloid-? across the blood-brain barrier and memory impairment in db/db mice.

    PubMed

    Chen, Fang; Dong, Rong Rong; Zhong, Kai Long; Ghosh, Arijit; Tang, Su Su; Long, Yan; Hu, Mei; Miao, Ming Xing; Liao, Jian Min; Sun, Hong Bing; Kong, Ling Yi; Hong, Hao

    2016-02-01

    Previous studies have shown significant changes in amyloid-? (A?) transport across the blood-brain barrier (BBB) under diabetic conditions with hypoinsulinemia, which is involved in diabetes-associated cognitive impairment. Present study employed db/db mice with hyperinsulinemia to investigate changes in A? transport across the BBB, hippocampal synaptic plasticity, and restorative effects of antidiabetic drugs. Our results showed that db/db mice exhibited similar changes in A? transport across the BBB to that of insulin-deficient mice. Chronic treatment of db/db mice with antidiabetic drugs such as metformin, glibenclamide and insulin glargine significantly decreased A? influx across the BBB determined by intra-arterial infusion of (125)I-A?1-40, and expression of the receptor for advanced glycation end products (RAGE) participating in A? influx. Insulin glargine, but not, metformin or glibenclamide increased A? efflux across the BBB determined by stereotaxic intra-cerebral infusion of (125)I-A?1-40, and expression of the low-density lipoprotein receptor related protein 1 (LRP1) participating in A? efflux. Moreover, treatment with these drugs significantly decreased hippocampal A?1-40 or A?1-42 and inhibited neuronal apoptosis. The drugs also ameliorated memory impairment confirmed by improved performance on behavioral tasks. However, insulin glargine or glibenclamide, but not metformin, restored hippocampal synaptic plasticity characterized by enhancing in vivo long-term potentiation (LTP). Further study found that these three drugs significantly restrained NF-?B, but only insulin glargine enhanced peroxisome proliferator-activated receptor ? (PPAR?) activity at the BBB in db/db mice. Our data indicate that the antidiabetic drugs can partially restore abnormal A? transport across the BBB and memory impairment under diabetic context. PMID:26211973

  18. Brain activation associated with active and passive lower limb stepping.

    PubMed

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Riener, Robert; Michels, Lars; Kollias, Spyros

    2014-01-01

    Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy. PMID:25389396

  19. Brain activation associated with active and passive lower limb stepping

    PubMed Central

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Riener, Robert; Michels, Lars; Kollias, Spyros

    2014-01-01

    Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy. PMID:25389396

  20. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    PubMed

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti-glutamate receptor antibodies is discussed separately in this very comprehensive review, with regards to: the human diseases in which these anti-glutamate receptor antibodies were found thus far, their presence and production in the nervous system, their association with various psychiatric/behavioral/cognitive/motor impairments, their possible association with certain infectious organisms, their detrimental effects in vitro as well as in vivo in animal models in mice, rats or rabbits, and their diverse and unique mechanisms of action. The review also covers the very encouraging positive responses to immunotherapy of some patients that have either of the above-mentioned anti-glutamate receptor antibodies, and that suffer from various neurological diseases/problems. All the above are also summarized in the review's five schematic and useful figures, for each type of anti-glutamate receptor antibodies separately. The review ends with a summary of all the main findings, and with recommended guidelines for diagnosis, therapy, drug design and future investigations. In the nut shell, the human studies, the in vitro studies, as well as the in vivo studies in animal models in mice, rats and rabbit revealed the following findings regarding the five different types of anti-glutamate receptor antibodies: (1) Anti-AMPA-GluR3B antibodies are present in ~25-30% of patients with different types of Epilepsy. When these anti-glutamate receptor antibodies (or other types of autoimmune antibodies) are found in Epilepsy patients, and when these autoimmune antibodies are suspected to induce or aggravate the seizures and/or the cognitive/psychiatric/behavioral impairments that sometimes accompany the seizures, the Epilepsy is called 'Autoimmune Epilepsy'. In some patients with 'Autoimmune Epilepsy' the anti-AMPA-GluR3B antibodies associate significantly with psychiatric/cognitive/behavior abnormalities. In vitro and/or in animal models, the anti-AMPA-GluR3B antibodies by themselves induce many pathological effects: they activate glutamate/AMPA receptors, kill neurons by 'Excitotoxicity',

  1. Seminal plasma androgen-binding protein activity in turkeys with normal white or abnormal yellow semen.

    PubMed

    Hess, R A; Birrenkott, G P; Thurston, R J

    1984-07-01

    Dihydrotestosterone (DHT) binding activity of normal white and abnormal yellow turkey semen was quantitated by disc-gel electrophoresis in the presence of [3H]DHT. White seminal plasma had three peaks of activity (Rf = 0.3, 0.5 and 0.8). Yellow seminal plasma had a greater protein concentration and [3H]DHT binding activity averaging 32.5 +/- 7.93 pmol DHT/ml compared with 1.45 +/- 0.3 pmol DHT/ml for white seminal plasma. The majority of [3H]DHT binding was localized at Rf = 0.5 for the yellow seminal plasma. When labelled samples were separated by electrophoresis on unlabelled gels, the only peak of activity was at Rf = 0.5. Blood serum contained 3 peaks of activity (Rf = 0.4, 0.5, and 0.8). We conclude that a seminal plasma androgen-binding protein is present in the domestic turkey, and in males with yellow semen syndrome androgen-binding activity is increased. PMID:6540307

  2. Abnormal dynamics of activation of object use information in apraxia: evidence from eyetracking.

    PubMed

    Lee, Chia-Iin; Mirman, Daniel; Buxbaum, Laurel J

    2014-07-01

    Action representations associated with object use may be incidentally activated during visual object processing, and the time course of such activations may be influenced by lexical-semantic context (e.g., Lee, Middleton, Mirman, Kalénine, & Buxbaum (2012). Journal of Experimental Psychology: Human Perception and Performance, 39(1), 257-270). In this study we used the "visual world" eye-tracking paradigm to examine whether a deficit in producing skilled object-use actions (apraxia) is associated with abnormalities in incidental activation of action information, and assessed the neuroanatomical substrates of any such deficits. Twenty left hemisphere stroke patients, ten of whom were apraxic, performed a task requiring identification of a named object in a visual display containing manipulation-related and unrelated distractor objects. Manipulation relationships among objects were not relevant to the identification task. Objects were cued with neutral ("S/he saw the…."), or action-relevant ("S/he used the….") sentences. Non-apraxic participants looked at use-related non-target objects significantly more than at unrelated non-target objects when cued both by neutral and action-relevant sentences, indicating that action information is incidentally activated. In contrast, apraxic participants showed delayed activation of manipulation-based action information during object identification when cued by neutral sentences. The magnitude of delayed activation in the neutral sentence condition was reliably predicted by lower scores on a test of gesture production to viewed objects, as well as by lesion loci in the inferior parietal and posterior temporal lobes. However, when cued by a sentence containing an action verb, apraxic participants showed fixation patterns that were statistically indistinguishable from non-apraxic controls. In support of grounded theories of cognition, these results suggest that apraxia and temporal-parietal lesions may be associated with abnormalities in incidental activation of action information from objects. Further, they suggest that the previously-observed facilitative role of action verbs in the retrieval of object-related action information extends to participants with apraxia. PMID:24746946

  3. Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study.

    PubMed

    Klauser, Paul; Zhou, Juan; Lim, Joseph K W; Poh, Joann S; Zheng, Hui; Tng, Han Ying; Krishnan, Ranga; Lee, Jimmy; Keefe, Richard S E; Adcock, R Alison; Wood, Stephen J; Fornito, Alex; Chee, Michael W L

    2015-11-01

    There is cumulative evidence that young people in an "at-risk mental state" (ARMS) for psychosis show structural brain abnormalities in frontolimbic areas, comparable to, but less extensive than those reported in established schizophrenia. However, most available data come from ARMS samples from Australia, Europe, and North America while large studies from other populations are missing. We conducted a structural brain magnetic resonance imaging study from a relatively large sample of 69 ARMS individuals and 32 matched healthy controls (HC) recruited from Singapore as part of the Longitudinal Youth At-Risk Study (LYRIKS). We used 2 complementary approaches: a voxel-based morphometry and a surface-based morphometry analysis to extract regional gray and white matter volumes (GMV and WMV) and cortical thickness (CT). At the whole-brain level, we did not find any statistically significant difference between ARMS and HC groups concerning total GMV and WMV or regional GMV, WMV, and CT. The additional comparison of 2 regions of interest, hippocampal, and ventricular volumes, did not return any significant difference either. Several characteristics of the LYRIKS sample like Asian origins or the absence of current illicit drug use could explain, alone or in conjunction, the negative findings and suggest that there may be no dramatic volumetric or CT abnormalities in ARMS. PMID:25745033

  4. Retina Restored and Brain Abnormalities Ameliorated by Single-Copy Knock-In of Human NR2E1 in Null Mice

    PubMed Central

    Schmouth, J.-F.; Banks, K. G.; Mathelier, A.; Gregory-Evans, C. Y.; Castellarin, M.; Holt, R. A.; Gregory-Evans, K.; Wasserman, W. W.

    2012-01-01

    Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified. PMID:22290436

  5. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine): a PET-FDG study

    SciTech Connect

    Brunetti, A.; Berg, G.; Di Chiro, G.; Cohen, R.M.; Yarchoan, R.; Pizzo, P.A.; Broder, S.; Eddy, J.; Fulham, M.J.; Finn, R.D.

    1989-05-01

    Brain glucose metabolism was evaluated in four patients with acquired immunodeficiency syndrome (AIDS) dementia complex using (/sup 18/F)fluorodeoxyglucose (FDG) and positron emission tomography (PET) scans at the beginning of therapy with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine), and later in the course of therapy. In two patients, baseline, large focal cortical abnormalities of glucose utilization were reversed during the course of therapy. In the other two patients, the initial PET study did not reveal pronounced focal alterations, while the post-treatment scans showed markedly increased cortical glucose metabolism. The improved cortical glucose utilization was accompanied in all patients by immunologic and neurologic improvement. PET-FDG studies can detect cortical metabolic abnormalities associated with AIDS dementia complex, and may be used to monitor the metabolic improvement in response to AZT treatment.

  6. Anticholinesterase Effect on Motor Kinematic Measures and Brain Activation in Parkinson’s Disease

    PubMed Central

    Mentis, Marc J.; Delalot, Dominique; Naqvi, Hassan; Gordon, Mark F.; Gudesblatt, Mark; Edwards, Christine; Donatelli, Luke; Dhawan, Vijay; Eidelberg, David

    2015-01-01

    Anticholinesterase (AChE) drugs are being prescribed off label for nonmotor symptoms in Parkinson’s disease (PD). Theoretically, these drugs can impair motor function. A small literature suggests AChE therapy has little effect on clinical motor evaluation; however, no study has made objective motor kinematic measures or evaluated brain function. We hypothesized that even if clinical examination was normal in PD patients on dopamine therapy, (1) sensitive kinematic measures would be abnormal during AChE therapy or (2) normal kinematic measures would be maintained by compensatory brain activation. We carried out a randomized, double-blind, placebo-controlled trial of 8 weeks donepezil (10 mg/day) in 17 PD subjects. Subjects carried out a computerized motor task during a positron emission tomography (PET) scan before starting the drug and again after 8 weeks of donepezil or placebo. Kinematic measures of motor function and PET scans were analyzed to compare the effects of donepezil and placebo. Neither placebo nor donepezil altered motor kinematic measures. Furthermore, movement integrity while on donepezil was maintained without compensatory brain activity. Donepezil 10 mg/day can be given for nonmotor symptoms in PD without adverse motor effects or compensatory brain activity. PMID:16228997

  7. Correspondence between Resting-State Activity and Brain Gene Expression.

    PubMed

    Wang, Guang-Zhong; Belgard, T Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M; Lu, Hanzhang; Geschwind, Daniel H; Konopka, Genevieve

    2015-11-18

    The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional amplitude of low-frequency fluctuations (fALFF) from two independent human fMRI resting-state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady-state brain gene expression and resting-state brain activity. PMID:26590343

  8. Abnormal reflex activation of hamstring muscles in dogs with cranial cruciate ligament rupture.

    PubMed

    Hayes, Graham M; Granger, Nicolas; Langley-Hobbs, Sorrel J; Jeffery, Nick D

    2013-06-01

    The mechanisms underlying cranial cruciate ligament rupture (CCLR) in dogs are poorly understood. In this study hamstring muscle reflexes in response to cranial tibial translation were analysed to determine whether these active stabilisers of the stifle joint are differently activated in dogs with CCLR compared to control dogs. In a prospective clinical study reflex muscle activity from the lateral and medial hamstring muscles (biceps femoris and semimembranosus) was recorded using surface electrodes in control dogs (n=21) and dogs with CCLR (n=22). These electromyographic recordings were analysed using an algorithm previously validated in humans. The hamstring reflex was reliably and reproducibly recorded in normal dogs. Both a short latency response (SLR, 17.6±2.1ms) and a medium latency response (MLR, 37.7±2.7ms) could be identified. In dogs with unilateral CCLR, the SLR and MLR were not significantly different between the affected and the unaffected limbs, but the MLR latency of both affected and unaffected limbs in CCLR dogs were significantly prolonged compared to controls. In conclusion, the hamstring reflex can be recorded in dogs and the MLR is prolonged in dogs with CCLR. Since both affected and unaffected limbs exhibit prolonged MLR, it is possible that abnormal hamstring reflex activation is a mechanism by which progressive CCL damage may occur. The methodology allows for further investigation of the relationship between neuromuscular imbalance and CCLR or limitations in functional recovery following surgical intervention. PMID:23219226

  9. Nanotools for Neuroscience and Brain Activity Mapping

    E-print Network

    Alivisatos, A. Paul

    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We ...

  10. Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science

    PubMed Central

    2015-01-01

    Background Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations. Methods Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined. Results Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation. Conclusions In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research. PMID:26629908

  11. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  12. Differential effects of chronic lead intoxication on circadian rhythm of ambulatory activity and on regional brain norepinephrine levels in rats

    SciTech Connect

    Shafiq-ur-Rehman; Khushnood-ur-Rehman; Kabir-ud-Din; Chandra, O.

    1986-01-01

    Changes in biochemical mechanisms and amine concentrations in the brain have been manifested in the form of varying disorders and abnormalities in behavior, including motor-activity, which has been proved with a number of psychoactive drugs. It has been reported that increased level of cerebral norepinephrine (NE) has been shown to be associated with motor hyper-activity, and in lead exposed rats. No study is available which could account for the pattern of changes in spontaneous ambulatory responses in an open field situation together with the steady state regional levels of NE in the brain of chronically lead exposed rats. Therefore, it seemed to be worthwhile to study the circadian rhythm of ambulatory activity and its association with NE levels in various brain regions of rats exposed to lead.

  13. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  14. Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI???

    PubMed Central

    Cramer, S.P.; Simonsen, H.; Frederiksen, J.L.; Rostrup, E.; Larsson, H.B.W.

    2013-01-01

    Objectives To investigate whether blood–brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics. Methods Dynamic contrast-enhanced MRI was used to measure BBB permeability in 27 patients with MS and compared to 24 matched healthy controls. Results Permeability measured as Ktrans was significantly higher in periventricular normal appearing white matter (NAWM) and thalamic gray matter in MS patients when compared to healthy controls, with periventricular NAWM showing the most pronounced difference. Recent relapse coincided with significantly higher permeability in periventricular NAWM, thalamic gray matter, and MS lesions. Immunomodulatory treatment and recent relapse were significant predictors of permeability in MS lesions and periventricular NAWM. Our results suggest that after an MS relapse permeability gradually decreases, possibly an effect of immunomodulatory treatment. Conclusions Our results emphasize the importance of BBB pathology in MS, which we find to be most prominent in the periventricular NAWM, an area prone to development of MS lesions. Both the facts that recent relapse appears to cause widespread BBB disruption and that immunomodulatory treatment seems to attenuate this effect indicate that BBB permeability is intricately linked to the presence of MS relapse activity. This may reveal further insights into the pathophysiology of MS. PMID:24371801

  15. Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms.

    PubMed

    Northoff, Georg

    2016-01-15

    Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice. PMID:26048657

  16. Early Risk, Attention, and Brain Activation in Adolescents Born Preterm

    ERIC Educational Resources Information Center

    Carmody, Dennis P.; Bendersky, Margaret; Dunn, Stanley M.; DeMarco, J. Kevin; Hegyi, Thomas; Hiatt, Mark; Lewis, Michael

    2006-01-01

    The relations among early cumulative medical risk, cumulative environmental risk, attentional control, and brain activation were assessed in 15-16-year-old adolescents who were born preterm. Functional magnetic resonance imaging found frontal, temporal, and parietal cortex activation during an attention task with greater activation of the left…

  17. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    PubMed

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments. PMID:23707901

  18. Increased growth hormone response to dopamine infusion in insulin-dependent diabetic subjects: indication of possible blood-brain barrier abnormality.

    PubMed Central

    Lorenzi, M; Karam, J H; McIlroy, M B; Forsham, P H

    1980-01-01

    To test the hypothesis that cerebral capillaries, which share the embroyologic and morphologic characteristics of retinal capillaries, might have the same abnormal permeability in diabetic patients, we investigated the growth hormone response to a small amount of peripherally administered dopamine (1.5 microgram/kg.min). Consistent with the known exclusion of systemic dopamine from brain parenchyma, no rise was observed in 12 normal subjects. In 10 of 12 juvenile-onset, insulin-dependent diabetic patients, however, a substantial growth hormone rise occurred (peak value, 19.2 +/- 3.0 ng/ml [mean +/- SE]). Comparision of metabolic and cardiovascular responses to the infusion in both groups did not suggest that higher circulating levels of dopamine had been achieved in the diabetics. Other growth hormone stimuli (apomorphine in decreasing amounts, glucagon, and graded physical exercise) failed to indicate that hypothalamic hypersensitivity could account for the consistent rise. We postulate that an abnormal permeability of the blood-brain barrier in the diabetic patients permitted exposure of the hypothalamic structures regulating growth hormone secretion to a greater fraction of the infused dopamine. PMID:7350194

  19. The impact of microglial activation on blood-brain barrier in brain diseases

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza

    2014-01-01

    The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894

  20. Brain activity during complex imagined gait rasks in Parkinson disease

    PubMed Central

    Peterson, Daniel S.; Pickett, Kristen A.; Duncan, Ryan; Perlmutter, Joel; Earhart, Gammon M.

    2013-01-01

    Objective Motor imagery during functional magnetic resonance imaging (fMRI) allows assessment of brain activity during tasks, like walking, that cannot be completed in a scanner. We used gait imagery to assess the neural pathophysiology of locomotion in Parkinson disease (PD). Methods Brain activity was measured in five locomotor regions (supplementary motor area (SMA), globus pallidus (GP), putamen, mesencephalic locomotor region, cerebellar locomotor region) during simple (forward) and complex (backward, turning) gait imagery. Brain activity was correlated to overground walking velocity. Results Across tasks, PD exhibited reduced activity in the globus pallidus compared to controls. People with PD, but not controls, exhibited more activity in the SMA during imagined turning compared to forward or backward walking. In PD, walking speed was correlated to brain activity in several regions. Conclusions Altered SMA activity in PD during imagined turning may represent compensatory neural adaptations during complex gait. The lowered activity and positive correlation to locomotor function in GP suggests reduced activity in this region may relate to locomotor dysfunction. Significance This study elucidates changes in neural activity during gait in PD, underscoring the importance of testing simple and complex tasks. Results support a positive relationship between activity in locomotor regions and walking ability. PMID:24210997

  1. Neural Activity and the Development of Brain

    E-print Network

    Sur, Mriganka

    . Incoming light to one or both eyes can be controlled precisely, contact lenses or goggles can provide and a class of molecules called neurotrophins. The sensitivity of brain circuitry to the absence of patterned geniculate nucleus (LGN) from the two eyes are initially overlapped extensively but soon segregate to form

  2. Inference of brain pathway activities for Alzheimer's disease classification

    PubMed Central

    2015-01-01

    Background Alzheimer's disease (AD) is a neurodegenerative and progressive disorder that results in brain malfunctions. Resting-state (RS) functional magnetic resonance imaging (fMRI) techniques have been successfully applied for quantifying brain activities of both Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients. Region-based approaches are widely utilized to classify patients from cognitively normal subjects (CN). Nevertheless, region-based approaches have a few limitations, reproducibility owing to selection of disease-specific brain regions, and heterogeneity of brain activities during disease progression. For coping with these issues, network-based approaches have been suggested in the field of molecular bioinformatics. In comparison with individual gene-based approaches, they acquired more accurate results in diverse disease classification, and reproducibility was confirmed by replication studies. In our work, we applied a similar methodology integrating brain pathway information into pathway activity inference, and permitting classification of both aMCI and AD patients based on pathway activities rather than single region activities. Results After aggregating the 59 brain pathways from literature, we estimated brain pathway activities by using exhaustive search algorithms between patients and cognitively normal subjects, and identified discriminatory pathways according to disease progression. We used three different data sets and each data set consists of two different groups. Our results show that the pathway-based approach (AUC = 0.89, 0.9, 0.75) outperformed the region-based approach (AUC = 0.69, 0.8, 0.68). Also, our approach provided enhanced diagnostic power achieving higher accuracy, sensitivity, and specificity (pathway-based approach: accuracy = 83%; sensitivity = 86%; specificity = 78%, region-based approach: accuracy = 74%; sensitivity = 78%; specificity = 76%). Conclusions We proposed a novel method inferring brain pathway activities for disease classification. Our approach shows better classification performance than region-based approach in four classification models. We expect that brain pathway-based approach would be helpful for precise classification of brain disorders, and provide new opportunities for uncovering disrupted brain pathways caused by disease. Moreover, discriminatory pathways between patients and cognitively normal subjects may facilitate the interpretation of functional alterations during disease progression. PMID:26044913

  3. Idiosyncratic brain activation patterns are associated with poor social comprehension in autism.

    PubMed

    Byrge, Lisa; Dubois, Julien; Tyszka, J Michael; Adolphs, Ralph; Kennedy, Daniel P

    2015-04-01

    Autism spectrum disorder (ASD) features profound social deficits but neuroimaging studies have failed to find any consistent neural signature. Here we connect these two facts by showing that idiosyncratic patterns of brain activation are associated with social comprehension deficits. Human participants with ASD (N = 17) and controls (N = 20) freely watched a television situation comedy (sitcom) depicting seminaturalistic social interactions ("The Office", NBC Universal) in the scanner. Intersubject correlations in the pattern of evoked brain activation were reduced in the ASD group-but this effect was driven entirely by five ASD subjects whose idiosyncratic responses were also internally unreliable. The idiosyncrasy of these five ASD subjects was not explained by detailed neuropsychological profile, eye movements, or data quality; however, they were specifically impaired in understanding the social motivations of characters in the sitcom. Brain activation patterns in the remaining ASD subjects were indistinguishable from those of control subjects using multiple multivariate approaches. Our findings link neurofunctional abnormalities evoked by seminaturalistic stimuli with a specific impairment in social comprehension, and highlight the need to conceive of ASD as a heterogeneous classification. PMID:25855192

  4. Idiosyncratic Brain Activation Patterns Are Associated with Poor Social Comprehension in Autism

    PubMed Central

    Tyszka, J. Michael; Adolphs, Ralph; Kennedy, Daniel P.

    2015-01-01

    Autism spectrum disorder (ASD) features profound social deficits but neuroimaging studies have failed to find any consistent neural signature. Here we connect these two facts by showing that idiosyncratic patterns of brain activation are associated with social comprehension deficits. Human participants with ASD (N = 17) and controls (N = 20) freely watched a television situation comedy (sitcom) depicting seminaturalistic social interactions (“The Office”, NBC Universal) in the scanner. Intersubject correlations in the pattern of evoked brain activation were reduced in the ASD group—but this effect was driven entirely by five ASD subjects whose idiosyncratic responses were also internally unreliable. The idiosyncrasy of these five ASD subjects was not explained by detailed neuropsychological profile, eye movements, or data quality; however, they were specifically impaired in understanding the social motivations of characters in the sitcom. Brain activation patterns in the remaining ASD subjects were indistinguishable from those of control subjects using multiple multivariate approaches. Our findings link neurofunctional abnormalities evoked by seminaturalistic stimuli with a specific impairment in social comprehension, and highlight the need to conceive of ASD as a heterogeneous classification. PMID:25855192

  5. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    PubMed

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities. PMID:26354912

  6. Brain activity in predominantly-inattentive subtype attention-deficit/hyperactivity disorder during an auditory oddball attention task.

    PubMed

    Orinstein, Alyssa J; Stevens, Michael C

    2014-08-30

    Previous functional neuroimaging studies have found brain activity abnormalities in attention-deficit/hyperactivity disorder (ADHD) on numerous cognitive tasks. However, little is known about brain dysfunction unique to the predominantly-inattentive subtype of ADHD (ADHD-I), despite debate as to whether DSM-IV-defined ADHD subtypes differ in etiology. This study compared brain activity of 18 ADHD-I adolescents (ages 12-18) and 20 non-psychiatric age-matched control participants on a functional magnetic resonance image (fMRI) auditory oddball attention task. ADHD-I participants had significant activation deficits to infrequent target stimuli in bilateral superior temporal gyri, bilateral insula, several midline cingulate/medial frontal gyrus regions, right posterior parietal cortex, thalamus, cerebellum, and brainstem. To novel stimuli, ADHD-I participants had reduced activation in bilateral lateral temporal lobe structures. There were no brain regions where ADHD-I participants had greater hemodynamic activity to targets or novels than controls. Brain activity deficits in ADHD-I participants were found in several regions important to attentional orienting and working memory-related cognitive processes involved in target identification. These results differ from those in previously studied adolescents with combined-subtype ADHD, who had a lesser magnitude of activation abnormalities in frontoparietal regions and relatively more discrete regional deficits to novel stimuli. The divergent findings suggest different etiological factors might underlie attention deficits in different DSM-IV-defined ADHD subtypes, and they have important implications for the DSM-V reconceptualization of subtypes as varying clinical presentations of the same core disorder. PMID:24953999

  7. Brain activity in predominantly-inattentive subtype attention-deficit/hyperactivity disorder during an auditory oddball attention task

    PubMed Central

    Orinstein, Alyssa J.; Stevens, Michael C.

    2014-01-01

    Previous functional neuroimaging studies have found brain activity abnormalities in attention-deficit/hyperactivity disorder (ADHD) on numerous cognitive tasks. However, little is known about brain dysfunction unique to the predominantly-inattentive subtype of ADHD (ADHD-I), despite debate as to whether DSM-IV-defined ADHD subtypes differ in etiology. This study compared brain activity of 18 ADHD-I adolescents (ages 12–18) and 20 non-psychiatric age-matched control participants on a functional magnetic resonance image (fMRI) auditory oddball attention task. ADHD-I participants had significant activation deficits to infrequent target stimuli in bilateral superior temporal gyri, bilateral insula, several midline cingulate/medial frontal gyrus regions, right posterior parietal cortex, thalamus, cerebellum, and brainstem. To novel stimuli, ADHD-I participants had reduced activation in bilateral lateral temporal lobe structures. There were no brain regions where ADHD-I participants had greater hemodynamic activity to targets or novels than controls. Brain activity deficits in ADHD-I participants were found in several regions important to attentional orienting and working memory-related cognitive processes involved in target identification. These results differ from those in previously studied adolescents with combined-subtype ADHD, who had a lesser magnitude of activation abnormalities in frontoparietal regions and relatively more discrete regional deficits to novel stimuli. The divergent findings suggest different etiological factors might underlie attention deficits in different DSM-IV-defined ADHD subtypes, and they have important implications for the DSM-V reconceptualization of subtypes as varying clinical presentations of the same core disorder. PMID:24953999

  8. The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes.

    PubMed

    Curry, Cynthia J; Rosenfeld, Jill A; Grant, Erica; Gripp, Karen W; Anderson, Carol; Aylsworth, Arthur S; Saad, Taha Ben; Chizhikov, Victor V; Dybose, Giedre; Fagerberg, Christina; Falco, Michelle; Fels, Christina; Fichera, Marco; Graakjaer, Jesper; Greco, Donatella; Hair, Jennifer; Hopkins, Elizabeth; Huggins, Marlene; Ladda, Roger; Li, Chumei; Moeschler, John; Nowaczyk, Malgorzata J M; Ozmore, Jillian R; Reitano, Santina; Romano, Corrado; Roos, Laura; Schnur, Rhonda E; Sell, Susan; Suwannarat, Pim; Svaneby, Dea; Szybowska, Marta; Tarnopolsky, Mark; Tervo, Raymond; Tsai, Anne Chun-Hui; Tucker, Megan; Vallee, Stephanie; Wheeler, Ferrin C; Zand, Dina J; Barkovich, A James; Aradhya, Swaroop; Shaffer, Lisa G; Dobyns, William B

    2013-08-01

    Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34 additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most commonly in those with duplications of YWHAE and flanking genes such as CRK. The typical neurobehavioral phenotype was usually seen in those with the larger duplications. We did not confirm the association of early overgrowth with involvement of YWHAE and CRK, or growth failure with duplications of LIS1. Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome. PMID:23813913

  9. Physical Activity Affects Brain Integrity in HIV+ Individuals.

    PubMed

    Ortega, Mario; Baker, Laurie M; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M

    2015-11-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV-) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV+) individuals. Seventy HIV+ individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV+ individuals were classified as physically active (any energy expended above resting expenditure, n=22) or sedentary (n=48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV+ individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p=.034). Physically active HIV+ individuals performed better on executive (p=.040, unadjusted; p=.043, adjusted) but not motor function (p=.17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson's r=0.45, p=0.035) but not motor (r=0.21; p=.35) performance. In adjusted analyses the physically active HIV+ individuals had larger putamen volumes (p=.019). A positive relationship exists between PA and brain integrity in HIV+ individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV+ individuals. (JINS, 2015, 21, 880-889). PMID:26581799

  10. Pacing and awareness: brain regulation of physical activity.

    PubMed

    Edwards, A M; Polman, R C J

    2013-11-01

    The aim of this current opinion article is to provide a contemporary perspective on the role of brain regulatory control of paced performances in response to exercise challenges. There has been considerable recent conjecture as to the role of the brain during exercise, and it is now broadly accepted that fatigue does not occur without brain involvement and that all voluntary activity is likely to be paced at some level by the brain according to individualised priorities and knowledge of personal capabilities. This article examines the role of pacing in managing and distributing effort to successfully accomplish physical tasks, while extending existing theories on the role of the brain as a central controller of performance. The opinion proposed in this article is that a central regulator operates to control exercise performance but achieves this without the requirement of an intelligent central governor located in the subconscious brain. It seems likely that brain regulation operates at different levels of awareness, such that minor homeostatic challenges are addressed automatically without conscious awareness, while larger metabolic disturbances attract conscious awareness and evoke a behavioural response. This supports the view that the brain regulates exercise performance but that the interpretation of the mechanisms underlying this effect have not yet been fully elucidated. PMID:23990402

  11. Activation of NF-?B Mediates Astrocyte Swelling and Brain Edema in Traumatic Brain Injury

    PubMed Central

    Jayakumar, Arumugam R.; Tong, Xiao Y.; Ruiz-Cordero, Roberto; Bregy, Amade; Bethea, John R.; Bramlett, Helen M.

    2014-01-01

    Abstract Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). While astrocyte swelling (cytotoxic edema) represents a major component of the brain edema in the early phase of TBI, its mechanisms are unclear. One factor known to be activated by trauma is nuclear factor-?B (NF-?B). Because this factor has been implicated in the mechanism of cell swelling/brain edema in other neurological conditions, we examined whether NF-?B might also be involved in the mediation of post-traumatic astrocyte swelling/brain edema. Here we show an increase in NF-?B activation in cultured astrocytes at 1 and 3?h after trauma (fluid percussion injury, FPI), and that BAY 11–7082, an inhibitor of NF-?B, significantly blocked the trauma-induced astrocyte swelling. Increased activities of nicotinamide adenine dinucleotide phosphate-oxidase and the Na+, K+, 2Cl- cotransporter were also observed in cultured astrocytes after trauma, and BAY 11–7082 reduced these effects. We also examined the role of NF-?B in the mechanism of cell swelling by using astrocyte cultures derived from transgenic (Tg) mice with a functional inactivation of astrocytic NF-?B. Exposure of cultured astrocytes from wild-type mice to in vitro trauma (3?h) caused a significant increase in cell swelling. By contrast, traumatized astrocyte cultures derived from NF-?B Tg mice showed no swelling. We also found increased astrocytic NF-?B activation and brain water content in rats after FPI, while BAY 11-7082 significantly reduced such effects. Our findings strongly suggest that activation of astrocytic NF-?B represents a key element in the process by which cytotoxic brain edema occurs after TBI. PMID:24471369

  12. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  13. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-01-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure. PMID:24621482

  14. Brain modularity controls the critical behavior of spontaneous activity

    NASA Astrophysics Data System (ADS)

    Russo, R.; Herrmann, H. J.; de Arcangelis, L.

    2014-03-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  15. Synchronous brain activity across individuals underlies shared psychological perspectives

    PubMed Central

    Lahnakoski, Juha M.; Glerean, Enrico; Jääskeläinen, Iiro P.; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-01-01

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a ‘social’ (detective) and once a ‘non-social’ (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions—most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex—when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687

  16. Brain activity and medical diagnosis: an EEG study

    PubMed Central

    2013-01-01

    Background Despite new brain imaging techniques that have improved the study of the underlying processes of human decision-making, to the best of our knowledge, there have been very few studies that have attempted to investigate brain activity during medical diagnostic processing. We investigated brain electroencephalography (EEG) activity associated with diagnostic decision-making in the realm of veterinary medicine using X-rays as a fundamental auxiliary test. EEG signals were analysed using Principal Components (PCA) and Logistic Regression Analysis Results The principal component analysis revealed three patterns that accounted for 85% of the total variance in the EEG activity recorded while veterinary doctors read a clinical history, examined an X-ray image pertinent to a medical case, and selected among alternative diagnostic hypotheses. Two of these patterns are proposed to be associated with visual processing and the executive control of the task. The other two patterns are proposed to be related to the reasoning process that occurs during diagnostic decision-making. Conclusions PCA analysis was successful in disclosing the different patterns of brain activity associated with hypothesis triggering and handling (pattern P1); identification uncertainty and prevalence assessment (pattern P3), and hypothesis plausibility calculation (pattern P2); Logistic regression analysis was successful in disclosing the brain activity associated with clinical reasoning success, and together with regression analysis showed that clinical practice reorganizes the neural circuits supporting clinical reasoning. PMID:24083668

  17. Using perturbations to identify the brain circuits underlying active vision.

    PubMed

    Wurtz, Robert H

    2015-09-19

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision--the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized. PMID:26240420

  18. Using perturbations to identify the brain circuits underlying active vision

    PubMed Central

    Wurtz, Robert H.

    2015-01-01

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision—the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized. PMID:26240420

  19. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  20. Altered Brain Activation during Emotional Face Processing in Relation to Both Diagnosis and Polygenic Risk of Bipolar Disorder

    PubMed Central

    Tesli, Martin; Kauppi, Karolina; Bettella, Francesco; Brandt, Christine Lycke; Kaufmann, Tobias; Espeseth, Thomas; Mattingsdal, Morten; Agartz, Ingrid; Melle, Ingrid; Djurovic, Srdjan; Westlye, Lars T.; Andreassen, Ole A.

    2015-01-01

    Objectives Bipolar disorder (BD) is a highly heritable disorder with polygenic inheritance. Among the most consistent findings from functional magnetic imaging (fMRI) studies are limbic hyperactivation and dorsal hypoactivation. However, the relation between reported brain functional abnormalities and underlying genetic risk remains elusive. This is the first cross-sectional study applying a whole-brain explorative approach to investigate potential influence of BD case-control status and polygenic risk on brain activation. Methods A BD polygenic risk score (PGRS) was estimated from the Psychiatric Genomics Consortium BD case-control study, and assigned to each individual in our independent sample (N=85 BD cases and 121 healthy controls (HC)), all of whom participated in an fMRI emotional faces matching paradigm. Potential differences in BOLD response across diagnostic groups were explored at whole-brain level in addition to amygdala as a region of interest. Putative effects of BD PGRS on brain activation were also investigated. Results At whole-brain level, BD cases presented with significantly lower cuneus/precuneus activation than HC during negative face processing (Z-threshold=2.3 as cluster-level correction). The PGRS was associated positively with increased right inferior frontal gyrus (rIFG) activation during negative face processing. For amygdala activation, there were no correlations with diagnostic status or PGRS. Conclusions These findings are in line with previous reports of reduced precuneus and altered rIFG activation in BD. While these results demonstrate the ability of PGRS to reveal underlying genetic risk of altered brain activation in BD, the lack of convergence of effects at diagnostic and PGRS level suggests that this relation is a complex one. PMID:26222050

  1. Functional magnetic resonance imaging reveals abnormal brain connectivity in EGR3 gene transfected rat model of schizophrenia.

    PubMed

    Song, Tianbin; Nie, Binbin; Ma, Ensen; Che, Jing; Sun, Shilong; Wang, Yuli; Shan, Baoci; Liu, Yawu; Luo, Senlin; Ma, Guolin; Li, Kefeng

    2015-05-01

    Schizophrenia is characterized by the disorder of "social brain". However, the alternation of connectivity density in brain areas of schizophrenia patients remains largely unknown. In this study, we successfully created a rat model of schizophrenia by the transfection of EGR3 gene into rat brain. We then investigated the connectivity density of schizophrenia susceptible regions in rat brain using functional magnetic resonance imaging (fMRI) in combination with multivariate Granger causality (GC) model. We found that the average signal strength in prefrontal lobe and hippocampus of schizophrenia model group was significantly higher than the control group. Bidirectional Granger causality connection was observed between hippocampus and thalamic in schizophrenia model group. Both connectivity density and Granger causality connection were changed in prefrontal lobe, hippocampus and thalamus after risperidone treatment. Our results indicated that fMRI in combination with GC connection analysis may be used as an important method in diagnosis of schizophrenia and evaluation the effect of antipsychotic treatment. These findings support the connectivity disorder hypothesis of schizophrenia and increase our understanding of the neural mechanisms of schizophrenia. PMID:25817788

  2. Silicon Shrinkwrap Melts Smoothly Onto Cat Brain to Monitor Activity in Real Time

    E-print Network

    Rogers, John A.

    Silicon Shrinkwrap Melts Smoothly Onto Cat Brain to Monitor Activity in Real Time By Jeremy Hsu Activity in Real Time Silk-Silicon Implantable Electronics Conform to Tissues, Then Melt Away Brain Scans, brains, cat brains, electrical activity, electrodes, implants, mesh, silicon, silk, surface electrodes

  3. Working memory training: improving intelligence--changing brain activity.

    PubMed

    Jaušovec, Norbert; Jaušovec, Ksenija

    2012-07-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography - EEG) and hemodynamic (near-infrared spectroscopy - NIRS) patterns of brain activity. In a parallel group experimental design, respondents of the working memory group after 30 h of training significantly increased performance on all tests of fluid intelligence. By contrast, respondents of the active control group (participating in a 30-h communication training course) showed no improvements in performance. The influence of WM training on patterns of neuroelectric brain activity was most pronounced in the theta and alpha bands. Theta and lower-1 alpha band synchronization was accompanied by increased lower-2 and upper alpha desynchronization. The hemodynamic patterns of brain activity after the training changed from higher right hemispheric activation to a balanced activity of both frontal areas. The neuroelectric as well as hemodynamic patterns of brain activity suggest that the training influenced WM maintenance functions as well as processes directed by the central executive. The changes in upper alpha band desynchronization could further indicate that processes related to long term memory were also influenced. PMID:22475577

  4. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  5. The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth.

    PubMed

    Satterthwaite, Theodore D; Connolly, John J; Ruparel, Kosha; Calkins, Monica E; Jackson, Chad; Elliott, Mark A; Roalf, David R; Ryan Hopsona, Karthik Prabhakaran; Behr, Meckenzie; Qiu, Haijun; Mentch, Frank D; Chiavacci, Rosetta; Sleiman, Patrick M A; Gur, Ruben C; Hakonarson, Hakon; Gur, Raquel E

    2016-01-01

    The Philadelphia Neurodevelopmental Cohort (PNC) is a large-scale study of child development that combines neuroimaging, diverse clinical and cognitive phenotypes, and genomics. Data from this rich resource is now publicly available through the Database of Genotypes and Phenotypes (dbGaP). Here we focus on the data from the PNC that is available through dbGaP and describe how users can access this data, which is evolving to be a significant resource for the broader neuroscience community for studies of normal and abnormal neurodevelopment. PMID:25840117

  6. Developmental changes in infant brain activity during naturalistic social experiences.

    PubMed

    Jones, Emily J H; Venema, Kaitlin; Lowy, Rachel; Earl, Rachel K; Webb, Sara Jane

    2015-11-01

    Between 6 and 12 months, typically developing infants undergo a socio-cognitive "revolution." The Interactive Specialization (IS) theory of brain development predicts that these behavioral changes will be underpinned by developmental increases in the power and topographic extent of socially selective cortical responses. To test this hypothesis, we used EEG to examine developmental changes in cortical selectivity for ecologically valid dynamic social versus non-social stimuli in a large cohort of 6- and 12-month-old infants. Consistent with the Interactive Specialization model, results showed that differences in EEG ? activity between social and non-social stimuli became more pronounced and widespread with age. Differences in EEG activity were most clearly elicited by a live naturalistic interaction, suggesting that measuring brain activity in ecologically valid contexts is central to mapping social brain development in infancy. © 2015 Wiley Periodicals, Inc. Dev Psychobiol 57: 842-853, 2015. PMID:26219834

  7. A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar.

    PubMed

    Travis, Taryn E; Ghassemi, Pejhman; Ramella-Roman, Jessica C; Prindeze, Nicholas J; Paul, Dereck W; Moffatt, Lauren T; Jordan, Marion H; Shupp, Jeffrey W

    2015-01-01

    Using a validated swine model of human scar formation, hyperpigmented and hypopigmented scar samples were examined for their histological and optical properties to help elucidate the mechanisms and characteristics of dyspigmentation. Full-thickness wounds were created on the flanks of red Duroc pigs and allowed to heal. Biopsies from areas of hyperpigmentation, hypopigmentation, and uninjured tissue were fixed and embedded for histological examination using Azure B and primary antibodies to S100B, HMB45, and ?-melanocyte-stimulating hormone (?-MSH). Spatial frequency domain imaging (SFDI) was then used to examine the optical properties of scars. Hyperpigmentation was first noticeable in healing wounds around weeks 2 to 3, gradually becoming darker. There was no significant difference in S100B staining for the presence of melanocytes between hyperpigmented and hypopigmented scar samples. Azure B staining of melanin was significantly greater in histological sections from hyperpigmented areas than in sections from both uninjured skin and hypopigmented scar (P < .0001). There was significantly greater staining for ?-MSH in hyperpigmented samples compared with hypopigmented samples (P = .0121), and HMB45 staining was positive for melanocytes in hyperpigmented scar. SFDI at a wavelength of 632 nm resulted in an absorption coefficient map correlating with visibly hyperpigmented areas of scars. In a red Duroc model of hypertrophic scar formation, melanocyte number is similar in hyperpigmented and hypopigmented tissues. Hyperpigmented tissues, however, show a greater amount of melanin and ?-MSH, along with immunohistochemical evidence of stimulated melanocytes. These observations encourage further investigation of melanocyte stimulation and the inflammatory environment within a wound that may influence melanocyte activity. Additionally, SFDI can be used to identify areas of melanin content in mature, pigmented scars, which may lead to its usefulness in wounds at earlier time points before markedly apparent pigmentation abnormalities. PMID:25162947

  8. Neurological Abnormalities in Full-Term Asphyxiated Newborns and Salivary S100B Testing: The “Cooperative Multitask against Brain Injury of Neonates” (CoMBINe) International Study

    PubMed Central

    Gazzolo, Diego; Pluchinotta, Francesca; Bashir, Moataza; Aboulgar, Hanna; Said, Hala Mufeed; Iman, Iskander; Ivani, Giorgio; Conio, Alessandra; Tina, Lucia Gabriella; Nigro, Francesco; Li Volti, Giovanni; Galvano, Fabio; Michetti, Fabrizio; Di Iorio, Romolo; Marinoni, Emanuela; Zimmermann, Luc J.; Gavilanes, Antonio D. W.; Vles, Hans J. S.; Kornacka, Maria; Gruszfeld, Darek; Frulio, Rosanna; Sacchi, Renata; Ciotti, Sabina; Risso, Francesco M.; Sannia, Andrea; Florio, Pasquale

    2015-01-01

    Background Perinatal asphyxia (PA) is a leading cause of mortality and morbidity in newborns: its prognosis depends both on the severity of the asphyxia and on the immediate resuscitation to restore oxygen supply and blood circulation. Therefore, we investigated whether measurement of S100B, a consolidated marker of brain injury, in salivary fluid of PA newborns may constitute a useful tool for the early detection of asphyxia-related brain injury. Methods We conducted a cross-sectional study in 292 full-term newborns admitted to our NICUs, of whom 48 suffered PA and 244 healthy controls admitted at our NICUs. Saliva S100B levels measurement longitudinally after birth; routine laboratory variables, neurological patterns, cerebral ultrasound and, magnetic resonance imaging were performed. The primary end-point was the presence of neurological abnormalities at 12-months after birth. Results S100B salivary levels were significantly (P<0.001) higher in newborns with PA than in normal infants. When asphyxiated infants were subdivided according to a good (Group A; n = 15) or poor (Group B; n = 33) neurological outcome at 12-months, S100B was significantly higher at all monitoring time-points in Group B than in Group A or controls (P<0.001, for all). A cut-off >3.25 MoM S100B achieved a sensitivity of 100% (CI5-95%: 89.3%-100%) and a specificity of 100% (CI5-95%: 98.6%-100%) as a single marker for predicting the occurrence of abnormal neurological outcome (area under the ROC curve: 1.000; CI5-95%: 0.987-1.0). Conclusions S100B protein measurement in saliva, soon after birth, is a useful tool to identify which asphyxiated infants are at risk of neurological sequelae. PMID:25569796

  9. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  10. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Cutler, Roy G.; Kelly, Jeremiah; Storie, Kristin; Pedersen, Ward A.; Tammara, Anita; Hatanpaa, Kimmo; Troncoso, Juan C.; Mattson, Mark P.

    2004-02-01

    Alzheimer's disease (AD) is an age-related disorder characterized by deposition of amyloid -peptide (A) and degeneration of neurons in brain regions such as the hippocampus, resulting in progressive cognitive dysfunction. The pathogenesis of AD is tightly linked to A deposition and oxidative stress, but it remains unclear as to how these factors result in neuronal dysfunction and death. We report alterations in sphingolipid and cholesterol metabolism during normal brain aging and in the brains of AD patients that result in accumulation of long-chain ceramides and cholesterol. Membrane-associated oxidative stress occurs in association with the lipid alterations, and exposure of hippocampal neurons to A induces membrane oxidative stress and the accumulation of ceramide species and cholesterol. Treatment of neurons with -tocopherol or an inhibitor of sphingomyelin synthesis prevents accumulation of ceramides and cholesterol and protects them against death induced by A. Our findings suggest a sequence of events in the pathogenesis of AD in which A induces membrane-associated oxidative stress, resulting in perturbed ceramide and cholesterol metabolism which, in turn, triggers a neurodegenerative cascade that leads to clinical disease. amyloid | apoptosis | hippocampus | lipid peroxidation | sphingomyelin

  11. Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy

    PubMed Central

    Liu, Ning; Cui, Xu; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson’s correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research. PMID:25798327

  12. Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography Images Using Wavelet Based Statistical Texture Features

    E-print Network

    Padma, A

    2011-01-01

    The research work presented in this paper is to achieve the tissue classification and automatically diagnosis the abnormal tumor region present in Computed Tomography (CT) images using the wavelet based statistical texture analysis method. Comparative studies of texture analysis method are performed for the proposed wavelet based texture analysis method and Spatial Gray Level Dependence Method (SGLDM). Our proposed system consists of four phases i) Discrete Wavelet Decomposition (ii) Feature extraction (iii) Feature selection (iv) Analysis of extracted texture features by classifier. A wavelet based statistical texture feature set is derived from normal and tumor regions. Genetic Algorithm (GA) is used to select the optimal texture features from the set of extracted texture features. We construct the Support Vector Machine (SVM) based classifier and evaluate the performance of classifier by comparing the classification results of the SVM based classifier with the Back Propagation Neural network classifier(BPN...

  13. Language modulates brain activity underlying representation of kinship terms

    PubMed Central

    Wu, Haiyan; Ge, Yue; Tang, Honghong; Luo, Yue-Jia; Mai, Xiaoqin; Liu, Chao

    2015-01-01

    Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages. PMID:26685907

  14. Language modulates brain activity underlying representation of kinship terms.

    PubMed

    Wu, Haiyan; Ge, Yue; Tang, Honghong; Luo, Yue-Jia; Mai, Xiaoqin; Liu, Chao

    2015-01-01

    Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages. PMID:26685907

  15. Brain Tumors

    MedlinePLUS

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  16. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  17. Composition and On Demand Deployment of Distributed Brain Activity Analysis Application on Global Grids

    E-print Network

    Buyya, Rajkumar

    1 Composition and On Demand Deployment of Distributed Brain Activity Analysis Application on Global are brain science and high-energy physics. The analysis of brain activity data gathered from the MEG and analyze brain functions and requires access to large-scale computational resources. The potential platform

  18. On a Mathematical Model of Brain Activities

    NASA Astrophysics Data System (ADS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-12-01

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an "expexted view of the world". Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from "excited" to "nonexcited". For that reason a statistical model of the recognition process should reflect both—the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given in [1]. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers [2, 3]. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail.

  19. On a Mathematical Model of Brain Activities

    SciTech Connect

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-12-03

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an 'expexted view of the world'. Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from 'excited' to 'nonexcited'. For that reason a statistical model of the recognition process should reflect both--the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail.

  20. Smart Moves: Powering up the Brain with Physical Activity

    ERIC Educational Resources Information Center

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive…

  1. BRAIN CHOLINESTERASE ACTIVITY OF BOBWHITE ACUTELY EXPOSED TO CHLORPYRIFOS

    EPA Science Inventory

    Northern bobwhite, Colinus virginianus, were orally dosed with the organophosphorus insecticide chlorpyrifos to examine effects on brain cholinesterase (AChE) activity. wo-week-old quail were acutely exposed and euthanized at selected times following gavage-dosing, ranging from 1...

  2. MONITORING CONSCIOUS RECOLLECTION VIA THE ELECTRICAL ACTIVITY OF THE BRAIN

    E-print Network

    Kutas, Marta

    MONITORING CONSCIOUS RECOLLECTION VIA THE ELECTRICAL ACTIVITY OF THE BRAIN 1Department- perience of recollection. In The Rediscovery of the Mind (1992), philosopher John Searle accused cognitive scientists of skirting the very issue that ought to be at the core of in- vestigation-consciousness. However

  3. Predicting Human Brain Activity Associated with the Meanings

    E-print Network

    . This model is trained with a combination of data from a trillion-word text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once trained, the model predicts fMRI activation conceptual knowledge has been studied by many scientific commu- nities. Neuroscientists using brain imaging

  4. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…

  5. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  6. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    PubMed

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity. PMID:24040943

  7. Walking abnormalities

    MedlinePLUS

    ... scissors) gait: Brain abscess Brain or head trauma Brain tumor Cerebrovascular accident (stroke) Cerebral palsy Cervical spondylosis with myelopathy (a problem with the vertebrae in the neck) Liver failure Multiple sclerosis Pernicious anemia Spinal cord ...

  8. Delayed and disorganised brain activation detected with magnetoencephalography after mild traumatic brain injury

    PubMed Central

    da Costa, Leodante; Robertson, Amanda; Bethune, Allison; MacDonald, Matt J; Shek, Pang N; Taylor, Margot J; Pang, Elizabeth W

    2015-01-01

    Background Awareness to neurocognitive issues after mild traumatic brain injury (mTBI) is increasing, but currently no imaging markers are available for mTBI. Advanced structural imaging recently showed microstructural tissue changes and axonal injury, mild but likely sufficient to lead to functional deficits. Magnetoencephalography (MEG) has high temporal and spatial resolution, combining structural and electrophysiological information, and can be used to examine brain activation patterns of regions involved with specific tasks. Methods 16 adults with mTBI and 16 matched controls were submitted to neuropsychological testing (Wechsler Abbreviated Scale of Intelligence (WASI); Conners; Alcohol Use Disorders Identification Test (AUDIT); Generalised Anxiety Disorder Seven-item Scale (GAD-7); Patient Health Questionnaire (PHQ-9); Symptom Checklist and Symptom Severity Score (SCAT2)) and MEG while tested for mental flexibility (Intra-Extra Dimensional set-shifting tasks). Three-dimensional maps were generated using synthetic aperture magnetometry beamforming analyses to identify differences in regional activation and activation times. Reaction times and accuracy between groups were compared using 2×2 mixed analysis of variance. Findings While accuracy was similar, patients with mTBI reaction time was delayed and sequence of activation of brain regions disorganised, with involvement of extra regions such as the occipital lobes, not used by controls. Examination of activation time showed significant delays in the right insula and left posterior parietal cortex in patients with mTBI. Conclusions Patients with mTBI showed significant delays in the activation of important areas involved in executive function. Also, more regions of the brain are involved in an apparent compensatory effort. Our study suggests that MEG can detect subtle neural changes associated with cognitive dysfunction and thus, may eventually be useful for capturing and tracking the onset and course of cognitive symptoms associated with mTBI. PMID:25324505

  9. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    PubMed Central

    Zhu, Haitao; Zhu, Jinlong; Zhao, Tiezhu; Wu, Yong; Liu, Hongyi; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2014-01-01

    Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE) and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks. PMID:25136558

  10. Active Lessons for Active Brains: Teaching Boys and Other Experiential Learners, Grades 3-10

    ERIC Educational Resources Information Center

    James, Abigail Norfleet; Allison, Sandra Boyd; McKenzie, Caitlin Zimmerman

    2011-01-01

    If you're tired of repeating yourself to students who aren't listening, try a little less talk and a lot more action. The authors follow the best-selling "Teaching the Male Brain and Teaching the Female Brain" with this ready-to-use collection of mathematics, language arts, science, and classroom management strategies. Designed for active,…

  11. RESEARCH ARTICLES Brain Electrical Activity Associated

    E-print Network

    infancy. Recently there has been increasing focus on the development of the prefrontal cor- tex processes al., 1999). Nevertheless, neuroscience studies have shown that the frontal cortex INFANCY, 2(3), 311, Blacksburg, VA 24061. E-mail: mabell@vt.edu #12;is active and maturing during infancy (e.g., Bell & Fox, 1992

  12. Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment

    PubMed Central

    Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin

    2015-01-01

    Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554

  13. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  14. Brain

    MedlinePLUS

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  15. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  16. Somatic Activation of AKT3 Causes Hemispheric Developmental Brain Malformations

    PubMed Central

    Poduri, Annapurna; Evrony, Gilad D.; Cai, Xuyu; Elhosary, Princess Christina; Beroukhim, Rameen; Lehtinen, Maria K.; Hills, L. Benjamin; Heinzen, Erin L.; Hill, Anthony; Hill, R. Sean; Barry, Brenda J.; Bourgeois, Blaise F.D.; Riviello, James J.; Barkovich, A. James; Black, Peter M.; Ligon, Keith L.; Walsh, Christopher A.

    2012-01-01

    Summary Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged, malformed cerebral hemisphere, typically causing epilepsy that requires surgical resection. We studied resected HMG tissue to test whether the condition might reflect somatic mutations affecting genes critical to brain development. We found that 2/8 HMG samples showed trisomy of chromosome 1q, encompassing many genes, including AKT3, which is known to regulate brain size. A third case showed a known activating mutation in AKT3 (c.49G?A, creating p.E17K) that was not present in the patient’s blood cells. Remarkably, the E17K mutation in AKT3 is exactly paralogous to E17K mutations in AKT1 and AKT2 recently discovered in somatic overgrowth syndromes. We show that AKT3 is the most abundant AKT paralogue in brain during neurogenesis and that phosphorylated AKT is abundant in cortical progenitor cells. Our data suggest that somatic mutations limited to brain could represent an important cause of complex neurogenetic disease. PMID:22500628

  17. Emotions promote social interaction by synchronizing brain activity across individuals

    PubMed Central

    Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko

    2012-01-01

    Sharing others’ emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas “tick together” in participants who are viewing similar emotional events in a movie. Participants’ brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness–unpleasantness (i.e., valence) and of arousal–calmness. Pearson’s correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel–based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals’ brain areas supporting emotional sensations and understanding of another’s actions, whereas high arousal directs individuals’ attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534

  18. Emotions promote social interaction by synchronizing brain activity across individuals.

    PubMed

    Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jääskeläinen, Iiro P; Hari, Riitta; Sams, Mikko

    2012-06-12

    Sharing others' emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas "tick together" in participants who are viewing similar emotional events in a movie. Participants' brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness-unpleasantness (i.e., valence) and of arousal-calmness. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel-based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals' brain areas supporting emotional sensations and understanding of another's actions, whereas high arousal directs individuals' attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534

  19. Understanding Brain Tumors

    MedlinePLUS

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth? ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  20. Neuroimaging and Neuroenergetics: Brain Activations as Information-Driven Reorganization of Energy Flows

    ERIC Educational Resources Information Center

    Strelnikov, Kuzma

    2010-01-01

    There is increasing focus on the neurophysiological underpinnings of brain activations, giving birth to an emerging branch of neuroscience--neuroenergetics. However, no common definition of "brain activation" exists thus far. In this article, we define brain activation as the information-driven reorganization of energy flows in a population of…

  1. Brain cholinesterase activity of apparently normal wild birds

    USGS Publications Warehouse

    Hill, E.F.

    1988-01-01

    Organophosphorus and carbamate pesticides are potent anticholinesterase substances that have killed large numbers of wild birds of various species. Cause of death is diagnosed by demonstration of depressed brain cholinesterase (ChE) activity in combination with chemical detection of anticholinesterase residue in the affected specimen. ChE depression is determined by comparison of the affected specimen to normal ChE activity for a sample of control specimens of the same species, but timely procurement of controls is not always possible. Therefore, a reference file of normal whole brain ChE activity is provided for 48 species of wild birds from North America representing 11 orders and 23 families for use as emergency substitutes in diagnosis of anticholinesterase poisoning. The ChE values, based on 83 sets of wild control specimens from across the United States, are reproducible provided the described procedures are duplicated. Overall, whole brain ChE activity varied nearly three-fold among the 48 species represented, but it was usually similar for closely related species. However, some species were statistically separable in most families and some species of the same genus differed as much as 50%.

  2. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  3. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury

    PubMed Central

    Scheibel, Randall S.; Newsome, Mary R.; Wilde, Elisabeth A.; McClelland, Michelle M.; Hanten, Gerri; Krawczyk, Daniel C.; Cook, Lori G.; Chu, Zili D.; Vásquez, Ana C.; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V.; Levin, Harvey S.

    2011-01-01

    The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions. PMID:21777109

  4. Early Computed Tomography Frontal Abnormalities Predict Long-Term Neurobehavioral Problems But Not Affective Problems after Moderate to Severe Traumatic Brain Injury.

    PubMed

    Spikman, Jacoba M; Timmerman, Marieke E; Coers, Annemiek; van der Naalt, Joukje

    2016-01-01

    Behavioral problems are serious consequences of moderate to severe traumatic brain injury (TBI) and have a negative impact on outcome. There may be two types: neurobehavioral problems, manifesting as inadequate social behavior resulting from prefrontal system damage, and affective behavioral problems, resulting from emotional distress as a reaction to the brain injury. In the present study we investigated whether these two types of behavioral problems, as indicated by proxies, could be distinguished in a group of chronic TBI patients and whether early indicators of prefrontal damage on imaging could predict long-term neurobehavioral problems. Computed tomography (CT) imaging data on admission were used to identify frontal lesions. Three hundred twenty-three moderate to severe TBI survivors received 2 to 16 years post-trauma an aftercare survey with seven questions asking for changes in behavior and affect, presented both to patients and their proxies. One hundred eighty-six patients (59%) answered the behavioral questions; 42% had frontal lesions on CT. Ordinal common factor analysis on proxy scores yielded two factors, with behavior and affective items clearly separated and the anger item mediocre related to both factors. Three scales were created: Behavior, Affective and Anger. Frontal patients scored significantly higher on the Behavior and Anger scales. Logistic regression analysis showed a fourfold increase of long-term neurobehavioral problems in patients with frontal lesions. Long-term neurobehavioral problems were significantly correlated to one-year outcome and return to work in the long term. We conclude that in patients with moderate to severe TBI neurobehavioral and affective problems can be distinguished. Early CT frontal abnormalities predict long-term neurobehavioral problems, but not affective problems. PMID:26058315

  5. Borderline personality traits and brain activity during emotional perspective taking.

    PubMed

    Haas, Brian W; Miller, Joshua D

    2015-10-01

    Borderline personality disorder (BPD) is characterized by disturbances in emotional, behavioral, and social functioning. The relation between BPD and empathy, which may affect the functional difficulties associated with this disorder, is complex because there is some evidence of heighted empathic processing and some evidence of reduced empathic processing in BPD. The current study was designed to investigate the association between BPD traits and brain activity during an empathic processing task (emotion perspective taking) in a nonclinical sample (N = 82). Participants completed the Five-Factor Borderline Inventory and underwent functional MRI while conducting an emotional perspective-taking task. Higher BPD trait scores were associated with hypoactivity in two brain regions involved in cognitive empathy (superior temporal sulcus and the temporoparietal junction). These data provide support to existing models describing the heterogeneous nature of BPD and suggest that reduced neural activity may in part affect altered empathic processing in BPD. (PsycINFO Database Record PMID:26168407

  6. Time delay between cardiac and brain activity during sleep transitions

    NASA Astrophysics Data System (ADS)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  7. Human brain activity with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Chance, Britton

    1999-09-01

    Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out. Experimental results measured with fNIRI are demonstrated in this paper. It was shown that fNIRI technique is able to reveal the occipital activity during visual stimulation, and co-register well with results of fMRI in the motor cortex activity during finger tapping. In the studies of the effects of left prefrontal lobe on forming memory for new associations, it is shown that left prefrontal lobe activated more under deep conditions than that under shallow encoding, especially the dorsal part. In the studies of emotional thinking, it was shown that the responses were different between positive- negative emotional thinking and negative-positive emotional thinking. In mental arithmetic studies, higher activation was found in the first task than in the second, regardless of the difficulty, and higher activation was measured in subtraction of 17 than in subtraction of 3.

  8. Brain activity correlates with emotional perception induced by dynamic avatars.

    PubMed

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics. PMID:26220746

  9. Intra-Cranial Recordings of Brain Activity During Language Production

    PubMed Central

    Llorens, Anaïs; Trébuchon, Agnès; Liégeois-Chauvel, Catherine; Alario, F.-Xavier

    2011-01-01

    Recent findings in the neurophysiology of language production have provided a detailed description of the brain network underlying this behavior, as well as some indications about the timing of operations. Despite their invaluable utility, these data generally suffer from limitations either in terms of temporal resolution, or in terms of spatial localization. In addition, studying the neural basis of speech is complicated by the presence of articulation artifacts such as electro-myographic activity that interferes with the neural signal. These difficulties are virtually absent in a powerful albeit much less frequent methodology, namely the recording of intra-cranial brain activity (intra-cranial electroencephalography). Such recordings are only possible under very specific clinical circumstances requiring functional mapping before brain surgery, most notably in patients that suffer from pharmaco-resistant epilepsy. Here we review the research conducted with this methodology in the field of language production, with explicit consideration of its advantages and drawbacks. The available evidence is shown to be diverse, both in terms of the tasks and the cognitive processes tested and in terms of the brain localizations being studied. Still, the review provides valuable information for characterizing the dynamics of the neural events occurring in the language production network. Following modality specific activities (in auditory or visual cortices), there is a convergence of activity in superior temporal sulcus, which is a plausible neural correlate of phonological encoding processes. Later, between 500 and 800?ms, inferior frontal gyrus (around Broca’s area) is involved. Peri-rolandic areas are recruited in the two modalities relatively early (200–500?ms window), suggesting a very early involvement of (pre-) motor processes. We discuss how some of these findings may be at odds with conclusions drawn from available meta-analysis of language production studies. PMID:22207857

  10. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    NASA Astrophysics Data System (ADS)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  11. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  12. Brain mechanical property measurement using MRE with intrinsic activation

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2012-11-01

    Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed ‘intrinsic activation’, that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of six asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when the MRE procedures were repeated on the same day. Cardiac pulsation, termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MRE to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination.

  13. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI.

    PubMed

    Zang, Yu-Feng; He, Yong; Zhu, Chao-Zhe; Cao, Qing-Jiu; Sui, Man-Qiu; Liang, Meng; Tian, Li-Xia; Jiang, Tian-Zi; Wang, Yu-Feng

    2007-03-01

    In children with attention deficit hyperactivity disorder (ADHD), functional neuroimaging studies have revealed abnormalities in various brain regions, including prefrontal-striatal circuit, cerebellum, and brainstem. In the current study, we used a new marker of functional magnetic resonance imaging (fMRI), amplitude of low-frequency (0.01-0.08Hz) fluctuation (ALFF) to investigate the baseline brain function of this disorder. Thirteen boys with ADHD (13.0+/-1.4 years) were examined by resting-state fMRI and compared with age-matched controls. As a result, we found that patients with ADHD had decreased ALFF in the right inferior frontal cortex, [corrected] and bilateral cerebellum and the vermis as well as increased ALFF in the right anterior cingulated cortex, left sensorimotor cortex, and bilateral brainstem. This resting-state fMRI study suggests that the changed spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology in children with ADHD. PMID:16919409

  14. Brain activation patterns during visual episodic memory processing among first-degree relatives of schizophrenia subjects

    PubMed Central

    Stolz, Erin R.; Pancholi, Krishna; Goradia, Dhruman; Paul, Sarah; Keshavan, Matcheri S.; Nimgaonkar, Vishwajit; Prasad, Konasale

    2012-01-01

    Episodic memory deficits are proposed as a potential intermediate phenotype of schizophrenia. We examined deficits in visual episodic memory and associated brain activation differences among early course schizophrenia (n=22), first-degree relatives (n=16) and healthy controls without personal or family history of psychotic disorders (n=28). Study participants underwent functional magnetic resonance imaging on a 3T scanner while performing visual episodic memory encoding and retrieval task. We examined in-scanner behavioral performance evaluating response time and accuracy of performance. Whole-brain BOLD response differences were analyzed using SPM5 correcting for multiple comparisons. There was an incremental increase in response time among the study groups (Healthy Controlsabnormalities in visual episodic memory retrieval but not for encoding in the prefrontal cortex and thalamus. PMID:22992490

  15. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.

    PubMed

    Trapp, Stefan; Cork, Simon C

    2015-10-15

    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation. PMID:26290108

  16. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  17. When grief heats up: Proinflammatory cytokines predict regional brain activation

    PubMed Central

    O'Connor, Mary-Frances; Irwin, Michael R.; Wellisch, David K.

    2009-01-01

    Background Pro-inflammatory cytokines are associated with sickness behaviors, a set of behaviors including low mood, which are orchestrated by the brain and described as shift in motivational state. The present study investigated the hypothesis that local inflammation is associated with greater subgenual anterior cingulate cortex (sACC) activation in persons undergoing chronic stress. Methods Women undergoing the emotional stress of bereavement had fMRI scans during a grief-elicitation task. Local inflammation was measured by salivary concentrations of two markers of proinflammatory cytokine activity (e.g., interleukin-1? and soluble tumor necrosis factor receptor II). Results Analyses revealed that both inflammatory markers were positively associated with ventral prefrontal activation (e.g., sACC and orbitofrontal cortex) as well as other regions important in the emotional task such as noun retrieval (e.g., temporal cortex), and visual processing (e.g., cuneus and fusiform gyrus). In separate analyses, the ventral prefrontal activations correlated with free recall of grief-related word stimuli, but not neutral word stimuli. Conclusions This is the first study to demonstrate the relationship between emotional processing, regional brain activation and localized inflammation in a chronically stressed population of adults. PMID:19481155

  18. Neuroprotective effect of the active components of three Chinese herbs on brain iron load in a mouse model of Alzheimer’s disease

    PubMed Central

    DONG, XIAN-HUI; GAO, WEI-JUAN; KONG, WEI-NA; XIE, HONG-LIN; PENG, YAN; SHAO, TIE-MEI; YU, WEN-GUO; CHAI, XI-QING

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative brain disorder and the most common cause of dementia. New treatments for AD are required due to its increasing prevalence in aging populations. The present study evaluated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on learning and memory impairment, ?-amyloid (A?) reduction and brain iron load in an APPswe/PS1?E9 transgenic mouse model of AD. Increasing evidence indicates that a disturbance of normal iron homeostasis may contribute to the pathology of AD. However, the underlying mechanisms resulting in abnormal iron load in the AD brain remain unclear. It has been hypothesized that the brain iron load is influenced by the deregulation of certain proteins associated with brain iron metabolism, including divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1). The present study investigated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on the expression levels of DMT1 and FPN1. The treatment with the active components reduced cognitive deficits, inhibited A? plaque accumulation, reversed A? burden and reduced the brain iron load in AD model mice. A significant increase was observed in the levels of DMT1-iron-responsive element (IRE) and DMT1-nonIRE in the hippocampus of the AD mouse brain, which was reduced by treatment with the active components. In addition, the levels of FPN1 were significantly reduced in the hippocampus of the AD mouse brain compared with those of control mice, and these levels were increased following treatment with the active components. Thus, the present study indicated that the active components of Epimedium, Astragalus and Radix Puerariae may exert a neuroprotective effect against AD by reducing iron overload in the AD brain and may provide a novel approach for the development of drugs for the treatment of AD. PMID:25780429

  19. Mapping brain activity at scale with cluster computing.

    PubMed

    Freeman, Jeremy; Vladimirov, Nikita; Kawashima, Takashi; Mu, Yu; Sofroniew, Nicholas J; Bennett, Davis V; Rosen, Joshua; Yang, Chao-Tsung; Looger, Loren L; Ahrens, Misha B

    2014-09-01

    Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights. PMID:25068736

  20. 3D SEGMENTATION OF RODENT BRAIN STRUCTURES USING ACTIVE VOLUME MODEL WITH SHAPE PRIORS

    E-print Network

    Huang, Junzhou

    3D SEGMENTATION OF RODENT BRAIN STRUCTURES USING ACTIVE VOLUME MODEL WITH SHAPE PRIORS Shaoting of the rodent brain from MR images, and the proposed method performed better than the original AVM. Index Terms-- Segmentation, deformable models, Ac- tive Volume Model, Active Shape Model, Shape prior, rodent brain 1

  1. ORIGINAL ARTICLE Assessing a signal model and identifying brain activity from fMRI

    E-print Network

    Gao, Jianbo

    ORIGINAL ARTICLE Assessing a signal model and identifying brain activity from fMRI data is to develop simple and reliable methods to correlate brain regions with functionality. In this paper, we brain activity from fMRI data. We perform three tasks: (a) Estimating noise level from experimental f

  2. Trait-Like Brain Activity during Adolescence Predicts Anxious Temperament in Primates

    E-print Network

    Wisconsin at Madison, University of

    Trait-Like Brain Activity during Adolescence Predicts Anxious Temperament in Primates Andrew S. Fox-Like Brain Activity during Adolescence Predicts Anxious Temperament in Primates. PLoS ONE 3(7): e2570. doi:10 The Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin

  3. A NEW MULTIPLE-KERNEL-LEARNING WEIGHTING METHOD FOR LOCALIZING HUMAN BRAIN MAGNETIC ACTIVITY

    E-print Network

    Takiguchi, Tetsuya

    A NEW MULTIPLE-KERNEL-LEARNING WEIGHTING METHOD FOR LOCALIZING HUMAN BRAIN MAGNETIC ACTIVITY T classification based on machine learning is a powerful tool to analyze human brain activity data obtained recently been used to study how stimulus fea- tures are processed in the human brain. In particular

  4. Exploring the network dynamics underlying brain activity during rest Joana Cabral a,b,

    E-print Network

    Deco, Gustavo

    Exploring the network dynamics underlying brain activity during rest§ Joana Cabral a,b, *, Morten L. Kringelbach b,c , Gustavo Deco a,d a Theoretical and Computational Neuroscience Group, Center of Brain Recerca i Estudis Avanc¸ats (ICREA), Barcelona, Spain Contents 1. Brain activity during rest

  5. Categories and Functional Units: An Infinite Hierarchical Model for Brain Activations

    E-print Network

    Golland, Polina

    Categories and Functional Units: An Infinite Hierarchical Model for Brain Activations Danial present a model that describes the structure in the responses of different brain areas to a set of stimuli encodes the relationship between brain activations and fMRI time courses. A variational inference

  6. Measuring emotion in advertising research: prefrontal brain activity.

    PubMed

    Silberstein, Richard B; Nield, Geoffrey E

    2012-01-01

    With the current interest in the role of emotion in advertising and advertising research, there has been an increasing interest in the use of various brain activity measures to access nonverbal emotional responses. One such approach relies on measuring the difference between left and right hemisphere prefrontal cortical activity to assess like and dislike. This approach is based on electroencephalography (EEG) and neuroimaging work, suggesting that the approach/withdrawal (frequently but not always associated with like/dislike) dimension of emotion is indicated by the balance of activity between the left and right prefrontal cortex. Much of this work was initiated by Richard Davidson in the early 1990s. An early study by Davidson et al. measured brain electrical activity to assess patterns of activation during the experience of happiness and disgust. The authors reported that disgust was found to be associated with increased right-sided activation in the frontal and anterior temporal regions compared with happiness. In contrast, happiness was found to be accompanied by left-sided activation in the anterior temporal region compared with disgust. Early reports suggested that frontal laterality indexes motivational valence with positive emotions (happy, like) associated with left greater than the right frontal activity and vice versa. Although these findings appear to be consistent with personality traits (e.g., optimism pessimism), state changes in frontal laterality appears to index approach withdraw rather than emotional valence. Interestingly, the behavioral and motivational correlates of prefrontal asymmetric activity are not restricted to humans or even primates but have been observed in numerous species such as birds and fish (see [4]). Henceforth, we use the term motivational valence (MV) rather than the more cumbersome term approach withdraw. PMID:22678836

  7. Source localization of brain activity using helium-free interferometer

    SciTech Connect

    Dammers, Jürgen Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.

  8. Abnormal Cognition, Sleep, EEG and Brain Metabolism in a Novel Knock-In Alzheimer Mouse, PLB1

    PubMed Central

    Platt, Bettina; Drever, Benjamin; Koss, David; Stoppelkamp, Sandra; Jyoti, Amar; Plano, Andrea; Utan, Aneli; Merrick, Georgina; Ryan, Duncan; Melis, Valeria; Wan, Hong; Mingarelli, Marco; Porcu, Emanuele; Scrocchi, Louise; Welch, Andy; Riedel, Gernot

    2011-01-01

    Late-stage neuropathological hallmarks of Alzheimer's disease (AD) are ?-amyloid (?A) and hyperphosphorylated tau peptides, aggregated into plaques and tangles, respectively. Corresponding phenotypes have been mimicked in existing transgenic mice, however, the translational value of aggressive over-expression has recently been questioned. As controlled gene expression may offer animal models with better predictive validity, we set out to design a transgenic mouse model that circumvents complications arising from pronuclear injection and massive over-expression, by targeted insertion of human mutated amyloid and tau transgenes, under the forebrain- and neurone-specific CaMKII? promoter, termed PLB1Double. Crossing with an existing presenilin 1 line resulted in PLB1Triple mice. PLB1Triple mice presented with stable gene expression and age-related pathology of intra-neuronal amyloid and hyperphosphorylated tau in hippocampus and cortex from 6 months onwards. At this early stage, pre-clinical 18FDG PET/CT imaging revealed cortical hypometabolism with increased metabolic activity in basal forebrain and ventral midbrain. Quantitative EEG analyses yielded heightened delta power during wakefulness and REM sleep, and time in wakefulness was already reliably enhanced at 6 months of age. These anomalies were paralleled by impairments in long-term and short-term hippocampal plasticity and preceded cognitive deficits in recognition memory, spatial learning, and sleep fragmentation all emerging at ?12 months. These data suggest that prodromal AD phenotypes can be successfully modelled in transgenic mice devoid of fibrillary plaque or tangle development. PLB1Triple mice progress from a mild (MCI-like) state to a more comprehensive AD-relevant phenotype, which are accessible using translational tools such as wireless EEG and microPET/CT. PMID:22096518

  9. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    PubMed Central

    Laing, Mark; Rees, Adrian; Vuong, Quoc C.

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies. PMID:26483710

  10. Sustained Systemic Glucocerebrosidase Inhibition Induces Brain ?-Synuclein Aggregation, Microglia and Complement C1q Activation in Mice

    PubMed Central

    Rocha, Emily M.; Smith, Gaynor A.; Park, Eric; Cao, Hongmei; Graham, Anne-Renee; Brown, Eilish; McLean, Jesse R.; Hayes, Melissa A.; Beagan, Jonathan; Izen, Sarah C.; Perez-Torres, Eduardo

    2015-01-01

    Abstract Aims: Loss-of-function mutations in GBA1, which cause the autosomal recessive lysosomal storage disease, Gaucher disease (GD), are also a key genetic risk factor for the ?-synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase and reductions in this enzyme result in the accumulation of the glycolipid substrates glucosylceramide and glucosylsphingosine. Deficits in autophagy and lysosomal degradation pathways likely contribute to the pathological accumulation of ?-synuclein in PD. In this report we used conduritol-?-epoxide (CBE), a potent selective irreversible competitive inhibitor of glucocerebrosidase, to model reduced glucocerebrosidase activity in vivo, and tested whether sustained glucocerebrosidase inhibition in mice could induce neuropathological abnormalities including ?-synucleinopathy, and neurodegeneration. Results: Our data demonstrate that daily systemic CBE treatment over 28 days caused accumulation of insoluble ?-synuclein aggregates in the substantia nigra, and altered levels of proteins involved in the autophagy lysosomal system. These neuropathological changes were paralleled by widespread neuroinflammation, upregulation of complement C1q, abnormalities in synaptic, axonal transport and cytoskeletal proteins, and neurodegeneration. Innovation: A reduction in brain GCase activity has been linked to sporadic PD and normal aging, and may contribute to the susceptibility of vulnerable neurons to degeneration. This report demonstrates that systemic reduction of GCase activity using chemical inhibition, leads to neuropathological changes in the brain reminiscent of ?-synucleinopathy. Conclusions: These data reveal a link between reduced glucocerebrosidase and the development of ?-synucleinopathy and pathophysiological abnormalities in mice, and support the development of GCase therapeutics to reduce ?-synucleinopathy in PD and related disorders. Antioxid. Redox Signal. 23, 550–564. PMID:26094487

  11. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    E-print Network

    Jo, Janggun; Yang, Xinmai

    2011-09-13

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain...

  12. Nail abnormalities

    MedlinePLUS

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  13. Chromosome Abnormalities

    MedlinePLUS

    ... of a condition caused by numerical abnormalities is Down syndrome, which is marked by mental retardation, learning difficulties, ... muscle tone (hypotonia) in infancy. An individual with Down syndrome has three copies of chromosome 21 rather than ...

  14. Congenital Abnormalities

    MedlinePLUS

    ... Ribbon Commands Skip to main content Turn off Animations Turn on Animations Our Sponsors Log in | Register Menu Log in | ... course of action. Additional Information Your Family Health History & Genetics Detecting Genetic Abnormalities Prenatal Genetic Counseling Children ...

  15. Craniofacial Abnormalities

    MedlinePLUS

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  16. Brain Activity Associated with Emoticons: An fMRI Study

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  17. Synchronization-based approach for detecting functional activation of brain

    NASA Astrophysics Data System (ADS)

    Hong, Lei; Cai, Shi-Min; Zhang, Jie; Zhuo, Zhao; Fu, Zhong-Qian; Zhou, Pei-Ling

    2012-09-01

    In this paper, we investigate a synchronization-based, data-driven clustering approach for the analysis of functional magnetic resonance imaging (fMRI) data, and specifically for detecting functional activation from fMRI data. We first define a new measure of similarity between all pairs of data points (i.e., time series of voxels) integrating both complete phase synchronization and amplitude correlation. These pairwise similarities are taken as the coupling between a set of Kuramoto oscillators, which in turn evolve according to a nearest-neighbor rule. As the network evolves, similar data points naturally synchronize with each other, and distinct clusters will emerge. The clustering behavior of the interaction network of the coupled oscillators, therefore, mirrors the clustering property of the original multiple time series. The clustered regions whose cross-correlation coefficients are much greater than other regions are considered as the functionally activated brain regions. The analysis of fMRI data in auditory and visual areas shows that the recognized brain functional activations are in complete correspondence with those from the general linear model of statistical parametric mapping, but with a significantly lower time complexity. We further compare our results with those from traditional K-means approach, and find that our new clustering approach can distinguish between different response patterns more accurately and efficiently than the K-means approach, and therefore more suitable in detecting functional activation from event-related experimental fMRI data.

  18. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength. PMID:25571015

  19. Abnormal Pup 

    E-print Network

    Unknown

    2011-08-17

    samples, appropriate reference genes were needed that showed stable, non-fluctuating levels in both normal and abnormal kidney tissue and urine sediment in dogs. Tested genes included Glyceraldehyde 3- phosphate dehydrogenase (GAPDH), 40S ribosomal... into the pathogenesis and treatment of CKD in dogs. 3 CHAPTER I INTRODUCTION Primary glomerular diseases are a leading cause of chronic kidney disease (CKD) in both humans and animals. These disorders are characterized by abnormal structure and function...

  20. Mice lacking brain-type creatine kinase activity show defective thermoregulation

    PubMed Central

    Streijger, Femke; Pluk, Helma; Oerlemans, Frank; Beckers, Gaby; Bianco, Antonio C.; Ribeiro, Miriam O.; Wieringa, Bé; Van der Zee, Catharina E.E.M.

    2010-01-01

    The cytosolic brain-type creatine kinase and mitochondrial ubiquitous creatine kinase (CK-B and UbCKmit) are expressed during the prepubescent and adult period of mammalian life. These creatine kinase (CK) isoforms are present in neural cell types throughout the central and peripheral nervous system and in smooth muscle containing tissues, where they have an important role in cellular energy homeostasis. Here, we report on the coupling of CK activity to body temperature rhythm and adaptive thermoregulation in mice. With both brain-type CK isoforms being absent, the body temperature reproducibly drops ~1.0°C below normal during every morning (inactive) period in the daily cycle. Facultative non-shivering thermogenesis is also impaired, since CK??/?? mice develop severe hypothermia during 24 h cold exposure. A relationship with fat metabolism was suggested because comparison of CK??/?? mice with wildtype controls revealed decreased weight gain associated with less white and brown fat accumulation and smaller brown adipocytes. Also, circulating levels of glucose, triglycerides and leptin are reduced. Extensive physiological testing and uncoupling protein1 analysis showed, however, that the thermogenic problems are not due to abnormal responsiveness of brown adipocytes, since noradrenaline infusion produced a normal increase of body temperature. Moreover, we demonstrate that the cyclic drop in morning temperature is also not related to altered rhythmicity with reduced locomotion, diminished food intake or increased torpor sensitivity. Although several integral functions appear altered when CK is absent in the brain, combined findings point into the direction of inefficient neuronal transmission as the dominant factor in the thermoregulatory defect. PMID:19419668

  1. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    PubMed

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of P<0.05 (P=0.001, initial threshold). Our findings support the hypothesis of abnormal frontal-striatal-cerebellar circuits in ADHD and the suggestion that sample entropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders. PMID:24183857

  2. Brain structures activated by overt and covert emotional visual stimuli.

    PubMed

    Sabatini, Elisabetta; Della Penna, Stefania; Franciotti, Raffaella; Ferretti, Antonio; Zoccolotti, Pierluigi; Rossini, Paolo M; Romani, Gian Luca; Gainotti, Guido

    2009-06-30

    Research data suggest that the amygdala and some related brain structures modulate the processing of emotional visual stimuli even when they are not consciously perceived. In this study, we examined neural responses to investigate whether and how other brain areas anatomically connected to the amygdala might become activated during both overt and covert presentation of conditioned emotional visual stimuli. In the covert presentation, a conditioned angry face was shown for 15 ms followed by a neutral masking face (CSmask). In the overt condition, an angry face associated with a painful stimulus (CS+), a happy (H) and a neutral face (N) were presented for 75 ms. Based on results of functional magnetic resonance imaging (fMRI) in 10 healthy volunteers, we show evidence that a network of brain structures anatomically connected to the amygdala (including the anterior insula, the fusiform gyrus and the superior temporal sulcus) are involved in the subliminal processing of visual emotional stimuli. Of particular interest was the dissociation between the anterior and posterior insula: the anterior insula responded to both overt and covert presentation of the conditioned stimulus, whereas the posterior insula responded only to the overt presentation of the face associated with a painful electrical stimulation. This response pattern suggests that the anterior insula, the fusiform gyrus and the temporal sulcus cooperate with the amygdala in the unconscious processing of pain-conditioned stimuli. PMID:19480985

  3. Brain activation inhomogeneity highlighted by the Isotropic Anomalous Diffusion filter.

    PubMed

    Senra Filho, Antonio Carlos da S; Rondinoni, Carlo; dos Santos, Antonio Carlos; Murta, Luiz O

    2014-01-01

    The visual appealing nature of the now popular BOLD fMRI may give the false impression of extreme simplicity, as if the the functional maps could be generated with the press of a single button. However, one can only get plausible maps after long and cautious processing, considering that time and noise come into play during acquisition. One of the most popular ways to account for noise and individual variability in fMRI is the use of a Gaussian spatial filter. Although very robust, this filter may introduce excessive blurring, given the strong dependence of results on the central voxel value. Here, we propose the use of the Isotropic Anomalous Diffusion (IAD) approach, aiming to reduce excessive homogeneity while retaining the natural variability of signal across brain space. We found differences between Gaussian and IAD filters in two parameters gathered from Independent Component maps (ICA), identified on brain areas responsible for auditory processing during rest. Analysis of data gathered from 7 control subjects shows that the IAD filter rendered more localized active areas and higher contrast-to-noise ratios, when compared to equivalent Gaussian filtered data (Student t-test, p<0.05). The results seem promising, since the anomalous filter performs satisfactorily in filtering noise with less distortion of individual localized brain responses. PMID:25570699

  4. It still hurts: altered opioid activity in the brain during social rejection and acceptance in major depressive disorder

    PubMed Central

    Hsu, David T; Sanford, Benjamin J; Meyers, Kortni K; Love, Tiffany M; Hazlett, Kathleen E; Walker, Sara J; Mickey, Brian J; Koeppe, Robert A; Langenecker, Scott A; Zubieta, Jon-Kar

    2015-01-01

    The ?-opioid receptor (MOR) system, well known for dampening physical pain, is also hypothesized to dampen “social pain.” We used positron emission tomography scanning with the selective MOR radioligand [11C]carfentanil to test the hypothesis that MOR system activation in response to social rejection and acceptance is altered in medication-free patients diagnosed with current major depressive disorder (MDD, n = 17) compared to healthy controls (HCs, n = 18). During rejection, MDD patients showed reduced MOR activation (e.g., reduced endogenous opioid release) in brain regions regulating stress, mood, and motivation, and slower emotional recovery compared to HCs. During acceptance, only HCs showed increased social motivation, which was positively correlated with MOR activation in the nucleus accumbens, a reward structure. Abnormal MOR function in MDD may hinder emotional recovery from negative social interactions and decrease pleasure derived from positive interactions. Both effects may reinforce depression, trigger relapse, and contribute to poor treatment outcomes. PMID:25600108

  5. Calcium imaging of infrared-stimulated activity in rodent brain

    PubMed Central

    Cayce, Jonathan Matthew; Bouchard, Matthew B.; Chernov, Mykyta M.; Chen, Brenda R.; Grosberg, Lauren E.; Jansen, E. Duco; Hillman, Elizabeth M. C.; Mahadevan-Jansen, Anita

    2014-01-01

    Summary Infrared neural stimulation (INS) is a promising neurostimulation technique that can activate neural tissue with high spatial precision and without the need for exogenous agents. However, little is understood about how infrared light interacts with neural tissue on a cellular level, particularly within the living brain. In this study, we use calcium sensitive dye imaging on macroscopic and microscopic scales to explore the spatiotemporal effects of INS on cortical calcium dynamics. The INS-evoked calcium signal that was observed exhibited a fast and slow component suggesting activation of multiple cellular mechanisms. The slow component of the evoked signal exhibited wave-like properties suggesting network activation, and was verified to originate from astrocytes through pharmacology and 2-photon imaging. We also provide evidence that the fast calcium signal may have been evoked through modulation of glutamate transients. This study demonstrates that pulsed infrared light can induce intracellular calcium modulations in both astrocytes and neurons, providing new insights into the mechanisms of action of INS in the brain. PMID:24674600

  6. Changes in baseball batters' brain activity with increased pitch choice.

    PubMed

    Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Kim, Woojong; Radlo, Steven J

    2015-09-01

    In baseball, one factor necessary for batters to decide whether to swing or not depends on what type of pitch is thrown. Oftentimes batters will look for their pitch (i.e., waiting for a fastball). In general, when a pitcher has many types of pitches in his arsenal, batters will have greater difficulty deciding upon the pitch thrown. Little research has been investigated the psychophysiology of a batters decision-making processes. Therefore, the primary purpose of this study was to determine how brain activation changes according to an increase in the number of alternatives (NA) available. A total of 15 male college baseball players participated in this study. The stimuli used in this experiment were video clips of a right-handed pitcher throwing fastball, curve, and slider pitches. The task was to press a button after selecting the fastball as the target stimulus from two pitch choices (fastball and curve), and then from three possibilities (fastball, curve, and slider). Functional and anatomic image scanning magnetic resonance imaging (MRI) runs took 4 and 5[Formula: see text]min, respectively. According to our analysis, the right precentral gyrus, left medial frontal gyrus, and right fusiform gyrus were activated when the NA was one. The supplementary motor areas (SMA) and primary motor cortex were activated when there were two alternatives to choose from and the inferior orbitofrontal gyrus was specifically activated with three alternatives. Contrary to our expectations, the NA was not a critical factor influencing the activation of related decision making areas when the NA was compared against one another. These findings highlight that specific brain areas related to decision making were activated as the NA increased. PMID:26227537

  7. Control of abnormal synchronization in neurological disorders.

    PubMed

    Popovych, Oleksandr V; Tass, Peter A

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson's disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  8. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  9. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    PubMed

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading. PMID:26095088

  10. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals

    PubMed Central

    Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.

    2014-01-01

    Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402

  11. Prefrontal Brain Activity Predicts Temporally Extended Decision-Making Behavior

    PubMed Central

    Yarkoni, Tal; Braver, Todd S; Gray, Jeremy R; Green, Leonard

    2005-01-01

    Although functional neuroimaging studies of human decision-making processes are increasingly common, most of the research in this area has relied on passive tasks that generate little individual variability. Relatively little attention has been paid to the ability of brain activity to predict overt behavior. Using functional magnetic resonance imaging (fMRI), we investigated the neural mechanisms underlying behavior during a dynamic decision task that required subjects to select smaller, short-term monetary payoffs in order to receive larger, long-term gains. The number of trials over which the long-term gains accrued was manipulated experimentally (2 versus 12). Event-related neural activity in right lateral prefrontal cortex, a region associated with high-level cognitive processing, selectively predicted choice behavior in both conditions, whereas insular cortex responded to fluctuations in amount of reward but did not predict choice behavior. These results demonstrate the utility of a functional neuroimaging approach in behavioral psychology, showing that (a) highly circumscribed brain regions are capable of predicting complex choice behavior, and (b) fMRI has the ability to dissociate the contributions of different neural mechanisms to particular behavioral tasks. PMID:16596979

  12. Covert waking brain activity reveals instantaneous sleep depth.

    PubMed

    McKinney, Scott M; Dang-Vu, Thien Thanh; Buxton, Orfeu M; Solet, Jo M; Ellenbogen, Jeffrey M

    2011-01-01

    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8-13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise--a measure of sleep depth--throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep. PMID:21408616

  13. Altered Spontaneous Brain Activity in Schizophrenia: A Meta-Analysis and a Large-Sample Study

    PubMed Central

    Xu, Yongjie; Zhuo, Chuanjun; Qin, Wen; Zhu, Jiajia; Yu, Chunshui

    2015-01-01

    Altered spontaneous brain activity as measured by ALFF, fALFF, and ReHo has been reported in schizophrenia, but no consensus has been reached on alternations of these indexes in the disorder. We aimed to clarify the regional alterations in ALFF, fALFF, and ReHo in schizophrenia using a meta-analysis and a large-sample validation. A meta-analysis of activation likelihood estimation was conducted based on the abnormal foci of ten studies. A large sample of 86 schizophrenia patients and 89 healthy controls was compared to verify the results of the meta-analysis. Meta-analysis demonstrated that the alternations in ALFF and ReHo had similar distribution in schizophrenia patients. The foci with decreased ALFF/fALFF and ReHo in schizophrenia were mainly located in the somatosensory cortex, posterior parietal cortex, and occipital cortex; however, foci with increased ALFF/fALFF and ReHo were mainly located in the bilateral striatum, medial temporal cortex, and medial prefrontal cortex. The large-sample study showed consistent findings with the meta-analysis. These findings may expound the pathophysiological hypothesis and guide future research. PMID:26180786

  14. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    ERIC Educational Resources Information Center

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  15. Untangling the Temporal Dynamics of Bilateral Neural Activation in the Bilingual Brain

    E-print Network

    neuroscience has been what are the neural origins of human brain lateralization? Language is strongly to monolinguals. Here, bilingualism is used as a lens into the conditions that drive brain lateralization. WhyUntangling the Temporal Dynamics of Bilateral Neural Activation in the Bilingual Brain by Kaja

  16. Using Proton Magnetic Resonance Imaging and Spectroscopy to Understand Brain "Activation"

    ERIC Educational Resources Information Center

    Baslow, Morris H.; Guilfoyle, David N.

    2007-01-01

    Upon stimulation, areas of the brain associated with specific cognitive processing tasks may undergo observable physiological changes, and measures of such changes have been used to create brain maps for visualization of stimulated areas in task-related brain "activation" studies. These perturbations usually continue throughout the period of the…

  17. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    ERIC Educational Resources Information Center

    Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.

    2012-01-01

    Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…

  18. Activation of a Mitochondrial ATPase Gene Induces Abnormal Seed Development in Arabidopsis

    PubMed Central

    Baek, Kon; Seo, Pil Joon; Park, Chung-Mo

    2011-01-01

    The ATPases associated with various cellular activities (AAA) proteins are widespread in living organisms. Some of the AAA-type ATPases possess metalloprotease activities. Other members constitute the 26S proteasome complexes. In recent years, a few AAA members have been implicated in vesicle-mediated secretion, membrane fusion, cellular organelle biogenesis, and hypersensitive responses (HR) in plants. However, the physiological roles and biochemical activities of plant AAA proteins have not yet been defined at the molecular level, and regulatory mechanisms underlying their functions are largely unknown. In this study, we showed that overexpression of an Arabidopsis gene encoding a mitochondrial AAA protein, ATPase-in-Seed-Development (ASD), induces morphological and anatomical defects in seed maturation. The ASD gene is expressed at a high level during the seed maturation process and in mature seeds but is repressed rapidly in germinating seeds. Transgenic plants overexpressing the ASD gene are morphologically normal. However, seed formation is severely disrupted in the transgenic plants. The ASD gene is induced by abiotic stresses, such as low temperatures and high salinity, in an abscisic acid (ABA)- dependent manner. The ASD protein possesses ATPase activity and is localized into the mitochondria. Our observations suggest that ASD may play a role in seed maturation by influencing mitochondrial function under abiotic stress. PMID:21359673

  19. Abnormal fMRI Activation Pattern during Story Listening in Individuals with Down Syndrome

    ERIC Educational Resources Information Center

    Reynolds Losin, Elizabeth A.; Rivera, Susan M.; O'Hare, Elizabeth D.; Sowell, Elizabeth R.; Pinter, Joseph D.

    2009-01-01

    Down syndrome is characterized by disproportionately severe impairments of speech and language, yet little is known about the neural underpinnings of these deficits. We compared fMRI activation patterns during passive story listening in 9 young adults with Down syndrome and 9 approximately age-matched, typically developing controls. The typically…

  20. Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of Mind, and

    E-print Network

    Spreng, R. Nathan

    Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of MindMRI to examine brain activity during autobiographical remembering, prospection, and theory- of-mind reasoning). The DMN appears to be active when individuals are en- gaged in stimulus-independent thought. This network

  1. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation.

    PubMed

    Choi, Seung Hee; Park, Sungmi; Oh, Chang Joo; Leem, Jaechan; Park, Keun-Gyu; Lee, In-Kyu

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-?-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2. PMID:26187356

  2. Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis.

    PubMed

    Watson, Fiona L; Schmidt, Hayden; Turman, Zackery K; Hole, Natalie; Garcia, Hena; Gregg, Jonathan; Tilghman, Joseph; Fradinger, Erica A

    2014-06-01

    Organophosphate pesticides (OPs), a class of acetylcholinesterase inhibitors, are used widely in agriculture to reduce insect populations. Because of the conservation of acetylcholinesterase between invertebrates and vertebrates, OPs also can adversely affect nontarget species, such as aquatic and terrestrial animals. This study used uniform conditions to analyze the morphological and physiological effects caused by developmental exposure to 3 commonly used OPs-chlorpyrifos, dichlorvos, and diazinon-on 2 aquatic vertebrate species, Danio rerio (zebrafish) and Xenopus laevis. Survival, locomotor activity, heart rate, and gross anatomical abnormalities, including kyphosis and edema, were observed over a 5-d period in response to OP concentrations ranging from 0?µM to 1000?µM. Both zebrafish and Xenopus showed decreased survival for all 3 OPs at higher concentrations. However, Xenopus showed higher mortality than zebrafish at lower chlorpyrifos and dichlorvos concentrations. Both models showed a dose-dependent decrease in heart rate and free-swimming larval activity in response to chlorpyrifos and dichlorvos. In addition, kyphosis and decreased spine length were prominent in Xenopus in response to 10?µM of chlorpyrifos and 0.1?µM dichlorvos. Although diazinon induced no effects on skeletal and cardiac motor activity in either species, it did induce cardiac edemas in zebrafish. Differences in the biological actions of OPs and their differential effects in these 2 vertebrate models demonstrate the importance of using common protocols and multiple models to evaluate the ecotoxicology of OPs. PMID:24677261

  3. Accuracy of a Custom Physical Activity and Knee Angle Measurement Sensor System for Patients with Neuromuscular Disorders and Gait Abnormalities

    PubMed Central

    Feldhege, Frank; Mau-Moeller, Anett; Lindner, Tobias; Hein, Albert; Markschies, Andreas; Zettl, Uwe Klaus; Bader, Rainer

    2015-01-01

    Long-term assessment of ambulatory behavior and joint motion are valuable tools for the evaluation of therapy effectiveness in patients with neuromuscular disorders and gait abnormalities. Even though there are several tools available to quantify ambulatory behavior in a home environment, reliable measurement of joint motion is still limited to laboratory tests. The aim of this study was to develop and evaluate a novel inertial sensor system for ambulatory behavior and joint motion measurement in the everyday environment. An algorithm for behavior classification, step detection, and knee angle calculation was developed. The validation protocol consisted of simulated daily activities in a laboratory environment. The tests were performed with ten healthy subjects and eleven patients with multiple sclerosis. Activity classification showed comparable performance to commercially available activPAL sensors. Step detection with our sensor system was more accurate. The calculated flexion-extension angle of the knee joint showed a root mean square error of less than 5° compared with results obtained using an electro-mechanical goniometer. This new system combines ambulatory behavior assessment and knee angle measurement for long-term measurement periods in a home environment. The wearable sensor system demonstrated high validity for behavior classification and knee joint angle measurement in a laboratory setting. PMID:25954954

  4. Brain activation induced by psychological stress in patients with schizophrenia.

    PubMed

    Castro, M N; Villarreal, M F; Bolotinsky, N; Papávero, E; Goldschmidt, M G; Costanzo, E Y; Drucaroff, L; Wainsztein, A; de Achával, D; Pahissa, J; Bär, K-J; Nemeroff, C B; Guinjoan, S M

    2015-10-01

    Environmental influences are critical for the expression of genes putatively related to the behavioral and cognitive phenotypes of schizophrenia. Among such factors, psychosocial stress has been proposed to play a major role in the expression of symptoms. However, it is unsettled how stress interacts with pathophysiological pathways to produce the disease. We studied 21 patients with schizophrenia and 21 healthy controls aged 18 to 50years with 3T-fMRI, in which a period of 6min of resting state acquisition was followed by a block design, with three blocks of 1-min control-task, 1-min stress-task and 1-min rest after-task. Self-report of stress and PANSS were measured. Limbic structures were activated in schizophrenia patients by simple tasks and remained active during, and shortly after stress. In controls, stress-related brain activation was more time-focused, and restricted to the stressful task itself. Negative symptom severity was inversely related to activation of anterior cingulum and orbitofrontal cortex. Results might represent the neurobiological aspect of hyper-reactivity to normal stressful situations previously described in schizophrenia, thus providing evidence on the involvement of limbic areas in the response to stress in schizophrenia. Patients present a pattern of persistent limbic activation probably contributing to hypervigilance and subsequent psychotic thought distortions. PMID:26190301

  5. Recovery of brain and plasma cholinesterase activities in ducklings exposed to organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.

    1981-01-01

    Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.

  6. Pterygium epithelium abnormal differentiation related to activation of extracellular signal-regulated kinase signaling pathway in vitro

    PubMed Central

    Peng, Juan; Sha, Xiang-Yin; Liu, Yi; Yang, Rui-Ming; Wen, Ye

    2015-01-01

    AIM To investigate whether the abnormal differentiation of the pterygium epithelium is related to the extracellular signal-regulated kinase (ERK) signaling pathway in vitro. METHODS The expression levels of phosphorylated ERK (P-ERK), keratin family members including K19 and K10 and the ocular master control gene Pax-6 were measured in 16 surgically excised pterygium tissues and 12 eye bank conjunctiva. In colony-forming cell assays, the differences in clone morphology and in K10, K19, P-ERK and Pax-6 expression between the head and body were investigated. When cocultured with the ERK signaling pathway inhibitor PD98059, the changes in clone morphology, colony-forming efficiency, differentiated marker K10, K19 and Pax-6 expression and P-ERK protein expression level were examined by immunoreactivity and Western blot analysis. RESULTS The expression of K19 and Pax-6 decreased in the pterygium, especially in the head. No staining of K10 was found in the normal conjunctiva epithelium, but it was found to be expressed in the superficial cells in the head of the pterygium. Characteristic upregulation of P-ERK was observed by immunohistochemistry. The clone from the head with more differentiated cells in the center expressed more K10, and the clone from the body expressed more K19. The P-ERK protein level increased in the pterygium epithelium compared with conjunctiva and decreased when cocultured with PD98059. The same medium with the ERK inhibitor PD98059 was more effective in promoting clonal growth than conventional medium with 3T3 murine feeder layers. It was observed that the epithelium clone co-cultured with the inhibitor had decreased K10 expression and increased K19 and Pax-6 expression. CONCLUSION We suggest ERK signaling pathway activation might play a role in the pterygium epithelium abnormal differentiation. PMID:26682158

  7. Effects of chronic ethanol administration on the activities and relative synthetic rates of myelin and synaptosomal plasma membrane-associated sialidase in the rat brain.

    PubMed

    Azuine, Magnus A; Patel, Sanket J; Lakshman, M Raj

    2006-01-01

    In an attempt to understand the possible mechanism of chronic ethanol-induced generation of asialoconjugates in the brain and consequent behavioral abnormalities, we have studied the effects of chronic ethanol feeding to rats on the plasma membrane sialidase status in the various subcellular fractions of the brain. We determined sialidase activity using 3H-monosialoganglioside (3H-GM3), 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (4-MU-NeuAC) substrates and Amplex Red (Sialidase) kit. We determined the plasma membrane sialidase protein by Western blot using the anti-plasma membrane sialidase. We also determined its relative synthetic rate (RSR) by the 60 min incorporation of intracranially infused [35S]-methionine (50 microCi/100 g) into immunoprecipitable plasma membrane sialidase. Chronic ethanol administration stimulated the sialidase activity in the total brain homogenate as well as the myelin and synaptosomal membrane fractions, respectively, in all the three experimental models. Chronic ethanol also increased the concentration of the rat brain plasma membrane sialidase protein relative to that of glyceraldehyde-3-phosphate dehydrogenase by 2.4-, 1.62- and 1.51-fold in the total brain homogenate, myelin and synaptosomal membrane fractions, respectively. These increases in plasma membrane sialidase activity and its protein content were due to concomitant increases in their relative synthetic rates by 115% (p < 0.01) and 72% (p < 0.01) in the myelin and synaptosomal membrane fractions, respectively. Thus, our studies clearly show that chronic ethanol induced deglycosylation of brain gangliosides is in part, due to specific up-regulation of plasma membrane sialidase in the myelin and synaptosomal membrane fractions of the brain. This increase in plasma membrane sialidase may be responsible for chronic-ethanol-induced physiological and neurological impairment in the brain, presumably due to deglycosylation of gangliosides that are essential for crucial cellular and metabolic activities. PMID:16214265

  8. Automatic classification of squamosal abnormality in micro-CT images for the evaluation of rabbit fetal skull defects using active shape models

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Dogdas, Belma; Mehta, Saurin; Bagchi, Ansuman; Wise, L. David; Winkelmann, Christopher

    2014-03-01

    High-throughput micro-CT imaging has been used in our laboratory to evaluate fetal skeletal morphology in developmental toxicology studies. Currently, the volume-rendered skeletal images are visually inspected and observed abnormalities are reported for compounds in development. To improve the efficiency and reduce human error of the evaluation, we implemented a framework to automate the evaluation process. The framework starts by dividing the skull into regions of interest and then measuring various geometrical characteristics. Normal/abnormal classification on the bone segments is performed based on identifying statistical outliers. In pilot experiments using rabbit fetal skulls, the majority of the skeletal abnormalities can be detected successfully in this manner. However, there are shape-based abnormalities that are relatively subtle and thereby difficult to identify using the geometrical features. To address this problem, we introduced a model-based approach and applied this strategy on the squamosal bone. We will provide details on this active shape model (ASM) strategy for the identification of squamosal abnormalities and show that this method improved the sensitivity of detecting squamosal-related abnormalities from 0.48 to 0.92.

  9. Brain Aneurysm

    MedlinePLUS

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  10. Abnormal medial temporal activity for bound information during working memory maintenance in patients with schizophrenia.

    PubMed

    Luck, David; Danion, Jean-Marie; Marrer, Corrine; Pham, Bich-Tuy; Gounot, Daniel; Foucher, Jack

    2010-08-01

    Alterations of binding in long-term memory in schizophrenia are well established and occur as a result of aberrant activity in the medial temporal lobe (MTL). In working memory (WM), such a deficit is less clear and the pathophysiological bases remain unstudied. Seventeen patients with schizophrenia and 17 matched healthy controls performed a WM binding task while undergoing functional magnetic resonance imaging. Binding was assessed by contrasting two conditions comprising an equal amount of verbal and spatial information (i.e., three letters and three spatial locations), but differing in the absence or presence of a link between them. In healthy controls, MTL activation was observed for encoding and maintenance of bound information but not for its retrieval. Between-group comparisons revealed that patients with schizophrenia showed MTL hypoactivation during the maintenance phase only. In addition, BOLD signals correlated with behavioral performance in controls but not in patients with schizophrenia. Our results confirm the major role that the MTL plays in the pathophysiology of schizophrenia. Short-term and long-term relational memory deficits in schizophrenia may share common cognitive and functional pathological bases. Our results provide additional information about the episodic buffer that represents an integrative interface between WM and long-term memory. PMID:19693783

  11. IL-6 blockade reverses the abnormal STAT activation of peripheral blood leukocytes from rheumatoid arthritis patients.

    PubMed

    Ortiz, M A; Diaz-Torné, C; Hernández, M V; Reina, D; de la Fuente, D; Castellví, I; Moya, P; Ruiz, J M; Corominas, H; Zamora, C; Cantó, E; Sanmartí, R; Juarez, C; Vidal, S

    2015-06-01

    Considering the interplay of multiple STATs in response to cytokines, we investigated how IL-6 and its blocking affect STAT signaling in rheumatoid arthritis (RA). Leukocytes obtained from RA patients before and after tocilizumab treatment and healthy donors (HDs) were cytokine-stimulated and STAT phosphorylation was analyzed by cytometry. RA patients had significantly fewer pSTAT1+, pSTAT3+, and pSTAT6+ monocytes and pSTAT5+ lymphocytes than HDs. After 24weeks of treatment, percentages of IFN?-induced pSTAT1+ and IL-10-induced pSTAT3+ monocytes in RA patients increased, reaching levels comparable to HDs. pSTAT1+ and pSTAT3+ cells correlated inversely with RA disease activity index and levels of pSTAT+ cells at baseline were higher in patients with good EULAR response to tocilizumab. IFN?-induced pSTAT1+ cells correlated inversely with memory T cells and anti-CCP levels. IL-10-induced pSTAT3+ cells correlated with Treg/Teff ratio. Our findings suggest that IL-6 blocking reduces the inflammatory mechanisms through the correction of STAT1 and STAT3 activation status. PMID:25847223

  12. Implications of perennial saline springs for abnormally high fluid pressures and active thrusting in western California

    SciTech Connect

    Unruh, J.R.; Davisson, M.L.; Criss, R.E.; Moores, E.M. )

    1992-05-01

    Perennial saline springs in the Rumsey Hills area, southwestern Sacramento Valley, California, locally discharge at high elevations and near ridgetops. The springs are cold, are commonly associated with natural gas seeps, and typically emerge along west-vergent thrust faults. Stable isotope analyses indicate that the spring waters are similar to oil-field formation fluids and they have had a significant residence time in the subsurface at moderate temperatures. The nonmeteoric character of the springs demonstrates that they are not being fed by perched water tables. The authors propose that these subsurface formation waters are being forced to the surface by anomalously high porefluid pressures. The Rumsey Hills area is one of Quaternary uplift, thrusting, and crustal shortening, and prospect wells drilled there have encountered anomalously high fluid pressures at shallow depths. They attribute these high fluid pressures to active tectonic compression and shortening of Cretaceous marine sedimentary rocks. The widespread occurrence of anomalously high pore-fluid pressures and perennial saline springs in the Coast Ranges and western Great Valley suggests that much of western California may be characterized as a seismically active, overpressured thrust belt. The emergence of formation waters along thrust faults further suggests that patterns of subsurface fluid flow in western California may be similar to those in overpressured accretionary prisms, and that excess fluid pressures may also play a role in the distribution of seismicity.

  13. Mechanisms of brain ventricle development

    E-print Network

    Lowery, Laura Anne

    2008-01-01

    The brain ventricles are a conserved system of fluid-filled cavities within the brain that form during the earliest stages of brain development. Abnormal brain ventricle development has been correlated with neurodevelopmental ...

  14. Tasting calories differentially affects brain activation during hunger and satiety.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. PMID:25449847

  15. The information content of physiological and epileptic brain activity.

    PubMed

    Trevelyan, Andrew J; Bruns, Willy; Mann, Edward O; Crepel, Valerie; Scanziani, Massimo

    2013-02-15

    Cerebral cortex is a highly sophisticated computing machine, feeding on information provided by the senses, which is integrated with other, internally generated patterns of neural activity, to trigger behavioural outputs. Bit by bit, we are coming to understand how this may occur, but still, the nature of the 'cortical code' remains one of the greatest challenges in science. As with other great scientific challenges of the past, fresh insights have come from a coalescence of different experimental and theoretical approaches. These theoretical considerations are typically reserved for cortical function rather than cortical pathology. This approach, though, may also shed light on cortical dysfunction. The particular focus of this review is epilepsy; we will argue that the information capacity of different brain states provides a means of understanding, and even assessing, the impact and locality of the epileptic pathology. Epileptic discharges, on account of their all-consuming and stereotyped nature, represent instances where the information capacity of the network is massively compromised. These intense discharges also prevent normal processing in surrounding territories, but in a different way, through enhanced inhibition in these territories. Information processing is further compromised during the period of post-ictal suppression, during interictal bursts, and also at other times, through more subtle changes in synaptic function. We also comment on information processing in other more physiological brain states. PMID:23027823

  16. NMDA RECEPTOR ACTIVATION STRENGTHENS WEAK ELECTRICAL COUPLING IN MAMMALIAN BRAIN

    PubMed Central

    Turecek, Josef; Yuen, Genevieve S.; Han, Victor Z.; Zeng, Xiao-Hui; Bayer, K. Ulrich; Welsh, John P.

    2014-01-01

    SUMMARY Electrical synapses are formed by gap junctions and permit electrical coupling that shapes the synchrony of neuronal ensembles. Here, we provide the first direct demonstration of receptormediated strengthening of electrical coupling in mammalian brain. Electrical coupling in the inferior olive of rats was strengthened by activation of NMDA-type glutamate-receptors (NMDARs), which were found at synaptic loci and at extrasynaptic loci 20–100 nm proximal to gap junctions. Electrical coupling was strengthened by pharmacological and synaptic activation of NMDARs, while co-stimulation of ionotropic non-NMDAR glutamate-receptors transiently antagonized the effect of NMDAR activation. NMDAR-dependent strengthening (i) occurred despite increased input conductance, (ii) induced Ca2+-influx microdomains near dendritic spines, (iii) required activation of the Ca2+/calmodulin-dependent protein-kinase II, (iv) was restricted to neurons that were weakly coupled, and thus, (v) strengthened coupling mainly between non-adjacent neurons. This provided a mechanism to expand the synchronization of rhythmic membrane potential oscillations by chemical neurotransmitter input. PMID:24656255

  17. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats.

    PubMed

    Shukla, C; Koch, L G; Britton, S L; Cai, M; Hruby, V J; Bednarek, M; Novak, C M

    2015-12-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. PMID:26404873

  18. Detection of cocaine induced rat brain activation by photoacoustic tomography

    PubMed Central

    Jo, Janggun; Yang, Xinmai

    2011-01-01

    Photoacoustic tomography (PAT) was used to detect the progressive changes on the cerebral cortex of Sprague Dawley rats after the administration of cocaine hydrochloride. Different concentrations (0, 2.5, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution were injected into Sprague Dawley rats through tail veins. Cerebral cortex images of the animals were continuously acquired by PAT. For continuous observation, PAT system used multi-transducers to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The obtained photoacoustic images were compared with each other and confirmed that changes in blood volume were induced by cocaine hydrochloride injection. The results demonstrate that PAT may be used to detect the effects of drug abuse-induced brain activation. PMID:21163301

  19. Working Memory Updating Function Training Influenced Brain Activity

    PubMed Central

    Zhao, Xin; Zhou, Renlai; Fu, Li

    2013-01-01

    Recent studies demonstrated that working memory could be improved by training. We recruited healthy adult participants and used adaptive running working memory training tasks with a double-blind design, combined with the event-related potentials (ERPs) approach, to explore the influence of updating function training on brain activity. Participants in the training group underwent training for 20 days. Compared with the control group, the training group's accuracy (ACC) in the two-back working memory task had no significant differences after training, but reaction time (RT) was reduced significantly. Besides, the amplitudes of N160 and P300 increased significantly whereas that of P200 decreased significantly. The results suggest that training could have improved the participants' capacity on both inhibitory and updating. PMID:24015182

  20. Whole-brain mapping of behaviourally induced neural activation in mice.

    PubMed

    Vousden, Dulcie A; Epp, Jonathan; Okuno, Hiroyuki; Nieman, Brian J; van Eede, Matthijs; Dazai, Jun; Ragan, Timothy; Bito, Haruhiko; Frankland, Paul W; Lerch, Jason P; Henkelman, R Mark

    2015-07-01

    The ability to visualize behaviourally evoked neural activity patterns across the rodent brain is essential for understanding the distributed brain networks mediating particular behaviours. However, current imaging methods are limited in their spatial resolution and/or ability to obtain brain-wide coverage of functional activity. Here, we describe a new automated method for obtaining cellular-level, whole-brain maps of behaviourally induced neural activity in the mouse. This method combines the use of transgenic immediate-early gene reporter mice to visualize neural activity; serial two-photon tomography to image the entire brain at cellular resolution; advanced image processing algorithms to count the activated neurons and align the datasets to the Allen Mouse Brain Atlas; and statistical analysis to identify the network of activated brain regions evoked by behaviour. We demonstrate the use of this approach to determine the whole-brain networks activated during the retrieval of fear memories. Consistent with previous studies, we identified a large network of amygdalar, hippocampal, and neocortical brain regions implicated in fear memory retrieval. Our proposed methods can thus be used to map cellular networks involved in the expression of normal behaviours as well as to investigate in depth circuit dysfunction in mouse models of neurobiological disease. PMID:24760545

  1. Brain Na+, K+-ATPase Activity In Aging and Disease

    PubMed Central

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways, enzyme changes in diverse neurological diseases as well as during aging, have been summarized. Issues refer mainly to Na+, K+-ATPase studies in ischemia, brain injury, depression and mood disorders, mania, stress, Alzheimer´s disease, learning and memory, and neuronal hyperexcitability and epilepsy. PMID:25018677

  2. Abnormal Rho-associated kinase activity contributes to the dysfunctional myogenic response of cerebral arteries in type 2 diabetes.

    PubMed

    Abd-Elrahman, Khaled S; Walsh, Michael P; Cole, William C

    2015-03-01

    The structural and functional integrity of the brain, and therefore, cognition, are critically dependent on the appropriate control of blood flow within the cerebral circulation. Inadequate flow leads to ischemia, whereas excessive flow causes small vessel rupture and (or) blood-brain-barrier disruption. Cerebral blood flow is controlled through the interplay of several physiological mechanisms that regulate the contractile state of vascular smooth muscle cells (VSMCs) within the walls of cerebral resistance arteries and arterioles. The myogenic response of cerebral VSMCs is a key mechanism that is responsible for maintaining constant blood flow during variations in systemic pressure, i.e., flow autoregulation. Inappropriate myogenic control of cerebral blood flow is associated with, and prognostic of, neurological deterioration and poor outcome in patients with several conditions, including type 2 diabetes. Here, we review recent advances in our understanding of the role of inappropriate Rho-associated kinase activity as a cause of impaired myogenic regulation of cerebral arterial diameter in type 2 diabetes. PMID:25660561

  3. Tissue-type plasminogen activator is a regulator of monocyte diapedesis through the brain endothelial barrier.

    PubMed

    Reijerkerk, Arie; Kooij, Gijs; van der Pol, Susanne M A; Leyen, Thomas; van Het Hof, Bert; Couraud, Pierre-Olivier; Vivien, Denis; Dijkstra, Christine D; de Vries, Helga E

    2008-09-01

    Inflammatory cell trafficking into the brain complicates several neurological disorders including multiple sclerosis. Normally, reliable brain functioning is maintained and controlled by the blood-brain barrier (BBB), which is essential to restrict the entry of potentially harmful molecules and cells from the blood into the brain. The BBB is a selective barrier formed by dedicated brain endothelial cells and dependent on the presence of intracellular tight junctions. In multiple sclerosis, a severe dysfunction of the BBB is observed, which is key to monocyte infiltration and inflammation in the brain. Proteolytic activity has been associated with these inflammatory processes in the brain. Our studies in plasma of rats indicated that the extracellular protease tissue-type plasminogen activator (tPA) correlates with the clinical signs of experimental allergic encephalomyelitis, a rat model of multiple sclerosis. In this study, we studied the function of the tPA during diapedesis of monocytes through a rat and human brain endothelial barrier. Monocyte-brain endothelial cell coculture experiments showed that monocytes induce the release of tPA by brain endothelial cells, which subsequently activates the signal transduction protein extracellular signal related kinase (ERK1/2), both involved in monocyte diapedesis. Importantly, live imaging and immunoblot analyses of rat brain endothelial cells revealed that tPA and ERK1/2 control the breakdown of the tight junction protein occludin. These studies identify tPA as a novel and relevant pathological mediator of neuroinflammation and provide a potential mechanism for this. PMID:18714030

  4. Brain activation underlying threat detection to targets of different races.

    PubMed

    Senholzi, Keith B; Depue, Brendan E; Correll, Joshua; Banich, Marie T; Ito, Tiffany A

    2015-12-01

    The current study examined blood oxygen level-dependent signal underlying racial differences in threat detection. During functional magnetic resonance imaging, participants determined whether pictures of Black or White individuals held weapons. They were instructed to make shoot responses when the picture showed armed individuals but don't shoot responses to unarmed individuals, with the cost of not shooting armed individuals being greater than that of shooting unarmed individuals. Participants were faster to shoot armed Blacks than Whites, but faster in making don't shoot responses to unarmed Whites than Blacks. Brain activity differed to armed versus unarmed targets depending on target race, suggesting different mechanisms underlying threat versus safety decisions. Anterior cingulate cortex was preferentially engaged for unarmed Whites than Blacks. Parietal and visual cortical regions exhibited greater activity for armed Blacks than Whites. Seed-based functional connectivity of the amygdala revealed greater coherence with parietal and visual cortices for armed Blacks than Whites. Furthermore, greater implicit Black-danger associations were associated with increased amygdala activation to armed Blacks, compared to armed Whites. Our results suggest that different neural mechanisms may underlie racial differences in responses to armed versus unarmed targets. PMID:26357911

  5. Own-gender imitation activates the brain's reward circuitry

    PubMed Central

    Iacoboni, Macro; Martin, Alia; Dapretto, Mirella

    2012-01-01

    Imitation is an important component of human social learning throughout life. Theoretical models and empirical data from anthropology and psychology suggest that people tend to imitate self-similar individuals, and that such imitation biases increase the adaptive value (e.g., self-relevance) of learned information. It is unclear, however, what neural mechanisms underlie people's tendency to imitate those similar to themselves. We focused on the own-gender imitation bias, a pervasive bias thought to be important for gender identity development. While undergoing fMRI, participants imitated own- and other-gender actors performing novel, meaningless hand signs; as control conditions, they also simply observed such actions and viewed still portraits of the same actors. Only the ventral and dorsal striatum, orbitofrontal cortex and amygdala were more active when imitating own- compared to other-gender individuals. A Bayesian analysis of the BrainMap neuroimaging database demonstrated that the striatal region preferentially activated by own-gender imitation is selectively activated by classical reward tasks in the literature. Taken together, these findings reveal a neurobiological mechanism associated with the own-gender imitation bias and demonstrate a novel role of reward-processing neural structures in social behavior. PMID:22383803

  6. Brain activity associated with illusory correlations in animal phobia.

    PubMed

    Wiemer, Julian; Schulz, Stefan M; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2015-07-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. PMID:25411452

  7. Brain Network Activation as a Novel Biomarker for the Return-to-Play Pathway Following Sport-Related Brain Injury

    PubMed Central

    Kiefer, Adam W.; Barber Foss, Kim; Reches, Amit; Gadd, Brooke; Gordon, Michael; Rushford, Ken; Laufer, Ilan; Weiss, Michal; Myer, Gregory D.

    2015-01-01

    Children and adolescent athletes are at a higher risk for concussion than adults, and also experience longer recovery times and increased associated symptoms. It has also recently been demonstrated that multiple, seemingly mild concussions may result in exacerbated and prolonged neurological deficits. Objective assessments and return-to-play criteria are needed to reduce risk and morbidity associated with concussive events in these populations. Recent research has pushed to study the use of electroencephalography as an objective measure of brain injury. In the present case study, we present a novel approach that examines event-related potentials via a brain network activation (BNA) analysis as a biomarker of concussion and recovery. Specifically, changes in BNA scores, as indexed through this approach, offer a potential indicator of neurological health as the BNA assessment qualitatively and quantitatively indexes the network dynamics associated with brain injury. Objective tools, such as these support accurate and efficient assessment of brain injury and may offer a useful step in categorizing the temporal and spatial changes in brain activity following concussive blows, as well as the functional connectivity of brain networks, associated with concussion. PMID:26635720

  8. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic sleep disturbances could push the vasculature to critical limits, leading to metabolic deficit and the potential for tissue trauma.

  9. White matter abnormalities in dystonia normalize after botulinum toxin treatment

    PubMed Central

    Blood, Anne J.; Tuch, David S.; Makris, Nikos; Makhlouf, Miriam L.; Sudarsky, Lewis R.; Sharma, Nutan

    2011-01-01

    The pathophysiology of dystonia is still poorly understood. We used diffusion tensor imaging to screen for white matter abnormalities in regions between the basal ganglia and the thalamus in cervical and hand dystonia patients. All patients exhibited an abnormal hemispheric asymmetry in a focal region between the pallidum and the thalamus. This asymmetry was absent 4 weeks after the same patients were treated with intramuscular botulinum toxin injections. These findings represent a new systems-level abnormality in dystonia, which may lead to new insights about the pathophysiology of movement disorders. More generally, these findings demonstrate central nervous system changes following peripheral reductions in muscle activity. This raises the possibility that we have observed activity-dependent white matter plasticity in the adult human brain. PMID:16951564

  10. Behavioral/Systems/Cognitive Incentive-Elicited Brain Activation in Adolescents

    E-print Network

    Knutson, Brian

    Behavioral/Systems/Cognitive Incentive-Elicited Brain Activation in Adolescents: Similarities is developmentally underactive, in which adolescents approach more robust incentives (such as risk taking or drug experimentation) to recruit this circuitry. To help resolve this, we compared brain activation in 12 adolescents

  11. Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions

    E-print Network

    Trainor, Laurel J.

    Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions activity distinguished emotions induced by musical excerpts which were known to vary in affective valence circuits in the brain have for the most part ignored emotions arising from musical stimuli. Yet music

  12. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5?g/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5?g/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5?g/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. PMID:25450310

  13. Anticipatory brain activity predicts the success or failure of subsequent emotion regulation

    E-print Network

    Ochsner, Kevin

    Anticipatory brain activity predicts the success or failure of subsequent emotion regulation Bryan emotional event have the power to shape ones subsequent affective response for better or worse. Here, we used me- diation analyses to examine the relationship between brain activity when anticipating the need

  14. On Altered Patterns of Brain Activation in At-Risk Adolescents and Young Adults

    E-print Network

    Editorial On Altered Patterns of Brain Activation in At-Risk Adolescents and Young Adults In an article in this issue, Yaakub et al. (1) report on a functional MRI (fMRI) study of patterns of brain activity in 60 adolescents and young adults at risk for psychosis and 38 healthy comparison subjects, using

  15. Behavioral/Cognitive Brain Activity in Valuation Regions while Thinking about the

    E-print Network

    Kable, Joe

    Behavioral/Cognitive Brain Activity in Valuation Regions while Thinking about the Future Predicts (VS) when human subjects are asked to merely think about the future--specifically, to judge individual differences in delay discount- ing to brain activity while individuals are merely thinking about

  16. Rat brain CYP2B-enzymatic activation of chlorpyrifos to the oxon mediates cholinergic neurotoxicity.

    PubMed

    Khokhar, Jibran Y; Tyndale, Rachel F

    2012-04-01

    Chlorpyrifos is a commonly used insecticide that can be metabolically activated by CYP2B to the acetylcholinesterase inhibitor chlorpyrifos-oxon causing cholinergic overstimulation and neurotoxicity. Rat brain extracts can also activate chlorpyrifos in vitro, and the lack of circulating oxon in serum suggests that metabolic activation within the brain may be responsible for chlorpyrifos neurotoxicity. Rats received intracerebroventricular (ICV) injections of CYP2B mechanism-based inhibitors (MBI), once or repeatedly, followed by chlorpyrifos (62.5-250 mg/kg sc). Rats were assessed for neurochemical (acetylcholinesterase activity), physiological (temperature), and behavioral measures (e.g., gait, righting reflex, arousal, incline angles) at 4 hours 3 days after chlorpyrifos treatment. ICV CYP2B MBIs increased brain chlorpyrifos levels, decreased brain chlorpyrifos-oxon levels, and attenuated the reduction in brain acetylcholinesterase; there was no effect on serum chlorpyrifos levels or acetylcholinesterase activity reduction. Inhibition of brain chlorpyrifos metabolism by CYP2B MBIs blocked centrally mediated hypothermia but not peripherally mediated hyperthermia. A single ICV MBI treatment significantly attenuated chlorpyrifos neurotoxicity mediated behavioral outcomes at 1 day after chlorpyrifos treatment with a gradual worsening of behavioral scores through day 3, suggesting a recovery of brain CYP2B activity and an increase in local chlorpyrifos activation. Daily ICV MBI injections attenuated neurotoxicity across all test days consistent with prolonged inhibition of brain chlorpyrifos activation. Thus, rat brain CYP2B contributes significantly to chlorpyrifos's neurotoxic effects. Variable human brain CYP2B levels, influenced by genetics and environmental exposures, may contribute to interindividual differences in neurotoxicity. Therapeutic inhibition of brain CYP2B could also be explored as a treatment for exposure to CYP2B-activated neurotoxins. PMID:22287024

  17. Early exposure to urethane anesthesia: Effects on neuronal activity in the piriform cortex of the developing brain.

    PubMed

    Kajiwara, Riichi; Takashima, Ichiro

    2015-07-23

    Exposure to urethane anesthesia reportedly produces selective neuronal cell loss in the piriform cortex of young brains; however, resulting functional deficits have not been investigated. The present study found abnormalities in piriform cortex activity of isolated brains in vitro that were harvested from guinea pigs exposed to urethane anesthesia at 14 days of age. Current source density (CSD) analysis and voltage-sensitive dye (VSD) imaging experiments were conducted 48h after urethane injection. We applied paired-pulse stimulation to the lateral olfactory tract (LOT) and assessed short-interval intra-cortical inhibition in the piriform cortex. CSD analysis revealed that a current sink in layer Ib remained active in response to successive stimuli, with an inter-stimulus interval of 30-60 ms, which was typically strongly inhibited. VSD imaging demonstrated stronger and extended neural activity in the urethane-treated piriform cortex, even in response to a second stimulus delivered in short succession. We identified gamma-aminobutyric acid (GABA) ergic neurons in the piriform cortex of sham and urethane-treated animals and found a decrease in GABA-immunoreactive cell density in the urethane group. These results suggest that urethane exposure induces loss of GABAergic interneurons and a subsequent reduction in paired-pulse inhibition in the immature piriform cortex. PMID:26067404

  18. Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity.

    PubMed

    Uran, S L; Gómez-Casati, M E; Guelman, L R

    2014-10-01

    Sound is an important part of man's contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97 dB SPL, 2 h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes. PMID:24911434

  19. Sound Perception: Rhythmic Brain Activity Really Is Important for Auditory Segregation.

    PubMed

    Snyder, Joel S

    2015-12-21

    A new study suggests that rhythmic brain activity plays a causal role in the perceptual segregation of sound patterns, rather than such activity simply being a non-functional by-product of sensory processing. PMID:26702653

  20. Extreme brain events: Higher-order statistics of brain resting activity and its relation with structural connectivity

    NASA Astrophysics Data System (ADS)

    Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.

    2015-09-01

    The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.

  1. Brain mechanisms of sympathetic activation in heart failure: Roles of the renin?angiotensin system, nitric oxide and pro?inflammatory cytokines (Review).

    PubMed

    Xu, Bin; Li, Hongli

    2015-12-01

    Patients with chronic heart failure (CHF) have an insufficient perfusion to the peripheral tissues due to decreased cardiac output. The compensatory mechanisms are triggered even prior to the occurrence of clinical symptoms, which include activation of the sympathetic nervous system (SNS) and other neurohumoral factors. However, the long?term activation of the SNS contributes to progressive cardiac dysfunction and has toxic effects on the cardiomyocytes. The mechanisms leading to the activation of SNS include changes in peripheral baroreceptor and chemoreceptor reflexes and the abnormal regulation of sympathetic nerve activity (SNA) in the central nervous system (CNS). Recent studies have focused on the role of brain mechanisms in the regulation of SNA and the progression of CHF. The renin?angiotensin system, nitric oxide and pro?inflammatory cytokines were shown to be involved in the abnormal regulation of SNA in the CNS. The alteration of these neurohumoral factors during CHF influences the activity of neurons in the autonomic regions and finally increase the sympathetic outflow. The present review summarizes the brain mechanisms contributing to sympathoexcitation in CHF. PMID:26499491

  2. Brain Activity while Reading Sentences with Kanji Characters Expressing Emotions

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activity associated with kanji characters expressing emotion, which are places at the end of a sentence. Japanese people use a special kanji character in brackets at the end of sentences in text messages such as those sent through e-mail and messenger tools. Such kanji characters plays a role to expresses the sender's emotion (such as fun, laughter, sadness, tears), like emoticons. It is a very simple and effective way to convey the senders' emotions and his/her thoughts to the receiver. In this research, we investigate the effects of emotional kanji characters by using an fMRI study. The experimental results show that both the right and left inferior frontal gyrus, which have been implicated on verbal and nonverbal information, were activated. We found that we detect a sentence with an emotional kanji character as the verbal and nonverval information, and a sentence with emotional kanji characters enrich communication between the sender and the reciever.

  3. Changes in reward-induced brain activation in opiate addicts.

    PubMed

    Martin-Soelch, C; Chevalley, A F; Künig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, K L

    2001-10-01

    Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with H(2)(15)O positron emission tomography (PET) during a visuo-spatial recognition task with delayed response in control subjects and in opiate addicts participating in a methadone program. Three conditions were defined by the types of feedback: nonsense feedback; nonmonetary reinforcement; or monetary reward, received by the subjects for a correct response. We found in the control subjects rCBF increases in regions associated with the meso-striatal and meso-corticolimbic circuits in response to both monetary reward and nonmonetary reinforcement. In opiate addicts, these regions were activated only in response to monetary reward. Furthermore, nonmonetary reinforcement elicited rCBF increases in limbic regions of the opiate addicts that were not activated in the control subjects. Because psychoactive drugs serve as rewards and directly affect regions of the dopaminergic system like the striatum, we conclude that the differences in rCBF increases between controls and addicts can be attributed to an adaptive consequence of the addiction process. PMID:11703464

  4. Experimental human endotoxemia enhances brain activity during social cognition

    PubMed Central

    Kullmann, Jennifer S.; Grigoleit, Jan-Sebastian; Wolf, Oliver T.; Engler, Harald; Oberbeck, Reiner; Elsenbruch, Sigrid; Forsting, Michael; Gizewski, Elke R.

    2014-01-01

    Acute peripheral inflammation with corresponding increases in peripheral cytokines affects neuropsychological functions and induces depression-like symptoms. However, possible effects of increased immune responses on social cognition remain unknown. Therefore, this study investigated the effects of experimentally induced acute inflammation on performance and neural responses during a social cognition task assessing Theory of Mind (ToM) ability. In this double-blind randomized crossover functional magnetic resonance imaging study, 18 healthy right-handed male volunteers received an injection of bacterial lipopolysaccharide (LPS; 0.4 ng/kg) or saline, respectively. Plasma levels of pro- and anti-inflammatory cytokines as well as mood ratings were analyzed together with brain activation during a validated ToM task (i.e. Reading the Mind in the Eyes Test). LPS administration induced pronounced transient increases in pro- (IL-6, TNF-?) and anti-inflammatory (IL-10, IL-1ra) cytokines as well as decreases in mood. Social cognition performance was not affected by acute inflammation. However, altered neural activity was observed during the ToM task after LPS administration, reflected by increased responses in the fusiform gyrus, temporo-parietal junction, superior temporal gyrus and precuneus. The increased task-related neural responses in the LPS condition may reflect a compensatory strategy or a greater social cognitive processing as a function of sickness. PMID:23547245

  5. Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy, Acanthopagrus schlegelii.

    PubMed

    Lin, Chien-Ju; Fan-Chiang, Yi-Chun; Dufour, Sylvie; Chang, Ching-Fong

    2016-02-01

    The early brain development, at the time of gonadal differentiation was investigated using a protandrous teleost, black porgy. This natural model of monosex juvenile fish avoids the potential complexity of sexual dimorphism. Brain neurogenesis was evaluated by histological analyses of the diencephalon, at the time of testicular differentiation (in fish between 90 and 150 days after hatching). Increases in the number of both Nissl-stained total brain cells, and Pcna-immunostained proliferative brain cells were observed in specific area of the diencephalon, such as ventromedialis thalami and posterior preoptic area, revealing brain cell proliferation. qPCR analyses showed significantly higher expression of the radial glial cell marker blbp and neuron marker bdnf. Strong immunohistochemical staining of Blbp and extended cellular projections were observed. A peak expression of aromatase (cyp19a1b), as well as an increase in estradiol (E2 ) content were also detected in the early brain. These data demonstrate that during gonadal differentiation, the early brain exhibits increased E2 synthesis, cell proliferation, and neurogenesis. To investigate the role of E2 in early brain, undifferentiated fish were treated with E2 or aromatase inhibitor (AI). E2 treatment upregulated brain cyp19a1b and blbp expression, and enhanced brain cell proliferation. Conversely, AI reduced brain cell proliferation. Castration experiment did not influence the brain gene expression patterns and the brain cell number. Our data clearly support E2 biosynthesis in the early brain, and that brain E2 induces neurogenesis. These peak activity patterns in the early brain occur at the time of gonad differentiation but are independent of the gonads. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 121-136, 2016. PMID:25980979

  6. The Brain Activity in Brodmann Area 17: A Potential Bio-Marker to Predict Patient Responses to Antiepileptic Drugs

    PubMed Central

    Xu, Xin; Fang, Weidong; Zeng, Kebin; Yang, Mingming; Li, Chenyu; Wang, Shasha; Li, Minghui; Wang, Xuefeng

    2015-01-01

    In this study, we aimed to predict newly diagnosed patient responses to antiepileptic drugs (AEDs) using resting-state functional magnetic resonance imaging tools to explore changes in spontaneous brain activity. We recruited 21 newly diagnosed epileptic patients, 8 drug-resistant (DR) patients, 11 well-healed (WH) patients, and 13 healthy controls. After a 12-month follow-up, 11 newly diagnosed epileptic patients who showed a poor response to AEDs were placed into the seizures uncontrolled (SUC) group, while 10 patients were enrolled in the seizure-controlled (SC) group. By calculating the amplitude of fractional low-frequency fluctuations (fALFF) of blood oxygen level-dependent signals to measure brain activity during rest, we found that the SUC patients showed increased activity in the bilateral occipital lobe, particularly in the cuneus and lingual gyrus compared with the SC group and healthy controls. Interestingly, DR patients also showed increased activity in the identical cuneus and lingual gyrus regions, which comprise Brodmann’s area 17 (BA17), compared with the SUC patients; however, these abnormalities were not observed in SC and WH patients. The receiver operating characteristic (ROC) curves indicated that the fALFF value of BA17 could differentiate SUC patients from SC patients and healthy controls with sufficient sensitivity and specificity prior to the administration of medication. Functional connectivity analysis was subsequently performed to evaluate the difference in connectivity between BA17 and other brain regions in the SUC, SC and control groups. Regions nearby the cuneus and lingual gyrus were found positive connectivity increased changes or positive connectivity changes with BA17 in the SUC patients, while remarkably negative connectivity increased changes or positive connectivity decreased changes were found in the SC patients. Additionally, default mode network (DMN) regions showed negative connectivity increased changes or negative changes with BA17 in the SUC patients. The abnormal increased in BA17 activity may be a key point that plays a substantial role in facilitating seizure onset. PMID:26439500

  7. Abnormalities of AMPK Activation and Glucose Uptake in Cultured Skeletal Muscle Cells from Individuals with Chronic Fatigue Syndrome

    PubMed Central

    Brown, Audrey E.; Jones, David E.; Walker, Mark; Newton, Julia L.

    2015-01-01

    Background Post exertional muscle fatigue is a key feature in Chronic Fatigue Syndrome (CFS). Abnormalities of skeletal muscle function have been identified in some but not all patients with CFS. To try to limit potential confounders that might contribute to this clinical heterogeneity, we developed a novel in vitro system that allows comparison of AMP kinase (AMPK) activation and metabolic responses to exercise in cultured skeletal muscle cells from CFS patients and control subjects. Methods Skeletal muscle cell cultures were established from 10 subjects with CFS and 7 age-matched controls, subjected to electrical pulse stimulation (EPS) for up to 24h and examined for changes associated with exercise. Results In the basal state, CFS cultures showed increased myogenin expression but decreased IL6 secretion during differentiation compared with control cultures. Control cultures subjected to 16h EPS showed a significant increase in both AMPK phosphorylation and glucose uptake compared with unstimulated cells. In contrast, CFS cultures showed no increase in AMPK phosphorylation or glucose uptake after 16h EPS. However, glucose uptake remained responsive to insulin in the CFS cells pointing to an exercise-related defect. IL6 secretion in response to EPS was significantly reduced in CFS compared with control cultures at all time points measured. Conclusion EPS is an effective model for eliciting muscle contraction and the metabolic changes associated with exercise in cultured skeletal muscle cells. We found four main differences in cultured skeletal muscle cells from subjects with CFS; increased myogenin expression in the basal state, impaired activation of AMPK, impaired stimulation of glucose uptake and diminished release of IL6. The retention of these differences in cultured muscle cells from CFS subjects points to a genetic/epigenetic mechanism, and provides a system to identify novel therapeutic targets. PMID:25836975

  8. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  9. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice.

    PubMed

    Uchida, Yasuo; Ohtsuki, Sumio; Kamiie, Junichi; Terasaki, Tetsuya

    2011-11-01

    The purpose of this study was to examine whether in vivo drug distribution to the brain can be reconstructed by integrating P-glycoprotein (P-gp)/mdr1a expression levels, P-gp in vitro activity, and drug unbound fractions in mouse plasma and brain. For 11 P-gp substrates, in vitro P-gp transport activities were determined by measuring transcellular transport across monolayers of mouse P-gp-transfected LLC-PK1 (L-mdr1a) and parental cells. P-gp expression amounts were determined by quantitative targeted absolute proteomics. Unbound drug fractions in plasma and brain were obtained from the literature and by measuring brain slice uptake, respectively. Brain-to-plasma concentration ratios (K(p brain)) and its ratios between wild-type and mdr1a/1b(-/-) mice (K(p brain) ratio) were obtained from the literature or determined by intravenous constant infusion. Unbound brain-to-plasma concentration ratios (K(p,uu,brain)) were estimated from K(p brain) and unbound fractions. Based on pharmacokinetic theory, K(p brain) ratios were reconstructed from in vitro P-gp transport activities and P-gp expression amounts in L-mdr1a cells and mouse brain capillaries. All reconstructed K(p brain) ratios were within a 1.6-fold range of observed values. K(p brain) then was reconstructed from the reconstructed K(p brain) ratios and unbound fractions. K(p,uu,brain) was reconstructed as the reciprocal of the reconstructed K(p brain) ratios. For quinidine, loperamide, risperidone, indinavir, dexamethasone, paclitaxel, verapamil, loratadine, and diazepam, the reconstructed K(p brain) and K(p,uu,brain) agreed with observed and estimated in vivo values within a 3-fold range, respectively. Thus, brain distributions of P-gp substrates can be reconstructed from P-gp expression levels, in vitro activity, and drug unbound fractions. PMID:21828264

  10. Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces.

    PubMed

    Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    Neurofeedback (NFB) training with brain-computer interfaces (BCIs) is currently being studied in a variety of neurological and neuropsychiatric conditions in an aim to reduce disorder-specific symptoms. For this purpose, a range of classification algorithms has been explored to identify different brain states. These neural states, e.g., self-regulated brain activity vs. rest, are separated by setting a threshold parameter. Measures such as the maximum classification accuracy (CA) have been introduced to evaluate the performance of these algorithms. Interestingly enough, precisely these measures are often used to estimate the subject's ability to perform brain self-regulation. This is surprising, given that the goal of improving the tool that differentiates between brain states is different from the aim of optimizing NFB for the subject performing brain self-regulation. For the latter, knowledge about mental resources and work load is essential in order to adapt the difficulty of the intervention accordingly. In this context, we apply an analytical method and provide empirical data to determine the zone of proximal development (ZPD) as a measure of a subject's cognitive resources and the instructional efficacy of NFB. This approach is based on a reconsideration of item-response theory (IRT) and cognitive load theory for instructional design, and combines them with the CA curve to provide a measure of BCI performance. PMID:25762908

  11. Physical Activity, Mediterranean Diet and Biomarkers-Assessed Risk of Alzheimer’s: A Multi-Modality Brain Imaging Study

    PubMed Central

    Matthews, Dawn C.; Davies, Michelle; Murray, John; Williams, Schantel; Tsui, Wai H.; Li, Yi; Andrews, Randolph D.; Lukic, Ana; McHugh, Pauline; Vallabhajosula, Shankar; de Leon, Mony J.; Mosconi, Lisa

    2014-01-01

    Increased physical activity and higher adherence to a Mediterranean-type diet (MeDi) have been independently associated with reduced risk of Alzheimer’s disease (AD). Their association has not been investigated with the use of biomarkers. This study examines whether, among cognitively normal (NL) individuals, those who are less physically active and show lower MeDi adherence have brain biomarker abnormalities consistent with AD. Methods Forty-five NL individuals (age 54 ± 11, 71% women) with complete leisure time physical activity (LTA), dietary information, and cross-sectional 3D T1-weigthed MRI, 11C-Pittsburgh Compound B (PiB) and 18F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) scans were examined. Voxel-wise multivariate partial least square (PLS) regression was used to examine the effects of LTA, MeDi and their interaction on brain biomarkers. Age, gender, ethnicity, education, caloric intake, BMI, family history of AD, Apolipoprotein E (APOE) genotype, presence of hypertension and insulin resistance were examined as confounds. Subjects were dichotomized into more and less physically active (LTA+ vs. LTA?; n = 21 vs. 24), and into higher vs. lower MeDi adherence groups (n = 18 vs. 27) using published scoring methods. Spatial patterns of brain biomarkers that represented the optimal association between the images and the groups were generated for all modalities using voxel-wise multivariate Partial Least Squares (PLS) regression. Results Groups were comparable for clinical and neuropsychological measures. Independent effects of LTA and MeDi factors were observed in AD-vulnerable brain regions for all modalities (p < 0.001). Increased AD-burden (in particular higher A? load and lower glucose metabolism) were observed in LTA? compared to LTA+ subjects, and in MeDi? as compared to MeDi+ subjects. A gradient effect was observed for all modalities so that LTA?/MeDi? subjects had the highest and LTA+/MeDi+ subjects had the lowest AD-burden (p < 0.001), although the LTA × MeDi interaction was significant only for FDG measures (p < 0.03). Adjusting for covariates did not attenuate these relationships. Conclusion Lower physical activity and MeDi adherence were associated with increased brain AD-burden among NL individuals, indicating that lifestyle factors may modulate AD risk. Studies with larger samples and longitudinal evaluations are needed to determine the predictive power of the observed associations PMID:25599008

  12. Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing

    PubMed Central

    Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Ávila, César

    2010-01-01

    The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objective of this study was to analyze how individual differences in BAS functioning were associated with brain activation during erotic and aversive picture processing while subjects were involved in a simple goal-directed task. Forty-five male participants took part in this study. The task activation results confirm the activation of the reward and punishment brain-related structures while viewing erotic and aversive pictures, respectively. The SR scores show a positive correlation with activation of the left lateral prefrontal cortex, the mesial prefrontal cortex and the right occipital cortex while viewing erotic pictures, and a negative correlation with the right lateral prefrontal cortex and the left occipital cortex while viewing aversive pictures. In summary, the SR scores modulate the activity of the cortical areas in the prefrontal and the occipital cortices that are proposed to modulate the BAS and the BIS-FFFS. PMID:20147458

  13. Brain activity in using heuristic prototype to solve insightful problems.

    PubMed

    Dandan, Tong; Haixue, Zhu; Wenfu, Li; Wenjing, Yang; Jiang, Qiu; Qinglin, Zhang

    2013-09-15

    When confronted with a real-world problem, heuristic knowledge and experience can guide the solution of a specific technical problem as the key step toward innovation. In particular, a heuristic prototype must be used correctly to cue the technical problem that exists in a particular situation. The present study selected an innovative paradigm and scientific innovation materials to investigate the neural basis of insight induced by heuristic prototypes using event-related functional magnetic resonance imaging (fMRI). The day prior to undergoing fMRI scanning, participants were asked to solve 42 difficult technical problems that scientists might have already encountered but were unknown to the participants. In the subsequent fMRI experiment, the same participants were randomly presented with 84 prototypes classified into two types: related prototypes (RPs), which were useful for solving previously encountered problems, and unrelated prototypes (UPs), which sometimes did not contribute to problem solving. While being scanned, participants were asked to assess whether a prototype is relevant to any of the technical problems. This study comprised two conditions: solving technical problems when presented with a related heuristic prototype and failing to solve technical problems using unrelated heuristic prototypes. The authors assumed that the regions significantly activated by the RP condition, compared with the UP condition, reflected brain activity related to the role of heuristic prototypes in scientific insight. fMRI data showed that the left dorsolateral prefrontal gyrus (left DLFPC, BA9) and the left angular gyrus (left AG, BA39) were more significantly activated when presented with RPs than with UPs. The results suggest that the DLPFC may be involved in the automatic retrieval of technical problems and breaking of mental sets. Moreover, the left AG may be involved in forming novel associations between technical problems and related prototypes. PMID:23860118

  14. Brain Activity during Lower-Limb Movement with Manual Facilitation: An fMRI Study

    PubMed Central

    de Almeida, Patrícia Maria Duarte; Vieira, Ana Isabel Correia Matos de Ferreira; Canário, Nádia Isabel Silva; Castelo-Branco, Miguel; de Castro Caldas, Alexandre Lemos

    2015-01-01

    Brain activity knowledge of healthy subjects is an important reference in the context of motor control and reeducation. While the normal brain behavior for upper-limb motor control has been widely explored, the same is not true for lower-limb control. Also the effects that different stimuli can evoke on movement and respective brain activity are important in the context of motor potentialization and reeducation. For a better understanding of these processes, a functional magnetic resonance imaging (fMRI) was used to collect data of 10 healthy subjects performing lower-limb multijoint functional movement under three stimuli: verbal stimulus, manual facilitation, and verbal?+?manual facilitation. Results showed that, with verbal stimulus, both lower limbs elicit bilateral cortical brain activation; with manual facilitation, only the left lower limb (LLL) elicits bilateral activation while the right lower limb (RLL) elicits contralateral activation; verbal?+?manual facilitation elicits bilateral activation for the LLL and contralateral activation for the RLL. Manual facilitation also elicits subcortical activation in white matter, the thalamus, pons, and cerebellum. Deactivations were also found for lower-limb movement. Manual facilitation is stimulus capable of generating brain activity in healthy subjects. Stimuli need to be specific for bilateral activation and regarding which brain areas we aim to activate. PMID:25722890

  15. Altered brain activation during visuomotor integration in chronic active cannabis users: relationship to cortisol levels.

    PubMed

    King, George R; Ernst, Thomas; Deng, Weiran; Stenger, Andrew; Gonzales, Rachael M K; Nakama, Helenna; Chang, Linda

    2011-12-01

    Cannabis is the most abused illegal substance in the United States. Alterations in brain function and motor behavior have been reported in chronic cannabis users, but the results have been variable. The current study aimed to determine whether chronic active cannabis use in humans may alter psychomotor function, brain activation, and hypothalamic-pituitary-axis (HPA) function in men and women. Thirty cannabis users (16 men, 14 women, 18-45 years old) and 30 nondrug user controls (16 men, 14 women, 19-44 years old) were evaluated with neuropsychological tests designed to assess motor behavior and with fMRI using a 3 Tesla scanner during a visually paced finger-sequencing task, cued by a flashing checkerboard (at 2 or 4 Hz). Salivary cortisol was measured to assess HPA function. Male, but not female, cannabis users had significantly slower performance on psychomotor speed tests. As a group, cannabis users had greater activation in BA 6 than controls, while controls had greater activation in the visual area BA 17 than cannabis users. Cannabis users also had higher salivary cortisol levels than controls (p = 0.002). Chronic active cannabis use is associated with slower and less efficient psychomotor function, especially in male users, as indicated by a shift from regions involved with automated visually guided responses to more executive or attentional control areas. The greater but altered brain activities may be mediated by the higher cortisol levels in the cannabis users, which in turn may lead to less efficient visual-motor function. PMID:22159107

  16. Lesion Activity on Brain MRI in a Chinese Population with Unilateral Optic Neuritis

    PubMed Central

    Lai, Chuntao; Chang, Qinglin; Tian, Guohong; Wang, Jiawei; Yin, Hongxia; Liu, Wu

    2015-01-01

    Longitudinal studies have shown that brain white matter lesions are strong predictors of the conversion of unilateral optic neuritis to multiple sclerosis (MS) in Caucasian populations. Consequently brain MRI criteria have been developed to improve the prediction of the development of clinically definite multiple sclerosis (CDMS). In Asian populations, optic neuritis may be the first sign of classical or optic-spinal MS. These signs add to the uncertainty regarding brain MRI changes with respect to the course of unilateral optic neuritis. The aim of this study was to examine the association between brain lesion activity and conversion to CDMS in Chinese patients with unilateral optic neuritis. A small prospective cohort study of 40 consecutive Chinese patients who presented with unilateral optic neuritis was conducted. Brain lesion activity was recorded as the incidence of Gd-enhanced lesions and new T2 lesions. Brain lesions on MRI that were characteristic of MS were defined according to the 2010 revisions of the McDonald criteria. The primary endpoint was the development of CDMS. We found that nineteen patients (48%) had brain lesions that were characteristic of MS on the initial scan. One of these patients (3%) had Gd-enhanced brain lesions. A significantly lower percentage of the patients (10%, p<0.001) presented with new T2 brain lesions on the second scan. During a median of 5 years of follow-up, seven patients (18%) developed CDMS. There was no significant difference in the conversion rate to CDMS between patients with and without brain lesions that were characteristic of MS (4/19 and 3/21, respectively; Fisher exact test, one-sided, p = 0.44). We conclude that brain lesions characteristic of MS are common in Chinese patients with unilateral optic neuritis; however, these patients exhibit low lesion activity. The predictive value of brain lesion activity for CDMS requires investigation in additional patients. PMID:26485719

  17. PET with F-18 fluorodeoxyglucose measures of local brain activity and memory in schizophrenia and in depression

    SciTech Connect

    Riege, W.H.; Metter, E.J.; Kuhl, D.E.; Phelps, M.E.; Kling, A.

    1984-01-01

    Positron emission tomography with (F-18) fluorodeoxyglucose (FDG) scan has provided non-invasive measures of regional cerebral glucose utilization which are directly related with levels of functional activity in regions of the brain. The FDG technique was applied to the study of brain activity thought to be impaired in 6 chronic schizophrenics (SCH) and 6 depressed (D) patients in comparison with 6 healthy age-matched controls (C). Local cerebral metabolic rates of glucose utilization LCMRglc were determined for 8 regions in both left and right hemispheres and were expressed in reference to a person's mean CMRglc. Multivariate comparisons of the 16 measures showed no significant differences between the 3 groups; follow-up step-down analyses and t-tests failed to specify any regional or global LCMRglc reliable to separate patients from controls. They also did not differ in any of 18 multidimensional tests of memory and decision, except for lower delayed verbal recall in D patients. When both SCH and D were classified into those with CT large and those with CT small ventricles, there were no multivariate differences. Only partial LCMRglc separated large from small ventricle patients (F(1,7) = 6.12, p<0.042), but finding no multivariate significance makes this result questionable. The ventricular grouping of SCH alone may reveal a marginal difference in global CMRglc t(4) = 2.58, p<0.06, given a larger patient sample. In contrast to recent reports, indices to brain activity in schizophrenic and depressed patients do not seem to be abnormal.

  18. Todd, Faraday, and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy. PMID:15324724

  19. Disturbances of the VLF/LF radio signal reception at Dobrogea Seismological Observatory due to local abnormal electric activity

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren-Adelina; Toader, Victorin; Dolea, Paul; Biagi, Pier Francesco

    2015-04-01

    The National Institute for Earth Physics, as part of the INFREP initiative, has monitored radio waves emitted by 10 transmitters all over Europe in relation with seismicity in the last 5 years. In Romania a radio receiving system is located in only one site (Dobrogea Seismological Observatory) situated in Eforie Nord, in the Eastern part of Romania. The electro-magnetic field monitored both at the ground and (sub) ionospheric level, in different frequency ranges (VLF/LF) is considered to be promising for earthquake forecasting. Because the abnormal behavior of the VLF/LF recordings that could not be correlated with the tectonic activity of the seismogenic zones crossed by the radio paths, we decided to monitor other two parameters, at the receiving site: the vertical component of the atmospheric electric field, which indicates variations of electrical properties of the near-ground air (Boltek electric field mill), and the atmospheric local conditions (WS-3600 weather station). The zone is also surveyed by seismic devices (seismometers, accelerometers and infrasonic equipment) and GPS/GNSS base stations to emphasize the local tectonic conditions. We obtained in such way a multiple-parameter monitoring system that increases the confidence in observational data and decreases uncertainties regarding the accuracy of the data recorded until now. As we are exploring different parameters we have obtained some conclusions regarding the correlation of the anomalies with their possible causes. The final expectation of the monitoring system regard the chance to take a snapshot of the geophysical medium before, during and after a significant earthquake occurrence and to reveal if there was or wasn't a noticeable trace of the preparatory stage of it. This work was partially supported by a grant of the Romanian National Authority for Scientific Research, Programe for research- Space Technology and Avanced Research - STAR, project number 84/2013, and by the NUCLEU project, PN 09 30/2009.

  20. Brain activity during driving with distraction: an immersive fMRI study

    PubMed Central

    Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.

    2013-01-01

    Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757

  1. Resting Brain Activity Varies with Dream Recall Frequency Between Subjects

    PubMed Central

    Eichenlaub, Jean-Baptiste; Nicolas, Alain; Daltrozzo, Jérôme; Redouté, Jérôme; Costes, Nicolas; Ruby, Perrine

    2014-01-01

    Dreaming is still poorly understood. Notably, its cerebral underpinning remains unclear. Neuropsychological studies have shown that lesions in the temporoparietal junction (TPJ) and/or the white matter of the medial prefrontal cortex (MPFC) lead to the global cessation of dream reports, suggesting that these regions of the default mode network have key roles in the dreaming process (forebrain ‘dream-on' hypothesis). To test this hypothesis, we measured regional cerebral blood flow (rCBF) using [15O]H2O positron emission tomography in healthy subjects with high and low dream recall frequencies (DRFs) during wakefulness (rest) and sleep (rapid eye movement (REM) sleep, N2, and N3). Compared with Low recallers (0.5±0.3 dream recall per week in average), High recallers (5.2±1.4) showed higher rCBF in the TPJ during REM sleep, N3, and wakefulness, and in the MPFC during REM sleep and wakefulness. We demonstrate that the resting states of High recallers and Low recallers differ during sleep and wakefulness. It coheres with previous ERP results and confirms that a high/low DRF is associated with a specific functional organization of the brain. These results support the forebrain ‘dream-on' hypothesis and suggest that TPJ and MPFC are not only involved in dream recall during wakefulness but also have a role in dreaming during sleep (production and/or encoding). Increased activity in the TPJ and MPFC might promote the mental imagery and/or memory encoding of dreams. Notably, increased activity in TPJ might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, facilitating the encoding of the dreams in memory. PMID:24549103

  2. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    PubMed Central

    Benveniste, Helene; Fowler, Joanna S.; Rooney, William D.; Scharf, Bruce A.; Backus, W. Walter; Izrailtyan, Igor; Knudsen, Gitte M.; Hasselbalch, Steen G.; Volkow, Nora D.

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (?100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide evidence that cocaine use by a pregnant mother will also affect the function of the fetal brain. We are also unique in showing that cocaine’s effects in brain glucose metabolism differed in pregnant (increased) and nonpregnant (decreased) animals, which suggests that the psychoactive effects of cocaine are influenced by the state of pregnancy. Our findings have clinical implications because they imply that the adverse effects of prenatal cocaine exposure to the newborn child include not only cocaine’s deleterious effects to the placental circulation, but also cocaine’s direct pharmacological effect to the developing fetal brain. PMID:20080687

  3. Concentration of rare earth elements, As, and Th in human brain and brain tumors, determined by neutron activation analysis.

    PubMed

    Zhuang, G; Zhou, Y; Lu, H; Lu, W; Zhou, M; Wang, Y; Tan, M

    1996-01-01

    Toxic elements As and Th, six rare-earth elemental profiles of brain tumor tissues from 16 patients of astrocytomas (grade I-III), and normal human brain tissues of 18 male, age-matched autopsies serving as controls have been studied by radiochemical neutron activation analysis. P-204 [di(2-ethylhexyl) phosphate] extraction chromatography column was used for group separation of rare-earth element (REE) by one step. Compared with the normal brain tissues, the analytical results showed that the concentrations of Th, La, Ce, Gd, and Lu were significantly higher in tumor tissues (P < 0.01 or 0.001). The possible effects of REE on tumor cell were discussed. PMID:8862736

  4. The change of the brain activation patterns as children learn algebra equation solving

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Carter, Cameron S.; Silk, Eli M.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Anderson, John R.

    2004-04-01

    In a brain imaging study of children learning algebra, it is shown that the same regions are active in children solving equations as are active in experienced adults solving equations. As with adults, practice in symbol manipulation produces a reduced activation in prefrontal cortex area. However, unlike adults, practice seems also to produce a decrease in a parietal area that is holding an image of the equation. This finding suggests that adolescents' brain responses are more plastic and change more with practice. These results are integrated in a cognitive model that predicts both the behavioral and brain imaging results.

  5. 8.3. Brain NOS activity regulates reproductive state-related behaviors in grasshoppers

    E-print Network

    Giron, David - Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais

    8.3. Brain NOS activity regulates reproductive state-related behaviors in grasshoppers Heinrich, R is the control of grasshopper acoustic communica- tion mediated by neural circuits in the central body (CB) of the brain. The CB of grasshoppers contains both NO- generating and NO-responsive neurons. Pharmacological

  6. The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study

    ERIC Educational Resources Information Center

    Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.

    2004-01-01

    This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…

  7. Drug and Alcohol Dependence 90 (2007) 175182 Brain activation during the Stroop task in adolescents

    E-print Network

    Banich, Marie T.

    2007-01-01

    in adolescents with severe substance and conduct problems: A pilot study Marie T. Banicha,b,c,, Thomas J changes in brain function in adults with substance use disorders, far fewer have examined adolescents. This study investigated patterns of brain activation in adolescents with severe substance and conduct

  8. Peers increase adolescent risk taking by enhancing activity in the brain's reward circuitry

    E-print Network

    Chein, Jason

    Peers increase adolescent risk taking by enhancing activity in the brain's reward circuitry Jason, Temple University, USA Abstract The presence of peers increases risk taking among adolescents but not adults. We posited that the presence of peers may promote adolescent risk taking by sensitizing brain

  9. HUMAN NEUROSCIENCE tion that served as a bottleneck,and activated the same brain struc-

    E-print Network

    Butterworth, Brian

    HUMAN NEUROSCIENCE tion that served as a bottleneck,and activated the same brain struc- ture-symbolic numerical abilities serve as the foundation for later, symbolic of numerical cognition and our understanding of information processing in the human brain, but also on educa

  10. Supplemental Material The relative absence of areas where brain activation is stronger

    E-print Network

    Patel, Aniruddh D.

    and lateral brain responses in the increase condition makes a cognitive impairment explanation unlikely. AgeSupplemental Material The relative absence of areas where brain activation is stronger when involvement of dorsal and lateral regions of PFC during our emotion regulation task. Our subjects' intact

  11. Dynamic Variation in Pleasure in Children Predicts Nonlinear Change in Lateral Frontal Brain Electrical Activity

    E-print Network

    Wisconsin at Madison, University of

    Dynamic Variation in Pleasure in Children Predicts Nonlinear Change in Lateral Frontal Brain frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral variation in the experience and expression of pleasure may relate to differential patterns of lateral

  12. How Curriculum Leaders Can Involve the Right Brain in Active Reading and Writing Development.

    ERIC Educational Resources Information Center

    Sinatra, Richard; Stahl-Gemake, Josephine

    Curriculum leaders, program specialists, and teachers can intentionally arouse the activation of one hemisphere of the brain over the other through the use of right brain strategies in language learning. While most functions of the left hemisphere are concerned with convergent production (getting the right answer), functions of the right…

  13. Energy landscape and dynamics of brain activity during human bistable perception

    PubMed Central

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-01-01

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception. PMID:25163855

  14. Differential Brain Activity during Emotional versus Nonemotional Reversal Learning

    E-print Network

    Mather, Mara

    in reversal learning are re- lated to social abnormality and psychiatric disorders, such as obsessive compulsive disorder (Remijnse et al., 2006), major depressive disorder (Remijnse et al., 2009), psycho- pathy, 2001), and intermittent explosive disorder (Best, Williams, & Coccaro, 2002); thus, reversal learning

  15. Enhanced resting-state brain activities in ADHD patients: a fMRI study.

    PubMed

    Tian, Lixia; Jiang, Tianzi; Liang, Meng; Zang, Yufeng; He, Yong; Sui, Manqiu; Wang, Yufeng

    2008-05-01

    Resting-state functional MRI (fMRI) could be an advantageous choice for clinical applications by virtue of its clinical convenience and non-invasiveness. Without explicit stimulus, resting-state brain activity patterns cannot be obtained using any model-driven method. In this study, we advanced a measure named resting-state activity index (RSAI) to evaluate the resting-state brain activities. Using RSAI, we first investigated the resting-state brain activity patterns in normal adolescents to test the validity of this RSAI measure. Then we compared the resting-state brain activity patterns of Attention deficit hyperactivity disorder (ADHD) patients to those of their matched controls. According to the resultant brain activity patterns, we suggest that RSAI could be an applicable measure to evaluate resting-state brain activities. As compared to the controls, the ADHD patients exhibited more significant resting-state activities in basic sensory and sensory-related cortices. This finding was in accordance with ADHD symptoms of inattention. PMID:18060712

  16. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    PubMed Central

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  17. Measurable benefits on brain activity from the practice of educational leisure

    PubMed Central

    Requena, Carmen; López, Verónica

    2014-01-01

    Even if behavioral studies relate leisure practices to the preservation of memory in old persons, there is unsubstantial evidence of the import of leisure on brain activity. Aim: This study was to compare the brain activity of elderly retired people who engage in different types of leisure activities. Methods: Quasi-experimental study over a sample of 60 elderly, retired subjects distributed into three groups according to the leisure activities they practised: educational leisure (G1), memory games (G2), and card games (G3). Applied measures include the conceptual distinction between free time and leisure, the test of the organization of free time measuring 24 clock divisions, and EEG register during 12 word list memorizing. Results: The results show that the type of leisure activity is associated with significant quantitative differences regarding the use of free time. G1 devotes more time to leisure activities than G2 (p = 0.007) and G3 (p = 0.034). G1 rests more actively than the other two groups (p = 0.001). The electrical localization of brain activity indicated a reverse tendency of activation according to the bands and groups. Discussion: Engaging in educational leisure activities is a useful practice to protect healthy brain compensation strategies. Future longitudinal research may verify the causal relation between practicing educational leisure activities and functional brain aging. PMID:24653699

  18. Activated Brain Endothelial Cells Cross-Present Malaria Antigen

    PubMed Central

    Howland, Shanshan W.; Poh, Chek Meng; Rénia, Laurent

    2015-01-01

    In the murine model of cerebral malaria caused by P. berghei ANKA (PbA), parasite-specific CD8+ T cells directly induce pathology and have long been hypothesized to kill brain endothelial cells that have internalized PbA antigen. We previously reported that brain microvessel fragments from infected mice cross-present PbA epitopes, using reporter cells transduced with epitope-specific T cell receptors. Here, we confirm that endothelial cells are the population responsible for cross-presentation in vivo, not pericytes or microglia. PbA antigen cross-presentation by primary brain endothelial cells in vitro confers susceptibility to killing by CD8+ T cells from infected mice. IFN? stimulation is required for brain endothelial cross-presentation in vivo and in vitro, which occurs by a proteasome- and TAP-dependent mechanism. Parasite strains that do not induce cerebral malaria were phagocytosed and cross-presented less efficiently than PbA in vitro. The main source of antigen appears to be free merozoites, which were avidly phagocytosed. A human brain endothelial cell line also phagocytosed P. falciparum merozoites. Besides being the first demonstration of cross-presentation by brain endothelial cells, our results suggest that interfering with merozoite phagocytosis or antigen processing may be effective strategies for cerebral malaria intervention. PMID:26046849

  19. Platelet-activating factor modulates brain sphingomyelin metabolism.

    PubMed

    Latorre, E; Aragonés, M D; Fernández, I; Catalán, R E

    1999-06-01

    In the present study the modulatory action of platelet-activating factor (PAF) on sphingolipid metabolism in cerebral cortical slices was studied. PAF did not alter the basal levels of either sphingomyelin (SM) or ceramide. However, the SMase-elicited reciprocal alterations in SM and ceramide levels were partially prevented by the PAF treatment. The PAF effect was dose-dependent, with 10-8 m being the lowest effective concentration, and receptor-mediated as it was abolished by WEB 2086, a PAF receptor antagonist. Neither N-oleoylethanolamine (OE, ceramidase inhibitor) or d,l-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP, an inhibitor of glucosylceramide synthase and the formation of 1-O-acyl ceramides) prevented the action of PAF. Therefore, the effect of PAF was unlikely to be dependent upon transformation of ceramides into glycosphingolipids, 1-O-acyl ceramides or sphingosine. Experiments with different labeled compounds ([14C]serine, [14C]arachidonate and phosphatidyl [N-methyl-3H]choline) were also performed to test whether PAF could affect the resynthesis of SM. Data obtained agree with the idea that selective pools of both choline and ethanolamine phospholipids were used as precursors for the resynthesis of SM elicited by SMase treatment. PAF itself did not evoke any variation in the lipids analyzed but always prevented the SMase-evoked alterations. Together the data suggest the interesting possibility that PAF increases the overall turnover of SM. In summary, the present data demonstrate that PAF is able to regulate the cellular ceramide levels in brain by accelerating the SM cycle. PMID:10336612

  20. Hemostasis activation in patients undergoing brain tumor surgery.

    PubMed

    Vukovich, T C; Gabriel, A; Schaefer, B; Veitl, M; Matula, C; Spiss, C K

    1997-04-15

    Patients undergoing brain tumor surgery are at high risk for the occurrence of a thromboembolic event. To identify a laboratory marker suitable for risk estimation the authors studied the perioperative time pattern of routine coagulation parameters and the specific hemostasis activation marker D-dimer in 28 consecutive patients at high risk (11 patients with glioma and eight patients with meningioma) and low risk ( 9 patients with metastases) for thromboembolism, as previously reported. As is typical during major surgery, most of the routine parameters declined, probably because of hemodilution, and recovered postoperatively to values higher than baseline, probably because of an acute-phase reaction. On Days 2 and 7 after surgery no difference in the routine parameters was recorded between patients at high (meningioma and glioma) and low risk (metastases). The level of D-dimer was elevated at baseline in patients with metastases, indicating a hemostatic hyperactivity that is usual in cancer patients. During surgery a marked increase in D-dimer levels occurred in patients with meningioma and glioma (pre- and postoperative median 90/2000 and 100/1020 ng/ml, respectively), but the increase was less pronounced in patients with metastases (320/660 ng/ml). Postoperatively, D-dimer declined in patients with metastases to lower levels than preoperatively (Day 7, 270 ng/ml); in patients with meningioma or glioma, however, D-dimer levels remained elevated until Day 7 (450 and 200 ng/ml). These results indicate that levels of D-dimer correlate with the reported high risk for thromboembolism in patients with meningioma and glioma, and D-dimer should be evaluated for its use in estimating individual risk and the efficiency of its use in the control of prophylactic treatment. PMID:15096008

  1. Hemostasis activation in patients undergoing brain tumor surgery.

    PubMed

    Vukovich, T C; Gabriel, A; Schaeffer, B; Veitl, M; Matula, C; Spiss, C K

    1997-10-01

    Patients undergoing brain tumor surgery are at high risk for the occurrence of a thromboembolic event. To identify a laboratory marker suitable for risk estimation the authors studied the perioperative time pattern of routine coagulation parameters and the specific hemostasis activation marker D-dimer in 28 consecutive patients at high risk (11 patients with glioma and eight patients with meningioma) and low risk (nine patients with metastases) for thromboembolism, as previously reported. As is typical during major surgery, most of the routine parameters declined, probably because of hemodilution, and recovered postoperatively to values higher than baseline, probably because of an acute-phase reaction. On Days 2 and 7 after surgery no difference in the routine parameters was recorded between patients at high (meningioma and glioma) and low risk (metastasis). The level of D-dimer was elevated at baseline in patients with metastasis, indicating a hemostatic hyperactivity that is usual in cancer patients. During surgery a marked increase in D-dimer levels occurred in patients with meningioma and glioma (pre- and postoperative median 90/2000 and 100/1020 ng/ml, respectively), but the increase was less pronounced in patients with metastasis (320/660 ng/ml). Postoperatively, D-dimer declined in patients with metastases to lower than preoperative levels (Day 7, 270 ng/ml); in patients with meningioma or glioma, however, D-dimer levels remained elevated until Day 7 (450 and 200 ng/ml, respectively). These results indicate that levels of D-dimer correlate with the reported high risk for thromboembolism in patients with meningioma and glioma, and D-dimer should be evaluated for its use in estimating individual risk and the efficiency of its use in the control of prophylactic treatment. PMID:9322840

  2. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  3. Neurobiology of Aging xxx (2006) xxxxxx Age-related changes in brain activation during

    E-print Network

    2006-01-01

    Neurobiology of Aging xxx (2006) xxx­xxx Age-related changes in brain activation during a delayed. / Neurobiology of Aging xxx (2006) xxx­xxx impairment in several different memory variables [78], including WM [9

  4. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.

    PubMed

    Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel

    2015-05-15

    We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. PMID:25595505

  5. Brain cholinesterase activity of nestling great egrets snowy egrets and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  6. Brain cholinesterase activity of nestling great egrets, snowy egrets, and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbmate pesticides. Brain ChE activity in the young of altricial species increase with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night -herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas, and California also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  7. Remarkable Activation of the Complement System and Aberrant Neuronal Localization of the Membrane Attack Complex in the Brain Tissues of Scrapie-Infected Rodents.

    PubMed

    Lv, Yan; Chen, Cao; Zhang, Bao-Yun; Xiao, Kang; Wang, Jing; Chen, Li-Na; Sun, Jing; Gao, Chen; Shi, Qi; Dong, Xiao-Ping

    2015-12-01

    As an integral part of the innate immunity, the complement system has been reported to involve in the pathogenesis of prion diseases (PrD). However, the states of expression and activity of complement proteins in experimental models of scrapie infection are still not fully understood. Herein, the state of complement activation, the presence, and distribution as well as localization of C3 and membrane attack complex (MAC) in the brains of several scrapie-infected rodents were comparatively assessed through various methodologies. Our data illustrated a significant increase in the total complement activity (CH50, U/ml) in several scrapie-infected rodent brains at the terminal stage and a time-dependent upregulation of C1q in 263K-infected hamsters during the incubation period, intimating the sustained and progressive activation of the classical pathway during PrD progression. Confocal microscopy revealed robust activation of C3 and its localization to various central nervous system (CNS) cells with differential morphology in the brain tissues of both 263K-infected hamsters and 139A-infected C57BL/6 mice at disease end stages. Dynamic analyses of MAC in the brains of 263K-infected hamsters and 139A-infected C57BL/6 mice demonstrated remarkably time-dependent deposition during the incubation period, which may highlight a persistently activated terminal complement components. Moreover, immunofluorescent assays (IFAs) showed that MAC-specific signals appeared to overlap with morphologically abnormal neurons rather than proliferative astrocytes or activated microglia throughout the CNS of both 263K-infected hamsters and 139A-infected C57BL/6 mice. Overall, these results indicate that the activation of the complement system and the subsequent localization of the complement components to neurons may be a hallmark during prion infection, which ultimately contribute to the neurodegeneration in PrD. PMID:25311207

  8. Absent septal q wave: a marker of the effects of abnormal activation pattern on left ventricular diastolic function.

    PubMed Central

    Xiao, H B; Gibson, D G

    1994-01-01

    OBJECTIVE--To investigate the possible mechanical associations of the presence or absence of the septal q wave. STUDY DESIGN--Retrospective and prospective study of 63 patients with various left ventricular diseases and 10 controls by electrocardiography, echocardiography, and pulsed Doppler recordings. SETTING--Tertiary cardiac referral centre. PATIENTS--73 subjects were studied. 26 had absent septal q waves and a QRS duration < 120 ms, 25 had classic left bundle branch block, and the rest had a normal electrocardiogram. Pathologically, 34 had left ventricular disease and 29 had a structurally normal heart. 10 subjects with structurally normal hearts and normal septal q waves were taken as controls. RESULTS--The timing of left ventricular minor axis motion was consistently normal in patients with abnormal activation, but long axis motion was considerably altered, with delayed "post-ejection shortening" of a mean amplitude of 4 mm. The post-ejection shortening began 10 (15) ms and reached its peak 90(20) ms after aortic closure (A2). Peak lengthening rate did not differ from normal (6.2 (3.5) v 8.5 (3.5) cm/s, NS) though it occurred significantly later. Post-ejection shortening was unrelated to age, amplitude of left ventricular wall motion, or QRS axis on the surface electrocardiogram. Post-ejection shortening was commoner when QRS duration was > 115 ms, but an absent septal q wave predicted its presence with a specificity of 90% and sensitivity of 86%. In patients with a post-ejection shortening, the onset of left ventricular systolic long axis shortening was delayed and the extent of its lengthening during the pre-ejection period increased, indicating delayed and incoordinate onset of tension development. During diastole, post-ejection shortening was associated with a prolonged isovolumic relaxation period and the time from A2 to the onset of transmitral flow. Peak mitral E wave flow velocity was reduced due to a fall in acceleration time although acceleration rate itself was unchanged. CONCLUSION--Loss of the normal septal q wave is associated with considerable mechanical consequences throughout the cardiac cycle, from the pre-ejection period to atrial systole, and apparently causes asynchronous subendocardial function. PMID:8068468

  9. Imaging brain tumor proliferative activity with [124I]iododeoxyuridine.

    PubMed

    Blasberg, R G; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, I; Crompton, N E; Vontobel, P; Missimer, J; Maguire, R P; Koziorowski, J; Knust, E J; Finn, R D; Leenders, K L

    2000-02-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [124I]IUdR in 20 patients with brain tumors, including meningiomas and gliomas. The PET images were directly compared with gadolinium contrast-enhanced or T2-weighted magnetic resonance images. Estimates for IUdR-DNA incorporation in tumor tissue (Ki) required pharmacokinetic modeling and fitting of the 0-48 min dynamically acquired data to correct the 24-h image data for residual, nonincorporated radioactivity that did not clear from the tissue during the 24-h period after IUdR injection. Standard uptake values (SUVs) and tumor:brain activity ratios (Tm:Br) were also calculated from the 24-h image data. The Ki, SUV, and Tm/Br values were related to tumor type and grade, tumor labeling index, and survival after the PET scan. The plasma half-life of [124I]IUdR was short (2-3 min), and the arterial plasma input function was similar between patients (48 +/- 12 SUV*min). Plasma clearance of the major radiolabeled metabolite ([124I]iodide) varied somewhat between patients and was markedly prolonged in one patient with renal insufficiency. It was apparent from our analysis that a sizable fraction (15-93%) of residual nonincorporated radioactivity (largely [124I]iodide) remained in the tumors after the 24-h washout period, and this fraction varied between the different tumor groups. Because the SUV and Tm:Br ratio values reflect both IUdR-DNA incorporated and exchangeable nonincorporated radioactivity, any residual nonincorporated radioactivity will amplify their values and distort their significance and interpretation. This was particularly apparent in the meningioma and glioblastoma multiforme groups of tumors. Mean tumor Ki values ranged between 0.5 +/- 0.9 (meningiomas) and 3.9 +/- 2.3 microl/min/g (peak value for glioblastoma multiforme, GBM). Comparable SUV and Tm:Br values at 24 h ranged from 0.13 +/- 0.03 to 0.29 +/- 0.19 and from 2.0 +/- 0.6 to 6.1 +/- 1.5 for meningiomas and peak GBMs, respectively. Thus, the range of values was much greater for Ki (approximately 8-fold) compared with that for SUV (approximately 2.2-fold) and Tm:Br (approximately 3-fold). The expected relationships between Ki, SUV, and Tm:Br and other measures of tumor proliferation (tumor type and grade, labeling index, and patient survival) were observed. However, greater image specificity and significance of the SUV and Tm:Br values would be obtained by achieving greater washout and clearance of the exchangeable fraction of residual (background) radioactivity in the tumors, i.e., by increased hydration and urinary clearance and possibly by imaging later than 24 h after [124I]IUdR administration. PMID:10676646

  10. Abnormalities in brain structure and biochemistry associated with mdx mice measured by in vivo MRI and high resolution localized (1)H MRS.

    PubMed

    Xu, Su; Shi, Da; Pratt, Stephen J P; Zhu, Wenjun; Marshall, Andrew; Lovering, Richard M

    2015-10-01

    Duchenne muscular dystrophy (DMD), an X-linked disorder caused by the lack of dystrophin, is characterized by the progressive wasting of skeletal muscles. To date, what is known about dystrophin function is derived from studies of dystrophin-deficient animals, with the most common model being the mdx mouse. Most studies on patients with DMD and in mdx mice have focused on skeletal muscle and the development of therapies to reverse, or at least slow, the severe muscle wasting and progressive degeneration. However, dystrophin is also expressed in the CNS. Both mdx mice and patients with DMD can have cognitive and behavioral changes, but studies in the dystrophic brain are limited. We examined the brain structure and metabolites of mature wild type (WT) and mdx mice using magnetic resonance imaging and spectroscopy (MRI/MRS). Both structural and metabolic alterations were observed in the mdx brain. Enlarged lateral ventricles were detected in mdx mice when compared to WT. Diffusion tensor imaging (DTI) revealed elevations in diffusion diffusivities in the prefrontal cortex and a reduction of fractional anisotropy in the hippocampus. Metabolic changes included elevations in phosphocholine and glutathione, and a reduction in ?-aminobutyric acid in the hippocampus. In addition, an elevation in taurine was observed in the prefrontal cortex. Such findings indicate a regional structural change, altered cellular antioxidant defenses, a dysfunction of GABAergic neurotransmission, and a perturbed osmoregulation in the brain lacking dystrophin. PMID:26236031

  11. Neuroscience Instrumentation and Distributed Analysis of Brain Activity Data: A Case for eScience on Global Grids

    E-print Network

    Melbourne, University of

    1 Neuroscience Instrumentation and Distributed Analysis of Brain Activity Data: A Case for e commonly observed in scientific disciplines. Two popular scientific disciplines of this nature are brain science and high-energy physics. The analysis of brain activity data gathered from the MEG

  12. ADHD- and Medication-Related Brain Activation Effects in Concordantly Affected Parent-Child Dyads with ADHD

    ERIC Educational Resources Information Center

    Epstein, Jeffery N.; Casey, B. J.; Tonev, Simon T.; Davidson, Matthew C.; Reiss, Allan L.; Garrett, Amy; Hinshaw, Stephen P.; Greenhill, Laurence L.; Glover, Gary; Shafritz, Keith M.; Vitolo, Alan; Kotler, Lisa A.; Jarrett, Matthew A.; Spicer, Julie

    2007-01-01

    Background: Several studies have documented fronto-striatal dysfunction in children and adolescents with attention deficit/hyperactivity disorder (ADHD) using response inhibition tasks. Our objective was to examine functional brain abnormalities among youths and adults with ADHD and to examine the relations between these neurobiological…

  13. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder. PMID:26693398

  14. Neural correlates of abnormal sensory discrimination in laryngeal dystonia

    PubMed Central

    Termsarasab, Pichet; Ramdhani, Ritesh A.; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M.; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J.; Reilly, Richard B.; Hutchinson, Michael; Ozelius, Laurie J.; Simonyan, Kristina

    2015-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder. PMID:26693398

  15. Neural mechanisms of predatory aggression in rats-implications for abnormal intraspecific aggression.

    PubMed

    Tulogdi, Aron; Biro, Laszlo; Barsvari, Beata; Stankovic, Mona; Haller, Jozsef; Toth, Mate

    2015-04-15

    Our recent studies showed that brain areas that are activated in a model of escalated aggression overlap with those that promote predatory aggression in cats. This finding raised the interesting possibility that the brain mechanisms that control certain types of abnormal aggression include those involved in predation. However, the mechanisms of predatory aggression are poorly known in rats, a species that is in many respects different from cats. To get more insights into such mechanisms, here we studied the brain activation patterns associated with spontaneous muricide in rats. Subjects not exposed to mice, and those which did not show muricide were used as controls. We found that muricide increased the activation of the central and basolateral amygdala, and lateral hypothalamus as compared to both controls; in addition, a ventral shift in periaqueductal gray activation was observed. Interestingly, these are the brain regions from where predatory aggression can be elicited, or enhanced by electrical stimulation in cats. The analysis of more than 10 other brain regions showed that brain areas that inhibited (or were neutral to) cat predatory aggression were not affected by muricide. Brain activation patterns partly overlapped with those seen earlier in the cockroach hunting model of rat predatory aggression, and were highly similar with those observed in the glucocorticoid dysfunction model of escalated aggression. These findings show that the brain mechanisms underlying predation are evolutionarily conservative, and indirectly support our earlier assumption regarding the involvement of predation-related brain mechanisms in certain forms of escalated social aggression in rats. PMID:25637071

  16. Childhood Brain Tumors

    MedlinePLUS

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  17. Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study

    E-print Network

    Zhang, Quan

    The sensitivity of near-infrared spectroscopy (NIRS) to evoked brain activity is reduced by physiological interference in at least two locations: 1. the superficial scalp and skull layers, and 2. in brain tissue itself. ...

  18. Effects of exogenous phospholipases on brain membrane phospholipid perturbation, (Na(+) + K(+))-ATPase activity and cellular swelling of brain slices.

    PubMed

    Chan, P H; Chen, S; Fishman, R A

    1987-01-01

    Rat brain membranes were incubated with bee venom phospholipase A(2) (PLA(2)) or phospholipase C (PLC) from Clostridium perfringens. PLA(2) caused a significant increase in free polyunsaturated fatty acids concomitant with membrane phospholipid degradation as monitored by HPLC and by gas chromatography. Equal concentrations of PLC had a much lesser effect than PLA(2). Divergent and differential effects were shown on deacylation and incorporation of [(3)H]arachidonic acid in membrane phospholipids. The incorporation of [(3)H]arachidonic acid into various phospholipids was greatly reduced by PLA(2) (0.018 units/ml) whereas PLC at identical concentration was not effective. PLA(2) inhibited (Na(+) + K(+))-ATPase but was not effective on p-nitrophenyl-phosphatase activity whereas PLC stimulated both enzymes. PLA(2) induced swelling of cortical brain slices whereas PLC was not effective. Thus, the severity of the perturbation of membrane integrity, and the inhibition of (Na(+) + K(+))-ATPase in brain membranes may play an important role in cellular swelling of brain slices induced by PLA(2). PMID:20501100

  19. Affection of Fundamental Brain Activity By Using Sounds For Patients With Prosodic Disorders: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Imai, Emiko; Katagiri, Yoshitada; Seki, Keiko; Kawamata, Toshio

    2011-06-01

    We present a neural model of the production of modulated speech streams in the brain, referred to as prosody, which indicates the limbic structure essential for producing prosody both linguistically and emotionally. This model suggests that activating the fundamental brain including monoamine neurons at the basal ganglia will potentially contribute to helping patients with prosodic disorders coming from functional defects of the fundamental brain to overcome their speech problem. To establish effective clinical treatment for such prosodic disorders, we examine how sounds affect the fundamental activity by using electroencephalographic measurements. Throughout examinations with various melodious sounds, we found that some melodies with lilting rhythms successfully give rise to the fast alpha rhythms at the electroencephalogram which reflect the fundamental brain activity without any negative feelings.

  20. The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants

    PubMed Central

    Hartley, Caroline; Goksan, Sezgi; Poorun, Ravi; Brotherhood, Kelly; Mellado, Gabriela Schmidt; Moultrie, Fiona; Rogers, Richard; Adams, Eleri; Slater, Rebeccah

    2015-01-01

    Measuring infant pain is complicated by their inability to describe the experience. While nociceptive brain activity, reflex withdrawal and facial grimacing have been characterised, the relationship between these activity patterns has not been examined. As cortical and spinally mediated activity is developmentally regulated, it cannot be assumed that they are predictive of one another in the immature nervous system. Here, using a new experimental paradigm, we characterise the nociceptive-specific brain activity, spinal reflex withdrawal and behavioural activity following graded intensity noxious stimulation and clinical heel lancing in 30 term infants. We show that nociceptive-specific brain activity and nociceptive reflex withdrawal are graded with stimulus intensity (p?brain activity suggests that movement of the limb away from a noxious stimulus is a sensitive indication of nociceptive brain activity in term infants. This could underpin the development of new clinical pain assessment measures. PMID:26228435

  1. Do Exercise and Physical Activity Protect the Brain?

    MedlinePLUS

    ... may play a role in reducing risk for Alzheimer’s disease and age-related cognitive decline, and research in this area is continuing. Animal studies found that exercise increases both the number of small blood vessels that supply blood to the brain and the ...

  2. Breastfeeding, Brain Activation to Own Infant Cry, and Maternal Sensitivity

    ERIC Educational Resources Information Center

    Kim, Pilyoung; Feldman, Ruth; Mayes, Linda C.; Eicher, Virginia; Thompson, Nancy; Leckman, James F.; Swain, James E.

    2011-01-01

    Background: Research points to the importance of breastfeeding for promoting close mother-infant contact and social-emotional development. Recent functional magnetic resonance imaging (fMRI) studies have identified brain regions related to maternal behaviors. However, little research has addressed the neurobiological mechanisms underlying the…

  3. Brain volumetry and self-regulation of brain activity relevant for neurofeedback.

    PubMed

    Ninaus, M; Kober, S E; Witte, M; Koschutnig, K; Neuper, C; Wood, G

    2015-09-01

    Neurofeedback is a technique to learn to control brain signals by means of real time feedback. In the present study, the individual ability to learn two EEG neurofeedback protocols - sensorimotor rhythm and gamma rhythm - was related to structural properties of the brain. The volumes in the anterior insula bilaterally, left thalamus, right frontal operculum, right putamen, right middle frontal gyrus, and right lingual gyrus predicted the outcomes of sensorimotor rhythm training. Gray matter volumes in the supplementary motor area and left middle frontal gyrus predicted the outcomes of gamma rhythm training. These findings combined with further evidence from the literature are compatible with the existence of a more general self-control network, which through self-referential and self-control processes regulates neurofeedback learning. PMID:26219602

  4. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior.

    PubMed

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza; Strandgren, Charlotte; Pernold, Karin; Richard, Thibaud J C; Van Leeuwen, Fred W; Dantuma, Nico P; Damberg, Peter; Hultenby, Kjell; Ulfhake, Brun; Mugnaini, Enrico; Rozell, Björn; Eriksson, Maria

    2015-03-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in the nuclei of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues are protected from functional deleterious effects of progerin. PMID:25343989

  5. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    PubMed Central

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza; Strandgren, Charlotte; Pernold, Karin; Richard, Thibaud J. C.; Van Leeuwen, Fred W.; Dantuma, Nico P.; Damberg, Peter; Hultenby, Kjell; Ulfhake, Brun; Mugnaini, Enrico; Rozell, Björn; Eriksson, Maria

    2015-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in the nuclei of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues are protected from functional deleterious effects of progerin. PMID:25343989

  6. Dietary Omega-3 Fatty Acid Deficiency and High Fructose intake in the Development of Metabolic Syndrome Brain, Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Simopoulos, Artemis P.

    2013-01-01

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health. PMID:23896654

  7. Multi-scale integration and predictability in resting state brain activity

    PubMed Central

    Kolchinsky, Artemy; van den Heuvel, Martijn P.; Griffa, Alessandra; Hagmann, Patric; Rocha, Luis M.; Sporns, Olaf; Goñi, Joaquín

    2014-01-01

    The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales. PMID:25104933

  8. Multi-scale integration and predictability in resting state brain activity.

    PubMed

    Kolchinsky, Artemy; van den Heuvel, Martijn P; Griffa, Alessandra; Hagmann, Patric; Rocha, Luis M; Sporns, Olaf; Goñi, Joaquín

    2014-01-01

    The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales. PMID:25104933

  9. Abnormal Movement Preparation in Task-Specific Focal Hand Dystonia

    PubMed Central

    Scheef, Lukas; Bewersdorff, Malte; Schild, Hans H.; Klockgether, Thomas; Boecker, Henning

    2013-01-01

    Electrophysiological and behavioral studies in primary dystonia suggest abnormalities during movement preparation, but this crucial phase preceding movement onset has not yet been studied specifically with functional magnetic resonance imaging (fMRI). To identify abnormalities in brain activation during movement preparation, we used event-related fMRI to analyze behaviorally unimpaired sequential finger movements in 18 patients with task-specific focal hand dystonia (FHD) and 18 healthy subjects. Patients and controls executed self-initiated or externally cued prelearnt four-digit sequential movements using either right or left hands. In FHD patients, motor performance of the sequential finger task was not associated with task-related dystonic posturing and their activation levels during motor execution were highly comparable with controls. On the other hand reduced activation was observed during movement preparation in the FHD patients in left premotor cortex / precentral gyrus for all conditions, and for self-initiation additionally in supplementary motor area, left mid-insula and anterior putamen, independent of effector side. Findings argue for abnormalities of early stages of motor control in FHD, manifesting during movement preparation. Since deficits map to regions involved in the coding of motor programs, we propose that task-specific dystonia is characterized by abnormalities during recruitment of motor programs: these do not manifest at the behavioral level during simple automated movements, however, errors in motor programs of complex movements established by extensive practice (a core feature of FHD), trigger the inappropriate movement patterns observed in task-specific dystonia. PMID:24167610

  10. Brain activation during associative short-term memory maintenance is not predictive for subsequent retrieval

    PubMed Central

    Bergmann, Heiko C.; Daselaar, Sander M.; Beul, Sarah F.; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P. C.

    2015-01-01

    Performance on working memory (WM) tasks may partially be supported by long-term memory (LTM) processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental) LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses) associative delayed-match-to-sample (WM) task using event-related functional MRI (fMRI) and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the “retrieval success network” (anterior and posterior midline brain structures). The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of the respective memory system. PMID:26388758

  11. Brain activation during associative short-term memory maintenance is not predictive for subsequent retrieval.

    PubMed

    Bergmann, Heiko C; Daselaar, Sander M; Beul, Sarah F; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P C

    2015-01-01

    Performance on working memory (WM) tasks may partially be supported by long-term memory (LTM) processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental) LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses) associative delayed-match-to-sample (WM) task using event-related functional MRI (fMRI) and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the "retrieval success network" (anterior and posterior midline brain structures). The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of the respective memory system. PMID:26388758

  12. EEG Abnormalities in Children with Speech and Language Impairment

    PubMed Central

    Chawla, V. K.; Parakh, Manish; Parakh, Poonam; Bhandari, Bharti; Gurjar, Anoop Singh

    2015-01-01

    Introduction Epilepsy, a chronic condition of recurrent seizures, affects language, but the extent and nature of the language disturbance varies widely according to the type, severity, and cause of the epilepsy. There is paucity of literature on the electroencephalographic abnormalities in children with speech and language impairment. The present study was therefore planned to find the association of epileptiform EEG abnormalities in children with speech and language impairment and if present, their localization and lateralization to the language areas of the brain that are present predominantly in the left hemisphere. Materials and Methods The study was conducted on Paediatric patients having speech and language impairment (n=94, age-2 to 8 years) selected on the basis of detailed history and neurologic examination. Video Electroencephalography (EEG) was performed as per American Clinical Neurophysiology Society guidelines using 16 channel RMS computerized EEG machine for a minimum of 40 minutes to capture both wakefulness and sleep along with activation procedures like hyperventilation (if feasible) and photic stimulation. EEG was reviewed for any abnormal EEG background, benign variants, interictal epileptiform discharges and ictal discharges. Results In our cohort, 19.7% boys and 22.2% girls presented with seizures in their infancy and this gender difference was found to be statistically significant (p<0.05). EEG was abnormal in 47.9% children (45 out of 94) with no significant gender difference. Epileptiform EEG was seen in 73.6% of children with history of seizures and 41.3% of children without history of seizures (p<0.05). The EEG abnormities included: abnormal background (64.5%), presence of generalized interictal epileptiform discharges (57.8%), focal epileptiform discharges (20%) exclusively from left hemisphere and multifocal interictal epileptiform discharges (33.3%), each occurring in isolation or associated with other abnormities. Conclusion In the current study, it is definite that presence of generalized abnormalities in EEG are seen in higher frequency and focal interictal epileptiform discharges are solely seen in left hemisphere in children with speech and language impairment. Although, there is no distinct pattern of EEG abnormalities in such patients, we recommend a routine EEG in them and also brain imaging to complement the EEG findings. PMID:26417549

  13. Identifying functional subdivisions in the human brain using meta-analytic activation modeling-based parcellation.

    PubMed

    Yang, Yong; Fan, Lingzhong; Chu, Congying; Zhuo, Junjie; Wang, Jiaojian; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2016-01-01

    Parcellation of the human brain into fine-grained units by grouping voxels into distinct clusters has been an effective approach for delineating specific brain regions and their subregions. Published neuroimaging studies employing coordinate-based meta-analyses have shown that the activation foci and their corresponding behavioral categories may contain useful information about the anatomical-functional organization of brain regions. Inspired by these developments, we proposed a new parcellation scheme called meta-analytic activation modeling-based parcellation (MAMP) that uses meta-analytically obtained information. The raw meta data, including the experiments and the reported activation coordinates related to a brain region of interest, were acquired from the Brainmap database. Using this data, we first obtained the "modeled activation" pattern by modeling the voxel-wise activation probability given spatial uncertainty for each experiment that featured at least one focus within the region of interest. Then, we processed these "modeled activation" patterns across the experiments with a K-means clustering algorithm to group the voxels into different subregions. In order to verify the reliability of the method, we employed our method to parcellate the amygdala and the left Brodmann area 44 (BA44). The parcellation results were quite consistent with previous cytoarchitectonic and in vivo neuroimaging findings. Therefore, the MAMP proposed in the current study could be a useful complement to other methods for uncovering the functional organization of the human brain. PMID:26296500

  14. Real-time imaging of brain activity in freely moving rats using functional ultrasound.

    PubMed

    Urban, Alan; Dussaux, Clara; Martel, Guillaume; Brunner, Clément; Mace, Emilie; Montaldo, Gabriel

    2015-09-01

    Innovative imaging methods help to investigate the complex relationship between brain activity and behavior in freely moving animals. Functional ultrasound (fUS) is an imaging modality suitable for recording cerebral blood volume (CBV) dynamics in the whole brain but has so far been used only in head-fixed and anesthetized rodents. We designed a fUS device for tethered brain imaging in freely moving rats based on a miniaturized ultrasound probe and a custom-made ultrasound scanner. We monitored CBV changes in rats during various behavioral states such as quiet rest, after whisker or visual stimulations, and in a food-reinforced operant task. We show that fUS imaging in freely moving rats could efficiently decode brain activity in real time. PMID:26192084

  15. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study.

    PubMed

    Cao, Qingjiu; Zang, Yufeng; Sun, Li; Sui, Manqiu; Long, Xiangyu; Zou, Qihong; Wang, Yufeng

    2006-07-17

    In this study, a newly reported regional homogeneity approach was used to analyze blood oxygen level-dependent functional magnetic resonance imaging data on resting state in boys with attention deficit hyperactivity disorder. Boys with attention deficit hyperactivity disorder showed decreased regional homogeneity in the frontal-striatal-cerebellar circuits, but increased regional homogeneity mainly in the occipital cortex. Our findings are consistent with the hypothesis of abnormal frontal-striatal-cerebellar circuits in attention deficit hyperactivity disorder. The regional homogeneity approach may be a potentially useful method in exploring the pathophysiology of attention deficit hyperactivity disorder. PMID:16791098

  16. Classification Accuracy of Serum Apo A-I and S100B for the Diagnosis of Mild Traumatic Brain Injury and Prediction of Abnormal Initial Head Computed Tomography Scan

    PubMed Central

    Blyth, Brian J.; He, Hua; Mookerjee, Sohug; Jones, Courtney; Kiechle, Karin; Moynihan, Ryan; Wojcik, Susan M.; Grant, William D.; Secreti, LaLainia M.; Triner, Wayne; Moscati, Ronald; Leinhart, August; Ellis, George L.; Khan, Jawwad

    2013-01-01

    Abstract The objective of the current study was to determine the classification accuracy of serum S100B and apolipoprotein (apoA-I) for mild traumatic brain injury (mTBI) and abnormal initial head computed tomography (CT) scan, and to identify ethnic, racial, age, and sex variation in classification accuracy. We performed a prospective, multi-centered study of 787 patients with mTBI who presented to the emergency department within 6?h of injury and 467 controls who presented to the outpatient laboratory for routine blood work. Serum was analyzed for S100B and apoA-I. The outcomes were disease status (mTBI or control) and initial head CT scan. At cutoff values defined by 90% of controls, the specificity for mTBI using S100B (0.899 [95% confidence interval (CI): 0.78–0.92]) was similar to that using apoA-I (0.902 [0.87–0.93]), and the sensitivity using S100B (0.252 [0.22–0.28]) was similar to that using apoA-I (0.249 [0.22–0.28]). The area under the receiver operating characteristic curve (AUC) for the combination of S100B and apoA-I (0.738, 95% CI: 0.71, 0.77), however, was significantly higher than the AUC for S100B alone (0.709, 95% CI: 0.68, 0.74, p=0.001) and higher than the AUC for apoA-I alone (0.645, 95% CI: 0.61, 0.68, p<0.0001). The AUC for prediction of abnormal initial head CT scan using S100B was 0.694 (95%CI: 0.62, 0.77) and not significant for apoA-I. At a S100B cutoff of <0.060??g/L, the sensitivity for abnormal head CT was 98%, and 22.9% of CT scans could have been avoided. There was significant age and race-related variation in the accuracy of S100B for the diagnosis of mTBI. The combined use of serum S100B and apoA-I maximizes classification accuracy for mTBI, but only S100B is needed to classify abnormal head CT scan. Because of significant subgroup variation in classification accuracy, age and race need to be considered when using S100B to classify subjects for mTBI. PMID:23758329

  17. Orthographic Coding: Brain Activation for Letters, Symbols, and Digits.

    PubMed

    Carreiras, Manuel; Quiñones, Ileana; Hernández-Cabrera, Juan Andrés; Duñabeitia, Jon Andoni

    2015-12-01

    The present experiment investigates the input coding mechanisms of 3 common printed characters: letters, numbers, and symbols. Despite research in this area, it is yet unclear whether the identity of these 3 elements is processed through the same or different brain pathways. In addition, some computational models propose that the position-in-string coding of these elements responds to general flexible mechanisms of the visual system that are not character-specific, whereas others suggest that the position coding of letters responds to specific processes that are different from those that guide the position-in-string assignment of other types of visual objects. Here, in an fMRI study, we manipulated character position and character identity through the transposition or substitution of 2 internal elements within strings of 4 elements. Participants were presented with 2 consecutive visual strings and asked to decide whether they were the same or different. The results showed: 1) that some brain areas responded more to letters than to numbers and vice versa, suggesting that processing may follow different brain pathways; 2) that the left parietal cortex is involved in letter identity, and critically in letter position coding, specifically contributing to the early stages of the reading process; and that 3) a stimulus-specific mechanism for letter position coding is operating during orthographic processing. PMID:25077489

  18. Mitochondrial activity and brain functions during cortical depolarization

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Sonn, Judith

    2008-12-01

    Cortical depolarization (CD) of the cerebral cortex could be developed under various pathophysiological conditions. In animal models, CD was recorded under partial or complete ischemia as well as when cortical spreading depression (SD) was induced externally or by internal stimulus. The development of CD in patients and the changes in various metabolic parameters, during CD, was rarely reported. Brain metabolic, hemodynamic, ionic and electrical responses to the CD event are dependent upon the O2 balance in the tissue. When the O2 balance is negative (i.e. ischemia), the CD process will be developed due to mitochondrial dysfunction, lack of energy and the inhibition of Na+-K+-ATPase. In contradiction, when oxygen is available (i.e. normoxia) the development of CD after induction of SD will accelerate mitochondrial respiration for retaining ionic homeostasis and normal brain functions. We used the multiparametric monitoring approach that enable real time monitoring of mitochondrial NADH redox state, microcirculatory blood flow and oxygenation, extracellular K+, Ca2+, H+ levels, DC steady potential and electrocorticogram (ECoG). This monitoring approach, provide a unique tool that has a significant value in analyzing the pathophysiology of the brain when SD developed under normoxia, ischemia, or hypoxia. We applied the same monitoring approach to patients suffered from severe head injury or exposed to neurosurgical procedures.

  19. Measurement of brain activation difference during different mathematical tasks by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Okamoto, Naoko; Kuroda, Yasufumi; Chance, Britton; Nioka, Shoko; Eda, Hideo; Maesako, Takanori

    2009-02-01

    This study examines differences in concentration changes of hemoglobin in the brain while finding algebraic solutions versus geometrical solutions. We use Near Infrared Spectroscopy imaging system to measure the hemoglobin changes while subjects are solving algebraic task and geometrical task. NIRS imaging system can measure changes in the concentration of hemoglobin. This brain activity data shows a difference between the two different experimental tasks which helps us to identify the characteristics of thinking processes.

  20. Hyperhomocysteinemia induced by methionine dietary nutritional overload modulates acetylcholinesterase activity in the rat brain.

    PubMed

    Hrn?i?, Dragan; Raši?-Markovi?, Aleksandra; Stojkovi?, Tihomir; Velimirovi?, Milica; Puškaš, Nela; Obrenovi?, Radmila; Macut, Djuro; Suši?, Veselinka; Jakovljevi?, Vladimir; Djuric, Dragan; Petronijevi?, Nataša; Stanojlovi?, Olivera

    2014-11-01

    Methionine is the only endogenous precursor of homocysteine, sulfur-containing amino acid and well known as risk factor for various brain disorders. Acetylcholinesterase is a serine protease that rapidly hydrolyzes neurotransmitter acetylcholine. It is widely distributed in different brain regions. The aim of this study was to elucidate the effects of methionine nutritional overload on acetylcholinesterase activity in the rat brain. Males of Wistar rats were randomly divided into control and experimental group, fed from 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing to standard, 7.7 g/kg), respectively. On the 61st postnatal day, total homocysteine concentration was determined and showed that animals fed with methionine-enriched diet had significantly higher serum total homocysteine concentrations comparing to control rats (p < 0.01). Acetylcholinesterase activity has been determined spectrophotometrically in homogenates of the cerebral cortex, hippocampus, thalamus, and nc. caudatus. Acetylcholinesterase activity showed tendency to decrease in all examined brain structures in experimental comparing to control rats, while statistical significance of this reduction was achieved in the cerebral cortex (p < 0.05). Brain slices were stained with haematoxylin and eosin (H&E) and observed under light microscopy. Histological analysis of H&E-stained brain slices showed that there were no changes in the brain tissue of rats which were on methionine-enriched diet compared to control rats. Results of this study showed selective vulnerability of different brain regions on reduction of acetylcholinesterase activity induced by methionine-enriched diet and consecutive hyperhomocysteinemia. PMID:25052005

  1. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269

  2. Nerve growth factor increases activity of ornithine decarboxylase in rat brain.

    PubMed

    Lewis, M E; Lakshmanan, J; Nagaiah, K; Macdonnell, P C; Guroff, G

    1978-02-01

    Intraventricular administration of nanogram quantities of nerve growth factor to adult rats results in a marked increase in the activity of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) in the brain. The increase occurs in all major brain regions and the activity is maximal by 7.5 hr after administration. The enzyme response to nerve growth factor increases in magnitude during maturation; the relative increase in ornithine decarboxylase activity in adult animals is much greater than that in young. Neither insulin nor bovine growth hormone was able to increase ornithine decarboxylase activity to the same extent as did nerve growth factor. When brain was separated into neuronal- and glial-enriched fractions, induction of ornithine decarboxylase was found in both, but a greater increase was observed in the glial fraction. PMID:16592486

  3. Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women

    PubMed Central

    Krach, Sören; Kohls, Gregor; Rademacher, Lena; Irmak, Arda; Konrad, Kerstin; Kircher, Tilo; Gründer, Gerhard

    2009-01-01

    Motivation for goal-directed behaviour largely depends on the expected value of the anticipated reward. The aim of the present study was to examine how different levels of reward value are coded in the brain for two common forms of human reward: money and social approval. To account for gender differences 16 male and 16 female participants performed an incentive delay task expecting to win either money or positive social feedback. fMRI recording during the anticipation phase revealed proportional activation of neural structures constituting the human reward system for increasing levels of reward, independent of incentive type. However, in men activation in the prospect of monetary rewards encompassed a wide network of mesolimbic brain regions compared to only limited activation for social rewards. In contrast, in women, anticipation of either incentive type activated identical brain regions. Our findings represent an important step towards a better understanding of motivated behaviour by taking into account individual differences in reward valuation. PMID:19174537

  4. Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women.

    PubMed

    Spreckelmeyer, Katja N; Krach, Sören; Kohls, Gregor; Rademacher, Lena; Irmak, Arda; Konrad, Kerstin; Kircher, Tilo; Gründer, Gerhard

    2009-06-01

    Motivation for goal-directed behaviour largely depends on the expected value of the anticipated reward. The aim of the present study was to examine how different levels of reward value are coded in the brain for two common forms of human reward: money and social approval. To account for gender differences 16 male and 16 female participants performed an incentive delay task expecting to win either money or positive social feedback. fMRI recording during the anticipation phase revealed proportional activation of neural structures constituting the human reward system for increasing levels of reward, independent of incentive type. However, in men activation in the prospect of monetary rewards encompassed a wide network of mesolimbic brain regions compared to only limited activation for social rewards. In contrast, in women, anticipation of either incentive type activated identical brain regions. Our findings represent an important step towards a better understanding of motivated behaviour by taking into account individual differences in reward valuation. PMID:19174537

  5. Brain aldehyde dehydrogenase activity in rat strains with high and low ethanol preferences.

    PubMed

    Inoue, K; Rusi, M; Lindros, K O

    1981-01-01

    The activity of aldehyde dehydrogenase in subcellular fractions of whole brain homogenates from the AA and ANA rat strains developed respectively for high and low ethanol preferences has been studied. No significant strain or sex differences between naive AA and ANA rats were found. In ethanol-experienced rats some strain and sex differences were found, the most consistent being higher enzyme activity in AA females than in males both with aliphatic and aromatic aldehyde substrates. However, contrary to previous findings no relation between brain aldehyde dehydrogenase activity and drinking behavior was found in the AA and ANA rat strains. PMID:7465603

  6. Cognitive correlates of gray matter abnormalities in adolescent siblings of patients with childhood-onset schizophrenia.

    PubMed

    Wagshal, Dana; Knowlton, Barbara Jean; Cohen, Jessica Rachel; Bookheimer, Susan Yost; Bilder, Robert Martin; Fernandez, Vindia Gisela; Asarnow, Robert Franklin

    2015-02-01

    Patients with childhood onset schizophrenia (COS) display widespread gray matter (GM) structural brain abnormalities. Healthy siblings of COS patients share some of these structural abnormalities, suggesting that GM abnormalities are endophenotypes for schizophrenia. Another possible endophenotype for schizophrenia that has been relatively unexplored is corticostriatal dysfunction. The corticostriatal system plays an important role in skill learning. Our previous studies have demonstrated corticostriatal dysfunction in COS siblings with a profound skill learning deficit and abnormal pattern of brain activation during skill learning. This study investigated whether structural abnormalities measured using volumetric brain morphometry (VBM) were present in siblings of COS patients and whether these were related to deficits in cognitive skill learning. Results revealed smaller GM volume in COS siblings relative to controls in a number of regions, including occipital, parietal, and subcortical regions including the striatum, and greater GM volume relative to controls in several subcortical regions. Volume in the right superior frontal gyrus and cerebellum were related to performance differences between groups on the weather prediction task, a measure of cognitive skill learning. Our results support the idea that corticostriatal and cerebellar impairment in unaffected siblings of COS patients are behaviorally relevant and may reflect genetic risk for schizophrenia. PMID:25541139

  7. Cognitive correlates of gray matter abnormalities in adolescent siblings of patients with childhood-onset schizophrenia

    PubMed Central

    Wagshal, Dana; Knowlton, Barbara Jean; Cohen, Jessica Rachel; Bookheimer, Susan Yost; Bilder, Robert Martin; Fernandez, Vindia Gisela; Asarnow, Robert Franklin

    2015-01-01

    Patients with childhood onset schizophrenia (COS) display widespread gray matter (GM) structural brain abnormalities. Healthy siblings of COS patients share some of these structural abnormalities, suggesting that GM abnormalities are endophenotypes for schizophrenia. Another possible endophenotype for schizophrenia that has been relatively unexplored is corticostriatal dysfunction. The corticostriatal system plays an important role in skill learning. Our previous studies have demonstrated corticostriatal dysfunction in COS siblings with a profound skill learning deficit and abnormal pattern of brain activation during skill learning. This study investigated whether structural abnormalities measured using volumetric brain morphometry (VBM) were present in siblings of COS patients and whether these were related to deficits in cognitive skill learning. Results revealed smaller GM volume in COS siblings relative to controls in a number of regions, including occipital, parietal, and subcortical regions including the striatum, and greater GM volume relative to controls in several subcortical regions. Volume in the right superior frontal gyrus and cerebellum were related to performance differences between groups on the weather prediction task, a measure of cognitive skill learning. Our results support the idea that corticostriatal and cerebellar impairment in unaffected siblings of COS patients are behaviorally relevant and may reflect genetic risk for schizophrenia. PMID:25541139

  8. A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity

    NASA Astrophysics Data System (ADS)

    Lange, F.; Peyrin, F.; Montcel, B.

    2015-07-01

    Diffuse optical tomography (DOT) is a growing area of research in the field of biomedical optics and neurosciences. Over the past 20 years, technical development allowed a more and more accurate detection of the brain activation, both spatially and in the calculation of the variations of chromophores's concentrations such as Hemoglobin, cytochrome c oxidase, etc. In particular, time resolved systems are able to distinguish between superficial layers (skin, skull) and deep layers (brain) allowing the differentiation between the systemic response and the response of the brain. In order to increase the accuracy of the brain's activation detection, we have developed a Hyperspectral Time Resolved DOT system. It is composed of a compact supercontinuum laser within the picosecond range for the source part and of an ICCD camera coupled with an imaging spectrometer for the detection part. This allows a simultaneous detection of the spatial and spectral dimension, as well as the time of flight of photons. Through the information acquired by our system, we've been able to retrieve, to our knowledge, the first spectrum of the physiology of the human brain activity as function as depth. Here we present the instrument and show our first in-vivo results that are demonstrating its capabilities to distinguish between the skin's response and the brain's responses during a cognitive task. We are also focused on the detection of the Fast Optical Signal.

  9. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases

    PubMed Central

    Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Ishibashi, Daisuke; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 ?g/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission. PMID:26070208

  10. Annotation: What Electrical Brain Activity Tells Us about Brain Function that Other Techniques Cannot Tell Us--A Child Psychiatric Perspective

    ERIC Educational Resources Information Center

    Banaschewski, Tobias; Brandeis, Daniel

    2007-01-01

    Background: Monitoring brain processes in real time requires genuine subsecond resolution to follow the typical timing and frequency of neural events. Non-invasive recordings of electric (EEG/ERP) and magnetic (MEG) fields provide this time resolution. They directly measure neural activations associated with a wide variety of brain states and…

  11. Visualization of Active Glucocerebrosidase in Rodent Brain with High Spatial Resolution following In Situ Labeling with Fluorescent Activity Based Probes

    PubMed Central

    Herrera Moro Chao, Daniela; Kallemeijn, Wouter W.; Marques, Andre R. A.; Orre, Marie; Ottenhoff, Roelof; van Roomen, Cindy; Foppen, Ewout; Renner, Maria C.; Moeton, Martina; van Eijk, Marco; Boot, Rolf G.; Kamphuis, Willem; Hol, Elly M.; Aten, Jan; Overkleeft, Hermen S.; Kalsbeek, Andries; Aerts, Johannes M. F. G.

    2015-01-01

    Gaucher disease is characterized by lysosomal accumulation of glucosylceramide due to deficient activity of lysosomal glucocerebrosidase (GBA). In cells, glucosylceramide is also degraded outside lysosomes by the enzyme glucosylceramidase 2 (GBA2) of which inherited deficiency is associated with ataxias. The interest in GBA and glucosylceramide metabolism in the brain has grown following the notion that mutations in the GBA gene impose a risk factor for motor disorders such as ?-synucleinopathies. We earlier developed a ?-glucopyranosyl-configured cyclophellitol-epoxide type activity based probe (ABP) allowing in vivo and in vitro visualization of active molecules of GBA with high spatial resolution. Labeling occurs through covalent linkage of the ABP to the catalytic nucleophile residue in the enzyme pocket. Here, we describe a method to visualize active GBA molecules in rat brain slices using in vivo labeling. Brain areas related to motor control, like the basal ganglia and motor related structures in the brainstem, show a high content of active GBA. We also developed a ?-glucopyranosyl cyclophellitol-aziridine ABP allowing in situ labeling of GBA2. Labeled GBA2 in brain areas can be identified and quantified upon gel electrophoresis. The distribution of active GBA2 markedly differs from that of GBA, being highest in the cerebellar cortex. The histological findings with ABP labeling were confirmed by biochemical analysis of isolated brain areas. In conclusion, ABPs offer sensitive tools to visualize active GBA and to study the distribution of GBA2 in the brain and thus may find application to establish the role of these enzymes in neurodegenerative disease conditions such as ?-synucleinopathies and cerebellar ataxia. PMID:26418157

  12. Brain activation-based sexual orientation in female-to-male transsexuals.

    PubMed

    Kim, T-H; Kim, G-W; Kim, S-K; Jeong, G-W

    2016-01-01

    This study was performed to identify the sexual orientation in association with brain activation pattern in response to visual erotic stimuli in female-to-male (FtM) transsexuals by using functional magnetic resonance imaging (fMRI). Eleven FtM transsexuals who have had sex-reassignment surgery to alter their natal bodies with the gender-identity disorder were participated. Brain activation for sexual orientation was induced by visual stimuli with female and male erotic nude pictures compared with emotionally-neutral pictures. During viewing the erotic female pictures, the brain areas dominantly activated consist of the superior frontal gyrus, supplementary motor area, anterior/median cingulate gyri and hypothalamus, whereas during viewing male pictures, the brain areas with predominant activities were the middle frontal gyrus, precentral gyrus, middle temporal gyrus, fusiform gyrus, angular gyrus, precuneus, superior/middle occipital gyri, cerebellar cortex and vermis. These findings demonstrate that the brain activation patterns induced by viewing male or female erotic pictures show some correlation to the sexual orientation opposite to the genetic sex in FtM transsexuals. This study would be helpful to understand the neural mechanism associated with visual sexual arousal in patients with gender disorder. PMID:26581912

  13. Optical Topography of Evoked Brain Activity during Mental Tasks Involving Whole Number Operations

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2014-01-01

    Students start to memorize arithmetic facts from early elementary school mathematics activities. Their fluency or lack of fluency with these facts could affect their efforts as they carry out mental calculations as adults. This study investigated participants' levels of brain activation and possible reasons for these levels as they solved…

  14. Acute Ethanol Effects on Brain Activation in Low-and High-Level Responders to Alcohol

    E-print Network

    California at San Diego, University of

    Acute Ethanol Effects on Brain Activation in Low- and High-Level Responders to Alcohol Ryan S. Trim of response (LR) to alcohol is an important endophenotype associ- ated with an increased risk of alcoholism to alcohol. This study examined whether LR group effects on neural activity varied as a function of acute

  15. The Brain in Space: A Teacher's Guide with Activities for Neuroscience.

    ERIC Educational Resources Information Center

    MacLeish, Marlene Y.; McLean, Bernice R.

    This educators guide discusses the brain and contains activities on neuroscience. Activities include: (1) "The Space Life Sciences"; (2) "Space Neuroscience: A Special Area within the Space Life Sciences"; (3) "Space Life Sciences Research"; (4) "Neurolab: A Special Space Mission to Study the Nervous System"; (5) "The Nervous System"; (6)…

  16. First demonstration that brain CYP2D-mediated opiate metabolic activation alters analgesia in vivo

    PubMed Central

    Zhou, Kaidi; Khokhar, Jibran Y.; Zhao, Bin; Tyndale, Rachel F.

    2013-01-01

    The response to centrally-acting drugs is highly variable between individuals and does not always correlate with plasma drug levels. Drug-metabolizing CYP enzymes in the brain may contribute to this variability by affecting local drug and metabolite concentrations. CYP2D metabolizes codeine to the active morphine metabolite. We investigate the effect of inhibiting brain, and not liver, CYP2D activity on codeine-induced analgesia. Rats received intracerebroventricular injections of CYP2D inhibitors (20 ?g propranolol or 40 ?g propafenone) or vehicle controls. Compared to vehicle-pretreated rats, inhibitor-pretreated rats had: a) lower analgesia in the tail-flick test (p<0.05) and lower areas under the analgesia-time curve (p<0.02) within the first hour after 30 mg/kg subcutaneous codeine, b) lower morphine concentrations and morphine to codeine ratios in the brain (p<0.02 and p<0.05, respectively), but not in plasma (p>0.6 and p>0.7, respectively), tested at 30 min after 30 mg/kg subcutaneous codeine, and c) lower morphine formation from codeine ex vivo by brain membranes (p<0.04), but not by liver microsomes (p>0.9). Analgesia trended toward a correlation with brain morphine concentrations (p=0.07) and correlated with brain morphine to codeine ratios (p<0.005), but not with plasma morphine concentrations (p>0.8) or plasma morphine to codeine ratios (p>0.8). Our findings suggest that brain CYP2D affects brain morphine levels after peripheral codeine administration, and may thereby alter codeine's therapeutic efficacy, side-effect profile and abuse liability. Brain CYPs are highly variable due to genetics, environmental factors and age, and may therefore contribute to interindividual variation in the response to centrally-acting drugs. PMID:23623752

  17. Liu A K, Belliveau J W, Dale A M 1998 Spatiotemporal imaging of human brain activity using functional MRI constrained

    E-print Network

    Silverman, Bernard

    Liu A K, Belliveau J W, Dale A M 1998 Spatiotemporal imaging of human brain activity using States of America 95: 765­72 Raichle M E 2000 A brief history of human functional brain mapping. In: Toga in human brain functional anatomy during nonmotor learning. Cerebral Cortex 4: 8­26 Raichle M E, Mac

  18. Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: a resting-state fMRI study.

    PubMed

    An, Li; Cao, Qing-Jiu; Sui, Man-Qiu; Sun, Li; Zou, Qi-Hong; Zang, Yu-Feng; Wang, Yu-Feng

    2013-10-01

    Regional homogeneity (ReHo) and the amplitude of low-frequency fluctuation (ALFF) are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging (RS-fMRI) data. Whether they can complementarily reveal brain regional functional abnormalities in attention-deficit/hyperactivity disorder (ADHD) remains unknown. In this study, we applied ReHo and ALFF to 23 medication-naïve boys diagnosed with ADHD and 25 age-matched healthy male controls using whole-brain voxel-wise analysis. Correlation analyses were conducted in the ADHD group to investigate the relationship between the regional spontaneous brain activity measured by the two approaches and the clinical symptoms of ADHD. We found that the ReHo method showed widely-distributed differences between the two groups in the fronto-cingulo-occipito-cerebellar circuitry, while the ALFF method showed a difference only in the right occipital area. When a larger smoothing kernel and a more lenient threshold were used for ALFF, more overlapped regions were found between ALFF and ReHo, and ALFF even found some new regions with group differences. The ADHD symptom scores were correlated with the ReHo values in the right cerebellum, dorsal anterior cingulate cortex and left lingual gyrus in the ADHD group, while no correlation was detected between ALFF and ADHD symptoms. In conclusion, ReHo may be more sensitive to regional abnormalities, at least in boys with ADHD, than ALFF. And ALFF may be complementary to ReHo in measuring local spontaneous activity. Combination of the two may yield a more comprehensive pathophy-siological framework for ADHD. PMID:23861089

  19. Physical Activity Is Linked to Greater Moment-To-Moment Variability in Spontaneous Brain Activity in Older Adults

    PubMed Central

    Burzynska, Agnieszka Z.; Wong, Chelsea N.; Voss, Michelle W.; Cooke, Gillian E.; Gothe, Neha P.; Fanning, Jason; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness (CRF) and physical activity (PA) in old age are associated with greater brain structural and functional integrity, and higher cognitive functioning. However, it is not known how different aspects of lifestyle such as sedentariness, light PA (LI-PA), or moderate-to-vigorous physical activity (MV-PA) relate to neural activity in aging. In addition, it is not known whether the effects of PA on brain function differ or overlap with those of CRF. Here, we objectively measured CRF as oxygen consumption during a maximal exercise test and measured PA with an accelerometer worn for 7 days in 100 healthy but low active older adults (aged 60–80 years). We modeled the relationships between CRF, PA, and brain functional integrity using multivariate partial least squares analysis. As an index of functional brain integrity we used spontaneous moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD), known to be associated with better cognitive functioning in aging. We found that older adults who engaged more in LI-PA and MV-PA had greater SDBOLD in brain regions that play a role in integrating segregated functional domains in the brain and benefit from greater CRF or PA, such as precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices. Our results suggest that engaging in higher intensity PA may have protective effects on neural processing in aging. Finally, we demonstrated that older adults with greater overall WM microstructure were those showing more LI-PA and MV-PA and greater SDBOLD. We conclude that SDBOLD is a promising correlate of functional brain health in aging. Future analyses will evaluate whether SDBOLD is modifiable with interventions aimed to increase PA and CRF in older adults. PMID:26244873

  20. Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance

    PubMed Central

    He, Biyu J.; Zempel, John M.

    2013-01-01

    It is well known that even under identical task conditions, there is a tremendous amount of trial-to-trial variability in both brain activity and behavioral output. Thus far the vast majority of event-related potential (ERP) studies investigating the relationship between trial-to-trial fluctuations in brain activity and behavioral performance have only tested a monotonic relationship between them. However, it was recently found that across-trial variability can correlate with behavioral performance independent of trial-averaged activity. This finding predicts a U- or inverted-U- shaped relationship between trial-to-trial brain activity and behavioral output, depending on whether larger brain variability is associated with better or worse behavior, respectively. Using a visual stimulus detection task, we provide evidence from human electrocorticography (ECoG) for an inverted-U brain-behavior relationship: When the raw fluctuation in broadband ECoG activity is closer to the across-trial mean, hit rate is higher and reaction times faster. Importantly, we show that this relationship is present not only in the post-stimulus task-evoked brain activity, but also in the pre-stimulus spontaneous brain activity, suggesting anticipatory brain dynamics. Our findings are consistent with the presence of stochastic noise in the brain. They further support attractor network theories, which postulate that the brain settles into a more confined state space under task performance, and proximity to the targeted trajectory is associated with better performance. PMID:24244146

  1. A balancing act of the brain: activations and deactivations driven by cognitive load

    PubMed Central

    Arsalidou, Marie; Pascual-Leone, Juan; Johnson, Janice; Morris, Drew; Taylor, Margot J

    2013-01-01

    The majority of neuroimaging studies focus on brain activity during performance of cognitive tasks; however, some studies focus on brain areas that activate in the absence of a task. Despite the surge of research comparing these contrasted areas of brain function, their interrelation is not well understood. We systematically manipulated cognitive load in a working memory task to examine concurrently the relation between activity elicited by the task versus activity during control conditions. We presented adults with six levels of task demand, and compared those with three conditions without a task. Using whole-brain analysis, we found positive linear relations between cortical activity and task difficulty in areas including middle frontal gyrus and dorsal cingulate; negative linear relations were found in medial frontal gyrus and posterior cingulate. These findings demonstrated balancing of activation patterns between two mental processes, which were both modulated by task difficulty. Frontal areas followed a graded pattern more closely than other regions. These data also showed that working memory has limited capacity in adults: an upper bound of seven items and a lower bound of four items. Overall, working memory and default-mode processes, when studied concurrently, reveal mutually competing activation patterns. PMID:23785659

  2. On the Modulation of Brain Activation During Simulated Weight Bearing in Supine Gait-Like Stepping.

    PubMed

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Luft, Andreas R; Riener, Robert; Michels, Lars; Kollias, Spyros

    2016-01-01

    To date, the neurophysiological correlates of muscle activation required for weight bearing during walking are poorly understood although, a supraspinal involvement has been discussed in the literature for many years. The present study investigates the effect of simulated ground reaction forces (0, 20, and 40 % of individual body weight) on brain activation in sixteen healthy participants. A magnetic resonance compatible robot was applied to render three different levels of load against the feet of the participants during active and passive gait-like stepping movements. Brain activation was analyzed by the means of voxel-wise whole brain analysis as well as by a region-of-interest analysis. A significant modulation of brain activation in sensorimotor areas by the load level could neither be demonstrated during active nor during passive stepping. These observations suggest that the regulation of muscle activation under different weight-bearing conditions during stepping occurs at the level of spinal circuitry or the brainstem rather than at the supraspinal level. PMID:26206204

  3. Daily Physical Activity Is Associated with Subcortical Brain Volume and Cognition in Heart Failure.

    PubMed

    Alosco, Michael L; Brickman, Adam M; Spitznagel, Mary Beth; Sweet, Lawrence H; Josephson, Richard; Griffith, Erica Y; Narkhede, Atul; Hughes, Joel; Gunstad, John

    2015-11-01

    Cognitive impairment in heart failure (HF) is believed to in part stem from structural brain alterations, including shrinkage of subcortical regions. Fortunately, neurocognitive dysfunction in HF can be mitigated by physical activity (PA), though mechanisms for this phenomenon are unclear. PA is protective against age-related cognitive decline that may involve improved structural integrity to brain regions sensitive to aging (e.g., subcortical structures). Yet, no study has examined the benefits of PA on the brain in HF and we sought to do so and clarify related cognitive implications. Fifty older adults with HF completed a neuropsychological battery and wore an accelerometer for 7 days. All participants underwent brain MRI. This study targeted subcortical brain volume given subcortical alterations are often observed in HF and the sensitivity of PA to subcortical structures in other patient populations. Participants averaged 4348.49 (SD=2092.08) steps per day and greater daily steps predicted better attention/executive function, episodic memory, and language abilities, p's<.05. Medical and demographically adjusted regression analyses revealed higher daily steps per day predicted greater subcortical volume, with specific effects for the thalamus and ventral diencephalon, p's<.05. Greater subcortical volume was associated with better attention/executive function, p<.05. Higher daily PA was associated with increased subcortical brain volume and better cognition in older adults with HF. Longitudinal work is needed to clarify whether daily PA can attenuate brain atrophy in HF to reduce accelerated cognitive decline in this population. (JINS, 2015, 21, 851-860). PMID:26581796

  4. Endogenous Brain Pericytes Are Widely Activated and Contribute to Mouse Glioma Microvasculature

    PubMed Central

    Svensson, Andreas; Özen, Ilknur; Genové, Guillem

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common brain tumor in adults. It presents an extremely challenging clinical problem, and treatment very frequently fails due to the infiltrative growth, facilitated by extensive angiogenesis and neovascularization. Pericytes constitute an important part of the GBM microvasculature. The contribution of endogenous brain pericytes to the tumor vasculature in GBM is, however, unclear. In this study, we determine the site of activation and the extent of contribution of endogenous brain pericytes to the GBM vasculature. GL261 mouse glioma was orthotopically implanted in mice expressing green fluorescent protein (GFP) under the pericyte marker regulator of G protein signaling 5 (RGS5). Host pericytes were not only activated within the glioma, but also in cortical areas overlying the tumor, the ipsilateral subventricular zone and within the hemisphere contralateral to the tumor. The host-derived activated pericytes that infiltrated the glioma were mainly localized to the tumor vessel wall. Infiltrating GFP positive pericytes co-expressed the pericyte markers platelet-derived growth factor receptor-? (PDGFR-?) and neuron-glial antigen 2. Interestingly, more than half of all PDGFR-? positive pericytes within the tumor were contributed by the host brain. We did not find any evidence that RGS5 positive pericytes adopt another phenotype within glioma in this paradigm. We conclude that endogenous pericytes become activated in widespread areas of the brain in response to an orthotopic mouse glioma. Host pericytes are recruited into the tumor and constitute a major part of the tumor pericyte population. PMID:25875288

  5. Assessment of glutamine synthetase activity by [13N]ammonia uptake in living rat brain.

    PubMed

    Momosaki, Sotaro; Ito, Miwa; Tonomura, Misato; Abe, Kohji

    2015-01-01

    Glutamine synthetase (GS) plays an important role in glutamate neurotransmission or neurological disorder in the brain. [(13) N]Ammonia blood flow tracer has been reported to be metabolically trapped in the brain via the glutamate-glutamine pathway. The present study investigated the effect of an inhibitor of GS on [(13) N]ammonia uptake in order to clarify the feasibility of measuring GS activity in the living brain. l-Methionine sulfoximine (MSO), a selective GS inhibitor was microinjected into the ipsilateral striatum in rats. [(13) N]Ammonia uptake was quantified by autoradiography method as well as small animal positron emission tomography (PET) scans. The GS activity of the brain homogenate was assayed from the ?-glutamyl transferase reaction. Autoradiograms showed a decrease of [(13) N]ammonia radioactivity on the MSO-injected side compared with the saline-injected side of the striatum. This reduction could be detected with a small animal PET scanner. MSO had no effect on cerebral blood flow measured by uptake of [(15) O]H2 O. The reduction of [(13) N]ammonia uptake was closely related to the results of GS activity assay. These results indicated that [(13) N]ammonia may enable measurement of GS activity in the living brain. PMID:25196365

  6. Mapping brain region activity during chewing: a functional magnetic resonance imaging study.

    PubMed

    Onozuka, M; Fujita, M; Watanabe, K; Hirano, Y; Niwa, M; Nishiyama, K; Saito, S

    2002-11-01

    Mastication has been suggested to increase neuronal activities in various regions of the human brain. However, because of technical difficulties, the fine anatomical and physiological regions linked to mastication have not been fully elucidated. Using functional magnetic resonance imaging during cycles of rhythmic gum-chewing and no chewing, we therefore examined the interaction between chewing and brain regional activity in 17 subjects (aged 20-31 years). In all subjects, chewing resulted in a bilateral increase in blood oxygenation level-dependent (BOLD) signals in the sensorimotor cortex, supplementary motor area, insula, thalamus, and cerebellum. In addition, in the first three regions, chewing of moderately hard gum produced stronger BOLD signals than the chewing of hard gum. However, the signal was higher in the cerebellum and not significant in the thalamus, respectively. These results suggest that chewing causes regional increases in brain neuronal activities which are related to biting force. PMID:12407087

  7. Altered Spontaneous Brain Activity in Patients with Parkinson’s Disease Accompanied by Depressive Symptoms, as Revealed by Regional Homogeneity and Functional Connectivity in the Prefrontal-Limbic System

    PubMed Central

    Su, Meilan; Li, Rong; Zou, Dezhi; Han, Yu; Wang, Xuefeng; Cheng, Oumei

    2014-01-01

    As patients with Parkinson’s disease (PD) are at high risk for comorbid depression, it is hypothesized that these two diseases are sharing common pathogenic pathways. Using regional homogeneity (ReHo) and functional connectivity approaches, we characterized human regional brain activity at resting state to examine specific brain networks in patients with PD and those with PD and depression (PDD). This study comprised 41 PD human patients and 25 normal human subjects. The patients completed the Hamilton Depression Rating Scale and were further divided into two groups: patients with depressive symptoms and non-depressed PD patients (nD-PD). Compared with the non-depressed patients, those with depressive symptoms exhibited significantly increased regional activity in the left middle frontal gyrus and right inferior frontal gyrus, and decreased ReHo in the left amygdala and bilateral lingual gyrus. Brain network connectivity analysis revealed decreased functional connectivity within the prefrontal-limbic system and increased functional connectivity in the prefrontal cortex and lingual gyrus in PDD compared with the nD-PD group. In summary, the findings showed regional brain activity alterations and disruption of the mood regulation network in PDD patients. The pathogenesis of PDD may be attributed to abnormal neural activity in multiple brain regions. PMID:24404185

  8. Pre-target oscillatory brain activity and the attentional blink.

    PubMed

    Petro, Nathan M; Keil, Andreas

    2015-12-01

    Reporting the second of two targets within a stream of distracting words during rapid serial visual presentation (RSVP) is impaired when the targets are separated by a single distractor word, a deficit in temporal attention that has been referred to as the attentional blink (AB). Recent conceptual and empirical work has pointed to pre-target brain states as potential mediators of the AB effect. The current study examined differences in pre-target electrophysiology between correctly and incorrectly reported trials, considering amplitude and phase measures of alpha oscillations as well as the steady-state visual evoked potential (ssVEP) evoked by the RSVP stream. For incorrectly reported trials, relatively lower alpha-band power and greater ssVEP inter-trial phase locking were observed during extended time periods preceding presentation of the first target. These results suggest that facilitated processing of the pre-target distracter stream indexed by reduced alpha and heightened phase locking characterizes a dynamic brain state that predicts lower accuracy in terms of reporting the second target under strict temporal constraints. Findings align with hypotheses in which the AB effect is attributed to neurocognitive factors such as fluctuations in pre-target attention or to cognitive strategies applied at the trial level. PMID:26341931

  9. CB2 receptor activation inhibits melanoma cell transmigration through the blood-brain barrier.

    PubMed

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  10. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    PubMed Central

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  11. On Initial Brain Activity Mapping of Associative Memory Code in the Hippocampus

    PubMed Central

    Tsien, Joe Z.; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Lei Wang, Phillip; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-01-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. PMID:23838072

  12. Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation.

    PubMed

    Paulraj, R; Behari, J

    2006-01-01

    There is growing concern by the public regarding the potential human health hazard due to exposure to microwave frequencies. 2.45 GHz radiation widespread use in industry, research, and medicine, and leakage into the environment is possible. In order to quantitate this, experiments were performed on developing rat brain. Male Wistar 35-day-old rats (n = 6) were used for this study. Animals were exposed to 2.45 GHz radiation for 2 h/day for a period of 35 days at a power density of 0.344 mW/cm(2) (SAR 0.11 W/kg). The control group was sham irradiated. After 35 days these rats were sacrificed and whole brain tissue was isolated for protein kinase C (PKC) assay. For morphological study the forebrain was isolated from the whole brain and PKC activity was measured using P(32) labeled ATP. Our study reveals a statistically significant (p < 0.05) decrease in PKC activity in hippocampus as compared to the remaining portion of the whole brain and the control group. A similar experiment conducted on hippocampus and the whole brain gave a similar result. Electron microscopic study shows an increase in the glial cell population in the exposed group as compared to the control group. This present study is indicative of a significant change after exposure to the above-mentioned field intensity. This suggests that chronic exposures may affect brain growth and development. PMID:16595335

  13. Topographic localization of brain activation in diffuse optical imaging using spherical wavelets

    NASA Astrophysics Data System (ADS)

    Abdelnour, F.; Schmidt, B.; Huppert, T. J.

    2009-10-01

    Diffuse optical imaging is a non-invasive technique that uses near-infrared light to measure changes in brain activity through an array of sensors placed on the surface of the head. Compared to functional MRI, optical imaging has the advantage of being portable while offering the ability to record functional changes in both oxy- and deoxy-hemoglobin within the brain at a high temporal resolution. However, the reconstruction of accurate spatial images of brain activity from optical measurements represents an ill-posed and underdetermined problem that requires regularization. These reconstructions benefit from incorporating prior information about the underlying spatial structure and function of the brain. In this work, we describe a novel image reconstruction approach which uses surface-based wavelets derived from structural MRI to incorporate high-resolution anatomical and structural prior information about the brain. This surface-based approach is used to approximate brain activation patterns through the reconstruction and presentation of topographical (two-dimensional) maps of brain activation directly onto the folded surface of the cortex. The set of wavelet coefficients is directly estimated by a truncated singular-value decomposition based pseudo-inversion of the wavelet projection of the optical forward model. We use a reconstruction metric based on Shannon entropy which quantifies the sparse loading of the wavelet coefficients and is used to determine the optimal truncation and regularization of this inverse model. In this work, examples of the performance of this model are illustrated for several cases of numerical simulation and experimental data with comparison to functional magnetic resonance imaging.

  14. Topographic localization of brain activation in diffuse optical imaging using spherical wavelets

    PubMed Central

    Abdelnour, F; Schmidt, B; Huppert, T J

    2009-01-01

    Diffuse optical imaging is a non-invasive technique that uses near-infrared light to measure changes in brain activity through an array of sensors placed on the surface of the head. Compared to functional MRI, optical imaging has the advantage of being portable while offering the ability to record functional changes in both oxy- and deoxy-hemoglobin within the brain at a high temporal resolution. However, the reconstruction of accurate spatial images of brain activity from optical measurements represents an ill-posed and underdetermined problem that requires regularization. These reconstructions benefit from incorporating prior information about the underlying spatial structure and function of the brain. In this work, we describe a novel image reconstruction approach which uses surface-based wavelets derived from structural MRI to incorporate high-resolution anatomical and structural prior information about the brain. This surface-based approach is used to approximate brain activation patterns through the reconstruction and presentation of topographical (two-dimensional) maps of brain activation directly onto the folded surface of the cortex. The set of wavelet coefficients is directly estimated by a truncated singular-value decomposition based pseudo-inversion of the wavelet projection of the optical forward model. We use a reconstruction metric based on Shannon entropy which quantifies the sparse loading of the wavelet coefficients and is used to determine the optimal truncation and regularization of this inverse model. In this work, examples of the performance of this model are illustrated for several cases of numerical simulation and experimental data with comparison to functional magnetic resonance imaging. PMID:19809125

  15. Hierarchical clustering of brain activity during human nonrapid eye movement sleep

    PubMed Central

    Boly, Mélanie; Perlbarg, Vincent; Marrelec, Guillaume; Schabus, Manuel; Laureys, Steven; Doyon, Julien; Pélégrini-Issac, Mélanie; Maquet, Pierre; Benali, Habib

    2012-01-01

    Consciousness is reduced during nonrapid eye movement (NREM) sleep due to changes in brain function that are still poorly understood. Here, we tested the hypothesis that impaired consciousness during NREM sleep is associated with an increased modularity of brain activity. Cerebral connectivity was quantified in resting-state functional magnetic resonance imaging times series acquired in 13 healthy volunteers during wakefulness and NREM sleep. The analysis revealed a modification of the hierarchical organization of large-scale networks into smaller independent modules during NREM sleep, independently from EEG markers of the slow oscillation. Such modifications in brain connectivity, possibly driven by sleep ultraslow oscillations, could hinder the brain's ability to integrate information and account for decreased consciousness during NREM sleep. PMID:22451917

  16. Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of Demyelination

    PubMed Central

    Wang, Hanzhi; Liu, Shubao; Tian, Yanping; Wu, Xiyan; He, Yangtao; Li, Chengren; Namaka, Michael; Kong, Jiming; Li, Hongli; Xiao, Lan

    2015-01-01

    Microglial activation has been considered as a crucial process in the pathogenesis of neuroinflammation and psychiatric disorders. Several antipsychotic drugs (APDs) have been shown to display inhibitory effects on microglial activation in vitro, possibly through the suppression of elevated intracellular calcium (Ca2+) concentration. However, the exact underlying mechanisms still remain elusive. In this study, we aimed to investigate the inhibitory effects of quetiapine (Que), an atypical APD, on microglial activation. We utilized a chronic cuprizone (CPZ)-induced demyelination mouse model to determine the direct effect of Que on microglial activation. Our results showed that treatment with Que significantly reduced recruitment and activation of microglia/macrophage in the lesion of corpus callosum and promoted remyelination after CPZ withdrawal. Our in vitro studies also confirmed the direct effect of Que on lipopolysaccharide (LPS)-induced activation of microglial N9 cells, whereby Que significantly inhibited the release of nitric oxide (NO) and tumor necrosis factor ? (TNF-?). Moreover, we demonstrated that pretreatment with Que, neutralized the up-regulation of STIM1 induced by LPS and declined both LPS and thapsigargin (Tg)-induced store-operated Ca2+ entry (SOCE). Finally, we found that pretreatment with Que significantly reduced the translocation of nuclear factor kappa B (NF-?B) p65 subunit from cytoplasm to nuclei in LPS-activated primary microglial cells. Overall, our data suggested that Que may inhibit microglial activation by neutralization of the LPS-induced abnormal STIM1-mediated intercellular calcium homeostasis.

  17. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation.

    PubMed

    Fehr, Thorsten; Code, Chris; Herrmann, Manfred

    2007-10-01

    The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas. PMID:17822681

  18. Prefrontal Brain Activation During Emotional Processing: A Functional Near Infrared Spectroscopy Study (fNIRS).

    PubMed

    Glotzbach, Evelyn; Mühlberger, Andreas; Gschwendtner, Kathrin; Fallgatter, Andreas J; Pauli, Paul; Herrmann, Martin J

    2011-01-01

    The limbic system and especially the amygdala have been identified as key structures in emotion induction and regulation. Recently research has additionally focused on the influence of prefrontal areas on emotion processing in the limbic system and the amygdala. Results from fMRI studies indicate that the prefrontal cortex (PFC) is involved not only in emotion induction but also in emotion regulation. However, studies using fNIRS only report prefrontal brain activation during emotion induction. So far it lacks the attempt to compare emotion induction and emotion regulation with regard to prefrontal activation measured with fNIRS, to exclude the possibility that the reported prefrontal brain activation in fNIRS studies are mainly caused by automatic emotion regulation processes. Therefore this work tried to distinguish emotion induction from regulation via fNIRS of the prefrontal cortex. 20 healthy women viewed neutral pictures as a baseline condition, fearful pictures as induction condition and reappraised fearful pictures as regulation condition in randomized order. As predicted, the view-fearful condition led to higher arousal ratings than the view-neutral condition with the reappraise-fearful condition in between. For the fNIRS results the induction condition showed an activation of the bilateral PFC compared to the baseline condition (viewing neutral). The regulation condition showed an activation only of the left PFC compared to the baseline condition, although the direct comparison between induction and regulation condition revealed no significant difference in brain activation. Therefore our study underscores the results of previous fNIRS studies showing prefrontal brain activation during emotion induction and rejects the hypothesis that this prefrontal brain activation might only be a result of automatic emotion regulation processes. PMID:21673974

  19. Pericentric inversion of chromosome 11 (p14.3q21) associated with developmental delays, hypopigmented skin lesions and abnormal brain MRI findings - a new case report

    SciTech Connect

    Zachor, D.A.; Lofton, M.

    1994-09-01

    We report 3 year old male, referred for evaluation of developmental delays. Pregnancy was complicated by oligohydramnios, proteinuria and prematurity. Medical history revealed: bilateral inguinal hernia, small scrotal sac, undescended testes, developmental delays and behavioral problems. The child had: microcephaly, facial dysmorphic features, single palmar creases, hypopigmented skin lesions of variable size, intermittent exotropia and small retracted testes. Neurological examination was normal. Cognitive level was at the average range with mild delay in his adaptive behavior. Expressive language delays and severe articulation disorder were noted, as well as clumsiness, poor control and precision of gross and fine motor skills. Chromosomal analysis of peripheral leukocytes indicated that one of the number 11 chromosomes had undergone a pericentric inversion with breakpoints on the short (p) arm at band p14.3 and the long (q) arm at band q21. An MRI of the brain showed mild delay in myelinization pattern of white matter. Chromosome 11 inversion in other sites was associated with Beckwith-Wiedemann syndrome and several malignancies. To our knowledge this is the first description of inv(11)(p14.3q21) that is associated with microcephaly, dysmorphic features, hypopigmented skin lesions and speech delay. This inversion may disrupt the expression of the involved genes. However, additional cases with the same cytogenetic anomaly are needed to explore the phenotypic significance of this disorder.

  20. [The brain structures functional activity and aggression patients' multiple sclerosis].

    PubMed

    Reznikova, T N; Seliverstova, N A; Kataeva, G V; Aroev, R A; Il'ves, A G; Kuznetsova, A K

    2015-01-01

    The article is devoted to investigation of unconscious aggression in patients with multiple sclerosis. We carried out comparison of the relative assessments of metabolism speed of glucose (according to positron emission tomography) and indicators of unconscious aggression (in the Hand test). It is shown that an increased tendency to open aggression (unconscious aggression) in patients with multiple sclerosis, is mainly linked with a reduction in the functioning of different departments of the frontal lobes of the brain on the left and with changes of the metabolism speed of glucose in the structures of the limbic system of the left and right hemisphere. With increasing of unconscious aggression we observed decrease of glucose metabolism speed in certain areas of the lower and middle frontal gyrus. PMID:25857175

  1. Todd, Faraday and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward

    2007-10-01

    The origins of our understanding of brain electricity and electrical discharges in epilepsy can be traced to Robert Bentley Todd (1809-60). Todd was influenced by his contemporary in London, Michael Faraday (1791-1867), who in the 1830 s and 1840 s was laying the foundations of our modern understanding of electromagnetism. Todd's concept of nervous polarity, generated in nerve vesicles and transmitted in nerve fibres (neurons in later terminology), was confirmed a century later by the Nobel Prize-winning work of Hodgkin and Huxley, who demonstrated the ionic basis of neuro-transmission, involving the same ions which had had been discovered by Faraday's mentor, Sir Humphry Davy (1778-1829). PMID:17885273

  2. Minimal brain dysfunction, stimulant drugs, and autonomic nervous system activity.

    PubMed

    Zahn, T P; Abate, F; Little, B C; Wender, P H

    1975-03-01

    Autonomic base levels and responsivity to stimuli were investigated in normal and minimally brain dysfunctioned (MBD) children. Continuous recordings of skin conductance, heart rate, skin temperature, and respiration rate were made during rest, at presentation of tones, and when performing a reaction time task. No significant differences in base levels were obtained between normal and MBD children when not taking drugs, but stimulant medication increased skin conductance and heart rate and decreased skin temperature and reaction time. The MBD children were less reactive, autonomically, to all types of stimuli. Stimulant drugs decreased electrodermal responsivity, which was predictable from concurrent changes in base line skin conductance and skintemperature. The MBD performance deficits are not related to lower autonomic responsivity or lower absolute base levels of arousal, but MBD children may perform better at relatively high autonomic base levels. PMID:1115578

  3. Temporal sequencing of brain activations during naturally occurring thermoregulatory events.

    PubMed

    Diwadkar, Vaibhav A; Murphy, Eric R; Freedman, Robert R

    2014-11-01

    Thermoregulatory events are associated with activity in the constituents of the spinothalamic tract. Whereas studies have assessed activity within constituents of this pathway, in vivo functional magnetic resonance imaging (fMRI) studies have not determined if neuronal activity in the constituents of the tract is temporally ordered. Ordered activity would be expected in naturally occurring thermal events, such as menopausal hot flashes (HFs), which occur in physiological sequence. The origins of HFs may lie in brainstem structures where neuronal activity may occur earlier than in interoceptive centers, such as the insula and the prefrontal cortex. To study such time ordering, we conducted blood oxygen level-dependent-based fMRI in a group of postmenopausal women to measure neuronal activity in the brainstem, insula, and prefrontal cortex around the onset of an HF (detected using synchronously acquired skin conductance responses). Rise in brainstem activity occurred before the detectable onset of an HF. Activity in the insular and prefrontal trailed that in the brainstem, appearing following the onset of the HF. Additional activations associated with HF's were observed in the anterior cingulate cortex and the basal ganglia. Pre-HF brainstem responses may reflect the functional origins of internal thermoregulatory events. By comparison insular, prefrontal and striatal activity may be associated with the phenomenological correlates of HFs. PMID:23787950

  4. Can brain scans prove criminals unaccountable?

    PubMed Central

    Roache, Rebecca

    2014-01-01

    Leonard Berlin reports that neuroscientific data play an increasing role in court. They have been used to argue that criminals are not morally responsible for their behaviour because their brains are ‘faulty’, and there is evidence that such data lead judges to pass more lenient sentences. I raise two concerns about the view that neuroscience can show criminals not to be morally responsible: That the brains of (say) violent criminals differ from most people’s brains does not straightforwardly show that violent criminals are less morally responsible. Behavioral states arise inter alia from brain states, and since violent criminals’ behavioral states differ from those of most people, it is unsurprising that violent criminals’ brains should differ from most people’s brains. This no more shows violent criminals to have diminished moral responsibility than differences between the brains of cheerful and uncheerful people show either group to have diminished moral responsibility.Those who view brain abnormalities as evidence of reduced moral responsibility rely on the assumptions that people with normal brains have free will and that we know what sorts of brain activity undermine free will. However, both of these assumptions are highly controversial. As a result, neuroscience is not a reliable source of information about moral responsibility. I conclude that, until we settle whether and under what circumstances brain activity is incompatible with free will, neuroscience cannot tell us anything useful about criminal accountability. PMID:25009758

  5. Occludin is regulated by epidermal growth factor receptor activation in brain endothelial cells and brains of mice with acute liver failure

    PubMed Central

    Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B.; Nguyen, Justin H.

    2011-01-01

    Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 50:1914, 2009). In this study, we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38MAPK/NF?B signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK upregulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NF?B inhibitor, and/or appropriate small interfering RNA. RT-PCR and western blotting were used for mRNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, I?B? degradation, NF?B activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NF?B activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. Conclusion EGFR activation with p38 MAPK/NF?B signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. PMID:21480332

  6. Evaluation of [11C]oseltamivir uptake into the brain during immune activation by systemic polyinosine-polycytidylic acid injection: a quantitative PET study using juvenile monkey models of viral infection

    PubMed Central

    2014-01-01

    Background Abnormal behaviors of young patients after taking the anti-influenza agent oseltamivir (Tamiflu®, F. Hoffmann-La Roche, Ltd., Basel, Switzerland) have been suspected as neuropsychiatric adverse events (NPAEs). Immune response to viral infection is suspected to cause elevation of drug concentration in the brain of adolescents. In the present study, the effect of innate immune activation on the brain uptake of [11C]oseltamivir was quantitatively evaluated in juvenile monkeys. Methods Three 2-year-old monkeys underwent positron emission tomography (PET) scans at baseline and immune-activated conditions. Both scans were conducted under pre-dosing of clinically relevant oseltamivir. The immune activation condition was induced by the intravenous administration of polyinosine-polycytidylic acid (poly I:C). Dynamic [11C]oseltamivir PET scan and serial arterial blood sampling were performed to obtain [11C]oseltamivir kinetics. Brain uptake of [11C]oseltamivr was evaluated by its normalized brain concentration, brain-to-plasma concentration ratio, and plasma-to-brain transfer rate. Plasma pro-inflammatory cytokine levels were also measured. Results Plasma interleukin-6 was elevated after intravenous administration of poly I:C in all monkeys. Brain radioactivity was uniform both at baseline and under poly I:C treatment. The mean brain concentrations of [11C]oseltamivir were 0.0033 and 0.0035% ID/cm3?×?kg, the mean brain-to-plasma concentration ratios were 0.58 and 0.65, and the plasma-to-brain transfer rates were 0.0047 and 0.0051 mL/min/cm3 for baseline and poly I:C treatment, respectively. Although these parameters were slightly changed by immune activation, the change was not notable. Conclusions The brain uptake of [11C]oseltamivir was unchanged by poly I:C treatment in juvenile monkeys. This study demonstrated that the innate immune response similar to the immune activation of influenza would not notably change the brain concentration of oseltamivir in juvenile monkeys. PMID:25045603

  7. Dynamics of fMRI signals during human brain activations to a stimulus

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Kato, Toshinori; Neves, Carlos

    2001-05-01

    In fMRI memory study, the temporal behavior of BOLD fMRI signals were consistently observed from various brain processing areas at 1.5 Tesla and consistent with the expected functions. Also, all the activations generally exhibit three types of temporal characteristics: short, sustained and delayed responses in relation to the primary stimuli. To address these cerebral multiphasic responses, a suitable functional data analysis scheme has been used, in which the neural response of a specific brain area to a pre-determined stimulation input of some sort was assumed to be linear. The visual memory study was performed on 6 normal subjects on a clinical MR scanner using a 5 min long rapid dynamical whole brain imaging using EPI acquisition during a single memory task, which involved a 45 sec visual presentation of three simple abstract geometric figures to the subject via LCD projector. The results showed that the activations in visual cortex were tightly correlated with the visual stimulus, while the activations detected in interior temporal, entorhinal cortex and inferior temporal area were delayed. Using the new technique, the brian activations were further characterized quantitatively in terms of delay and prolonged response. The resulting effective impulse response functions corresponding to these brain activations revealed much clearly all the temporal components.

  8. Comparison of Brain Activation in Response to Two Dimensional and Three Dimensional On-Line Games

    PubMed Central

    Song, Woo Hyun; Shim, Hyung Jin

    2013-01-01

    Objective The present study assessed the difference in the brain activity of professional gamers (excessive players, but not addicts) in response to playing a 3-dimensional online game with an improved interface. Methods Twenty-three StarCraft I pro gamers and 16 StarCraft II pro gamers were recruited at Chung Ang University Medical Center. Brain activity in response to StarCraft I or II cues was assessed with a 1.5 Tesla Espree MRI scanner. Results StarCraft I pro gamers showed significantly greater activity in 4 clusters in response to the video game cues compared to StarCraft II pro gamers: right superior frontal gyrus, right medial frontal gyrus, right occipital lobe, and left medial frontal gyrus. StarCraft II pro gamers showed significantly greater activity in 3 clusters in response to the video game cues compared to StarCraft I pro gamers: left middle frontal gyrus, left temporal fusiform gyrus and left cerebellum. Discussion This is the first study to show the difference in brain activity between gamers playing either a 2-dimensional or 3-dimensional online game. Current brain imaging studies may confirm the pro gamers' experience when playing StarCraft II, a 3-dimensional game with an improved interface, relative to playing StarCraft I. PMID:23798958

  9. A Valuable and Promising Method for Recording Brain Activity in Behaving Newborn Rodents

    PubMed Central

    Sokoloff, Greta; Tiriac, Alexandre; Del Rio-Bermudez, Carlos

    2015-01-01

    Neurophysiological recording of brain activity has been critically important to the field of neuroscience, but has contributed little to the field of developmental psychobiology. The reasons for this can be traced largely to methodological difficulties associated with recording neural activity in behaving newborn rats and mice. Over the last decade, however, the evolution of methods for recording from head-fixed newborns has heralded a new era in developmental neurophysiology. Here, we review these recent developments and provide a step-by-step primer for those interested in applying the head-fix method to their own research questions. Until now, this method has been used primarily to investigate spontaneous brain activity across sleep and wakefulness, the contributions of the sensory periphery to brain activity, or intrinsic network activity. Now, with some ingenuity, the uses of the head-fix method can be expanded to other domains to benefit our understanding of brain-behavior relations under normal and pathophysiological conditions across early development. PMID:25864710

  10. Brain activation during phonological and semantic processing of Chinese characters in deaf signers

    PubMed Central

    Li, Yanyan; Peng, Danling; Liu, Li; Booth, James R.; Ding, Guosheng

    2014-01-01

    Previous studies found altered brain function in deaf individuals reading alphabetic orthographies. However, it is not known whether similar alterations of brain function are characteristic of non-alphabetic writing systems and whether alterations are specific to certain kinds of lexical tasks. Here we examined differences in brain activation between Chinese congenitally deaf individuals (CD) and hearing controls (HC) during character reading tasks requiring phonological and semantic judgments. For both tasks, we found that CD showed less activation than HC in left inferior frontal gyrus, but greater activation in several right hemisphere regions including inferior frontal gyrus, angular gyrus, and inferior temporal gyrus. Although many group differences were similar across tasks, greater activation in right middle frontal gyrus was more pronounced for the rhyming compared to the meaning task. Finally, within the deaf individuals better performance on the rhyming task was associated with less activation in right inferior parietal lobule and angular gyrus. Our results in Chinese CD are broadly consistent with previous studies in alphabetic languages suggesting greater engagement of inferior frontal gyrus and inferior parietal cortex for reading that is largely independent of task, with the exception of right middle frontal gyrus for phonological processing. The brain behavior correlations potentially indicate that CD that more efficiently use the right hemisphere are better readers. PMID:24795593

  11. Imaging fast electrical activity in the brain with electrical impedance tomography.

    PubMed

    Aristovich, Kirill Y; Packham, Brett C; Koo, Hwan; Santos, Gustavo Sato Dos; McEvoy, Andy; Holder, David S

    2016-01-01

    Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2ms and <200?m during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7×5×2mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures. PMID:26348559

  12. Imaging fast electrical activity in the brain with electrical impedance tomography

    PubMed Central

    Aristovich, Kirill Y.; Packham, Brett C.; Koo, Hwan; Santos, Gustavo Sato dos; McEvoy, Andy; Holder, David S.

    2016-01-01

    Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2 ms and < 200 ?m during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7 × 5 × 2 mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures. PMID:26348559

  13. Brain activity and cognition: a connection from thermodynamics and information theory

    PubMed Central

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity. PMID:26136709

  14. Inference Generation during Text Comprehension by Adults with Right Hemisphere Brain Damage: Activation Failure Versus Multiple Activation.

    ERIC Educational Resources Information Center

    Tompkins, Connie A.; Fassbinder, Wiltrud; Blake, Margaret Lehman; Baumgaertner, Annette; Jayaram, Nandini

    2004-01-01

    ourse comprehensionEvidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults…

  15. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity.

    PubMed

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Bortolato, Marco

    2014-10-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous single-nucleotide polymorphism (SNP) that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood post-translational mechanisms. One post-translational modification is methionine sulfoxide, which can be reduced by the methionine sulfoxide reductase (Msr) A and B enzymes. We used recombinant COMT proteins (Val/Met108) and mice (wild-type (WT) and MsrA knockout) to determine the effect of methionine oxidation on COMT activity and COMT interaction with Msr, through a combination of enzymatic activity and Western blot assays. Recombinant COMT activity is positively regulated by MsrA, especially under oxidative conditions, whereas brains of MsrA knockout mice exhibited lower COMT activity (as compared with their WT counterparts). These results suggest that COMT activity may be reduced by methionine oxidation, and point to Msr as a key molecular determinant for the modulation of COMT activity in the brain. The role of Msr in modulating cognitive functions in healthy individuals and schizophrenia patients is yet to be determined. PMID:24735585

  16. SPM95 sensitivity to size, intensity and asymmetry of brain activation/deactivation patterns

    SciTech Connect

    Levy, A.V.; Volkow, N.D.; Alexoff, D.

    1996-05-01

    Statistical Parametric Mapping (Friston, SPM95), is used widely to ascertain the statistical significance between different brain patterns induced by functional activation, drug, effects or mental illness. Our purpose is to understand the limitations of applying the SPM95 methodology. We used a group of 8 FDG PET (CTI 931) studies from normal resting human subjects and via software we activated or deactivated the same specific pixel patterns (ROIs), across the group and observed if SPM95 performed correctly. A set of 6 experiments was designed with varying ROI intensities, (from +/-2% to +/-100% of original ROI value), varying ROI sizes, (from 76 to 656 mm{sup 2}) and different locations in the brain, (cortical and/or subcortical). In experiments where the selected activation pattern was spatially symmetric SPM95 identified correctly areas of activation for cortical ROIs as small as 76 mm{sup 2} having as low as a 10% activation with p<0.01; larger areas, 656 mm{sup 2} can be correctly identified even down to only 2%. In activation experiments with left/right cortical or anterior/posterior